WorldWideScience

Sample records for station centrifuge rotor

  1. State Estimation of International Space Station Centrifuge Rotor With Incomplete Knowledge of Disturbance Inputs

    National Research Council Canada - National Science Library

    Sullivan, Michael J

    2005-01-01

    This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system where only relative measurements are available with limited knowledge of both rotor imbalance disturbances and International Space Station (ISS...

  2. Robust Constrained Optimization Approach to Control Design for International Space Station Centrifuge Rotor Auto Balancing Control System

    National Research Council Canada - National Science Library

    Postma, Barry D

    2005-01-01

    ...) for a centrifuge rotor to be implemented on the International Space Station. The design goal is to minimize a performance objective of the system, while guaranteeing stability and proper performance for a range of uncertain plants...

  3. State Estimation of International Space Station Centrifuge Rotor With Incomplete Knowledge of Disturbance Inputs

    Science.gov (United States)

    Sullivan, Michael J.

    2005-01-01

    This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system where only relative measurements are available with limited knowledge of both rotor imbalance disturbances and International Space Station (ISS) thruster disturbances. A Kalman filter is applied to a plant model augmented with sinusoidal disturbance states used to model both the effect of the rotor imbalance and the 155 thrusters on the CR relative motion measurement. The sinusoidal disturbance states compensate for the lack of the availability of plant inputs for use in the Kalman filter. Testing confirms that complete disturbance modeling is necessary to ensure reliable estimation. Further testing goes on to show that increased estimator operational bandwidth can be achieved through the expansion of the disturbance model within the filter dynamics. In addition, Monte Carlo analysis shows the varying levels of robustness against defined plant/filter uncertainty variations.

  4. Analysis of Space Station Centrifuge Rotor Bearing Systems: A Case Study

    Science.gov (United States)

    Poplawski, Joseph V.; Loewenthal, Stuart H.; Oswald, Fred B.; Zaretsky, Erwin V.; Morales, Wilfredo; Street, Kenneth W., Jr.

    2014-01-01

    A team of NASA bearing and lubrication experts was assembled to assess the risk for the rolling-element bearings used in the International Space Station (ISS) centrifuge rotor (CR) to seize or otherwise fail to survive for the required 10-year life. The CR was designed by the Japan Aerospace Exploration Agency and their subcontractor, NEC Toshiba Space Systems, Ltd. (NTSpace). The NASA team performed a design audit for the most critical rolling-element bearing systems and reviewed the lubricant selected. There is uncertainty regarding the ability of the Braycote 601 grease (Castrol Limited) to reliably provide the 10-year continuous life required without relubrication of the system. The fatigue life of the Rotor Shaft Assembly (RSA) spring loaded face-to-face mount at a 99-percent probability of survival (L1 life) for the ball bearing set was estimated at 700 million hours and the single ball bearing (Row 3) at 58 million hours. These lives satisfy the mission requirements for fatigue. Rolling-element seizure tests on the RSA and fluid slip joint bearings were found unlikely to stop the centrifuge, which can cause damage to the ISS structure. The spin motor encoder duplex angular-contact ball bearings have a hard preload and a large number of small balls have the highest risk of failure. These bearings were not tested for seizure even though they are less tolerant to debris or internal clearance reductions.

  5. International Space Station Centrifuge Rotor Models A Comparison of the Euler-Lagrange and the Bond Graph Modeling Approach

    Science.gov (United States)

    Nguyen, Louis H.; Ramakrishnan, Jayant; Granda, Jose J.

    2006-01-01

    The assembly and operation of the International Space Station (ISS) require extensive testing and engineering analysis to verify that the Space Station system of systems would work together without any adverse interactions. Since the dynamic behavior of an entire Space Station cannot be tested on earth, math models of the Space Station structures and mechanical systems have to be built and integrated in computer simulations and analysis tools to analyze and predict what will happen in space. The ISS Centrifuge Rotor (CR) is one of many mechanical systems that need to be modeled and analyzed to verify the ISS integrated system performance on-orbit. This study investigates using Bond Graph modeling techniques as quick and simplified ways to generate models of the ISS Centrifuge Rotor. This paper outlines the steps used to generate simple and more complex models of the CR using Bond Graph Computer Aided Modeling Program with Graphical Input (CAMP-G). Comparisons of the Bond Graph CR models with those derived from Euler-Lagrange equations in MATLAB and those developed using multibody dynamic simulation at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are presented to demonstrate the usefulness of the Bond Graph modeling approach for aeronautics and space applications.

  6. Rotor for a pyrolysis centrifuge reactor

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....

  7. Mathematical model of secondary rotor of centrifuge based on magnetic or electromagnetic overhead and bottom viscous damper taking into account flexibility and viscosity of rotor, and program of calculating dynamics of rotor in centrifuge

    International Nuclear Information System (INIS)

    Andronov, I.N.

    1999-01-01

    The attempts to development of the rotor-dampers universal model with ability of fast correction of the parameters of mock-up rotor and dampers, their construction were made. The model that takes into account viscous characteristics of the material of the centrifuge rotor and allows research numerically into the rotor behaviour during over-speeding is suggested. The examples of calculations as show good effect of electromagnetic damping on the dynamics of the centrifuge rotor are given [ru

  8. Closed continuous-flow centrifuge rotor

    Science.gov (United States)

    Breillatt, Jr., Julian P.; Remenyik, Carl J.; Sartory, Walter K.; Thacker, Louis H.; Penland, William Z.

    1976-01-01

    A blood separation centrifuge rotor having a generally parabolic core disposed concentrically and spaced apart within a housing having a similarly shaped cavity. Blood is introduced through a central inlet and into a central passageway enlarged downwardly to decrease the velocity of the entrant blood. Septa are disposed inside the central passageway to induce rotation of the entrant blood. A separation chamber is defined between the core and the housing wherein the whole blood is separated into red cell, white cell, and plasma zones. The zones are separated by annular splitter blades disposed within the separation chamber. The separated components are continuously removed through conduits communicating through a face seal to the outside of the rotor.

  9. Effect of Bearing Housings on Centrifugal Pump Rotor Dynamics

    Science.gov (United States)

    Yashchenko, A. S.; Rudenko, A. A.; Simonovskiy, V. I.; Kozlov, O. M.

    2017-08-01

    The article deals with the effect of a bearing housing on rotor dynamics of a barrel casing centrifugal boiler feed pump rotor. The calculation of the rotor model including the bearing housing has been performed by the method of initial parameters. The calculation of a rotor solid model including the bearing housing has been performed by the finite element method. Results of both calculations highlight the need to add bearing housings into dynamic analyses of the pump rotor. The calculation performed by modern software packages is more a time-taking process, at the same time it is a preferred one due to a graphic editor that is employed for creating a numerical model. When it is necessary to view many variants of design parameters, programs for beam modeling should be used.

  10. NECESSARY CONDITIONS OF STABILITY MOVING PARTS OF ROTOR CENTRIFUGE

    OpenAIRE

    Strackeljan, Jens; Babenko, Andriy; Lavrenko, Iaroslav

    2014-01-01

    Design features of modern centrifuges studied. Revealed that their rotors are movable elements that revolve around horizontal axes. The dynamics of these moving parts of laboratory centrifuge considered. Using the Lagrange equation of the second kind the resulting differential equations of their motion considered. The modeling visualization of motion using the software package RecurDyn was made. The results that obtained by the research package RecurDyn and analytically showed that their moti...

  11. Impulsive Collision Dynamics of CO Super Rotors from an Optical Centrifuge.

    Science.gov (United States)

    Murray, Matthew J; Ogden, Hannah M; Toro, Carlos; Liu, Qingnan; Mullin, Amy S

    2016-11-18

    We report state-resolved collision dynamics for CO molecules prepared in an optical centrifuge and measured with high-resolution transient IR absorption spectroscopy. Time-resolved polarization-sensitive measurements of excited CO molecules in the J=29 rotational state reveal that the oriented angular momentum of CO rotors is relaxed by impulsive collisions. The translational energy gains for molecules in the initial plane of rotation are threefold larger than for randomized angular momentum orientations, indicating the presence of anisotropic kinetic energy. The transient data show enhanced population for CO molecules in the initial plane of rotation immediately following the optical centrifuge pulse. A comparison with previous CO 2 super rotor studies illustrates the behavior of molecular gyroscopes; spatial reorientation of CO 2 J=76 rotors takes substantially longer than that for CO J=29 rotors, despite similarities in classical rotational period and rotational energy gap. High-resolution transient IR absorption measurements of the CO J=29-39 rotational states show that the collisional depopulation rates increase with J quantum number. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Structure of bending resonances frequencies in supercritical rotors of gaseous centrifuges

    International Nuclear Information System (INIS)

    Andronov, I.N.; Grigor'ev, G.Yu.; Vyazovetskij, Yu.V.; Senchenkov, A.P.; Senchenkov, S.A.

    2000-01-01

    The position and the structure bending resonances for the model supercritical rotors with different construction of the tube are measured. Considerable complication of the resonance system for the tubes with nonuniform properties was established. The effect of the structure of the resonance on the complication of its realization and the ways of optimization of the rotor resonance system is discussed. Made measuring point to possibility for creation highly productive centrifuges relating to supercritical rotors with uniform concrete size carbon composite tube and structure of winding, working after the third bending resonance. The frequency of the fifth resonance falls in the zone of the performance frequency on the rotors with bellows crimps. Carbon composite tubes with the areas of raised flexibility is provided with greater in several times decrement [ru

  13. Centrifuge Facility for the International Space Station Alpha

    Science.gov (United States)

    Johnson, Catherine C.; Hargens, Alan R.

    1994-01-01

    The Centrifuge Facility planned for the International Space Station Alpha has under-one considerable redesign over the past year, primarily because the Station is now viewed as a 10 year mission rather than a 30 year mission and because of the need to simply the design to meet budget constraints and a 2000 launch date. The basic elements of the Centrifuge Facility remain the same, i.e., a 2.5 m diameter centrifuge, a micro-g holding unit, plant and animal habitats, a glovebox and a service unit. The centrifuge will still provide the full range of artificial gravity from 0.01 a to 2 - as originally planned; however, the extractor to permit withdrawal of habitats from the centrifuge without stopping the centrifuge has been eliminated. The specimen habitats have also been simplified and are derived from other NASA programs. The Plant Research Unit being developed by the Gravitational Biology Facility will be used to house plants in the Centrifuge Facility. Although not as ambitious as the Centrifuge Facility plant habitat, it will provide much better environmental control and lighting than the current Shuttle based Plant Growth Facility. Similarly, rodents will be housed in the Advanced Animal Habitat being developed for the Shuttle program. The Centrifuge Facility and ISSA will provide the opportunity to perform repeatable, high quality science. The long duration increments available on the Station will permit multigeneration studies on both plants and animals which have not previously been possible. The Centrifuge Facility will accommodate sufficient number of specimens to permit statistically significant sampling of specimens to investigate the time course of adaptation to altered gravity environments. The centrifuge will for the first time permit investigators to use gravity itself as a tool to investigate fundamental processes, to investigate the intensity and duration of gravity to maintain normal structure and function, to separate the effects of micro-g from

  14. Rotor-to-stator rub vibration in centrifugal compressor

    Science.gov (United States)

    Gao, J. J.; Qi, Q. M.

    1985-01-01

    One example of excessive vibration encountered during loading of a centrifugal compressor train (H type compressor with HP casing) is discussed. An investigation was made of the effects of the dynamic load on the bearing stiffness and the rotor-bearing system critical speed. The high vibration occurred at a "threshold load," but the machine didn't run smoothly due to rubs even when it had passed through the threshold load. The acquisition and discussion of the data taken in the field as well as a description of the case history which utilizes background information to identify the malfunction conditions is presented. The analysis shows that the failures, including full reverse precession rub and exact one half subharmonic vibration, were caused by the oversize bearings and displacement of the rotor center due to foundation deformation and misalignment between gear shafts, etc. The corrective actions taken to alleviate excessive vibration and the problems which remain to be solved are also presented.

  15. Effect of science laboratory centrifuge of space station environment

    Science.gov (United States)

    Searby, Nancy

    1990-01-01

    It is argued that it is essential to have a centrifuge operating during manned space station operations. Background information and a rationale for the research centrifuge are given. It is argued that we must provide a controlled acceleration environment for comparison with microgravity studies. The lack of control groups in previous studies throws into question whether the obseved effects were the result of microgravity or not. The centrifuge could be used to provide a 1-g environment to supply specimens free of launch effects for long-term studies. With the centrifuge, the specimens could be immediately transferred to microgravity without undergoing gradual acclimation. Also, the effects of artificial gravity on humans could be investigated. It is also argued that the presence of the centrifuge on the space station will not cause undo vibrations or other disturbing effects.

  16. Dynamic analysis of centrifugal machines rotors supported on ball bearings by combined application of 3D and beam finite element models

    Science.gov (United States)

    Pavlenko, I. V.; Simonovskiy, V. I.; Demianenko, M. M.

    2017-08-01

    This research paper is aimed to investigating rotor dynamics of multistage centrifugal machines with ball bearings by using the computer programs “Critical frequencies of the rotor” and “Forced oscillations of the rotor,” which are implemented the mathematical model based on the use of beam finite elements. Free and forces oscillations of the rotor for the multistage centrifugal oil pump NPS 200-700 are observed by taking into account the analytical dependence of bearing stiffness on rotor speed, which is previously defined on the basis of results’ approximation for the numerical simulation in ANSYS by applying 3D finite elements. The calculations found that characteristic and constrained oscillations of rotor and corresponded to them forms of vibrations, as well as the form of constrained oscillation on the actual frequency for acceptable residual unbalance are determined.

  17. Observations on centrifugation: application to centrifuge development.

    Science.gov (United States)

    Roberts, T; Smith, M; Roberts, B

    1999-11-01

    This report outlines the background to the development of an automated, serial, discrete centrifuge, reporting on the criteria considered essential in such an instrument. We established the criteria by examining the detailed logistics of centrifuge operation in a hospital laboratory. The mean sample load per run, using six centrifuges, was 13.6 samples, and the user-selectable cycle time ranged from 00:01:10 to 00:12:33 (hours:minutes:seconds) with a fixed g value of 1050. During the laboratory working window, (0900-1700), only 50% of the centrifuge capacity was utilized and more than one-third of the sample workload was delayed for >5 min because the centrifuges were not emptied promptly. In addition, 35% of the sample workload was centrifuged for less than the time prescribed in the operational specifications. Based on these findings, we designed a new continuous, serial centrifuge to overcome some of the deficiencies noted in the logistics study. The centrifuge operates continuously, nominally treating 150 samples/h, with a cycle time of 5 min at 1,000 g. The cycle time and g value are variable between limits, and their selection governs the throughput rate. Each sample is centrifuged separately in individual rotors mounted in a sturdy carousel with a periphery that traverses a load/unload station. There is no sample delay because of operator absence, and the capacity is fully utilized. The centrifuge can operate in a stand-alone capacity or has the capability of being integrated into a sample preparation system or as a direct front end for high-throughput analyzers.

  18. [The analytical setting of rotary speed of centrifuge rotor and centrifugation time in chemical, biochemical and microbiological practice].

    Science.gov (United States)

    Zolotarev, K V

    2012-08-01

    The researchers happen to face with suspensions in their chemical, biochemical and microbiological practice. The suspensions are the disperse systems with solid dispersed phase and liquid dispersion medium and with dispersed phase particle size > 100 nm (10-7 m). Quite often the necessity occurs to separate solid particles from liquid. To use for this purpose the precipitation in gravitation field can make the process to progress too long. In this respect an effective mode is the precipitation in the field of centrifugal forces--the centrifugation. The rotary speed of centrifuge rotor and centrifugation time can be set analytically using regularities of general dynamics and hydrodynamics. To this effect, should be written and transformed the equation of First and Second Newton Laws for suspension particle being in the field of centrifugal forces and forces of resistance of liquid and vessel wall. The force of liquid resistance depends on particle motion condition in liquid. To determine the regimen the Archimedes and Reynolds numerical dimensionless criteria are to be applied. The article demonstrates the results of these transformations as analytical inverse ratio dependence of centrifugation time from rotary speed. The calculation of series of "rate-time" data permits to choose the optimal data pair on the assumption of centrifuge capacity and practical reasonability. The results of calculations are validated by actual experimental data hence the physical mathematical apparatus can be considered as effective one. The setting progress depends both from parameter (Reynolds criterion) and data series calculation. So, the most convenient way to apply this operation is the programming approach. The article proposes to use the program Microsoft Excel and VBA programming language for this purpose. The possibility to download the file from Internet to use it for fast solution is proposed.

  19. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge

    Science.gov (United States)

    Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.

    2017-10-01

    An optical centrifuge is used to generate an ensemble of CO2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.

  20. Numerical modelling of the flow and isotope separation in centrifuge Iguasu for different lengths of the rotor

    Energy Technology Data Exchange (ETDEWEB)

    Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.; Tronin, I. V.; Tronin, V. N. [National Research Nuclear University, “MEPhI” Moscow Engineering Physics Institute, Moscow (Russian Federation)

    2016-06-08

    Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the gas is taken to be constant.

  1. Criteria for the greater rehabilitation of a centrifugal compressor rotor of a process plant; Criterios para la rehabilitacion mayor de un rotor de compresor centrifugo de planta de proceso

    Energy Technology Data Exchange (ETDEWEB)

    Bertin, Galo; Felix, Jorge A.; Quijano, Octavio [Especialistas en Turbopartes, S.A. de C.V., Queretaro, Queretaro (Mexico)

    2007-11-15

    In this paper are included the main criteria to consider in the greater rehabilitation of a centrifugal compressor rotor, that has as an aim to count on a reliable rotor, fulfilling with the original design of the equipment and with norms and international standards. Also, the main causes of damage that occur in the rotors of this type in the process plants are presented. [Spanish] En el presente trabajo se incluyen los principales criterios a considerar en la rehabilitacion mayor de un rotor de compresor centrifugo, que tienen como finalidad contar con un rotor confiable, cumpliendo con el diseno original del equipo y con normas y estandares internacionales. Asi mismo, se presentan las principales causas de dano que ocurren en los rotores de este tipo en las plantas de proceso.

  2. Centrifuge advances using HTS magnetic bearings

    Science.gov (United States)

    Werfel, F. N.; Flögel-Delor, U.; Rothfeld, R.; Wippich, D.; Riedel, T.

    2001-05-01

    Passive magnetic bearings are of increasing technical interest. We performed experiments with centrifugal rotors to analyze gyroscopic forces in terms imbalance, rotor elasticity and damping. Centrifuge rotors need to be operated soft and stable without whirling the sediments. In order to evaluate optimal parameters critical and resonance behaviors are investigated. Eccentricities up 2 mm are safely passed by accelerating test wheels. In a simple model we describe the effect of passing critical rotational speeds. Measurements of bearing properties and wheel performance are presented. We have constructed a first prototype centrifuge designed with a HTS double bearing which operates a titanium rotor safely up to 30 000 rpm. A 15 W Stirling cooler serves cryogenics of the YBCO stators. From the experiments design guidelines for centrifugal applications with HTS bearings are given.

  3. Rotor-dynamic design aspects for a variable frequency drive based high speed cryogenic centrifugal pump in fusion devices

    International Nuclear Information System (INIS)

    Das, Jotirmoy; Vaghela, Hitensinh; Bhattacharya, Ritendra; Patel, Pratik; Shukla, Vinit; Shah, Nitin; Sarkar, Biswanath

    2015-01-01

    Superconducting magnets of large size are inevitable for fusion devices due to high magnetic field requirements. Forced flow cooling of the superconducting magnets with high mass flowrate of the order ∼3 kg/s is required to keep superconducting magnets within its safe operational boundaries during various plasma scenarios. This important requirement can be efficiently fulfilled by employing high capacity and high efficiency cryogenic centrifugal pumps. The efficiency > 70% will ensure overall lower heat load to the cryoplant. Thermo-hydraulic design of cryogenic centrifugal pump revealed that to achieve the operational regime with high efficiency, the speed should be ∼ 10,000 revolutions per minute. In this regard, the rotor-dynamic design aspect is quite critical from the operational stability point of view. The rotor shaft design of the cryogenic pump is primarily an outcome of optimization between thermal heat-in leak at cryogenic temperature level from ambient, cryogenic fluid impedance and designed rotation speed of the impeller wheel. The paper describes the basic design related to critical speed of the rotor shaft, rotor whirl and system instability prediction to explore the ideal operational range of the pump from the system stability point of view. In the rotor-dynamic analysis, the paper also describes the Campbell plots to ensure that the pump is not disturbed by any of the critical speeds, especially while operating near the nominal and enhanced operating modes. (author)

  4. Investigation of deformation at a centrifugal compressor rotor in process of interference on shaft

    Science.gov (United States)

    Shamim, M. R.; Berezhnoi, D. V.

    2016-11-01

    In this paper, according to the finite element method, we had implemented “master- slave” method of contact interaction in elastic deformable bodies, with consider of the friction in the contact zone. We had compiled the orientation of solving extremum problems with inequality restrictions, projection algorithm, which called “the closest point projection algorithm”. Finally, an example, had brought to show the calculation of the rotor nozzle centrifugal compressor on the shaft with interference.

  5. Thermal analysis of a gas centrifuge

    International Nuclear Information System (INIS)

    Andrade, D.A.; Bastos, J.L.F.; Maiorino, J.R.

    1996-01-01

    The centrifuge separation efficiency is the result of the composition of the centrifuge field to the secondary flow in the axial direction near to the rotor wall. For a given machine, the centrifuge field can not be altered and the effort to augment the separation efficiency should be concentrated on the secondary flow. The secondary flow has a mechanical and a thermal component. The mechanical component is due to the deceleration of the gas at the scoop region. The thermal component is due to the temperature differences at the rotor. This paper presents a thermal model of a centrifuge in order to understand the main heat transfer mechanisms and to establish the boundary conditions for a fluid flow computer code. The heat transfer analysis takes into account conduction at the structure parts of the rotor and shell, radiation with multi-reflections between the rotor and the shell, and convection to the ambient. (author)

  6. Research of plating aluminum and aluminum foil on internal surface of carbon fiber composite material centrifuge rotor drum

    International Nuclear Information System (INIS)

    Lu Xiuqi; Dong Jinping; Dai Xingjian

    2014-01-01

    In order to improve the corrosion resistance, thermal conductivity and sealability of the internal surface of carbon fiber/epoxy composite material centrifuge rotor drum, magnetron sputtering aluminum and pasting an aluminum foil on the inner wall of the drum are adopted to realize the aim. By means of XRD, SEM/EDS and OM, the surface topography of aluminum coated (thickness of 5 μm and 12 μm) and aluminum foil (12 μm) are observed and analyzed; the cohesion of between aluminum coated (or aluminum foil) and substrate material (CFRP) is measured by scratching experiment, direct drawing experiment, and shear test. Besides, the ultra-high-speed rotation experiment of CFRP ring is carried out to analyze stress and strain of coated aluminum (or aluminum foil) which is adhered on the ring. The results showed aluminum foil pasted on inner surface do better performance than magnetron sputtering aluminum on CFRP centrifuge rotor drum. (authors)

  7. Investigation of critical frequencies of the centrifugal compressor rotor with taking into account stiffness of bearings and seals

    Directory of Open Access Journals (Sweden)

    I. V. Pavlenko

    2017-05-01

    Full Text Available In this paper the implementation of the mathematical model for rotor free oscillations of centrifugal machines is considered with the use of the computer program “Critical frequencies of the rotor”. The advantage of the program is the possibility of taking into account any advance given analytic dependence of support and seal stiffness on the rotor speed. As a result of numerical calculation on the example of the multistage centrifugal compressor 295GTS2-190/44-100M eigenfrequencies, critical frequencies and corresponding mode shapes are defined. The credibility of the proposed mathematical model is confirmed by theorem of the mutual position for spectrum of eigenfrequencies and correspondent critical frequencies, as well as by comparing the results of dynamic calculation in the program “Critical frequencies of the rotor” with the results of numerical simulation in ANSYS using the 3D finite element model and drawing the Campbell diagram.

  8. Effect of sludge behavior on performance of centrifugal contactor

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, A.; Sano, Y.; Takeuchi, M. [Japan Atomic Energy Agency - JAEA, 4-33 Muramatsu Tokai-mura Naka-gun Ibaraki-pref. 319-1194 (Japan)

    2016-07-01

    The Japan Atomic Energy Agency has been developing an annular centrifugal contactor for solvent extraction in spent fuel reprocessing, which allows the mixing of aqueous and organic phases in the annular area and their separation from the mixed phase in the rotor. The effects of sludge behavior on the performance of a centrifugal contactor were investigated. Sludge accumulation during the operation of the centrifugal contactor was observed only in the rotor. Based on the sludge accumulation behavior, the effects of rotor sludge accumulation on the performance of phase separation and extraction were investigated using several types of rotors, which simulated different sludge accumulation levels in the separation area. It was confirmed that rotor sludge accumulation would affect the phase separation performance but not the extraction performance. This can be explained by the structure of the centrifugal contactor, wherein the extraction reaction and phase separation mainly proceed in the housing and rotor, respectively.

  9. Space Station Centrifuge: A Requirement for Life Science Research

    Science.gov (United States)

    Smith, Arthur H.; Fuller, Charles A.; Johnson, Catherine C.; Winget, Charles M.

    1992-01-01

    A centrifuge with the largest diameter that can be accommodated on Space Station Freedom is required to conduct life science research in the microgravity environment of space. (This was one of the findings of a group of life scientists convened at the University of California, Davis, by Ames Research Center.) The centrifuge will be used as a research tool to understand how gravity affects biological processes; to provide an on-orbit one-g control; and to assess the efficacy of using artificial gravity to counteract the deleterious biological effect of space flight. The rationale for the recommendation and examples of using ground-based centrifugation for animal and plant acceleration studies are presented. Included are four appendixes and an extensive bibliography of hypergravity studies.

  10. Rotor

    International Nuclear Information System (INIS)

    Gronert, H.; Vetter, J.; Eckert, M.

    1978-01-01

    In the field of hollow high speed rotors there is an increasing demand for progressively higher speeds of safe operation. High speed operation causes support bearings to be carefully designed if the rotor speed is to pass safely through its critical speed of operation where intense vibration is experienced. Also the rotational speed is limited by the peripheral velocity and strength of the outside surface portion of the rotor. The invention proposes that elemental boron, which has great tensile strength and lightness be used to provide a major part of a hollow rotor so that increased operating speeds can be attained. Such a rotor is usable to provide a high speed centrifuge drum. (author)

  11. Sludge behavior in centrifugal contactor operation for nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Sakamoto, Atsushi; Sano, Yuichi; Takeuchi, Masayuki; Okamura, Nobuo; Koizumi, Kenji

    2015-01-01

    The Japan Atomic Energy Agency (JAEA) has been developing the centrifugal contactor for spent fuel reprocessing. In this study, we investigated the sludge behavior in centrifugal contactors at three different scales. The operational conditions (the flow rate and rotor speed) were varied. Most insoluble particles such as sludge remained in the rotor via centrifugal force. The capture ratio of sludge in the contactor was measured as a function of particle size at various flow rates, rotor speeds, and contactor scales. The sludge adhered and accumulated inside the rotor as the operational time increased, and the operational conditions influenced the capture ratio of the sludge; a lower flow rate and higher rotor speed increased the capture ratio. The results confirmed that Stokes' law can be applied to estimate the experimental result on the behavior of the capture ratio for centrifugal contactors with different scales. (author)

  12. Compatibility of the Space Station Freedom life sciences research centrifuge with microgravity requirements

    Science.gov (United States)

    Hasha, Martin D.

    1990-01-01

    NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.

  13. RESEARCH CENTRIFUGE- ADVANCED TOOL SEPERATION

    OpenAIRE

    Mahajan Ashwini; Prof. B.V. Jain; Dr Surajj Sarode

    2015-01-01

    A centrifuge is a critical piece of equipment for the laboratory. Purpose of this study was to study research centrifuge in detail, its applications, uses in different branches and silent features. Their are two types of research centrifuge study here revolutionary research centrifuge and microprocessor research centrifuge. A centrifuge is a device that separates particles from a solution through use of a rotor. In biology, the particles are usually cells, sub cellular organelles, or large mo...

  14. Autobalancing and FDIR for a space-based centrifuge prototype

    Science.gov (United States)

    Wilson, Edward; Mah, Robert W.

    2005-01-01

    This report summarizes centrifuge-related work performed at the Smart Systems Research Laboratory at NASA Ames Research Center's Computational Sciences Division from 1995 through 2003. The goal is to develop an automated system that will sense an imbalance (both static and dynamic3) in a centrifuge and issue control commands to drive counterweights to eliminate the effects of the imbalance. This autobalancing development began when the ISS centrifuge design was not yet finalized, and was designed to work with the SSRL Centrifuge laboratory prototype, constructed in 1993-1995. Significant differences between that prototype and the current International Space Station (ISS) Centrifuge design are that: the spin axis for the SSRL Centrifuge prototype can translate freely in x and y, but not wobble, whereas the ISS centrifuge spin axis has 3 translational and two rotational degrees of freedom, supported by a vibration 34. The imbalance sensors are strained gauges both in the rotor and the stator, measuring the imbalance forces, whereas the ISS centrifuge uses eddy current displacement sensors to measure the displacements resulting from imbalance. High fidelity autobalancing and FDIR systems (for both counterweights and strain gauges) are developed and tested in MATLAB simulation, for the SSRL Centrifuge configuration. Hardware implementation of the autobalancing technology was begun in 1996, but was terminated due to lack of funding. The project lay dormant until 2001-2002 when the FDIR capability was added.

  15. Feedforward compensation control of rotor imbalance for high-speed magnetically suspended centrifugal compressors using a novel adaptive notch filter

    Science.gov (United States)

    Zheng, Shiqiang; Feng, Rui

    2016-03-01

    This paper introduces a feedforward control strategy combined with a novel adaptive notch filter to solve the problem of rotor imbalance in high-speed Magnetically Suspended Centrifugal Compressors (MSCCs). Unbalance vibration force of rotor in MSCC is mainly composed of current stiffness force and displacement stiffness force. In this paper, the mathematical model of the unbalance vibration with the proportional-integral-derivative (PID) control laws is presented. In order to reduce the unbalance vibration, a novel adaptive notch filter is proposed to identify the synchronous frequency displacement of the rotor as a compensation signal to eliminate the current stiffness force. In addition, a feedforward channel from position component to control output is introduced to compensate displacement stiffness force to achieve a better performance. A simplified inverse model of power amplifier is included in the feedforward channel to reject the degrade performance caused by its low-pass characteristic. Simulation and experimental results on a MSCC demonstrate a significant effect on the synchronous vibration suppression of the magnetically suspended rotor at a high speed.

  16. Centrifugal pump handbook

    CERN Document Server

    Pumps, Sulzer

    2010-01-01

    This long-awaited new edition is the complete reference for engineers and designers working on pump design and development or using centrifugal pumps in the field. This authoritative guide has been developed with access to the technical expertise of the leading centrifugal pump developer, Sulzer Pumps. In addition to providing the most comprehensive centrifugal pump theory and design reference with detailed material on cavitation, erosion, selection of materials, rotor vibration behavior and forces acting on pumps, the handbook also covers key pumping applications topics and operational

  17. Rotor blade boundary layer measurement hardware feasibility demonstration

    Science.gov (United States)

    Clark, D. R.; Lawton, T. D.

    1972-01-01

    A traverse mechanism which allows the measurement of the three dimensional boundary layers on a helicopter rotor blade has been built and tested on a full scale rotor to full scale conditions producing centrifugal accelerations in excess of 400 g and Mach numbers of 0.6 and above. Boundary layer velocity profiles have been measured over a range of rotor speeds and blade collective pitch angles. A pressure scanning switch and transducer were also tested on the full scale rotor and found to be insensitive to centrifugal effects within the normal main rotor operating range. The demonstration of the capability to measure boundary layer behavior on helicopter rotor blades represents the first step toward obtaining, in the rotating system, data of a quality comparable to that already existing for flows in the fixed system.

  18. Flow induced vibrations in gas tube assembly of centrifuge

    International Nuclear Information System (INIS)

    Alam, M.; Atta, M.A.; Mirza, J.A.; Khan, A.Q.

    1986-01-01

    A centrifuge essentially consists of a rotor rotating at very high speed. Gas tube assembly, located at the center of the rotor, is used to introduce feed gas into the rotor and remove product and waste streams from it. The gas tube assembly is thus a static component, the product and waste scoops of which are lying in the high pressure region of a fluid rotating at very high speed. This can cause flow induced vibrations in the gas tube assembly. Such vibrations affect not only the mechanical stability of the gas tube assembly but may also reduce the separative power of the centrifuge. In a cascade, if some of the centrifuges have gas tube vibration, then cascade performance will be affected. A theoretical analysis of the effect of waste tube vibrations on product and waste flow rates and pressures in the centrifuge is presented. A simple stage consisting of two centrifuges, in which one has tube vibration, is considered for this purpose. The results are compared with experiment. It is shown that waste tube vibration generates oscillations in waste and product flow rates that are observable outside the centrifuge. (author)

  19. Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station

    Science.gov (United States)

    Dalton, Bonnie P.; Plaut, Karen; Meeker, Gabrielle B.; Sun, Sid (Technical Monitor)

    2000-01-01

    The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories. The habitats provide all basic life support capabilities including temperature control, humidity monitoring and control, waste management, food, media and water delivery as well as adjustable lighting. All habitats will have either an internal centrifuge or are fitted to the 2.5-meter diameter centrifuge allowing for variable centrifugation up to 2 g. Specimen chambers are removable so that the specimens can be handled in the life sciences glovebox. Laboratory support equipment is provided for handling the specimens. This includes a compound and dissecting microscope with advanced video imaging, mass measuring devices, refrigerated centrifuge for processing biological samples, pH meter, fixation and complete cryogenic storage capabilities. The research capabilities provided by the fundamental biology facilities will allow for flexibility and efficiency for long term research on the International Space Station.

  20. Development of uranium enrichment technology by gas centrifugation

    International Nuclear Information System (INIS)

    Sibata, Tomofumi; Kai, Tsunetoshi

    1996-01-01

    The development of a gas-centrifuge for uranium enrichment has been conducted by Power Reactor and Nuclear Fuel Development Corporation in Japan after the first several years' fruitless works, the R and D works came to the point and continuing rapid improvements of centrifuges have started, Cascade tests were given with C-1 and C-2 cascade experimental facilities. Life, reliability and feasibility tests were given with the pilot plant and the demonstration plant. As a result of these works, the private commercial plant has started the operation. Although the main efforts were devoted to the development of metal rotor centrifuges in the course mentioned above, composite material rotor centrifuges have also been developed in parallel to achieve higher performance. Promising results have been being obtained with cascade test facilities on the pilot plant scale. Furthermore, R and D works are being proceeded on more excellent and advanced centrifuges. (author)

  1. Flywheels Would Compensate for Rotor Imbalance

    Science.gov (United States)

    Hrastar, J. A. S.

    1982-01-01

    Spinning flywheels within rotor can null imbalance forces in rotor. Flywheels axes are perpendicular to each other and to rotor axis. Feedback signals from accelerometers or strain gages in platform control flywheel speeds and rotation directions. Concept should be useful for compensating rotating bodies on Earth. For example, may be applied to large industrial centrifuge, particularly if balance changes during operation.

  2. Dovetail Rotor Construction For Permanent-Magnet Motors

    Science.gov (United States)

    Kintz, Lawrence J., Jr.; Puskas, William J.

    1988-01-01

    New way of mounting magnets in permanent-magnet, electronically commutated, brushless dc motors. Magnets wedge shaped, tapering toward center of rotor. Oppositely tapered pole pieces, electron-beam welded to rotor hub, retain magnets against centrifugal force generated by spinning rotor. To avoid excessively long electron-beam welds, pole pieces assembled in segments rather than single long bars.

  3. Theory of uranium enrichment by the gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D R [California Univ., Berkeley (USA). Lawrence Berkeley Lab.; California Univ., Berkeley (USA). Dept. of Nuclear Engineering)

    1981-01-01

    Onsager's analysis of the hydrodynamics of fluid circulation in the boundary layer on the rotor wall of a gas centrifuge is reviewed. The description of the flow in the boundary layers on the top and bottom end caps due to Carrier and Maslen is summarized. The method developed by Wood and Morton of coupling the flow models in the rotor wall and end cap boundary layers to complete the hydrodynamic analysis of the centrifuge is presented. Mechanical and thermal methods of driving the internal gas circulation are described. The isotope enrichment which results from the superposition of the elementary separation effect due to the centrifugal field in the gas and its internal circulation is analyzed by the Onsager-Cohen theory. The performance function representing the optimized separative power of a centrifuge as a function of throughput and cut is calculated for several simplified internal flow models. The use of asymmetric ideal cascades to exploit the distinctive features of centrifuge performance functions is illustrated.

  4. Experiences with vacuum type air-driven centrifuge for use in short nuclear lifetime measurements

    International Nuclear Information System (INIS)

    Khan, N.A.; Ahmed, M.

    1977-10-01

    The design, construction and performance of an improved vacuum type air-driven centrifuge having rotors of various material and radii are discusses. The centrifuge rotor is self-balancing and with the titanium rotors of 19 cm in diamter tip velocities upto 1.44 x 10 5 cms/sec have been achieved. The apparatus has been built for gamma ray resonance scattering studies and it is hoped to extend by about 25% the energy range of levels accessible by the rotor technique

  5. Energy and momentum management of the Space Station using magnetically suspended composite rotors

    Science.gov (United States)

    Eisenhaure, D. B.; Oglevie, R. E.; Keckler, C. R.

    1985-01-01

    The research addresses the feasibility of using magnetically suspended composite rotors to jointly perform the energy and momentum management functions of an advanced manned Space Station. Recent advancements in composite materials, magnetic suspensions, and power conversion electronics have given flywheel concepts the potential to simultaneously perform these functions for large, long duration spacecraft, while offering significant weight, volume, and cost savings over conventional approaches. The Space Station flywheel concept arising out of this study consists of a composite-material rotor, a large-angle magnetic suspension (LAMS) system, an ironless armature motor/generator, and high-efficiency power conversion electronics. The LAMS design permits the application of appropriate spacecraft control torques without the use of conventional mechanical gimbals. In addition, flywheel systems have the growth potential and modularity needed to play a key role in many future system developments.

  6. Wind rotor power station BONI-ShHV

    International Nuclear Information System (INIS)

    Bolotov, A.V.

    1999-01-01

    Wind rotor power station (WRPS) BONI-ShHV has following advantages : the increase of installation stability by rise of wind velocity and rotation speed of rotor due to gyroscopic effect; the absence noise and vibration; the safety for birds and animals; ability of compact installation and creation of series of wind power dams with higher capacity; the simplicity and fast assembling and putting into operation. The price of 1 k W of installing capacity is lower about 2.5-3 times compare to usual WRPS due to simple kinematic scheme. WRPS has high specific output of electrical energy due to use of low and long existing wind velocity and due to short storms, giving greater power. It has ability to be replayed when average annual wind velocity is above 5.5 m/s in comparison with propeller WRPS, which are never repaying. WRPS BONI-ShHV are made on the plants of Republic of Kazakhstan, and tested in wind velocity range up 45 m/s, have experience of 3 years of operation, showing their reliability and effectiveness. The repayment period of individual WRPS BONI-0.5/6 ShHV is from 10 month to 1 year depending on average annual velocity

  7. The centrifuge facility - A life sciences research laboratory for Space Station Freedom

    Science.gov (United States)

    Fuller, Charles A.; Johnson, Catherine C.; Hargens, Alan R.

    1991-01-01

    The paper describes the centrifugal facility that is presently being developed by NASA for studies aboard the Space Station Freedom on the role of gravity, or its absence, at varying intensities for varying periods of time and with multiple model systems. Special attention is given to the design of the centrifuge system, the habitats designed to hold plants and animals, the glovebox system designed for experimental manipulations of the specimens, and the service unit. Studies planned for the facility will include experiments in the following disciplines: cell and developmental biology, plant biology, regulatory physiology, musculoskeletal physiology, behavior and performance, neurosciences, cardiopulmonary physiology, and environmental health and radiation.

  8. Radial loads and axial thrusts on centrifugal pumps

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The proceedings of a seminar organised by the Power Industries Division of the IMechE are presented in this text. Complete contents: Review of parameters influencing hydraulic forces on centrifugal impellers; The effect of fluid forces at various operation conditions on the vibrations of vertical turbine pumps; A review of the pump rotor axial equilibrium problem - some case studies; Dynamic hydraulic loading on a centrifugal pump impeller; Experimental research on axial thrust loads of double suction centrifugal pumps; A comparison of pressure distribution and radial loads on centrifugal pumps; A theoretical and experimental investigation of axial thrusts within a multi-stage centrifugal pump

  9. Gas centrifuge purge method

    Science.gov (United States)

    Theurich, Gordon R.

    1976-01-01

    1. In a method of separating isotopes in a high speed gas centrifuge wherein a vertically oriented cylindrical rotor bowl is adapted to rotate about its axis within an evacuated chamber, and wherein an annular molecular pump having an intake end and a discharge end encircles the uppermost portion of said rotor bowl, said molecular pump being attached along its periphery in a leak-tight manner to said evacuated chamber, and wherein end cap closure means are affixed to the upper end of said rotor bowl, and a process gas withdrawal and insertion system enters said bowl through said end cap closure means, said evacuated chamber, molecular pump and end cap defining an upper zone at the discharge end of said molecular pump, said evacuated chamber, molecular pump and rotor bowl defining a lower annular zone at the intake end of said molecular pump, a method for removing gases from said upper and lower zones during centrifuge operation with a minimum loss of process gas from said rotor bowl, comprising, in combination: continuously measuring the pressure in said upper zone, pumping gas from said lower zone from the time the pressure in said upper zone equals a first preselected value until the pressure in said upper zone is equal to a second preselected value, said first preselected value being greater than said second preselected value, and continuously pumping gas from said upper zone from the time the pressure in said upper zone equals a third preselected value until the pressure in said upper zone is equal to a fourth preselected value, said third preselected value being greater than said first, second and fourth preselected values.

  10. Separative power of an optimised concurrent gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Bogovalov, Sergey; Boman, Vladimir [National Research Nuclear University (MEPHI), Moscow (Russian Federation)

    2016-06-15

    The problem of separation of isotopes in a concurrent gas centrifuge is solved analytically for an arbitrary binary mixture of isotopes. The separative power of the optimised concurrent gas centrifuges for the uranium isotopes equals to δU = 12.7 (V/700 m/s)2(300 K/T)(L/1 m) kg·SWU/yr, where L and V are the length and linear velocity of the rotor of the gas centrifuge and T is the temperature. This equation agrees well with the empirically determined separative power of optimised counter-current gas centrifuges.

  11. Uranium accumulation in CTF and ETF-II rotors

    International Nuclear Information System (INIS)

    1987-06-01

    In the expanding technology of uranium enrichment by gas centrifuge, efforts are being made to become more and more familar with the reactions taking place inside the rotor tube while the machine is operational. Inspection of the rotor after shutdown shows where uranium containing compounds are deposited. A study of these deposits from several ETF, CTF and CPL rotors has provided insight as to accumulation amounts, its composition and deposition parameters involved

  12. Gas centrifuge with driving motor

    Science.gov (United States)

    Dancy, Jr., William H.

    1976-01-01

    1. A centrifuge for separating gaseous constituents of different masses comprising a vertical tubular rotor, means for introducing a gas mixture of different masses into said rotor and means for removing at least one of the gas components from the rotor, a first bearing means supporting said rotor at one end for rotational movement, a support, a damping bearing mounted on said support, a shaft fixed to said rotor at the opposite end and mechanically connecting said rotor to said damping bearing, a cup-shaped tube of electrically conductive, non-magnetic material in coaxial relationship with said shaft, the open end of said tube extending away from said rotor and the closed end of said tube being directly secured to the adjacent end of the rotor, an annular core of magnetic material fixedly mounted on said support so as to be disposed within said tube and around said shaft, and a second annular magnetic core with coils arranged thereon to receive polyphase current to produce a rotating magnetic field traversing the circumference of said tube, fixedly mounted on said support so as to surround said tube, the size of said first annular core and said second annular core being such as to permit limited radial displacement of said shaft and said tube.

  13. Gas centrifuge with driving motor

    International Nuclear Information System (INIS)

    Dancy, W.H. Jr.

    1976-01-01

    A centrifuge for separating gaseous constituents of different masses consists of: a vertical tubular rotor; means for introducing a gas mixture of different masses into the rotor and means for removing at least one of the gas components from the rotor; a first bearing means supporing the rotor at one end; a support; a damping bearing mounted on the support; a shaft fixed to the rotor at the opposite end and mechanically connecting the rotor to the damping bearing; a cup-shaped tube of electrically conductive, non-magnetic material in coaxial relationship with the shaft, the open end of the tube extending away from the rotor, and the closed end of the tube being directly secured to the adjacent end of the rotor; an annular core of magnetic material fixedly mounted on the support so as to be disposed within the tube and around the shaft; and a second annular magnetic core with coils to receive polyphase current to produce a rotating magnetic field traversing the circumference of the tube, fixedly mounted on the support so as to surround the tube, the size of first and the second annular core being such as to permit limited radial displacement of the shaft and the tube

  14. Soft-martensitic stainless Cr-Ni-Mo steel for turbine rotors in geothermic power stations

    International Nuclear Information System (INIS)

    Schonfeld, K.; Potthast, E.

    1986-01-01

    Steel Grade X5 Cr-Ni-Mo 12 6 containing 0.05% carbon, 12% chromium, 6% nickel, and 1.50% molybdenum is an advantageous material for turbine rotors in geothermic power stations because of its excellent strength and toughness properties in combination with good erosion and corrosion resistance. In terms of the phase diagram, this soft-martensitic steel has its place at the martensite/austenite/ferrite interface. Therefore, its chemical composition must be chosen so as to have a completely martensitic structure after hardening. The manufacture of and the mechanical properties of a turbine rotor 1200 mm in diameter by 5600 mm in length with a finished weight of approximately 21.5 tons are described in detail

  15. Method and apparatus for automated processing and aliquoting of whole blood samples for analysis in a centrifugal fast analyzer

    Science.gov (United States)

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1985-08-05

    A rotor and disc assembly for use in a centrifugal fast analyzer. The assembly is designed to process multiple samples of whole blood followed by aliquoting of the resultant serum into precisely measured samples for subsequent chemical analysis. The assembly requires minimal operator involvement with no mechanical pipetting. The system comprises: (1) a whole blood sample disc; (2) a serum sample disc; (3) a sample preparation rotor; and (4) an analytical rotor. The blood sample disc and serum sample disc are designed with a plurality of precision bore capillary tubes arranged in a spoked array. Samples of blood are loaded into the blood sample disc by capillary action and centrifugally discharged into cavities of the sample preparation rotor where separation of serum and solids is accomplished. The serum is loaded into the capillaries of the serum sample disc by capillary action and subsequently centrifugally expelled into cuvettes of the analyticaly rotor for conventional methods. 5 figs.

  16. Method and apparatus for automated processing and aliquoting of whole blood samples for analysis in a centrifugal fast analyzer

    Science.gov (United States)

    Burtis, Carl A.; Johnson, Wayne F.; Walker, William A.

    1988-01-01

    A rotor and disc assembly for use in a centrifugal fast analyzer. The assembly is designed to process multiple samples of whole blood followed by aliquoting of the resultant serum into precisely measured samples for subsequent chemical analysis. The assembly requires minimal operator involvement with no mechanical pipetting. The system comprises (1) a whole blood sample disc, (2) a serum sample disc, (3) a sample preparation rotor, and (4) an analytical rotor. The blood sample disc and serum sample disc are designed with a plurality of precision bore capillary tubes arranged in a spoked array. Samples of blood are loaded into the blood sample disc in capillary tubes filled by capillary action and centrifugally discharged into cavities of the sample preparation rotor where separation of serum and solids is accomplished. The serum is loaded into the capillaries of the serum sample disc by capillary action and subsequently centrifugally expelled into cuvettes of the analytical rotor for analysis by conventional methods.

  17. Extended residence time centrifugal contactor design modification and centrifugal contactor vane plate valving apparatus for extending mixing zone residence time

    Science.gov (United States)

    Wardle, Kent E.

    2017-06-06

    The present invention provides an annular centrifugal contactor, having a housing adapted to receive a plurality of flowing liquids; a rotor on the interior of the housing; an annular mixing zone, wherein the annular mixing zone has a plurality of fluid retention reservoirs with ingress apertures near the bottom of the annular mixing zone and egress apertures located above the ingress apertures of the annular mixing zone; and an adjustable vane plate stem, wherein the stem can be raised to restrict the flow of a liquid into the rotor or lowered to increase the flow of the liquid into the rotor.

  18. Flow and separation in gas centrifuge with Beams type circulation

    International Nuclear Information System (INIS)

    Ajsen, Eh.M.; Borisevich, V.D.; Levin, E.V.

    1992-01-01

    Structure of the secondary circulation flows in the working chamber of gas centrifuge for uranium isotope separation is studied using the numerical methods. Influence of the circulation thermal component on the centrifuge efficiency is analyzed. The contribution of useful component concentration difference of binary isotope mixture in feeding flows to the centrifuge efficiency is determined. Dependence of concentration optimal difference, whereby the maximum efficiency is achieved, on temperature distribution on the rotor side wall is found

  19. Direct observation, study and control of molecular super rotors

    Science.gov (United States)

    Korobenko, Aleksey; Milner, Alexander; Hepburn, John; Milner, Valery

    2014-05-01

    Extremely fast rotating molecules whose rotational energy is comparable with or exceeds the molecular bond strength are known as ``super rotors''. It has been speculated that super rotors may exhibit a number of unique properties, yet only indirect evidence of these molecular objects has been reported to date. We demonstrate the first direct observation of molecular super rotors by detecting coherent unidirectional molecular rotation with extreme frequencies exceeding 10 THz. The technique of an ``optical centrifuge'' is used to control the degree of rotational excitation in an ultra-broad range of rotational quantum numbers, reaching as high as N = 95 in oxygen and N = 60 in nitrogen. State-resolved detection enables us to determine the shape of the excited rotational wave packet and quantify the effect of centrifugal distortion on the rotational spectrum. Femtosecond time resolution reveals coherent rotational dynamics with increasing coherence times at higher angular momentum. We demonstrate that molecular super rotors can be created and observed in dense samples under normal conditions where the effects of ultrafast rotation on many-body interactions, inter-molecular collisions and chemical reactions can be readily explored.

  20. Rotor assembly and assay method

    Science.gov (United States)

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1993-09-07

    A rotor assembly for carrying out an assay includes a rotor body which is rotatable about an axis of rotation, and has a central chamber and first, second, third, fourth, fifth, and sixth chambers which are in communication with and radiate from the central chamber. The rotor assembly further includes a shuttle which is movable through the central chamber and insertable into any of the chambers, the shuttle including a reaction cup carrying an immobilized antigen or an antibody for transport among the chambers. A method for carrying out an assay using the rotor assembly includes moving the reaction cup among the six chambers by passing the cup through the central chamber between centrifugation steps in order to perform the steps of: separating plasma from blood cells, binding plasma antibody or antigen, washing, drying, binding enzyme conjugate, reacting with enzyme substrate and optically comparing the resulting reaction product with unreacted enzyme substrate solution. The movement of the reaction cup can be provided by attaching a magnet to the reaction cup and supplying a moving magnetic field to the rotor. 34 figures.

  1. Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Rotors

    Science.gov (United States)

    Lobitz, D. W.

    1981-01-01

    The dynamic response characteristics of the vertical axis wind turbine (VAWT) rotor are important factors governing the safety and fatigue life of VAWT systems. The principal problems are the determination of critical rotor speeds (resonances) and the assessment of forced vibration response amplitudes. The solution to these problems is complicated by centrifugal and Coriolis effects which can have substantial influence on rotor resonant frequencies and mode shapes. The primary tools now in use for rotor analysis are described and discussed. These tools include a lumped spring mass model (VAWTDYN) and also finite-element based approaches. The accuracy and completeness of current capabilities are also discussed.

  2. Review of the gas centrifuge until 1962. Part I: Principles of separation physics

    International Nuclear Information System (INIS)

    Whitley, S.

    1984-01-01

    There are two sets of principles involved in the development of the gas centrifuge, the internal separation physics and the external means of spinning a rotor at very high speeds. Only the first aspect is discussed in this part of the review. First, the industrial requirement for the separation of the uranium isotopes is defined so that the separation history can be put in a modern perspective. The history of separation physics itself is then traced back to the theory of centrifugal force by Huygens and the equivalence of this force to that of gravity. The barometric equation giving the variation of atmospheric pressure with height and the law of partial pressures can then be adapted to the centrifuge to give the steady-state theory of separation. This work was completed in the last century but was not confirmed in its application to isotope separation until 1936. The detailed separation physics for non-steady-state conditions required for a production centrifuge was developed during the American wartime Manhattan Project. During this work the theory giving the maximum output of a centrifuge was developed by Dirac, and soon afterwards Cohen and Kaplan showed that the best method of operation for a production centrifuge is in a countercurrent mode of operation. This method gives a large separation factor at relatively small flow rates through the rotor. The theory of how to set up an internal countercurrent was given by Martin during an equivalent wartime German project, and refinements to the theory, showing how the countercurrent persists along a centrifuge rotor, was given by Dirac and Steenbeck, the latter during a postwar Russian project. This theory was extended by Parker, Ging, and Mayo of the University of Virginia, whose work was completed by 1962, the limit of this review

  3. Rotor assembly and method for automatically processing liquids

    Science.gov (United States)

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1992-12-22

    A rotor assembly is described for performing a relatively large number of processing steps upon a sample, such as a whole blood sample, and a diluent, such as water. It includes a rotor body for rotation about an axis and includes a network of chambers within which various processing steps are performed upon the sample and diluent and passageways through which the sample and diluent are transferred. A transfer mechanism is movable through the rotor body by the influence of a magnetic field generated adjacent the transfer mechanism and movable along the rotor body, and the assembly utilizes centrifugal force, a transfer of momentum and capillary action to perform any of a number of processing steps such as separation, aliquoting, transference, washing, reagent addition and mixing of the sample and diluent within the rotor body. The rotor body is particularly suitable for automatic immunoassay analyses. 34 figs.

  4. Clean-in-Place and Reliability Testing of a Commercial 12.5-cm Annular Centrifugal Contactor at the INL

    International Nuclear Information System (INIS)

    N. R. Mann; T. G. Garn; D. H. Meikrantz; J. D. Law; T. A. Todd

    2007-01-01

    The renewed interest in advancing nuclear energy has spawned the research of advanced technologies for recycling nuclear fuel. A significant portion of the advanced fuel cycle includes the recovery of selected actinides by solvent extraction methods utilizing centrifugal contactors. Although the use of centrifugal contactors for solvent extraction is widely known, their operation is not without challenges. Solutions generated from spent fuel dissolution contain unknown quantities of undissolved solids. A majority of these solids will be removed via various methods of filtration. However, smaller particles are expected to carry through to downstream solvent extraction processes and equipment. In addition, solids/precipitates brought about by mechanical or chemical upsets are another potential area of concern. During processing, particulate captured in the rotor assembly by high centrifugal forces eventually forms a cake-like structure on the inner wall introducing balance problems and negatively affecting phase separations. One of the features recently developed for larger engineering scale Annular Centrifugal Contactors (ACCs) is the Clean-In-Place (CIP) capability. Engineered spray nozzles were installed into the hollow central rotor shaft in all four quadrants of the rotor assembly. This arrangement allows for a very convenient and effective method of solids removal from within the rotor assembly

  5. Clean-in-Place and Reliability Testing of a Commercial 12.5 cm Annular Centrifugal Contactor at the INL

    International Nuclear Information System (INIS)

    N. R. Mann; T. G. Garn; D. H. Meikrantz; J. D. Law; T. A. Todd

    2007-01-01

    The renewed interest in advancing nuclear energy has spawned the research of advanced technologies for recycling nuclear fuel. A significant portion of the advanced fuel cycle includes the recovery of selected actinides by solvent extraction methods utilizing centrifugal contactors. Although the use of centrifugal contactors for solvent extraction is widely known, their operation is not without challenges. Solutions generated from spent fuel dissolution contain unknown quantities of undissolved solids. A majority of these solids will be removed via various methods of filtration. However, smaller particles are expected to carry through to downstream solvent extraction processes and equipment. In addition, solids/precipitates brought about by mechanical or chemical upsets are another potential area of concern. During processing, particulate captured in the rotor assembly by high centrifugal forces eventually forms a cake-like structure on the inner wall introducing balance problems and negatively affecting phase separations. One of the features recently developed for larger engineering scale Annular Centrifugal Contactors (ACCs) is the Clean-In-Place (CIP) capability. Engineered spray nozzles were installed into the hollow central rotor shaft in all four quadrants of the rotor assembly. This arrangement allows for a very convenient and effective method of solids removal from within the rotor assembly

  6. Characteristics of centrifugal rapid contactor, (3)

    International Nuclear Information System (INIS)

    Nakanishi, Mitsuo; Hirayama, Hiroshi; Takasu, Nobuyuki; Takeda, Hiroshi; Hoshino, Tadaya

    1979-01-01

    Organic solvent yields the degradation product as a result of irradiation, in the extraction process of spent fuel reprocessing. The development of a centrifugal rapid contactor is required for the reduction of the solvent degradation by shortening the contact time. The effects of fine solid particles were investigated with a SGN-Robatel LX-208N contactor, following the uranium extraction and re-extraction performance tests. It was found as the experimental result that the considerable quantity of solids accumulated in the rotor of the centrifugal contactor. As for this experimental apparatus, the flow diagram for the centrifugal rapid contactor and auxiliary apparatuses is shown, which are the same system used for the uranium extraction and re-extraction tests. The schematic diagram, the typical stage construction and fluid transfer path of the LX-208 contactor are illustrated. The main specifications of the LX-208 contactor are as follows: the internal diameter of a rotating bowl 200 mm, the material SUS 316, the number of stages 8, and the total hold-up volume of the contactor 1.8 l. Most tests were carried out with aqueous feed only, because white Alundum is easily deposited in the rotor, and the particle concentration in effluent stream becomes undetectable when organic and aqueous feeds are supplied simultaneously. As the experimental results, the correlation of Alundum concentration in effluent and running time, the effect of rotor speed on effluent stream concentration, the particle size distribution curves for No. 6000 and No. 8000 white Alundum, the effect of flow rate on effluent stream concentration and the effect of flow rate on particle size distribution for both No. 6000 and No. 8000 white Alundum are presented. (Nakai, Y.)

  7. System and method for smoothing a salient rotor in electrical machines

    Science.gov (United States)

    Raminosoa, Tsarafidy; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Torrey, David A.

    2016-12-13

    An electrical machine exhibiting reduced friction and windage losses is disclosed. The electrical machine includes a stator and a rotor assembly configured to rotate relative to the stator, wherein the rotor assembly comprises a rotor core including a plurality of salient rotor poles that are spaced apart from one another around an inner hub such that an interpolar gap is formed between each adjacent pair of salient rotor poles, with an opening being defined by the rotor core in each interpolar gap. Electrically non-conductive and non-magnetic inserts are positioned in the gaps formed between the salient rotor poles, with each of the inserts including a mating feature formed an axially inner edge thereof that is configured to mate with a respective opening being defined by the rotor core, so as to secure the insert to the rotor core against centrifugal force experienced during rotation of the rotor assembly.

  8. The method of the gas-dynamic centrifugal compressor stage characteristics recalculation for variable rotor rotational speeds and the rotation angle of inlet guide vanes blades if the kinematic and dynamic similitude conditions are not met

    Science.gov (United States)

    Vanyashov, A. D.; Karabanova, V. V.

    2017-08-01

    A mathematical description of the method for obtaining gas-dynamic characteristics of a centrifugal compressor stage is proposed, taking into account the control action by varying the rotor speed and the angle of rotation of the guide vanes relative to the "basic" characteristic, if the kinematic and dynamic similitude conditions are not met. The formulas of the correction terms for the non-dimensional coefficients of specific work, consumption and efficiency are obtained. A comparative analysis of the calculated gas-dynamic characteristics of a high-pressure centrifugal stage with experimental data is performed.

  9. CFD Ventilation Study for the Human Powered Centrifuge at the International Space Station

    Science.gov (United States)

    Son, Chang H.

    2011-01-01

    The Human Powered Centrifuge (HPC) is a hyper gravity facility that will be installed on board the International Space Station (ISS) to enable crew exercises under the artificial gravity conditions. The HPC equipment includes a bicycle for long-term exercises of a crewmember that provides power for rotation of HPC at a speed of 30 rpm. The crewmember exercising vigorously on the centrifuge generates the amount of carbon dioxide of several times higher than a crewmember in ordinary conditions. The goal of the study is to analyze the airflow and carbon dioxide distribution within Pressurized Multipurpose Module (PMM) cabin. The 3D computational model included PMM cabin. The full unsteady formulation was used for airflow and CO2 transport modeling with the so-called sliding mesh concept is considered in the rotating reference frame while the rest of the cabin volume is considered in the stationary reference frame. The localized effects of carbon dioxide dispersion are examined. Strong influence of the rotating HPC equipment on the CO2 distribution is detected and discussed.

  10. Separation of uranium isotopes by gas centrifugation

    International Nuclear Information System (INIS)

    Jordan, I.

    1980-05-01

    The uranium isotope enrichment is studied by means of the countercurrent gas centrifuge driven by thermal convection. A description is given of (a) the transfer and purification of the uranium hexafluoride used as process gas in the present investigation; (b) the countercurrent centrifuge ZG3; (c) the system designed for the introduction and extraction of the process gas from the centrifuge; (d) the measurement of the process gas flow rate through the centrifuge; (e) the determination of the uranium isotopic abundance by mass spectrometry; (f) the operation and mechanical behavior of the centrifuge and (g) the isotope separation experiments, performed, respectively, at total reflux and with production of enriched material. The results from the separation experiments at total reflux are discussed in terms of the enrichment factor variation with the magnitude and flow profile of the countercurrent given by the temperature difference between the rotor covers. As far as the separation experiments with production are concerned, the discussion of their results is presented through the variation of the enrichment factor as a function of the flow rate, the observed asymmetry of the process and the calculated separative power of the centrifuge. (Author) [pt

  11. Centrifugal gas separator

    Energy Technology Data Exchange (ETDEWEB)

    Kanagawa, A; Fujii, O; Nakamoto, H

    1970-03-09

    Counter currents in the rotary drum of a centrifugal gas separator are produced by providing, at either end of the drum in the vicinity of the circumferential and central positions, respectively, outflow and inflow holes with a communicating passage external to the drum there between whereby gaseous counter currents are caused to flow within the drum and travel through the passage which is provided with gas flow adjustment means. Furthermore, the space defined by the stationary portion of the passage and the rotor drum is additionally provided with a screw pump or throttling device at either its stationary side or drum side or both in order to produce a radially directed gas flow therewithin. A gas mixture is axially admitted into the drum while centrifugal force and a cooling element provided therebelow cause an increase in gas pressure along and a gaseous flow toward the wall member, whereupon the comparatively high pressured circumferentially distributed gas is extracted from the outlet holes, flows through the external gas passage and back into the lower pressured drum core through the inlet holes, thus producing the desired counter currents. The gases thus separated are withdrawn along axially provided discharge pipes. Accordingly, this invention permits heating elements which were formerly used to produce thermal convection currents to be disposed of and allows the length of the rotor drum to be more efficiently utilized to enhance separation efficiency.

  12. A centrifuge CO2 pellet cleaning system

    International Nuclear Information System (INIS)

    Foster, C.A.; Fisher, P.W.; Nelson, W.D.; Schechter, D.E.

    1993-01-01

    Centrifuge-based cryogenic pellet accelerator technology, originally developed at Oak Ridge National Laboratory (ORNL) for the purpose of refueling fusion reactors with high-speed pellets of frozen deuterium/tritium,is now being developed as a method of cleaning without the use of conventional solvents. In these applications large quantities of pellets made of frozen CO 2 or argon are accelerated in a high-speed rotor. The accelerated pellet stream is used to clean or etch surfaces. The advantage of this system is that the spent pellets and debris resulting from the cleaning process can be filtered leaving only the debris for disposal. This paper discusses the centrifuge CO 2 pellet cleaning system, the physics model of the pellet impacting the surface, the centrifuge apparatus, and some initial cleaning and etching tests

  13. Separative properties of counter-current beams type centrifuge, (2)

    International Nuclear Information System (INIS)

    Todo, Fukuzo

    1975-01-01

    One-time through scheme is studied, which would produce the highest overall centrifuge efficiency among the three different flow schemes of enriching, stripping and one-time through. If the ''optimum concentration method'' is applied to the one-time through centrifuge, the machine will be able to obtain a very high efficiency at small gas flow rates. A proposed arrangement of centrifuges for this method is shown. The efficiency of this method will be more than 15--20% higher than obtainable with enriching scheme. When the radial gas flow rate near the end caps in the rotor is increased to about 10% of the total gas feed rate, the efficiency was found to decrease by only 1%. The efficiency appears to be almost independent of small amounts of refluxing gas flow. Since a separation method having a high efficiency at small gas flow rates is required for large-scale gas centrifuge plants, the one-time through centrifuge is promising, provided the optimum concentration method is adopted. (auth.)

  14. An experimental study of rotational pressure loss in rotor-stator gap

    Directory of Open Access Journals (Sweden)

    Yew Chuan Chong

    2017-06-01

    Full Text Available The annular gap between rotor and stator is an inevitable flow path of a throughflow ventilated electrical machine, but the flow entering the rotor-stator gap is subjected to the effects of rotation. The pressure loss and volumetric flow rate across the rotor-stator gap were measured and compared between rotating and stationary conditions. The experimental measurements found that the flow entering the rotor-stator gap is affected by an additional pressure loss. In the present study, the rotational pressure loss at the entrance of rotor-stator gap is characterised. Based upon dimensional analysis, the coefficient of entrance loss can be correlated with a dimensionless parameter, i.e. rotation ratio. The investigation leads to an original correlation for the entrance loss coefficient of rotor-stator gap arisen from the Coriolis and centrifugal effects in rotating reference frame.

  15. Design, Test, and Evaluation of a Transonic Axial Compressor Rotor with Splitter Blades

    Science.gov (United States)

    2013-09-01

    INTRODUCTION A. MOTIVATION Over the course of turbomachinery history splitter vanes have been used extensively in centrifugal compressors . Axial...TEST, AND EVALUATION OF A TRANSONIC AXIAL COMPRESSOR ROTOR WITH SPLITTER BLADES by Scott Drayton September 2013 Dissertation Co...AXIAL COMPRESSOR ROTOR WITH SPLITTER BLADES 5. FUNDING NUMBERS 6. AUTHOR(S) Scott Drayton 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES

  16. Control of Rotational Energy and Angular Momentum Orientation with an Optical Centrifuge

    Science.gov (United States)

    Ogden, Hannah M.; Murray, Matthew J.; Mullin, Amy S.

    2017-04-01

    We use an optical centrifuge to trap and spin molecules to an angular frequency of 30 THz with oriented angular momenta and extremely high rotational energy and then investigate their subsequent collision dynamics with transient high resolution IR spectroscopy. The optical centrifuge is formed by combining oppositely-chirped pulses of 800 nm light, and overlapping them spatially and temporally. Polarization-sensitive Doppler-broadened line profiles characterize the anisotropic kinetic energy release of the super rotor molecules, showing that they behave like molecular gyroscopes. Studies are reported for collisions of CO2 super rotors with CO2, He and Ar. These studies reveal how mass, velocity and rotational adiabaticity impact the angular momentum relaxation and reorientation. Quantum scattering calculations provide insight into the J-specific collision cross sections that control the relaxation. NSF-CHE 105 8721.

  17. THEORETICAL FLOW MODEL THROUGH A CENTRIFUGAL PUMP USED FOR WATER SUPPLY IN AGRICULTURE IRRIGATION

    Directory of Open Access Journals (Sweden)

    SCHEAUA Fanel Dorel

    2017-05-01

    motion of the rotor. A theoretical model for calculating the flow of the working fluid through the interior of a centrifugal pump model is presented in this paper as well as the numerical analysis on the virtual model performed with the ANSYS CFX software in order to highlight the flow parameters and flow path-lines that are formed during centrifugal pump operation.

  18. Axial forces in centrifugal compressor couplings

    Science.gov (United States)

    Ivanov, A. N.; Ivanov, N. M.; Yun, V. K.

    2017-08-01

    The article presents the results of the theoretical and experimental investigation of axial forces arising in the toothed and plate couplings of centrifugal compressor shaft lines. Additional loads on the thrust bearing are considered that can develop in the toothed couplings as a result of coupled rotors misalignment. Design relationships to evaluate the level of axial forces and recommendations for their reduction in the operating conditions are given.

  19. An Integrated NDE and FEM Characterization of Composite Rotors

    Science.gov (United States)

    Abdul-Aziz, Ali; Baaklini, George Y.; Trudell, Jeffrey J.

    2000-01-01

    A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 49 000 rpm for rotor A and 34 000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.

  20. Hydraulic and separation characteristics of an industrial gas centrifuge calculated with neural networks

    Science.gov (United States)

    Butov, Vladimir; Timchenko, Sergey; Ushakov, Ivan; Golovkov, Nikita; Poberezhnikov, Andrey

    2018-03-01

    Single gas centrifuge (GC) is generally used for the separation of binary mixtures of isotopes. Processes taking place within the centrifuge are complex and non-linear. Their characteristics can change over time with long-term operation due to wear of the main structural elements of the GC construction. The paper is devoted to the determination of basic operation parameters of the centrifuge with the help of neural networks. We have developed a method for determining the parameters of the industrial GC operation by processing statistical data. In this work, we have constructed a neural network that is capable of determining the main hydraulic and separation characteristics of the gas centrifuge, depending on the geometric dimensions of the gas centrifuge, load value, and rotor speed.

  1. Usage of modal synthesis method with condensation in rotor

    Directory of Open Access Journals (Sweden)

    Zeman V.

    2008-11-01

    Full Text Available The paper deals with mathematical modelling of vibration and modal analysis of rotors composed of a flexible shaft and several flexible disks. The shaft is modelled as a one dimensional continuum whereon flexible disks modelled as a three dimensional continuum are rigid mounted to shaft. The presented approach allows to introduce continuously distributed centrifugal and gyroscopic effects. The finite element method was used for shaft and disks discretization. The modelling of such flexible multi-body rotors with large DOF number is based on the system decomposition into subsystems and on the modal synthesis method with condensation. Lower vibration mode shapes of the mutually uncoupled and non-rotating subsystems are used for creation of the rotor condensed mathematical model. An influence of the different level of a rotor condensation model on the accuracy of calculated eigenfrequencies and eigenvectors is discussed.

  2. Whole blood analysis rotor assembly having removable cellular sedimentation bowl

    Science.gov (United States)

    Burtis, C.A.; Johnson, W.F.

    1975-08-26

    A rotor assembly for performing photometric analyses using whole blood samples is described. Following static loading of a gross blood sample within a centrally located, removable, cell sedimentation bowl, the red blood cells in the gross sample are centrifugally separated from the plasma, the plasm displaced from the sedimentation bowl, and measured subvolumes of plasma distributed to respective sample analysis cuvettes positioned in an annular array about the rotor periphery. Means for adding reagents to the respective cuvettes are also described. (auth)

  3. Control of molecular rotation with an optical centrifuge

    Science.gov (United States)

    Korobenko, Aleksey

    2017-04-01

    The main purpose of this work is the experimental study of the applicability of an optical centrifuge - a novel tool, utilizing non-resonant broadband laser radiation to excite molecular rotation - to produce and control molecules in extremely high rotational states, so called molecular ``super rotors'', and to study their optical, magnetic, acoustic, hydrodynamic and quantum mechanical properties.

  4. A vibration model for centrifugal contactors

    International Nuclear Information System (INIS)

    Leonard, R.A.; Wasserman, M.O.; Wygmans, D.G.

    1992-11-01

    Using the transfer matrix method, we created the Excel worksheet ''Beam'' for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k B ) of a motor after measuring the k B value for three different motors. The k B value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well

  5. Sensing and recording the vibration of a spinning rotor with NCDT and UV recorder

    International Nuclear Information System (INIS)

    Ahmed, Z.; Khan, N.

    1998-01-01

    One among the problems faced during commissioning of an ultra centrifuge, developed at Dr. A.Q . Khan Research Laboratories for separation of heavy nuclei through centrifugation process, was the unwanted mechanical vibrations that developed in its fast spinning rotor. These high amplitude vibrations invariably resulted n the crash of the rotor ending up in operational failure. This paper describes a practical procedure adopted to sense these vibrations with the help of a non-contact displacement transducer (N.C.D.T.) and their recording through an ultra violet (UV) recorder. After wards analysis of these recording guided towards the alteration/modification is required in the design/manufacturing process. Hereby making the operation successful. (author)

  6. Investigation on Thrust and Moment Coefficients of a Centrifugal Turbomachine

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2018-04-01

    Full Text Available In radial pumps and turbines, the centrifugal through-flow in both the front and the back chambers is quite common. It strongly impacts the core swirl ratio, pressure distribution, axial thrust and frictional torque. In order to investigate these relationships experimentally, a test rig was designed at the University of Duisburg-Essen and described in this paper. Based on both the experimental and numerical results, correlations are determined to predict the impacts of the centrifugal through-flow on the core swirl ratio, the thrust coefficient and the moment coefficient. Two correlations respectively are determined to associate the core swirl ratio with the local through-flow coefficient for both Batchelor type flow and Stewartson type flow. The correlations describing the thrust coefficient and the moment coefficient in a rotor-stator cavity with centripetal through-flow (Hu et al., 2017 are modified for the case of centrifugal through-flow. The Daily and Nece diagram distinguishing between different flow regimes in rotor-stator cavities is extended with a through-flow coordinate into 3D. The achieved results provide a comprehensive data base which is intended to support the calculation of axial thrust and moment coefficients during the design process of radial pumps and turbines in a more accurate manner.

  7. Gyro-effect stabilizes unstable permanent maglev centrifugal pump.

    Science.gov (United States)

    Qian, Kun-Xi

    2007-03-01

    According to Earnshaw's Theorem (1839), the passive maglev cannot achieve stable equilibrium and thus an extra coil is needed to make the rotor electrically levitated in a heart pump. The author had developed a permanent maglev centrifugal pump utilizing only passive magnetic bearings, to keep the advantages but to avoid the disadvantages of the electric maglev pumps. The equilibrium stability was achieved by use of so-called "gyro-effect": a rotating body with certain high speed can maintain its rotation stably. This pump consisted of a rotor (driven magnets and an impeller), and a stator with motor coil and pump housing. Two passive magnetic bearings between rotor and stator were devised to counteract the attractive force between the motor coil iron core and the rotor driven magnets. Bench testing with saline demonstrated a levitated rotor under preconditions of higher than 3,250 rpm rotation and more than 1 l/min pumping flow. Rotor levitation was demonstrated by 4 Hall sensors on the stator, with evidence of reduced maximal eccentric distance from 0.15 mm to 0.07 mm. The maximal rotor vibration amplitude was 0.06 mm in a gap of 0.15 mm between rotor and stator. It concluded that Gyro-effect can help passive maglev bearings to achieve stabilization of permanent maglev pump; and that high flow rate indicates good hydraulic property of the pump, which helps also the stability of passive maglev pump.

  8. Numerical modeling and optimization of the Iguassu gas centrifuge

    Science.gov (United States)

    Bogovalov, S. V.; Borman, V. D.; Borisevich, V. D.; Tronin, V. N.; Tronin, I. V.

    2017-07-01

    The full procedure of the numerical calculation of the optimized parameters of the Iguassu gas centrifuge (GC) is under discussion. The procedure consists of a few steps. On the first step the problem of a hydrodynamical flow of the gas in the rotating rotor of the GC is solved numerically. On the second step the problem of diffusion of the binary mixture of isotopes is solved. The separation power of the gas centrifuge is calculated after that. On the last step the time consuming procedure of optimization of the GC is performed providing us the maximum of the separation power. The optimization is based on the BOBYQA method exploring the results of numerical simulations of the hydrodynamics and diffusion of the mixture of isotopes. Fast convergence of calculations is achieved due to exploring of a direct solver at the solution of the hydrodynamical and diffusion parts of the problem. Optimized separative power and optimal internal parameters of the Iguassu GC with 1 m rotor were calculated using the developed approach. Optimization procedure converges in 45 iterations taking 811 minutes.

  9. A vibration model for centrifugal contactors

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, R.A.; Wasserman, M.O.; Wygmans, D.G.

    1992-11-01

    Using the transfer matrix method, we created the Excel worksheet ``Beam`` for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k{sub B}) of a motor after measuring the k{sub B} value for three different motors. The k{sub B} value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well.

  10. Microfluidic size separation of cells and particles using a swinging bucket centrifuge.

    Science.gov (United States)

    Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck

    2015-09-01

    Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.

  11. Thermal hydrodynamic analysis of a countercurrent gas centrifuge

    International Nuclear Information System (INIS)

    Andrade, Delvonei Alves de

    1999-01-01

    The influence of the thermal countercurrent on the separative performance of countercurrent centrifuges is treated in this work. The methodology used consists in modeling the gas flow inside the rotor under thermal boundary conditions supplied by the structural thermal model. The gas flow model, also called hydrodynamical model, is based on the Finite Volume Method for cylindrical geometry with azimuthal symmetry. The structural thermal model is based on the Nodal Method and take into account simultaneously, the conduction convection and radiation phenomena. The procedure adopted for this study consisted in the definition of the operational and geometric conditions of a centrifuge which was used as a pattern to the accomplished analysis. This configuration, called 'Standard Centrifuge', was used for the accomplishment of several simulations where the importance of the realistic boundary thermal conditions for the numerical evaluation of the centrifuge separative capacity was evidenced. A selective alteration for the optical properties based on simple engineering procedures was proposed. An improvement of 5% was obtained with this alteration. (author)

  12. Importance of rotational adiabaticity in collisions of CO2 super rotors with Ar and He

    Science.gov (United States)

    Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.

    2018-02-01

    The collision dynamics of optically centrifuged CO2 with Ar and He are reported here. The optical centrifuge produces an ensemble of CO2 molecules in high rotational states (with J ˜ 220) with oriented angular momentum. Polarization-dependent high-resolution transient IR absorption spectroscopy was used to measure the relaxation dynamics in the presence of Ar or He by probing the CO2 J = 76 and 100 states with Er o t=2306 and 3979 cm-1, respectively. The data show that He relaxes the CO2 super rotors more quickly than Ar. Doppler-broadened line profiles show that He collisions induce substantially larger rotation-to-translation energy transfer. CO2 super rotors have greater orientational anisotropy with He collisions and the anisotropy from the He collisions persists longer than with Ar. Super rotor relaxation dynamics are discussed in terms of mass effects related to classical gyroscope physics and collisional rotational adiabaticity.

  13. High stability design for new centrifugal compressor

    Science.gov (United States)

    Kanki, H.; Katayama, K.; Morii, S.; Mouri, Y.; Umemura, S.; Ozawa, U.; Oda, T.

    1989-01-01

    It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions.

  14. A bistable mechanism for chord extension morphing rotors

    Science.gov (United States)

    Johnson, Terrence; Frecker, Mary; Gandhi, Farhan

    2009-03-01

    Research efforts have shown that helicopter rotor blade morphing is an effective means to improve flight performance. Previous example of rotor blade morphing include using smart-materials for trailing deflection and rotor blade twist and tip twist, the development of a comfortable airfoil using compliant mechanisms, the use of a Gurney flap for air-flow deflection and centrifugal force actuated device to increase the span of the blade. In this paper we explore the use of a bistable mechanism for rotor morphing, specifically, blade chord extension using a bistable arc. Increasing the chord of the rotor blade is expected to generate more lift-load and improve helicopter performance. Bistable or "snap through" mechanisms have multiple stable equilibrium states and are a novel way to achieve large actuation output stroke. Bistable mechanisms do not require energy input to maintain a stable equilibrium state as both states do not require locking. In this work, we introduce a methodology for the design of bistable arcs for chord morphing using the finite element analysis and pseudo-rigid body model, to study the effect of different arc types, applied loads and rigidity on arc performance.

  15. Centrifugal compressor case study

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, B.

    2010-10-15

    Three centrifugal compressors at a pipeline station were retrofitted with higher head impellers in 2008. The owners of the station experienced vibration problems over the following 2 years that caused transmitter and position failures that were assumed to be flow-induced pulsations. A vibration and pulsation analysis indicated that the shell mode piping vibration excited by the blade pass pulsation was responsible for the failures. This study outlined factors that contributed to the vibration problem. Interferences between the compressor and shell mode piping natural frequencies were predicted, and potential excitation sources were examined. The study demonstrated how centrifugal vibration analyses can be used during the design phase to avoid costly adjustments. Recommendations included the addition of stiffeners to alter the shell modes, and the addition of constrained layer damping material to reduce resonant responses. 2 refs., 1 tab., 12 figs.

  16. Multiple piece turbine rotor blade

    Science.gov (United States)

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  17. Computational Fluid Dynamics Ventilation Study for the Human Powered Centrifuge at the International Space Station

    Science.gov (United States)

    Son, Chang H.

    2012-01-01

    The Human Powered Centrifuge (HPC) is a facility that is planned to be installed on board the International Space Station (ISS) to enable crew exercises under the artificial gravity conditions. The HPC equipment includes a "bicycle" for long-term exercises of a crewmember that provides power for rotation of HPC at a speed of 30 rpm. The crewmember exercising vigorously on the centrifuge generates the amount of carbon dioxide of about two times higher than a crewmember in ordinary conditions. The goal of the study is to analyze the airflow and carbon dioxide distribution within Pressurized Multipurpose Module (PMM) cabin when HPC is operating. A full unsteady formulation is used for airflow and CO2 transport CFD-based modeling with the so-called sliding mesh concept when the HPC equipment with the adjacent Bay 4 cabin volume is considered in the rotating reference frame while the rest of the cabin volume is considered in the stationary reference frame. The rotating part of the computational domain includes also a human body model. Localized effects of carbon dioxide dispersion are examined. Strong influence of the rotating HPC equipment on the CO2 distribution detected is discussed.

  18. Numerical simulation of bellows effect on flow and separation of uranium isotopes in a supercritical gas centrifuge

    International Nuclear Information System (INIS)

    Borisevich, V.D.; Morozov, O.E.; Godisov, O.N.

    2000-01-01

    Numerical solving of the Navier-Stokes and convection-diffusion equations by the finite difference technique has been applied to study the influence of bellows on the flow and separation of uranium isotopes in a single supercritical gas centrifuge. Dependence of the separative power of a gas centrifuge on geometric parameters and position of a bellows on a rotor wall as well as the effect of scoop drag and feed flow on isotope separation in a gas centrifuge with a bellows have been obtained in computing experiments. It was demonstrated that increase of the separative power with increase of the gas centrifuge length is less considerable than predicted by the Dirac's law

  19. Designing and analysis study of uranium enrichment with gas centrifuge

    International Nuclear Information System (INIS)

    Tsunetoshi Kai

    2006-01-01

    This note concerns a designing and analysis study of uranium enrichment with a gas centrifuge. At first, one dimensional model is presented and a conventional analytical method is applied to grasp the general idea of a centrifuge performance. Secondly, two-dimensional numerical method is adopted to describe the diffusion phenomena with assumption of simple flow patterns. Parametric surveys are made on the dimension of a centrifuge rotor, the gas feed, withdrawal and circulation system, and operation variables such as feed flow rate, cut and so on. Thirdly, full numerical solutions are obtained for the flow and diffusion equations in static state, using a modified version of the Newton method without neglect of any non-linear term. The numerical results are compared with the experimental data made by Beams et al. and Zippe, and found to be in good agreement. Further, the theoretical pressure and separative power are compared respectively with experimental ones on a comparatively recent centrifuge. The results reveal that the characteristics of separation performance of a centrifuge can be fully described by the present method. Some of inevitable problems are tackled regarding UF 6 gas isotope separation by centrifugation. To examine the influence of the extraneous light gas, the diffusion equations for ternary mixture are solved and also the flow field of binary mixture with large mass difference is obtained to simultaneously solve the Navier-Stokes equations and the diffusion equation.for binary case. Since the gas in the interior region of the rotor is so rarefied that the Navier-Stokes equations cease to be valid, the Burnett equations are solved.for gas flow in a rotating cylinder. Considering that the uranium recovered at a reprocessing plant includes 236 U besides 235 U and 238 U, the concentration distributions of the ternary gas isotopes are determined and a value function is defined for the evaluation of separative work for the multi-component mixture

  20. Laser Anemometer Measurements of the Three-Dimensional Rotor Flow Field in the NASA Low-Speed Centrifugal Compressor

    Science.gov (United States)

    Hathaway, Michael D.; Chriss, Randall M.; Strazisar, Anthony J.; Wood, Jerry R.

    1995-01-01

    A laser anemometer system was used to provide detailed surveys of the three-dimensional velocity field within the NASA low-speed centrifugal impeller operating with a vaneless diffuser. Both laser anemometer and aerodynamic performance data were acquired at the design flow rate and at a lower flow rate. Floor path coordinates, detailed blade geometry, and pneumatic probe survey results are presented in tabular form. The laser anemometer data are presented in the form of pitchwise distributions of axial, radial, and relative tangential velocity on blade-to-blade stream surfaces at 5-percent-of-span increments, starting at 95-percent-of-span from the hub. The laser anemometer data are also presented as contour and wire-frame plots of throughflow velocity and vector plots of secondary velocities at all measurement stations through the impeller.

  1. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments.

    Science.gov (United States)

    Morita, Hironobu; Obata, Koji; Abe, Chikara; Shiba, Dai; Shirakawa, Masaki; Kudo, Takashi; Takahashi, Satoru

    2015-01-01

    To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments.

  2. Polarization-Dependent Measurements of Molecular Super Rotors with Oriented Angular Momenta

    Science.gov (United States)

    Murray, Matthew J.; Toro, Carlos; Liu, Qingnan; Mullin, Amy S.

    2014-05-01

    Controlling molecular motion would enable manipulation of energy flow between molecules. Here we have used an optical centrifuge to investigate energy transfer between molecular super rotors with oriented angular momenta. The polarizable electron cloud of the molecules interacts with the electric field of linearly polarized light that angularly accelerates over the time of the optical pulse. This process drives molecules into high angular momentum states that are oriented with the optical field and have energies far from equilibrium. High resolution transient IR spectroscopy reveals the dynamics of collisional energy transfer for these super excited rotors. The results of this study leads to a more fundamental understanding of energy balance in non-equilibrium environments and the physical and chemical properties of gases in a new regime of energy states. Results will be presented for several super rotor species including carbon monoxide, carbon dioxide, and acetylene. Polarization-dependent measurements reveal the extent to which the super rotors maintain spatial orientation of high angular momentum states.

  3. More accurate equation for the analysis of separation of binary gas mixture by centrifuge in terms of the Onsager-Cohen method

    International Nuclear Information System (INIS)

    Tokmantsev, V.I.

    2002-01-01

    Generalized equation of isotope transfer for arbitrary convective flows in rotor was solved in the context of isotope approximation by means of zero-range approximation. Refined equation of counterflow centrifuge that was distinguished from classical one by presence of additional terms was obtained in the case of low radial flows and weak dependence of axial counterflow centrifuge [ru

  4. Acoustic performance of low pressure axial fan rotors with different blade chord length and radial load distribution

    Science.gov (United States)

    Carolus, Thomas

    The paper examines the acoustic and aerodynamic performance of low-pressure axial fan rotors with a hub/tip ratio of 0.45. Six rotors were designed for the same working point by means of the well-known airfoil theory. The condition of an equilibrium between the static pressure gradient and the centrifugal forces is maintained. All rotors have unequally spaced blades to diminish tonal noise. The rotors are tested in a short cylindrical housing without guide vanes. All rotors show very similar flux-pressure difference characteristics. The peak efficiency and the noise performance is considerably influenced by the chosen blade design. The aerodynamically and acoustically optimal rotor is the one with the reduced load at the hub and increased load in the tip region under satisfied equilibrium conditions. It runs at the highest aerodynamic efficiency, and its noise spectrum is fairly smooth. The overall sound pressure level of this rotor is up to 8 dB (A) lower compared to the other rotors under consideration.

  5. Polarization Dependent Dynamics of CO2 Trapped in AN Optical Centrifuge

    Science.gov (United States)

    Toro, Carlos; Echebiri, Geraldine; Liu, Qingnan; Mullin, Amy S.

    2012-06-01

    An optical centrifuge (Yuan {et al}. {PNAS} 2011, 108, 6872) has been employed to prepare carbon dioxide molecules in very high rotational states (``hot'' rotors, J ˜220) in order to investigate how collisions relax ensembles of molecules with an overall angular momentum that is spatially oriented. We have performed polarization-dependent high resolution transient IR absorption measurements to study the spatial dependence of the relaxation dynamics. Our results show that the net angular momentum of the initially centrifuged molecules persists for at least 10 gas kinetic collisions and that the translational energy distributions are dependent on the probe orientation and polarization. These studies indicate that the centrifuged molecules tend to maintain the orientation of their initial angular momentum for the first set of collisions and that relatively large changes in J are involved in the first collisions.

  6. Vulnerability to cavitation in Olea europaea current-year shoots: further evidence of an open-vessel artifact associated with centrifuge and air-injection techniques.

    Science.gov (United States)

    Torres-Ruiz, José M; Cochard, Hervé; Mayr, Stefan; Beikircher, Barbara; Diaz-Espejo, Antonio; Rodriguez-Dominguez, Celia M; Badel, Eric; Fernández, José Enrique

    2014-11-01

    Different methods have been devised to analyze vulnerability to cavitation of plants. Although a good agreement between them is usually found, some discrepancies have been reported when measuring samples from long-vesseled species. The aim of this study was to evaluate possible artifacts derived from different methods and sample sizes. Current-year shoot segments of mature olive trees (Olea europaea), a long-vesseled species, were used to generate vulnerability curves (VCs) by bench dehydration, pressure collar and both static- and flow-centrifuge methods. For the latter, two different rotors were used to test possible effects of the rotor design on the curves. Indeed, high-resolution computed tomography (HRCT) images were used to evaluate the functional status of xylem at different water potentials. Measurements of native embolism were used to validate the methods used. The pressure collar and the two centrifugal methods showed greater vulnerability to cavitation than the dehydration method. The shift in vulnerability thresholds in centrifuge methods was more pronounced in shorter samples, supporting the open-vessel artifact hypothesis as a higher proportion of vessels were open in short samples. The two different rotor designs used for the flow-centrifuge method revealed similar vulnerability to cavitation. Only the bench dehydration or HRCT methods produced VCs that agreed with native levels of embolism and water potential values measured in the field. © 2014 Scandinavian Plant Physiology Society.

  7. Experimental study on the mean flow characteristics of forward-curved centrifugal fans

    International Nuclear Information System (INIS)

    Kwon, Eui Yong; Cho, Nam Hyo

    2001-01-01

    Measurements have been made in an automotive HVAC blower for two different centrifugal fans. This work is directed at improving the performance of a conventional forward-curved centrifugal fan for a given small blower casing. Mean velocities and pressure have been measured using a miniature five-hole probe and a pressure scanning unit connected to an online data acquisition system. First, we obtained the fan performance curves versus flow rates showing a significant attenuation of unstable nature achieved with the new fan rotor in the surging operation range. Second, aerodynamic characterizations were carried out by investigating the velocity and pressure fields in the casing flow passage for different fan operating conditions. The measurements showed that performance coefficients are strongly influnced by flow characteristics at the throat region. The main flow features were common in both fans, but improved performance is achieved with the new fan rotor, particularly in lower flow rate regions. Based on the measured results, design improvements were carried out in an acceptable operation range, which gave considerable insight into what features of flow behavior were most important

  8. Centrifugal gas separator

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, M

    1970-03-27

    A centrifugal gas separator of a highly endurable construction and with improved gas sealing qualities utilizes a cylincrical elastic bellows or similar system in cooperation with a system of dynamic pressure operable gas seals as means for removing separated gases from the interior of the rotor drum, collecting the separated gases in their respective separated gas chambers defined by the corresponding bellows and their supporting stationary wall members, gas seals and rotor end caps, and means for discharging to the exterior of the surrounding cylindrical wall member the gaseous components from their respective separated gas chambers. In the vicinity of the rotary drum motor is a mixed gas chamber and means for providing the gas mixture along a co-axial passage into the rotary drum chamber. Orifices are bored into the end caps of the rotary drum to direct the separated gases into the aforementioned separated gas chambers which, through the action of the gas seals, freely slide upon the rotating drum to collect and thereafter discharge the thus separated gases. Therefore, according to the present invention, helium gas used to prevent separated gas remixture is unnecessary and, furthermore, the gas seals and elastic bellows means provide an air-tight seal superior to that of the contact sealing system of the former art.

  9. Pitch link loads reduction of variable speed rotors by variable tuning frequency fluidlastic isolators

    Directory of Open Access Journals (Sweden)

    Han Dong

    2015-10-01

    Full Text Available To reduce the pitch link loads of variable speed rotors, variable tuning frequency fluidlastic isolators are proposed. This isolator utilizes the variation of centrifugal force due to the change of rotor speed to change the tuning port area ratio, which can change the tuning frequency of the isolator. A rotor model including the model of fluidlastic isolator is coupled with a fuselage model to predict the steady responses of the rotor system in forward flight. The aeroelastic analyses indicate that distinct performance improvement in pitch link load control can be achieved by the utilization of variable frequency isolators compared with the constant tuning frequency isolators. The 4/rev (per revolution pitch link load is observed to be reduced by 87.6% compared with the increase of 56.3% by the constant frequency isolator, when the rotor speed is reduced by 16.7%. The isolation ability at different rotor speeds in different flight states is investigated. To achieve overall load reduction within the whole range of rotor speed, the strategy of the variation of tuning frequency is adjusted. The results indicate that the 4/rev pitch link load within the whole rotor speed range is decreased.

  10. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments.

    Directory of Open Access Journals (Sweden)

    Hironobu Morita

    Full Text Available To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments.

  11. Testing of pyrochemical centrifugal contactors

    International Nuclear Information System (INIS)

    Chow, L.S.; Carls, E.L.; Basco, J.K.; Johnson, T.R.

    1996-01-01

    A centrifugal contactor that performs oxidation and reduction exchange reactions between molten metals and salts at 500 degrees Centigrade has been tested successfully at Argonne National Laboratory (ANL). The design is based on contactors for aqueous- organic systems operation near room temperature. In tests to demonstrate the performance of the pyrocontactor, cadmium and LICl-KCl eutectic salt were the immiscible solvent phases, and rare earths were the distributing solutes. The tests showed that the pyrocontactor mixed and separated the phases well, with stage efficiencies approaching 99% at rotor speeds near 2700 rpm. The contactor ran smoothly and reliably over the entire range of speeds that was tested

  12. Low-temperature centrifugal helium compressor

    International Nuclear Information System (INIS)

    Kawada, M.; Togo, S.; Akiyama, Y.; Wada, R.

    1974-01-01

    A centrifugal helium compressor with gas bearings, which can be operated at the temperature of liquid nitrogen, has been investigated. This compressor has the advantages that the compression ratio should be higher than the room temperature operation and that the contamination of helium could be eliminated. The outer diameter of the rotor is 112 mm. The experimental result for helium gas at low temperature shows a flow rate of 47 g/s and a compression ratio of 1.2 when the inlet pressure was 1 ata and the rotational speed 550 rev/s. The investigation is now focused on obtaining a compression ratio of 1.5. (author)

  13. Investigation on steady and unsteady performance of a SCO2 centrifugal compressor with splitters

    Directory of Open Access Journals (Sweden)

    Guo Ding

    2017-01-01

    Full Text Available Supercritical carbon dioxide (SCO2 is widely concerned with its excellent physical properties. Its high density helps to achieve a compact mechanical structure, especially in all kinds of turbomachinery. In this paper, a SCO2 centrifugal compressor with splitter blades is displayed and numerically investigated. A thorough numerical analysis of the steady and unsteady performance of this SCO2 centrifugal compressor is performed in ANSYS-CFX with SST turbulence model. Streamlines, pressure and temperature under steady- and unsteady-state are compared and analyzed. Moreover, the trans-critical phenomenon at the leading edge of the rotor blade and the aerodynamic performance are covered. The results in this paper provide the foundation for the design and numerical investigation of SCO2 centrifugal compressors.

  14. The effect of forward skewed rotor blades on aerodynamic and aeroacoustic performance of axial-flow fan

    Science.gov (United States)

    Wei, Jun; Zhong, Fangyuan

    Based on comparative experiment, this paper deals with using tangentially skewed rotor blades in axial-flow fan. It is seen from the comparison of the overall performance of the fan with skewed bladed rotor and radial bladed rotor that the skewed blades operate more efficiently than the radial blades, especially at low volume flows. Meanwhile, decrease in pressure rise and flow rate of axial-flow fan with skewed rotor blades is found. The rotor-stator interaction noise and broadband noise of axial-flow fan are reduced with skewed rotor blades. Forward skewed blades tend to reduce the accumulation of the blade boundary layer in the tip region resulting from the effect of centrifugal forces. The turning of streamlines from the outer radius region into inner radius region in blade passages due to the radial component of blade forces of skewed blades is the main reason for the decrease in pressure rise and flow rate.

  15. Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge

    Science.gov (United States)

    Milner, A. A.; Korobenko, A.; Milner, V.

    2017-06-01

    Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.

  16. Cyber meets nuclear - Stuxnet and the cyberattacks on Iranian centrifuges

    Energy Technology Data Exchange (ETDEWEB)

    Englert, Matthias [IANUS, TU Darmstadt (Germany)

    2013-07-01

    In 2010 the computer worm Stuxnet attacked the information hardware of the Iranian uranium enrichment program. Stuxnet spread by USB flash drives and attacked SCADA software installed on Windows systems via several zero-day exploits. SCADA configures programmable logic controllers which control in the case of the Iranian centrifuge cascades frequency converter drives to choose the frequency of centrifuge motors. Thus the attackers were able to either change the rotation frequency of the rotor and thereby the separative power of the centrifuge or even destroy the fast spinning centrifuges by stopping and restarting them. The designers of Stuxnet must have had intimate knowledge of the facility design as e.g. the cascade connection scheme was programmed into Stuxnet. Based on this information some calculations of the Iranian cascade regarding the potential to produce highly enriched uranium will be presented using cascade simulation tools. The use of such highly sophisticated computer attacks to sabotage a nuclear program shed a new light on the debate about cyber attacks and the use of information technology for kinetic attacks in general. The talk will address problems the weaponization of information technology poses for international security and will highlight some more recent developments.

  17. 3D printed modular centrifugal contactors and method for separating moieties using 3D printed optimized surfaces

    Science.gov (United States)

    Wardle, Kent E.

    2017-08-29

    The present invention provides an annular centrifugal contactor, having a housing to receive a plurality of liquids; a rotor inside the housing; an annular mixing zone, with a plurality of fluid retention reservoirs; and an adjustable stem that can be raised to restrict the flow of a liquid into the rotor or lowered to increase the flow of liquid into the rotor. The invention also provides a method for transferring moieties from a first liquid to a second liquid, the method having the steps of combining the fluids in a housing whose interior has helically shaped first channels; subjecting the fluids to a spinning rotor to produce a mixture, whereby the channels simultaneously conduct the mixture downwardly and upwardly; and passing the mixture through the rotor to contact second channels, whereby the channels pump the second liquid through a first aperture while the first fluid exits a second aperture.

  18. THE TESTING OF COMMERCIALLY AVAILABLE ENGINEERING AND PLANT SCALE ANNULAR CENTRIFUGAL CONTACTORS FOR THE PROCESSING OF SPENT NUCLEAR FUEL

    International Nuclear Information System (INIS)

    Jack D. Law; David Meikrantz; Troy Garn; Nick Mann; Scott Herbst

    2006-01-01

    Annular centrifugal contactors are being evaluated for process scale solvent extraction operations in support of United State Advanced Fuel Cycle Initiative goals. These contactors have the potential for high stage efficiency if properly employed and optimized for the application. Commercially available centrifugal contactors are being tested at the Idaho National Laboratory to support this program. Hydraulic performance and mass transfer efficiency have been measured for portions of an advanced nuclear fuel cycle using 5-cm diameter annular centrifugal contactors. Advanced features, including low mix sleeves and clean-in-place rotors, have also been evaluated in 5-cm and 12.5-cm contactors

  19. Waves in strong centrifugal fields: dissipationless gas

    Science.gov (United States)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2015-04-01

    Linear waves are investigated in a rotating gas under the condition of strong centrifugal acceleration of the order 106 g realized in gas centrifuges for separation of uranium isotopes. Sound waves split into three families of the waves under these conditions. Dispersion equations are obtained. The characteristics of the waves strongly differ from the conventional sound waves on polarization, velocity of propagation and distribution of energy of the waves in space for two families having frequencies above and below the frequency of the conventional sound waves. The energy of these waves is localized in rarefied region of the gas. The waves of the third family were not specified before. They propagate exactly along the rotational axis with the conventional sound velocity. These waves are polarized only along the rotational axis. Radial and azimuthal motions are not excited. Energy of the waves is concentrated near the wall of the rotor where the density of the gas is largest.

  20. Synchronization of Budding Yeast by Centrifugal Elutriation.

    Science.gov (United States)

    Rosebrock, Adam P

    2017-01-03

    In yeast, cell size is normally tightly linked to cell cycle progression. Centrifugal elutriation is a method that fractionates cells based on the physical properties of cell size-fluid drag and buoyant density. Using a specially modified centrifuge and rotor system, cells can be physically separated into one or more cohorts of similar size and therefore cell cycle position. Small G 1 daughters are collected first, followed by successively larger cells. Elutriated populations can be analyzed immediately or can be returned to medium and permitted to synchronously progress through the cell cycle. This protocol describes two different elutriation methods. In the first, one or more fractions of synchronized cells are obtained from an asynchronous starting population, reincubated, and followed prospectively across a time series. In the second, an asynchronous starting population is separated into multiple fractions of similarly sized cells, and each cohort of similarly sized cells can be analyzed separately without further growth. © 2017 Cold Spring Harbor Laboratory Press.

  1. Axial and Centrifugal Compressor Mean Line Flow Analysis Method

    Science.gov (United States)

    Veres, Joseph P.

    2009-01-01

    This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.

  2. Centrifugal gas separator

    International Nuclear Information System (INIS)

    Sakurai, Mitsuo.

    1970-01-01

    A centrifugal gas separator of a highly endurable construction and with improved gas sealing qualities utilizes a cylincrical elastic bellows or similar system in cooperation with a system of dynamic pressure operable gas seals as means for removing separated gases from the interior of the rotor drum, collecting the separated gases in their respective separated gas chambers defined by the corresponding bellows and their supporting stationary wall members, gas seals and rotor end caps, and means for discharging to the exterior of the surrounding cylindrical wall member the gaseous components from their respective separated gas chambers. In the vicinity of the rotary drum motor is a mixed gas chamber and means for providing the gas mixture along a co-axial passage into the rotary drum chamber. Orifices are bored into the end caps of the rotary drum to direct the separated gases into the aforementioned separated gas chambers which, through the action of the gas seals, freely slide upon the rotating drum to collect and thereafter discharge the thus separated gases. Therefore, according to the present invention, helium gas used to prevent separated gas remixture is unnecessary and, furthermore, the gas seals and elastic bellows means provide an air-tight seal superior to that of the contact sealing system of the former art. (K.J. Owens)

  3. Modern high pressure gas injection centrifugal compressor for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Almasi, Amin [Worley Parsons Services Pty Ltd, Brisbane, NSW (Australia). Mechanical Dept.

    2011-12-15

    This article covers different design, manufacturing, performance and reliability aspects of modern high pressure gas re-injection centrifugal compressor units. Advances and recent technologies on critical areas such as rotor dynamics, anti-surge system, rotating stall prevention, auxiliary systems, material selection, shop performance tests and gas sealing are studied. Three different case studies for modern re-injection machines including 12 MW, 15 MW and 32 MW trains are presented. (orig.)

  4. Performance Improvement of a Centrifugal Compressor by Passive Means

    Directory of Open Access Journals (Sweden)

    N. Sitaram

    2012-01-01

    Full Text Available The present experimental investigation deals with performance improvement of a low-speed centrifugal compressor by inexpensive passive means such as turbulence generator placed at different positions and partial shroud near the rotor blade tip. The experiments are carried out at three values of tip clearance, namely 2.2%, 5.1%, and 7.9% of rotor blade height at the exit. Performance tests are carried out for a total of 13 configurations. From these measurements, partial shroud is found to give the best performance. The improvement in the compressor performance may be due to the reduction of tip leakage flows by the small extension of partial shroud (2 mm on the pressure surface side. Although there is nominal change in performance due to turbulence generator (TG, TG has beneficial effect of increased operating range.

  5. Performance and internal flow condition of mini centrifugal pump with splitter blades

    International Nuclear Information System (INIS)

    Shigemitsu, T; Fukutomi, J; Kaji, K; Wada, T

    2012-01-01

    Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, mini centrifugal pumps with simple structure were investigated by this research. Splitter blades were adopted in this research to improve the performance and the internal flow condition of mini centrifugal pump which had large blade outlet angle. The original impeller without the splitter blades and the impeller with the splitter blades were prepared for an experiment. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on performance and internal flow condition of mini centrifugal pump. On the other hand, a three dimensional steady numerical flow analysis is conducted with the commercial code (ANSYS-CFX) to investigate the internal flow condition in detail. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. The blade-to-blade low velocity regions are suppressed in the case with the splitter blades and the total pressure loss regions are decreased. The effects of the splitter blades on the performance and the internal flow condition are discussed in this paper.

  6. Life Sciences Centrifuge Facility assessment

    Science.gov (United States)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  7. Development of a new miniature short-residence-time annular centrifugal solvent extraction contactor for tests of process flowsheets in hot cells

    International Nuclear Information System (INIS)

    Lanoe, J.Y.; Rivalier, P.

    2000-01-01

    Researches undertaken on new nuclear fuel reprocessing extraction processes need tests of process flowsheets in hot cells. To this goal, a new miniature short residence-time annular centrifugal solvent extraction contactor was conceived and developed at Marcoule. This single stage contactor is composed of an outer stationary cylinder (made of transparent plexiglas on prototype and of stainless steel on models for hot cells) and a suspended inner rotating cylinder of stainless steel; the inside diameter of the rotor is 12 mm. Aqueous and organic phases are fed into the gap between the two cylinders. The mixture flows down the annular space and then up through an orifice at the bottom of the rotor. Into the rotor, the emulsion breaks rapidly under the centrifugal force (up to 600 g with rotor speed of 10,000 rpm). The separated phases flow over their weirs and discharge at the top in their collector rings. The liquid hold-up of this centrifugal contactor is approximately 6 mL. The use in hots cells needed original designs for: - the assembly of a single-stage contactor: every part (motor, rotor, stationary housing) is simply inserted on the other one without screws and nuts; - the assembly of multistage group: every stage is stacking in two rails and an intermediate part (supported on the two rails) links exit ports and their corresponding inlet ports. All the parts are pressed and sealed against a terminal plate with a screw. Separating capacity tests with. a prototype were conducted using water as the aqueous phase and hydrogenated tetra-propylene (TPH) as the organic phase with aqueous to organic (A/O) flow ratio equal to 1. The best performances were obtained with rotor speed ranging from 4000 to 5000 rpm; the total throughput was then up to 2 L.h -1 . For a total throughput of 300 mL.h -1 , the hold-up in the annular mixing zone varied from 0.5 to 1.5 mL according to the A/O ratio and the starting mode. A number of tests were also performed to measure the

  8. Dynamic response of high speed centrifuge for reprocessing plant

    International Nuclear Information System (INIS)

    Rajput, Gaurav; Satish Kumar, V.; Selvaraj, T.; Ananda Rao, S.M.; Ravisankar, A.

    2012-01-01

    The standard for balancing the rotating bowl describes only the details about the selection of balance quality grade and the permissible residual unbalance for different operating speeds. This paper presents the effects of unbalance on the rotating bowl of high speed centrifuge used in reprocessing of spent nuclear fuel. In this study, the residual unbalance is evaluated for different recommended balancing grades in accordance with the ISO 1940. This unbalance mass generates dynamic force which acts on the rotor. The dynamic response of the rotor like displacements and stresses under this dynamic force are studied by numerical simulation. Finally, the effect of residual unbalance on the rotating bowl performance for different balancing grades is discussed. The experimental measurements are also carried out for the case of G 1.0 grade balanced rotating bowl to validate the resonance frequency as well as vibration amplitudes. (author)

  9. Spiral counter-current chromatography of small molecules, peptides and proteins using the spiral tubing support rotor.

    Science.gov (United States)

    Knight, Martha; Finn, Thomas M; Zehmer, John; Clayton, Adam; Pilon, Aprile

    2011-09-09

    An important advance in countercurrent chromatography (CCC) carried out in open flow-tubing coils, rotated in planetary centrifuges, is the new design to spread out the tubing in spirals. More spacing between the tubing was found to significantly increase the stationary phase retention, such that now all types of two-phase solvent systems can be used for liquid-liquid partition chromatography in the J-type planetary centrifuges. A spiral tubing support (STS) frame with circular channels was constructed by laser sintering technology into which FEP tubing was placed in 4 spiral loops per layer from the bottom to the top and a cover affixed allowing the tubing to connect to flow-tubing of the planetary centrifuge. The rotor was mounted and run in a P.C. Inc. type instrument. Examples of compounds of molecular weights ranging from <300 to approximately 15,000 were chromatographed in appropriate two-phase solvent systems to assess the capability for separation and purification. A mixture of small molecules including aspirin was completely separated in hexane-ethyl acetate-methanol-water. Synthetic peptides including a very hydrophobic peptide were each purified to a very high purity level in a sec-butanol solvent system. In the STS rotor high stationary phase retention was possible with the aqueous sec-butanol solvent system at a normal flow rate. Finally, the two-phase aqueous polyethylene glycol-potassium phosphate solvent system was applied to separate a protein from a lysate of an Escherichia coli expression system. These experiments demonstrate the versatility of spiral CCC using the STS rotor. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. An identification method for damping ratio in rotor systems

    Science.gov (United States)

    Wang, Weimin; Li, Qihang; Gao, Jinji; Yao, Jianfei; Allaire, Paul

    2016-02-01

    Centrifugal compressor testing with magnetic bearing excitations is the last step to assure the compressor rotordynamic stability in the designed operating conditions. To meet the challenges of stability evaluation, a new method combining the rational polynomials method (RPM) with the weighted instrumental variables (WIV) estimator to fit the directional frequency response function (dFRF) is presented. Numerical simulation results show that the method suggested in this paper can identify the damping ratio of the first forward and backward modes with high accuracy, even in a severe noise environment. Experimental tests were conducted to study the effect of different bearing configurations on the stability of rotor. Furthermore, two example centrifugal compressors (a nine-stage straight-through and a six-stage back-to-back) were employed to verify the feasibility of identification method in industrial configurations as well.

  11. Comparison of composite rotor blade models: A coupled-beam analysis and an MSC/NASTRAN finite-element model

    Science.gov (United States)

    Hodges, Robert V.; Nixon, Mark W.; Rehfield, Lawrence W.

    1987-01-01

    A methodology was developed for the structural analysis of composite rotor blades. This coupled-beam analysis is relatively simple to use compared with alternative analysis techniques. The beam analysis was developed for thin-wall single-cell rotor structures and includes the effects of elastic coupling. This paper demonstrates the effectiveness of the new composite-beam analysis method through comparison of its results with those of an established baseline analysis technique. The baseline analysis is an MSC/NASTRAN finite-element model built up from anisotropic shell elements. Deformations are compared for three linear static load cases of centrifugal force at design rotor speed, applied torque, and lift for an ideal rotor in hover. A D-spar designed to twist under axial loading is the subject of the analysis. Results indicate the coupled-beam analysis is well within engineering accuracy.

  12. Determination of a suitable set of loss models for centrifugal compressor performance prediction

    Directory of Open Access Journals (Sweden)

    Elkin I. GUTIÉRREZ VELÁSQUEZ

    2017-10-01

    Full Text Available Performance prediction in preliminary design stages of several turbomachinery components is a critical task in order to bring the design processes of these devices to a successful conclusion. In this paper, a review and analysis of the major loss mechanisms and loss models, used to determine the efficiency of a single stage centrifugal compressor, and a subsequent examination to determine an appropriate loss correlation set for estimating the isentropic efficiency in preliminary design stages of centrifugal compressors, were developed. Several semi-empirical correlations, commonly used to predict the efficiency of centrifugal compressors, were implemented in FORTRAN code and then were compared with experimental results in order to establish a loss correlation set to determine, with good approximation, the isentropic efficiency of single stage compressor. The aim of this study is to provide a suitable loss correlation set for determining the isentropic efficiency of a single stage centrifugal compressor, because, with a large amount of loss mechanisms and correlations available in the literature, it is difficult to ascertain how many and which correlations to employ for the correct prediction of the efficiency in the preliminary stage design of a centrifugal compressor. As a result of this study, a set of correlations composed by nine loss mechanisms for single stage centrifugal compressors, conformed by a rotor and a diffuser, are specified.

  13. Unsteady effects at the interface between impeller-vaned diffuser in a low pressure centrifugal compressor

    Directory of Open Access Journals (Sweden)

    Mihai Leonida NICULESCU

    2013-03-01

    Full Text Available In this paper, Proper Orthogonal Decomposition (POD is applied to the analysis of the unsteady rotor-stator interaction in a low-pressure centrifugal compressor. Numerical simulations are carried out through finite volumes method using the Unsteady Reynolds-Averaged Navier-Stokes Equations (URANS model. Proper Orthogonal Decomposition allows an accurate reconstruction of flow field using only a small number of modes; therefore, this method is one of the best tools for data storage. The POD results and the data obtained by the Adamczyk decomposition are compared. Both decompositions show the behavior of unsteady rotor-stator interaction, but the POD modes allow quantifying better the numerical errors.

  14. Calculations of the Acceleration of Centrifugal Loading on Adherent Cells

    Science.gov (United States)

    Chen, Kang; Song, Yang; Liu, Qing; Zhang, Chunqiu

    2017-07-01

    Studies have shown that the morphology and function of living cells are greatly affected by the state of different high acceleration. Based on the centrifuge, we designed a centrifugal cell loading machine for the mechanical biology of cells under high acceleration loading. For the machine, the feasibility of the experiment was studied by means of constant acceleration or variable acceleration loading in the Petri dish fixture and/or culture flask. Here we analyzed the distribution of the acceleration of the cells with the change of position and size of the culturing device quantitatively. It is obtained that Petri dish fixture and/or culture flask can be used for constant acceleration loading by experiments; the centripetal acceleration of the adherent cells increases with the increase of the distance between the rotor center of the centrifuge and the fixture of the Petri dish and the size of the fixture. It achieves the idea that the general biology laboratory can conduct the study of mechanical biology at high acceleration. It also provides a basis for more accurate study of the law of high acceleration on mechanobiology of cells.

  15. Development of the chemical decontamination process of uranium enrichment gas centrifuges

    International Nuclear Information System (INIS)

    Mita, Yutaka; Endo, Yuji; Yamanaka, Toshihiro; Oohashi, Yusuke

    2002-01-01

    In Ningyo-Toge Environmental Engineering Center, many of the centrifuges that were tested for uranium enrichment are kept in storage. In the future, it will be necessary to dispose of them properly. By categorizing these centrifuges as 'items that are not required to be treated as radioactive waste', chemical decontamination tests were conducted with the wet process (diluted sulfuric acid) to reduce the amount of such radioactive waste. As a result, concerning the rotors, the assumed radioactive level was attained as items that are not required to be treated as radioactive waste', but the effectiveness of the casings varied. As a future subject, in order to find the optimal decontamination process, the basic test shall be conducted continuously. By taking economical efficiency and the processing time into consideration, the decontamination process will be evaluated and a rational method examined. (author)

  16. Performance improvement of small-scale rotors by passive blade twist control

    OpenAIRE

    Lv, Peng; Prothin, Sebastien; Mohd Zawawi, Fazila; Bénard, Emmanuel; Morlier, Joseph; Moschetta, Jean-Marc

    2015-01-01

    A passive twist control is proposed as an adaptive way to maximize the overall efficiency of the small-scale rotor blade for multifunctional aircrafts. Incorporated into a database of airfoil characteristics, Blade Element Momentum Theory is implemented to obtain the blade optimum twist rates for hover and forward flight. In order to realize the required torsion of blade between hover and forward flight, glass/epoxy laminate blade is proposed based on Centrifugal Force Induced Twist concept. ...

  17. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.

    2011-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  18. Transient Analysis and Design Improvement of a Gas Turbine Rotor Based on Thermal-Mechanical Method

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2018-01-01

    Full Text Available The rotor is the core component of a gas turbine, and more than 80% of the failures in gas turbines occur in the rotor system, especially during the start-up period. Therefore, the safety assessment of the rotor during the start-up period is essential for the design of the gas turbine. In this paper, the transient equivalent stress of a gas turbine rotor under the cold start-up condition is investigated and the novel tie rod structure is introduced to reduce the equivalent stress. Firstly, a three-dimensional finite element model of the gas turbine rotor is built, and nonlinear contact behaviors such as friction are taken into account. Secondly, the convective heat transfer coefficients of the gas turbine rotor under the cold start-up condition are calculated using thermal dynamic theory. The transient analysis of the gas turbine rotor is conducted considering the thermal load, the centrifugal load, and the pretightening force. The temperature and stress distributions of the rotor under the cold start-up condition are shown in detail. In particular, the generation mechanism of maximum equivalent stress for tie rods and the change tendency of the pretightening force are illustrated in detail. The tie rod holes of the rear shaft and the turbine tie rod are the dangerous locations during the start-up period. Finally, a novel tie rod is proposed to reduce the maximum equivalent stress at the dangerous location. The maximum equivalent stress at this location is decreased by 15%. This paper provides some reference for the design of the gas turbine rotor.

  19. Theoretical study of asymmetric super-rotors: Alignment and orientation

    Science.gov (United States)

    Omiste, Juan J.

    2018-02-01

    We report a theoretical study of the optical centrifuge acceleration of an asymmetric top molecule interacting with an electric static field by solving the time-dependent Schrödinger equation in the rigid rotor approximation. A detailed analysis of the mixing of the angular momentum in both the molecular and the laboratory fixed frames allows us to deepen the understanding of the main features of the acceleration process, for instance, the effective angular frequency of the molecule at the end of the pulse. For the case of the SO2 molecular super-rotor, we show numerically that it rotates around one internal axis and that its dynamics is confined to the plane defined by the polarization axis of the laser, in agreement with experimental findings. Furthermore, we consider the orientation patterns induced by the dc field, showing the characteristics of their structure as a function of the strength of the static field and the initial configuration of the fields.

  20. Thermal hydrodynamic analysis of a countercurrent gas centrifuge; Analise termo hidrodinamica de uma centrifuga a contracorrente

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Delvonei Alves de

    1999-07-01

    The influence of the thermal countercurrent on the separative performance of countercurrent centrifuges is treated in this work. The methodology used consists in modeling the gas flow inside the rotor under thermal boundary conditions supplied by the structural thermal model. The gas flow model, also called hydrodynamical model, is based on the Finite Volume Method for cylindrical geometry with azimuthal symmetry. The structural thermal model is based on the Nodal Method and take into account simultaneously, the conduction convection and radiation phenomena. The procedure adopted for this study consisted in the definition of the operational and geometric conditions of a centrifuge which was used as a pattern to the accomplished analysis. This configuration, called 'Standard Centrifuge', was used for the accomplishment of several simulations where the importance of the realistic boundary thermal conditions for the numerical evaluation of the centrifuge separative capacity was evidenced. A selective alteration for the optical properties based on simple engineering procedures was proposed. An improvement of 5% was obtained with this alteration. (author)

  1. Thermal hydrodynamic analysis of a countercurrent gas centrifuge; Analise termo hidrodinamica de uma centrifuga a contracorrente

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Delvonei Alves de

    1999-07-01

    The influence of the thermal countercurrent on the separative performance of countercurrent centrifuges is treated in this work. The methodology used consists in modeling the gas flow inside the rotor under thermal boundary conditions supplied by the structural thermal model. The gas flow model, also called hydrodynamical model, is based on the Finite Volume Method for cylindrical geometry with azimuthal symmetry. The structural thermal model is based on the Nodal Method and take into account simultaneously, the conduction convection and radiation phenomena. The procedure adopted for this study consisted in the definition of the operational and geometric conditions of a centrifuge which was used as a pattern to the accomplished analysis. This configuration, called 'Standard Centrifuge', was used for the accomplishment of several simulations where the importance of the realistic boundary thermal conditions for the numerical evaluation of the centrifuge separative capacity was evidenced. A selective alteration for the optical properties based on simple engineering procedures was proposed. An improvement of 5% was obtained with this alteration. (author)

  2. Experimental Investigation of Factors Influencing Operating Rotor Tip Clearance in Multistage Compressors

    Directory of Open Access Journals (Sweden)

    Reid A. Berdanier

    2015-01-01

    Full Text Available An analysis of compressor rotor tip clearance measurements using capacitance probe instrumentation is discussed for a three-stage axial compressor. Thermal variations and centrifugal effects related to rotational speed changes affect clearance heights relative to the assembled configuration. These two primary contributions to measured changes are discussed both independently and in combination. Emphasis is given to tip clearance changes due to changing loading condition and at several compressor operating speeds. Measurements show a tip clearance change approaching 0.1 mm (0.2% rotor span when comparing a near-choke operating condition to a near-stall operating condition for the third stage. Additional consideration is given to environmental contributions such as ambient temperature, for which changes in tip clearance height on the order of 0.05 mm (0.1% rotor span were noted for temperature variations of 15°C. Experimental compressor operating clearances are presented for several temperatures, operating speeds, and loading conditions, and comparisons are drawn between these measured variations and predicted changes under the same conditions.

  3. Modélisation non-linéaire des effets centrifuges pour le développement de modèles réduits de composants aubagés

    OpenAIRE

    Khalifeh , E; Piollet , E; Millecamps , A; Batailly , Alain

    2017-01-01

    International audience; The modeling of centrifugal stiffening effects on bladed components is of primary importance in order to accurately capture their dynamics depending on the rotor angular speed. Centrifugal effects impact both the stiffness of the component and its geometry. In the context of the small perturbation framework, when considering a linear finite element model of the component, an assumption typically made in the scientific literature involves a fourth-order polynomial devel...

  4. Task 9 - centrifugal membrane filtration. Semi-annual report April 1--September 30, 1996

    International Nuclear Information System (INIS)

    Stepan, D.J.; Moe, T.A.; Collings, M.E.

    1997-01-01

    This report assesses a centrifugal membrane filtration technology developed by SpinTek Membrane Systems, Inc. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. The Tank Waste Focus Area was chosen for study. Membrane-screening tests were performed with the STC-X4 static test cell filtration unit, using five ceramic membranes with different pore size and composition. Based on permeate flux, a 0.25-μm TiO 2 /Al 2 O 3 membrane was selected for detailed performance evaluation using the centrifugal membrane filtration unit with a surrogate tank waste solution. The performance of the unit was evaluated with a statistical test design that determined the effect of temperature, pressure, membrane rotational speed, and solids loading on permeate flux. All four variables were found to be statistically significant, with the magnitude of the effect in the order of temperature, solids loading, rotor speed, and pressure. Temperature, rotor speed, and pressure had an increasing effect on flux with increasing value, while increases in solids loading showed a decrease in permeate flux. Significant interactions between rotor speed and solids loading and pressure and solids loading were also observed. The regression equation derived from test data had a correlation coefficient of 0.934, which represents a useful predictive capability for integrating the technology into DOE cleanup efforts. An extended test run performed on surrogate waste showed some deterioration in filtration performance, based on flux, apparently due to the buildup of solids near the inner portion of the membrane where relative membrane velocities were low. Continued testing of the system will focus on modifications to the shear pattern across the entire membrane surface to affect improved long-term performance

  5. A 4-spot time-of-flight anemometer for small centrifugal compressor velocity measurements

    Science.gov (United States)

    Wernet, Mark P.; Skoch, Gary J.

    1992-01-01

    The application of laser anemometry techniques in turbomachinery facilities is a challenging dilemma requiring an anemometer system with special qualities. Here, we describe the use of a novel laser anemometry technique applied to a small 4.5 kg/s, 4:1 pressure ratio centrifugal compressor. Sample velocity profiles across the blade pitch are presented for a single location along the rotor. The results of the intra-blade passage velocity measurements will ultimately be used to verify CFD 3-D viscous code predictions.

  6. Design, fabrication, and test plan of a small centrifugal compressor test model for a supercritical CO2 compressor in the fast reactor power plant

    International Nuclear Information System (INIS)

    Muto, Yasushi; Ishizuka, Takao; Aritomi, Masanori

    2009-01-01

    To clarify the CO 2 compressor performance in the vicinity of the critical point, a research project has begun at Tokyo Institute of Technology based on Japanese government funding. This paper describes the design and fabrication results of a small and high-speed centrifugal test compressor. Drawings of compressor structures such as an impeller and a rotor are presented. Numerical analysis results confirm that a desirable fluid flow distribution and structural integrity with respect to both the vane strength and rotor vibration can be expected. (author)

  7. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    International Nuclear Information System (INIS)

    Kim, S H; Hashi, S; Ishiyama, K

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and 19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  8. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    Science.gov (United States)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  9. CENTRIFUGE APPARATUS

    Science.gov (United States)

    Skarstrom, C.; Urey, H.C.; Cohen, K.

    1960-08-01

    A high-speed centrifuge for the separation of gaseous isotopes is designed comprising a centrifugal pump mounted on the outlet of a centrifuge bowl and arranged to pump the heavy and light fractions out of the centrifuge bowl in two separate streams.

  10. Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine

    DEFF Research Database (Denmark)

    Rodriguez, Cristian; Egusquiza, Eduard; Santos, Ilmar

    2007-01-01

    The highest vibration levels in large pump turbines are, in general, originated in the rotor stator interaction (RSI). This vibration has specific characteristics that can be clearly observed in the frequency domain: harmonics of the moving blade passing frequency and a particular relationship am...

  11. Adjustable ETHD lubrication applied to the improvement of dynamic performance of flexible rotors supported by active TPJB

    DEFF Research Database (Denmark)

    Salazar, Jorge Andrés González; Cerda Varela, Alejandro Javier; Santos, Ilmar

    2013-01-01

    This paper reports the dynamic study of a flexible rotor-bearing test rig which resembles a large overhung centrifugal compressor. The rotor is supported by an active tilting pad journal bearing (TPJB) able to perform the adjustable lubrication regime. Such a regime is obtained by injecting...... pressurized oil directly into the bearing clearance through a nozzle placed in a radial bore at the middle of the pad and connected to a high pressure supply unit by servovalves. The theoretical model is based on a finite element model, where the active TPJB with adjustable lubrication is included using...... and the experimental results are obtained. The improvements are obtained when the system response amplitudes in a bounded speed range is reduced by applying the adjustable lubrication. Results are in agreement with the established fact that a significant improvement of the rotor-bearing system dynamic performance can...

  12. Evaluation of the Hydraulic Performance and Mass Transfer Efficiency of the CSSX Process with the Optimized Solvent in a Single Stage of 5.5-Cm Diameter Centrifugal Contactor

    International Nuclear Information System (INIS)

    Law, J.D.; Tillotson, R.D.; Todd, T.A.

    2002-01-01

    The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections of the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A's 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design of

  13. Supercharging an internal combustion engine by aid of a dual-rotor bi-flux axial compressor

    Science.gov (United States)

    Grǎdinariu, Andrei Cristian; Mihai, Ioan

    2016-12-01

    Internal combustion engines can be supercharged in order to enhance their performances [1-3]. Engine power is proportional to the quantity of fresh fluid introduced into the cylinder. At present, the general tendency is to try to obtain actual specific powers as high as possible, for as small as possible cylinder capacity, without increasing the generated pollution hazards. The present paper investigates the impact of replacing a centrifugal turbo-compressor with an axial double-rotor bi-flux one [4]. The proposed method allows that for the same number of cylinders, an increase in discharged airflow, accompanied by a decrease in fuel consumption. Using a program developed under the MathCad environment, the present work was aimed at studying the way temperature modifies at the end of isentropic compression under supercharging conditions. Taking into account a variation between extreme limits of the ambient temperature, its influence upon the evolution of thermal load coefficient was analyzed considering the air pressure at the compressor cooling system outlet. This analysis was completed by an exergetical study of the heat evacuated through cylinder walls in supercharged engine conditions. The conducted investigation allows verification of whether significant differences can be observed between an axial, dual-rotor, bi-flux compressor and centrifugal compressors.

  14. Nonlinear Vibration Analysis for a Jeffcott Rotor with Seal and Air-Film Bearing Excitations

    Directory of Open Access Journals (Sweden)

    Yuefang Wang

    2010-01-01

    Full Text Available The nonlinear coupling vibration and bifurcation of a high-speed centrifugal compressor with a labyrinth seal and two air-film journal bearings are presented in this paper. The rotary shaft and disk are modeled as a rigid Jeffcott rotor. Muszynska's model is used to express the seal force with multiple parameters. For air-film journal bearings, the model proposed by Zhang et al. is adopted to express unsteady bearing forces. The Runge-Kutta method is used to numerically determine the vibration responses of the disk center and the bearings. Bifurcation diagrams for transverse motion of the rotor are presented with parameters of rotation speed and pressure drop of the seal. Multiple subharmonic, periodic, and quasiperiodic motions are presented with two seal-pressure drops. The bifurcation characteristics show inherent interactions between forces of the air-film bearings and the seal, presenting more complicated rotor dynamics than the one with either of the forces alone. Bifurcation diagrams are obtained with parameters of pressure drop and seal length determined for the sake of operation safety.

  15. Compact type-I coil planet centrifuge for counter-current chromatography.

    Science.gov (United States)

    Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro

    2010-02-19

    A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (S(f)), peak resolution (R(s)), theoretical plate (N) and peak retention time (t(R)). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-DL-glu, DNP-beta-ala and DNP-l-ala were resolved at R(s) of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. Published by Elsevier B.V.

  16. Flow performance of highly loaded axial fan with bowed rotor blades

    Science.gov (United States)

    Chen, L.; Liu, X. J.; Yang, A. L.; Dai, R.

    2013-12-01

    In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved.

  17. Control of Surge in Centrifugal Compressors by Active Magnetic Bearings Theory and Implementation

    CERN Document Server

    Yoon, Se Young; Allaire, Paul E

    2013-01-01

    Control of Surge in Centrifugal Compressors by Active Magnetic Bearings sets out the fundamentals of integrating the active magnetic bearing (AMB) rotor suspension technology in compressor systems, and describes how this relatively new bearing technology can be employed in the active control of compressor surge. The authors provide a self-contained and comprehensive review of rotordynamics and the fundamentals of the AMB technology. The active stabilization of compressor surge employing AMBs in a machine is fully explored, from the modeling of the instability and the design of feedback controllers, to the implementation and experimental testing of the control algorithms in a specially-constructed, industrial-size centrifugal compression system. The results of these tests demonstrate the great potential of the new surge control method developed in this text. This book will be useful for engineers in industries that involve turbocompressors and magnetic bearings, as well as for researchers and graduate students...

  18. Rotordynamic Evaluation of Full Scale Rotor on Tilting Pad Bearings with 0.1 and 0.3 Preload

    Directory of Open Access Journals (Sweden)

    Weimin Wang

    2014-01-01

    Full Text Available A system identification method for rotating machinery stability evaluation is investigated based on sine sweep excitation testing with electromagnetic actuator. The traditional MIMO FRF is transformed into dFRF from real number field to complex field with a transformation matrix, eliminating the influence of forward and backward modal overlap and providing higher accuracy to identify rotor’s first forward modal parameters using the rational polynomial method. The modal parameters are acquired for stability estimation. Furthermore, two sets of bearing with preloads of 0.1 and 0.3 under both load-on-pad (LOP and load-between-pad (LBP conditions are investigated. The effects of oil inlet pressure (1.0 bar–1.75 bar and temperature (43°C–51°C on the stability of rotor are investigated in detail. Results indicate that the stability of rotor will be improved by increasing the oil inlet temperature and pressure. It is found that the rotor is more stable on bearing with 0.1 preload than that of 0.3 preload. Load-on-pad provides more damping to rotor than load-between-pad. The method and outcomes of this paper can provide both theory basis and technology foundation for improving the rotor stability of centrifugal compressors.

  19. Plasma centrifuge

    International Nuclear Information System (INIS)

    Ikehata, Takashi; Mase, Hiroshi

    1998-01-01

    The plasma centrifuge is one of statistical isotope separation processes which uses the centrifugal force of a J x B driven rotating plasma in a magnetic field to give rise to the mass-dependent radial transport of isotopic ions. The system has been developed as an alternative to the gas centrifuge because a much higher rotational velocity and separation factor have been achieved. In this review, the physical aspects of the plasma centrifuge followed by the recent experimental achievements are described, especially in comparison with the gas centrifuge. (author)

  20. In vivo evaluation of centrifugal blood pump for cardiopulmonary bypass-Spiral Pump.

    Science.gov (United States)

    da Silva, Cibele; da Silva, Bruno Utiyama; Leme, Juliana; Uebelhart, Beatriz; Dinkhuysen, Jarbas; Biscegli, José F; Andrade, Aron; Zavaglia, Cecília

    2013-11-01

    The Spiral Pump (SP), a centrifugal blood pump for cardiopulmonary bypass (CPB), has been developed at the Dante Pazzanese Institute of Cardiology/Adib Jatene Foundation laboratories, with support from Sintegra Company (Pompeia, Brazil). The SP is a disposable pump with an internal rotor-a conically shaped fuse with double entrance threads. This rotor is supported by two ball bearings, attached to a stainless steel shaft fixed to the housing base. Worm gears provide axial motion to the blood column, and the rotational motion of the conically shaped impeller generates a centrifugal pumping effect, improving pump efficiency without increasing hemolysis. In vitro tests were performed to evaluate the SP's hydrodynamic performance, and in vivo experiments were performed to evaluate hemodynamic impact during usual CPB. A commercially available centrifugal blood pump was used as reference. In vivo experiments were conducted in six male pigs weighing between 60 and 90 kg, placed on CPB for 6 h each. Blood samples were collected just before CPB (T0) and after every hour of CPB (T1-T6) for hemolysis determination and laboratory tests (hematological and biochemical). Values of blood pressure, mean flow, pump rotational speed, and corporeal temperature were recorded. Also, ergonomic conditions were recorded: presence of noise, difficulty in removing air bubbles, trouble in installing the pump in the drive module (console), and difficulties in mounting the CPB circuit. Comparing the laboratory and hemolysis results for the SP with those of the reference pump, we can conclude that there is no significant difference between the two devices. In addition, reports made by medical staff and perfusionists described a close similarity between the two devices. During in vivo experiments, the SP maintained blood flow and pressure at physiological levels, consistent with those applied in cardiac surgery with CPB, without presenting any malfunction. Also, the SP needed lower rotational

  1. Numerical and Experimental Stability Investigation of a Flexible Rotor on Two Different Tilting Pad Bearing Configurations

    Directory of Open Access Journals (Sweden)

    Weimin Wang

    2014-01-01

    Full Text Available Rotordynamic stability is crucial for high performance centrifugal compressors. In this paper, the weighted instrumental variable (WIV based system identification method for rotating machinery stability is investigated based on a sine sweep forward excitation with an electromagnetic actuator. The traditional multiple input multiple output (MIMO frequency response function (FRF is transformed into a directional frequency response function (dFRF. The rational polynomial method (RPM combined with WIV is developed to identify the rotor’s first forward mode parameters. This new approach is called the COMDYN method. Experimental work using the COMDYN method is carried out under different rotating speeds, oil inlet temperatures, and pressure conditions. Two sets of bearings with preloads 0.1 and 0.3 are investigated. A numerical rotor-bearing model is also built. The numerical results correlate reasonably well with the experimental results. The investigation results indicate that the new method satisfies the desired features of rotating machine stability identification. Furthermore, the system log decrement was improved somewhat with the increase of oil inlet temperature. The increase of oil supply pressure affects the rotor-bearing system stability very slightly. The results of this paper provide new and useful insights for potentially avoiding instability faults in centrifugal compressors.

  2. Algorithm for Controlling a Centrifugal Compressor

    Science.gov (United States)

    Benedict, Scott M.

    2004-01-01

    An algorithm has been developed for controlling a centrifugal compressor that serves as the prime mover in a heatpump system. Experimental studies have shown that the operating conditions for maximum compressor efficiency are close to the boundary beyond which surge occurs. Compressor surge is a destructive condition in which there are instantaneous reversals of flow associated with a high outlet-to-inlet pressure differential. For a given cooling load, the algorithm sets the compressor speed at the lowest possible value while adjusting the inlet guide vane angle and diffuser vane angle to maximize efficiency, subject to an overriding requirement to prevent surge. The onset of surge is detected via the onset of oscillations of the electric current supplied to the compressor motor, associated with surge-induced oscillations of the torque exerted by and on the compressor rotor. The algorithm can be implemented in any of several computer languages.

  3. Large-eddy simulation analysis of turbulent flow over a two-blade horizontal wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Young [Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh (United States); You, Dong Hyun [Dept. of Mechanical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2016-11-15

    Unsteady turbulent flow characteristics over a two-blade horizontal wind turbine rotor is analyzed using a large-eddy simulation technique. The wind turbine rotor corresponds to the configuration of the U.S. National Renewable Energy Laboratory (NREL) phase VI campaign. The filtered incompressible Navier-Stokes equations in a non-inertial reference frame fixed at the centroid of the rotor, are solved with centrifugal and Coriolis forces using an unstructured-grid finite-volume method. A systematic analysis of effects of grid resolution, computational domain size, and time-step size on simulation results, is carried out. Simulation results such as the surface pressure coefficient, thrust coefficient, torque coefficient, and normal and tangential force coefficients are found to agree favorably with experimental data. The simulation showed that pressure fluctuations, which produce broadband flow-induced noise and vibration of the blades, are especially significant in the mid-chord area of the suction side at around 70 to 95 percent spanwise locations. Large-scale vortices are found to be generated at the blade tip and the location connecting the blade with an airfoil cross section and the circular hub rod. These vortices propagate downstream with helical motions and are found to persist far downstream from the rotor.

  4. Morphing Downwind-Aligned Rotor Concept Based on a 13-MW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ichter, Brian; Steele, Adam; Loth, Eric; Moriarty, Patrick; Selig, Michael

    2016-04-01

    To alleviate the mass-scaling issues associated with conventional upwind rotors of extreme-scale wind turbines (>/=10 MW), a morphing downwind-aligned rotor (MoDaR) concept is proposed herein. The concept employs a downwind rotor with blades whose elements are stiff (no intentional flexibility) but with hub-joints that can be unlocked to allow for moment-free downwind alignment. Aligning the combination of gravitational, centrifugal and thrust forces along the blade path reduces downwind cantilever loads, resulting in primarily tensile loading. For control simplicity, the blade curvature can be fixed with a single morphing degree of freedom using a near-hub joint for coning angle: 22 degrees at rated conditions. The conventional baseline was set as the 13.2-MW Sandia 100-m all glass blade in a three-bladed upwind configuration. To quantify potential mass savings, a downwind load-aligning, two-bladed rotor was designed. Because of the reduced number of blades, the MoDaR concept had a favorable 33% mass reduction. The blade reduction and coning led to a reduction in rated power, but morphing increased energy capture at lower speeds such that both the MoDaR and conventional rotors have the same average power: 5.4 MW. A finite element analysis showed that quasi-steady structural stresses could be reduced, over a range of operating wind speeds and azimuthal angles, despite the increases in loading per blade. However, the concept feasibility requires additional investigation of the mass, cost and complexity of the morphing hinge, the impact of unsteady aeroelastic influence because of turbulence and off-design conditions, along with system-level Levelized Cost of Energy analysis.

  5. In-situ protein determination to monitor contamination in a centrifugal partition chromatograph.

    Science.gov (United States)

    Bouiche, Feriel; Faure, Karine

    2017-05-15

    Centrifugal partition chromatography (CPC) works with biphasic liquid systems including aqueous two-phase systems. Metallic rotors are able to retain an aqueous stationary phase able to purify proteins. But the adhesion of proteins to solid surface may pose a cross-contamination risk during downstream processes. So it is of utmost importance to ensure the cleanliness of the equipment and detect possible protein contamination in a timely manner. Thereby, a direct method that allows the determination of the effective presence of proteins and the extent of contamination in the metallic CPC rotors was developed. This in-situ method is derived from the Amino Density Estimation by Colorimetric Assay (ADECA) which is based on the affinity of a dye, Coomassie Brillant Blue (CBB), with protonated N + groups of the proteins. In this paper, the ADECA method was developed dynamically, on a 25 mL stainless-steel rotor with various extents of protein contaminations using bovine serum albumin (BSA) as a fouling model. The eluted CBB dye was quantified and found to respond linearly to BSA contamination up to 70 mg injected. Limits of detection and quantification were recorded as 0.9 mg and 3.1 mg, respectively. While the non-specific interactions between the dye and the rotor cannot currently be neglected, this method allows for in situ determination of proteins contamination and should contribute to the development of CPC as a separation tool in protein purification processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Heat treatment of large-sized welded rotors of steam turbines for atomic power stations

    Energy Technology Data Exchange (ETDEWEB)

    Kutasov, R F; Mukhina, M P; Tustanovskii, A S

    1977-01-01

    The heat treatment of a welded rotor of grade 25Kh2NMFA steel for steam turbines of nuclear power plants was considered. A following heat treatment schedule was suggested: charging the rotor in to a furnace at 100-150 deg C, heating to 200-250 deg C and holding for 12 hrs; slow heating (10 deg C/h) to 400-450 deg C and holding for 12 hrs; slow heating to 630-640 deg C and holding for 50 hrs, cooling at a rate of 5 deg C/h down to 100 deg C, holding for 20 hrs and cooling with the furnace open. The proposed heat treatment schedule of a duration of 356 hrs ensures a temperature gradient throughout the cross section and the length of the rotor of not more than +-5 deg C, least deviations of geometric dimensions and makes possible machining finish to within 0-0.02 mm. Described are the particularities of the design of a roll-out hearth electric chamber furnace, measuring 13000x5500x5000 mm and built for the purpose of carrying out said heat treatment. The power rating of the furnace is 2850 kW.

  7. CENTRIFUGAL SEPARATORS

    Science.gov (United States)

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  8. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  9. Finite Element Analysis of the Rotor System of a Magnetically Suspended Compound Molecule Pump

    International Nuclear Information System (INIS)

    Liu Pingfan; Zhao Lei; Shi Zhengang; Yang Guojun

    2014-01-01

    A novel magnetically suspended compound molecule pump has been designed, which has been supported by the active magnetic bearings (AMBs) system with 5 degrees of freedom. According to the characteristics of the high speed and AMBs, the rotor system of the magnetically suspended compound molecule pump has been analyzed by the finite element method. Modal analysis has been performed for the rotor, thus modal frequencies and corresponding modal shapes have been obtained. For the high rotating speed the blades usually have tended to be destroyed as the results of the centrifugal deformation and vibration. So several static parameters have been analyzed, such as stress distributions and deformations. Simulation results provide a theoretical foundation for the design of the magnetically suspended compound molecule pump’s controllers. The reliability and safety of the structure have been verified completely. Furthermore, this paper is of great significance for the pumps’ future developments. (author)

  10. Integrated technology rotor/flight research rotor concept definition study

    Science.gov (United States)

    Carlson, R. G.; Beno, E. A.; Ulisnik, H. D.

    1983-01-01

    As part of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) Program a number of advanced rotor system designs were conceived and investigated. From these, several were chosen that best meet the started ITR goals with emphasis on stability, reduced weight and hub drag, simplicity, low head moment stiffness, and adequate strength and fatigue life. It was concluded that obtaining low hub moment stiffness was difficult when only the blade flexibility of bearingless rotor blades is considered, unacceptably low fatigue life being the primary problem. Achieving a moderate hub moment stiffness somewhat higher than state of the art articulated rotors in production today is possible within the fatigue life constraint. Alternatively, low stiffness is possible when additional rotor elements, besides the blades themselves, provide part of the rotor flexibility. Two primary designs evolved as best meeting the general ITR requirements that presently exist. An I shaped flexbeam with an external torque tube can satisfy the general goals but would have either higher stiffness or reduced fatigue life. The elastic gimbal rotor can achieve a better combination of low stiffness and high fatigue life but would be a somewhat heavier design and possibly exhibit a higher risk of aeromechanical instability.

  11. Flow performance of highly loaded axial fan with bowed rotor blades

    International Nuclear Information System (INIS)

    Chen, L; Liu, X J; Yang, A L; Dai, R

    2013-01-01

    In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved

  12. Separations by centrifugal phenomena

    International Nuclear Information System (INIS)

    Hsu, H.W.

    1981-01-01

    The technical information presented herein emphasizes the uniqueness of the centrifugal separations methodology and pertinent theory for various kinds of centrifugation. The topics are arranged according to gas, liquid, and solid phases, in the order of increasing densities. Much space is devoted to liquid centrifugation because of the importance of this technique in chemical and biological laboratories. Many separational and characterizational examples are illustrated in detail. The material has been divided into 7 chapters entitled: 1) Introduction, 2) Basic Theory of Centrifugation, 3) Gas Centrifuges, 4) Preparative Liquid Centrifuges, 5) Analytical Liquid Centrifuges, 6) Liquid Centrifuges in Practice, and 7) Mechanical Separations by Centrifuges. Separate abstracts have been prepared for each chapter except the introduction

  13. Detachment of solid particulate soils by centrifugal force part 3; Properties of direction for removal force. Enshinryoku ni yoru ryushi yogore no jokyo. dai sanpo; Jokyoryoku no hokosei

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Y. (Koriyama Womens College, Fukushima (Japan)); Lee, S.H. (Tokyo Gakugei Univ., Tokyo (Japan)); Yabe, A. (Bunka Womens Univ., Tokyo (Japan))

    1991-01-20

    Removal by centrigugal force of polystyrene-latex particles with particle sizes of 5, 10 and 15 {mu} m adhering to a glass substrate is studied. Washing was carried out by using an ultracentrifuge provided with an angular rotor, with a rotor angle {theta} of 0 {approximately} 60 {degree}, varying the ratio of horizontal component Fh to vertical component Fv from 1:0 to 1:1.73. Washing was further carried out, changing an angle {theta}{prime} of centrifugal force to the surface on which the particles adhered. From this experiment, the following conclusions were obtained. The less the contribution of Fv to the constant Fh, or reversely the greater the contribution of Fh to the constant Fv, the more was the extent of removal. When the surface on which the particles adhered was turned to the direction pressed by centrifugal force, Fv acted negatively for removal of particles and exhibited a different tendency from that when turned to the the centrifugal direction. When {theta}{prime} was 180 {degree}, the removal force giving an extent of removal of about 80% was 1.5 {times} 10 {sup {minus} 9} N for 5 and 10 {mu} m particles, and 25 {times} 10 {sup {minus} 9} N for 15 {mu} m particles. 11 refs., 14 figs., 3 tabs.

  14. Performance Optimization of Centrifugal Pump for Crude Oil Delivery

    Directory of Open Access Journals (Sweden)

    S.A.I. Bellary

    2018-02-01

    Full Text Available Crude oil transport is an essential task in oil and gas industries, where centrifugal pumps are extensively used. The design of a centrifugal pump involves a number of independent parameters which affect the pump performance. Altering some of the parameters within a realistic range improves pump performance and saves a significant amount of energy. The present research investigated the pump characteristics by modifying the number of blades and the exit blade-angles. Reynolds-Averaged Navier-Stokes equations with standard k-ε two-equation turbulence closure were used for steady and incompressible flow of crude oil through the pump. The experimental set-up was installed and the pump performance calculated numerically  was compared with the experiments.   The investigations showed that the number of blades and the exit blade-angles have a significant influence on the head, shaft power, and efficiency. The vortical flow structures, recirculation and reverse flow characteristics around the impeller were investigated to explain the flow dynamics of impeller and casing. A larger number of blades on the rotor showed dominant streamlined flow without any wake phenomena. The combined effect of the number of blades and exit blade angle has led to an increase in head and efficiency through the parametric optimization.

  15. Centrifugal dewatering of acid casein curd: effect of casein manufacturing and centrifugation variables on curd compression in a laboratory centrifuge.

    Science.gov (United States)

    Munro, P A; Van Til, H J

    1988-10-20

    Data relevant to curd compression in a horizontal, solid bowl decanter centrifuge have been obtained by studying the dewatering of acid casein curd in a batch laboratory centrifuge. Analysis of curd compression under centrifugal force predicts a moisture content gradient in the dewatered curd from a maximum at the curd-liquid interface to a minimum at the centrifuge bowl wall. This moisture content gradient was also measured experimentally, and its practical implications are discussed. Increases in centrifugal force, centrifugation time, and centrifugation temperature all caused a marked de crease in dewatered curd moisture content, whereas in creases in precipitation pH and maximum washing temperature caused a smaller decrease in dewatered curd moisture content.

  16. Two-Stage Centrifugal Fan

    Science.gov (United States)

    Converse, David

    2011-01-01

    Fan designs are often constrained by envelope, rotational speed, weight, and power. Aerodynamic performance and motor electrical performance are heavily influenced by rotational speed. The fan used in this work is at a practical limit for rotational speed due to motor performance characteristics, and there is no more space available in the packaging for a larger fan. The pressure rise requirements keep growing. The way to ordinarily accommodate a higher DP is to spin faster or grow the fan rotor diameter. The invention is to put two radially oriented stages on a single disk. Flow enters the first stage from the center; energy is imparted to the flow in the first stage blades, the flow is redirected some amount opposite to the direction of rotation in the fixed stators, and more energy is imparted to the flow in the second- stage blades. Without increasing either rotational speed or disk diameter, it is believed that as much as 50 percent more DP can be achieved with this design than with an ordinary, single-stage centrifugal design. This invention is useful primarily for fans having relatively low flow rates with relatively high pressure rise requirements.

  17. Numerical Investigation of Pressure Fluctuation Characteristics in a Centrifugal Pump with Variable Axial Clearance

    Directory of Open Access Journals (Sweden)

    Lei Cao

    2016-01-01

    Full Text Available Clearance flows in the sidewall gaps of centrifugal pumps are unsteady as well as main flows in the volute casing and impeller, which may cause vibration and noise, and the corresponding pressure fluctuations are related to the axial clearance size. In this paper, unsteady numerical simulations were conducted to predict the unsteady flows within the entire flow passage of a centrifugal pump operating in the design condition. Pressure fluctuation characteristics in the volute casing, impeller, and sidewall gaps were investigated with three axial clearance sizes. Results show that an axial clearance variation affects the pressure fluctuation characteristics in each flow domain by different degree. The greatest pressure fluctuation occurs at the blade pressure surface and is almost not influenced by the axial clearance variation which has a certainly effect on the pressure fluctuation characteristics around the tongue. The maximum pressure fluctuation amplitude in the sidewall gaps is larger than that in the volute casing, and different spectrum characteristics show up in the three models due to the interaction between the clearance flow and the main flow as well as the rotor-stator interaction. Therefore, clearance flow should be taken into consideration in the hydraulic design of centrifugal pumps.

  18. Centrifugation

    International Nuclear Information System (INIS)

    Subbaramajer.

    1983-01-01

    The theoretical analysis of the processes taking place at centrifugal method of isotope separation taking into account the latest investigations, in particular, investigation of velocity field applying the theory of boundary layers in rotating gas is conducted. As a result of using power computers for the solution of hydrodynamics equations by numerical methods sufficiently exact solutions of main hydrodynamic equations, reflecting the real centrifuge construction are derived. The increase of calculation accuracy of the flow field reflected also on the accuracy of the diffusion equation solution. Three parameters of similarity (height of transfer unit, flow, mass transfer coefficient) and their connection with the flow field, elementary separation coefficient in a cetrifugal field and molecular diffusion coefficient is determined. Modified formulas for the separation coefficient and separation centrifuge power taking into account similarity parameter changes over the axis are derived. The possibility of determining the system of controlled parameters optimizing the separation centrifuge power is shown

  19. Acute termination of human atrial fibrillation by identification and catheter ablation of localized rotors and sources: first multicenter experience of focal impulse and rotor modulation (FIRM) ablation.

    Science.gov (United States)

    Shivkumar, Kalyanam; Ellenbogen, Kenneth A; Hummel, John D; Miller, John M; Steinberg, Jonathan S

    2012-12-01

    Catheter ablation of atrial fibrillation (AF) currently relies on eliminating triggers, and no reliable method exists to map the arrhythmia itself to identify ablation targets. The aim of this multicenter study was to define the use of Focal Impulse and Rotor Modulation (FIRM) for identifying ablation targets. We prospectively enrolled the first (n = 14, 11 males) consecutive patients undergoing FIRM-guided ablation for persistent (n = 11) and paroxysmal AF at 5 centers. A 64-pole basket catheter was used for panoramic right and left atrial mapping during AF. AF electrograms were analyzed using a novel system to identify sustained rotors (spiral waves), or focal beats (centrifugal activation to surrounding atrium). Ablation was performed first at identified sources. The primary endpoints were acute AF termination or organization (>10% cycle length prolongation). Conventional ablation was performed only after FIRM-guided ablation. Twelve out of 14 cases were mapped. AF sources were demonstrated in all patients (average of 1.9 ± 0.8 per patient). Sources were left atrial in 18 cases, and right atrial in 5 cases, and 21/23 were rotors. FIRM-guided ablation achieved the acute endpoint in all patients, consisting of AF termination in n = 8 (4.9 ± 3.9 minutes at the primary source), and organization in n = 4. Total FIRM time for all patients was 12.3 ± 8.6 minutes. FIRM-guided ablation revealed localized AF rotors/focal sources in patients with paroxysmal, persistent and longstanding persistent AF. Brief targeted FIRM-guided ablation at a priori identified sites terminated or substantially organized AF in all cases prior to any other ablation. © 2012 Wiley Periodicals, Inc.

  20. Centrifugal stretching along the ground state band of 168Hf

    International Nuclear Information System (INIS)

    Costin, A.; Pietralla, N.; Reese, M.; Moeller, O.; Ai, H.; Casten, R. F.; Heinz, A.; McCutchan, E. A.; Meyer, D. A.; Qian, J.; Werner, V.; Dusling, K.; Fitzpatrick, C. R.; Guerdal, G.; Petkov, P.; Rainovski, G.

    2009-01-01

    The lifetimes of the J π =4 + , 6 + , 8 + , and 10 + levels along the ground state band in 168 Hf were measured by means of the recoil distance Doppler shift (RDDS) method using the New Yale Plunger Device (NYPD) and the SPEEDY detection array at Wright Nuclear Structure Laboratory of Yale University. Excited states in 168 Hf were populated using the 124 Sn( 48 Ti,4n) fusion evaporation reaction. The new lifetime values are sufficiently precise to clearly prove the increase of quadrupole deformation as a function of angular momentum in the deformed nucleus 168 Hf. The data agree with the predictions from the geometrical confined β-soft (CBS) rotor model that involves centrifugal stretching in a soft potential

  1. Assessing inspection sensitivity as it relates to damage tolerance in composite rotor hubs

    Science.gov (United States)

    Roach, Dennis P.; Rackow, Kirk

    2001-08-01

    Increasing niche applications, growing international markets, and the emergence of advanced rotorcraft technology are expected to greatly increase the population of helicopters over the next decade. In terms of fuselage fatigue, helicopters show similar trends as fixed-wing aircraft. The highly unsteady loads experienced by rotating wings not only directly affect components in the dynamic systems but are also transferred to the fixed airframe structure. Expanded use of rotorcraft has focused attention on the use of new materials and the optimization of maintenance practices. The FAA's Airworthiness Assurance Center (AANC) at Sandia National Labs has joined with Bell Helicopter andother agencies in the rotorcraft industry to evaluate nondestructive inspection (NDI) capabilities in light of the damage tolerance of assorted rotorcraft structure components. Currently, the program's emphasis is on composite rotor hubs. The rotorcraft industry is constantly evaluating new types of lightweight composite materials that not only enhance the safety and reliability of rotor components but also improve performance and extended operating life as well. Composite rotor hubs have led to the use of bearingless rotor systems that are less complex and require less maintenance than their predecessors. The test facility described in this paper allows the structural stability and damage tolerance of composite hubs to be evaluated using realistic flight load spectrums of centrifugal force and bending loads. NDI was integrated into the life-cycle fatigue tests in order to evaluate flaw detection sensitivity simultaneously wiht residual strength and general rotor hub peformance. This paper will describe the evolving use of damage tolerance analysis (DTA) to direct and improve rotorcraft maintenance along with the related use of nondestructive inspections to manage helicopter safety. OVeralll, the data from this project will provide information to improve the producibility, inspectability

  2. Engine rotor health monitoring: an experimental approach to fault detection and durability assessment

    Science.gov (United States)

    Abdul-Aziz, Ali; Woike, Mark R.; Clem, Michelle; Baaklini, George

    2015-03-01

    Efforts to update and improve turbine engine components in meeting flights safety and durability requirements are commitments that engine manufacturers try to continuously fulfill. Most of their concerns and developments energies focus on the rotating components as rotor disks. These components typically undergo rigorous operating conditions and are subject to high centrifugal loadings which subject them to various failure mechanisms. Thus, developing highly advanced health monitoring technology to screen their efficacy and performance is very essential to their prolonged service life and operational success. Nondestructive evaluation techniques are among the many screening methods that presently are being used to pre-detect hidden flaws and mini cracks prior to any appalling events occurrence. Most of these methods or procedures are confined to evaluating material's discontinuities and other defects that have mature to a point where failure is eminent. Hence, development of more robust techniques to pre-predict faults prior to any catastrophic events in these components is highly vital. This paper is focused on presenting research activities covering the ongoing research efforts at NASA Glenn Research Center (GRC) rotor dynamics laboratory in support of developing a fault detection system for key critical turbine engine components. Data obtained from spin test experiments of a rotor disk that relates to investigating behavior of blade tip clearance, tip timing and shaft displacement based on measured data acquired from sensor devices such as eddy current, capacitive and microwave are presented. Additional results linking test data with finite element modeling to characterize the structural durability of a cracked rotor as it relays to the experimental tests and findings is also presented. An obvious difference in the vibration response is shown between the notched and the baseline no notch rotor disk indicating the presence of some type of irregularity.

  3. Centrifuge modeling of monopiles

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte

    2010-01-01

    To gain a larger knowledge of the monopile foundation concept, centrifuge modeling is used by the geotechnical group at DTU. The centrifuge operated at DTU is a beam centrifuge and was built in 1976. In the recent years it has been upgraded with onboard data acquisition and control systems....... The capabilities of the centrifuge at DTU makes it possible to obtain a scale factor of 85 in experiments which equals a soil volume in prototype scale of a diameter of 40 meters and a depth of 40 meters. This paper describes centrifuge modeling theory, the centrifuge setup at DTU and as an example show results...... from centrifuge tests performed on large diameter piles installed in dry sand....

  4. No evidence for an open vessel effect in centrifuge-based vulnerability curves of a long-vesselled liana (Vitis vinifera).

    Science.gov (United States)

    Jacobsen, Anna L; Pratt, R Brandon

    2012-06-01

    Vulnerability to cavitation curves are used to estimate xylem cavitation resistance and can be constructed using multiple techniques. It was recently suggested that a technique that relies on centrifugal force to generate negative xylem pressures may be susceptible to an open vessel artifact in long-vesselled species. Here, we used custom centrifuge rotors to measure different sample lengths of 1-yr-old stems of grapevine to examine the influence of open vessels on vulnerability curves, thus testing the hypothesized open vessel artifact. These curves were compared with a dehydration-based vulnerability curve. Although samples differed significantly in the number of open vessels, there was no difference in the vulnerability to cavitation measured on 0.14- and 0.271-m-long samples of Vitis vinifera. Dehydration and centrifuge-based curves showed a similar pattern of declining xylem-specific hydraulic conductivity (K(s)) with declining water potential. The percentage loss in hydraulic conductivity (PLC) differed between dehydration and centrifuge curves and it was determined that grapevine is susceptible to errors in estimating maximum K(s) during dehydration because of the development of vessel blockages. Our results from a long-vesselled liana do not support the open vessel artifact hypothesis. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  5. CENTRIFUGE END CAP

    Science.gov (United States)

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    An end cap for ultra-gas centrifuges is designed to impart or remove angular momentum to or from the gas and to bring the entering gas to the temperature of the gas inside the centrifuge. The end cap is provided with slots or fins for adjusting the temperature and the angular momentum of the entering gas to the temperature and momentum of the gas in the centrifuge and is constructed to introduce both the inner and the peripheral stream into the centrifuge.

  6. Computational fluid dynamics analysis of a maglev centrifugal left ventricular assist device.

    Science.gov (United States)

    Burgreen, Greg W; Loree, Howard M; Bourque, Kevin; Dague, Charles; Poirier, Victor L; Farrar, David; Hampton, Edward; Wu, Z Jon; Gempp, Thomas M; Schöb, Reto

    2004-10-01

    The fluid dynamics of the Thoratec HeartMate III (Thoratec Corp., Pleasanton, CA, U.S.A.) left ventricular assist device are analyzed over a range of physiological operating conditions. The HeartMate III is a centrifugal flow pump with a magnetically suspended rotor. The complete pump was analyzed using computational fluid dynamics (CFD) analysis and experimental particle imaging flow visualization (PIFV). A comparison of CFD predictions to experimental imaging shows good agreement. Both CFD and experimental PIFV confirmed well-behaved flow fields in the main components of the HeartMate III pump: inlet, volute, and outlet. The HeartMate III is shown to exhibit clean flow features and good surface washing across its entire operating range.

  7. Centrifugation. A theoretical study of oxygen enrichment by centrifugation

    Energy Technology Data Exchange (ETDEWEB)

    Kierkegaard, P.; Raetz, E.

    1998-12-01

    In the present paper we first investigate what happens if we fill a cylinder with air, close it and rotate it. The results show that no matter which peripheral speed is used, it is not possible by means of the radial separation effect alone, to enrich the oxygen concentration from the previous 21% to more then 23.3%, which is of no practical value. In case of a too low enrichment in one centrifuge, the wanted material from this centrifuge can be used as an input for a second centrifuge and so on, in this way forming a cascade of centrifuges. Oxygen will be enriched in each step, until the desired concentration is reached. Cascading was the technology in the very beginning by enrichment plants for uraniumhexaflouride, used for atomic weapons and nuclear power plants. In this study we try to avoid cascading by aiming for higher separation factors. Therefore, we next investigate the possibilities of using a countercurrent centrifuge where in principle the enriched gas is subjected to several centrifugation in the same centrifuge. The calculations show, that in this way it is possible to produce nearly a 100% pure oxygen (polluted with some heavier molecules like argon) in one machine. Our third step was to calculate the amount of oxygen produced per hour. Using a countercurrent centrifuge of the Zippe type, 100 cm high and 20 cm in diameter, it is or will be possible in the near future to produce 17 g enriched air per hour enriched to 50% oxygen. That corresponds to processing 1 m{sup 3} atmospherical air in the period of approximately 24 hours. This is not very impressive. Our fourth step was to estimate the amount of power used for producing this amount of oxygen. A rough, but complicated, estimate shows that the power consumption at the production level will be about the double of the consumption used today. The overall conclusion is, that centrifugation as a production method for oxygen (or nitrogen) will not be competitive with the currently used method in the

  8. Stabilization and control of quad-rotor helicopter using a smartphone device

    Science.gov (United States)

    Desai, Alok; Lee, Dah-Jye; Moore, Jason; Chang, Yung-Ping

    2013-01-01

    In recent years, autonomous, micro-unmanned aerial vehicles (micro-UAVs), or more specifically hovering micro- UAVs, have proven suitable for many promising applications such as unknown environment exploration and search and rescue operations. The early versions of UAVs had no on-board control capabilities, and were difficult for manual control from a ground station. Many UAVs now are equipped with on-board control systems that reduce the amount of control required from the ground-station operator. However, the limitations on payload, power consumption and control without human interference remain the biggest challenges. This paper proposes to use a smartphone as the sole computational device to stabilize and control a quad-rotor. The goal is to use the readily available sensors in a smartphone such as the GPS, the accelerometer, the rate-gyros, and the camera to support vision-related tasks such as flight stabilization, estimation of the height above ground, target tracking, obstacle detection, and surveillance. We use a quad-rotor platform that has been built in the Robotic Vision Lab at Brigham Young University for our development and experiments. An Android smartphone is connected through the USB port to an external hardware that has a microprocessor and circuitries to generate pulse-width modulation signals to control the brushless servomotors on the quad-rotor. The high-resolution camera on the smartphone is used to detect and track features to maintain a desired altitude level. The vision algorithms implemented include template matching, Harris feature detector, RANSAC similarity-constrained homography, and color segmentation. Other sensors are used to control yaw, pitch, and roll of the quad-rotor. This smartphone-based system is able to stabilize and control micro-UAVs and is ideal for micro-UAVs that have size, weight, and power limitations.

  9. Centrifuge enrichment program

    International Nuclear Information System (INIS)

    Astley, E.R.

    1976-01-01

    Exxon Nuclear has been active in privately funded research and development of centrifuge enrichment technology since 1972. In October of 1975, Exxon Nuclear submitted a proposal to design, construct, and operate a 3000-MT SWU/yr centrifuge enrichment plant, under the provisions of the proposed Nuclear Fuel Assurance Act of 1975. The U.S. Energy Research and Development Administration (ERDA) accepted the proposal as a basis for negotiation. It was proposed to build a 1000-MT SWU/yr demonstration increment to be operational in 1982; and after successful operation for about one year, expand the facilities into a 3000-MT SWU/yr plant. As part of the overall centrifuge enrichment plant, a dedicated centrifuge manufacturing plant would be constructed; sized to support the full 3000-MT SWU/yr plant. The selection of the centrifuge process by Exxon Nuclear was based on an extremely thorough evaluation of current and projected enrichment technology; results show that the technology is mature and the process will be cost effective. The substantial savings in energy (about 93%) from utilization of the centrifuge option rather than gaseous diffusion is a compelling argument. As part of this program, Exxon Nuclear has a large hardware R and D program, plus a prototype centrifuge manufacturing capability in Malta, New York. To provide a full-scale machine and limited cascade test capability, Exxon Nuclear is constructing a $4,000,000 Centrifuge Test Facility in Richland, Washington. This facility was to initiate operations in the Fall of 1976. Exxon Nuclear is convinced that the centrifuge enrichment process is the rational selection for emergence of a commercial enrichment industry

  10. Centrifuge-operated specimen staining method and apparatus

    Science.gov (United States)

    Clarke, Mark S. F. (Inventor); Feeback, Daniel L. (Inventor)

    1999-01-01

    A method of staining preselected, mounted specimens of either biological or nonbiological material enclosed within a staining chamber where the liquid staining reagents are applied and removed from the staining chamber using hypergravity as the propelling force. In the preferred embodiment, a spacecraft-operated centrifuge and method of diagnosing biological specimens while in orbit, characterized by hermetically sealing a shell assembly. The assembly contains slide stain apparatus with computer control therefor, the operative effect of which is to overcome microgravity, for example on board an International Space Station.

  11. The dynamics of the process of the gasification of the depositions in the rotating rotor of the centrifuge

    International Nuclear Information System (INIS)

    Prusakov, V.N.; Utrobin, D.V.; Sosnin, L.Yu.; Cheltsov, A.N.

    2006-01-01

    This work contains the results of research on the elimination of the depositions containing uranium from the gas centrifuges operating with the rated frequency can be done using the mixture of halogenfluorids-bromine trifluoride and iodine heptafluoride. (authors)

  12. 75 FR 70300 - USEC, Inc.; American Centrifuge Lead Cascade Facility; American Centrifuge Plant; Notice of...

    Science.gov (United States)

    2010-11-17

    ... Centrifuge Lead Cascade Facility; American Centrifuge Plant; Notice of Receipt of a License Transfer... SNM-2011, for the American Centrifuge Lead Cascade Facility and the American Centrifuge Plant... USEC Inc., (the Licensee), for its American Centrifuge Lead Cascade Facility (LCF) and American...

  13. Present status of centrifuge method for uranium enrichment and PNC plant

    International Nuclear Information System (INIS)

    Nishikido, Yoshikazu

    1977-01-01

    Recentry, the tendency to adopt atomic energy owing to the oil shock, the delay in the construction of nuclear power stations worldwide, the uncertainty in the utilization of plutonium, and the prospect of supplying natural uranium are the situations affecting uranium enrichment. Anyway, the enrichment capacity in the world must be increased by the early years of 1980 s. The uranium enrichment technology by centrifugal method is being developed in various countries under strict control of informations, therefore the details are not known, but the general state in Great Britain, F.R. of Germany, Netherlands, U.S.A. and Japan is explained. The development of the centrifugal enrichment method in Japan was designated in 1972 as the national project aiming at operating the enriching plant with international competitive power by 1985. The PNC undertook the development work, and the research and development include the development of a centrifuge, cascade test, life span test, the development of the mass production technology, and safety test. The especially notable matter in this period was the rapid progress of a supercritical type centrifuge. It is judged that the technical basis for constructing a pilot plant has been established. The site for the pilot plant is being prepared now in the Ningyo Pass Mine, PNC, and the enrichment plant with 7000 centrifuges will be constructed there. The outline of the plant and the schedule for the construction are described. (Kako, I.)

  14. CENTRIFUGE

    Science.gov (United States)

    Rushing, F.C.

    1960-09-01

    A vibration damping mechanism for damping vibration forces occurring during the operation of a centrifuge is described. The vibration damping mechanism comprises a plurality of nested spaced cylindrical elements surrounding the rotating shaft of the centrifuge. Some of the elements are held substantially stationary while the others are held with respect to a pair of hearings spaced along the rotating shaft. A fluid is retained about the cylindrical elements.

  15. Pipeline system for gas centrifuge

    International Nuclear Information System (INIS)

    Masumoto, Tsutomu; Umezawa, Sadao.

    1977-01-01

    Purpose: To enable effective operation for the gas centrifuge cascade system upon failures in the system not by interrupting the operation of all of the centrifuges in the system but by excluding only the failed centrifuges. Constitution: A plurality of gas centrifuges are connected by way of a pipeline and an abnormal detector for the automatic detection of abnormality such as destruction in a vacuum barrel and loss of vacuum is provided to each of the centrifuges. Bypass lines for short-circuitting adjacent centrifuges are provided in the pipelines connecting the centrifuges. Upon generation of abnormality in a centrifuge, a valve disposed in the corresponding bypass is automatically closed or opened by a signal from the abnormal detector to change the gas flow to thereby exclude the centrifuge in abnormality out of the system. This enables to effectively operate the system without interrupting the operation for the entire system. (Moriyama, K.)

  16. Plasma centrifuges

    International Nuclear Information System (INIS)

    Karchevskij, A.I.; Potanin, E.P.

    2000-01-01

    The review of the most important studies on the isotope separation processes in the rotating plasma is presented. The device is described and the characteristics of operation of the pulse plasma centrifuges with weakly and strongly ionized plasma as well as the stationary plasma centrifuges with the medium weak ionization and devices, applying the stationary vacuum arc with the high ionization rate and the stationary beam-plasma discharge with complete ionization, are presented. The possible mechanisms of the isotope separation in plasma centrifuges are considered. The specific energy consumption for isotope separation in these devices is discussed [ru

  17. Integrated technology rotor/flight research rotor hub concept definition

    Science.gov (United States)

    Dixon, P. G. C.

    1983-01-01

    Two variations of the helicopter bearingless main rotor hub concept are proposed as bases for further development in the preliminary design phase of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) program. This selection was the result of an evaluation of three bearingless hub concepts and two articulated hub concepts with elastomeric bearings. The characteristics of each concept were evaluated by means of simplified methodology. These characteristics included the assessment of stability, vulnerability, weight, drag, cost, stiffness, fatigue life, maintainability, and reliability.

  18. Non-Destructive Measurement Methods (Neutron-, X-ray Radiography, Vibration Diagnostics and Ultrasound) in the Inspection of Helicopter Rotor Blades

    National Research Council Canada - National Science Library

    Balasko, M; Endroczi, G; Tarnai, Gy; Veres, I; Molnar, Gy; Svab, E

    2005-01-01

    The experiments regarding structural failures in helicopter rotor blade's composite structures causing water penetrations and bypasses were performed at the Dynamic Radiography Station (DRS) of the Budapest...

  19. Open Rotor Development

    Science.gov (United States)

    Van Zante, Dale E.; Rizzi, Stephen A.

    2016-01-01

    The ERA project executed a comprehensive test program for Open Rotor aerodynamic and acoustic performance. System studies used the data to estimate the fuel burn savings and acoustic margin for an aircraft system with open rotor propulsion. The acoustic measurements were used to produce an auralization that compares the legacy blades to the current generation of open rotor designs.

  20. Dynamic friction characterization in a turbine rotor and metallographic analysis of the friction element; Caracterizacion dinamica del rozamiento en rotor de turbina y analisis metalografico del elemento de rozamiento

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Solis, Jose Antonio; Cristalinas Navarro, Victor Manuel; Mojica Calderon, Cecilio [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-11-15

    As a part of the diagnosis of the root cause of the blades fault of the of the L-1 wheel of a of low pressure rotor of 300 MW, in one of the Power stations of Electrical Generation, a design was made and an experimental rubbing test of friction in the same rotor was performed but in the adjacent wheel of movable blades L-2. The objectives of the experimental rubbing test were to determine the dynamic characteristics of the rubbing to corroborate what was observed in the diagrams of spectra registered by the power station during the operation of the Unit, to determine the maximum bending stress of the used element to provide rubbing to the wheel of blades L-2 and to infer in a qualitative way the magnitude of the necessary friction force to generate the dynamic characteristics of the rubbing and finally to determine the micro-structural changes that underwent the element employed to apply rubbing. [Spanish] Como parte del diagnostico de la causa raiz de la falla de los alabes de la rueda L-1 de un rotor de baja presion de 300 MW, en una de las Centrales de Generacion Electrica, se diseno y efectuo una prueba experimental de rozamiento en el mismo rotor pero en la rueda adyacente de alabes moviles L-2. Los objetivos de la prueba experimental de rozamiento fueron determinar las caracteristicas dinamicas del rozamiento para corroborar lo observado en los diagramas de espectros registrados por la Central durante la operacion de la Unidad, determinar el esfuerzo maximo a la flexion del elemento utilizado para suministrar rozamiento a la rueda de alabes L-2 e inferir de manera cualitativa la magnitud de la fuerza de rozamiento necesaria para generar las caracteristicas dinamicas del razonamiento y por ultimo determinar los cambios microestructurales que experimento el elemento utilizado para aplicar rozamiento.

  1. Improved annular centrifugal contactor for solvent extraction reprocessing of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Bernstein, G.J.; Leonard, R.A.; Ziegler, A.A.; Steindler, M.J.

    1978-01-01

    An improved annular centrifugal contactor has been developed for solvent extraction reprocessing of spent nuclear reactor fuel. The design is an extension of a contactor developed several years ago at Argonne National Laboratory. Its distinguishing features are high throughput, high stage efficiency and the ability to handle a broad range of aqueous-to-organic phase flow ratios and density ratios. Direct coupling of the mixing and separating rotor to a motorized spindle simplifies the design and makes the contactor particularly suitable for remote maintenance. A unit that is critically safe by geometry is under test and a larger unit is being fabricated. Multi-stage miniature contactors operating on the annular mixing principle are being used for laboratory flow sheet studies. 8 figures

  2. Non-whole beat correlation method for the identification of an unbalance response of a dual-rotor system with a slight rotating speed difference

    Science.gov (United States)

    Zhang, Z. X.; Wang, L. Z.; Jin, Z. J.; Zhang, Q.; Li, X. L.

    2013-08-01

    The efficient identification of the unbalanced responses in the inner and outer rotors from the beat vibration is the key step in the dynamic balancing of a dual-rotor system with a slight rotating speed difference. This paper proposes a non-whole beat correlation method to identify the unbalance responses whose integral time is shorter than the whole beat correlation method. The principle, algorithm and parameter selection of the proposed method is emphatically demonstrated in this paper. From the numerical simulation and balancing experiment conducted on horizontal decanter centrifuge, conclusions can be drawn that the proposed approach is feasible and practicable. This method makes important sense in developing the field balancing equipment based on portable Single Chip Microcomputer (SCMC) with low expense.

  3. Solvent Carryover Characterization and Recovery for a 10-inch Single Stage Centrifugal Contactor

    International Nuclear Information System (INIS)

    Lentsch, R.D.; Stephens, A.B.; Leung, D.T.; Baffling, K.E.; Harmon, H.D.; Suggs, P.C.

    2006-01-01

    A test program has been performed to characterize the organic solvent carryover and recovery from centrifugal contactors in the Caustic-side Solvent Extraction (CSSX) process. CSSX is the baseline design for removing cesium from salt solutions for Department of Energy (DOE) Savannah River Site's Salt Waste Processing Facility. CSSX uses a custom solvent to extract cesium from the salt solution in a series of single stage centrifugal contactors. Meeting the Waste Acceptance Criteria at the Defense Waste Processing Facility and Saltstone, as well as plant economics, dictate that solvent loss should be kept to a minimum. Solvent droplet size distribution in the aqueous outlet streams of the CSSX contactors is of particular importance to the design of solvent recovery equipment. Because insufficient solvent droplet size data existed to form a basis for the recovery system design, DOE funded the CSSX Solvent Carryover Characterization and Recovery Test (SCCRT). This paper presents the droplet size distribution of solvent and concentration in the contactor aqueous outlet streams as a function of rotor speed, bottom plate type, and flow rate. It also presents the performance data of a prototype coalescer. (authors)

  4. Numerical Investigations of Unsteady Flow in a Centrifugal Pump with a Vaned Diffuser

    Directory of Open Access Journals (Sweden)

    Olivier Petit

    2013-01-01

    Full Text Available Computational fluid dynamics (CFD analyses were made to study the unsteady three-dimensional turbulence in the ERCOFTAC centrifugal pump test case. The simulations were carried out using the OpenFOAM Open Source CFD software. The test case consists of an unshrouded centrifugal impeller with seven blades and a radial vaned diffuser with 12 vanes. A large number of measurements are available in the radial gap between the impeller and the diffuse, making this case ideal for validating numerical methods. Results of steady and unsteady calculations of the flow in the pump are compared with the experimental ones, and four different turbulent models are analyzed. The steady simulation uses the frozen rotor concept, while the unsteady simulation uses a fully resolved sliding grid approach. The comparisons show that the unsteady numerical results accurately predict the unsteadiness of the flow, demonstrating the validity and applicability of that methodology for unsteady incompressible turbomachinery flow computations. The steady approach is less accurate, with an unphysical advection of the impeller wakes, but accurate enough for a crude approximation. The different turbulence models predict the flow at the same level of accuracy, with slightly different results.

  5. Centrifugal Compressor Unit-based Heat Energy Recovery at Compressor Stations

    Directory of Open Access Journals (Sweden)

    V. S. Shadrin

    2016-01-01

    Full Text Available About 95% of the electricity consumed by air compressor stations around the world, is transformed into thermal energy, which is making its considerable contribution to global warming. The present article dwells on the re-use (recovery of energy expended for air compression.The article presents the energy analysis of the process of compressing air from the point of view of compressor drive energy conversion into heat energy. The temperature level of excess heat energy has been estimated in terms of a potential to find the ways of recovery of generated heat. It is shown that the temperature level formed by thermal energy depends on the degree of air compression and the number of stages of the compressor.Analysis of technical characteristics of modern equipment from leading manufacturers, as well as projects of the latest air compressor stations have shown that there are two directions for the recovery of heat energy arising from the air compression: Resolving technological problems of compressor units. The use of the excess heat generation to meet the technology objectives of the enterprise. This article examines the schematic diagrams of compressor units to implement the idea of heat recovery compression to solve technological problems: Heating of the air in the suction line during operation of the compressor station in winter conditions. Using compression heat to regenerate the adsorbent in the dryer of compressed air.The article gives an equity assessment of considered solutions in the total amount of heat energy of compressor station. Presented in the present work, the analysis aims to outline the main vectors of technological solutions that reduce negative impacts of heat generation of compressor stations on the environment and creating the potential for reuse of energy, i.e. its recovery.

  6. Determination of urea content in urea cream by centrifugal partition chromatography

    Directory of Open Access Journals (Sweden)

    Ying-Qun Wang

    2016-04-01

    Full Text Available The objective of this study is to establish a centrifugal partition chromatography (CPC method for determination of the urea ingredient in urea cream. The mechanism of this method is that urea is determined by UV detector at 430 nm after being extracted from the cream and derivatized on line via Ehrlich reaction in rotor of CPC, where the reaction products dissolve in the mobile phase and the cream matrix retains in the stationary phase. The mixed solvent consisting of n-hexane, methanol, hydrochloric acid and p-dimethylaminobenzaldehyde with a ratio of 1000 mL:1000 mL:18 mL:2.0 g is used for solvent system of CPC. The CPC method proposed offers good precision and convenience without complex sample pretreatment processes.

  7. 76 FR 9613 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order...

    Science.gov (United States)

    2011-02-18

    ... NUCLEAR REGULATORY COMMISSION [EA-11-013] USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order Approving Direct Transfer of Licenses and Conforming Amendment I USEC... Centrifuge Lead Cascade Facility (Lead Cascade) and American Centrifuge Plant (ACP), respectively, which...

  8. 77 FR 9273 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct...

    Science.gov (United States)

    2012-02-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0355] USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct Transfer of Licenses In the Matter of USEC INC. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order EA-12- [[Page 9274

  9. Gas Centrifuges and Nuclear Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  10. Dynamic characterization of the friction in turbine rotor and metallographic analysis of the friction element; Caracterizacion dinamica del rozamiento en rotor de turbina y analisis metalografico del elemento de rozamiento

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Solis, Jose Antonio; Cristalinas Navarro, Victor Manuel; Mojica Calderon, Cecilio [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2010-07-01

    As a part of the diagnosis of the root cause of the fault of the blades of the L-1 wheel of a of low pressure rotor of 200 MW, in one of the power stations of electrical generation, an experimental test of friction in the same rotor was designed and carried out, but in the adjacent wheel of movable blades L-2. The objectives of the friction experimental test were to determine the dynamic characteristics of the friction, to corroborate what it was observed in the spectra diagrams registered by the power station during the operation of the unit, to determine the maximum bending stress of the used element to provide friction to the wheel of L-2 blades and to infer, in a qualitative way, the magnitude of the force of friction necessary to generate the dynamic characteristics of the friction and finally to determine the micro-structural changes that underwent the used element to apply friction. [Spanish] Como parte del diagnostico de la causa raiz de la falla de los alabes de la rueda L-1 de un rotor de baja presion de 200 MW, en una de las centrales de generacion electrica, se diseno y efectuo una prueba experimental de rozamiento en el mismo rotor, pero en la rueda adyacente de alabes moviles L-2. Los objetivos de la prueba experimental de rozamiento fueron determinar las caracteristicas dinamicas del razonamiento, para corroborar lo observado en los diagramas de espectros registrados por la central durante la operacion de la unidad, determinar el esfuerzo maximo a la flexion del elemento utilizado para suministrar rozamiento a la rueda de alabes L-2 e inferir, de manera cualitativa, la magnitud de la fuerza de rozamiento necesaria para generar las caracteristicas dinamicas del rozamiento y por ultimo determinar los cambios microestructurales que experimento el elemento utilizado para aplicar rozamiento.

  11. Gravitational biology on the space station

    Science.gov (United States)

    Keefe, J. R.; Krikorian, A. D.

    1983-01-01

    The current status of gravitational biology is summarized, future areas of required basic research in earth-based and spaceflight projects are presented, and potential applications of gravitational biology on a space station are demonstrated. Topics covered include vertebrate reproduction, prenatal/postnatal development, a review of plant space experiments, the facilities needed for growing plants, gravimorphogenesis, thigmomorphogenesis, centrifuges, maintaining a vivarium, tissue culture, and artificial human organ generation. It is proposed that space stations carrying out these types of long-term research be called the National Space Research Facility.

  12. Dual keel Space Station payload pointing system design and analysis feasibility study

    Science.gov (United States)

    Smagala, Tom; Class, Brian F.; Bauer, Frank H.; Lebair, Deborah A.

    1988-01-01

    A Space Station attached Payload Pointing System (PPS) has been designed and analyzed. The PPS is responsible for maintaining fixed payload pointing in the presence of disturbance applied to the Space Station. The payload considered in this analysis is the Solar Optical Telescope. System performance is evaluated via digital time simulations by applying various disturbance forces to the Space Station. The PPS meets the Space Station articulated pointing requirement for all disturbances except Shuttle docking and some centrifuge cases.

  13. SEAL FOR HIGH SPEED CENTRIFUGE

    Science.gov (United States)

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  14. Study on the performance of the hydraulic and mass-transfer with miniature centrifugal contactor

    International Nuclear Information System (INIS)

    Wang Jianchen; Tang Wencheng; Fan Shilei; Lian Jun

    1997-01-01

    The hydraulic performance and the mass-transfer properties of HNO 3 , Fe 3+ , Nd 3+ are studied in H 2 O-30% TRPO-kerosene system at different conditions with single-stage φ = 10 mm miniature centrifugal contactor. The rotor's speed varies from 4000 r/min to 4500 r/min. The total throughput is less than 600 mL/h. the phase ratio(o/a) changes from 1/10 to 10/1. Under the above experimental conditions, the single contactor operates very well and gives good performance. The stage efficiencies of HNO 3 and Nd 3+ are about 90%. The Fe 3+ extraction is very slow kinetically and the stage efficiency of Fe 3+ is low

  15. The use of a continuous-action centrifugal-screw mixer for improving the quality of flour baking mixes for functional purposes

    Directory of Open Access Journals (Sweden)

    D. M. Borodulin

    2018-01-01

    Full Text Available The influence of the number of screw turns of a centrifugal-screw mixer, the number of holes in the screw turns and the rotor speed on the quality of mixing of flour baking mixes of functional purpose enriched with amino acids was studied. Flour baking mix is composed of wheat flour, whole wheat flour, chickpeas flour, rye flour, buckwheat flour, oat bran, gluten, dry milk powder, sesame seeds, flax seed, dried onions, table salt and sugar. The homogeneity of the mixture reflects table salt because it has a minimal weight relative to other components of the mix. The coefficient of heterogeneity was calculated to assess the quality of mixing. The centrifugal-screw mixer optimal operation parameters were investigated for different flour baking mixes. For the mix № 1 and mix № 2 optimal parameters are rotor rotating speed of 900 rpm, the number of turns of the screw 4 and the number of holes on the threads of the screw 4. For the mix № 3 optimal parameters are rotor speed of 500 rpm, the number of turns of the screw 2 and the number of holes on the threads of the screw 8. The centrifugal–screw mixer allow to obtain enriched with amino acids flour baking mix of good quality. The coefficient of heterogeneity of mixes does not exceed 5%. For all samples of bread amino acid content is significantly higher compared to the control sample. Depending on the bread recipe contents of amino acids increased by 83–97% for arginine, 52–61% for tyrosine, 52–66% for phenylalanine, 72–74% for histidine, 91% for leucine+ isoleucine, 53–56% for methionine, 90–97% for valine, 64–72% for proline, 87–93% for threonine, 58–87% for serine and 74% for alanine. The greatest biological value is attributed to flour the baking mix № 1 and № 2. The economic effect of selling an enriched flour bakery mixture prepared on a centrifugal–screw mixer has been determined. It is established that the operating costs for the production of 1 kg of such

  16. Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) concept definition study

    Science.gov (United States)

    Hughes, C. W.

    1983-01-01

    Studies were conducted by Hughes Helicopters, Inc. (HHI) for the Applied Technology Laboratory and Aeromechanics Laboratory, U.S. Army Research and Technology Laboratories (AVRADCOM) and the Ames Research Center, National Aeronautics and Space Administration (NASA). Results of predesign studies of advanced main rotor hubs, including bearingless designs, are presented in this report. In addition, the Government's rotor design goals and specifications were reviewed and evaluated. Hub concepts were designed and qualitatively evaluated in order to select the two most promising concepts for further development. Various flexure designs, control systems, and pitchcase designs were investigated during the initial phases of this study. The two designs selected for additional development were designated the V-strap and flat-strap cruciform hubs. These hubs were designed for a four bladed rotor and were sized for 18,400 pounds gross weight with the same diameter (62 feet) and solidity (23 inch chord) as the existing rotor on the Rotor Systems Research Aircraft (RSRA).

  17. Enrichment: centrifuge process

    International Nuclear Information System (INIS)

    Soubbaramayer.

    1989-01-01

    This short course is divided into three sections devoted respectively to the physics of the process, some practical problems raised by the design of a centrifuge and the present situation of centrifugation in the World. 31 figs., 18 refs

  18. Influences of centrifugation on cells and tissues in liposuction aspirates: optimized centrifugation for lipotransfer and cell isolation.

    Science.gov (United States)

    Kurita, Masakazu; Matsumoto, Daisuke; Shigeura, Tomokuni; Sato, Katsujiro; Gonda, Koichi; Harii, Kiyonori; Yoshimura, Kotaro

    2008-03-01

    Although injective autologous fat transplantation is one of the most attractive options for soft-tissue augmentation, problems such as unpredictability and fibrosis resulting from fat necrosis limit its universal acceptance. Centrifugation is one of most common methods for overcoming these difficulties. This study was performed to investigate quantitatively the effects of centrifugation on liposuction aspirates to optimize centrifugal conditions for fat transplantation and isolation of adipose-derived stem cells. Liposuction aspirates, obtained from eight healthy female donors, were either not centrifuged or centrifuged at 400, 700, 1200, 3000, or 4200 g for 3 minutes. The volumes of the oil, adipose, and fluid portions and numbers of blood cells and adipose-derived cells in each portion were examined. The processed adipose tissues (1 ml) were injected into athymic mice, and grafts were harvested and weighed at 4 weeks. Morphologic alterations were observed using light and scanning electron microscopy. Centrifugation concentrated adipose tissues and adipose-derived stem cells in the adipose portion and partly removed red blood cells from the adipose portion. Centrifugation at more than 3000 g significantly damaged adipose-derived stem cells. Centrifugation enhanced graft take per 1 ml centrifuged adipose but reduced calculated graft take per 1 ml adipose before centrifugation. Excessive centrifugation can destroy adipocytes and adipose-derived stem cells, but appropriate centrifugation concentrates them, resulting in enhanced graft take. The authors tentatively recommend 1200 g as an optimized centrifugal force for obtaining good short- and long-term results in adipose transplantation.

  19. Centrifuge apparatus

    Science.gov (United States)

    Sartory, Walter K.; Eveleigh, John W.

    1976-01-01

    A method and apparatus for operating a continuous flow blood separation centrifuge are provided. The hematocrit of the entrant whole blood is continuously maintained at an optimum constant value by the addition of plasma to the entrant blood. The hematocrit of the separated red cells is monitored to indicate the degree of separation taking place, thereby providing a basis for regulating the flow through the centrifuge.

  20. Smart rotor modeling aero-servo-elastic modeling of a smart rotor with adaptive trailing edge flaps

    CERN Document Server

    Bergami, Leonardo

    2014-01-01

    A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature?promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynam

  1. Pump station for radioactive waste water

    Science.gov (United States)

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  2. Wind tower with vertical rotors

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, A

    1978-08-03

    The invention concerns a wind tower with vertical rotors. A characteristic is that the useful output of the rotors is increased by the wind pressure, which is guided to the rotors at the central opening and over the whole height of the structure by duct slots in the inner cells. These duct slots start behind the front nose of the inner cell and lead via the transverse axis of the pillar at an angle into the space between the inner cells and the cell body. This measure appreciably increases the useful output of the rotors, as the rotors do not have to provide any displacement work from their output, but receive additional thrust. The wind pressure pressing from inside the rotor and accelerating from the outside produces a better outflow of the wind from the power plant pillar with only small tendency to turbulence, which appreciably improves the effect of the adjustable turbulence smoothers, which are situated below the rotors over the whole height.

  3. Aeroacoustic Simulation for NASA CC3 Centrifugal Compressor Operating at off Design Condition

    Directory of Open Access Journals (Sweden)

    Alqaradawi Mohamed

    2016-01-01

    Full Text Available This paper covers the characterization of the acoustic noise and the unsteady flow field of a high speed centrifugal compressor NASA CC3. In order to accurately predict the noise, all analyses are carried out through the use of Large Eddy Simulation and Ffowcs Williams–Hawkings model for noise prediction. The relative effect of hub cavity on flow characteristics and sound levels is investigated, for a compressor stage with a total pressure ratio equal to 4, working from surge to near choke condition. In comparison with the experimental results from literature, the predicted compressor performance and flow field are predicted well. The hub cavity flow effect on the compressor aeroacoustic generated noise is shown in the paper. The unsteady static pressure and sound pressure levels are compared not only at different location but also for design and off design operating points. The internal flow results inside the hub cavity are presented at surge, design and near choke points. The conclusion is that the cavity effect of the centrifugal compressor cannot be ignored in the numerical prediction of aerodynamic generated noise. The impeller back plate of the rotor experiences a strong pressure fluctuation, which is maxima at the impeller outer radius for all operating point, but higher pressure values at the surge point.

  4. Separation parameters of gas centrifuges

    International Nuclear Information System (INIS)

    May, W.G.

    1977-01-01

    Early work on development of the gas centrifuge for separation of uranium isotopes has recently been reviewed. Several configurations were investigated. The preferred configuration eventually turned out to be a countercurrent centrifuge. In this form, an internal circulation is set up, and as a consequence, light isotope concentrates at one end of the centrifuge, heavy isotope at the other. In many ways the effect resembles the separation obtained in packed columns in the chemical and petroleum industries. It is the purpose of this paper to develop this analogy between countercurrent gas centrifuges and packed towers and to illustrate its usefulness in understanding the separation process in the centrifuge. 8 figures

  5. Macroscopic balance model for wave rotors

    Science.gov (United States)

    Welch, Gerard E.

    1996-01-01

    A mathematical model for multi-port wave rotors is described. The wave processes that effect energy exchange within the rotor passage are modeled using one-dimensional gas dynamics. Macroscopic mass and energy balances relate volume-averaged thermodynamic properties in the rotor passage control volume to the mass, momentum, and energy fluxes at the ports. Loss models account for entropy production in boundary layers and in separating flows caused by blade-blockage, incidence, and gradual opening and closing of rotor passages. The mathematical model provides a basis for predicting design-point wave rotor performance, port timing, and machine size. Model predictions are evaluated through comparisons with CFD calculations and three-port wave rotor experimental data. A four-port wave rotor design example is provided to demonstrate model applicability. The modeling approach is amenable to wave rotor optimization studies and rapid assessment of the trade-offs associated with integrating wave rotors into gas turbine engine systems.

  6. New centrifugation blood culture device.

    Science.gov (United States)

    Dorn, G L; Smith, K

    1978-01-01

    A single-tube blood culture device designed for centrifugation in a tabletop centrifuge is described. Reconstruction experiments using 21 different organisms and human donor blood indicate that excellent recovery can be obtained by centrifugation for 30 min at 3,000 X g. PMID:342539

  7. Microwave assisted centrifuge and related methods

    Science.gov (United States)

    Meikrantz, David H [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  8. Modern rotor balancing - Emerging technologies

    Science.gov (United States)

    Zorzi, E. S.; Von Pragenau, G. L.

    1985-01-01

    Modern balancing methods for flexible and rigid rotors are explored. Rigid rotor balancing is performed at several hundred rpm, well below the first bending mode of the shaft. High speed balancing is necessary when the nominal rotational speed is higher than the first bending mode. Both methods introduce weights which will produce rotor responses at given speeds that will be exactly out of phase with the responses of an unbalanced rotor. Modal balancing seeks to add weights which will leave other rotor modes unaffected. Also, influence coefficients can be determined by trial and error addition of weights and recording of their effects on vibration at speeds of interest. The latter method is useful for balancing rotors at other than critical speeds and for performing unified balancing beginning with the first critical speed. Finally, low-speed flexible balancing permits low-speed tests and adjustments of rotor assemblies which will not be accessible when operating in their high-speed functional configuration. The method was developed for the high pressure liquid oxygen turbopumps for the Shuttle.

  9. 76 FR 50767 - In the Matter of USEC Inc., American Centrifuge Lead Cascade Facility, and American Centrifuge...

    Science.gov (United States)

    2011-08-16

    ...; License Nos. SNM-7003, SNM-2011] In the Matter of USEC Inc., American Centrifuge Lead Cascade Facility, and American Centrifuge Plant; Order Extending the Date by Which the Direct Transfer of Licenses Is To... American Centrifuge Lead Cascade Facility (Lead Cascade) and American Centrifuge Plant (ACP), respectively...

  10. Aerodynamic reconfiguration and multicriterial optimization of centrifugal compressors – a case study

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2014-12-01

    Full Text Available This paper continues the recent research of the author, with application to 3D computational fluid dynamics multicriterial optimization of turbomachinery parts. Computational Fluid Dynamics has been an ubicuous tool for compressor design for decades, helping the designers to test the aerodynamic parameters of their machines with great accuracy. Due to advances of multigrid methods and the improved robustness of structured solvers, CFD can nowadays be part of an optimization loop with artificial neural networks or evolutive algorithms. This paper presents a case study of an air centrifugal compressor rotor optimized using Numeca's Design 3D CFD suite. The turbulence model used for the database generation and the optimization stage is Spalart Allmaras. Results indicate a fairly quick convergence time per individual as well as a good convergence of the artificial neural network optimizer.

  11. Research on Strategies and Methods Suppressing Permanent Magnet Demagnetization in Permanent Magnet Synchronous Motors Based on a Multi-Physical Field and Rotor Multi-Topology Structure

    Directory of Open Access Journals (Sweden)

    Lin Li

    2017-12-01

    Full Text Available In this paper, a permanent magnet synchronous motor (PMSM with sleeves on the rotor outer surface is investigated. The purpose of sleeves is to fix the permanent magnets and protect them from being destroyed by the large centrifugal force. However, the sleeve material characteristics have a great influence on the PMSM, and therewith, most of the rotor eddy-current losses are generated in the rotor sleeve, which could increase the device temperature and even cause thermal demagnetization of the magnets. Thus, a sleeve scheme design with low eddy-current losses is necessary, and a method suppressing the local temperature peak of permanent magnets is presented. The 3-D electromagnetic finite element model of a 12.5 kW, 2000 r/min PMSM with a segmented sleeve is established, and the electromagnetic field is calculated by using the finite element method. The results show the effectiveness of the presented method in reducing the eddy current losses in the rotor. Using the thermal method, it can be found that the maximum temperature position and zone of permanent magnet will change. Thus, some strategies are comparatively analyzed in order to obtain the change rule of the position and zone. The obtained conclusions may provide a useful reference for the design and research of PMSMs.

  12. Reducing rotor weight

    Energy Technology Data Exchange (ETDEWEB)

    Cheney, M.C. [PS Enterprises, Inc., Glastonbury, CT (United States)

    1997-12-31

    The cost of energy for renewables has gained greater significance in recent years due to the drop in price in some competing energy sources, particularly natural gas. In pursuit of lower manufacturing costs for wind turbine systems, work was conducted to explore an innovative rotor designed to reduce weight and cost over conventional rotor systems. Trade-off studies were conducted to measure the influence of number of blades, stiffness, and manufacturing method on COE. The study showed that increasing number of blades at constant solidity significantly reduced rotor weight and that manufacturing the blades using pultrusion technology produced the lowest cost per pound. Under contracts with the National Renewable Energy Laboratory and the California Energy Commission, a 400 kW (33m diameter) turbine was designed employing this technology. The project included tests of an 80 kW (15.5m diameter) dynamically scaled rotor which demonstrated the viability of the design.

  13. Temperature Profile Measurements in a Newly Constructed 30-Stage 5 cm Centrifugal Contactor Pilot Plant

    International Nuclear Information System (INIS)

    Garn, Troy G.; Meikrantz, Dave H.; Greenhalgh, Mitchell R.; Law, Jack D.

    2008-01-01

    An annular centrifugal contactor pilot plant incorporating 30 stages of commercial 5 cm CINC V-02 units has been built and operated at INL during the past year. The pilot plant includes an automated process control and data acquisitioning system. The primary purpose of the pilot plant is to evaluate the performance of a large number of inter-connected centrifugal contactors and obtain temperature profile measurements within a 30-stage cascade. Additional solvent extraction flowsheet testing using stable surrogates is also being considered. Preliminary hydraulic testing was conducted with all 30 contactors interconnected for continuous counter-current flow. Hydraulic performance and system operational tests were conducted successfully but with higher single-stage rotor speeds found necessary to maintain steady interstage flow at flowrates of 1 L/min and higher. Initial temperature profile measurements were also completed in this configuration studying the performance during single aqueous and two-phase counter-current flow at ambient and elevated inlet solution temperatures. Temperature profile testing of two discreet sections of the cascade required additional feed and discharge connections. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 were the solution feeds for all the testing described in this report. Numerous temperature profiles were completed using a newly constructed 30-stage centrifugal contactor pilot plant. The automated process control and data acquisition system worked very well throughout testing. Temperature data profiles for an array of total flowrates (FT) and contactor rpm values for both single-phase and two-phase systems have been collected with selected profiles and comparisons reported. Total flowrates (FT) ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Solution inlet temperatures ranging from ambient up to 50 C were tested. Ambient temperature testing shows that a small

  14. Numerical Investigation of Periodically Unsteady Pressure Field in a High Power Centrifugal Diffuser Pump

    Directory of Open Access Journals (Sweden)

    Ji Pei

    2014-05-01

    Full Text Available Pressure fluctuations are the main factors that can give rise to reliability problems in centrifugal pumps. The periodically unsteady pressure characteristics caused by rotor-stator interaction have been investigated by CFD calculation in a residual heat removal pump. Side chamber flow effect is also considered for the simulation to accurately predict the flow in whole flow passage. The pressure fluctuation results in time and frequency domains were considered for several typical monitoring points in impeller and diffuser channels. In addition, the pressure fluctuation intensity coefficient (PFIC based on standard deviation was defined on each grid node for entire space and impeller revolution period. The results show that strong pressure fluctuation intensity can be found in the gap between impeller and diffuser. As a source, the fluctuation can spread to the upstream and downstream flow channels as well as the side chamber channels. Meanwhile, strong pressure fluctuation intensity can be found in the discharge tube of the circular casing. In addition, the obvious influence of operational flow rate on the PFIC distribution can be found. The analysis indicates that the pressure fluctuations in the aspects of both frequency and intensity can be used to comprehensively evaluate the unsteady pressure characteristics in centrifugal pumps.

  15. Centrifuge design and development

    International Nuclear Information System (INIS)

    Edwards, T.T.; Holmes, M.D.

    1987-01-01

    BNFL has been enriching uranium on an industrial scale using the centrifuge process for over a decade. Together with its Urenco partners, a joint development programme has been and is being vigorously pursued to reduce specific costs, increase output and maintain competitiveness throughout the 1990s. The paper summarises the development of the centrifuge from its earliest concepts through to the centrifuges of today which are jointly designed by the Urenco partners. The potential for further development is also examined. (author)

  16. Rotor Performance Enhancement Using Slats on the Inner Part of a 10MW Rotor

    DEFF Research Database (Denmark)

    Gaunaa, Mac; Zahle, Frederik; Sørensen, Niels N.

    2013-01-01

    The present work continues the investigations of using slats on the inner parts of wind turbine rotors by using an updated version of the 2D CFD based airfoil/slat design tool earlier used by the authors in combination with the rotor design methods from [8] to design slats for 0:1 > r=R > 0......:3 for the LightRotor baseline 10 MW reference rotor [10]. For the slatted case, a retwisting of the slatted inner part of the rotor was allowed for the slats to be able to work as intended. The new addition to the 2D CFD based design tool is that the representation of the airfoil and slats are done using splines......, thus allowing for a much broader design space than in the previous works where only the position, size and additional camber of the slat airfoil could be adjusted. The aerodynamic performance of a slatted rotor is for the first time evaluated using 3D CFD in this work, and the results are compared...

  17. Rotor Performance Enhancement Using Slats on the Inner Part of a 10MW Rotor

    DEFF Research Database (Denmark)

    The present work continues the investigations of using slats on the inner parts of wind turbine rotors by using an updated version of the 2D CFD based airfoil/slat design tool earlier used by the authors in combination with the rotor design methods from [8] to design slats for 0:1 > r=R > 0......:3 for the LightRotor baseline 10 MW reference rotor [10]. For the slatted case, a retwisting of the slatted inner part of the rotor was allowed for the slats to be able to work as intended. The new addition to the 2D CFD based design tool is that the representation of the airfoil and slats are done using splines......, thus allowing for a much broader design space than in the previous works where only the position, size and additional camber of the slat airfoil could be adjusted. The aerodynamic performance of a slatted rotor is for the first time evaluated using 3D CFD in this work, and the results are compared...

  18. Human cardiovascular and vestibular responses in long minutes and low +Gz loading by a short arm centrifuge

    Science.gov (United States)

    Yajima, K.; Miyamoto, A.; Ito, M.; Maru, R.; Maeda, T.; Sanada, E.; Nakazato, T.; Saiki, C.; Yamaguchi, Y.; Igarashi, M.; Matsumoto, S.

    1.4 G, 1.7 G, and 2.0 G of +Gz and 60 minutes centrifugation was adopted to 20 healthy male subjects using 1.8 m radius centrifuge equipped to Nihon University School of Medicine. G was applied from lower G, considering G training effect for the subjects. Effects on performance decline and side effects of such a short-arm centrifugation were especially observed in the experiments, because this size of centrifuge could be used in space station in future for a strong countermeasure of cardiovascular deconditioning, demineralization from bone, etc. G training effect was observed same as higher and rapid G acceleration in fighter pilot. Subjects suffered from many types of discomfort; such as sensation of heaviness of diaphragm, cold sweat, nausea, irritable feeling, arrhythmia, tachycardia, rapid decrease of blood pressure, which sometimes caused interruption of G load. As 2.0 G and 60 minutes centrifugation seemed very tough load to the subjects, there should be necessary some G suit or other countermeasure, if we apply a higher G and/or longer G duration. Performance decline due to the load commonly continued for 1 hour or so. Side effects were observed in relation to neuro-vestibular, cardio-vascular, and autonomic nervous system.

  19. Vacuum chamber-free centrifuge with magnetic bearings.

    Science.gov (United States)

    Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo

    2013-09-01

    Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.

  20. Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation

    Science.gov (United States)

    Duval, R. W.; Bahrami, M.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.

  1. Flow control arrangements for centrifuges

    International Nuclear Information System (INIS)

    Alderton, G.W.; Davidge, P.C.

    1983-01-01

    In a centrifuge plant for the separation of uranium isotopes, when a centrifuge machine breaks down, light gas is produced. This gas can cause adjacent machines to break down, so propagating the fault. The present invention provides flow control arrangements in gas pipes to the centrifuge, whereby sudden egress of gas from a failed machine is inhibited. (author)

  2. Evaluation of enrichment by centrifugal separation: the future of the centrifugal-separation method

    International Nuclear Information System (INIS)

    Kanagawa, A.

    A gas centrifuge plant for uranium enrichment is considered from the point of view of economic competition with other methods. Characteristics of the method are presented including: energy efficiency, the cascade, the separation coefficient, the equilibrium separation process, and capability as centrifugal pump. The structure of an individual gas centrifuge separator is described including the rotating cylinder, mechanisms for gas injection and extraction, mechanisms for counter-streaming of gas, the axle holder mechanism, the gas sealing mechanism, and the driving mechanism. (U.S.)

  3. Redesign of steam turbine rotor blades and rotor packages – Environmental analysis within systematic eco-design approach

    International Nuclear Information System (INIS)

    Baran, Jolanta

    2016-01-01

    Highlights: • Systematic approach to eco-design of steam turbine rotor blades was applied. • Eco-innovative solutions are based on structural and technological change. • At the stage of detailed design the variants were analyzed using LCA. • Main achieved benefits: energy and material savings, lower environmental impact. • Benefits related to the possible scale of the solution practical application. - Abstract: Eco-design of steam turbine blades could be one of the possibilities of decreasing the environmental impact of energy systems based on turbines. The paper investigates the eco-design approach to elaboration of the rotor blades and packages. The purpose is to present the course of eco-design of the rotor blades and the rotor packages taking account of eco-design assumptions, solutions and the concept itself. The following eco-design variants of the rotor blades and the rotor packages are considered: elements of the rotor blades made separately (baseline variant of the rotor blades); elements of the rotor blades made of one piece of material; blades in packages made separately and welded (baseline variant of the rotor packages); packages milled as integral elements. At the stage of detailed design, the Life Cycle Assessment (LCA) is performed in relation to a functional unit – the rotor blades and packages ready for installation in a steam turbine, which is the stage of the turbine. The obtained results indicate that eco-innovative solutions for the turbine blades and packages could be achieved through structural and technological changes. Applying new solutions of the rotor blades may produce the following main benefits: 3.3% lower use of materials, 29.4% decrease in energy consumption at the manufacturing stage, 7.7% decrease in the environmental impact in the life cycle. In relation to the rotor packages, the following main benefits may be achieved: 20.5% lower use of materials, 25.0% decrease in energy consumption at the production stage, 16

  4. Electric Drive Control with Rotor Resistance and Rotor Speed Observers Based on Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    C. Ben Regaya

    2014-01-01

    Full Text Available Many scientific researchers have proposed the control of the induction motor without speed sensor. These methods have the disadvantage that the variation of the rotor resistance causes an error of estimating the motor speed. Thus, simultaneous estimation of the rotor resistance and the motor speed is required. In this paper, a scheme for estimating simultaneously the rotor resistance and the rotor speed of an induction motor using fuzzy logic has been developed. We present a method which is based on two adaptive observers using fuzzy logic without affecting each other and a simple algorithm in order to facilitate the determination of the optimal values of the controller gains. The control algorithm is proved by the simulation tests. The results analysis shows the characteristic robustness of the two observers of the proposed method even in the case of variation of the rotor resistance.

  5. Simulations of the Yawed MEXICO Rotor Using a Viscous-Inviscid Panel Method

    International Nuclear Information System (INIS)

    Ramos-García, N; Sørensen, J N; Shen, W Z

    2014-01-01

    In the present work the viscous-inviscid interactive model MIRAS is used to simulate flows past the MEXICO rotor in yawed conditions. The solver is based on an unsteady three-dimensional free wake panel method which uses a strong viscous-inviscid interaction technique to account for the viscous effects inside the boundary layer. Calculated wake velocities have been benchmarked against field PIV measurements, while computed blade aerodynamic characteristics are compared against the load calculated from pressure measurements at different locations along the blade span. Predicted and measured aerodynamic forces are in overall good agreement, however discrepancies appear in the root region which could be related to an underestimation of the rotational effects arising from Coriolis and centrifugal forces. The predicted wake velocities are generally in good agreement with measurements along the radial as well as the axial traverses performed during the experimental campaign

  6. Centrifugal Compressor Aeroelastic Analysis Code

    Science.gov (United States)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  7. Innovative multi rotor wind turbine designs

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.A.; Sapali, S.N. [College of Engineering. Mechanical Engineering Dept, Pune (India)

    2012-07-01

    Among the renewable energy sources, today wind energy is the most recognized and cost effective. Developers and researchers in this sector are optimistic and continuously working innovatively to improve the technology. The wind power obtained is proportional to the swept area of wind turbine. The swept area is increased by using a single rotor of large diameter or multi rotors in array. The rotor size is growing continuously with mature technology. Multi rotor technology has a long history and the multi rotor concept persists in a variety of modern innovative systems but the concept has fallen out of consideration in mainstream design from the perception that is complex and unnecessary as very large single rotor units are now technically feasible. This work addresses the evaluation of different multi rotor wind turbine systems. These innovative wind turbines are evaluated on the basis of feasibility, technological advantages, security of expected power performance, cost, reliability, impact of innovative system, comparison with existing wind turbine design. The findings of this work will provide guidelines for the practical and economical ways for further research on the multi rotor wind turbines. (Author)

  8. Flapping inertia for selected rotor blades

    Science.gov (United States)

    Berry, John D.; May, Matthew J.

    1991-01-01

    Aerodynamics of helicopter rotor systems cannot be investigated without consideration for the dynamics of the rotor. One of the principal properties of the rotor which affects the rotor dynamics is the inertia of the rotor blade about its root attachment. Previous aerodynamic investigation have been performed on rotor blades with a variety of planforms to determine the performance differences due to blade planform. The blades tested for this investigation have been tested on the U.S. Army 2 meter rotor test system (2MRTS) in the NASA Langley 14 by 22 foot subsonic tunnel for hover performance. This investigation was intended to provide fundamental information on the flapping inertia of five rotor blades with differing planforms. The inertia of the bare cuff and the cuff with a blade extension were also measured for comparison with the inertia of the blades. Inertia was determined using a swing testing technique, using the period of oscillation to determine the effective flapping inertia. The effect of damping in the swing test was measured and described. A comparison of the flapping inertials for rectangular and tapered planform blades of approximately the same mass showed the tapered blades to have a lower inertia, as expected.

  9. The magnetic centrifugal mass filter

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Mass filters using rotating plasmas have been considered for separating nuclear waste and spent nuclear fuel. We propose a new mass filter that utilizes centrifugal and magnetic confinement of ions in a way similar to the asymmetric centrifugal trap. This magnetic centrifugal mass filter is shown to be more proliferation resistant than present technology. This filter is collisional and produces well confined output streams, among other advantages.

  10. The magnetic centrifugal mass filter

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Abraham J.; Fisch, Nathaniel J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States)

    2011-09-15

    Mass filters using rotating plasmas have been considered for separating nuclear waste and spent nuclear fuel. We propose a new mass filter that utilizes centrifugal and magnetic confinement of ions in a way similar to the asymmetric centrifugal trap. This magnetic centrifugal mass filter is shown to be more proliferation resistant than present technology. This filter is collisional and produces well confined output streams, among other advantages.

  11. Response of centrifugal blowers to simulated tornado transients, July-September 1981

    International Nuclear Information System (INIS)

    Idar, E.S.; Gregory, W.S.; Martin, R.A.; Littleton, P.E.

    1982-03-01

    During this quarter, quasi-steady and dynamic testing of the 24-in. centrifugal blower was completed using the blowdown facility located at New Mexico State University. The data were obtained using a new digital data-acquisition system. Software was developed at the Los Alamos National Laboratory to reduce the dynamic test data and create computer-generated movies showing the dynamic performance of the blower under simulated tornado transient pressure conditions relative to its quasi-steady-state performance. Currently, quadrant-four (outrunning flow) data have been reduced for the most severe and a less severe tornado pressure transient. The results indicate that both the quasi-steady and dynamic blower performance are very similar. Some hysteresis in the dynamic performance occurs because of rotational inertia effects in the blower rotor and drive system. Currently quadrant-two (backflow) data are being transferred to the LTSS computer system at Los Alamos and will be reduced shortly

  12. Homopolar motor with dual rotors

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.S.

    1998-12-01

    A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

  13. Energy from Swastika-Shaped Rotors

    Directory of Open Access Journals (Sweden)

    McCulloch M. E.

    2015-04-01

    Full Text Available It is suggested here that a swastika-shaped rotor exposed to waves will rotate in the di- rection its arms are pointing (towards the arm-tips due to a sheltering effect. A formula is derived to predict the motion obtainable from swastika rotors of different sizes given the ocean wave height and phase speed and it is suggested that the rotor could provide a new, simpler method of wave energy generation. It is also proposed that the swastika rotor could generate energy on a smaller scale from sound waves and Brownian motion, and potentially the zero point field.

  14. Theoretical investigations on plasma centrifuges

    International Nuclear Information System (INIS)

    Hong, S.H.

    1978-01-01

    The theoretical analysis of the steady-state dynamics of plasma centrifuges is dealt with to understand the physics of rotating plasmas and their feasibility for isotope separation. The centrifuge systems under consideration employ cylindrical gas discharge chambers with externally-applied axial magnetic fields. The cathode and anode are symmetric about the cylinder axis and arranged in such a way for each system, i.e., (1) two ring electrodes of different radii in the chamber end plates or (2) two ring electrodes embedded in the mantle of the cylinder. They produce converging and/or diverging current density field lines, which intersect the external magnetic field under a nonvanishing angle. The associated Lorentz forces set the plasma, which is produced through an electrical discharge, into rotation around the cylinder axis. Three boundary-value problems for the coupled partial differential equations of the centrifuge fields are formulated, respectively, on the basis of the magnetogasdynamic equations. The electric field, electrostatic potential, current density, induced magnetic field, and velocity distributions are discussed in terms of the Hartmann number, the Hall coefficient, and the magnetic Reynolds number. The plasma centrifuge analyses presented show that the speeds of plasma rotation up to the order of 10 4 m/sec are achievable at typical conditions. The associated centrifugal forces produce a significant spatial isotope separation, which is somewhat reduced in the viscous boundary layers at the centrifuge walls. The speeds of plasma rotation increase with increasing Hartmann number and Hall coefficient. For small Hall coefficient, the induced azimuthal magnetic field does not affect the plasma rotation. For large volumes of rotating isotope mixtures, a multidischarge centrifuge can be constructed by setting up a large number of centrifuge systems in series

  15. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 864.5350 Microsedimentation centrifuge. (a) Identification. A microsedimentation centrifuge is a...

  16. Uranium enrichment by gas centrifuge

    International Nuclear Information System (INIS)

    Heriot, I.D.

    1988-01-01

    After recalling the physical principles and the techniques of centrifuge enrichment the report describes the centrifuge enrichment programmes of the various countries concerned and compares this technology with other enrichment technologies like gaseous diffusion, laser, aerodynamic devices and chemical processes. The centrifuge enrichment process is said to be able to replace with advantage the existing enrichment facilities in the short and medium term. Future prospects of the process are also described, like recycled uranium enrichment and economic improvements; research and development needs to achieve the economic prospects are also indicated. Finally the report takes note of the positive aspect of centrifuge enrichment as far as safeguards and nuclear safety are concerned. 27 figs, 113 refs

  17. Space Station life science research facility - The vivarium/laboratory

    Science.gov (United States)

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  18. Centrifugation speed affects light transmission aggregometry.

    Science.gov (United States)

    Merolla, M; Nardi, M A; Berger, J S

    2012-02-01

    Light transmission aggregometry (LTA) is considered the gold standard for investigating platelet activity ex vivo. However, LTA protocols are not standardized, and differences in LTA procedure are a potential source of variance in results. Centrifugation speed is an essential component of platelet preparation in LTA, has yet to be standardized, and may affect platelet aggregation results. We sought to investigate the effect of relative centrifugal force (RCF) intensity on LTA results. Ten healthy controls had venous blood drawn and centrifuged at 150, 200, 300, and 500 g for 10 min. Cell counts in whole blood and platelet-rich plasma (PRP) were measured using a hematology analyzer. LTA was performed using 1.0 μm adenosine diphosphate (ADP) and 0.4 μm epinephrine as an agonist. Aggregation (%) was compared at 60, 120, 180, and 300 s and at maximum aggregation. Centrifugation speed was associated with decreasing platelet count (P centrifuge RCF at 60, 120, 180, 300 s and at maximum aggregation (P centrifugation speed in the interpretation of LTA results, supporting the need for standardization of centrifugation RCF in LTA protocols. © 2011 Blackwell Publishing Ltd.

  19. Multi-staging for extraction of cesium from nitric acid by a single liquid-liquid countercurrent centrifugal extractor with Taylor vortices

    International Nuclear Information System (INIS)

    Nakase, Masahiko; Kinuhata, Hiroshi; Takeshita, Kenji

    2013-01-01

    Fission products that emit considerable decay heat and radioactivity, such as 137 Cs, have a large impact on waste management. Small and high-performance extractor is desirable for separating such nuclei. In this study, we implemented the continuous extraction of Cs from nitric acid in a single liquid-liquid countercurrent centrifugal extractor with Taylor Vortices by calix arene-bis(t-octylbenzo-crown-6)(BOBCalixC6) as an extractant with trioctylamine(TOA) as a suppressant and with 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol (Cs-7SB) as a phase modifier. Because of slow extraction kinetics of this process, extraction with multiple theoretical stages by just replacing conventional extractors into the single centrifugal extractor is difficult. Hence, we improved the dispersion of organic phase by an inner rotor made of lipophilic epoxy resin and elevating the solution temperature to lower the viscosity. Higher temperature was not appropriate from the aspect of chemical equilibrium in this process, but extraction with multiple theoretical stages was found to be possible. (author)

  20. Real-time trend monitoring of gas compressor stations

    Energy Technology Data Exchange (ETDEWEB)

    Van Hardeveld, T. (Nova, an Alberta Corp., AB (Canada))

    1991-02-01

    The authors' company has developed a machinery health monitoring system (MHealth) for short-term and long-term historical trending and analysis of data from its 40 gas compressor stations. The author discusses the benefits of real-time trending in troubleshooting operations, in preventative maintenance scheduling and cites specific applications in the startup operations of several new gas compressor/centrifugal compressor units.

  1. Homopolar motor with dual rotors

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, John S. (Oak Ridge, TN)

    1998-01-01

    A homopolar motor (10) has a field rotor (15) mounted on a frame (11) for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor (17) mounted for rotation on said frame (11) within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor (15). The two rotors (15, 17) are coupled through a 1:1 gearing mechanism (19), so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed.

  2. [Treatment of organic waste gas by adsorption rotor].

    Science.gov (United States)

    Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De

    2013-12-01

    The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.

  3. Computational Analysis of Multi-Rotor Flows

    Science.gov (United States)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.

  4. Substantially parallel flux uncluttered rotor machines

    Science.gov (United States)

    Hsu, John S.

    2012-12-11

    A permanent magnet-less and brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by polyphase alternating currents. An uncluttered rotor is positioned within the magnetic rotating field and is spaced apart from the stator. An excitation core is spaced apart from the stator and the uncluttered rotor and magnetically couples the uncluttered rotor. The brushless excitation source generates a magnet torque by inducing magnetic poles near an outer peripheral surface of the uncluttered rotor, and the stator currents also generate a reluctance torque by a reaction of the difference between the direct and quadrature magnetic paths of the uncluttered rotor. The system can be used either as a motor or a generator

  5. CFD simulation of centrifugal cells washers.

    Science.gov (United States)

    Kellet, Beth E; Binbing, Han; Dandy, David S; Wickramasinghe, S Ranil

    2004-01-01

    The feasibility of using computational fluid dynamics to guide the design of better centrifuges for processing shed blood is explored here. The velocity field and the rate of protein removal from the shed blood have been studied. The results indicate that computational fluid dynamics could help screen preliminary centrifuge bowl designs thus reducing the number of initial experimental tests required when developing new centrifuge bowls. Though the focus of this work is on washing shed blood the methods developed here are applicable to the design of centrifuge bowls for other blood processing applications.

  6. 14 CFR 27.547 - Main rotor structure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main rotor structure. 27.547 Section 27.547... structure. (a) Each main rotor assembly (including rotor hubs and blades) must be designed as prescribed in this section. (b) [Reserved] (c) The main rotor structure must be designed to withstand the following...

  7. Design of bearings for rotor systems based on stability

    Science.gov (United States)

    Dhar, D.; Barrett, L. E.; Knospe, C. R.

    1992-01-01

    Design of rotor systems incorporating stable behavior is of great importance to manufacturers of high speed centrifugal machinery since destabilizing mechanisms (from bearings, seals, aerodynamic cross coupling, noncolocation effects from magnetic bearings, etc.) increase with machine efficiency and power density. A new method of designing bearing parameters (stiffness and damping coefficients or coefficients of the controller transfer function) is proposed, based on a numerical search in the parameter space. The feedback control law is based on a decentralized low order controller structure, and the various design requirements are specified as constraints in the specification and parameter spaces. An algorithm is proposed for solving the problem as a sequence of constrained 'minimax' problems, with more and more eigenvalues into an acceptable region in the complex plane. The algorithm uses the method of feasible directions to solve the nonlinear constrained minimization problem at each stage. This methodology emphasizes the designer's interaction with the algorithm to generate acceptable designs by relaxing various constraints and changing initial guesses interactively. A design oriented user interface is proposed to facilitate the interaction.

  8. Progress in ultra-centrifuge enrichment technology

    International Nuclear Information System (INIS)

    Paul Dawson

    2006-01-01

    Urenco have undertaken a continuous development programme in centrifuge technology for over 35 years. This has seen development from sub-critical machines in the mid 1970's through to the company's world leading TC12 supercritical centrifuge, which has been deployed on a large-scale basis over the last decade. The latest centrifuge to emerge from this programme is Urenco's sixth generation centrifuge, the TC21, which will be commercially deployed from mid-2007 onwards. In recent times Urenco has vested its centrifuge technology in Enrichment Technology Company (ETC) as a vehicle to enable the use of this advanced technology by other operators for commercial purposes. This paper reviews why Urenco and ETC believe this technology represents the best choice for creating new global commercial enrichment capacity and its future development prospects. (author)

  9. Flexible-Rotor Balancing Demonstration

    Science.gov (United States)

    Giordano, J.; Zorzi, E.

    1986-01-01

    Report describes method for balancing high-speed rotors at relatively low speeds and discusses demonstration of method on laboratory test rig. Method ensures rotor brought up to speeds well over 20,000 r/min smoothly, without excessive vibration amplitude at critical speeds or at operating speed.

  10. Open Rotor - Analysis of Diagnostic Data

    Science.gov (United States)

    Envia, Edmane

    2011-01-01

    NASA is researching open rotor propulsion as part of its technology research and development plan for addressing the subsonic transport aircraft noise, emission and fuel burn goals. The low-speed wind tunnel test for investigating the aerodynamic and acoustic performance of a benchmark blade set at the approach and takeoff conditions has recently concluded. A high-speed wind tunnel diagnostic test campaign has begun to investigate the performance of this benchmark open rotor blade set at the cruise condition. Databases from both speed regimes will comprise a comprehensive collection of benchmark open rotor data for use in assessing/validating aerodynamic and noise prediction tools (component & system level) as well as providing insights into the physics of open rotors to help guide the development of quieter open rotors.

  11. Centrifugal Pump Monitoring and Determination of Pump Characteristic Curves Using Experimental and Analytical Solutions

    Directory of Open Access Journals (Sweden)

    Marius Stan

    2018-02-01

    Full Text Available Centrifugal pumps are widely used in the industry, especially in the oil and gas sector for fluids transport. Classically, these are designed to transfer single phase fluids (e.g., water at high flow rates and relatively low pressures when compared with other pump types. As part of their constructive feature, centrifugal pumps rely on seals to prevent air entrapment into the rotor during its normal operation. Although this is a constructive feature, water should pass through the pump inlet even when the inlet manifold is damaged. Modern pumps are integrated in pumping units which consist of a drive (normally electric motor, a transmission (when needed, an electronic package (for monitoring and control, and the pump itself. The unit also has intake and outlet manifolds equipped with valves. Modern systems also include electronic components to measure and monitor pump working parameters such as pressure, temperature, etc. Equipment monitoring devices (vibration sensors, microphones are installed on modern pumping units to help users evaluate the state of the machinery and detect deviations from the normal working condition. This paper addresses the influence of air-water two-phase mixture on the characteristic curve of a centrifugal pump; pump vibration in operation at various flow rates under these conditions; the possibilities of using the results of experimental investigations in the numerical simulations for design and training purposes, and the possibility of using vibration and sound analysis to detect changes in the equipment working condition. Conclusions show that vibration analysis provides accurate information about the pump’s functional state and the pumping process. Moreover, the acoustic emission also enables the evaluation of the pump status, but needs further improvements to better capture and isolate the usable sounds from the environment.

  12. Empirical Design Considerations for Industrial Centrifugal Compressors

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2012-01-01

    Full Text Available Computational Fluid Dynamics (CFD has been extensively used in centrifugal compressor design. CFD provides further optimisation opportunities for the compressor design rather than designing the centrifugal compressor. The experience-based design process still plays an important role for new compressor developments. The wide variety of design subjects represents a very complex design world for centrifugal compressor designers. Therefore, some basic information for centrifugal design is still very important. The impeller is the key part of the centrifugal stage. Designing a highly efficiency impeller with a wide operation range can ensure overall stage design success. This paper provides some empirical information for designing industrial centrifugal compressors with a focus on the impeller. A ported shroud compressor basic design guideline is also discussed for improving the compressor range.

  13. Balancing High-Speed Rotors at Low Speed

    Science.gov (United States)

    Giordano, J.; Zorzi, E.

    1986-01-01

    Flexible balancing reduces vibrations at operating speeds. Highspeed rotors in turbomachines dynamically balanced at fraction of operating rotor speed. New method takes into account rotor flexible rather than rigid.

  14. Centrifuge Health Monitoring of the 50gTon beam centrifuge at the University of Sheffield

    OpenAIRE

    Cox, C.M.; Black, J.A.; Hakhamanshi, M.; Baker, N.

    2016-01-01

    In order to fully understand scientific test data it is crucial that we first understand the back-ground centrifuge operational environment and its variation with time and centrifugal acceleration. For exam-ple, changes in ambient air temperature or relative humidity in the centrifuge chamber during operation can have a significant impact on the evaporation levels of water from the surface of a clay model. It is vital to un-derstand these temporal changes in order to mitigate drying out of th...

  15. Perceived radial translation during centrifugation

    NARCIS (Netherlands)

    Bos, J.E.; Correia Grácio, B.J.

    2015-01-01

    BACKGROUND: Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. OBJECTIVE: To study whether centrifugation can induce a radial translation

  16. Thermal state of a turbofan rotor

    Energy Technology Data Exchange (ETDEWEB)

    Bileka, B D; Diachenko, A M; Orinichev, I S

    1988-01-01

    Results of an experimental study of the thermal state of a combined turbofan rotor consisting of a peripheral turbine stage and a central fan stage are reported. In particular, attention is given to the effect of gas temperature, air flow rate, and rotation speed on temperature distributions at characteristic points of the rotor. The relative dimensionless temperatures of the turbofan rotor are shown to be constant under all the regimes investigated. An approximate method is proposed for calculating the temperature of the rotor elements, and the results of calculations are compared with experimental data.

  17. Experimental studies of the rotor flow downwash on the Stability of multi-rotor crafts in descent

    Science.gov (United States)

    Veismann, Marcel; Dougherty, Christopher; Gharib, Morteza

    2017-11-01

    All rotorcrafts, including helicopters and multicopters, have the inherent problem of entering rotor downwash during vertical descent. As a result, the craft is subject to highly unsteady flow, called vortex ring state (VRS), which leads to a loss of lift and reduced stability. To date, experimental efforts to investigate this phenomenon have been largely limited to analysis of a single, fixed rotor mounted in a horizontal wind tunnel. Our current work aims to understand the interaction of multiple rotors in vertical descent by mounting a multi-rotor craft in a low speed, vertical wind tunnel. Experiments were performed with a fixed and rotationally free mounting; the latter allowing us to better capture the dynamics of a free flying drone. The effect of rotor separation on stability, generated thrust, and rotor wake interaction was characterized using force gauge data and PIV analysis for various descent velocities. The results obtained help us better understand fluid-craft interactions of drones in vertical descent and identify possible sources of instability. The presented material is based upon work supported by the Center for Autonomous Systems and Technologies (CAST) at the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT).

  18. The Advanced Gas Centrifuge program

    International Nuclear Information System (INIS)

    Riepe, R.

    1984-01-01

    Although the gas centrifuge process for uranium enrichment is often referred to as a ''new technology,'' it has been under development for approximately 25 years to bring it to its current state of deployment. Centrifuges are now being installed in a new gas centrifuge enrichment plant (GCEP) at Portsmouth, Ohio. The objective of this new plant was to provide additional U.S. uranium enrichment capacity at a production cost comparable to the U.S. diffusion process but requiring much less power per separative work unit (SWU) produced. The current, commercial scale centrifuge technology being installed meets that objective. The objective for new U.S. enrichment capacity has changed. The objective is not to provide more SWUs but to provide cheaper SWUs. The objective is to make the U.S. uranium enrichment enterprise competitive on the international market. Where the U.S. at one time supplied virtually all of the free world SWU demand, the U.S. market share has now dropped to approximately 35% of the foreign free world market. The Advanced Gas Centrifuge (AGC) program provides an avenue for making the U.S. the economically attractive, reliable enrichment supplier

  19. Numerical modeling of a rotor misalignment; Modelado numerico del desalineamiento de un rotor

    Energy Technology Data Exchange (ETDEWEB)

    Leon Pina, Roberto

    2009-12-15

    In the turbo-machinery area after an unbalancing, the misalignment is the fault that most frequently appears, and this one has been little studied compared to the unbalance. The misalignment appears when the geometric centers of two shafts and/or bearings do not coincide, these differences take place by different factors such as: incorrect installation of the bearings or rotors, thermal effects, or rotor weight, to mention some of them. The of the misalignment diagnosis continues being an area little studied, since the effects it generates are complex and include diverse physical processes reason why it presents/displays similar symptoms to those of other faults; thus, one of the methods that are used to diagnose this fault, is based on analyzing the vibration phantoms but this works only under particular conditions. In order to reproduce the dynamic behavior of a misaligned rotor, in the present work non-linear simplified models of the supports are used, whose objective is to contribute to facilitate future studies of the flow-dynamic behavior of the bearing, helping to identify the type and magnitude of the existing non-linearity in the supports and leaning in the analysis of the vibratory behavior of misaligned rotors observed in the field. [Spanish] En el area de turbomaquinaria despues del desbalance, el desalineamiento es la falla que se presenta con mayor frecuencia, y esta se ha estudiado poco comparada con el desbalance. El desalineamiento se presenta cuando los centros geometricos de dos flechas y/o chumaceras no coinciden, estas diferencias se producen por diferentes factores como: instalacion incorrecta de las chumaceras o rotores, efectos termicos, o el peso del rotor, por mencionar algunos. El diagnostico del desalineamiento sigue siendo una area poco estudiada, ya que los efectos que genera son complejos y abarcan diversos procesos fisicos por lo que presenta sintomas similares a los de otras fallas; asi, uno de los metodos que se utilizan para

  20. Extraction of soil solution by drainage centrifugation-effects of centrifugal force and time of centrifugation on soil moisture recovery and solute concentration in soil moisture of loess subsoils.

    Science.gov (United States)

    Fraters, Dico; Boom, Gerard J F L; Boumans, Leo J M; de Weerd, Henk; Wolters, Monique

    2017-02-01

    The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils. To study the effect of centrifugation conditions on soil moisture recovery and solute concentration, we sampled the subsoil (1.5-3.0 m depth) at commercial farms in the loess region of the Netherlands. The effect of time (20, 35, 60, 120 and 240 min) on recovery was studied at two levels of the relative centrifugal force (733 and 6597g). The effect of force on recovery was studied by centrifugation for 35 min at 117, 264, 733, 2932, 6597 and 14,191g. All soil moisture samples were chemically analysed. This study shows that drainage centrifugation offers a robust, reproducible and standardised way for determining solute concentrations in mobile soil moisture in silt loam subsoils. The centrifugal force, rather than centrifugation time, has a major effect on recovery. The maximum recovery for silt loams at field capacity is about 40%. Concentrations of most solutes are fairly constant with an increasing recovery, as most solutes, including nitrate, did not show a change in concentration with an increasing recovery.

  1. Energy characteristics of Darrieus rotor ( review)

    Science.gov (United States)

    Gorelov, D. N.

    2010-09-01

    Presented below is the review of the results of experimental studies of energy characteristics of Darrieus rotor with vertical rotation axis. Influence of main geometry parameters of the rotor on its energy characteristics has been analyzed. It is shown that Darrieus rotor may have the higher level of energy characteristics than the best propeller wind turbines.

  2. Valve for gas centrifuges

    Science.gov (United States)

    Hahs, Charles A.; Burbage, Charles H.

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  3. Centrifuge facilities at Technical University of Denmark

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane; Krogsbøll, Anette Susanne; Hededal, Ole

    2008-01-01

    The geotechnical group at the Danish Technical University (DTU) operates a geotechnical beam centrifuge. The centrifuge was build in 1976 and has been upgraded through the years, latest with onboard data and control systems. The centrifuge concept involves an increased gravity field in which...... the physical model is placed and tested. The capabilities of the centrifuge at DTU makes it possible to obtain a scale factor of 75-85 in the tests which equals a soil volume in prototype scale of ø40m and a depth of 36 m. The centrifuge facilities at DTU have through the years been used for testing various...... geotechnical issues, such as suction anchors, tension piles in clay, active earth pressures on sheet piles and group effects for lateral loaded piles. The paper describes physical modelling in general, the centrifuge, present setups and shows samples of obtained results....

  4. Tunneling of coupled methyl quantum rotors in 4-methylpyridine: Single rotor potential versus coupling interaction

    Science.gov (United States)

    Khazaei, Somayeh; Sebastiani, Daniel

    2017-11-01

    We study the influence of rotational coupling between a pair of methyl rotators on the tunneling spectrum in condensed phase. Two interacting adjacent methyl groups are simulated within a coupled-pair model composed of static rotational potential created by the chemical environment and the interaction potential between two methyl groups. We solve the two-dimensional time-independent Schrödinger equation analytically by expanding the wave functions on the basis set of two independent free-rotor functions. We investigate three scenarios which differ with respect to the relative strength of single-rotor and coupling potential. For each scenario, we illustrate the dependence of the energy level scheme on the coupling strength. It is found that the main determinant of splitting energy levels tends to be a function of the ratio of strengths of coupling and single-rotor potential. The tunnel splitting caused by coupling is maximized for the coupled rotors in which their total hindering potential is relatively shallow. Such a weakly hindered methyl rotational potential is predicted for 4-methylpyridine at low temperature. The experimental observation of multiple tunneling peaks arising from a single type of methyl group in 4-methylpyridine in the inelastic neutron scattering spectrum is widely attributed to the rotor-rotor coupling. In this regard, using a set of first-principles calculations combined with the nudged elastic band method, we investigate the rotational potential energy surface (PES) of the coaxial pairs of rotors in 4-methylpyridine. A Numerov-type method is used to numerically solve the two-dimensional time-independent Schrödinger equation for the calculated 2D-density functional theory profile. Our computed energy levels reproduce the observed tunneling transitions well. Moreover, the calculated density distribution of the three methyl protons resembles the experimental nuclear densities obtained from the Fourier difference method. By mapping the

  5. Estimation of the radial force using a disturbance force observer for a magnetically levitated centrifugal blood pump.

    Science.gov (United States)

    Pai, C N; Shinshi, T; Shimokohbe, A

    2010-01-01

    Evaluation of the hydraulic forces in a magnetically levitated (maglev) centrifugal blood pump is important from the point of view of the magnetic bearing design. Direct measurement is difficult due to the absence of a rotor shaft, and computational fluid dynamic analysis demands considerable computational resource and time. To solve this problem, disturbance force observers were developed, using the radial controlled magnetic bearing of a centrifugal blood pump, to estimate the radial forces on the maglev impeller. In order to design the disturbance observer, the radial dynamic characteristics of a maglev impeller were evaluated under different working conditions. It was observed that the working fluid affects the additional mass and damping, while the rotational speed affects the damping and stiffness of the maglev system. Based on these results, disturbance force observers were designed and implemented. The designed disturbance force observers present a bandwidth of 45 Hz. In non-pulsatile conditions, the magnitude of the estimated radial thrust increases in proportion to the flowrate, and the rotational speed has little effect on the force direction. At 5 l/min against 100 mmHg, the estimated radial thrust is 0.95 N. In pulsatile conditions, this method was capable of estimating the pulsatile radial thrust with good response.

  6. Reference Model 2: "Rev 0" Rotor Design

    Energy Technology Data Exchange (ETDEWEB)

    Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffith, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-12-01

    The preliminary design for a three-bladed cross-flow rotor for a reference marine hydrokinetic turbine is presented. A rotor performance design code is described, along with modifications to the code to allow prediction of blade support strut drag as well as interference between two counter-rotating rotors. The rotor is designed to operate in a reference site corresponding to a riverine environment. Basic rotor performance and rigid-body loads calculations are performed to size the rotor elements and select the operating speed range. The preliminary design is verified with a simple finite element model that provides estimates of bending stresses during operation. A concept for joining the blades and support struts is developed and analyzed with a separate finite element analysis. Rotor mass, production costs, and annual energy capture are estimated in order to allow calculations of system cost-of-energy. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd

  7. Rotor Embedded with Shape Memory Alloy Wires

    Directory of Open Access Journals (Sweden)

    K. Gupta

    2000-01-01

    Full Text Available In the present analysis, the fundamental natural frequency of a Jeffcott and a two-mass rotor with fibre reinforced composite shaft embedded with shape memory alloy (SMA wires is evaluated by Rayleigh's procedure. The flexibility of rotor supports is taken into account. The effect of three factors, either singly or in combination with each other, on rotor critical speed is studied. The three factors are: (i increase in Young's modulus of SMA (NITINOL wires when activated, (ii tension in wires because of phase recovery stresses, and (iii variation of support stiffness by three times because of activation of SMA in rotor supports. It is shown by numerical examples that substantial variation in rotor critical speeds can be achieved by a combination of these factors which can be effectively used to avoid resonance during rotor coast up/down.

  8. Apparatus and method for magnetically unloading a rotor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Seth Robert

    2018-02-13

    An apparatus and method for unloading a rotor bearing is described. The apparatus includes an electromagnet for levitating the rotor. In one embodiment, a sensor of the magnetic field near the electromagnet is used to control the current to levitate the rotor. In another embodiment, a method is provided that includes rotating the rotor, increasing the current to levitate the rotor and decrease the gap between electromagnet and rotor, and then reducing the current to levitate the rotor with a minimal amount of electric power to the electromagnet.

  9. Some engineering considerations when designing centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Edwards, T.T.

    1982-01-01

    A review is given of the three main areas where flexibility is needed in the design of centrifuge enrichment plants. These are: the need to cope with market requirements, the limitations imposed by currently available centrifuges and ever advancing centrifuge technology. Details of BNFL's experience with centrifuge enrichment at Capenhurst are presented. (U.K.)

  10. Rotor for a line start permanent magnet machine

    Science.gov (United States)

    Melfi, Mike; Schiferl, Rich; Umans, Stephen

    2017-07-11

    A rotor comprises laminations with a plurality of rotor bar slots with an asymmetric arrangement about the rotor. The laminations also have magnet slots equiangularly spaced about the rotor. The magnet slots extend near to the rotor outer diameter and have permanent magnets disposed in the magnet slots creating magnetic poles. The magnet slots may be formed longer than the permanent magnets disposed in the magnets slots and define one or more magnet slot apertures. The permanent magnets define a number of poles and a pole pitch. The rotor bar slots are spaced from adjacent magnet slots by a distance that is at least 4% of the pole pitch. Conductive material is disposed in the rotor bar slots, and in some embodiments, may be disposed in the magnet slot apertures.

  11. Valve-aided twisted Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Rajkumar, M.; Saha, U.K.

    2006-05-15

    Accessories, such as end plates, deflecting plates, shielding and guide vanes, may increase the power of a Savonius rotor, but make the system structurally complex. In such cases, the rotor can develop a relatively large torque at small rotational speeds and is cheap to build, however it harnesses only a small fraction of the incident wind energy. Another proposition for increasing specific output is to place non-return valves inside the concave side of the blades. Such methods have been studied experimentally with a twisted-blade Thus improving a Savonius rotor's energy capture. This new concept has been named as the 'Valve-Aided Twisted Savonius'rotor. Tests were conducted in a low-speed wind tunnel to evaluate performance. This mechanism is found to be independent of flow direction, and shows potential for large machines. [Author].

  12. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS

    International Nuclear Information System (INIS)

    JOE, J.

    2007-01-01

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders

  13. Centrifuge treatment of coal tar

    Energy Technology Data Exchange (ETDEWEB)

    L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

  14. Centrifuges and inertial shear forces

    NARCIS (Netherlands)

    Loon, van J.J.W.A.; Folgering, H.T.E.; Bouten, C.V.C.; Smit, T.H.

    2004-01-01

    Centrifuges are often used in biological studies for 1xg control samples in space flight microgravity experiments as well as in ground based research. Using centrifugation as a tool to generate an Earth like acceleration introduces unwanted inertial shear forces to the sample. Depending on the

  15. Design of Structural Parameters for Centrifugal Elevator Overspeed Governors

    Directory of Open Access Journals (Sweden)

    Song Yunpu

    2014-01-01

    Full Text Available As an important part of overspeed and fail-safe protection for elevators, the centrifugal elevator overspeed governor is a device for limiting overspeed of elevator cars. This paper researches on the vibration of the centrifugal block, which plays a key role in the performance of this overspeed governor. By performing dynamics analysis on the centrifugal block, the differential equation on the vibration of the centrifugal block is established. Based on this, the paper performs simulation analysis on the influence of systematic parameters such as the speed of the overspeed governor sheave, the mass of centrifugal block, the turning radius of the centrifugal block, the position where the spring acts, and the stiffness of the centrifugal block spring, on the vibration of the centrifugal block, and finds out their specific influence relationship.

  16. Theoretical considerations in solid bowl centrifugation

    International Nuclear Information System (INIS)

    Hamilton, R.T.

    1979-01-01

    A combination of literature survey and independent analysis determined three relationships for the prediction of the critical (or minimum recoverable) particle size in a solid bowl centrifuge. The relationships were derived based on three different theories of fluid behavior within the centrifuge; (1) laminar film flow (laminar film model), (2) plug flow (Sharples Model), and parabolic flow (modified Sharples Model). The critical particle size for the centrifuge used in Cs-PTA recovery in the CAW process predicted by the three relationships range from 0.19 to 0.34 μm (1 μm = 10 -6 m). The laminar film model gives the most conservative estimate of critical particle size (0.34 μm) and the resulting relationship is recommended for use to predict solid bowl centrifuge performance. Three correction factors are incorporated into the predictive equations to account for the effects of fluid turbulence near the centrifuge feed point, fluid lag and hindered settling. Of these factors, turbulence near the feed point (which is accounted for by using an effective centrifuge length) has the greatest impact, increasing the predicted critical particle size by 15%, while the combination of fluid lag and hindered settling factors increase the recoverable particle size by 4%. The overall effect of the correction factors is an approximately 20% decrease in centrifuge effectivity. The fraction of solids smaller than the critical size range has not been reliably determined for laboratory or plant prepared Cs-PTA. In addition, the density of Cs-PTA crystals is reported to vary from 3.2 to 12 grams per cubic centimeter

  17. Axial-Centrifugal Compressor Program

    Science.gov (United States)

    1975-10-01

    Assembly . .. . .... ..... 33 5 Tie Bolt...... .. .. .. .. . *.. .. .. .. .. .. ... 34 6 Axial Compressor Rotor Assembly Runouts . . .. . 34 7 CCV Blow...1.796 Impeller Slip Factor ’Ce2/U 2 ) .91 Impeller Wheel Speed ft/sec 1992.2 Impellet ’.ip Radius in. 3.780 Blade Tip Metal Angle- deg 0 Numbec of Blades...test item to the next Phase V component test. The test vehicle final balance levels and rotor runouts were normal at teardown, and no rubsI were

  18. THE EFFECT OF DIFFERENT OPTIONS OF BLADES MAIN ROTOR ON THE X-SHAPED TAIL ROTOR OF THE MI-171 LL

    Directory of Open Access Journals (Sweden)

    Valery A. Ivchin

    2018-01-01

    Full Text Available This paper describes the effect of different rotor blades on the X-shaped tail rotor of the Mi-171 LL, observed conducting flight tests. The tests were carried out on the same helicopter in the similar atmospheric conditions.The objective of the tests was the comparison of flight performance of two sets of rotor blades of the helicopter Mi-171 LL. However, materials test revealed a difference in the angles of the tail rotor at different MRs with the same takeoff weight.The authors are grateful to I.G. Peskov, S.R. Zamula and A.I. Orlov for assistance in carrying out this work and the preparation of this article.Noted that the helicopter takeoff weight when hovering out of ground effect in ISA with blades from polymer composite materials (PCM exceeds the takeoff weight of the helicopter with the serial blades in the nominal mode of the engine operation at ~ 750kg, in the takeoff mode at ~ 700kg.Knowing the altitude and climatic characteristics of the engine, the obtained dependence allows to determine the balancing value of jрв on hovering at different combinations of pressure altitude and outside air temperature for a given speed of the main rotor (MR.It follows from the work that when the same value Nпр(95/nнвпр3 or Nfact the balancing values of jрв for the helicopter with the main rotor blades from the PCM is less than for the helicopters with serial blades by 0.5…0.9°. The difference in the angles of the tail rotor increases with growing of Nепр(95/nнвпр3 (Nfact. Perhaps this is caused by different induction effect of the main rotor on the tail rotor to the MR from PCM and the serial ones.As follows from the materials, the thrust of the main rotor with blades from PCM with the same engine power is more in comparison with the serial blades. Consequently inductive speeds of the main rotor are more and the angles of the tail rotor are less. It can be assumed that a large induced velocity of the main rotor increases the thrust

  19. Gas dynamics in strong centrifugal fields

    OpenAIRE

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2017-01-01

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of $10^6$g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wa...

  20. Fundamental Space Biology-1: HHR and Incubator for ISS Space Life Sciences

    Science.gov (United States)

    Kirven-Brooks, M.; Fahlen, T.; Sato, K.; Reiss-Bubenheim, D.

    The Space Station Biological Research Project (SSBRP) is developing an Incubator and a Habitat Holding Rack (HHR) to support life science experiments aboard the International Space Station (ISS). The HHR provides for cooling and power needs, and supports data transfer (including telemetry, commanding, video processing, Ethernet), video compression, and data and command storage). The Incubator is a habitat that provides for controlled temperature between +4 C and +45 C and air circulation. It has a set of connector ports for power, analog and digital sensors, and video pass-through to support experiment-unique hardware within the Incubator specimen chamber. The Incubator exchanges air with the ISS cabin. The Fundamental Space Biology-1 (FSB-1) Project will be delivering, the HHR and two Incubators to ISS. The two inaugural experiments to be conducted on ISS using this hardware will investigate the biological effects of the space environment on two model organisms, Saccharomyces cerevisiae (S. cerevisiae; yeast) and Caenorhabditis elegans (C. elegans; nematode). The {M}odel {Y}east {C}ultures {o}n {S}tation (MYCOS) experiment will support examination of the effect of microgravity and cosmic radiation on yeast biology. In the second series of experiments during the same increment, the effects of microgravity and space environment radiation on C. elegans will be examined. The {F}undamental Space Biology {I}ncubator {E}xperiment {R}esearch using {C}. {e}legans (FIERCE) study is designed to support a long duration, multi-generational study of nematodes. FIERCE on-orbit science operations will include video monitoring, sub-culturing and periodic fixation and freezing of samples. For both experiments, investigators will be solicited via an International Space Life Sciences Research Announcement. In the near future, the Centrifuge Accommodation Module will be delivered to ISS, which will house the SSBRP 2.5 m Centrifuge Rotor. The Incubator can be placed onto the Centrifuge

  1. Liquid centrifugation for nuclear waste partitioning

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1992-01-01

    The performance of liquid centrifugation for nuclear waste partitioning is examined for the Accelerator Transmutation of Waste Program currently under study at the Los Alamos National Laboratory. Centrifugation might have application for the separation of the LiF-BeF 2 salt from heavier radioactive materials fission product and actinides in the separation of fission product from actinides, in the isotope separation of fission-product cesium before transmutation of the 137 Cs and 135 Cs, and in the removal of spallation product from the liquid lead target. It is found that useful chemical separations should be possible using existing materials for the centrifuge construction for all four cases with the actinide fraction in fission product perhaps as low as 1 part in 10 7 and the fraction of 137 CS in 133 Cs being as low as a few parts in 10 5 . A centrifuge cascade has the advantage that it can be assembled and operated as a completely closed system without a waste stream except that associated with maintenance or replacement of centrifuge components

  2. Rotor and wind turbine formalism

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The main conventions used in this book for the study of rotors are introduced in this chapter. The main assumptions and notations are provided. The formalism specific to wind turbines is presented. The forces, moments, velocities and dimensionless coefficients used in the study of rotors...

  3. Dynamic Gust Load Analysis for Rotors

    Directory of Open Access Journals (Sweden)

    Yuting Dai

    2016-01-01

    Full Text Available Dynamic load of helicopter rotors due to gust directly affects the structural stress and flight performance for helicopters. Based on a large deflection beam theory, an aeroelastic model for isolated helicopter rotors in the time domain is constructed. The dynamic response and structural load for a rotor under the impulse gust and slope-shape gust are calculated, respectively. First, a nonlinear Euler beam model with 36 degrees-of-freedoms per element is applied to depict the structural dynamics for an isolated rotor. The generalized dynamic wake model and Leishman-Beddoes dynamic stall model are applied to calculate the nonlinear unsteady aerodynamic forces on rotors. Then, we transformed the differential aeroelastic governing equation to an algebraic one. Hence, the widely used Newton-Raphson iteration algorithm is employed to simulate the dynamic gust load. An isolated helicopter rotor with four blades is studied to validate the structural model and the aeroelastic model. The modal frequencies based on the Euler beam model agree well with published ones by CAMRAD. The flap deflection due to impulse gust with the speed of 2m/s increases twice to the one without gust. In this numerical example, results indicate that the bending moment at the blade root is alleviated due to elastic effect.

  4. WindPACT Turbine Design Scaling Studies: Technical Area 4 - Balance-of-Station Cost; ANNUAL

    International Nuclear Information System (INIS)

    Shafer, D. A.; Strawmyer, K. R.; Conley, R. M.; Guidinger J. H.; Wilkie, D. C.; Zellman, T. F.

    2001-01-01

    DOE's Wind Partnerships for Advanced Component Technologies (WindPACT) program explores the most advanced wind-generating technologies for improving reliability and decreasing energy costs. The first step in the WindPact program is a scaling study to bound the optimum sizes for wind turbines, to define size limits for certain technologies, and to scale new technologies. The program is divided into four projects: Composite Blades for 80-120-meter Rotors; Turbine, Rotor, and Blade Logistics; Self-Erecting Tower and Nacelle Feasibility; and Balance-of-Station Cost. This report discusses balance-of-station costs, which includes the electrical power collector system, wind turbine foundations, communications and controls, meteorological equipment, access roadways, crane pads, and the maintenance building. The report is based on a conceptual 50-megawatt (MW) wind farm site near Mission, South Dakota. Cost comparisons are provided for four sizes of wind turbines: 750 kilowatt (kW), 2.5 MW, 5.0 MW, and 10.0 MW

  5. Useful life extension of steam turbine rotors; Alargamiento de la vida en rotores de turbina de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Arelle, Carlos [Turbomaquinas S. A. de C.V., La Piedad, Michoacan (Mexico)

    2007-11-15

    The continuous use of steam turbines, the chemistry of the steam itself and the variations of operation velocities, cause the gradual deterioration by erosion, oxidation and/or corrosion of the rotors and blades. When this happens most of the original manufacturers recommend to rectify the areas, diminishing the surfaces, or to compare with a new rotor. TURBOMAQUINARIAS S.A. de C.V. has developed the most reliable and safe methods to return the rotor to its original dimensions and in case of recurrent problems such as erosion, oxidation and/or wear, it offers the alternative of attaching coatings metallurgically compatible with which these problems are eliminated or diminished that might show up on the rotor surface as well as in the body of the discs or of the blades. These restoring methods are recommended by the international standards such as API 687. [Spanish] El uso continuo de las turbinas de vapor, la quimica del mismo vapor y la variacion de las velocidades de operacion, ocasionan el deterioro gradual por erosion, oxidacion y/o corrosion de los rotores y de los alabes. Al ocurrir esto la mayoria de los fabricantes originales recomiendan rectificar las areas, disminuyendo las superficies, o bien comparar un rotor nuevo. TURBOMAQUINARIAS S.A. de C.V. ha desarrollado los metodos mas confiables y seguros para devolver a su rotor las dimensiones originales y en caso de problemas recurrentes tales como erosion, oxidacion y/o desgaste, ofrece la alternativa de agregar recubrimientos metalurgicamente compatibles con los cuales se eliminan o se disminuyen estos problemas que pueden presentarse tanto en la superficie del rotor como del cuerpo de los discos o bien de los alabes. Estos metodos de restauracion son recomendados por las normas internacionales tales como la API 687.

  6. Centrifugal separator cascade connected in zigzag manner

    International Nuclear Information System (INIS)

    Kai, Tsunetoshi; Inoue, Yoshiya; Oya, Akio; Nagakura, Masaaki.

    1974-01-01

    Object: To effectively accommodate centrifugal separators of the entire cascade within the available space in a plant by freely selecting perpendicular direction of connection of the centrifugal separator. Structure: Centrifugal separators are connected in zigzag fashion by using a single header for each stage so that in a rectangular shape the entire cascade is arranged. (Kamimura, M.)

  7. Numerical investigation on pressure fluctuations in centrifugal compressor with different inlet guide vanes pre-whirl angles

    Science.gov (United States)

    Wang, Y. C.; Shi, M.; Cao, S. L.; Li, Z. H.

    2013-12-01

    The pressure fluctuations in a centrifugal compressor with different inlet guide vanes (IGV) pre-whirl angles were investigated numerically, as well as the pre-stress model and static structural of blade. The natural frequency was evaluated by pre-stress model analysis. The results show that, the aero-dynamic pressure acting on blade surface is smaller than rotation pre-stress, which wouldn't result in large deformation of blade. The natural frequencies with rotation pre-stress are slightly higher than without rotation pre-stress. The leading mechanism of pressure fluctuations for normal conditions is the rotor-stator (IGVs) interaction, while is serious flow separations for conditions that are close to surge line. A few frequency components in spectra are close to natural frequency, which possibly result in resonant vibration if amplitude is large enough, which is dangerous for compressor working, and should be avoided.

  8. Experimental investigation of main rotor wake

    Directory of Open Access Journals (Sweden)

    Stepanov Robert

    2017-01-01

    Full Text Available In this work, experimental results of rotor wake in hover mode are presented. The experiments were carried out with a rotor rig model in the T-1K wind tunnel in Kazan National Research Technical University (Kazan Aviation Institute. The rotor consisted of four identical blades. The Q-criterion was used to identify tip vortices for a 2D case. The results were then compared with two different wake models.

  9. Strong, Ductile Rotor For Cryogenic Flowmeters

    Science.gov (United States)

    Royals, W. T.

    1993-01-01

    Improved magnetic flowmeter rotor resists cracking at cryogenic temperatures, yet provides adequate signal to magnetic pickup outside flowmeter housing. Consists mostly of stainless-steel alloy 347, which is ductile and strong at low temperatures. Small bead of stainless-steel alloy 410 welded in groove around circumference of round bar of stainless-steel alloy 347; then rotor machined from bar. Tips of rotor blades contain small amounts of magnetic alloy, and passage of tips detected.

  10. Mathematical and physical modeling of rainfall in centrifuge

    OpenAIRE

    CAICEDO, Bernardo; THOREL, Luc; TRISTANCHO, Julian

    2015-01-01

    Rainfall simulation in centrifuge models is important for modelling soil-atmosphere interactions. However, the presence of Coriolis force, drag forces, evaporation and wind within the centrifuge may affect the distribution of rainfall over the model. As a result, development of appropriate centrifuge rain simulators requires a demanding process of experimental trial and error. This paper highlights the key factors involved in controlling rainfall in centrifuge simulations, develops a mathemat...

  11. A practical approach to flexible rotor balancing

    International Nuclear Information System (INIS)

    Khan, M.I.; Chohan, G.Y.; Khan, M.Z.

    2001-01-01

    There are various conventional methods for flexible rotor balancing. These :methods have been applied successfully for balancing cylindrical rotors since long. One of these mostly used is modal balancing. Besides its usefulness, difficulties are encountered when sufficient number of balancing planes are not available under certain conditions where a rotor is enclosed at its both ends by discs. In this work, a practical technique of counter balancing has been introduced. This technique has proved its importance in balancing the rotors. We would discuss efficiency of this technique over the conventional modal balancing. (author)

  12. Aeroelastic characteristics of composite bearingless rotor blades

    Science.gov (United States)

    Bielawa, R. L.

    1976-01-01

    Owing to the inherent unique structural features of composite bearingless rotors, various assumptions upon which conventional rotor aeroelastic analyses are formulated, are violated. Three such features identified are highly nonlinear and time-varying structural twist, structural redundancy in bending and torsion, and for certain configurations a strongly coupled low frequency bending-torsion mode. An examination of these aeroelastic considerations and appropriate formulations required for accurate analyses of such rotor systems is presented. Also presented are test results from a dynamically scaled model rotor and complementary analytic results obtained with the appropriately reformulated aeroelastic analysis.

  13. Kinetically limited differential centrifugation as an inexpensive and readily available alternative to centrifugal elutriation.

    Science.gov (United States)

    Tan, Jinwang; Lee, Byung-Doo; Polo-Parada, Luis; Sengupta, Shramik

    2012-08-01

    When separating two species with similar densities but differing sedimentation velocities (because of differences in size), centrifugal elutriation is generally the method of choice. However, a major drawback to this approach is the requirement for specialized equipment. Here, we present a new method that achieves similar separations using standard benchtop centrifuges by loading the seperands as a layer on top of a dense buffer of a specified length, and running the benchtop centrifugation process for a calculated amount of time, thereby ensuring that all faster moving species are collected at the bottom, while all slower moving species remain in the buffer. We demonstrate the use of our procedure to isolate bacteria from blood culture broth (a mixture of bacterial growth media, blood, and bacteria).

  14. Topological dynamics in supramolecular rotors.

    Science.gov (United States)

    Palma, Carlos-Andres; Björk, Jonas; Rao, Francesco; Kühne, Dirk; Klappenberger, Florian; Barth, Johannes V

    2014-08-13

    Artificial molecular switches, rotors, and machines are set to establish design rules and applications beyond their biological counterparts. Herein we exemplify the role of noncovalent interactions and transient rearrangements in the complex behavior of supramolecular rotors caged in a 2D metal-organic coordination network. Combined scanning tunneling microscopy experiments and molecular dynamics modeling of a supramolecular rotor with respective rotation rates matching with 0.2 kcal mol(-1) (9 meV) precision, identify key steps in collective rotation events and reconfigurations. We notably reveal that stereoisomerization of the chiral trimeric units entails topological isomerization whereas rotation occurs in a topology conserving, two-step asynchronous process. In supramolecular constructs, distinct displacements of subunits occur inducing a markedly lower rotation barrier as compared to synchronous mechanisms of rigid rotors. Moreover, the chemical environment can be instructed to control the system dynamics. Our observations allow for a definition of mechanical cooperativity based on a significant reduction of free energy barriers in supramolecules compared to rigid molecules.

  15. Soft hub for bearingless rotors

    Science.gov (United States)

    Dixon, Peter G. C.

    1991-01-01

    Soft hub concepts which allow the direct replacement of articulated rotor systems by bearingless types without any change in controllability or need for reinforcement to the drive shaft and/or transmission/fuselage attachments of the helicopter were studied. Two concepts were analyzed and confirmed for functional and structural feasibility against a design criteria and specifications established for this effort. Both systems are gimballed about a thrust carrying universal elastomeric bearing. One concept includes a set of composite flexures for drive torque transmittal from the shaft to the rotor, and another set (which is changeable) to impart hub tilting stiffness to the rotor system as required to meet the helicopter application. The second concept uses a composite bellows flexure to drive the rotor and to augment the hub stiffness provided by the elastomeric bearing. Each concept was assessed for weight, drag, ROM cost, and number of parts and compared with the production BO-105 hub.

  16. Centrifuge workers study. Phase II, completion report

    International Nuclear Information System (INIS)

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom

  17. Centrifuge workers study. Phase II, completion report

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.

  18. Development of a 3D circular microfluidic centrifuge for the separation of mixed particles by using their different centrifuge times

    International Nuclear Information System (INIS)

    Jeon, H J; Kim, D I; Kim, M J; Nguyen, X D; Park, D H; Go, J S

    2015-01-01

    This paper presents a circular microfluidic centrifuge with two inlets and two outlets to separate mixed microparticles with a specially designed sample injection hole. To separate the mixed particles, it uses a rotational flow, generated in a chamber by counter primary flows in the microchannels. The shape and sizes of the circular microfluidic centrifuge have been designed through numerical evaluation to have a large relative centrifugal force. The difference of centrifuge times of the mixed particles of 1 μm and 6 μm was determined to be 8.2 s at an inlet Reynolds number of 500 and a sample Reynolds number of 20. In the experiment, this was measured to be about 10 s. From the separation of the two polymer particles analogous to the representative sizes of platelets and red blood cells, the circular microfluidic centrifuge shows a potential to separate human blood cells size-selectively by using the difference of centrifuge times. (paper)

  19. Rotor calculations for neutron spectroscopy; Calculs des rotors de spectrometres a neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Gobert, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    The determination of stress in a rotating disk plane of symmetry normal to the axis of rotation has been studied by a number of investigators. In a recent paper Reich gives an operating process for an analytical solution in an asymmetric rotating disk. In the report we give the calculation of finite difference stress solutions applicable to the two rotating disks. The equations are then programmed for the 360.75 computer by Fortran methods concerning the rotors of choppers. (author) [French] La determination des contraintes dans les disques symetriques, en rotation a ete etudiee par de nombreux auteurs. Dans un recent rapport, Reich donne une solution pour le calcul des disques asymetriques. Ce rapport concerne l'application du calcul des contraintes par differences finies aux deux types de rotors. Les equations ecrites en langage Fortran pour l'ordinateur 360.75 concerne les rotors de choppers. (auteur)

  20. Waves in Strong Centrifugal Field

    Science.gov (United States)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarization and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modeling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  1. Centrifugal force: a few surprises

    International Nuclear Information System (INIS)

    Abramowicz, M.A.; Max-Planck-Institut fuer Physik und Astrophysik, Garching

    1990-01-01

    The need for a rather fundamental revision in understanding of the nature of the centrifugal force is discussed. It is shown that in general relativity (and contrary to the situation in Newtonian theory) rotation of a reference frame is a necessary but not sufficient condition for the centrifugal force to appear. A sufficient condition for its appearance, in the instantaneously corotating reference frame of a particle, is that the particle motion in space (observed in the global rest frame) differs from a photon trajectory. The direction of the force is the same as that of the gradient of the effective potential for photon motion. In some cases, the centrifugal force will attract towards the axis of rotation. (author)

  2. Overview of the Novel Intelligent JAXA Active Rotor Program

    Science.gov (United States)

    Saito, Shigeru; Kobiki, Noboru; Tanabe, Yasutada; Johnson, Wayne; Yamauchi, Gloria K.; Young, Larry A.

    2010-01-01

    The Novel Intelligent JAXA Active Rotor (NINJA Rotor) program is a cooperative effort between JAXA and NASA, involving a test of a JAXA pressure-instrumented, active-flap rotor in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The objectives of the program are to obtain an experimental database of a rotor with active flaps and blade pressure instrumentation, and to use that data to develop analyses to predict the aerodynamic and aeroacoustic performance of rotors with active flaps. An overview of the program is presented, including a description of the rotor and preliminary pretest calculations.

  3. NASA low speed centrifugal compressor

    Science.gov (United States)

    Hathaway, Michael D.

    1990-01-01

    The flow characteristics of a low speed centrifugal compressor were examined at NASA Lewis Research Center to improve understanding of the flow in centrifugal compressors, to provide models of various flow phenomena, and to acquire benchmark data for three dimensional viscous flow code validation. The paper describes the objectives, test facilities' instrumentation, and experiment preliminary comparisons.

  4. Smart Rotor Modeling: Aero-Servo-Elastic Modeling of a Smart Rotor with Adaptive Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    the trailing edge flap deflection to actively reduce the fatigue loads on the structure. The performance of the smart rotor configuration and its control algorithms are finally quantified by aero-servo-elastic simulations of the smart rotor turbine operating in a standard turbulent wind field.......This book presents the formulation of an aero-servo-elastic model for a wind turbine rotor equipped with Adaptive Trailing Edge Flaps (ATEF), a smart rotor configuration. As the name suggests, an aero-servo-elastic model consists of three main components: an aerodynamic model, a structural model......, and a control model. The book first presents an engineering type of aerodynamic model that accounts for the dynamic effects of flap deflection. The aerodynamic model is implemented in a Blade Element Momentum framework, and coupled with a multi-body structural model in the aero-servoelastic simulation code HAWC...

  5. Unexpected properties of the centrifugal force

    International Nuclear Information System (INIS)

    Abramowicz, M.A.

    1990-01-01

    Contrary to what is stated in the Newtonian dynamics, rotation of a reference frame is not sufficient for the occurrence of the centrifugal force. Instead, the necessary and sufficient condition is a motion along a path different from that of a photon trajectory in space. This calls for a rather fundamental change in understanding of the very nature of the centrifugal force. It also has important practical physical consequences: in a strong gravitational field, where light trajectories are substantially curved, centrifugal force is much weaker than the Newtonian theory predicts. In addition, when there are closed (circular) photon trajectories in space, the centrifugal force may reverse its direction - it attracts towards the rotation axis!. The weakening of the centrifugal force in strong gravitational fields and the reversal of its direction in the neighbourhood of close photon trajectories in space fully and clearly explain puzzling examples of counter intuitive behaviour of dynamical effects of rotation found previously by several authors: e.g. reversal of the ellipticity behaviour of the relativistic Maclaurin spheroids (Chandrasekhar and Miller, 1974), reversal of the viscous torque action (Anderson and Lemos, 1988), or the fact that rotation increases internal pressure of a sufficiently compact star (Abramowicz and Wagoner, 1974). Weakening of the centrifugal force implies that rotating neutron stars are less oblate (and probably more stable) than the Newtonian theory predicts. This is important for the recently discussed question of how fast can pulsars spin. (author). 23 refs, 3 figs

  6. Unexpected properties of the centrifugal force

    International Nuclear Information System (INIS)

    Abramowicz, M.A.

    1990-01-01

    Contrary to what is stated in the Newtonian dynamics, rotation of a reference frame is not sufficient for the occurrence of the centrifugal force. Instead, the necessary and sufficient condition is a motion along a path different from that of a photon trajectory in space. This calls for a rather fundamental change in understanding of the very nature of the centrifugal force. It also has important practical physical consequences: in a strong gravitational field, where light trajectories are substantially curved, centrifugal force is much weaker than the Newtonian theory predicts. In addition, when there are closed (circular) photon trajectories in space, the centrifugal force may reverse its direction - it attracts towards the rotation axis. The weakening of the centrifugal force in strong gravitational fields and the reversal of its direction in the neighborhood of close photon trajectories in space fully and clearly explain puzzling examples of counter intuitive behaviour of dynamical effects of rotation found previously by several authors: e.g. reversal of the ellipticity behaviour of the relativistic Maclaurin spheroids (Chandrasekhar and Miller, 1974), reversal of the viscous torque action (Anderson and Lemos, 1988) or the fact that rotation increases internal pressure of a sufficiently compact star (Abramowicz and Wagoner, 1974). Weakening of the centrifugal force implies that rotating neutron stars are less oblate (and probably more stable) than the Newtonian theory predicts. This is important for the recently discussed question of how fast can pulsars spins. (author). 31 refs, 3 figs

  7. Bacterial Cell Surface Damage Due to Centrifugal Compaction

    NARCIS (Netherlands)

    Peterson, Brandon W.; Sharma, Prashant K.; van der Mei, Henny C.; Busscher, Henk J.

    Centrifugal damage has been known to alter bacterial cell surface properties and interior structures, including DNA. Very few studies exist on bacterial damage caused by centrifugation because of the difficulty in relating centrifugation speed and container geometry to the damage caused. Here, we

  8. Development and tests of large nuclear turbo-generator welded rotors

    International Nuclear Information System (INIS)

    Colombie, H.; Thiery, M.; Rotzinger, R.; Pelissou, C.; Tabacco, C.; Fernagut, V.

    2015-01-01

    Turbo-generators require large forgings for the rotor and it is a worldwide practice to manufacture turbo-generator rotor bodies as single piece forgings. Rotors for nuclear applications (4-pole rotors design, 1500/1800 rpm) require forgings of up to 2.0 m diameter and ultra large ingots with weight more than 500 tons. Nowadays only few forge masters can deliver such forgings in the world. Based on the large welding experience Alstom has gained over decades on steam and gas turbines and Alstom's multi piece shrunk turbo-generator rotors, it was suggested to manufacture 4-pole turbo-generator rotors by welding the shaft from aligned cylindrical forgings. Compared to turbine welded rotors, the shaft of a turbo-generator rotor presents differences linked to dimensions/weight, weld depth and electrical application. The manufacture of a 2 disc model allowed to prove through electrical and mechanical analysis the reliability of the concept as well as the reliability of the manufacturing processes through material tests, micro sections, electrical component tests, weld geometry, welding processes (TIG,SAW,...), weld inspection (Ultrasonic testing, radiographic inspection,...) weld heat treatments and machining. Then a full rotor able to replace a single forging rotor was manufactured in order to validate and prove to potential customers the validity of the welded rotor technology. During the first order from EDF of a welded 900 MW spare rotor, the procedure for the Non Destructive Test on a slotted rotor was developed upon EDF request in order to compare future Non Destructive Testing with the finger print of the new rotor. This complete rotor was delivered to EDF in January 2013. This rotor is in operation in a nuclear unit since November 2013. (authors)

  9. Causal Scale of Rotors in a Cardiac System

    Science.gov (United States)

    Ashikaga, Hiroshi; Prieto-Castrillo, Francisco; Kawakatsu, Mari; Dehghani, Nima

    2018-04-01

    Rotors of spiral waves are thought to be one of the potential mechanisms that maintain atrial fibrillation (AF). However, disappointing clinical outcomes of rotor mapping and ablation to eliminate AF raise a serious doubt on rotors as a macro-scale mechanism that causes the micro-scale behavior of individual cardiomyocytes to maintain spiral waves. In this study, we aimed to elucidate the causal relationship between rotors and spiral waves in a numerical model of cardiac excitation. To accomplish the aim, we described the system in a series of spatiotemporal scales by generating a renormalization group, and evaluated the causal architecture of the system by quantifying causal emergence. Causal emergence is an information-theoretic metric that quantifies emergence or reduction between micro- and macro-scale behaviors of a system by evaluating effective information at each scale. We found that the cardiac system with rotors has a spatiotemporal scale at which effective information peaks. A positive correlation between the number of rotors and causal emergence was observed only up to the scale of peak causation. We conclude that rotors are not the universal mechanism to maintain spiral waves at all spatiotemporal scales. This finding may account for the conflicting benefit of rotor ablation in clinical studies.

  10. Enhanced infectivity of bluetongue virus in cell culture by centrifugation.

    OpenAIRE

    Sundin, D R; Mecham, J O

    1989-01-01

    The effects of centrifugation of the infection of cell culture with bluetongue virus (BTV) were investigated. Baby hamster kidney cells were infected with BTV with or without centrifugation. Viral antigen was detected by immunofluorescence at 24 h in both centrifuged and noncentrifuged cultures. However, after 24 h of infection, the production of PFU in centrifuged cell cultures was 10- to 20-fold greater than that seen in cultures not centrifuged. In addition, centrifugation enhanced the dir...

  11. Impact of waves on the circulation flow in the Iguasu gas centrifuge

    Science.gov (United States)

    Bogovalov, S.; Kislov, V.; Tronin, I.

    2017-01-01

    2D axisymmetric transient flow induced by a pulsed braking force in the Iguasu gas centrifuge (GC) is simulated numerically. The simulation is performed for two cases: transient and stationary. The braking forces averaged over the period of rotation are equal to each other in both cases. The transient case is compared with the stationary case where the flow is excited by the stationary braking force.Two models of the gas cenrifuge is simulated. There are two cameras in the first model and three cameras in the second one. In the transient case for the two cameras model pulsations almost doubles the axial circulation flux in the working camera. In the transient case for the three cameras model the gas flux through the gap in the bottom baffle exceeds on 15 % the same flux in the stationary case for the same gas content and temperature at the walls of the rotor. We argue that the waves can reduce the gas content in the GC on the same 15 %.

  12. Thermomechanical Behavior of Rotor with Rubbing

    Directory of Open Access Journals (Sweden)

    Jerzy T. Sawicki

    2003-01-01

    Full Text Available This article presents an analytical study of the dynamics and stability of rotors subjected to rubbing due to contact with seals, taking account of associated thermal effects. The seal interaction force acting on the shaft gives rise to a friction force, which is a source of heating and can induce so-called spiral vibrations. A mathematical model that has been developed couples the heat-conduction equation with the equations for motion of the rotor. Numerical simulations have been conducted that show the thermomechanical behavior of the rotor at various operating conditions. A procedure for analyzing the stability of multibearing rotors based on the system eigenvalue analysis and the state-space approach has been proposed. Finally, the experimental data related to full annular rub have been presented.

  13. On the inverse problem of blade design for centrifugal pumps and fans

    Science.gov (United States)

    Kruyt, N. P.; Westra, R. W.

    2014-06-01

    The inverse problem of blade design for centrifugal pumps and fans has been studied. The solution to this problem provides the geometry of rotor blades that realize specified performance characteristics, together with the corresponding flow field. Here a three-dimensional solution method is described in which the so-called meridional geometry is fixed and the distribution of the azimuthal angle at the three-dimensional blade surface is determined for blades of infinitesimal thickness. The developed formulation is based on potential-flow theory. Besides the blade impermeability condition at the pressure and suction side of the blades, an additional boundary condition at the blade surface is required in order to fix the unknown blade geometry. For this purpose the mean-swirl distribution is employed. The iterative numerical method is based on a three-dimensional finite element method approach in which the flow equations are solved on the domain determined by the latest estimate of the blade geometry, with the mean-swirl distribution boundary condition at the blade surface being enforced. The blade impermeability boundary condition is then used to find an improved estimate of the blade geometry. The robustness of the method is increased by specific techniques, such as spanwise-coupled solution of the discretized impermeability condition and the use of under-relaxation in adjusting the estimates of the blade geometry. Various examples are shown that demonstrate the effectiveness and robustness of the method in finding a solution for the blade geometry of different types of centrifugal pumps and fans. The influence of the employed mean-swirl distribution on the performance characteristics is also investigated.

  14. On the inverse problem of blade design for centrifugal pumps and fans

    International Nuclear Information System (INIS)

    Kruyt, N P; Westra, R W

    2014-01-01

    The inverse problem of blade design for centrifugal pumps and fans has been studied. The solution to this problem provides the geometry of rotor blades that realize specified performance characteristics, together with the corresponding flow field. Here a three-dimensional solution method is described in which the so-called meridional geometry is fixed and the distribution of the azimuthal angle at the three-dimensional blade surface is determined for blades of infinitesimal thickness. The developed formulation is based on potential-flow theory. Besides the blade impermeability condition at the pressure and suction side of the blades, an additional boundary condition at the blade surface is required in order to fix the unknown blade geometry. For this purpose the mean-swirl distribution is employed. The iterative numerical method is based on a three-dimensional finite element method approach in which the flow equations are solved on the domain determined by the latest estimate of the blade geometry, with the mean-swirl distribution boundary condition at the blade surface being enforced. The blade impermeability boundary condition is then used to find an improved estimate of the blade geometry. The robustness of the method is increased by specific techniques, such as spanwise-coupled solution of the discretized impermeability condition and the use of under-relaxation in adjusting the estimates of the blade geometry. Various examples are shown that demonstrate the effectiveness and robustness of the method in finding a solution for the blade geometry of different types of centrifugal pumps and fans. The influence of the employed mean-swirl distribution on the performance characteristics is also investigated. (paper)

  15. Performance prediction of industrial centrifuges using scale-down models.

    Science.gov (United States)

    Boychyn, M; Yim, S S S; Bulmer, M; More, J; Bracewell, D G; Hoare, M

    2004-12-01

    Computational fluid dynamics was used to model the high flow forces found in the feed zone of a multichamber-bowl centrifuge and reproduce these in a small, high-speed rotating disc device. Linking the device to scale-down centrifugation, permitted good estimation of the performance of various continuous-flow centrifuges (disc stack, multichamber bowl, CARR Powerfuge) for shear-sensitive protein precipitates. Critically, the ultra scale-down centrifugation process proved to be a much more accurate predictor of production multichamber-bowl performance than was the pilot centrifuge.

  16. Headlines... Areva on the way toward centrifugation

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The French industrial group Areva, that gathers Cogema and Framatome-ANP, has entered into a partnership with the British nuclear consortium Urenco for creating ETC (enrichment technology company) in order to replace its uranium enrichment facility (Georges-Besse-I) that is planned to close in 2012 by a new one (George-Besse-II) that will enter into service as early as 2007. The new facility will be based on the centrifugation technique developed by Urenco, this technique will cut the consumption of electricity by 3 in comparison with the gaseous diffusion technique used in the Georges-Besse-I facility. The other asset of the centrifugation technique is that the facility can grow with the number of centrifuges that are set. In 2007 only 7% of the total number of centrifuges will be installed, which will sufficient to satisfy the demand for enriched uranium. The full size of the facility will be reached in 2016 through gradual steps of 10% more centrifuges set every year. (A.C.)

  17. Instabilities expected to exist in a gas centrifuge

    International Nuclear Information System (INIS)

    Sakurai, Takeo

    1977-01-01

    A typical counter current type centrifuge of long bowl geometry is schematically shown. At first glance, the main flow field in this centrifuge can be taken as a swirling pipe flow. Taking in mind the operating gas (uranium hexafluoride) the temperature of which is 20 deg C and the peripheral pressure 10 torrs, the density and pressure obey the barometric relation in which the gravity is replaced by the centrifugal acceleration; in a thermally driven centrifuge, an additional weak temperature gradient appears along the axial direction. These situations are similar to those in the earth's atmosphere. So, it is stressed that the interior of a gas centrifuge is a new kind of rotating atmosphere and offers a 'new face' in the field of geophysical fluid dynamics. Instabilities in inviscid case and the destabilizing effects of the diffusivity are thus discussed together with the effects of the mechanical vibrations of the centrifuge, and vortex breakdown phenomena

  18. Simulation of ultra-long term behavior in HLW near-field by centrifugal model test. Part 1. Development of centrifugal equipment and centrifuge model test method

    International Nuclear Information System (INIS)

    Nishimoto, Soshi; Okada, Tetsuji; Sawada, Masataka

    2011-01-01

    The objective of this paper is to develop a centrifugal equipment which can continuously be run for a long time and a model test method in order to evaluate a long term behavior which is a coupled thermo-hydro-mechanical processes in the high level wastes geological disposal repository and the neighborhood (called 'near-field'). The centrifugal equipment of CRIEPI, 'CENTURY5000-THM', developed in the present study is able to run continuously up to six months. Therefore, a long term behavior in the near-field can be simulated in a short term, for instance, the behavior for 5000 equivalent years can be simulated in six months by centrifugalizing 100 G using a 1/100 size model. We carried out a test using a nylon specimen in a centrifugal force field of 30 G and confirmed the operations of CENTURY5000-THM, control and measurement for 11 days. As the results, it was able to control the stress in the pressure vessel and measure the values of strain, temperature and pressure. And, as a result of scanning the small model of near-field including the metal overpack, bentonite buffer and rock by a medical X-rays CT scanner, the internal structure of the model was able to be evaluated when the metal artifact was reduced. From these results, the evaluation for a long term behavior of a disposal repository by the method of centrifugal model test became possible. (author)

  19. Utilization of rotor kinetic energy storage for hybrid vehicles

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  20. Recent quality of ultra large rotor shafts

    International Nuclear Information System (INIS)

    Suzuki, Akira; Kinoshita, Shushi; Morita, Kikuo; Kikuchi, Hideo; Takada, Masayoshi

    1983-01-01

    Large size and high quality are required for rotor shafts accompanying recent trend of thermal and nuclear power generation toward large capacity. As for the low pressure rotor shafts for large capacity turbines, the disks and a shaft tend to be made into one body instead of conventional shrink fit construction, because of the experience of rotor accidents and the improvement of reliability. Therefore the ingots required become more and more large, and excellent production techniques are required for steel making, forging and heat treatment. Kobe Steel Ltd. have made about 20 large generator shafts from 420 t and 500 t ingots, and confirmed their stable high quality. Also a one-body low pressure rotor of 2600 mm diameter was made for trial, and its quality was examined. It was confirmed that the effect of forging and heat treatment was given sufficiently, and the production techniques for super-large one-body rotors were established. In steel making, vacuum degassing was applied twice to decrease hydrogen content, and VV restriction forging and pre-stage treatment were carried out. The properties of large rotors are reported. (Kako, I.)

  1. HPOTP low-speed flexible rotor balancing, phase 1

    Science.gov (United States)

    Giordano, J.; Zorzi, E.

    1985-01-01

    A method was developed that shows promise in overcoming many balancing limitations. This method establishes one or more windows for low speed, out-of-housing balancing of flexible rotors. These windows are regions of speed and support flexibility where two conditions are simultaneously fulfilled. First, the rotor system behaves flexibly; therefore, there is separation among balance planes. Second, the response due to balance weights is large enough to reliably measure. The analytic formulation of the low-speed flexible rotor balancing method is described. The results of proof-of-principle tests conducted under the program are presented. Based on this effort, it is concluded that low speed flexible rotor balancing is a viable technology. In particular, the method can be used to balance a rotor bearing system at low speed which results in smooth operation above more than one bending critical speed. Furthermore, this balancing methodology is applicable to SSME turbopump rotors.

  2. EXPERIMENTAL STUDY OF THE DYNAMICS OF CENTRIFUGAL CASTING MACHINES FOR PRODUCTION OF MILL ROLLS

    Directory of Open Access Journals (Sweden)

    P. G. Anofriev

    2017-06-01

    Full Text Available Purpose. The main purpose of experimental studies is to establish the adequacy of the developed mathematical models of machine fluctuations and the actual parameters of machine vibration. Almost all casting machines for the production of mill rolls have a unique design and performances. The additional aim of this work is to compare the vibration level of the casting machine with the requirements of the current vibration standards for new technological machines. Frequency analysis of the oscillations allows establishing defects in workmanship, errors of rotating parts installation and their influence on the dynamics of the machine. Methodology. Measurement of vibration parameters was performed on the moving parts of roller bearings of the machine. To measure the amplitudes of accelerations in three mutually perpendicular directions piezoelectric sensors with magnetic mount were used. Electrical signals from the sensors were recorded on magnetic tape. Further analysis of the oscillations was carried out and visualized using specialized frequency analyzer. The frequency analyzer implements the algorithm of fast Fourier transformation and/or integration of sensor input signal. After the first integration the data for plotting the vibration velocity spectrogram were obtained and as a result of the second integration there are the data of vibration displacements spectrogram of the machine supports. Findings. The results of experimental studies of centrifugal casting machine vibrations for the production of two-layer rolls were presented. There were obtained and analyzed the spectrograms of accelerations, velocities and displacements of moving parts of the upper and lower roller supports. The work of the machine is associated with the calculated values passing of critical frequencies and the short-term development of resonance oscillations of the rotor and roller bearings. Originality. For the first time the author obtained the frequency spectra of

  3. The gas centrifuge, uranium enrichment and nuclear proliferation

    International Nuclear Information System (INIS)

    Chapman, A.

    1988-01-01

    The author considers the consequences for controlling nuclear proliferation of the emergence of the gas centrifuge method for enriching uranium and succeeds in the difficult and delicate task of saying enough about gas centrifuge techniques for readers to judge, what may be involved in fully embracing gas centrifuge enrichment within the constraints of an anti-proliferation strategy, whilst at the same time saying nothing that could be construed as encouraging an interest in the gas centrifuge route to highly enriched uranium where none had before existed. (author)

  4. An experimental study on improvement of Savonius rotor performance

    Directory of Open Access Journals (Sweden)

    N.H. Mahmoud

    2012-03-01

    In this work different geometries of Savonius wind turbine are experimentally studied in order to determine the most effective operation parameters. It was found that, the two blades rotor is more efficient than three and four ones. The rotor with end plates gives higher efficiency than those of without end plates. Double stage rotors have higher performance compared to single stage rotors. The rotors without overlap ratio (β are better in operation than those with overlap. The results show also that the power coefficient increases with rising the aspect ratio (α. The conclusions from the measurements of the static torque for each rotor at different wind speeds verify the above summarized results of this work.

  5. Modifying a Commercial Centrifuge to Reduce Electromagnetic Interference and Evaluating Functionality of Ultrasound Equipment

    Science.gov (United States)

    Greening, Gage J.

    2016-01-01

    The Project Management and Engineering Branch (SF4) supports the Human Health and Performance Directorate (HH&P) and is responsible for developing and supporting human systems hardware for the International Space Station (ISS). When a principal investigator's (PI) medical research project on the ISS is accepted, SF4 develops the necessary hardware and software to transport to the ISS. The two projects I primarily worked on were the centrifuge and ultrasound projects. Centrifuge: One concern with spacecraft such as the ISS is electromagnetic interference (EMI) from onboard equipment, typically from radio waves (frequencies of 3 kHz to 300 GHz), which can negatively affect nearby circuitry. Standard commercial centrifuges produce EMI above safety limits, so my task was to help reduce EMI production from this equipment. Two centrifuges were tested: one unmodified as a control and one modified. To reduce EMI below safety limits, one centrifuge was modified to become a Faraday shield, in which significant electrical contact was made between all regions of the centrifuge housing. This included removing non-conductive paint, applying conductive fabric to the lid and foam sealer, adding a 10,000 µF decoupling capacitor across the power supply, and adding copper adhesive-mount gaskets to the housing interior. EMI testing of both centrifuges was performed in the EMI/EMC Control Test and Measurement Facility. EMI for both centrifuges was below safety limits for frequencies between 10 MHz and 15 GHz (pass); however, between 14 kHz and 10 MHz, EMI for the unmodified centrifuge exceeded safety limits (fail) as expected. Alternatively, for the modified centrifuge with the Faraday shield, EMI was below the safely limit of 55 dBµV/m for electromagnetic frequencies between 14 kHz and 10 MHz. This result indicates our modifications were successful. The successful EMI test allowed us to communicate with the vendor what modifications they needed to make to their commercial unit to

  6. Tip Vortex and Wake Characteristics of a Counterrotating Open Rotor

    Science.gov (United States)

    VanZante, Dale E.; Wernet, Mark P.

    2012-01-01

    One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to results from previously developed models. Forward rotor wake velocity profiles are shown. Results are presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics.

  7. Internal Friction And Instabilities Of Rotors

    Science.gov (United States)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1992-01-01

    Report describes study of effects of internal friction on dynamics of rotors prompted by concern over instabilities in rotors of turbomachines. Theoretical and experimental studies described. Theoretical involved development of nonlinear mathematical models of internal friction in three joints found in turbomachinery - axial splines, Curvic(TM) splines, and interference fits between smooth cylindrical surfaces. Experimental included traction tests to determine the coefficients of friction of rotor alloys at various temperatures, bending-mode-vibration tests of shafts equipped with various joints and rotordynamic tests of shafts with axial-spline and interference-fit joints.

  8. Diagnostics of the vibrations of complex rotor systems

    Science.gov (United States)

    Yugraytis, I. Y.; Ragulskis, K. M.; Ionushas, R. A.; Karuzhene, I. P.

    1973-01-01

    The parameters of the imbalance of a complex rotor system, having n parallel rotors and having six degrees of freedom, can be determined from the parameters of the vibrations of two appropriate degrees of freedom. This considerably simplifies diagnostics of the vibrations of complex rotor systems.

  9. Stability of rotor systems: A complex modelling approach

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob

    1998-01-01

    The dynamics of a large class of rotor systems can be modelled by a linearized complex matrix differential equation of second order, Mz + (D + iG)(z) over dot + (K + iN)z = 0, where the system matrices M, D, G, K and N are real symmetric. Moreover M and K are assumed to be positive definite and D...... approach applying bounds of appropriate Rayleigh quotients. The rotor systems tested are: a simple Laval rotor, a Laval rotor with additional elasticity and damping in the bearings, and a number of rotor systems with complex symmetric 4 x 4 randomly generated matrices.......The dynamics of a large class of rotor systems can be modelled by a linearized complex matrix differential equation of second order, Mz + (D + iG)(z) over dot + (K + iN)z = 0, where the system matrices M, D, G, K and N are real symmetric. Moreover M and K are assumed to be positive definite and D...

  10. Numerical investigation on pressure fluctuations in centrifugal compressor with different inlet guide vanes pre-whirl angles

    International Nuclear Information System (INIS)

    Wang, Y C; Shi, M; Cao, S L; Li, Z H

    2013-01-01

    The pressure fluctuations in a centrifugal compressor with different inlet guide vanes (IGV) pre-whirl angles were investigated numerically, as well as the pre-stress model and static structural of blade. The natural frequency was evaluated by pre-stress model analysis. The results show that, the aero-dynamic pressure acting on blade surface is smaller than rotation pre-stress, which wouldn't result in large deformation of blade. The natural frequencies with rotation pre-stress are slightly higher than without rotation pre-stress. The leading mechanism of pressure fluctuations for normal conditions is the rotor-stator (IGVs) interaction, while is serious flow separations for conditions that are close to surge line. A few frequency components in spectra are close to natural frequency, which possibly result in resonant vibration if amplitude is large enough, which is dangerous for compressor working, and should be avoided

  11. DESARROLLO DE UN INSTRUMENTO VIRTUAL PARA EL BALANCEAMIENTO DINAMICO DE ROTORES DEVELOPMENT OF A VIRTUAL INSTRUMENT FOR ROTOR DYNAMICS BALANCING

    Directory of Open Access Journals (Sweden)

    Edgar Estupiñán P

    2006-08-01

    Full Text Available El presente trabajo resalta la importancia del balanceamiento de rotores como principal herramienta dentro de las tareas correctivas del mantenimiento predictivo, con el fin de que se reduzcan las vibraciones y sus efectos secundarios en las máquinas rotatorias. Se ha desarrollado un instrumento virtual para el balanceamiento dinámico de rotores, basado en un sistema de adquisición de datos (SAD. El instrumento tiene incluidos todos los cálculos necesarios para balancear rotores en un plano y en dos planos, a partir de la medición de los datos de vibración, utilizando el procedimiento de los coeficientes de influencia o utilizando un procedimiento de medición sin fase. También se ha incluido un módulo para determinar la severidad vibratoria del rotor y un módulo de análisis de vibraciones, que incluye análisis espectral y de la forma de onda. Este instrumento virtual es una herramienta útil para el balanceamiento de rotores en laboratorio así como también en la industria.This article highlights the importance of rotor balancing like the most important corrective action included in a predictive maintenance program, whose main objective is reducing the vibrations level and its secondary effect in rotary machines. A virtual instrument, based in a data acquisition system has been developed for rotor balancing. With this instrument it is possible to balance rotors in a single or two-plane, using the influence coefficient method or a no phase method. Also the instrument includes a function to determine the vibration severity and a function of vibration analysis with spectral and waveform analysis included. This virtual instrument is useful for rotor balancing in the laboratory as well as in the industry.

  12. High frequency dynamics in centrifugal compressors

    NARCIS (Netherlands)

    Twerda, A.; Meulendijks, D.; Smeulers, J.P.M.; Handel, R. van den; Lier, L.J. van

    2008-01-01

    Problems with centrifugal compressors relating to high frequency, i.e. Blade passing frequency (BPF) are increasing. Pulsations and vibrations generated in centrifugal compressors can lead to nuisance, due to strong tonal noise, and even breakdown. In several cases the root cause of a failure or a

  13. T700 power turbine rotor multiplane/multispeed balancing demonstration

    Science.gov (United States)

    Burgess, G.; Rio, R.

    1979-01-01

    Research was conducted to demonstrate the ability of influence coefficient based multispeed balancing to control rotor vibration through bending criticals. Rotor dynamic analyses were conducted of the General Electric T700 power turbine rotor. The information was used to generate expected rotor behavior for optimal considerations in designing a balance rig and a balance technique. The rotor was successfully balanced 9500 rpm. Uncontrollable coupling behavior prevented observations through the 16,000 rpm service speed. The balance technique is practical and with additional refinement it can meet production standards.

  14. Environment-sensitive behavior of fluorescent molecular rotors

    Directory of Open Access Journals (Sweden)

    Theodorakis Emmanuel A

    2010-09-01

    Full Text Available Abstract Molecular rotors are a group of fluorescent molecules that form twisted intramolecular charge transfer (TICT states upon photoexcitation. When intramolecular twisting occurs, the molecular rotor returns to the ground state either by emission of a red-shifted emission band or by nonradiative relaxation. The emission properties are strongly solvent-dependent, and the solvent viscosity is the primary determinant of the fluorescent quantum yield from the planar (non-twisted conformation. This viscosity-sensitive behavior gives rise to applications in, for example, fluid mechanics, polymer chemistry, cell physiology, and the food sciences. However, the relationship between bulk viscosity and the molecular-scale interaction of a molecular rotor with its environment are not fully understood. This review presents the pertinent theories of the rotor-solvent interaction on the molecular level and how this interaction leads to the viscosity-sensitive behavior. Furthermore, current applications of molecular rotors as microviscosity sensors are reviewed, and engineering aspects are presented on how measurement accuracy and precision can be improved.

  15. Broken-Rotor-Bar Diagnosis for Induction Motors

    International Nuclear Information System (INIS)

    Wang Jinjiang; Gao, Robert X; Yan Ruqiang

    2011-01-01

    Broken rotor bar is one of the commonly encountered induction motor faults that may cause serious motor damage to the motor if not detected timely. Past efforts on broken rotor bar diagnosis have been focused on current signature analysis using spectral analysis and wavelet transform. These methods require accurate slip estimation to localize fault-related frequency. This paper presents a new approach to broken rotor bar diagnosis without slip estimation, based on the ensemble empirical mode decomposition (EEMD) and the Hilbert transform. Specifically, the Hilbert transform first extracts the envelope of the motor current signal, which contains broken rotor fault-related frequency information. Subsequently, the envelope signal is adaptively decomposed into a number of intrinsic mode functions (IMFs) by the EEMD algorithm. Two criteria based on the energy and correlation analyses have been investigated to automate the IMF selection. Numerical and experimental studies have confirmed that the proposed approach is effective in diagnosing broken rotor bar faults for improved induction motor condition monitoring and damage assessment.

  16. Centrifugal trapping in the magnetotail

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    1995-03-01

    Full Text Available Particles leaving the neutral sheet in the distant magnetotail at times display adiabatic trajectory sequences characterized by an inflection toward the equator and subsequent mirroring in its vicinity. We demonstrate that this low-latitude mirroring results primarily from a centrifugal deceleration due to the fast direction-changing E×B drift. This effect which we refer to as "centrifugal trapping" appears both in guiding centre and full particle treatments. It thus does not directly relate to nonadiabatic motion. However, pitch angle scattering due to nonadiabatic neutral sheet interaction does play a role in reducing the parallel speed of the particles. We show that centrifugal trapping is an important mechanism for the confinement of the slowest (typically below the equatorial E×B drift speed plasma sheet populations to the midplane vicinity.

  17. Safety aspects of gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely

  18. PIV in a model wind turbine rotor wake

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Naumov, Igor; Karbadin, Ivan

    2013-01-01

    Stereoscopic particle image velocimetry (PIV) measurements of the flow in the wake of scale model of a horizontal axis wind turbine is presented Near the rotor, measurements are made in vertical planes intersecting the rotor axis These planes capture flow effect from the tip and root vortices...... perpendicular to the rotor axis is used to investigate the dynamics in the far wake Here, a precessing core is found and data indicate that the Strouhal number of the precessing is independent of the rotor speed...

  19. Centrifugal Casting Features/Metallurgical Characterization of Aluminum Alloys

    International Nuclear Information System (INIS)

    Chirita, G.; Soares, D.; Cruz, D.; Silva, F. S.; Stefanescu, I.

    2008-01-01

    This paper deals with the study of centrifugal effects on aluminium castings under high G values. Most of the studies in this domain (FGMs obtained by centrifugal casting) deal with functionally graded composites reinforced with a solid phase such as silicon particles or others. However, in this study it will be shown that unreinforced aluminium alloys may be significantly influenced by the centrifugal effect and that functionally graded castings are also obtained. It has been observed that the centrifugal effect may increase in some alloys, depending on the relative position in the castings, the rupture strength by approx. 50%, and rupture strain by about 300%, as compared to the gravity casting technique. The Young's modulus may also increase by about 20%. It has also been reported that in vertical centrifugal castings there are mainly three aspects that affect the components thus obtained, namely: fluid dynamics; vibration (inherent to the system); and centrifugal force. These features have a different effect on the castings depending on the aluminium alloy. In this paper, an analysis of the most important effects of the centrifugal casting process on metallurgical features is conducted. A solidification characterization at several points along the mould will be made in order to have an accurate idea of both the fluid dynamics inside the mould during the casting and the solidification behavior in different parts of the component. These two analyses will be related to the metallurgical properties (phase distribution; SDAS; eutectic silicon content and shape, pores density and shape) along the component and mainly along the direction of the centrifugal pressure. A comparison between castings obtained by both centrifugal casting technique and gravity casting technique is made for reference (gravity casting)

  20. Study and simulation of the resistance of floccules to shear breakage in a centrifuge

    International Nuclear Information System (INIS)

    Touron, E.

    1995-01-01

    In France, spent fuels are in most cases reprocessed. The aim of the reprocessing is to separate the recyclable fissile materials (uranium, plutonium for instance) of radioactive wastes. The industrial process used until now is the Purex (Plutonium Uranium Refining by EXtraction) process. The two main first steps of this process are nowadays industrially completely controlled. Nevertheless, it exists several secondary operations which can interfere with the good unfolding of this process main steps as for instance, the clarification of the dissolution liquors. The aim of this work is then to improve particularly the separation efficiency between small particles and the associated dissolution liquors. The experimental study of the flow inside the rotor shows complex hydrodynamics arising from turbulence and secondary flows. This turbulent flow is likely to be capable of re-suspending small and flow density particles. The use of flocculants is a way of improving separation efficiencies. In gravity sedimentation, flocculants are frequently used to improve settling of fine particles, by causing them to aggregate behaving as if they were larger. Under slight turbulence, the flocs, which may be fragile, remain intact. In centrifugal sedimentation, shear rates are high and may result in complete floc breakup. Choice of the correct flocculant, proper dosage and right conditioning time result in strong, compact flocs so that flocculants can be used successfully. A diminution of the centrifugal shield from nominal conditions results in a diminution of shear breakage (in the feed zone) so that a total recover of solids may be obtained.(author). 122 refs., 95 figs., 28 tabs

  1. Improved g-level calculations for coil planet centrifuges.

    Science.gov (United States)

    van den Heuvel, Remco N A M; König, Carola S

    2011-09-09

    Calculation of the g-level is often used to compare CCC centrifuges, either against each other or to allow for comparison with other centrifugal techniques. This study shows the limitations of calculating the g-level in the traditional way. Traditional g-level calculations produce a constant value which does not accurately reflect the dynamics of the coil planet centrifuge. This work has led to a new equation which can be used to determine the improved non-dimensional values. The new equations describe the fluctuating radial and tangential g-level associated with CCC centrifuges and the mean radial g-level value. The latter has been found to be significantly different than that determined by the traditional equation. This new equation will give a better understanding of forces experienced by sample components and allows for more accurate comparison between centrifuges. Although the new equation is far better than the traditional equation for comparing different types of centrifuges, other factors such as the mixing regime may need to be considered to improve the comparison further. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Evaluation of effect of oil film of rotor bearing

    Science.gov (United States)

    Alekseeva, L. B.; Maksarov, V. V.

    2018-03-01

    The high-rpm rotors were subjected to the dynamic analysis. Oscillations of a rotor spinning in gapped bearings were considered. It was stated that the rotor necks motion pattern depends on a lot of factors: a ratio of static and dynamic loads on the bearing, radial clearance size, presence of oil film between a neck and a bearing, elastic and inertial properties of a mounting group. The most unfavourable mode where static and dynamic loads are equal was detected without taking into account the oil film impact. The impact of oil film on the bearing assembly dynamics is significant in high-rpm rotors. The presence of oil film can possibly cause rotor buckling failure and self-starting. Rotor motion stability in small was studied. Herewith, various schemes were considered. Expressions, determining the stability zones of a rigid rotor on the fixed support and the supports with elastic and inertial elements, were given.

  3. Fluid-structure coupling effects on periodically transient flow of a single-blade sewage centrifugal pump

    International Nuclear Information System (INIS)

    Pei, Ji; Yuan, Shouqi; Yuan, Jianping

    2013-01-01

    A partitioned fluid-structure interaction (FSI) solving strategy that depends on problem characteristics is applied to quantitatively obtain the coupling effects of a fluid-structure system in a single-blade centrifugal pump on the unsteady flow. A two-way coupling method is employed to realize strong FSI effects in the calculation procedure. The successful impeller oscillation measurement using two proximity sensors validated the FSI simulation accuracy in a complicated and practical fluid-structure system having a rotating component. The results show that the hydrodynamic force deviation can be observed in the results for the coupled versus uncoupled cases. Additionally, the coupled unsteady pressure is larger than the uncoupled value for every monitoring point at every impeller rotation position. Comparison results for different monitoring points under an overload condition and partial-load condition display the same regularities. To some extent, this interaction mechanism would affect the accuracy and reliability of the unsteady flow and rotor deflection analysis.

  4. Achieving an ever-improving centrifuge

    International Nuclear Information System (INIS)

    Edwards, T.T.; Wilcox, P.

    1988-01-01

    To ensure that the latest technical innovations can be rapidly incorporated, centrifuge development in the Urenco organization is carried out in different phases simultaneously on different generations of machines. This system has led to progressively increased outputs and reduced specific costs, and with the further known potential available, is expected to maintain Urenco's competitiveness throughout the 1990s. The process of separating isotopes by centrifuge is described. (author)

  5. Rhie-Chow interpolation in strong centrifugal fields

    Science.gov (United States)

    Bogovalov, S. V.; Tronin, I. V.

    2015-10-01

    Rhie-Chow interpolation formulas are derived from the Navier-Stokes and continuity equations. These formulas are generalized to gas dynamics in strong centrifugal fields (as high as 106 g) occurring in gas centrifuges.

  6. Centrifuge modelling of offshore monopile foundation

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte; Hededal, Ole

    2010-01-01

    centrifuge tests on a laterally loaded monopile in dry sand. The prototype dimension of the piles was modelled to a diameter of 1 meter and penetration depth on 6 meter. The test series were designed in order to investigate the scaling laws in the centrifuge both for monotonic and cyclic loading...

  7. Equivalence Between Squirrel Cage and Sheet Rotor Induction Motor

    Science.gov (United States)

    Dwivedi, Ankita; Singh, S. K.; Srivastava, R. K.

    2016-06-01

    Due to topological changes in dual stator induction motor and high cost of its fabrication, it is convenient to replace the squirrel cage rotor with a composite sheet rotor. For an experimental machine, the inner and outer stator stampings are normally available whereas the procurement of rotor stampings is quite cumbersome and is not always cost effective. In this paper, the equivalence between sheet/solid rotor induction motor and squirrel cage induction motor has been investigated using layer theory of electrical machines, so as to enable one to utilize sheet/solid rotor in dual port experimental machines.

  8. A rotor optimization using regression analysis

    Science.gov (United States)

    Giansante, N.

    1984-01-01

    The design and development of helicopter rotors is subject to the many design variables and their interactions that effect rotor operation. Until recently, selection of rotor design variables to achieve specified rotor operational qualities has been a costly, time consuming, repetitive task. For the past several years, Kaman Aerospace Corporation has successfully applied multiple linear regression analysis, coupled with optimization and sensitivity procedures, in the analytical design of rotor systems. It is concluded that approximating equations can be developed rapidly for a multiplicity of objective and constraint functions and optimizations can be performed in a rapid and cost effective manner; the number and/or range of design variables can be increased by expanding the data base and developing approximating functions to reflect the expanded design space; the order of the approximating equations can be expanded easily to improve correlation between analyzer results and the approximating equations; gradients of the approximating equations can be calculated easily and these gradients are smooth functions reducing the risk of numerical problems in the optimization; the use of approximating functions allows the problem to be started easily and rapidly from various initial designs to enhance the probability of finding a global optimum; and the approximating equations are independent of the analysis or optimization codes used.

  9. Modeling centrifugal cell washers using computational fluid dynamics.

    Science.gov (United States)

    Kellet, Beth E; Han, Binbing; Dandy, David S; Wickramasinghe, S Ranil

    2004-11-01

    Reinfusion of shed blood during surgery could avoid the need for blood transfusions. Prior to reinfusion of the red blood cells, the shed blood must be washed in order to remove leukocytes, platelets, and other contaminants. Further, the hematocrit of the washed blood must be increased. The feasibility of using computational fluid dynamics (CFD) to guide the design of better centrifuges for processing shed blood is explored here. The velocity field within a centrifuge bowl and the rate of protein removal from the shed blood has been studied. The results obtained indicate that CFD could help screen preliminary centrifuge bowl designs, thus reducing the number of initial experimental tests required when developing new centrifuge bowls. Although the focus of this work is on washing shed blood, the methods developed here are applicable to the design of centrifuge bowls for other blood-processing applications.

  10. Decontamination of nuclear fuels with centrifugal separation

    International Nuclear Information System (INIS)

    Ning, Li; Camassa, R.; Ecke, R.; Venneri, F.

    1995-01-01

    The treatment and disposal of nuclear material is a crucial element in today's nuclear power industry. We present a physical process of centrifugal separation that has potential to deal with existing waste and provide opportunities for realizing advanced accelerator-driven power generation. In our proposed process a liquid metal solution containing actinides and fission products is fed through a series of continuous flow centrifuges. We show fundamentals of centrifugation including theory and experiments and estimate how the processing can be optimized

  11. Decontamination of nuclear fuels with centrifugal separation

    International Nuclear Information System (INIS)

    Ning, L.; Camassa, R.; Ecke, R.; Venneri, F.

    1995-01-01

    The treatment and disposal of nuclear material is a crucial element in today's nuclear power industry. We present a physical process of centrifugal separation that has potential to deal with existing waste and provide opportunities for realizing advanced accelerator driven power generation. In our proposed process a liquid metal solution containing actinides and fission products is fed through a series of continuous flow centrifuges. We show fundamentals of centrifugation including theory and experiments and estimate how the processing can be optimized. (authors)

  12. Experimental study of multi-component separation by gas centrifuge

    International Nuclear Information System (INIS)

    Zhou, M.S.; Liang, X.W.; Chen, W.N.; Yin, Y.T.

    2006-01-01

    Stable isotopes are applied in many areas and most stable isotopes are multi-component, This paper presents experimental results of several stable isotopes separation conducted in Tsinghua University by using ultra-speed gas centrifuges. Xe, WF 6 , TeF 6 , SiHCl 3 , SiF 4 were chosen as the process gases. By adjusting some of the centrifuge's parameters, the suitable centrifuge parameters for different process gas separations were found and the overall unit separation factors γ 0 were obtained by means of single gas centrifuge separation. The experimental results show that with appropriate process gases, stable isotope separation by gas centrifuge was effective. (authors)

  13. A Case Study on Stratified Settlement and Rebound Characteristics due to Dewatering in Shanghai Subway Station

    OpenAIRE

    Wang, Jianxiu; Huang, Tianrong; Sui, Dongchang

    2013-01-01

    Based on the Yishan Metro Station Project of Shanghai Metro Line number 9, a centrifugal model test was conducted to investigate the behavior of stratified settlement and rebound (SSR) of Shanghai soft clay caused by dewatering in deep subway station pit. The soil model was composed of three layers, and the dewatering process was simulated by self-invention of decompressing devise. The results indicate that SSR occurs when the decompression was carried out, and only negative rebound was found...

  14. THE DESIGN OF AXIAL PUMP ROTORS USING THE NUMERICAL METHODS

    Directory of Open Access Journals (Sweden)

    Ali BEAZIT

    2010-06-01

    Full Text Available The researches in rotor theory, the increasing use of computers and the connection between design and manufacturing of rotors, have determined the revaluation and completion of classical rotor geometry. This paper presents practical applications of mathematical description of rotor geometry. A program has been created to describe the rotor geometry for arbitrary shape of the blade. The results can be imported by GAMBIT - a processor for geometry with modeling and mesh generations, to create a mesh needed in hydrodynamics analysis of rotor CFD. The results obtained are applicable in numerical methods and are functionally convenient for CAD/CAM systems.

  15. Multidisciplinary Aerodynamic Design of a Rotor Blade for an Optimum Rotor Speed Helicopter

    Directory of Open Access Journals (Sweden)

    Jiayi Xie

    2017-06-01

    Full Text Available The aerodynamic design of rotor blades is challenging, and is crucial for the development of helicopter technology. Previous aerodynamic optimizations that focused only on limited design points find it difficult to balance flight performance across the entire flight envelope. This study develops a global optimum envelope (GOE method for determining blade parameters—blade twist, taper ratio, tip sweep—for optimum rotor speed helicopters (ORS-helicopters, balancing performance improvements in hover and various freestream velocities. The GOE method implements aerodynamic blade design by a bi-level optimization, composed of a global optimization step and a secondary optimization step. Power loss as a measure of rotor performance is chosen as the objective function, referred to as direct power loss (DPL in this study. A rotorcraft comprehensive code for trim simulation with a prescribed wake method is developed. With the application of the GOE method, a DPL reduction of as high as 16.7% can be achieved in hover, and 24% at high freestream velocity.

  16. SMART wind turbine rotor. Data analysis and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Barone, Matthew Franklin; Yoder, Nathanael C.

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the data post-processing and analysis performed to date on the field test data. Results include the control capability of the trailing edge flaps, the combined structural and aerodynamic damping observed through application of step actuation with ensemble averaging, direct observation of time delays associated with aerodynamic response, and techniques for characterizing an operating turbine with active rotor control.

  17. A 3D imaging system for the non-intrusive in-flight measurement of the deformation of an aircraft propeller and a helicopter rotor

    Science.gov (United States)

    Stasicki, Bolesław; Boden, Fritz; Ludwikowski, Krzysztof

    2017-02-01

    The non-intrusive in-flight deformation measurement and the resulting local pitch of an aircraft propeller or helicopter rotor blade is a demanding task. The idea of an imaging system integrated and rotating with the air-craft propeller has already been presented at the 30th International Congress on High-Speed Imaging and Photonics (ICHSIP30) in 2012. Since then this system has been designed, constructed and tested in the laboratory as well as in-flight on the Cobra VUT100 of Evektor Aerotechnik, Kunovice (CZ). The major aim of the EU FP7 project AIM2 ("Advanced In-flight Measurement techniques 2" - contract No. 266107) was to ascertain the feasibility of this technique under extreme conditions - vibration and large centrifugal forces - to real flight testing. Based on the gained experience a new rotating system for the application on helicopter rotors has recently been constructed and tested on the whirl tower of Airbus Helicopters, Donauwoerth (D). In this paper the principle of the applied Image Pattern Correlation Technique (IPCT), a specialized type of Digital Image Correlation (DIC), is outlined and the construction of both rotating 3D image acquisition systems dedicated to the in-flight deformation measurement of the aircraft propeller and helicopter rotor are described. Furthermore, the results of the ground and in-flight tests of these systems will be shown and discussed. The obtained results will be helpful for manufacturers in the design of their future aircrafts.

  18. Centrifugal trapping in the magnetotail

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    Full Text Available Particles leaving the neutral sheet in the distant magnetotail at times display adiabatic trajectory sequences characterized by an inflection toward the equator and subsequent mirroring in its vicinity. We demonstrate that this low-latitude mirroring results primarily from a centrifugal deceleration due to the fast direction-changing E×B drift. This effect which we refer to as "centrifugal trapping" appears both in guiding centre and full particle treatments. It thus does not directly relate to nonadiabatic motion. However, pitch angle scattering due to nonadiabatic neutral sheet interaction does play a role in reducing the parallel speed of the particles. We show that centrifugal trapping is an important mechanism for the confinement of the slowest (typically below the equatorial E×B drift speed plasma sheet populations to the midplane vicinity.

  19. Interlayer toughening of fiber composite flywheel rotors

    Science.gov (United States)

    Groves, Scott E.; Deteresa, Steven J.

    1998-01-01

    An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

  20. Aeroelastic characteristics of the AH-64 bearingless tail rotor

    Science.gov (United States)

    Banerjee, D.

    1988-01-01

    The results of a wind tunnel test program to determine the performance loads and dynamic characteristics of the Composite Flexbeam Tail Rotor (CFTR) for the AH-64 Advanced Attack Helicopter are reported. The CFTR uses an elastomeric shear attachment of the flexbeam to the hub to provide soft-inplane S-mode and stiff-inplane C-mode configuration. The properties of the elastomer were selected for proper frequency placement and scale damping of the inplane S-mode. Kinematic pitch-lag coupling was introduced to provide the first cyclic inplane C-mode damping at high collective pitch. The CFTR was tested in a wind tunnel over the full slideslip envelop of the AH-64. It is found that the rotor was aeroelastically stable throughout the complete collective pitch range and up to rotor speeds of 1403 rpm. The dynamic characteristics of the rotor were found to be satisfactory at all pitch angles and rotor speeds of the tunnel tests. The design characteristics of the rotor which permit the high performance characteristics are discussed. Several schematic drawings and photographs of the rotor are provided.

  1. Effect of Centrifuge Temperature on Routine Coagulation Tests.

    Science.gov (United States)

    Yazar, Hayrullah; Özdemir, Fatma; Köse, Elif

    2018-01-01

    This study investigated the effects of cooled and standard centrifuges on the results of coagulation tests to examine the effects of centrifugation temperature. Equal-volume blood samples from each patient were collected at the same time intervals and subjected to standard (25°C) and cooled centrifugation (2-4°C). Subsequently, the prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, and D-dimer values were determined in runs with the same lot numbers in the same coagulation device using the Dia-PT R (PT and INR), Dia-PTT-liquid (aPTT), Dia-FIB (fibrinogen), and Dia-D-dimer kits, respectively. The study enrolled 771 participants. The PT was significantly (p centrifuges were as follows: PT 10.30 versus 10.50 s; PT (INR) 1.04 versus 1.09 s; APTT 28.90 versus 29.40 s; fibrinogen 321.5 versus 322.1 mg/dL; and D-dimer 179.5 versus 168.7 µg FEU/mL. There were significant differences (p centrifuges. Centrifuge temperature can have a significant effect on the results of coagulation tests. However, broad and specific disease-based studies are needed. © 2018 S. Karger AG, Basel.

  2. Study and simulation of the resistance of floccules to shear breakage in a centrifuge; Etude et modelisation de la destruction d`agregats de colloides par les contraintes de cisaillement creees dans un separateur centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Touron, E

    1995-09-29

    In France, spent fuels are in most cases reprocessed. The aim of the reprocessing is to separate the recyclable fissile materials (uranium, plutonium for instance) of radioactive wastes. The industrial process used until now is the Purex (Plutonium Uranium Refining by EXtraction) process. The two main first steps of this process are nowadays industrially completely controlled. Nevertheless, it exists several secondary operations which can interfere with the good unfolding of this process main steps as for instance, the clarification of the dissolution liquors. The aim of this work is then to improve particularly the separation efficiency between small particles and the associated dissolution liquors. The experimental study of the flow inside the rotor shows complex hydrodynamics arising from turbulence and secondary flows. This turbulent flow is likely to be capable of re-suspending small and flow density particles. The use of flocculants is a way of improving separation efficiencies. In gravity sedimentation, flocculants are frequently used to improve settling of fine particles, by causing them to aggregate behaving as if they were larger. Under slight turbulence, the flocs, which may be fragile, remain intact. In centrifugal sedimentation, shear rates are high and may result in complete floc breakup. Choice of the correct flocculant, proper dosage and right conditioning time result in strong, compact flocs so that flocculants can be used successfully. A diminution of the centrifugal shield from nominal conditions results in a diminution of shear breakage (in the feed zone) so that a total recover of solids may be obtained.(author). 122 refs., 95 figs., 28 tabs.

  3. Demonstration of various rotor instabilities (exhibit of Bently Rotor Dynamics Research Corporation Laborator rigs at symposium on instability in rotaing machinery)

    Science.gov (United States)

    Muszynska, A.

    1985-01-01

    The operation of rotor rigs used to demonstrate various instability phenomena occurring in rotating machines is described. The instability phenomena demonstrated included oil whirl/whip antiswirl, rub, loose rotating parts, water-lubricated bearing instabilities, and cracked shaft. The rotor rigs were also used to show corrective measures for preventing instabilities. Vibrational response data from the rigs were taken with modern, computerized instrumentation. The rotor nonsynchronous perturbation rig demonstrated modal identification techniques for rotor/bearing systems. Computer-aided data acquisition and presentation, using the dynamic stiffness method, makes it possible to identify rotor and bearing parameters for low modes. The shaft mode demonstrator presented the amplified modal shape line of the shaft excited by inertia forces of unbalance (synchronous perturbation). The first three bending modes of the shaft can be demonstrated. The user-friendly software, Orbits, presented a simulation of rotor precessional motion that is characteristic of various instability phenomena. The data presentation demonstration used data measured on a turbine driven compressor train as an example of how computer aided data acquisition and presentation assists in identifying rotating machine malfunctions.

  4. Isotopic enrichment in a plasma centrifuge

    International Nuclear Information System (INIS)

    Del Bosco, E.; Dallaqua, R.S.; Ludwig, G.O.; Bittencourt, J.A.

    1987-01-01

    High rotational velocity and centrifugal isotopic separation of carbon in a vacuum-arc plasma centrifuge are presented. Enrichments of up to 390% for 13 C are measured at 6 cm radius with angular rotation frequencies in excess of 1.0 x 10 5 rad/s in an axial magnetic field of 0.12 T

  5. Method for repairing a steam turbine or generator rotor

    International Nuclear Information System (INIS)

    Clark, R.E.; Amos, D.R.

    1987-01-01

    A method is described for repairing low alloy steel steam turbine or generator rotors, the method comprising: a. machining mating attachments on a replacement end and a remaining portion of the original rotor; b. mating the replacement end and the original rotor; c. welding the replacement end to the original rotor by narrow-gap gas metal arc or submerged arc welding up to a depth of 1/2-2 inches from the rotor surface; d. gas tungsten arc welding the remaining 1/2-2 inches; e. boring out the mating attachment and at least the inside 1/4 inch of the welding; and f. inspecting the bore

  6. Note: Attenuation motion of acoustically levitated spherical rotor

    Science.gov (United States)

    Lü, P.; Hong, Z. Y.; Yin, J. F.; Yan, N.; Zhai, W.; Wang, H. P.

    2016-11-01

    Here we observe the attenuation motion of spherical rotors levitated by near-field acoustic radiation force and analyze the factors that affect the duration time of free rotation. It is found that the rotating speed of freely rotating rotor decreases exponentially with respect to time. The time constant of exponential attenuation motion depends mainly on the levitation height, the mass of rotor, and the depth of concave ultrasound emitter. Large levitation height, large mass of rotor, and small depth of concave emitter are beneficial to increase the time constant and hence extend the duration time of free rotation.

  7. Research on the development of the centrifugal spinning

    Directory of Open Access Journals (Sweden)

    Zhang Zhiming

    2017-01-01

    Full Text Available Centrifugal spinning is a new and efficient method to produce nanofibers quickly. It makes use of the centrifugal force instead of high voltage to produce the nanofibers. The centrifugal spinning has many advantages such as no high voltage, high yield, simple structure, no pollution and can be applied to high polymer material, ceramic and metal material. In order to have more understand about this novel nanofibers formation method, this paper introduces the method of centrifugal spinning and the effect of rotation speed, the properties of material such as viscosity and solvent evaporation, collector distance which have an impact on nanofibers morphology and diameter were also analyzed.

  8. Engineering design of centrifugal casting machine

    Science.gov (United States)

    Kusnowo, Roni; Gunara, Sophiadi

    2017-06-01

    Centrifugal casting is a metal casting process in which metal liquid is poured into a rotating mold at a specific temperature. Given round will generate a centrifugal force that will affect the outcome of the casting. Casting method is suitable in the manufacture of the casting cylinder to obtain better results. This research was performed to design a prototype machine by using the concept of centrifugal casting. The design method was a step-by-step systematic approach in the process of thinking to achieve the desired goal of realizing the idea and build bridges between idea and the product. Design process was commenced by the conceptual design phase and followed by the embodiment design stage and detailed design stage. With an engineering design process based on the method developed by G. E. Dieter, draft prototype of centrifugal casting machine with dimension of 550×450×400 mm, ¼ HP motor power, pulley and belt mechanism, diameter of 120-150mm, simultaneously with the characteristics of simple casting product, easy manufacture and maintenance, and relatively inexpensive, was generated.

  9. Gas dynamics in strong centrifugal fields

    Energy Technology Data Exchange (ETDEWEB)

    Bogovalov, S.V.; Kislov, V.A.; Tronin, I.V. [National research nuclear university “MEPhI”, Kashirskoje shosse, 31,115409, Moscow (Russian Federation)

    2015-03-10

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  10. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for

  11. The American Gas Centrifuge Past, Present, and Future

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Dean

    2004-09-15

    The art of gas centrifugation was born in 1935 at the University of Virginia when Dr. Jesse Beams demonstrated experimentally the separation of chlorine isotopes using an ultra-high speed centrifuge. Dr. Beam’s experiment initiated work that created a rich history of scientific and engineering accomplishment in the United States in the art of isotope separation and even large scale biological separation by centrifugation. The early history of the gas centrifuge development was captured in a lecture and documented by Dr. Jesse Beams in 1975. Much of Dr. Beams lecture material is used in this paper up to the year 1960. Following work by Dr. Gernot Zippe at the University of Virginia between 1958 and 1960, the US government embarked on a centrifuge development program that ultimately led to the start of construction of the Gas Centrifuge Enrichment Plant in Piketon Ohio in the late 1970’s. The government program was abandoned in 1985 after investing in the construction of two of six planned process buildings, a complete supply chain for process and centrifuge parts, and the successful manufacture and brief operation of an initial complement of production machines that would have met 15 percent of the planned capacity of the constructed process buildings. A declining market for enriched uranium, a glut of uranium enrichment capacity worldwide, and the promise of a new laser based separation process factored in the decision to stop the government program. By the late 1990’s it had become evident that gas centrifugation held the best promise to produce enriched uranium at low cost. In1999, the United States Enrichment Corporation undertook an initiative to revive the best of the American centrifuge technology that had been abandoned fourteen years earlier. This is an exciting story and one that when complete will enable the United States to maintain its domestic supply and to be highly competitive in the world market for this important energy commodity. (auth)

  12. Diagnosis of wind turbine rotor system

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Mirzaei, Mahmood; Henriksen, Lars Christian

    2016-01-01

    is based on available standard sensors on wind turbines. The method can be used both on-line as well as off-line. Faults or changes in the rotor system will result in asymmetries, which can be monitored and diagnosed. This can be done by using the multi-blade coordinate transformation. Changes in the rotor......This paper describes a model free method for monitoring and fault diagnosis of the elements in a rotor system for a wind turbine. The diagnosis as well as the monitoring is done without using any model of the wind turbine and the applied controller or a description of the wind profile. The method...

  13. The Aerodynamic Performance of an Over-the-Rotor Liner With Circumferential Grooves on a High Bypass Ratio Turbofan Rotor

    Science.gov (United States)

    Bozak, Richard F.; Hughes, Christopher E.; Buckley, James

    2013-01-01

    While liners have been utilized throughout turbofan ducts to attenuate fan noise, additional attenuation is obtainable by placing an acoustic liner over-the-rotor. Previous experiments have shown significant fan performance losses when acoustic liners are installed over-the-rotor. The fan blades induce an oscillating flow in the acoustic liners which results in a performance loss near the blade tip. An over-the-rotor liner was designed with circumferential grooves between the fan blade tips and the acoustic liner to reduce the oscillating flow in the acoustic liner. An experiment was conducted in the W-8 Single-Stage Axial Compressor Facility at NASA Glenn Research Center on a 1.5 pressure ratio fan to evaluate the impact of this over-the-rotor treatment design on fan aerodynamic performance. The addition of a circumferentially grooved over-the-rotor design between the fan blades and the acoustic liner reduced the performance loss, in terms of fan adiabatic efficiency, to less than 1 percent which is within the repeatability of this experiment.

  14. Detection methods for centrifugal microfluidic platforms

    DEFF Research Database (Denmark)

    Burger, Robert; Amato, Letizia; Boisen, Anja

    2016-01-01

    Centrifugal microfluidics has attracted much interest from academia as well as industry, since it potentially offers solutions for affordable, user-friendly and portable biosensing. A wide range of so-called fluidic unit operations, e.g. mixing, metering, liquid routing, and particle separation...... for the centrifugal microfluidics platform and cover optical as well as mechanical and electrical detection principles....

  15. Plasma instability of a vacuum arc centrifuge

    International Nuclear Information System (INIS)

    Hole, M.J.; Dallaqua, R.S.; Simpson, S.W.; Del Bosco, E.

    2002-01-01

    Ever since conception of the vacuum arc centrifuge in 1980, periodic fluctuations in the ion saturation current and floating potential have been observed in Langmuir probe measurements in the rotation region of a vacuum arc centrifuge. In this work we develop a linearized theoretical model to describe a range of instabilities in the vacuum arc centrifuge plasma column, and then test the validity of the description through comparison with experiment. We conclude that the observed instability is a 'universal' instability, driven by the density gradient, in a plasma with finite conductivity

  16. Modern gas centrifuge and rarefied-gas dynamics

    International Nuclear Information System (INIS)

    Lowry, R.A.; Halle, E.V.; Wood, H.G. III.

    1981-01-01

    Today, the modern gas centrifuge appears to be the preferred method for the enrichment of the isotopes of uranium on a commercial scale. That this is the case is the result of diligent development programs pursued in this country as well as in the UK, Germany, and the Netherlands over the several decades since the end of WW II. The theoretical modelling of gas centrifuge performance has made notable advances. However, the theoretical work has been based primarily on continuum fluid dynamics considerations. Centrifuge problems involving rarefied gas dynamics considerations are discussed in this paper

  17. Subjective stress factors in centrifuge training for military aircrews.

    Science.gov (United States)

    Lin, Pei-Chun; Wang, Jenhung; Li, Shih-Chin

    2012-07-01

    This study investigates stress-influence factors perceived by military aircrews undergoing centrifuge training, which lowers the incidence of G-induced loss of consciousness (G-LOC) for the crews of high-performance combat aircrafts. We used questionnaires to assess the subjective stress-influence factors of crews undergoing centrifuge training. Professionals in aviation physiology identified attributes measuring the perceived stress induced by centrifuge training, which were segmented into three constructs by factor analysis, theory lecture, centrifuge equipment, and physical fitness. Considerable interpenetration was discernible between these factors and military rank, age, length of service, flight hours accrued, and type of aircraft piloted. Identifying and quantifying the perceived stressors experienced in human-use centrifuge training enables aviators, astronauts, and air forces of the world to determine which constructs perceptibly increase or alleviate the perceived stress undergone by trainees when partaking in centrifuge training. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Comportamiento termodinámico de rotores para compresores de tornillo con nuevo perfil. // Thermodynamic behavior of new screw compressors rotors profile.

    Directory of Open Access Journals (Sweden)

    A. Rivera Torres

    2007-01-01

    Full Text Available En el presente artículo se evalúa el comportamiento termodinámico de rotores para compresores de tornillo con nuevosperfiles, realizado con ayuda del software Scorpath 2000. Ello permite predecir con precisión el desempeño completo delcompresor y su evaluación termodinámica, así como realizar comparaciones, en igualdad de condiciones, con el trabajo deotros compresores dotados de perfiles de otros tipos.Palabras claves: Termodinámica, compresores de tornillo, rotores.______________________________________________________________________Abstract.The article displays an evaluation of the thermodynamic behavior of screw compressor rotors with new profiles, obtainedwith the help of the Scorpath 2000 software. This allows predicting precisely the operation of the compressor, as well as itsthermodynamic evaluation, under equal conditions, with the work of other compressors fitted with rotor profiles of otherkinds.Key words. Thermodinamic behaviour, screw compressors, rotors.

  19. Bifurcated equilibria in centrifugally confined plasma

    International Nuclear Information System (INIS)

    Shamim, I.; Teodorescu, C.; Guzdar, P. N.; Hassam, A. B.; Clary, R.; Ellis, R.; Lunsford, R.

    2008-01-01

    A bifurcation theory and associated computational model are developed to account for abrupt transitions observed recently on the Maryland Centrifugal eXperiment (MCX) [R. F. Ellis et al. Phys. Plasmas 8, 2057 (2001)], a supersonically rotating magnetized plasma that relies on centrifugal forces to prevent thermal expansion of plasma along the magnetic field. The observed transitions are from a well-confined, high-rotation state (HR-mode) to a lower-rotation, lesser-confined state (O-mode). A two-dimensional time-dependent magnetohydrodynamics code is used to simulate the dynamical equilibrium states of the MCX configuration. In addition to the expected viscous drag on the core plasma rotation, a momentum loss term is added that models the friction of plasma on the enhanced level of neutrals expected in the vicinity of the insulators at the throats of the magnetic mirror geometry. At small values of the external rotation drive, the plasma is not well-centrifugally confined and hence experiences the drag from near the insulators. Beyond a critical value of the external drive, the system makes an abrupt transition to a well-centrifugally confined state in which the plasma has pulled away from the end insulator plates; more effective centrifugal confinement lowers the plasma mass near the insulators allowing runaway increases in the rotation speed. The well-confined steady state is reached when the external drive is balanced by only the viscosity of the core plasma. A clear hysteresis phenomenon is shown.

  20. Centrifugal acceleration in the magnetotail lobes

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2010-02-01

    Full Text Available Combined Cluster EFW and EDI measurements have shown that cold ion outflow in the magnetospheric lobes dominates the hydrogen ion outflow from the Earth's atmosphere. The ions have too low kinetic energy to be measurable with particle instruments, at least for the typical spacecraft potential of a sunlit spacecraft in the tenuous lobe plasmas outside a few RE. The measurement technique yields both density and bulk velocity, which can be combined with magnetic field measurements to estimate the centrifugal acceleration experienced by these particles. We present a quantitative estimate of the centrifugal acceleration, and the velocity change with distance which we would expect due to centrifugal acceleration. It is found that the centrifugal acceleration is on average outward with an average value of about of 5 m s−2. This is small, but acting during long transport times and over long distances the cumulative effect is significant, while still consistent with the relatively low velocities estimated using the combination of EFW and EDI data. The centrifugal acceleration should accelerate any oxygen ions in the lobes to energies observable by particle spectrometers. The data set also put constraints on the effectiveness of any other acceleration mechanisms acting in the lobes, where the total velocity increase between 5 and 19 RE geocentric distance is less than 5 km s−1.

  1. Open Rotor Noise Shielding by Blended-Wing-Body Aircraft

    Science.gov (United States)

    Guo, Yueping; Czech, Michael J.; Thomas, Russell H.

    2015-01-01

    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.

  2. Condition assessment of over 250 turbine and generator rotors

    International Nuclear Information System (INIS)

    McCann, D.R.; Jhansale, H.R.

    1990-01-01

    Results of condition assessment studies on 259 turbine and generator rotors following bore inspections are presented. The rotors were manufactured by Allis-Chalmers, General Electric and Westinghouse. Methodologies and criteria used for nondestructive inspections, condition assessment and life extension procedures are described. Several trends are observed and some interesting conclusions offered. Essentially about 9.3% of the rotors evaluated required life extensions via overbore/bottlebore to remove harmful flaws, and/or revised cold start procedures to reduce thermal stresses. None of the rotors was condemned. Based on these studies, it is concluded that all rotors from units larger than 10 MW should be periodically inspected and their condition assessed on a case by case basis for continued reliable service

  3. Acoustic Characterization of a Multi-Rotor Unmanned Aircraft

    Science.gov (United States)

    Feight, Jordan; Gaeta, Richard; Jacob, Jamey

    2017-11-01

    In this study, the noise produced by a small multi-rotor rotary wing aircraft, or drone, is measured and characterized. The aircraft is tested in different configurations and environments to investigate specific parameters and how they affect the acoustic signature of the system. The parameters include rotor RPM, the number of rotors, distance and angle of microphone array from the noise source, and the ambient environment. The testing environments include an anechoic chamber for an idealized setting and both indoor and outdoor settings to represent real world conditions. PIV measurements are conducted to link the downwash and vortical flow structures from the rotors with the noise generation. The significant factors that arise from this study are the operational state of the aircraft and the microphone location (or the directivity of the noise source). The directivity in the rotor plane was shown to be omni-directional, regardless of the varying parameters. The tonal noise dominates the low to mid frequencies while the broadband noise dominates the higher frequencies. The fundamental characteristics of the acoustic signature appear to be invariant to the number of rotors. Flight maneuvers of the aircraft also significantly impact the tonal content in the acoustic signature.

  4. DESIGN EVALUATIONS OF DOUBLE ROTOR SWITCHED RELUCTANCE MACHINE

    Directory of Open Access Journals (Sweden)

    C.V. ARAVIND

    2016-02-01

    Full Text Available The absence of magnets makes the reluctance machine typical for low cogging operations with the torque depending on the stator rotor interaction area. The air gap between stator pole and rotor pole gives a huge effect on the reluctance variation. The primitive double rotor switched reluctance machine lags to improvise the effect of the ripple value though the torque density is higher compared to conventional machines. An optimised circular hole position and dimensioned in the stator pole of lowers the torque ripple and reduce the acoustic noise as presented in this paper. A comparative evaluation of the conventional double rotor machine with this improved structure is done through numerical design and evaluations for the same sizing. It is found that the motor constant square density. It is found that the double rotor switched reluctance machine is improved by 140% to conventional machine.

  5. SMART wind turbine rotor. Design and field test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.

  6. Surface-Enhanced Raman Spectroscopy Integrated Centrifugal Microfluidics Platform

    DEFF Research Database (Denmark)

    Durucan, Onur

    This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques and minia......This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques...... dense array of NP structures. Furthermore, the wicking assisted nanofiltration procedure was accomplished in centrifugal microfluidics platform and as a result additional sample purification was achieved through the centrifugation process. In this way, the Au coated NP substrate was utilized...

  7. Centrifugal potential energy : an astounding renewable energy concept

    Energy Technology Data Exchange (ETDEWEB)

    Oduniyi, I.A. [Aled Conglomerate Nigeria Ltd., Lagos (Nigeria)

    2010-07-01

    A new energy concept known as centrifugal potential energy was discussed. This new energy concept is capable of increasing the pressure, temperature and enthalpy of a fluid, without having to apply work or heat transfer to the fluid. It occurs through a change in the centrifugal potential energy of the flowing fluid in a rotating frame of reference or a centrifugal force field, where work is performed internally by the centrifugal weight of the fluid. This energy concept has resulted in new energy equations, such as the Rotational Frame Bernoulli's Equation for liquids and the Rotational Frame Steady-Flow Energy Equation for gases. Applications of these equations have been incorporated into the design of centrifugal field pumps and compressors. Rather than compressing a fluid with a physical load transfer, these devices can compress a fluid via the effect of centrifugal force applied to the object. A large amount of energy is therefore produced when this high pressure compressed working fluid expands in a turbine. When water is used as the working fluid, it could reach renewable energy densities in the range of 25-100 kJ/kg of water. When atmospheric air is used, it could reach energy densities in the range of 500-1,500 kJ/kg of air.

  8. Using a collision model to design safer wind turbine rotors for birds

    International Nuclear Information System (INIS)

    Tucker, V.A.

    1996-01-01

    A mathematical model for collisions between birds and propeller-type turbine rotors identifies the variables that can be manipulated to reduce the probability that birds will collide with the rotor. This study defines a safety index--the clearance power density--that allows rotors of different sizes and designs to be compared in terms of the amount of wind energy converted to electrical energy per bird collision. The collision model accounts for variations in wind speed during the year and shows that for model rotors with simple, one-dimensional blades, the safety index increases in proportion to rotor diameter, and variable speed rotors have higher safety indexes than constant speed rotors. The safety index can also be increased by enlarging the region near the center of the rotor hub where the blades move slowly enough for birds to avoid them. Painting the blades to make them more visible might have this effect. Model rotors with practical designs can have safety indexes an order of magnitude higher than those for model rotors typical of the constant speeds rotors in common use today. This finding suggests that redesigned rotors could have collision rates with birds perhaps an order of magnitude lower than today's rotors, with no reduction in the production of wind power. The empirical data that exist for collisions between raptors, such as hawks and eagles, and rotors are consistent with the model: the numbers of raptor carcasses found beneath large variable speed rotors, relative to the numbers found under small constant speed rotors, are in the proportions predicted by the collision model rather than in proportion to the areas swept by the rotor blades. However, uncontrolled variables associated with these data prevent a stronger claim of support for the model

  9. Enrichment technology. Dependable vendor of gas centrifuges

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Enrichment Technology is an innovative, high-tech company that develops, manufactures and installs gas centrifuges for enriching uranium. In addition, Enrichment Technology designs enrichment plants that use gas centrifuge technology. This technology offers the most efficient and cost-effective method for enriching uranium yet: high-performance, safe technology that dominates the market with a global share of 45 percent. A determining factor in Enrichment Technology's success is its mission: supplying its customers with safe, reliable technology. Production of the centrifuges requires versatile know-how and collaboration between different departments as well as interdisciplinary teams at the various sites. More than 2000 operators at 8 sites in 5 countries contribute their individual knowledge and personal skills in order to produce this exceptional technology. The head office is in Beaconsfield near London and the operational headquarters are in Almelo in the Netherlands. There are other sites in Germany (Juelich und Gronau), Great Britain (Capenhurst) as well as project sites in the USA and France. Capenhurst is where experienced engineers design new enrichment plants and organise their construction. Centrifuge components are manufactured in Almelo and Juelich, while the pipework needed to connect up the centrifuges is produced at the site in Gronau. In Juelich, highly qualified scientists in interdisciplinary teams are continuously researching ways of improving the current centrifuges. Communication between specialists in the fields of chemistry, physics and engineering forms the basis for the company's success and the key to extending this leading position in the global enrichment market. (orig.)

  10. Computations of Torque-Balanced Coaxial Rotor Flows

    Science.gov (United States)

    Yoon, Seokkwan; Chan, William M.; Pulliam, Thomas H.

    2017-01-01

    Interactional aerodynamics has been studied for counter-rotating coaxial rotors in hover. The effects of torque balancing on the performance of coaxial-rotor systems have been investigated. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, and a hybrid turbulence model. Computational results for an experimental model are compared to available data. The results for a coaxial quadcopter vehicle with and without torque balancing are discussed. Understanding interactions in coaxial-rotor flows would help improve the design of next-generation autonomous drones.

  11. The task of validation of gas-dynamic characteristics of a multistage centrifugal compressor for a natural gas booster compressor station

    Science.gov (United States)

    Danilishin, A. M.; Kozhukhov, Y. V.; Neverov, V. V.; Malev, K. G.; Mironov, Y. R.

    2017-08-01

    The aim of this work is the validation study for the numerical modeling of characteristics of a multistage centrifugal compressor for natural gas. In the research process was the analysis used grid interfaces and software systems. The result revealed discrepancies between the simulated and experimental characteristics and outlined the future work plan.

  12. Hydraulic performance of sluice gate with unloaded upstream rotor ...

    African Journals Online (AJOL)

    ... compared to the flow under rotor and weir flow conditions. The video analysis also indicated that significant perturbation exists for the rotor angular speed. The normalized perturbation intensity varied from a minimum of 8% to a maximum of 60%. Keywords: sluice gate, rotor, angular speed, video analysis, hydropower ...

  13. Numerical simulation of a hovering rotor using embedded grids

    Science.gov (United States)

    Duque, Earl-Peter N.; Srinivasan, Ganapathi R.

    1992-01-01

    The flow field for a rotor blade in hover was computed by numerically solving the compressible thin-layer Navier-Stokes equations on embedded grids. In this work, three embedded grids were used to discretize the flow field - one for the rotor blade and two to convect the rotor wake. The computations were performed at two hovering test conditions, for a two-bladed rectangular rotor of aspect ratio six. The results compare fairly with experiment and illustrates the use of embedded grids in solving helicopter type flow fields.

  14. Composite hub/metal blade compressor rotor

    Science.gov (United States)

    Yao, S.

    1978-01-01

    A low cost compressor rotor was designed and fabricated for a small jet engine. The rotor hub and blade keepers were compression molded with graphite epoxy. Each pair of metallic blades was held in the hub by a keeper. All keepers were locked in the hub with circumferential windings. Feasibility of fabrication was demonstrated in this program.

  15. Flocking of quad-rotor UAVs with fuzzy control.

    Science.gov (United States)

    Mao, Xiang; Zhang, Hongbin; Wang, Yanhui

    2018-03-01

    This paper investigates the flocking problem of quad-rotor UAVs. Considering the actual situations, we derived a new simplified quad-rotor UAV model which is more reasonable. Based on the model, the T-S fuzzy model of attitude dynamic equation and the corresponding T-S fuzzy feedback controller are discussed. By introducing a double-loop control construction, we adjust its attitude to realize the position control. Then a flocking algorithm is proposed to achieve the flocking of the quad-rotor UAVs. Compared with the flocking algorithm of the mass point model, we dealt with the collision problem of the quad-rotor UAVs. In order to improve the airspace utilization, a more compact configuration called quasi e-lattice is constructed to guarantee the compact flight of the quad-rotor UAVs. Finally, numerical simulations are provided to illustrate the effectiveness of the obtained theoretical results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Philosophy of weld repair of steam turbine rotors

    International Nuclear Information System (INIS)

    Bertilsson, J.E.; Scarlin, R.B.; Faber, G.

    1987-01-01

    Weld repair of a cracked rotor should never be limited to simply grinding out cracks and filling up with weld metal. It is essential to know where and why a crack appeared. In several instances in the past weld repairs have been made of fatigue cracked rotors which have been placed successfully into service. Prolonged further operation can be assured only if the cause of cracking is known and if the design weakness demonstrated in this way is eliminated. However, in cases where creep cracking is encountered or where the creep life is approaching exhaustion, a local repair even if achieved crack-free, cannot ensure successful long-term further operation. The decision must be made to replace a major section of the rotor. The paper describes weld repair trials performed on an HP rotor after 100,000 hours of operation. The results demonstrate the feasibility of making weld repairs of low-toughness CrMoV rotors according to this philosophy

  17. Aerodynamic optimization of wind turbine rotor using CFD/AD method

    Science.gov (United States)

    Cao, Jiufa; Zhu, Weijun; Wang, Tongguang; Ke, Shitang

    2018-05-01

    The current work describes a novel technique for wind turbine rotor optimization. The aerodynamic design and optimization of wind turbine rotor can be achieved with different methods, such as the semi-empirical engineering methods and more accurate computational fluid dynamic (CFD) method. The CFD method often provides more detailed aerodynamics features during the design process. However, high computational cost limits the application, especially for rotor optimization purpose. In this paper, a CFD-based actuator disc (AD) model is used to represent turbulent flow over a wind turbine rotor. The rotor is modeled as a permeable disc of equivalent area where the forces from the blades are distributed on the circular disc. The AD model is coupled with a Reynolds Averaged Navier-Stokes (RANS) solver such that the thrust and power are simulated. The design variables are the shape parameters comprising the chord, the twist and the relative thickness of the wind turbine rotor blade. The comparative aerodynamic performance is analyzed between the original and optimized reference wind turbine rotor. The results showed that the optimization framework can be effectively and accurately utilized in enhancing the aerodynamic performance of the wind turbine rotor.

  18. Effects of increasing tip velocity on wind turbine rotor design.

    Energy Technology Data Exchange (ETDEWEB)

    Resor, Brian Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Richards, Phillip William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-05-01

    A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

  19. Plant and animal accommodation for Space Station Laboratory

    Science.gov (United States)

    Olson, Richard L.; Gustan, Edith A.; Wiley, Lowell F.

    1986-01-01

    An extended study has been conducted with the goals of defining and analyzing relevant parameters and significant tradeoffs for the accommodation of nonhuman research aboard the NASA Space Station, as well as conducting tradeoff analyses for orbital reconfiguring or reoutfitting of the laboratory facility and developing laboratory designs and program plans. The two items exerting the greatest influence on nonhuman life sciences research were identified as the centrifuge and the specimen environmental control and life support system; both should be installed on the ground rather than in orbit.

  20. THEORY OF MUM FOR METAL SPHERICAL ROTOR WITH CONTACTLESS SUSPENSION

    Institute of Scientific and Technical Information of China (English)

    He Xiaoxia; Gao Zhongyu; Wang Yongliang

    2004-01-01

    Based on the motion equations of an unbalanced spherical rotor with contactless suspension,three methods of MUM (mass unbalance measurement) are put forward to measure the total mass unbalance,radical mass unbalance and radical mass unbalance of the rotor.Total mass unbalance is obtained when the unbalanced rotor plays as a simple pendulum in static situation.The pendulant period and pendulant midpoint indicate magnitude and direction of total mass unbalance of the rotor respectively.Analysis of the motion equations by using the averaging method yields that the rotor will do a special side oscillation when an auxiliary system makes the rotor spin about its pole axis which is orientating toward the local vertical.The radical mass unbalance can be obtained by building a proper displacement sensor to sense the amplitude of the side oscillation.Necessary analysis of the motion equations also shows that when the rotor spins at a small angular velocity and the rotary axis is perpendicular to the vertical,the pole axis of the rotor will precess slowly about the vertical by virtue of the axial mass unbalance.The axial mass unbalance can be estimated from the time history of the spin vector of the rotor.Finally,measurement precision of the three methods is compared and how the external torque affects the measurement precision for the three methods are examined.

  1. Evaluation of the useful life of steam turbine rotors; Evaluacion de vida util de rotores de turbinas de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Carnero Parra, Antonio; Garcia Illescas, Rafael; Kubiak Szyszka, Janusz [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    1999-07-01

    This article presents the methodology applied by the Management of Turbomachinery of the Institute of Investigaciones Electricas (IIE), for the evaluation of the remaining useful life of steam turbine rotors in the phase of initiation of fissures. The evaluation of the remaining useful life of turbines, will reveal the real state of health of the rotor and will serve as a base for the future decision making that guarantees their structural integrity. [Spanish] El presentes articulo presenta la metodologia aplicada por la Gerencia de Turbomaquinaria del Instituto de Investigaciones Electricas (IIE), para la evaluacion de la vida util remanente de rotores de turbinas de vapor en la fase de iniciacion de fisuras. La evaluacion de la vida util de turbinas, revelar el estado real de salud del rotor y servira de base para la toma de decisiones futuras que garanticen su integridad estructural.

  2. Analytical methods in rotor dynamics

    CERN Document Server

    Dimarogonas, Andrew D; Chondros, Thomas G

    2013-01-01

    The design and construction of rotating machinery operating at supercritical speeds was, in the 1920s, an event of revolutionary importance for the then new branch of dynamics known as rotor dynamics. In the 1960s, another revolution occurred: In less than a decade, imposed by operational and economic needs, an increase in the power of turbomachinery by one order of magnitude took place. Dynamic analysis of complex rotor forms became a necessity, while the importance of approximate methods for dynamic analysis was stressed. Finally, the emergence of fracture mechanics, as a new branch of applied mechanics, provided analytical tools to investigate crack influence on the dynamic behavior of rotors. The scope of this book is based on all these developments. No topics related to the well-known classical problems are included, rather the book deals exclusively with modern high-power turbomachinery.

  3. Detection of outliers in gas centrifuge experimental data

    International Nuclear Information System (INIS)

    Andrade, Monica C.V.; Nascimento, Claudio A.O.

    2005-01-01

    Isotope separation in a gas centrifuge is a very complex process. Development and optimization of a gas centrifuge requires experimentation. These data contain experimental errors, and like other experimental data, there may be some gross errors, also known as outliers. The detection of outliers in gas centrifuge experimental data may be quite complicated because there is not enough repetition for precise statistical determination and the physical equations may be applied only on the control of the mass flows. Moreover, the concentrations are poorly predicted by phenomenological models. This paper presents the application of a three-layer feed-forward neural network to the detection of outliers in a very extensive experiment for the analysis of the separation performance of a gas centrifuge. (author)

  4. Material Optimization of Carbon/Epoxy Composite Rotor for Spacecraft Energy Storage

    Directory of Open Access Journals (Sweden)

    R Varatharajoo

    2016-09-01

    Full Text Available An investigation to optimize the carbon/epoxy composite rotor is performed for the spacecraft energy storage application. A highspeed multi-layer rotor design is proposed and different composite materials are tested to achieve the most suitable recipe. First, the analytical rotor evaluation is performed to establish a reliable numerical rotor model. Then, finite element analysis (FEA is employed in order to optimise the multi-layer composite rotor design. Subsequently, the modal analysis is carried out to determine the rotor natural frequencies and mode shapes for a safe operational regime below 50, 000 rpm.

  5. Quantification of platelets obtained by different centrifugation protocols in SHR rats

    OpenAIRE

    João Alberto Yazigi Junior; João Baptista Gomes dos Santos; Bruno Rodrigues Xavier; Marcela Fernandes; Sandra Gomes Valente; Vilnei Mattiolli Leite

    2015-01-01

    ABSTRACT OBJECTIVE: To quantify the platelet concentration in the blood of SHR rats, by means of different centrifugation protocols, and to evaluate what the most effective method for obtaining platelets is. METHODS: We used 40 male rats of the isogenic SHR lineage. The animals were divided into three groups: control, using whole blood without centrifugation; single centrifugation, using whole blood subjected to a single centrifugation at 200 × gand 400 × g; and double centrifugation, usin...

  6. Rotor Rolling over a Water-Lubricated Bearing

    Science.gov (United States)

    Shatokhin, V. F.

    2018-02-01

    The article presents the results of studying the effect of forces associated with secondary damping coefficients (gyroscopic forces) on the development of asynchronous rolling of the rotor over a water-lubricated bearing. The damping forces act against the background of other exciting forces in the rotor-supports system, in particular, the exciting forces of contact interaction between the rotor and bearing. The article considers a rotor resting on supports rubbing against the bearing and the occurrence of self-excited vibration in the form of asynchronous roll-over. The rotor supports are made in the form of plain-type water-lubricated bearings. The plain-type bearing's lubrication stiffness and damping forces are determined using the wellknown algorithms taking into account the physical properties of water serving as lubrication of the bearing. The bearing sliding pair is composed of refractory materials. The lubrication layer in such bearings is thinner than that used in oil-lubricated bearings with white metal lining, and there is no white metal layer in waterlubricated bearings. In case of possible deviations from normal operation of the installation, the rotating rotor comes into direct contact with the liner's rigid body. Unsteady vibrations are modeled using a specially developed software package for calculating the vibration of rotors that rub against the turbine (pump) stator elements. The stiffness of the bearing liner with the stator support structure is specified by a dependence in the force-deformation coordinate axes. In modeling the effect of damping forces, the time moment corresponding to the onset of asynchronous rolling-over with growing vibration amplitudes is used as the assessment criterion. With a longer period of time taken for the rolling-over to develop, it becomes possible to take the necessary measures in response to actuation of the equipment set safety system, which require certain time for implementing them. It is shown that the

  7. Development of centrifugal contactor for FBR fuel reprocessing

    International Nuclear Information System (INIS)

    Washiya, Tadahiro; Takeuchi, Masayuki; Suganuma, Takashi; Aose, Shinichi; Ogino, Hideki

    2003-01-01

    In the Feasibility Study on Commercialized Fast Reactor Cycle Systems, the aqueous reprocessing technology is nominated as a candidate for future reprocessing system, which supposes to apply a centrifugal contactor in the extraction process. For the reprocessing plant, the centrifugal contactor has great advantages such as reducing solvent degradation, improving of equipment utilization rate, compact designing of equipment layout and critical safety domination. From these advantages, the centrifugal contactor is crucial equipment in the aqueous reprocessing process. Since 1985, JNC has been developing the centrifugal contactor. The single unit development has been accomplished and basic characteristics such as extraction performance, fluidic performance and remote maintenance performance have been determined. A durability test has been conducted for high longevity, with consideration given to the nitric acid mist and estimation of the equipment lifetime. System test equipment with centrifugal contactors of engineering scale was installed, and uranium test was conducted. Up to now, a standard flow sheet test in the extraction process and mal-operation test assuming the one stage shutdown condition have been performed. (author)

  8. Centrifuge modelling - migration of radionuclides from engineered trenches

    International Nuclear Information System (INIS)

    Dean, E.T.R.; Schofield, A.N.

    1991-12-01

    This report provides an overview of some centrifuge small-scale physical model tests and 1g experimental and theoretical work relating to the sub-surface migration of a model pollutant (sodium chloride) from a notional prototype surface landfill of width 25 metres and depth 3 metres cut into a 20 metre deep layer of nominally uniform soil overlying a more permeable base layer. An introduction is given to the application of geotechnical centrifuge modelling techniques to pollutant migration studies. Experiments performed at 1/100th scale using the Cambridge 10 metre diameter Geotechnical Beam Centrifuge simulating transport through silt over prototype time periods of around 35 years, are summarised. Comparisons of data with calculations using early versions of the POLLUTE and MIGRATE computer codes are presented. An experiment at 1/400th scale using the new Cambridge Geotechnical Drum Centrifuge, involving transport through clay over a prototype time period of around 1000 years, is described. Potential future uses of centrifuge modelling techniques to simulate long-term migration through more complex hydrological environments are also discussed. (author)

  9. Material Optimization of Carbon/Epoxy Composite Rotor for Spacecraft Energy Storage

    OpenAIRE

    R Varatharajoo; M Salit; G Hong

    2016-01-01

    An investigation to optimize the carbon/epoxy composite rotor is performed for the spacecraft energy storage application. A highspeed multi-layer rotor design is proposed and different composite materials are tested to achieve the most suitable recipe. First, the analytical rotor evaluation is performed to establish a reliable numerical rotor model. Then, finite element analysis (FEA) is employed in order to optimise the multi-layer composite rotor design. Subsequently, the modal analysis is ...

  10. DESARROLLO DE UN INSTRUMENTO VIRTUAL PARA EL BALANCEAMIENTO DINAMICO DE ROTORES DEVELOPMENT OF A VIRTUAL INSTRUMENT FOR ROTOR DYNAMICS BALANCING

    OpenAIRE

    Edgar Estupiñán P; César San Martin; Luis Canales M

    2006-01-01

    El presente trabajo resalta la importancia del balanceamiento de rotores como principal herramienta dentro de las tareas correctivas del mantenimiento predictivo, con el fin de que se reduzcan las vibraciones y sus efectos secundarios en las máquinas rotatorias. Se ha desarrollado un instrumento virtual para el balanceamiento dinámico de rotores, basado en un sistema de adquisición de datos (SAD). El instrumento tiene incluidos todos los cálculos necesarios para balancear rotores en un plano ...

  11. Remaining life assessment of a high pressure turbine rotor

    International Nuclear Information System (INIS)

    Nguyen, Ninh; Little, Alfie

    2012-01-01

    This paper describes finite element and fracture mechanics based modelling work that provides a useful tool for evaluation of the remaining life of a high pressure (HP) steam turbine rotor that had experienced thermal fatigue cracking. An axis-symmetrical model of a HP rotor was constructed. Steam temperature, pressure and rotor speed data from start ups and shut downs were used for the thermal and stress analysis. Operating history and inspection records were used to benchmark the damage experienced by the rotor. Fracture mechanics crack growth analysis was carried out to evaluate the remaining life of the rotor under themal cyclic loading conditions. The work confirmed that the fracture mechanics approach in conjunction with finite element modelling provides a useful tool for assessing the remaining life of high temperature components in power plants.

  12. CFD simulation of rotor aerodynamic performance when using additional surface structure array

    Science.gov (United States)

    Wang, Bing; Kong, Deyi

    2017-10-01

    The present work analyses the aerodynamic performance of the rotor with additional surface structure array in an attempt to maximize its performance in hover flight. The unstructured grids and the Reynolds Average Navier-Stokes equations were used to calculate the performance of the prototype rotor and the rotor with additional surface structure array in the air. The computational fluid dynamics software FLUENT was used to simulate the thrust of the rotors. The results of the calculations are in reasonable agreement with experimental data, which shows that the calculation model used in this work is useful in simulating the performance of the rotor with additional surface structure array. With this theoretical calculation model, the thrusts of the rotors with arrays of surface structure in three different shapes were calculated. According to the simulation results and the experimental data, the rotor with triangle surface structure array has better aerodynamic performance than the other rotors. In contrast with the prototype rotor, the thrust of the rotor with triangle surface structure array increases by 5.2% at the operating rotating speed of 3000r/min, and the additional triangle surface structure array has almost no influence on the efficiency of the rotor.

  13. Experimental Investigation of a Helicopter Rotor Hub Flow

    Science.gov (United States)

    Reich, David

    The rotor hub system is by far the largest contributor to helicopter parasite drag and a barrier to increasing helicopter forward-flight speed and range. Additionally, the hub sheds undesirable vibration- and instability-inducing unsteady flow over the empennage. The challenges associated with rotor hub flows are discussed, including bluff body drag, interactional aerodynamics, and the effect of the turbulent hub wake on the helicopter empennage. This study was conducted in three phases to quantify model-scale rotor hub flows in water tunnels at The Pennsylvania State University Applied research lab. The first phase investigated scaling and component interaction effects on a 1:17 scale rotor hub model in the 12-inch diameter water tunnel. Effects of Reynolds number, advance ratio, and hub geometry configuration on the drag and wake shed from the rotor hub were quantified using load cell measurements and particle-image velocimetry (PIV). The second phase focused on flow visualization and measurement on a rotor hub and rotor hub/pylon geometry in the 12-inch diameter water tunnel. Stereo PIV was conducted in a cross plane downstream of the hub and flow visualization was conducted using oil paint and fluorescent dye. The third phase concentrated on high accuracy load measurement and prediction up to full-scale Reynolds number on a 1:4.25 scale model in the 48-inch diameter water tunnel. Measurements include 6 degree of freedom loads on the hub and two-component laser-Doppler velocimetry in the wake. Finally, results and conclusions are discussed, followed by recommendations for future investigations.

  14. Centrifugal microfluidic platforms: advanced unit operations and applications.

    Science.gov (United States)

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-07

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  15. Modelling of Rotor-gas bearings for Feedback Controller Design

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane; Niemann, Hans Henrik

    2014-01-01

    Controllable rotor-gas bearings are popular oering adaptability, high speed operation, low friction and clean operation. Rotor-gas bearings are however highly sensitive to disturbances due to the low friction of the injected gas. These undesirable damping properties call for controllers, which ca...... and are shown to accurately describe the dynamical behaviour of the rotor-gas bearing. Design of a controller using the identied models is treated and experiments verify the improvement of the damping properties of the rotor-gas bearing.......Controllable rotor-gas bearings are popular oering adaptability, high speed operation, low friction and clean operation. Rotor-gas bearings are however highly sensitive to disturbances due to the low friction of the injected gas. These undesirable damping properties call for controllers, which can...... be designed from suitable models describing the relation from actuator input to measured shaft position. Current state of the art models of controllable gas bearings however do not provide such relation, which calls for alternative strategies. The present contribution discusses the challenges for feedback...

  16. Forces on Centrifugal Pump Impellers

    OpenAIRE

    Jery, Belgacem; Brennen, Christopher E.; Caughey, Thomas K.; Acosta, Allan

    1985-01-01

    Forces are exerted on a centrifugal pump impeller, due to the asymmetry of the flow caused by the volute of diffuser, and to the motion of the center of the impeller whenever the shaft whirls. Recent work in the measurement of these forces as a function of the whirl speed to shaft speed ratio, and the influence of the volute, is reviewed. These forces may be decomposed into a steady force, a static stiffness matrix, a damping matrix and an inertia matrix. It is shown that for centrifugal p...

  17. Quantification of platelets obtained by different centrifugation protocols in SHR rats

    Directory of Open Access Journals (Sweden)

    João Alberto Yazigi Junior

    2015-12-01

    Full Text Available ABSTRACT OBJECTIVE: To quantify the platelet concentration in the blood of SHR rats, by means of different centrifugation protocols, and to evaluate what the most effective method for obtaining platelets is. METHODS: We used 40 male rats of the isogenic SHR lineage. The animals were divided into three groups: control, using whole blood without centrifugation; single centrifugation, using whole blood subjected to a single centrifugation at 200 × gand 400 × g; and double centrifugation, using whole blood subjected one centrifugation at different rotations, followed by collection of whole plasma subjected to another centrifugation at different rotations: 200 × g+ 200 ×g; 200 × g+ 400 × g; 200 × g+ 800 × g; 400 ×g+ 400 × g; 400 × g+ 800 × g. Samples of 3 ml of blood were drawn from each animal by means of cardiac puncture. The blood was stored in Vacutainer collection tubes containing 3.2% sodium citrate. The blood from the control group animals was analyzed without being subjected to centrifugation. After the blood from the other groups of animals had been subjected to centrifugation, the whole plasma was collected and subjected to platelet counting in the lower third of the sample. RESULTS: We obtained greatest platelet enrichment in the subgroup with two centrifugations comprising 400 × gfor 10 min + 400 ×gfor 10 min, in which the mean platelet concentration was 11.30 times higher than that of the control group. CONCLUSION: It was possible to obtain a high platelet concentration using viable simple techniques, by means of centrifugation of whole blood and use of commonly used materials. The most effective method for obtaining platelet concentrate was found in samples subjected to two centrifugations.

  18. Numerical analysis of flow in a centrifugal compressor with circumferential grooves: influence of groove location and number on flow instability

    Science.gov (United States)

    Chen, X.; Qin, G.; Ai, Z.; Ji, Y.

    2017-08-01

    As an effective and economic method for flow range enhancement, circumferential groove casing treatment (CGCT) is widely used to increase the stall margin of compressors. Different from traditional grooved casing treatments, in which the grooves are always located over the rotor in both axial and radial compressors, one or several circumferential grooves are located along the shroud side of the diffuser passage in this paper. Numerical investigations were conducted to predict the performance of a low flow rate centrifugal compressor with CGCT in diffuser. Computational fluid dynamics (CFD) analysis is performed under stage environment in order to find the optimum location of the circumferential casing groove in consideration of stall margin enhancement and efficiency gain at design point, and the impact of groove number to the effect of this grooved casing treatment configuration in enhancing the stall margin of the compressor stage is studied. The results indicate that the centrifugal compressor with circumferential groove in vaned diffuser can obtain obvious improvement in the stall margin with sacrificing design efficiency a little. Efforts were made to study blade level flow mechanisms to determine how the CGCT impacts the compressor’s stall margin (SM) and performance. The flow structures in the passage, the tip gap, and the grooves as well as their mutual interactions were plotted and analysed.

  19. Centrifuge modelling of contaminant transport processes

    OpenAIRE

    Culligan, P. J.; Savvidou, C.; Barry, D. A.

    1996-01-01

    Over the past decade, research workers have started to investigate problems of subsurface contaminant transport through physical modelling on a geotechnical centrifuge. A major advantage of this apparatus is its ability to model complex natural systems in a controlled laboratory environment In this paper, we discusses the principles and scaling laws related to the centrifugal modelling of contaminant transport, and presents four examples of recent work that has bee...

  20. Mach number scaling of helicopter rotor blade/vortex interaction noise

    Science.gov (United States)

    Leighton, Kenneth P.; Harris, Wesley L.

    1985-01-01

    A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.

  1. Piezoelectric actuation of helicopter rotor blades

    Science.gov (United States)

    Lieven, Nicholas A. J.

    2001-07-01

    The work presented in this paper is concerned with the application of embedded piezo-electric actuators in model helicopter rotor blades. The paper outlines techniques to define the optimal location of actuators to excite particular modes of vibration whilst the blade is rotating. Using composite blades the distribution of strain energy is defined using a Finite Element model with imposed rotor-dynamic and aerodynamics loads. The loads are specified through strip theory to determine the position of maximum bending moment and thus the optimal location of the embedded actuators. The effectiveness of the technique is demonstrated on a 1/4 scale fixed cyclic pitch rotor head. Measurement of the blade displacement is achieved by using strain gauges. In addition a redundant piezo-electric actuator is used to measure the blades' response characteristics. The addition of piezo-electric devices in this application has been shown to exhibit adverse aeroelastic effects, such as counter mass balancing and increased drag. Methods to minimise these effects are suggested. The outcome of the paper is a method for defining the location and orientation of piezo-electric devices in rotor-dynamic applications.

  2. Weather-power station. Solar energy, wind energy, water energy

    Energy Technology Data Exchange (ETDEWEB)

    Schatta, M

    1975-10-02

    A combined power station is described, which enables one to convert solar energy and wind energy into other forms of energy. The plant consists of a water-filled boiler, in which solar energy heats the water by concentration, solar cells, and finally wind rotors, which transform wind energy into electrical energy. The transformed energy is partly available as steam heat, partly as mechanical or electrical energy. The plant can be used for supplying heating systems or electrolysis equipment. Finally, by incorporating suitable motors, a mobile version of the system can be produced.

  3. Inclusion Compound Based Approach to Forming Arrays of Artificial Dipolar Molecular Rotors: A Search for Optimal Rotor Structures

    Czech Academy of Sciences Publication Activity Database

    Kobr, L.; Zhao, K.; Shen, X.; Shoemaker, R. K.; Rogers, C. T.; Michl, Josef

    2013-01-01

    Roč. 25, č. 3 (2013), s. 443-448 ISSN 0935-9648 EU Projects: European Commission(XE) 227756 - DIPOLAR ROTOR ARRAY Grant - others:NSF(US) CHE 0848663 Institutional support: RVO:61388963 Keywords : inclusion compounds * molecular rotors * ferroelectricity * two-dimensional arrays Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 15.409, year: 2013

  4. Production of intermediate energy beams by high speed rotors

    International Nuclear Information System (INIS)

    Nutt, C.W.; Bale, T.J.; Cosgrove, P.; Kirby, M.J.

    1975-01-01

    A rotor apparatus intended for the study of gas/surface interaction processes is presently nearing completion. The carbon fiber rotors under consideration are constructed with shapes derived from long thin cylindrical rods oriented with the longest axis in a horizontal plane, and spun in a horizontal plane about an axis which is perpendicular to the long axis and passes through the mid-point of the cylinder. The beam formation processes are discussed and rotor diagrams presented. Performance of these types of high speed rotor show them to have a very important future as sources of intermediate energy molecular beams

  5. Determinación de perfiles para rotores de compresores de tornillo con perfil simétrico. // Profiles determination for screw compressors rotors with symmetrical profile.

    Directory of Open Access Journals (Sweden)

    A. Rivera Torres

    2005-05-01

    Full Text Available Los compresores rotativos de tornillo, constituyeron el acontecimiento histórico más relevante del siglo XX en el campodel proceso de compresión. Dentro de los elementos fundamentales de los compresores rotativos de tornillo se encuentranlos rotores, los cuales tienen lóbulos o canales helicoidales con perfiles con formas simétricas o asimétricas.En este articulo se presenta un método para el diseño de los perfiles de rotores para compresores o bombas de tornillo, conperfil circular, a partir del empleo de una curva de cuarto orden y la condición de conjugación de los engranajes, sin incluirel empleo de cicloides en la generación de dichos perfiles, lográndose características similares a la de los perfiles SRM.Palabras claves: Rotores, rotor macho, rotor hembra._____________________________________________________________________________Abstract:Rotary screw compressors constitute the most relevant historic event of the twentieth century in the field of the process ofcompression. The most fundamental elements of rotary screw compressors are the rotors, which have helical lobes or canalsand symmetrical or asymmetrical profiles.This paper presents a method of circular profile design for screw compressors or pumps, based on fourth order curves andthe conjugation of gears, which does not include the application of cycloids in profile generation but have similarcharacteristics to SRM profiles.Key words: rotors, male rotor, female rotor.

  6. Direct Monte-Carlo Siumulations In a Gas Centrifuge

    National Research Council Canada - National Science Library

    Roblin, Philippe

    2000-01-01

    The study is related to the centrifugation process for isotope separation. In a gas centrifuge, the major part of the rotating gas is modeled by fluid equations with this gas flow described by suitable Navier-Stokes...

  7. Interlaminar stress analysis for carbon/epoxy composite space rotors

    Directory of Open Access Journals (Sweden)

    C Lian

    2016-09-01

    Full Text Available This paper extends the previous works that appears in the International Journal of Multiphysics, Varatharajoo, Salit and Goh (2010. An approach incorporating cohesive zone modelling technique is incorporated into an optimized flywheel to properly simulate the stresses at the layer interfaces. Investigation on several fiber stacking sequences are also conducted to demonstrate the effect of fiber orientations on the overall rotor stress as well as the interface stress behaviour. The results demonstrated that the rotor interlaminar stresses are within the rotor materials' ultimate strength and that the fiber direction with a combination of 45°/-45°/0° offers the best triple layer rotor among the few combinations selected for this analysis. It was shown that the present approach can facilitate also further investigation on the interface stress behaviour of rotating rotors.

  8. Applications of Fluorogens with Rotor Structures in Solar Cells.

    Science.gov (United States)

    Ong, Kok-Haw; Liu, Bin

    2017-05-29

    Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.

  9. Dynamic Characteristics of Flow Induced Vibration in a Rotor-Seal System

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2011-01-01

    Full Text Available Flow induced vibration is an important factor affecting the performance of the rotor-seal system. From the point of view of flow induced vibration, the nonlinear models of the rotor-seal system are presented for the analysis of the fluid force, which is induced by the interaction between the unstable fluid flow in the seal and the vibrating rotor. The nonlinear characteristics of flow induced vibration in the rotor-seal system are analyzed, and the nonlinear phenomena in the unbalanced rotor-seal system are investigated using the nonlinear models. Various nonlinear phenomena of flow induced vibration in the rotor-seal system, such as synchronization phenomenon and amplitude mutation, are reproduced.

  10. Manufacture of large monoblock LP rotor forgings and their quality

    International Nuclear Information System (INIS)

    Suzuki, Akira; Kinoshita, Shushi; Kohno, Masayoshi; Miyakawa, Mutsuhiro; Kikuchi, Hideo

    1986-01-01

    This paper describes the manufacturing and the quality of large monoblock low pressure rotors forged from 360 ton and 420 ton ingots. To obtain good and homogenous mechanical properties throughout a rotor, a computer was used to determine the heat treatment conditions. It was found that the technique was very effective at predicting mechanical properties of a monoblock rotor. Mechanical properties including the fracture toughness and fatigue crack propagation characteristics of monoblock rotor forgings proved satisfactory. (author)

  11. Turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Norbut, T G.J.

    1975-10-09

    The feet of rotor blades, with their trapezoidal or dove-tailed cross-sections are, as usual, fastened in corresponding grooves in the drive shaft. The juntion of the groove flank, which, on its outer end, runs radially to the axis of the drive shaft, to the cylinder surface of the drive shaft between the grooves, therefore vertically to the first level takes place not relatively sharp-edged or with only little edge radius, but rather takes place in increasing radii which vary throughout the circumference. The touching of surfaces with the radial blade foot which exits the groove can thus be tight or at a normal assembly tolerance. Avoidance or reduction of load-tension concentrations and of unbalanced load distribution on the foot anchors of the rotor blades is possible. Ceramic and other brittle material can be used besides monolithic materials, and also fiber-reinforced metallic or inorganic and organic composite materials such as boron/aluminum, graphite/epoxy, 'Borsic'-titanium, as well as other organic polymer materials like silicon resin.

  12. Gas centrifuge uranium enrichment programme in the United States of America

    International Nuclear Information System (INIS)

    Gestson, D.K.

    1983-01-01

    The technology of uranium enrichment using the gas centrifuge is fully proven as a result of over twenty years of research. The high performance of the centrifuge has been confirmed, and its reliability established, through detailed evaluation of a series of centrifuge designs. The baseline centrifuge for the Gas Centrifuge Enrichment Plant (GCEP) is now in commercial production by three qualified manufacturers. It will be ready for installation in GCEP on schedule. The GCEP construction is also on schedule, with two process buildings expected to start operation in 1988 and 1989. Development and demonstration of the Set IV advanced gas centrifuge is under way and it is expected to be ready for installation in Process Building 3 in early 1989. (author)

  13. Rotor for processing liquids using movable capillary tubes

    Science.gov (United States)

    Johnson, W.F.; Burtis, C.A.; Walker, W.A.

    1987-07-17

    A rotor assembly for processing liquids, especially whole blood samples, is disclosed. The assembly includes apparatus for separating non-liquid components of whole blood samples from liquid components, apparatus for diluting the separated liquid component with a diluent and apparatus for transferring the diluted sample to an external apparatus for analysis. The rotor assembly employs several movable capillary tubes to handle the sample and diluents. A method for using the rotor assembly to process liquids is also described. 5 figs.

  14. Numerical simulation of the unsteady progress in centrifuge

    International Nuclear Information System (INIS)

    Wei Chunlin; Zeng Shi

    2006-01-01

    Unsteady flow equations for the centrifuge are solved on a staggered grid by a finite volume method. The transient process that the axial flow in the centrifuge is established under a steady thermal driving. It can be concluded that the influence which causes the perturbing fluid is different at the beginning and the end of the processing. The flow is caused by the imbalance of temperature which turns to be caused by the imbalance of pressure. The results show that the numerical simulation is effective at the unsteady fluid in a centrifuge. (authors)

  15. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    Science.gov (United States)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2017-01-01

    A centrifugal compressor research effort conducted by United Technologies Research Center under NASA Research Announcement NNC08CB03C is documented. The objectives were to identify key technical barriers to advancing the aerodynamic performance of high-efficiency, high work factor, compact centrifugal compressor aft-stages for turboshaft engines; to acquire measurements needed to overcome the technical barriers and inform future designs; to design, fabricate, and test a new research compressor in which to acquire the requisite flow field data. A new High-Efficiency Centrifugal Compressor stage -- splittered impeller, splittered diffuser, 90 degree bend, and exit guide vanes -- with aerodynamically aggressive performance and configuration (compactness) goals were designed, fabricated, and subquently tested at the NASA Glenn Research Center.

  16. Theoretical analysis of the flow around a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Aouachria, Z.; Djoumati, D. [Batna Univ., Batna (Algeria). Laboratoire de Physique Energetique Appliquee; Djamel, H. [Batna Univ., Batna (Algeria). Dept. de Mecanique Energetique

    2009-07-01

    While Savonius rotors do not perform as well as Darrieus wind turbine rotors, Savonius rotors work in all wind directions, do not require a rudder, and are capable of operating at relatively low speeds. A discrete vortex method was used to analyze the complex flow around a Savonius rotor. Velocity and pressure fields obtained in the analysis were used to determine both mechanical and energetic rotor performance. Savonius rotor bi-blades were considered in relation to 4 free eddies, the leakage points of each blade, and the distribution of basic eddies along the blades. Each blade was divided into equal elementary arcs. Linear equations and Kelvin theorem were reduced to a single equation. Results showed good agreement with data obtained in previous experimental studies. The study demonstrated that vortice emissions were unbalanced. The resistant blade had 2 vortice emissions, while the driving blade had only a single vortex. The results of the study will be used to clarify the mechanical and aerodynamic functions as well as to determine the different values between the blades and the speed of the turbine's engine. 9 refs., 4 figs.

  17. Analysis of the aerodynamic performance of the multi-rotor concept

    Science.gov (United States)

    Chasapogiannis, Petros; Prospathopoulos, John M.; Voutsinas, Spyros G.; Chaviaropoulos, Takis K.

    2014-06-01

    The concept of a large (~20MW) multi-rotor wind turbine intended for offshore installations is analysed with respect to its aerodynamic performance. The effect of closely clustering rotors on a single actuator disk is estimated using two different modelling approaches: a CFD solver in which the rotors are simulated as distinct actuator disks and a vortex based solver in which the blade geometry is exactly considered. In the present work, a system of 7 rotors is simulated with a centre to centre spacing of 1.05D. At nominal conditions (tip speed ratio=9) both models predict an increase in power of ~3% alongside with an increase in thrust of ~1.5%. The analysis of the flow field indicates that in the 7 rotor system the individual wakes merge into one wake at ~2D and that flow recovery starts at approximately the same downstream distance as in the single rotor case. As regards the dynamic implications of the close spacing of the rotors it was found that there is an increase in the loading amplitude ranging from 0.30-2.13% at blade level in rated conditions.

  18. Analysis of the aerodynamic performance of the multi-rotor concept

    International Nuclear Information System (INIS)

    Chasapogiannis, Petros; Prospathopoulos, John M; Voutsinas, Spyros G; Chaviaropoulos, Takis K

    2014-01-01

    The concept of a large (∼20MW) multi-rotor wind turbine intended for offshore installations is analysed with respect to its aerodynamic performance. The effect of closely clustering rotors on a single actuator disk is estimated using two different modelling approaches: a CFD solver in which the rotors are simulated as distinct actuator disks and a vortex based solver in which the blade geometry is exactly considered. In the present work, a system of 7 rotors is simulated with a centre to centre spacing of 1.05D. At nominal conditions (tip speed ratio=9) both models predict an increase in power of ∼3% alongside with an increase in thrust of ∼1.5%. The analysis of the flow field indicates that in the 7 rotor system the individual wakes merge into one wake at ∼2D and that flow recovery starts at approximately the same downstream distance as in the single rotor case. As regards the dynamic implications of the close spacing of the rotors it was found that there is an increase in the loading amplitude ranging from 0.30-2.13% at blade level in rated conditions

  19. Evaluation of a reduced centrifugation time and higher centrifugal force on various general chemistry and immunochemistry analytes in plasma and serum.

    Science.gov (United States)

    Møller, Mette F; Søndergaard, Tove R; Kristensen, Helle T; Münster, Anna-Marie B

    2017-09-01

    Background Centrifugation of blood samples is an essential preanalytical step in the clinical biochemistry laboratory. Centrifugation settings are often altered to optimize sample flow and turnaround time. Few studies have addressed the effect of altering centrifugation settings on analytical quality, and almost all studies have been done using collection tubes with gel separator. Methods In this study, we compared a centrifugation time of 5 min at 3000 ×  g to a standard protocol of 10 min at 2200 ×  g. Nine selected general chemistry and immunochemistry analytes and interference indices were studied in lithium heparin plasma tubes and serum tubes without gel separator. Results were evaluated using mean bias, difference plots and coefficient of variation, compared with maximum allowable bias and coefficient of variation used in laboratory routine quality control. Results For all analytes except lactate dehydrogenase, the results were within the predefined acceptance criteria, indicating that the analytical quality was not compromised. Lactate dehydrogenase showed higher values after centrifugation for 5 min at 3000 ×  g, mean bias was 6.3 ± 2.2% and the coefficient of variation was 5%. Conclusions We found that a centrifugation protocol of 5 min at 3000 ×  g can be used for the general chemistry and immunochemistry analytes studied, with the possible exception of lactate dehydrogenase, which requires further assessment.

  20. Modelling of hydrothermal characteristics of centrifugal nozzles

    International Nuclear Information System (INIS)

    Yarkho, A.A.; Omelchenko, M.P.; Borshchev, V.A.

    1990-01-01

    Presented for the first time is a method of recalculating the hydrothermal characteristics of centrifugal nozzles obtained in laboratory conditions for full-scale nozzles. From the experimental hydrothermal characteristics of nozzles observed in the laboratory it is allowed to calculate the hydrothermal characteristics of any other centrifugal nozzle whose diameter and dimensionless geometric characteristic are known

  1. Astronaut Gordon Cooper in centrifuge for tests

    Science.gov (United States)

    1963-01-01

    Astronaut L. Gordon Cooper, prime pilot for the Mercury-Atlas 9 mission, is strapped into the gondola while undergoing tests in the centrifuge at the Naval Air Development Center, Johnsville, Pennsylvania. The centrifuge is used to investigate by simulation the pilot's capability to control the vehicle during the actual flight in its booster and reentry profile.

  2. Rotor pole refurbishment for hydrogenerators: insulation problems and solutions

    International Nuclear Information System (INIS)

    Reynolds, R.R.; Rux, L.

    2005-01-01

    Rotor poles for Unit 1 at Lower Granite Powerhouse were removed from the rotor and shipped to a repair facility for refurbishment. Upon inspection, it was found that all of the pole bodies exhibited a distinct bow, center to end, on the pole mounting surface. In some cases, the deflection was as much as 0.106 inch. Concerns were raised about how this condition might affect the ability to properly insulate and/or re-seat the poles. This paper presents details of the rotor pole and field winding evaluation, the problems encountered, and the solutions implemented to successfully refurbish the rotor poles and field winding. (author)

  3. Physical simulations using centrifuge techniques

    International Nuclear Information System (INIS)

    Sutherland, H.J.

    1981-01-01

    Centrifuge techniques offer a technique for doing physical simulations of the long-term mechanical response of deep ocean sediment to the emplacement of waste canisters and to the temperature gradients generated by them. Preliminary investigations of the scaling laws for pertinent phenomena indicate that the time scaling will be consistent among them and equal to the scaling factor squared. This result implies that this technique will permit accelerated-life-testing of proposed configurations; i.e, long-term studies may be done in relatively short times. Presently, existing centrifuges are being modified to permit scale model testing. This testing will start next year

  4. Quantification of platelets obtained by different centrifugation protocols in SHR rats.

    Science.gov (United States)

    Yazigi Junior, João Alberto; Dos Santos, João Baptista Gomes; Xavier, Bruno Rodrigues; Fernandes, Marcela; Valente, Sandra Gomes; Leite, Vilnei Mattiolli

    2015-01-01

    To quantify the platelet concentration in the blood of SHR rats, by means of different centrifugation protocols, and to evaluate what the most effective method for obtaining platelets is. We used 40 male rats of the isogenic SHR lineage. The animals were divided into three groups: control, using whole blood without centrifugation; single centrifugation, using whole blood subjected to a single centrifugation at 200 × g and 400 × g; and double centrifugation, using whole blood subjected one centrifugation at different rotations, followed by collection of whole plasma subjected to another centrifugation at different rotations: 200 × g + 200 × g; 200 × g + 400 × g; 200 × g + 800 × g; 400 × g + 400 × g; 400 × g + 800 × g. Samples of 3 ml of blood were drawn from each animal by means of cardiac puncture. The blood was stored in Vacutainer collection tubes containing 3.2% sodium citrate. The blood from the control group animals was analyzed without being subjected to centrifugation. After the blood from the other groups of animals had been subjected to centrifugation, the whole plasma was collected and subjected to platelet counting in the lower third of the sample. We obtained greatest platelet enrichment in the subgroup with two centrifugations comprising 400 × g for 10 min + 400 × g for 10 min, in which the mean platelet concentration was 11.30 times higher than that of the control group. It was possible to obtain a high platelet concentration using viable simple techniques, by means of centrifugation of whole blood and use of commonly used materials. The most effective method for obtaining platelet concentrate was found in samples subjected to two centrifugations.

  5. Relativistic centrifugal instability

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  6. Flow-driven simulation on variation diameter of counter rotating wind turbines rotor

    Directory of Open Access Journals (Sweden)

    Littik Y. Fredrika

    2018-01-01

    Full Text Available Wind turbines model in this paper developed from horizontal axis wind turbine propeller with single rotor (HAWT. This research aims to investigating the influence of front rotor diameter variation (D1 with rear rotor (D2 to the angular velocity optimal (ω and tip speed ratio (TSR on counter rotating wind turbines (CRWT. The method used transient 3D simulation with computational fluid dynamics (CFD to perform the aerodynamics characteristic of rotor wind turbines. The counter rotating wind turbines (CRWT is designed with front rotor diameter of 0.23 m and rear rotor diameter of 0.40 m. In this research, the wind velocity is 4.2 m/s and variation ratio between front rotor and rear rotor (D1/D2 are 0.65; 0.80; 1.20; 1.40; and 1.60 with axial distance (Z/D2 0.20 m. The result of this research indicated that the variation diameter on front rotor influence the aerodynamics performance of counter rotating wind turbines.

  7. Nonlinear Dynamics Analysis of Tilting Pad Journal Bearing-Rotor System

    Directory of Open Access Journals (Sweden)

    Jiayang Ying

    2011-01-01

    Full Text Available The nonlinear dynamics theory is increasingly applied in the dynamics analysis of tilting pad journal bearing-rotor system. However, extensive work on system dynamics done previously neglects the influence caused by the moment of inertia of the pad. In this paper, a comparison is made between the responses of the rotor in the bearings with and without pad inertia effect. Taking the Jeffcott rotor system as an example, the characteristics of bearing-rotor system, such as bifurcation diagram, cycle response, frequency spectrum, phase trajectories, and Poincaré maps, were attained within a certain rotation rate range. The pivotal oil-film force of tilting pad journal bearing was calculated by database method. The results directly demonstrate that considering the influence of the pad moment of inertia, system dynamics characteristics are found more complicated when rotor-bearing system works around natural frequency and system bifurcation is observed forward when rotor-bearing system works on high-speed range.

  8. Aerodynamic Support of a Big Industrial Turboblower Rotor

    OpenAIRE

    Šimek, Jiří; Kozánek, Jan; Šafr, Milan

    2007-01-01

    Aerodynamic bearing support for the rotor of a 100 kW input industrial turboblower with operational speed of 18 000 rpm was designed and manufactured. Rotor with mass of about 50 kg is supported in two tilting-pad journal bearings 120 mm in diameter, axial forces are taken up by aerodynamic spiral groove thrust bearing 250 mm in diameter. Some specific features of the bearing design are described in the paper and the results of rotor support tests are presented. The paper is an extended versi...

  9. Helicopter Rotor Load Prediction Using a Geometrically Exact Beam with Multicomponent Model

    DEFF Research Database (Denmark)

    Lee, Hyun-Ku; Viswamurthy, S.R.; Park, Sang Chul

    2010-01-01

    In this paper, an accurate structural dynamic analysis was developed for a helicopter rotor system including rotor control components, which was coupled to various aerodynamic and wake models in order to predict an aeroelastic response and the loads acting on the rotor. Its blade analysis was based...... rotor-blade/control-system model was loosely coupled with various inflow and wake models in order to simulate both hover and forward-flight conditions. The resulting rotor blade response and pitch link loads are in good agreement with those predicted byCAMRADII. The present analysis features both model...... on an intrinsic formulation of moving beams implemented in the time domain. The rotor control system was modeled as a combination of rigid and elastic components. A multicomponent analysis was then developed by coupling the beam finite element model with the rotor control system model to obtain a complete rotor-blade/control...

  10. Considerations on safeguards approach for small centrifuge enrichment facilities

    International Nuclear Information System (INIS)

    Vicens, Hugo E.; Marzo, Marco A.; Nunes, Vitorio E.

    2004-01-01

    The safeguards' objectives for enrichment facilities encompass the detection of the diversion of declared nuclear material and of facility misuse. The safeguard's approach presently applied for commercial centrifuge enrichment facilities is based on the Hexa partite Project and seems not to be directly applicable to cases of small plants. Since ABACC started its operation one of the main problems faced was the application of safeguards to small centrifuge enrichment plants for testing centrifuges in cascade mode or for small LEU production. These plants consist of a few fully independent cascades, does not operate in a routine basis and panels prevent visual access to the centrifuges and their surroundings for preserving sensitive information. For such plants misuse scenarios seems to dominate, particularly those associated with feeding the plant with undeclared LEU. This paper presents a concise analysis of misuse strategies in small centrifuge facility and alternative safeguard's approach, describing the main control elements to be applied. The particularities arising from the existence of panels or boxes covering the centrifuges are specifically addressed. Two alternatives approaches based on the application of a transitory perimeter control to increase the effectiveness of unannounced inspection and on the application of permanent perimeter control are presented. (author)

  11. Design and construction of a two-stage centrifugal pump | Nordiana ...

    African Journals Online (AJOL)

    Centrifugal pumps are widely used in moving liquids from one location to another in homes, offices and industries. Due to the ever increasing demand for centrifugal pumps it became necessary to design and construction of a two-stage centrifugal pump. The pump consisted of an electric motor, a shaft, two rotating impellers ...

  12. Centrifugal Blower for Personal Air Ventilation System (PAVS) - Phase 1

    Science.gov (United States)

    2015-02-01

    3  FIGURE 5: PHOTO & PERFORMANCE PLOT OF EXISTING CENTRIFUGAL COMPRESSOR ...aerodynamically similar to an existing centrifugal compressor pictured in Figure 5. The performance plot of this compressor demonstrates a high...blade tip diameter at impeller exit Figure 5: Photo & Performance plot of existing centrifugal compressor 70% 75% 65% 60%   6

  13. Vertical axis wind rotors: Status and potential. [energy conversion efficiency and aerodynamic characteristics

    Science.gov (United States)

    Vance, W.

    1973-01-01

    The design and application of a vertical axis wind rotor is reported that operates as a two stage turbine wherein the wind impinging on the concave side is circulated through the center of the rotor to the back of the convex side, thus decreasing what might otherwise be a high negative pressure region. Successful applications of this wind rotor to water pumps, ship propulsion, and building ventilators are reported. Also shown is the feasibility of using the energy in ocean waves to drive the rotor. An analysis of the impact of rotor aspect ratio on rotor acceleration shows that the amount of venting between rotor vanes has a very significant effect on rotor speed for a given wind speed.

  14. DEM simulation of granular flows in a centrifugal acceleration field

    Science.gov (United States)

    Cabrera, Miguel Angel; Peng, Chong; Wu, Wei

    2017-04-01

    The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of

  15. APR1400 Locked Rotor Transient Analysis using KNAP

    International Nuclear Information System (INIS)

    Lee, Dong-Hyuk; Kim, Yo-Han; Ha, Sang Jun

    2007-01-01

    KEPRI (Korea Electric Power Research Institute) has developed safety analysis methodology for non-LOCA (Loss Of Coolant Accident) analysis of OPR1000 (Optimized Power Reactor 1000, formerly KSNP). The new methodology, named KNAP (Korea Non-LOCA Analysis Package), uses RETRAN as the main system analysis code for most transients. For locked rotor transient DNBR analysis, UNICORN-TM code is used. UNICORN-TM is the unified code of RETRAN, MASTER and TORC. The UNICORN-TM has 1-D and 3-D neutron kinetics calculation capability. For locked rotor DNBR analysis, 1-D neutron kinetics is used. In this paper, we apply KNAP methodology to APR1400 (Advanced Power Reactor 1400) locked rotor analysis and compare the results with those in the APR1400 SSAR(Standard Safety Analysis Report). The locked rotor transient is one of the 'decrease in reactor coolant system flow rate' events and the results are typically described in the chapter 15.3.3 of SAR (Safety Analysis Report). In this study, to confirm the applicability of the KNAP methodology and code system to APR1400, locked rotor transient is analyzed using UNICORN-TM code and the results are compared with those from APR1400 SSAR

  16. APR1400 Locked Rotor Transient Analysis using KNAP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Hyuk; Kim, Yo-Han; Ha, Sang Jun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    KEPRI (Korea Electric Power Research Institute) has developed safety analysis methodology for non-LOCA (Loss Of Coolant Accident) analysis of OPR1000 (Optimized Power Reactor 1000, formerly KSNP). The new methodology, named KNAP (Korea Non-LOCA Analysis Package), uses RETRAN as the main system analysis code for most transients. For locked rotor transient DNBR analysis, UNICORN-TM code is used. UNICORN-TM is the unified code of RETRAN, MASTER and TORC. The UNICORN-TM has 1-D and 3-D neutron kinetics calculation capability. For locked rotor DNBR analysis, 1-D neutron kinetics is used. In this paper, we apply KNAP methodology to APR1400 (Advanced Power Reactor 1400) locked rotor analysis and compare the results with those in the APR1400 SSAR(Standard Safety Analysis Report). The locked rotor transient is one of the 'decrease in reactor coolant system flow rate' events and the results are typically described in the chapter 15.3.3 of SAR (Safety Analysis Report). In this study, to confirm the applicability of the KNAP methodology and code system to APR1400, locked rotor transient is analyzed using UNICORN-TM code and the results are compared with those from APR1400 SSAR.

  17. Equations of motion for a rotor blade, including gravity, pitch action and rotor speed variations

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This paper extends Hodges-Dowell's partial differential equations of blade motion, by including the effects from gravity, pitch action and varying rotor speed. New equations describing the pitch action and rotor speeds are also derived. The physical interpretation of the individual terms...... in the equations is discussed. The partial differential equations of motion are approximated by ordinary differential equations of motion using an assumed mode method. The ordinary differential equations are used to simulate a sudden pitch change of a rotating blade. This work is a part of a project on pitch blade...

  18. Evaluation of an advanced rotor bore examination system

    International Nuclear Information System (INIS)

    Alford, J.W.

    1990-01-01

    Evaluations of in-service turbine-generator rotor forgings are often based on an ultrasonic examination of the near-bore region. A portable rotor bore examination system has been developed that provides discontinuity characterization required for a thorough rotor evaluation. This automated system, its procedures and operations personnel have now been qualified for full-scale field application. System development has benefited from merging several technologies with new methods for precise alignment of the drive unit, calibration block and rotor. The system runs a custom interactive software package that allows for flexible calibration and motion control as well as data acquisition and manipulation. A comprehensive evaluation procedure was developed for system qualification using test specimens with natural and artificial reflectors, including a unique fatigue-crack block. Following a discussion of the system features, this paper discusses the system evaluation based on this procedure

  19. PARAMETRIC DIAGNOSTICS OF THE CENTRIFUGAL SUPERCHARGER'S TECHNICAL CONDITION DURING OPERATION

    Directory of Open Access Journals (Sweden)

    Regina A. Khuramshina

    2017-01-01

    Full Text Available Abstract. Objectives The main aim is to develop a mathematical model of a centrifugal compressor and carry out a parametric diagnostics of a centrifugal supercharger's technical condition during operation. Methods  A model is proposed for calculating the thermodynamic properties of natural gas, reducing the parameters of a centrifugal compressor to the initial conditions and to the rotation frequency, as well as the integral indicators of the supercharger's technical state. The technical state of the gas path of the centrifugal supercharger of the compressor unit is determined by the parametric diagnostic method. Results  The software implementation of the mathematical model of centrifugal compressor is carried out using a DVIGwT PC. The analysis of calculations indicates that the model is appropriate, with the error being due to taking into account the properties of iso-butane and i-hexane, in contrast with the VNIIGAZ technique. The evaluation studies of a centrifugal compressor's state are indicative of the presence or absence of its defects. Conclusion  Among a number of the diagnostic methods for evaluating a centrifugal supercharger, the most effective is vibrodiagnostics. However, the search for malfunctions and nascent defects in the flowing part of the centrifugal compressor cannot be limited only to vibrodiagnostic data, which provides about 60% of the reliable information about the state of the gas-air tract. About 20% of the compressor's malfunctions and approximately half of the dangerous modes of the supercharger's flow-through part is detected using thermogasdynamic parametric analysis (parametric diagnostics. The main difficulty of the control over the technical state of the flow-through part of the centrifugal supercharger is in the complication of the quantitative evaluation of the processes taking place in the supercharger, which leads to problems in providing reliable diagnosis during a reasonable period of time.

  20. Disc rotors with permanent magnets for brushless DC motor

    Science.gov (United States)

    Hawsey, Robert A.; Bailey, J. Milton

    1992-01-01

    A brushless dc permanent magnet motor drives an autonomous underwater vehe. In one embodiment, the motor comprises four substantially flat stators in stacked relationship, with pairs of the stators axially spaced, each of the stators comprising a tape-wound stator coil, and first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and a drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore in which the first shaft is disposed. Two different sets of bearings support the first and second shafts. In another embodiment, the motor comprises two ironless stators and pairs of rotors mounted on opposite sides of the stators and driven by counterrotating shafts.

  1. Dynamic response of a rub-impact rotor system under axial thrust

    Energy Technology Data Exchange (ETDEWEB)

    An, Xueli; Zhou, Jianzhong; Xiang, Xiuqiao; Li, Chaoshun; Luo, Zhimeng [Huazhong University of Science andTechnology, College of Hydroelectric and Digitalization Engineering, Wuhan, Hubei (China)

    2009-11-15

    A model of a rigid rotor system under axial thrust with rotor-to-stator is developed based on the classic impact theory and is analyzed by the Lagrangian dynamics. The rubbing condition is modeled using the elastic impact-contact idealization, which consists of normal and tangential forces at the rotor-to-stator contact point. Mass eccentricity and rotating speed are used as control parameters to simulate the response of rotor system. The motions of periodic, quasi-periodic and chaotic are found in the rotor system response. Mass eccentricity plays an important role in creating chaotic phenomena. (orig.)

  2. Large Rotor Test Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — This test apparatus, when combined with the National Full-Scale Aerodynamics Complex, produces a thorough, full-scale test capability. The Large Rotor Test Apparatus...

  3. A viscosity and density meter with a magnetically suspended rotor

    International Nuclear Information System (INIS)

    Bano, Mikulas; Strharsky, Igor; Hrmo, Igor

    2003-01-01

    A device for measuring the viscosity and density of liquids is presented. It is a Couette-type viscometer that uses a submerged rotor to measure the viscosity without errors originating in the contact of the rotor with the sample/air boundary. The inner cylinder is a glass rotor suspended in the liquid, and the outer cylinder is also made of glass. The rotor is stabilized on the axis of the outer cylinder by an electromagnetic force controlled by feedback from the rotor's vertical position. In the lower part of the rotor is an aluminum cylinder located in a magnetic field generated by rotating permanent magnets. The interaction of this rotating magnetic field with eddy currents generated in the aluminum cylinder causes rotation of the rotor. This rotation is optically detected, and viscosity is calculated from the measured angular velocity of rotor. The density of the liquid is calculated from the applied vertical equilibrating force. A computer controls the whole measurement. The device works at constant temperature or while scanning temperature. The sample volume is 1.6 ml, and the accuracy of measurement of both viscosity and density is ∼0.1%. The range of measured densities is (0.7-1.4) g/ml, and viscosity can be measured in the range (3x10 -4 -0.3) Pa s. The shear rate of the viscosity measurement varies in the range (20-300) s-1. The accuracy of the temperature measurement is 0.02 K

  4. CAA modeling of helicopter main rotor in hover

    Science.gov (United States)

    Kusyumov, Alexander N.; Mikhailov, Sergey A.; Batrakov, Andrey S.; Kusyumov, Sergey A.; Barakos, George

    In this work rotor aeroacoustics in hover is considered. Farfield observers are used and the nearfield flow parameters are obtained using the in house HMB and commercial Fluent CFD codes (identical hexa-grids are used for both solvers). Farfield noise at a remote observer position is calculated at post processing stage using FW-H solver implemented in Fluent and HMB. The main rotor of the UH-1H helicopter is considered as a test case for comparison to experimental data. The sound pressure level is estimated for different rotor blade collectives and observation angles.

  5. Users guide to the inelastic rotor spectrometer (IRS)

    International Nuclear Information System (INIS)

    Bunce, L.J.

    1987-11-01

    The paper is a users guide to the inelastic rotor spectrometer installed on the Harwell 136 Mev electron linear accelerator HELIOS. The spectrometer is designed to measure neutron inelastic scattering for energy transfers from 50 meV to 400 meV and covering a range of Q values from 1 to 15 A 0-1 . The guide contains a description of:- time-of-flight scales, run and sample changer control units, sample environment, detectors, rotor system, 600 Hz operation of rotor, a run, and data processing. (U.K.)

  6. Dynamic measurement of matter creation using a feedback rotor

    International Nuclear Information System (INIS)

    Winkler, L.I.

    1989-01-01

    A room-temperature version of an experiment to search for cosmological matter creation using a precision rotor has been underway at University of Virginia since the late 1970's. The ultimate goal of this experiment is to be able to detect a change in the rotor moment of inertia I at a rate I/I≤10 -18 per second. In the original measurement strategy, and I/I was to be detected as an anomalous drag torque causing the rotor angular momentum to decay, with time constant Γ* = 10 -18 seconds. Here an alternate method of detecting an I/I using a precision rotor is proposed. In this alternate strategy, the rotor is driven by negative derivative feedback to follow a time-dependent reference of either exponential or sinusoidal form. An I/I is detected as an anomalous response of the rotor to the drive torque. Since this alternate strategy is not based on the detection of a drag torque, it can be used to verify that an observed rotor spin-down is caused by an I/I, rather than some other loss mechanism. Signal-to-noise ratios are developed for this strategy, and a way of differentiating positive from null results is described. Matter-creation tests performed using the alternate strategy indicate that the EST device produces noise which currently limits the sensitivity of the experiment. Null results were at least one order of magnitude above the theoretical values of the minimum detectable I/I. Also, anomalous drift in the rotor response caused the detection of positive results. These limitations are shown to be due to nonlinearity and asymmetry in the EST device, which can be corrected in future efforts

  7. Cardiac arrhythmias during aerobatic flight and its simulation on a centrifuge.

    Science.gov (United States)

    Zawadzka-Bartczak, Ewelina K; Kopka, Lech H

    2011-06-01

    It is well known that accelerations during centrifuge training and during flight can provoke cardiac arrhythmias. Our study was designed to investigate both the similarities and differences between heart rhythm disturbances during flights and centrifuge tests. There were 40 asymptomatic, healthy pilots who performed two training flights and were also tested in a human centrifuge according to a program of rapid onset rate acceleration (ROR) and of centrifuge simulation of the actual acceleration experienced in flight (Simulation). During the flight and centrifuge tests ECG was monitored with the Holter method. ECG was examined for heart rhythm changes and disturbances. During flights, premature ventricular contractions (PVCs) were found in 25% of the subjects, premature supraventricular contractions (PSVCs) and PVCs with bigeminy in 5%, and pairs of PVCs in 2.5% of subjects. During the centrifuge tests, PVCs were experienced by 45% of the subjects, PSVCs and pairs of PVCs by 7.5%, and PVCs with bigeminy by 2.5%. Sinus bradycardia was observed during flights and centrifuge tests in 7.5% of subjects. Comparative evaluation of electrocardiographic records in military pilots during flights and centrifuge tests demonstrated that: 1) there were no clinically significant arrhythmias recorded; and 2) the frequency and kind of heart rhythm disturbances during aerobatic flight and its simulation on a centrifuge were not identical and did not occur repetitively in the same persons during equal phases of the tests.

  8. Optimization of Power Consumption for Centrifugation Process Based on Attenuation Measurements

    Science.gov (United States)

    Salim, M. S.; Abd Malek, M. F.; Sabri, Naseer; Omar, M. Iqbal bin; Mohamed, Latifah; Juni, K. M.

    2013-04-01

    The main objective of this research is to produce a mathematical model that allows decreasing the electrical power consumption of centrifugation process based on attenuation measurements. The centrifugation time for desired separation efficiency may be measured to determine the power consumed of laboratory centrifuge device. The power consumption is one of several parameters that affect the system reliability and productivity. Attenuation measurements of wave propagated through blood sample during centrifugation process were used indirectly to measure the power consumption of device. A mathematical model for power consumption was derived and used to modify the speed profile of centrifuge controller. The power consumption model derived based on attenuation measurements has successfully save the power consumption of centrifugation process keeping high separation efficiency. 18kW.h monthly for 100 daily time device operation had been saved using the proposed model.

  9. Optimization of Power Consumption for Centrifugation Process Based on Attenuation Measurements

    International Nuclear Information System (INIS)

    Salim, M S; Iqbal bin Omar, M; Malek, M F Abd; Mohamed, Latifah; Sabri, Naseer; Juni, K M

    2013-01-01

    The main objective of this research is to produce a mathematical model that allows decreasing the electrical power consumption of centrifugation process based on attenuation measurements. The centrifugation time for desired separation efficiency may be measured to determine the power consumed of laboratory centrifuge device. The power consumption is one of several parameters that affect the system reliability and productivity. Attenuation measurements of wave propagated through blood sample during centrifugation process were used indirectly to measure the power consumption of device. A mathematical model for power consumption was derived and used to modify the speed profile of centrifuge controller. The power consumption model derived based on attenuation measurements has successfully save the power consumption of centrifugation process keeping high separation efficiency. 18kW.h monthly for 100 daily time device operation had been saved using the proposed model.

  10. Probing molecular potentials with an optical centrifuge

    Science.gov (United States)

    Milner, A. A.; Korobenko, A.; Hepburn, J. W.; Milner, V.

    2017-09-01

    We use an optical centrifuge to excite coherent rotational wave packets in N2O, OCS, and CS2 molecules with rotational quantum numbers reaching up to J ≈465 , 690, and 1186, respectively. Time-resolved rotational spectroscopy at such ultra-high levels of rotational excitation can be used as a sensitive tool to probe the molecular potential energy surface at internuclear distances far from their equilibrium values. Significant bond stretching in the centrifuged molecules results in the growing period of the rotational revivals, which are experimentally detected using coherent Raman scattering. We measure the revival period as a function of the centrifuge-induced rotational frequency and compare it with the numerical calculations based on the known Morse-cosine potentials.

  11. Rotating stall simulation for axial and centrifugal compressors

    Science.gov (United States)

    Halawa, Taher; Gadala, Mohamed S.

    2017-05-01

    This study presents a numerical simulation of the rotating stall phenomenon in axial and centrifugal compressors with detailed descriptions of stall precursors and its development with time. Results showed that the vaneless region of the centrifugal compressor is the most critical location affected by stall. It was found that the tip leakage flow and the back flow impingement are the main cause of the stall development at the impeller exit area for centrifugal compressors. The results of the axial compressor simulations indicated that the early separated flow combined with the tip leakage flow can block the impeller passages during stall.

  12. Prediction of helicopter rotor noise in hover

    Directory of Open Access Journals (Sweden)

    Kusyumov A.N.

    2015-01-01

    Full Text Available Two mathematical models are used in this work to estimate the acoustics of a hovering main rotor. The first model is based on the Ffowcs Williams-Howkings equations using the formulation of Farassat. An analytical approach is followed for this model, to determine the thickness and load noise contributions of the rotor blade in hover. The second approach allows using URANS and RANS CFD solutions and based on numerical solution of the Ffowcs Williams-Howkings equations. The employed test cases correspond to a model rotor available at the KNRTUKAI aerodynamics laboratory. The laboratory is equipped with a system of acoustic measurements, and comparisons between predictions and measurements are to be attempted as part of this work.

  13. Prediction of helicopter rotor noise in hover

    Science.gov (United States)

    Kusyumov, A. N.; Mikhailov, S. A.; Garipova, L. I.; Batrakov, A. S.; Barakos, G.

    2015-05-01

    Two mathematical models are used in this work to estimate the acoustics of a hovering main rotor. The first model is based on the Ffowcs Williams-Howkings equations using the formulation of Farassat. An analytical approach is followed for this model, to determine the thickness and load noise contributions of the rotor blade in hover. The second approach allows using URANS and RANS CFD solutions and based on numerical solution of the Ffowcs Williams-Howkings equations. The employed test cases correspond to a model rotor available at the KNRTUKAI aerodynamics laboratory. The laboratory is equipped with a system of acoustic measurements, and comparisons between predictions and measurements are to be attempted as part of this work.

  14. Fluid dynamics and mass transfer in a gas centrifuge

    International Nuclear Information System (INIS)

    Conlisk, A.T.; Foster, M.R.; Walker, J.D.A.

    1982-01-01

    The fluid motion, temperature distribution and the mass-transfer problem of a binary gas mixture in a rapidly rotating centrifuge are investigated. Solutions for the velocity, temperature and mass-fraction fields within the centrifuge are obtained for mechanically or thermally driven centrifuges. For the mass-transfer problem, a detailed analysis of the fluid-mechanical boundary layers is required, and, in particular, mass fluxes within the boundary layers are obtained for a wide range of source-sink geometries. Solutions to the mass-transfer problem are obtained for moderately and strongly forced flows in the container; the dependence of the separation (or enrichment) factor on centrifuge configuration, rotational speed and fraction of the volumetric flow rate extracted at the product port (the cut) are predicted. (author)

  15. Experimental study on enriching 12C by centrifuge method

    International Nuclear Information System (INIS)

    Xiao Huaxian

    1994-07-01

    The diamond made from the highly enriched 12 C, whose thermal conductivity and electric insulativity are much better than that of natural diamond, has widely uses in new and high technology. In many enriching 12 C methods, the gas centrifuge method is superior to others. After selecting the appropriate process gas and solving key problems, such as feed and extract, the separation experiments are performed by a single stage of centrifuge. To increase the separation capacity of single machine, various parameters in the centrifugal separation are optimized, and appropriate mechanical drive, thermal drive, hold-up and process parameters are selected. The optimal operating condition of single machine is also obtained in the cascade. Thus, highly enriched 12 C is produced in the centrifuge cascade

  16. Convective instabilities in liquid centrifugation for nuclear wastes separation

    Energy Technology Data Exchange (ETDEWEB)

    Camassa, R. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The separation of fission products from liquid solutions using centrifugal forces may prove an effective alternative to chemical processing in cases where radioactive materials necessitate minimal mixed-waste products or when allowing access to sophisticated chemical processing is undesirable. This investigation is a part of the effort to establish the feasibility of using liquid centrifugation for nuclear waste separation in the Accelerator Driven Energy Production (ADEP) program. A number of fundatmental issues in liquid centrifugation with radioactive elements need to be addressed in order to validate the approach and provide design criteria for experimental liquid salt (LiF and BeF{sub 2}) centrifuge. The author concentrates on one such issue, the possible onset of convective instabilities which could inhibit separation.

  17. Automated processing of whole blood samples into microliter aliquots of plasma.

    Science.gov (United States)

    Burtis, C A; Johnson, W W; Walker, W A

    1988-01-01

    A rotor that accepts and automatically processes a bulk aliquot of a single blood sample into multiple aliquots of plasma has been designed and built. The rotor consists of a central processing unit, which includes a disk containing eight precision-bore capillaries. By varying the internal diameters of the capillaries, aliquot volumes ranging 1 to 10 mul can be prepared. In practice, an unmeasured volume of blood is placed in a centre well, and, as the rotor begins to spin, is moved radially into a central annular ring where it is distributed into a series of processing chambers. The rotor is then spun at 3000 rpm for 10 min. When the centrifugal field is removed by slowly decreasing the rotor speed, an aliquot of plasma is withdrawn by capillary action into each of the capillary tubes. The disk containing the eight measured aliquots of plasma is subsequently removed and placed in a modifed rotor for conventional centrifugal analysis. Initial evaluation of the new rotor indicates that it is capable of producing discrete, microliter volumes of plasma with a degree of accuracy and precision approaching that of mechanical pipettes.

  18. L1 Adaptive Control for a Vertical Rotor Orientation System

    Directory of Open Access Journals (Sweden)

    Sijia Liu

    2016-08-01

    Full Text Available Bottom-fixed vertical rotating devices are widely used in industrial and civilian fields. The free upside of the rotor will cause vibration and lead to noise and damage during operation. Meanwhile, parameter uncertainties, nonlinearities and external disturbances will further deteriorate the performance of the rotor. Therefore, in this paper, we present a rotor orientation control system based on an active magnetic bearing with L 1 adaptive control to restrain the influence of the nonlinearity and uncertainty and reduce the vibration amplitude of the vertical rotor. The boundedness and stability of the adaptive system are analyzed via a theoretical derivation. The impact of the adaptive gain is discussed through simulation. An experimental rig based on dSPACE is designed to test the validity of the rotor orientation system. The experimental results show that the relative vibration amplitude of the rotor using the L 1 adaptive controller will be reduced to ∼50% of that in the initial state, which is a 10% greater reduction than can be achieved with the nonadaptive controller. The control approach in this paper is of some significance to solve the orientation control problem in a low-speed vertical rotor with uncertainties and nonlinearities.

  19. Numerical Simulation of Tower Rotor Interaction for Downwind Wind Turbine

    Directory of Open Access Journals (Sweden)

    Isam Janajreh

    2010-01-01

    Full Text Available Downwind wind turbines have lower upwind rotor misalignment, and thus lower turning moment and self-steered advantage over the upwind configuration. In this paper, numerical simulation to the downwind turbine is conducted to investigate the interaction between the tower and the blade during the intrinsic passage of the rotor in the wake of the tower. The moving rotor has been accounted for via ALE formulation of the incompressible, unsteady, turbulent Navier-Stokes equations. The localized CP, CL, and CD are computed and compared to undisturbed flow evaluated by Panel method. The time history of the CP, aerodynamic forces (CL and CD, as well as moments were evaluated for three cross-sectional tower; asymmetrical airfoil (NACA0012 having four times the rotor's chord length, and two circular cross-sections having four and two chords lengths of the rotor's chord. 5%, 17%, and 57% reductions of the aerodynamic lift forces during the blade passage in the wake of the symmetrical airfoil tower, small circular cross-section tower and large circular cross-section tower were observed, respectively. The pronounced reduction, however, is confined to a short time/distance of three rotor chords. A net forward impulsive force is also observed on the tower due to the high speed rotor motion.

  20. Dipolar rotors orderly aligned in mesoporous fluorinated organosilica architectures

    KAUST Repository

    Bracco, Silvia; Beretta, Mario; Cattaneo, Alice Silvia; Comotti, Angiolina; Falqui, Andrea; Zhao, Ke; Rogers, Charles T.; Sozzani, Piero

    2015-01-01

    New mesoporous covalent frameworks, based on hybrid fluorinated organosilicas, were prepared to realize a periodic architecture of fast molecular rotors containing dynamic dipoles in their structure. The mobile elements, designed on the basis of fluorinated p-divinylbenzene moieties, were integrated into the robust covalent structure through siloxane bonds, and showed not only the rapid dynamics of the aromatic rings (ca. 108 Hz at 325 K), as detected by solid-state NMR spectroscopy, but also a dielectric response typical of a fast dipole reorientation under the stimuli of an applied electric field. Furthermore, the mesochannels are open and accessible to diffusing in gas molecules, and rotor mobility could be individually regulated by I2 vapors. The iodine enters the channels of the periodic structure and reacts with the pivotal double bonds of the divinyl-fluoro-phenylene rotors, affecting their motion and the dielectric properties. Oriented molecular rotors: Fluorinated molecular rotors (see picture) were engineered in mesoporous hybrid organosilica architectures with crystalline order in their walls. The rotor dynamics was established by magic angle spinning NMR and dielectric measurements, indicating a rotational correlation time as short as 10-9 s at 325 K. The dynamics was modulated by I2 vapors entering the pores.