Neipert, Christine; Space, Brian
2006-12-14
Sum vibrational frequency spectroscopy, a second order optical process, is interface specific in the dipole approximation. At charged interfaces, there exists a static field, and as a direct consequence, the experimentally detected signal is a combination of enhanced second and static field induced third order contributions. There is significant evidence in the literature of the importance/relative magnitude of this third order contribution, but no previous molecularly detailed approach existed to separately calculate the second and third order contributions. Thus, for the first time, a molecularly detailed time correlation function theory is derived here that allows for the second and third order contributions to sum frequency vibrational spectra to be individually determined. Further, a practical, molecular dynamics based, implementation procedure for the derived correlation functions that describe the third order phenomenon is also presented. This approach includes a novel generalization of point atomic polarizability models to calculate the hyperpolarizability of a molecular system. The full system hyperpolarizability appears in the time correlation functions responsible for third order contributions in the presence of a static field.
Static polarizabilities of dielectric nanoclusters
International Nuclear Information System (INIS)
Kim, Hye-Young; Sofo, Jorge O.; Cole, Milton W.; Velegol, Darrell; Mukhopadhyay, Gautam
2005-01-01
A cluster consisting of many atoms or molecules may be considered, in some circumstances, to be a single large molecule with a well-defined polarizability. Once the polarizability of such a cluster is known, one can evaluate certain properties--e.g. the cluster's van der Waals interactions, using expressions derived for atoms or molecules. In the present work, we evaluate the static polarizability of a cluster using a microscopic method that is exact within the linear and dipolar approximations. Numerical examples are presented for various shapes and sizes of clusters composed of identical atoms, where the term 'atom' actually refers to a generic constituent, which could be any polarizable entity. The results for the clusters' polarizabilities are compared with those obtained by assuming simple additivity of the constituents' atomic polarizabilities; in many cases, the difference is large, demonstrating the inadequacy of the additivity approximation. Comparison is made (for symmetrical geometries) with results obtained from continuum models of the polarizability. Also, the surface effects due to the nonuniform local field near a surface or edge are shown to be significant
Decomposition of Polarimetric SAR Images Based on Second- and Third-order Statics Analysis
Kojima, S.; Hensley, S.
2012-12-01
There are many papers concerning the research of the decomposition of polerimetric SAR imagery. Most of them are based on second-order statics analysis that Freeman and Durden [1] suggested for the reflection symmetry condition that implies that the co-polarization and cross-polarization correlations are close to zero. Since then a number of improvements and enhancements have been proposed to better understand the underlying backscattering mechanisms present in polarimetric SAR images. For example, Yamaguchi et al. [2] added the helix component into Freeman's model and developed a 4 component scattering model for the non-reflection symmetry condition. In addition, Arii et al. [3] developed an adaptive model-based decomposition method that could estimate both the mean orientation angle and a degree of randomness for the canopy scattering for each pixel in a SAR image without the reflection symmetry condition. This purpose of this research is to develop a new decomposition method based on second- and third-order statics analysis to estimate the surface, dihedral, volume and helix scattering components from polarimetric SAR images without the specific assumptions concerning the model for the volume scattering. In addition, we evaluate this method by using both simulation and real UAVSAR data and compare this method with other methods. We express the volume scattering component using the wire formula and formulate the relationship equation between backscattering echo and each component such as the surface, dihedral, volume and helix via linearization based on second- and third-order statics. In third-order statics, we calculate the correlation of the correlation coefficients for each polerimetric data and get one new relationship equation to estimate each polarization component such as HH, VV and VH for the volume. As a result, the equation for the helix component in this method is the same formula as one in Yamaguchi's method. However, the equation for the volume
Static dipole polarizabilities of Scn (n ≤ 15) clusters
International Nuclear Information System (INIS)
Xi-Bo, Li; Jiang-Shan, Luo; Wei-Dong, Wu; Yong-Jian, Tang; Hong-Yan, Wang; Yun-Dong, Guo
2009-01-01
The static dipole polarizabilities of scandium clusters with up to 15 atoms are determined by using the numerically finite field method in the framework of density functional theory. The electronic effects on the polarizabilities are investigated for the scandium clusters. We examine a large highest occupied molecular orbital — the lowest occupied molecular orbital (HOMO–LUMO) gap of a scandium cluster usually corresponds to a large dipole moment. The static polarizability per atom decreases slowly and exhibits local minimum with increasing cluster size. The polarizability anisotropy and the ratio of mean static polarizability to the HOMO–LUMO gap can also reflect the cluster stability. The polarizability of the scandium cluster is partially related to the HOMO–LUMO gap and is also dependent on geometrical characteristics. A strong correlation between the polarizability and ionization energy is observed. (atomic and molecular physics)
Hyperfine-mediated static polarizabilities of monovalent atoms and ions
International Nuclear Information System (INIS)
Dzuba, V. A.; Flambaum, V. V.; Beloy, K.; Derevianko, A.
2010-01-01
We apply relativistic many-body methods to compute static differential polarizabilities for transitions inside the ground-state hyperfine manifolds of monovalent atoms and ions. Knowledge of this transition polarizability is required in a number of high-precision experiments, such as microwave atomic clocks and searches for CP-violating permanent electric dipole moments. While the traditional polarizability arises in the second order of interaction with the externally applied electric field, the differential polarizability involves an additional contribution from the hyperfine interaction of atomic electrons with nuclear moments. We derive formulas for the scalar and tensor polarizabilities including contributions from magnetic dipole and electric quadrupole hyperfine interactions. Numerical results are presented for Al, Rb, Cs, Yb + , Hg + , and Fr.
Gieseking, Rebecca L.
2015-06-22
Organic π-conjugated materials have been widely used for a variety of nonlinear optical (NLO) applications. Molecules with negative real components Re(γ) of the third-order polarizability, which leads to nonlinear refraction in macroscopic systems, have important benefits for several NLO applications. However, few organic systems studied to date have negative Re(γ) in the long wavelength limit, and all inorganic materials show positive nonlinear refraction in this limit. Here, we introduce a new class of molecules of the form X(C6H5)4, where X = B-, C, N+, and P+, that have negative Re(γ). The molecular mechanism for the NLO properties in these systems is very different from those in typical linear conjugated systems: these systems have a band of excited states involving single-electron excitations within the π-system, several of which have significant coupling to the ground state. Thus, Re(γ) cannot be understood in terms of a simplified essential-state model and must be analyzed in the context of the full sum-over-states expression. Although Re(γ) is significantly smaller than that of other commonly-studied NLO chromophores, the introduction of a new molecular architecture offering the potential for a negative Re(γ) introduces new avenues of molecular design for NLO applications.
Gieseking, Rebecca L.; Ensley, Trenton R.; Hu, Honghua; Hagan, David J.; Risko, Chad; Van Stryland, Eric W.; Bredas, Jean-Luc
2015-01-01
Organic π-conjugated materials have been widely used for a variety of nonlinear optical (NLO) applications. Molecules with negative real components Re(γ) of the third-order polarizability, which leads to nonlinear refraction in macroscopic systems, have important benefits for several NLO applications. However, few organic systems studied to date have negative Re(γ) in the long wavelength limit, and all inorganic materials show positive nonlinear refraction in this limit. Here, we introduce a new class of molecules of the form X(C6H5)4, where X = B-, C, N+, and P+, that have negative Re(γ). The molecular mechanism for the NLO properties in these systems is very different from those in typical linear conjugated systems: these systems have a band of excited states involving single-electron excitations within the π-system, several of which have significant coupling to the ground state. Thus, Re(γ) cannot be understood in terms of a simplified essential-state model and must be analyzed in the context of the full sum-over-states expression. Although Re(γ) is significantly smaller than that of other commonly-studied NLO chromophores, the introduction of a new molecular architecture offering the potential for a negative Re(γ) introduces new avenues of molecular design for NLO applications.
DEFF Research Database (Denmark)
Dalskov, Erik K.; Sauer, Stephan P. A.
1998-01-01
Molecular static and dynamic polarizabilities for thirteen small molecules have been calculated using four "black box" ab initio methods, the random phase approximation, RPA, the second-order polarization propagator approximation, SOPPA, the second-order polarization propagator approximation...
Directory of Open Access Journals (Sweden)
Wenzhu Huang
2015-04-01
Full Text Available Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs. However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs. The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs’ reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method.
International Nuclear Information System (INIS)
Masili, Mauro; Groote, J.J. de
2004-01-01
Using a model potential representation combined with a variationally stable method, we present a precise calculation of the electric dipole polarizabilities of the sodium negative ion (Na - ). The effective two-electron eigensolutions for Na - are obtained from a hyperspherical coupled-channel calculation. This approach allows efficient error control and insight into the system's properties through one-dimensional potential curves. Our result of 1018.3 a.u. for the static dipole polarizability is in agreement with previous calculations and supports our results for the dynamic polarizability, which has scarcely been investigated hitherto
The third-order nonlinear optical susceptibility of C{sub 60}-derived nanotubes
Energy Technology Data Exchange (ETDEWEB)
Xiangang, Wan [Nanjing Univ. (China). National Lab. of Solid State Microstructures; [Center for Advanced Studies in Science and Technology of Microstructures, Nanjing (China); Jinming, Dong [Nanjing Univ. (China). National Lab. of Solid State Microstructures; [Center for Advanced Studies in Science and Technology of Microstructures, Nanjing (China); Jie, Jiang [Nanjing Univ., JS (China). Dept. of Physics; Xing, D Y [Nanjing Univ., JS (China). Dept. of Physics
1997-02-01
Using the extended Su-Schrieffer-Heeger (SSH) model and the sum-over-state (SOS) method, we have calculated the third-order nonlinear polarizability {gamma} and its dispersion spectra for C{sub 60}-derived nanotubes, which is one of the narrowest tubes. Our numerical calculations indicate that both symmetry and size of the nanotubes have great effect on the third-order nonlinear polarizability {gamma} spectra. We find that with increasing size, both static {gamma} values and dynamical response peak values increase. When the atom number of the C{sub 60}-derived nanotubes is 140, the static {gamma} value is about 65 times larger than that of C{sub 60}, and the highest peak value of {gamma} (at 3{omega} = 3.52 eV) is about three orders larger than that of C{sub 60}. So, C{sub 60}-derived nanotubes may become a kind of good nonlinear optical materials. (orig.)
Comparison of self-consistent calculations of the static polarizability of atoms and molecules
International Nuclear Information System (INIS)
Moullet, I.; Martins, J.L.
1990-01-01
The static dipole polarizabilities and other ground-state properties of H, H 2 , He, Na, and Na 2 are calculated using five different self-consistent schemes: Hartree--Fock, local spin density approximation, Hartree--Fock plus local density correlation, self-interaction-corrected local spin density approximation, and Hartree--Fock plus self-interaction-corrected local density correlation. The inclusion of the self-interaction corrected local spin density approximation in the Hartree--Fock method improves dramatically the calculated dissociation energies of molecules but has a small effect on the calculated polarizabilities. Correcting the local spin density calculations for self-interaction effects improves the calculated polarizability in the cases where the local spin density results are mediocre, and has only a small effect in the cases where the local spin density values are in reasonable agreement with experiment
Static electric dipole polarizabilities of tri- and tetravalent U, Np, and Pu ions.
Parmar, Payal; Peterson, Kirk A; Clark, Aurora E
2013-11-21
High-quality static electric dipole polarizabilities have been determined for the ground states of the hard-sphere cations of U, Np, and Pu in the III and IV oxidation states. The polarizabilities have been calculated using the numerical finite field technique in a four-component relativistic framework. Methods including Fock-space coupled cluster (FSCC) and Kramers-restricted configuration interaction (KRCI) have been performed in order to account for electron correlation effects. Comparisons between polarizabilities calculated using Dirac-Hartree-Fock (DHF), FSCC, and KRCI methods have been made using both triple- and quadruple-ζ basis sets for U(4+). In addition to the ground state, this study also reports the polarizability data for the first two excited states of U(3+/4+), Np(3+/4+), and Pu(3+/4+) ions at different levels of theory. The values reported in this work are the most accurate to date calculations for the dipole polarizabilities of the hard-sphere tri- and tetravalent actinide ions and may serve as reference values, aiding in the calculation of various electronic and response properties (for example, intermolecular forces, optical properties, etc.) relevant to the nuclear fuel cycle and material science applications.
Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes
International Nuclear Information System (INIS)
Diniz, Ginetom S.; Ulloa, Sergio E.
2014-01-01
We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.
Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Diniz, Ginetom S., E-mail: ginetom@gmail.com; Ulloa, Sergio E. [Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701-2979 (United States)
2014-07-14
We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.
Coupled cluster calculations for static and dynamic polarizabilities of C60
Kowalski, Karol; Hammond, Jeff R.; de Jong, Wibe A.; Sadlej, Andrzej J.
2008-12-01
New theoretical predictions for the static and frequency dependent polarizabilities of C60 are reported. Using the linear response coupled cluster approach with singles and doubles and a basis set especially designed to treat the molecular properties in external electric field, we obtained 82.20 and 83.62 Å3 for static and dynamic (λ =1064 nm) polarizabilities. These numbers are in a good agreement with experimentally inferred data of 76.5±8 and 79±4 Å3 [R. Antoine et al., J. Chem. Phys.110, 9771 (1999); A. Ballard et al., J. Chem. Phys.113, 5732 (2000)]. The reported results were obtained with the highest wave function-based level of theory ever applied to the C60 system.
Electronic structure and static dipole polarizability of C60-C240
International Nuclear Information System (INIS)
Zope, Rajendra R
2008-01-01
The electronic structure of C 60 -C 240 and its first-order response to a static electric field is studied by an all-electron density functional theory calculation using large polarized Gaussian basis sets. Our results show that the outer C 240 shell almost completely shields the inner C 60 as inferred from the practically identical values of dipole polarizability of the C 60 -C 240 onion (449 A 3 ) and that of the isolated C 240 fullerene (441 A 3 ). The C 60 -C 240 is thus a near-perfect Faraday cage
International Nuclear Information System (INIS)
Wang Ya-Dong; Meng Yan; Di Bing; Wang Shu-Ling; An Zhong
2010-01-01
According to the one-dimensional tight-binding Su—Schrieffer—Heeger model, we have investigated the effects of charged polarons on the static polarizability, α xx , and the second order hyperpolarizabilities, γ xxxx , of conjugated polymers. Our results are consistent qualitatively with previous ab initio and semi-empirical calculations. The origin of the universal growth is discussed using a local-view formalism that is based on the local atomic charge derivatives. Furthermore, combining the Su-Schrieffer-Heeger model and the extended Hubbard model, we have investigated systematically the effects of electron-electron interactions on α xx and γ xxxx of charged polymer chains. For a fixed value of the nearest-neighbour interaction V, the values of α xx and γ xxxx increase as the on-site Coulomb interaction U increases for U c and decrease with U for U > U c , where U c is a critical value of U at which the static polarizability or the second order hyperpolarizability reaches a maximal value of α max or γ max . It is found that the effect of the e-e interaction on the value of α xx is dependent on the ratio between U and V for either a short or a long charged polymer. Whereas, that effect on the value of γ xxxx is sensitive both to the ratio of U to V and to the size of the molecule. (rapid communication)
Exact-exchange time-dependent density-functional theory for static and dynamic polarizabilities
International Nuclear Information System (INIS)
Hirata, So; Ivanov, Stanislav; Bartlett, Rodney J.; Grabowski, Ireneusz
2005-01-01
Time-dependent density-functional theory (TDDFT) employing the exact-exchange functional has been formulated on the basis of the optimized-effective-potential (OEP) method of Talman and Shadwick for second-order molecular properties and implemented into a Gaussian-basis-set, trial-vector algorithm. The only approximation involved, apart from the lack of correlation effects and the use of Gaussian-type basis functions, was the consistent use of the adiabatic approximation in the exchange kernel and in the linear response function. The static and dynamic polarizabilities and their anisotropy predicted by the TDDFT with exact exchange (TDOEP) agree accurately with the corresponding values from time-dependent Hartree-Fock theory, the exact-exchange counterpart in the wave function theory. The TDOEP is free from the nonphysical asymptotic decay of the exchange potential of most conventional density functionals or from any other manifestations of the incomplete cancellation of the self-interaction energy. The systematic overestimation of the absolute values and dispersion of polarizabilities that plagues most conventional TDDFT cannot be seen in the TDOEP
Electronic structure and static dipole polarizability of C{sub 60}-C{sub 240}
Energy Technology Data Exchange (ETDEWEB)
Zope, Rajendra R [Department of Physics, University of Texas at El Paso, El Paso, TX 79958 (United States)
2008-04-28
The electronic structure of C{sub 60}-C{sub 240} and its first-order response to a static electric field is studied by an all-electron density functional theory calculation using large polarized Gaussian basis sets. Our results show that the outer C{sub 240} shell almost completely shields the inner C{sub 60} as inferred from the practically identical values of dipole polarizability of the C{sub 60}-C{sub 240} onion (449 A{sup 3}) and that of the isolated C{sub 240} fullerene (441 A{sup 3}). The C{sub 60}-C{sub 240} is thus a near-perfect Faraday cage.
Basis set convergence on static electric dipole polarizability calculations of alkali-metal clusters
International Nuclear Information System (INIS)
Souza, Fabio A. L. de; Jorge, Francisco E.
2013-01-01
A hierarchical sequence of all-electron segmented contracted basis sets of double, triple and quadruple zeta valence qualities plus polarization functions augmented with diffuse functions for the atoms from H to Ar was constructed. A systematic study of basis sets required to obtain reliable and accurate values of static dipole polarizabilities of lithium and sodium clusters (n = 2, 4, 6 and 8) at their optimized equilibrium geometries is reported. Three methods are examined: Hartree-Fock (HF), second-order Moeller-Plesset perturbation theory (MP2), and density functional theory (DFT). By direct calculations or by fitting the directly calculated values through one extrapolation scheme, estimates of the HF, MP2 and DFT complete basis set limits were obtained. Comparison with experimental and theoretical data reported previously in the literature is done (author)
Basis set convergence on static electric dipole polarizability calculations of alkali-metal clusters
Energy Technology Data Exchange (ETDEWEB)
Souza, Fabio A. L. de; Jorge, Francisco E., E-mail: jorge@cce.ufes.br [Departamento de Fisica, Universidade Federal do Espirito Santo, 29060-900 Vitoria-ES (Brazil)
2013-07-15
A hierarchical sequence of all-electron segmented contracted basis sets of double, triple and quadruple zeta valence qualities plus polarization functions augmented with diffuse functions for the atoms from H to Ar was constructed. A systematic study of basis sets required to obtain reliable and accurate values of static dipole polarizabilities of lithium and sodium clusters (n = 2, 4, 6 and 8) at their optimized equilibrium geometries is reported. Three methods are examined: Hartree-Fock (HF), second-order Moeller-Plesset perturbation theory (MP2), and density functional theory (DFT). By direct calculations or by fitting the directly calculated values through one extrapolation scheme, estimates of the HF, MP2 and DFT complete basis set limits were obtained. Comparison with experimental and theoretical data reported previously in the literature is done (author)
Ng, Albert H.; Snow, Christopher D.
2011-01-01
To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full
International Nuclear Information System (INIS)
Sjoeberg, Daniel
2009-01-01
We present four variational principles for the electric and magnetic polarizabilities for a structure consisting of anisotropic media with perfect electric conductor (PEC) inclusions. From these principles, we derive monotonicity results and upper and lower bounds on the electric and magnetic polarizabilities. When computing the polarizabilities numerically, the bounds can be used as error bounds. The variational principles demonstrate important differences between electrostatics and magnetostatics when PEC bodies are present.
Optofluidic third order distributed feedback dye laser
DEFF Research Database (Denmark)
Gersborg-Hansen, Morten; Kristensen, Anders
2006-01-01
which has a refractive index lower than that of the polymer. In combination with a third order DFB grating, formed by the array of nanofluidic channels, this yields a low threshold for lasing. The laser is straightforward to integrate on lab-on-a-chip microsystems where coherent, tunable light......This letter describes the design and operation of a polymer-based third order distributed feedback (DFB) microfluidic dye laser. The device relies on light confinement in a nanostructured polymer film where an array of nanofluidic channels is filled by capillary action with a liquid dye solution...
Third order differential equations with delay
Directory of Open Access Journals (Sweden)
Petr Liška
2015-05-01
Full Text Available In this paper, we study the oscillation and asymptotic properties of solutions of certain nonlinear third order differential equations with delay. In particular, we extend results of I. Mojsej (Nonlinear Analysis 68, 2008 and we improve conditions on the property B of N. Parhi and S. Padhi (Indian J. Pure Appl. Math., 33, 2002.
Decay ratio for third order Brownian oscillators
International Nuclear Information System (INIS)
Konno, H.; Kanemoto, S.
1998-01-01
We have obtained the analytical expressions of the decay ratios for two types of third order Brownian oscillators which are generalizations of the second order Brownian oscillator driven by the Gaussian-white noise. The resulting expressions will provide us useful baseline information for more complicated practical problems and their applications
Novel third-order Lovelock wormhole solutions
Mehdizadeh, Mohammad Reza; Lobo, Francisco S. N.
2016-06-01
In this work, we consider wormhole geometries in third-order Lovelock gravity and investigate the possibility that these solutions satisfy the energy conditions. In this framework, by applying a specific equation of state, we obtain exact wormhole solutions, and by imposing suitable values for the parameters of the theory, we find that these geometries satisfy the weak energy condition in the vicinity of the throat, due to the presence of higher-order curvature terms. Finally, we trace out a numerical analysis, by assuming a specific redshift function, and find asymptotically flat solutions that satisfy the weak energy condition throughout the spacetime.
Static electric dipole polarizabilities of An5+/6+ and AnO2+/2+ (An = U, Np, and Pu) ions
International Nuclear Information System (INIS)
Parmar, Payal; Peterson, Kirk A.; Clark, Aurora E.
2014-01-01
The parallel components of static electric dipole polarizabilities have been calculated for the lowest lying spin-orbit states of the penta- and hexavalent oxidation states of the actinides (An) U, Np, and Pu, in both their atomic and molecular diyl ion forms (An 5+/6+ and AnO 2 +/2+ ) using the numerical finite-field technique within a four-component relativistic framework. The four-component Dirac-Hartree-Fock method formed the reference for MP2 and CCSD(T) calculations, while multireference Fock space coupled-cluster (FSCC), intermediate Hamiltonian Fock space coupled-cluster (IH-FSCC) and Kramers restricted configuration interaction (KRCI) methods were used to incorporate additional electron correlation. It is observed that electron correlation has significant (∼5 a.u. 3 ) impact upon the parallel component of the polarizabilities of the diyls. To the best of our knowledge, these quantities have not been previously reported and they can serve as reference values in the determination of various electronic and response properties (for example intermolecular forces, optical properties, etc.) relevant to the nuclear fuel cycle and material science applications. The highest quality numbers for the parallel components (α zz ) of the polarizability for the lowest Ω levels corresponding to the ground electronic states are (in a.u. 3 ) 44.15 and 41.17 for UO 2 + and UO 2 2+ , respectively, 45.64 and 41.42 for NpO 2 + and NpO 2 2+ , respectively, and 47.15 for the PuO 2 + ion
Energy Technology Data Exchange (ETDEWEB)
Parmar, Payal, E-mail: payal.parmar@wsu.edu, E-mail: kipeters@wsu.edu, E-mail: auclark@wsu.edu; Peterson, Kirk A., E-mail: payal.parmar@wsu.edu, E-mail: kipeters@wsu.edu, E-mail: auclark@wsu.edu [Department of Chemistry, Washington State University, Pullman, Washington 99164 (United States); Clark, Aurora E., E-mail: payal.parmar@wsu.edu, E-mail: kipeters@wsu.edu, E-mail: auclark@wsu.edu [Department of Chemistry, Washington State University, Pullman, Washington 99164 (United States); Material Science and Engineering Program, Washington State University, Pullman, Washington 99164 (United States)
2014-12-21
The parallel components of static electric dipole polarizabilities have been calculated for the lowest lying spin-orbit states of the penta- and hexavalent oxidation states of the actinides (An) U, Np, and Pu, in both their atomic and molecular diyl ion forms (An{sup 5+/6+} and AnO{sub 2}{sup +/2+}) using the numerical finite-field technique within a four-component relativistic framework. The four-component Dirac-Hartree-Fock method formed the reference for MP2 and CCSD(T) calculations, while multireference Fock space coupled-cluster (FSCC), intermediate Hamiltonian Fock space coupled-cluster (IH-FSCC) and Kramers restricted configuration interaction (KRCI) methods were used to incorporate additional electron correlation. It is observed that electron correlation has significant (∼5 a.u.{sup 3}) impact upon the parallel component of the polarizabilities of the diyls. To the best of our knowledge, these quantities have not been previously reported and they can serve as reference values in the determination of various electronic and response properties (for example intermolecular forces, optical properties, etc.) relevant to the nuclear fuel cycle and material science applications. The highest quality numbers for the parallel components (α{sub zz}) of the polarizability for the lowest Ω levels corresponding to the ground electronic states are (in a.u.{sup 3}) 44.15 and 41.17 for UO{sub 2}{sup +} and UO{sub 2}{sup 2+}, respectively, 45.64 and 41.42 for NpO{sub 2}{sup +} and NpO{sub 2}{sup 2+}, respectively, and 47.15 for the PuO{sub 2}{sup +} ion.
Static electric dipole polarizabilities of An(5+/6+) and AnO2 (+/2+) (An = U, Np, and Pu) ions.
Parmar, Payal; Peterson, Kirk A; Clark, Aurora E
2014-12-21
The parallel components of static electric dipole polarizabilities have been calculated for the lowest lying spin-orbit states of the penta- and hexavalent oxidation states of the actinides (An) U, Np, and Pu, in both their atomic and molecular diyl ion forms (An(5+/6+) and AnO2 (+/2+)) using the numerical finite-field technique within a four-component relativistic framework. The four-component Dirac-Hartree-Fock method formed the reference for MP2 and CCSD(T) calculations, while multireference Fock space coupled-cluster (FSCC), intermediate Hamiltonian Fock space coupled-cluster (IH-FSCC) and Kramers restricted configuration interaction (KRCI) methods were used to incorporate additional electron correlation. It is observed that electron correlation has significant (∼5 a.u.(3)) impact upon the parallel component of the polarizabilities of the diyls. To the best of our knowledge, these quantities have not been previously reported and they can serve as reference values in the determination of various electronic and response properties (for example intermolecular forces, optical properties, etc.) relevant to the nuclear fuel cycle and material science applications. The highest quality numbers for the parallel components (αzz) of the polarizability for the lowest Ω levels corresponding to the ground electronic states are (in a.u.(3)) 44.15 and 41.17 for UO2 (+) and UO2 (2+), respectively, 45.64 and 41.42 for NpO2 (+) and NpO2 (2+), respectively, and 47.15 for the PuO2 (+) ion.
Transposes, L-Eigenvalues and Invariants of Third Order Tensors
Qi, Liqun
2017-01-01
Third order tensors have wide applications in mechanics, physics and engineering. The most famous and useful third order tensor is the piezoelectric tensor, which plays a key role in the piezoelectric effect, first discovered by Curie brothers. On the other hand, the Levi-Civita tensor is famous in tensor calculus. In this paper, we study third order tensors and (third order) hypermatrices systematically, by regarding a third order tensor as a linear operator which transforms a second order t...
Ng, Albert H.
2011-01-24
To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol -1] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 Copyright © 2011 Wiley Periodicals, Inc.
Maidur, Shivaraj R.; Jahagirdar, Jitendra R.; Patil, Parutagouda Shankaragouda; Chia, Tze Shyang; Quah, Ching Kheng
2018-01-01
We report synthesis, characterizations, structure-property relationships, and third-order nonlinear optical studies for two new chalcone derivatives, (2E)-1-(anthracen-9-yl)-3-(4-bromophenyl)prop-2-en-1-one (Br-ANC) and (2E)-1-(anthracen-9-yl)-3-(4-chlorophenyl)prop-2-en-1-one (Cl-ANC). These derivatives were crystallized in the centrosymmetric monoclinic P21/c crystal structure. The intermolecular interactions of both the crystals were visualized by Hirshfeld surface analyses (HSA). The crystals are thermally stable up to their melting points (180.82 and 191.16 °C for Cl-ANC and Br-ANC, respectively). The geometry optimizations, FT-IR spectra, 1H and 13C NMR spectra, electronic absorption spectra, electronic transitions, and HOMO-LUMO energy gaps were studied by Density Functional Theory (DFT) at B3LYP/6-311+G(d, p) level. The theoretical results provide excellent agreement with experimental findings. The electric dipole moments, static polarizabilities, molecular electrostatic potentials (MEP) and global chemical reactivity descriptors (GCRD) were also theoretically computed. The materials exhibited good nonlinear absorption (NLA), nonlinear refraction (NLR) and optical limiting (OL) behavior under diode-pumped solid-state (DPSS) continuous wave (CW) laser excitation (532 nm and 200 mW). The NLO parameters such as NLA coefficient (β∼10-5 cmW-1), NLR index (n2∼10-10 cm2 W-1) and third-order NLO susceptibilities (χ(3) ∼10-7 esu) were measured. Further, we estimated one-photon and two-photon figures of merit, which satisfy the demands (W > 1 and T < 1) for all-optical switching. Thus, the present chalcone derivatives with anthracene moiety are potential materials for OL and optical switching applications.
Energy Technology Data Exchange (ETDEWEB)
Brown, Karl
1998-10-28
TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems.
International Nuclear Information System (INIS)
Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.
2015-01-01
The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed
Energy Technology Data Exchange (ETDEWEB)
Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)
2015-01-22
The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.
Some third order rotatable designs in five dimensions | Mutiso | East ...
African Journals Online (AJOL)
... performed according to our dimensional designs need not be discarded. These deisgns require a smaller number of points than most of the available five dimensional third order rotatable designs. Keywords: third order; rotatable designs; four dimensions; five dimensions; sequential > East African Journal of Statistics Vol.
Application of third order stochastic dominance algorithm in investments ranking
Directory of Open Access Journals (Sweden)
Lončar Sanja
2012-01-01
Full Text Available The paper presents the use of third order stochastic dominance in ranking Investment alternatives, using TSD algorithms (Levy, 2006for testing third order stochastic dominance. The main goal of using TSD rule is minimization of efficient investment set for investor with risk aversion, who prefers more money and likes positive skew ness.
Ghost imaging with third-order correlated thermal light
International Nuclear Information System (INIS)
Ou, L-H; Kuang, L-M
2007-01-01
In this paper, we propose a ghost imaging scheme with third-order correlated thermal light. We show that it is possible to produce the spatial information of an object at two different places in a nonlocal fashion by means of a third-order correlated imaging process with a third-order correlated thermal source and third-order correlation measurement. Concretely, we propose a protocol to create two ghost images at two different places from one object. This protocol involves two optical configurations. We derive the Gaussian thin lens equations and plot the geometrical optics of the ghost imaging processes for the two configurations. It is indicated that third-order correlated ghost imaging with thermal light exhibits richer correlated imaging effects than second-order correlated ghost imaging with thermal light
Embedded solitons in the third-order nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Pal, Debabrata; Ali, Sk Golam; Talukdar, B
2008-01-01
We work with a sech trial function with space-dependent soliton parameters and envisage a variational study for the nonlinear Schoedinger (NLS) equation in the presence of third-order dispersion. We demonstrate that the variational equations for pulse evolution in this NLS equation provide a natural basis to derive a potential model which can account for the existence of a continuous family of embedded solitons supported by the third-order NLS equation. Each member of the family is parameterized by the propagation velocity and co-efficient of the third-order dispersion
Third order TRANSPORT with MAD [Methodical Accelerator Design] input
International Nuclear Information System (INIS)
Carey, D.C.
1988-01-01
This paper describes computer-aided design codes for particle accelerators. Among the topics discussed are: input beam description; parameters and algebraic expressions; the physical elements; beam lines; operations; and third-order transfer matrix
Anisotropic Third-Order Regularization for Sparse Digital Elevation Models
Lellmann, Jan; Morel, Jean-Michel; Schö nlieb, Carola-Bibiane
2013-01-01
features of the contours while ensuring smoothness across level lines. We propose an anisotropic third-order model and an efficient method to adaptively estimate both the surface and the anisotropy. Our experiments show that the approach outperforms AMLE
Oscillation criteria for third order delay nonlinear differential equations
Directory of Open Access Journals (Sweden)
E. M. Elabbasy
2012-01-01
via comparison with some first differential equations whose oscillatory characters are known. Our results generalize and improve some known results for oscillation of third order nonlinear differential equations. Some examples are given to illustrate the main results.
Synthesis, characterization and third-order nonlinear optical ...
Indian Academy of Sciences (India)
2016-09-20
Sep 20, 2016 ... the past, several strategies have been evolved to enhance the third-order nonlinear ..... retical fit using the formulation given in ref. [22]. Fit param- ..... Acknowledgement. The corresponding author acknowledges the financial.
Hojman's theorem of the third-order ordinary differential equation
International Nuclear Information System (INIS)
Hong-Sheng, Lü; Hong-Bin, Zhang; Shu-Long, Gu
2009-01-01
This paper extends Hojman's conservation law to the third-order differential equation. A new conserved quantity is constructed based on the Lie group of transformation generators of the equations of motion. The generators contain variations of the time and generalized coordinates. Two independent non-trivial conserved quantities of the third-order ordinary differential equation are obtained. A simple example is presented to illustrate the applications of the results. (general)
Dynamics of platicons due to third-order dispersion
Lobanov, Valery E.; Cherenkov, Artem V.; Shitikov, Artem E.; Bilenko, Igor A.; Gorodetsky, Michael L.
2017-07-01
Dynamics of platicons caused by the third-order dispersion is studied. It is shown that under the influence of the third-order dispersion platicons obtain angular velocity depending both on dispersion and on detuning value. A method of tuning of platicon associated optical frequency comb repetition rate is proposed. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.
Extension of relativistic dissipative hydrodynamics to third order
International Nuclear Information System (INIS)
El, Andrej; Xu Zhe; Greiner, Carsten
2010-01-01
Following the procedure introduced by Israel and Stewart, we expand the entropy current up to the third order in the shear stress tensor π αβ and derive a novel third-order evolution equation for π αβ . This equation is solved for the one-dimensional Bjorken boost-invariant expansion. The scaling solutions for various values of the shear viscosity to the entropy density ratio η/s are shown to be in very good agreement with those obtained from kinetic transport calculations. For the pressure isotropy starting with 1 at τ 0 =0.4 fm/c, the third-order corrections to Israel-Stewart theory are approximately 10% for η/s=0.2 and more than a factor of 2 for η/s=3. We also estimate all higher-order corrections to Israel-Stewart theory and demonstrate their importance in describing highly viscous matters.
Convergence of third order correlation energy in atoms and molecules.
Kahn, Kalju; Granovsky, Alex A; Noga, Jozef
2007-01-30
We have investigated the convergence of third order correlation energy within the hierarchies of correlation consistent basis sets for helium, neon, and water, and for three stationary points of hydrogen peroxide. This analysis confirms that singlet pair energies converge much slower than triplet pair energies. In addition, singlet pair energies with (aug)-cc-pVDZ and (aug)-cc-pVTZ basis sets do not follow a converging trend and energies with three basis sets larger than aug-cc-pVTZ are generally required for reliable extrapolations of third order correlation energies, making so the explicitly correlated R12 calculations preferable.
Taub-NUT black holes in third order Lovelock gravity
International Nuclear Information System (INIS)
Hendi, S.H.; Dehghani, M.H.
2008-01-01
We consider the existence of Taub-NUT solutions in third order Lovelock gravity with cosmological constant, and obtain the general form of these solutions in eight dimensions. We find that, as in the case of Gauss-Bonnet gravity and in contrast with the Taub-NUT solutions of Einstein gravity, the metric function depends on the specific form of the base factors on which one constructs the circle fibration. Thus, one may say that the independence of the NUT solutions on the geometry of the base space is not a robust feature of all generally covariant theories of gravity and is peculiar to Einstein gravity. We find that when Einstein gravity admits non-extremal NUT solutions with no curvature singularity at r=N, then there exists a non-extremal NUT solution in third order Lovelock gravity. In 8-dimensional spacetime, this happens when the metric of the base space is chosen to be CP 3 . Indeed, third order Lovelock gravity does not admit non-extreme NUT solutions with any other base space. This is another property which is peculiar to Einstein gravity. We also find that the third order Lovelock gravity admits extremal NUT solution when the base space is T 2 xT 2 xT 2 or S 2 xT 2 xT 2 . We have extended these observations to two conjectures about the existence of NUT solutions in Lovelock gravity in any even-dimensional spacetime
Third-Order Matching in the Polymorphic Lambda Calculus
Springintveld, J.
We show that it is decidable whether a third-order matching problem in the polymorphic lambda calculus has a solution. The proof is constructive in the sense that an algorithm can be extracted from it that, given such a problem, returns a substitution if it has a solution and fail otherwise.
A new third order rotatable design in five dimensions through ...
African Journals Online (AJOL)
Experiments of this kind could be widely applicable in human medicine, veterinary medicine, agriculture and in general, product research-innovation development for optimum resource utilisation based industrialisation process in line with the Kenya Vision 2030. In this paper, a third order rotatable design in five dimensions ...
An accurate scheme by block method for third order ordinary ...
African Journals Online (AJOL)
problems of ordinary differential equations is presented in this paper. The approach of collocation approximation is adopted in the derivation of the scheme and then the scheme is applied as simultaneous integrator to special third order initial value problem of ordinary differential equations. This implementation strategy is ...
MPDATA: Third-order accuracy for variable flows
Waruszewski, Maciej; Kühnlein, Christian; Pawlowska, Hanna; Smolarkiewicz, Piotr K.
2018-04-01
This paper extends the multidimensional positive definite advection transport algorithm (MPDATA) to third-order accuracy for temporally and spatially varying flows. This is accomplished by identifying the leading truncation error of the standard second-order MPDATA, performing the Cauchy-Kowalevski procedure to express it in a spatial form and compensating its discrete representation-much in the same way as the standard MPDATA corrects the first-order accurate upwind scheme. The procedure of deriving the spatial form of the truncation error was automated using a computer algebra system. This enables various options in MPDATA to be included straightforwardly in the third-order scheme, thereby minimising the implementation effort in existing code bases. Following the spirit of MPDATA, the error is compensated using the upwind scheme resulting in a sign-preserving algorithm, and the entire scheme can be formulated using only two upwind passes. Established MPDATA enhancements, such as formulation in generalised curvilinear coordinates, the nonoscillatory option or the infinite-gauge variant, carry over to the fully third-order accurate scheme. A manufactured 3D analytic solution is used to verify the theoretical development and its numerical implementation, whereas global tracer-transport benchmarks demonstrate benefits for chemistry-transport models fundamental to air quality monitoring, forecasting and control. A series of explicitly-inviscid implicit large-eddy simulations of a convective boundary layer and explicitly-viscid simulations of a double shear layer illustrate advantages of the fully third-order-accurate MPDATA for fluid dynamics applications.
Third-order theory for multi-directional irregular waves
DEFF Research Database (Denmark)
Madsen, Per A.; Fuhrman, David R.
2012-01-01
A new third-order solution for multi-directional irregular water waves in finite water depth is presented. The solution includes explicit expressions for the surface elevation, the amplitude dispersion and the vertical variation of the velocity potential. Expressions for the velocity potential at...
Third-order monochromatic aberrations via Fermat's principle
International Nuclear Information System (INIS)
Marasco, A.; Romano, A.
2006-01-01
By Fermat's principle and particular optical paths, which are not rays, a new aberration function is introduced. This function allows to derive, without resorting to the whole Hamiltonian formalism, the third-order geometrical aberrations of an optical system with a symmetry of revolution
Energy Technology Data Exchange (ETDEWEB)
Mark, J. Abraham Hudson, E-mail: a.john.peter@gmail.com; Peter, A. John, E-mail: a.john.peter@gmail.com [Dept. of Physics, SSM Institute of Engineering and Technology, Dindigul-624002 (India)
2014-04-24
Third order susceptibility of third order harmonic generation is investigated in a Zn{sub 0.1}Mg{sub 0.9}Se/Zn{sub 0.8}Mg{sub 0.2}Se/Zn{sub 0.1}Mg{sub 0.9}Se quantum well in the presence of magnetic field strength. The confinement potential is considered as the addition of energy offsets of the conduction band (or valence band) and the strain-induced potential in our calculations. The material dependent effective mass is followed throughout the computation because it has a high influence on the electron energy levels in low dimensional semiconductor systems.
Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter
2016-11-01
The analytical energy gradient and Hessian of the two-component Normalized Elimination of the Small Component (2c-NESC) method with regard to the components of the electric field are derived and used to calculate spin-orbit coupling (SOC) corrected dipole moments and dipole polarizabilities of molecules, which contain elements with high atomic number. Calculated 2c-NESC dipole moments and isotropic polarizabilities agree well with the corresponding four-component-Dirac Hartree-Fock or density functional theory values. SOC corrections for the electrical properties are in general small, but become relevant for the accurate prediction of these properties when the molecules in question contain sixth and/or seventh period elements (e.g., the SO effect for At2 is about 10% of the 2c-NESC polarizability). The 2c-NESC changes in the electric molecular properties are rationalized in terms of spin-orbit splitting and SOC-induced mixing of frontier orbitals with the same j = l + s quantum numbers.
Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter
2016-11-14
The analytical energy gradient and Hessian of the two-component Normalized Elimination of the Small Component (2c-NESC) method with regard to the components of the electric field are derived and used to calculate spin-orbit coupling (SOC) corrected dipole moments and dipole polarizabilities of molecules, which contain elements with high atomic number. Calculated 2c-NESC dipole moments and isotropic polarizabilities agree well with the corresponding four-component-Dirac Hartree-Fock or density functional theory values. SOC corrections for the electrical properties are in general small, but become relevant for the accurate prediction of these properties when the molecules in question contain sixth and/or seventh period elements (e.g., the SO effect for At 2 is about 10% of the 2c-NESC polarizability). The 2c-NESC changes in the electric molecular properties are rationalized in terms of spin-orbit splitting and SOC-induced mixing of frontier orbitals with the same j = l + s quantum numbers.
Third-order gap plasmon based metasurfaces for visible light
DEFF Research Database (Denmark)
Deshpande, Rucha Anil; Pors, Anders; Bozhevolnyi, Sergey I.
2017-01-01
with different dimensions, to operate as a polarization beam splitter for linearly polarized light. The fabricated polarization beam splitter is characterized using a super-continuum light source at normal light incidence and found to exhibit a polarization contrast ratio of up to 40 dB near the design...... of the performance of polarization beam splitters based on third-order GSP resonance as well as other potential applications of the suggested approach....... by an optically thick gold film are calculated for the operation wavelength of 633 nm. Exploiting the occurrence of the third-order GSP resonance for nanobricks having their lengths close to 300 nm, we design the phase-gradient metasurface, representing an array of (450 x 2250 nm2) supercells made of 5 nanobricks...
Brown's TRANSPORT up to third order aberration by artificial intelligence
International Nuclear Information System (INIS)
Xia Jiawen; Xie Xi; Qiao Qingwen
1991-01-01
Brown's TRANSPORT is a first and second order matrix multiplication computer program intended for the design of accelerator beam transport systems, neglecting the third order aberration. Recently a new method was developed to derive analytically any order aberration coefficients of general charged particle optic system, applicable to any practical systems, such as accelerators, electron microscopes, lithographs, etc., including those unknown systems yet to be invented. An artificial intelligence program in Turbo Prolog was implemented on IBM-PC 286 or 386 machine to generate automatically the analytical expression of any order aberration coefficients of general charged particle optic system. Based on this new method and technique, Brown's TRANSPORT is extended beyond the second order aberration effects by artificial intelligence, outputing automatically all the analytical expressions up to the third order aberration coefficients
Brown's transport up to third order aberration by artificial intelligence
International Nuclear Information System (INIS)
Xia Jiawen; Xie Xi; Qiao Qingwen
1992-01-01
Brown's TRANSPORT is a first and second order matrix multiplication computer program intended for the design of accelerator beam transport systems, neglecting the third order aberration. Recently a new method was developed to derive analytically any order aberration coefficients of general charged particle optic system, applicable to any practical systems, such as accelerators, electron microscopes, lithographs, including those unknown systems yet to be invented. An artificial intelligence program in Turbo Prolog was implemented on IBM-PC 286 or 386 machine to generate automatically the analytical expression of any order aberration coefficients of general charged particle optic system. Based on this new method and technique, Brown's TRANSPORT is extended beyond the second order aberration effect by artificial intelligence, outputting automatically all the analytical expressions up to the third order aberration coefficients
Computer program 'TRIO' for third order calculation of ion trajectory
International Nuclear Information System (INIS)
Matsuo, Takekiyo; Matsuda, Hisashi; Fujita, Yoshitaka; Wollnik, H.
1976-01-01
A computer program for the calculation of ion trajectory is described. This program ''TRIO'' (Third Order Ion Optics) is applicable to any ion optical system consisting of drift spaces, cylindrical or toroidal electric sector fields, homogeneous or inhomogeneous magnetic sector fields, magnetic and electrostatic Q-lenses. The influence of the fringing field is taken into consideration. A special device is introduced to the method of matrix multiplication to shorten the calculation time and the required time proves to be about 40 times shorter than the ordinary method as a result. The trajectory calculation is possible to execute with accuracy up to third order. Any one of three dispersion bases, momentum, energy, mass and energy, is possible to be selected. Full LIST of the computer program and an example are given. (auth.)
Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs
Energy Technology Data Exchange (ETDEWEB)
Jayabalan, J; Singh, Asha; Chari, Rama; Oak, Shrikant M [Ultrafast Studies Section, Laser Physics Application Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India)
2007-08-08
We have measured and compared the absolute values of nonlinear susceptibility of colloidal solutions containing silver nanospheres and nanodiscs at their respective plasmon peaks using a femtosecond laser. The nonlinear process responsible for the laser-induced grating formation in the sample is determined to be of third order. The ratio between the third-order susceptibility (|{chi}{sup (3)}|) and the linear absorption coefficient ({alpha}) of the nanodiscs at 590 nm is three times than that of the similar ratio for nanospheres at 398 nm. Using a randomly oriented ellipsoidal model, we have shown that the increase in |{chi}{sup (3)}|/{alpha} for a nanodisc at 590 nm can be attributed to the change in the field enhancement factor with shape.
Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs
International Nuclear Information System (INIS)
Jayabalan, J; Singh, Asha; Chari, Rama; Oak, Shrikant M
2007-01-01
We have measured and compared the absolute values of nonlinear susceptibility of colloidal solutions containing silver nanospheres and nanodiscs at their respective plasmon peaks using a femtosecond laser. The nonlinear process responsible for the laser-induced grating formation in the sample is determined to be of third order. The ratio between the third-order susceptibility (|χ (3) |) and the linear absorption coefficient (α) of the nanodiscs at 590 nm is three times than that of the similar ratio for nanospheres at 398 nm. Using a randomly oriented ellipsoidal model, we have shown that the increase in |χ (3) |/α for a nanodisc at 590 nm can be attributed to the change in the field enhancement factor with shape
A memristor-based third-order oscillator: beyond oscillation
Talukdar, Abdul Hafiz Ibne
2012-10-06
This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.
Third-order susceptibility of gold for ultrathin layers
DEFF Research Database (Denmark)
Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei
2016-01-01
This Letter presents an experimental study of nonlinear plasmonic effects in gold-stripe waveguides. The optical characterization is performed by a picosecond laser and reveals two nonlinear effects related to propagation of long-range surface plasmon polaritons: nonlinear power transmission...... of plasmonic modes and spectral broadening of plasmonic modes. The experimental values of the third-order susceptibility of the gold layers are extracted. They exhibit a clear dependence on layer thickness. (C) 2016 Optical Society of America...
Experimental determination of third-order elastic constants of diamond.
Lang, J M; Gupta, Y M
2011-03-25
To determine the nonlinear elastic response of diamond, single crystals were shock compressed along the [100], [110], and [111] orientations to 120 GPa peak elastic stresses. Particle velocity histories and elastic wave velocities were measured by using laser interferometry. The measured elastic wave profiles were used, in combination with published acoustic measurements, to determine the complete set of third-order elastic constants. These constants represent the first experimental determination, and several differ significantly from those calculated by using theoretical models.
A memristor-based third-order oscillator: beyond oscillation
Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.
2012-01-01
This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.
Dinamical polarizability of highly excited hydrogen-like states
International Nuclear Information System (INIS)
Delone, N.B.; Krajnov, V.P.
1982-01-01
Analytic expressions are derived for the dynamic polarizability of highly excited hydrogen-like atomic states. It is shown that in the composite matrix element which determines the dynamic polarizability there is a strong compensation of the terms as a result of which the resulting magnitude of the dynamic polarizability is quasiclasically small compared to the individual terms of the composite matrix. It is concluded that the resonance behaviour of the dynamic polarizability of highly excited states differs significantly from the resonance behaviour of the polarizability for the ground and low-lying atomic states. The static limit and high-frequency limit of on electromagnetic field are considered
Third-order TRANSPORT: A computer program for designing charged particle beam transport systems
International Nuclear Information System (INIS)
Carey, D.C.; Brown, K.L.; Rothacker, F.
1995-05-01
TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command
Third-order differential ladder operators and supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Mateo, J; Negro, J
2008-01-01
Hierarchies of one-dimensional Hamiltonians in quantum mechanics admitting third-order differential ladder operators are studied. Each Hamiltonian has associated three-step Darboux (pseudo)-cycles and Painleve IV equations as a closure condition. The whole hierarchy is generated applying some operations on the cycles. These operations are investigated in the frame of supersymmetric quantum mechanics and mainly involve algebraic manipulations. A consistent geometric representation for the hierarchy and cycles is built that also helps in understanding the operations. Three kinds of hierarchies are distinguished and a realization based on the harmonic oscillator Hamiltonian is supplied, giving an interpretation for the spectral properties of the Hamiltonians of each hierarchy
Anisotropic Third-Order Regularization for Sparse Digital Elevation Models
Lellmann, Jan
2013-01-01
We consider the problem of interpolating a surface based on sparse data such as individual points or level lines. We derive interpolators satisfying a list of desirable properties with an emphasis on preserving the geometry and characteristic features of the contours while ensuring smoothness across level lines. We propose an anisotropic third-order model and an efficient method to adaptively estimate both the surface and the anisotropy. Our experiments show that the approach outperforms AMLE and higher-order total variation methods qualitatively and quantitatively on real-world digital elevation data. © 2013 Springer-Verlag.
Systems of conservation laws with third-order Hamiltonian structures
Ferapontov, Evgeny V.; Pavlov, Maxim V.; Vitolo, Raffaele F.
2018-02-01
We investigate n-component systems of conservation laws that possess third-order Hamiltonian structures of differential-geometric type. The classification of such systems is reduced to the projective classification of linear congruences of lines in P^{n+2} satisfying additional geometric constraints. Algebraically, the problem can be reformulated as follows: for a vector space W of dimension n+2 , classify n-tuples of skew-symmetric 2-forms A^{α } \\in Λ ^2(W) such that φ _{β γ }A^{β }\\wedge A^{γ }=0, for some non-degenerate symmetric φ.
Driven similarity renormalization group: Third-order multireference perturbation theory.
Li, Chenyang; Evangelista, Francesco A
2017-03-28
A third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6 ) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2 , H 2 O 2 , C 2 H 6 , and N 2 along the F-F, O-O, C-C, and N-N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbation theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST =E T -E S ) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol -1 , a value that is within 0.1 kcal mol -1 from multireference coupled cluster results.
Criticality in third order lovelock gravity and butterfly effect
International Nuclear Information System (INIS)
Qaemmaqami, Mohammad M.
2018-01-01
We study third order Lovelock Gravity in D = 7 at the critical point which three (A)dS vacua degenerate into one. We see there is not propagating graviton at the critical point. And also we compute the butterfly velocity for this theory at the critical point by considering the shock wave solutions near horizon, this is important to note that although there is no propagating graviton at the critical point, due to boundary gravitons the butterfly velocity is non-zero. Finally we observe that the butterfly velocity for third order Lovelock Gravity at the critical point in D = 7 is less than the butterfly velocity for Einstein-Gauss-Bonnet Gravity at the critical point in D = 7 which is less than the butterfly velocity in D = 7 for Einstein Gravity, v B E.H > v B E.G.B > v B 3rdLovelock . Maybe we can conclude that by adding higher order curvature corrections to Einstein Gravity the butterfly velocity decreases. (orig.)
Effect of third-order aberrations on dynamic accommodation.
López-Gil, Norberto; Rucker, Frances J; Stark, Lawrence R; Badar, Mustanser; Borgovan, Theodore; Burke, Sean; Kruger, Philip B
2007-03-01
We investigate the potential for the third-order aberrations coma and trefoil to provide a signed cue to accommodation. It is first demonstrated theoretically (with some assumptions) that the point spread function is insensitive to the sign of spherical defocus in the presence of odd-order aberrations. In an experimental investigation, the accommodation response to a sinusoidal change in vergence (1-3D, 0.2Hz) of a monochromatic stimulus was obtained with a dynamic infrared optometer. Measurements were obtained in 10 young visually normal individuals with and without custom contact lenses that induced low and high values of r.m.s. trefoil (0.25, 1.03 microm) and coma (0.34, 0.94 microm). Despite variation between subjects, we did not find any statistically significant increase or decrease in the accommodative gain for low levels of trefoil and coma, although effects approached or reached significance for the high levels of trefoil and coma. Theoretical and experimental results indicate that the presence of Zernike third-order aberrations on the eye does not seem to play a crucial role in the dynamics of the accommodation response.
Criticality in third order lovelock gravity and butterfly effect
Energy Technology Data Exchange (ETDEWEB)
Qaemmaqami, Mohammad M. [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)
2018-01-15
We study third order Lovelock Gravity in D = 7 at the critical point which three (A)dS vacua degenerate into one. We see there is not propagating graviton at the critical point. And also we compute the butterfly velocity for this theory at the critical point by considering the shock wave solutions near horizon, this is important to note that although there is no propagating graviton at the critical point, due to boundary gravitons the butterfly velocity is non-zero. Finally we observe that the butterfly velocity for third order Lovelock Gravity at the critical point in D = 7 is less than the butterfly velocity for Einstein-Gauss-Bonnet Gravity at the critical point in D = 7 which is less than the butterfly velocity in D = 7 for Einstein Gravity, v{sub B}{sup E.H} > v{sub B}{sup E.G.B} > v{sub B}{sup 3rdLovelock}. Maybe we can conclude that by adding higher order curvature corrections to Einstein Gravity the butterfly velocity decreases. (orig.)
Criticality in third order lovelock gravity and butterfly effect
Qaemmaqami, Mohammad M.
2018-01-01
We study third order Lovelock Gravity in D=7 at the critical point which three (A)dS vacua degenerate into one. We see there is not propagating graviton at the critical point. And also we compute the butterfly velocity for this theory at the critical point by considering the shock wave solutions near horizon, this is important to note that although there is no propagating graviton at the critical point, due to boundary gravitons the butterfly velocity is non-zero. Finally we observe that the butterfly velocity for third order Lovelock Gravity at the critical point in D=7 is less than the butterfly velocity for Einstein-Gauss-Bonnet Gravity at the critical point in D=7 which is less than the butterfly velocity in D = 7 for Einstein Gravity, vB^{E.H}>vB^{E.G.B}>vB^{3rd Lovelock} . Maybe we can conclude that by adding higher order curvature corrections to Einstein Gravity the butterfly velocity decreases.
Third-order nonlinear optical properties of GeSe2-Ga2Se3-PbI2 glasses
International Nuclear Information System (INIS)
Tang Gao; Liu Cunming; Luo Lan; Chen Wei
2010-01-01
The third-order nonlinear optical (NLO) properties of new selenium-based GeSe 2 -Ga 2 Se 3 -PbI 2 glasses have been measured using the optical Kerr effect (OKE) technique, with picosecond and femtosecond laser pulses. The 0.70GeSe 2 -0.15Ga 2 Se 3 -0.15PbI 2 glass has the largest third-order optical nonlinear susceptibility in GeSe 2 -Ga 2 Se 3 -PbI 2 glass system with χ (3) of 5.28x10 12 esu. In addition, the response time of glasses is sub-picosecond, which is predominantly associated with electron cloud. Local structure of the glasses has been identified by using Raman studies, while the origins of the observed nonlinear optical response are discussed. The [Ge(Ga)Se 4 ] tetrahedral and lone-pair electrons from highly polarizable Pb atom in glasses play an important role in enhanced NLO response. These results as well as their good chemical stability indicate that GeSe 2 -Ga 2 Se 3 -PbI 2 glasses are promising materials for photonic applications of third-order nonlinear optical signal processing.
Orientational and electronic contributions to the third-order susceptibilities of cryogenic liquids
International Nuclear Information System (INIS)
Kildal, H.; Brueck, S.R.J.
1980-01-01
Alternating current Kerr effect and third-harmonic generation (THG) are reported for the cryogenic liquids CO, O 2 , N 2 , and Ar pumped by CO 2 TEA laser radiation. The THG experiments measure the hyperpolarizability, while the Kerr effect measurements probe the total nonresonant third-order susceptibility chi/sup( 3 ), arising from both molecular orientation and electronic hyperpolarizability. The THG process in liquid CO is dominated by a vibrational two-photon resonant contribution for the CO 2 R(6) pump line at 9.35 μm. By studying the interference between the resonant and nonresonant contributions in liquid CO--O 2 mixtures the hyperpolarizability of liquid O 2 has been determined relative to the two-photon resonant chi/sup( 3 ) of liquid CO. These measurements give the first experimental confirmation for liquid media that the two-photon resonance contribution to polarized scattering consists of both narrow and broad linewidth components associated with, respectively, the isotropic and anisotropic Raman polarizabilities
Einstein-Weyl spaces and third-order differential equations
Tod, K. P.
2000-08-01
The three-dimensional null-surface formalism of Tanimoto [M. Tanimoto, "On the null surface formalism," Report No. gr-qc/9703003 (1997)] and Forni et al. [Forni et al., "Null surfaces formation in 3D," J. Math Phys. (submitted)] are extended to describe Einstein-Weyl spaces, following Cartan [E. Cartan, "Les espaces généralisées et l'integration de certaines classes d'equations différentielles," C. R. Acad. Sci. 206, 1425-1429 (1938); "La geometria de las ecuaciones diferenciales de tercer order," Rev. Mat. Hispano-Am. 4, 1-31 (1941)]. In the resulting formalism, Einstein-Weyl spaces are obtained from a particular class of third-order differential equations. Some examples of the construction which include some new Einstein-Weyl spaces are given.
Third order nonlinear optical properties of a paratellurite single crystal
Duclère, J.-R.; Hayakawa, T.; Roginskii, E. M.; Smirnov, M. B.; Mirgorodsky, A.; Couderc, V.; Masson, O.; Colas, M.; Noguera, O.; Rodriguez, V.; Thomas, P.
2018-05-01
The (a,b) plane angular dependence of the third-order nonlinear optical susceptibility, χ(3) , of a c-cut paratellurite (α-TeO2) single crystal was quantitatively evaluated here by the Z-scan technique, using a Ti:sapphire femtosecond laser operated at 800 nm. In particular, the mean value Re( ⟨χ(3)⟩a,b )(α-TeO2) of the optical tensor has been extracted from such experiments via a direct comparison with the data collected for a fused silica reference glass plate. A R e (⟨χ(3)⟩(a,b )(α-TeO2)):R e (χ(3))(SiO2 glass) ratio roughly equal to 49.1 is found, and our result compares thus very favourably with the unique experimental value (a ratio of ˜50) reported by Kim et al. [J. Am. Ceram. Soc. 76, 2486 (1993)] for a pure TeO2 glass. In addition, it is shown that the angular dependence of the phase modulation within the (a,b) plane can be fully understood in the light of the strong dextro-rotatory power known for TeO2 materials. Taking into account the optical activity, some analytical model serving to estimate the diagonal and non-diagonal components of the third order nonlinear susceptibility tensor has been thus developed. Finally, Re( χxxxx(3) ) and Re( χxxyy(3) ) values of 95.1 ×10-22 m 2/V2 and 42.0 ×10-22 m2/V2 , respectively, are then deduced for a paratellurite single crystal, considering fused silica as a reference.
Energy Technology Data Exchange (ETDEWEB)
Divya Bharathi, M.; Ahila, G.; Mohana, J. [Department of Physics, Presidency College, Chennai 600005 (India); Chakkaravarthi, G. [Department of Physics, CPCL Polytechnic College, Chennai 600068 (India); Anbalagan, G., E-mail: anbu24663@yahoo.co.in [Department of Nuclear Physics, University of Madras, Chennai 600025 (India)
2017-05-01
A neoteric organic third order nonlinear optical material 8-hydroxyquinolinium 2-chloro-5-nitrobenzoate dihydrate (8HQ2C5N) was grown by slow cooling technique using ethanol: water (1:1) mixed solvent. The calculated low value of average etch pit solidity (4.12 × 10{sup 3} cm{sup −2}) indicated that the title crystal contain less defects. From the single crystal X-ray diffraction data, it was endowed that 8HQ2C5N crystal belongs to the monoclinic system with centrosymmetric space group P2{sub 1}/c and the cell parameters values, a = 9.6546 (4) Ǻ, b = 7.1637(3) Ǻ, c = 24.3606 (12) Ǻ, α = γ = 90°, β = 92.458(2)° and volume = 1683.29(13) Ǻ{sup 3}. The FT-IR and FT-Raman spectrum were used to affirm the functional group of the title compound. The chemical structure of 8HQ2C5N was scrutinized by {sup 13}C and {sup 1}H NMR spectral analysis and thermal stability through the differential scanning calorimetry study. Using optical studies the lower cut-off wavelength and optical band gap of 8HQ2C5N were found to be 364 nm and 3.17 eV respectively. Using the single oscillator model suggested by Wemple – Didomenico, the oscillator energy (E{sub o}), the dispersion energy (E{sub d}) and static dielectric constant (ε{sub o}) were estimated. The third-order susceptibility were determined as Im χ{sup (3)} = 2.51 × 10{sup −5} esu and Re χ{sup (3)} = 4.46 × 10{sup −7} esu. The theoretical third-order nonlinear optical susceptibility χ{sup (3)} was calculated and the results were compared with experimental value. Photoluminescence spectrum of 8HQ2C5N crystal showed the yellow emission. The crystal had the single shot laser damage threshold of 5.562 GW/cm{sup 2}. Microhardness measurement showed that 8HQ2C5N belongs to a soft material category. - Highlights: • A new organic single crystals were grown and the crystal structure was reported. • Crystal possess, good transmittance, thermal and mechanical stability. • Single shot LDT value is found to be
Quadratic third-order tensor optimization problem with quadratic constraints
Directory of Open Access Journals (Sweden)
Lixing Yang
2014-05-01
Full Text Available Quadratically constrained quadratic programs (QQPs problems play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Semidenite programming (SDP relaxations often provide good approximate solutions to these hard problems. For several special cases of QQP, e.g., convex programs and trust region subproblems, SDP relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex objective.In this paper, we consider a certain QQP where the variable is neither vector nor matrix but a third-order tensor. This problem can be viewed as a generalization of the ordinary QQP with vector or matrix as it's variant. Under some mild conditions, we rst show that SDP relaxation provides exact optimal solutions for the original problem. Then we focus on two classes of homogeneous quadratic tensor programming problems which have no requirements on the constraints number. For one, we provide an easily implemental polynomial time algorithm to approximately solve the problem and discuss the approximation ratio. For the other, we show there is no gap between the SDP relaxation and itself.
Third-order nonlinear optical properties of ADP crystal
Wang, Mengxia; Wang, Zhengping; Chai, Xiangxu; Sun, Yuxiang; Sui, Tingting; Sun, Xun; Xu, Xinguang
2018-05-01
By using the Z-scan method, we investigated the third-order nonlinear optical (NLO) properties of ADP crystal at different wavelengths (355, 532, and 1064 nm) and different orientations ([001], [100], [110], I and II). The experimental data were fitted by NLO theory, to give out the two photon absorption (TPA) coefficient β 2 and the nonlinear refractive index n 2. When the light source changed from a 40 ps, 1064 nm fundamental laser to a 30 ps, 355 nm third-harmonic-generation (THG) laser, the β 2 value increased about 5 times (0.2 × 10‑2 → 1 × 10‑2 cm GW‑1), and the n 2 value increased about 1.5 times (1.5 × 10‑16 → 2.2 × 10‑16 cm2 W‑1). Among all of the orientations, the [110] sample exhibits the smallest β 2, and the second smallest n 2. It indicates that this orientation and its surroundings will be the preferred directions for high-power laser applications of ADP crystal.
Testing quantum mechanics using third-order correlations
International Nuclear Information System (INIS)
Kinsler, P.
1996-01-01
Semiclassical theories similar to stochastic electrodynamics are widely used in optics. The distinguishing feature of such theories is that the quantum uncertainty is represented by random statistical fluctuations. They can successfully predict some quantum-mechanical phenomena; for example, the squeezing of the quantum uncertainty in the parametric oscillator. However, since such theories are not equivalent to quantum mechanics, they will not always be useful. Complex number representations can be used to exactly model the quantum uncertainty, but care has to be taken that approximations do not reduce the description to a hidden variable one. This paper helps show the limitations of open-quote open-quote semiclassical theories,close-quote close-quote and helps show where a true quantum-mechanical treatment needs to be used. Third-order correlations are a test that provides a clear distinction between quantum and hidden variable theories in a way analogous to that provided by the open-quote open-quote all or nothing close-quote close-quote Greenberger-Horne-Zeilinger test of local hidden variable theories. copyright 1996 The American Physical Society
Optical nonclassicality test based on third-order intensity correlations
Rigovacca, L.; Kolthammer, W. S.; Di Franco, C.; Kim, M. S.
2018-03-01
We develop a nonclassicality criterion for the interference of three delayed, but otherwise identical, light fields in a three-mode Bell interferometer. We do so by comparing the prediction of quantum mechanics with those of a classical framework in which independent sources emit electric fields with random phases. In particular, we evaluate third-order correlations among output intensities as a function of the delays, and show how the presence of a correlation revival for small delays cannot be explained by the classical model of light. The observation of a revival is thus a nonclassicality signature, which can be achieved only by sources with a photon-number statistics that is highly sub-Poissonian. Our analysis provides strong evidence for the nonclassicality of the experiment discussed by Menssen et al. [Phys. Rev. Lett. 118, 153603 (2017), 10.1103/PhysRevLett.118.153603], and shows how a collective "triad" phase affects the interference of any three or more light fields, irrespective of their quantum or classical character.
Stabilization of third-order bilinear systems using constant controls
Directory of Open Access Journals (Sweden)
A. E. Golubev
2014-01-01
Full Text Available This paper deals with the zero equilibrium stabilization for dynamical systems that have control input singularities. A dynamical system with scalar control input is called nonregular if the coefficient of input becomes null on a subset of the phase space that contains the origin. One of the classes of nonregular dynamical systems is represented by bilinear systems. In case of second-order bilinear systems the necessary and sufficient conditions for the zero equilibrium stabilizability are known in the literature. However, in general case the stabilization problem in the presence of control input singularities has not been solved yet.In this note we solve the problem of the zero equilibrium stabilization for the third-order bilinear dynamical systems given in a canonical form. The solution is found in the class of constant controls. The necessary and sufficient conditions are obtained for the zero equilibrium stabilizability of the bilinear systems in question.The dependence of the zero equilibrium stabilizability on system parameter values is analyzed. The general criteria of stabilizability by means of constant controls are given for the bilinear systems in question. In case when all the system parameters have nonzero values the necessary and sufficient stabilizability conditions are proved. The case when some of the parameters are equal to zero is also considered.Further research can be focused on extending the obtained results to a higher-order case of bilinear and affine dynamical systems. The solution of the considered stabilization problem should also be found not only within constant controls but also in a class of state feedbacks, particularly, in the case when stabilizing constant control does not exist.One of the potential application areas for the obtained theoretical results is automatic control of technical plants like unmanned aerial vehicles and mobile robots.
The axial polarizability of nucleons and nuclei
International Nuclear Information System (INIS)
Ericson, M.; Figureau, A.
1981-02-01
The part of the static nuclear axial polarizability arising from the nucleonic excitations is derived from the low energy expansion of the πN amplitude. It is shown that the contribution of the Δ intermediate state, though dominant, does not saturate the nucleonic response. A similar effect, though more pronounced, is known to occur for the magnetic susceptibility
Electromagnetic polarizabilities of hadrons
International Nuclear Information System (INIS)
Friar, J.L.
1988-01-01
Electromagnetic polarizabilities of hadrons are reviewed, after a discussion of classical analogues. Differences between relativistic and non-relativistic approaches can lead to conflicts with conventional nuclear physics sum rules and calculational techniques. The nucleon polarizabilities are discussed in the context of the non-relativistic valence quark model, which provides a good qualitative description. The recently measured pion polarizabilities are discussed in the context of chiral symmetry and quark-loop models. 58 refs., 5 figs
Cukras, Janusz; Antušek, Andrej; Holka, Filip; Sadlej, Joanna
2009-06-01
Extensive ab initio calculations of static electric properties of molecular ions of general formula RgH + (Rg = He, Ne, Ar, Kr, Xe) involving the finite field method and coupled cluster CCSD(T) approach have been done. The relativistic effects were taken into account by Douglas-Kroll-Hess approximation. The numerical stability and reliability of calculated values have been tested using the systematic sequence of Dunning's cc-pVXZ-DK and ANO-RCC-VQZP basis sets. The influence of ZPE and pure vibrational contribution has been discussed. The component αzz has increasing trend in RgH + while the relativistic effect on αzz leads to a small increase of this molecular parameter.
Third-order nonlinear differential operators preserving invariant subspaces of maximal dimension
International Nuclear Information System (INIS)
Qu Gai-Zhu; Zhang Shun-Li; Li Yao-Long
2014-01-01
In this paper, third-order nonlinear differential operators are studied. It is shown that they are quadratic forms when they preserve invariant subspaces of maximal dimension. A complete description of third-order quadratic operators with constant coefficients is obtained. One example is given to derive special solutions for evolution equations with third-order quadratic operators. (general)
Energy Technology Data Exchange (ETDEWEB)
Maksimenko, N V [Gomel& #x27; skij Gosudarstvennyj Univ. im. F.Skoriny, Gomel (Belarus); Kuchin, S M [Filial Bryanskogo Gosudarstvennogo Univ. im. akademika I.G.Petrovskogo, Novozybkov (Russian Federation)
2012-07-01
In the paper the calculation is performed of the generalized and static polarizability of charged pions, which are considered as a relativistic system of two point spinor quarks with the linear interaction potential. The question of the relationship between static electricity and generalized polarizabilities of pions in the framework of this approach is studied.
Zeman, Johannes; Uhlig, Frank; Smiatek, Jens; Holm, Christian
2017-12-01
We present a coarse-grained polarizable molecular dynamics force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]). For the treatment of electronic polarizability, we employ the Drude model. Our results show that the new explicitly polarizable force field reproduces important static and dynamic properties such as mass density, enthalpy of vaporization, diffusion coefficients, or electrical conductivity in the relevant temperature range. In situations where an explicit treatment of electronic polarizability might be crucial, we expect the force field to be an improvement over non-polarizable models, while still profiting from the reduction of computational cost due to the coarse-grained representation.
Polarizabilities and hyperpolarizabilities of the alkali metal atoms
Energy Technology Data Exchange (ETDEWEB)
Fuentealba, P. (Chile Univ., Santiago (Chile). Departamento de Fisica and Centro de Mecanica Cuantica Aplicada (CMCA)); Reyes, O. (Chile Univ., Santiago (Chile). Dept. de Fisica)
1993-08-14
The electric static dipole polarizability [alpha], quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability [gamma] have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability [gamma]. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author).
Polarizabilities and hyperpolarizabilities of the alkali metal atoms
International Nuclear Information System (INIS)
Fuentealba, P.; Reyes, O.
1993-01-01
The electric static dipole polarizability α, quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability γ have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability γ. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author)
Comparison of third-order plasma wave echoes with ballistic second-order plasma wave echoes
International Nuclear Information System (INIS)
Leppert, H.D.; Schuelter, H.; Wiesemann, K.
1982-01-01
The apparent dispersion of third-order plasma wave echoes observed in a high frequency plasma is compared with that of simultaneously observed ballistic second-order echoes. Amplitude and wavelength of third-order echoes are found to be always smaller than those of second-order echoes, however, the dispersion curves of both types of echoes are very similar. These observations are in qualitative agreement with calculations of special ballistic third-order echoes. The ballistic nature of the observed third-order echoes may, therefore, be concluded from these measurements. (author)
Polarizability of a crystal with impurities
International Nuclear Information System (INIS)
Goettig, S.
1985-09-01
The expression for the complex frequency- and wavevector-dependent longitudinal electronic polarizability due to the presence of a weak static disorder (e.g. impurities) in a crystal with an arbitrary band structure is derived. The quantum kinetic equation in the self-consistent-field approximation is solved, expanding the one-particle density operator in powers of the screened static imperfection field and a weak perturbing electric field. The polarizability is determined by the induced electronic charge density quadratic in the imperfection field and linear in the perturbing field, averaged over the statistical distribution of imperfections. The obtained expression, which accounts properly for the collective effects in the electronic plasma, takes also into account the polar coupling of the plasma with longitudinal optical phonons. The conductivity in the optical limit (q-vector→O) is calculated, and the correspondence with one-band effective-mass approximation is established. (author)
Periodic solutions of certain third order nonlinear differential systems with delay
International Nuclear Information System (INIS)
Tejumola, H.O.; Afuwape, A.U.
1990-12-01
This paper investigates the existence of 2π-periodic solutions of systems of third-order nonlinear differential equations, with delay, under varied assumptions. The results obtained extend earlier works of Tejumola and generalize to third order systems those of Conti, Iannacci and Nkashama as well as DePascale and Iannacci and Iannacci and Nkashama. 16 refs
Yang, Lin; Guo, Peng; Yang, Aiying; Qiao, Yaojun
2018-02-01
In this paper, we propose a blind third-order dispersion estimation method based on fractional Fourier transformation (FrFT) in optical fiber communication system. By measuring the chromatic dispersion (CD) at different wavelengths, this method can estimation dispersion slope and further calculate the third-order dispersion. The simulation results demonstrate that the estimation error is less than 2 % in 28GBaud dual polarization quadrature phase-shift keying (DP-QPSK) and 28GBaud dual polarization 16 quadrature amplitude modulation (DP-16QAM) system. Through simulations, the proposed third-order dispersion estimation method is shown to be robust against nonlinear and amplified spontaneous emission (ASE) noise. In addition, to reduce the computational complexity, searching step with coarse and fine granularity is chosen to search optimal order of FrFT. The third-order dispersion estimation method based on FrFT can be used to monitor the third-order dispersion in optical fiber system.
DEFF Research Database (Denmark)
Olsen, Jógvan Magnus Haugaard; Steinmann, Casper; Ruud, Kenneth
2015-01-01
We present a new QM/QM/MM-based model for calculating molecular properties and excited states of solute-solvent systems. We denote this new approach the polarizable density embedding (PDE) model and it represents an extension of our previously developed polarizable embedding (PE) strategy. The PDE...... model is a focused computational approach in which a core region of the system studied is represented by a quantum-chemical method, whereas the environment is divided into two other regions: an inner and an outer region. Molecules belonging to the inner region are described by their exact densities...
Dynamical polarizability of atoms
International Nuclear Information System (INIS)
Mukhopadhyay, G.; Lundqvist, S.
1980-07-01
The frequency-dependent polarizability of a closed-shell atom is considered in an RPA type approximation. This is usually done using many-body perturbation theory but can also be recast into the form of equations for the density oscillations as previously shown by the authors. The latter approach is known to lead to a non-hermitian problem because of the structure of the interaction kernel. This note shows that this is also true if using the reaction matrix method. The main result is to derive the expression for the polarizability function taking into account the non-hermitian nature of the problem. (author)
Correlation effects of third-order perturbation in the extended Hubbard model
International Nuclear Information System (INIS)
Wei, G.Z.; Nie, H.Q.; Li, L.; Zhang, K.Y.
1989-01-01
Using the local approach, a third-order perturbation calculation has been performed to investigate the effects of intra-atomic electron correlation and electron and spin correlation between nearest neighbour sites in the extended Hubbard model. It was found that significant correction of the third order over the second order results and, in comparison with the results of the third-order perturbation where only the intra-atomic electron correlation is included, the influence of the electron and spin correlation between nearest neighbour sites on the correlation energy is non-negligible. 17 refs., 3 figs
Free vibration analysis of beams by using a third-order shear ...
Indian Academy of Sciences (India)
Free vibrations of beams; the third-order shear deformation theory; ... Thus, a shear correction factor is required to compensate for the error because of ...... Wang C M, Kitipornchai S 2003 Vibration of Timoshenko beams with internal hinge.
Two new solutions to the third-order symplectic integration method
International Nuclear Information System (INIS)
Iwatsu, Reima
2009-01-01
Two new solutions are obtained for the symplecticity conditions of explicit third-order partitioned Runge-Kutta time integration method. One of them has larger stability limit and better dispersion property than the Ruth's method.
ON THE BOUNDEDNESS AND THE STABILITY OF SOLUTION TO THIRD ORDER NON-LINEAR DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In this paper we investigate the global asymptotic stability,boundedness as well as the ultimate boundedness of solutions to a general third order nonlinear differential equation,using complete Lyapunov function.
Third-order ordinary differential equations Y”' = f(x, y, y'', y′”) with ...
African Journals Online (AJOL)
dimensional symmetry algebra. Mathematics Subject Classication (2010): 34A05, 34A25, 53A55, 76M60. Key words: Linearization, third order ODEs, point transformation, contact transformation, Lie symmetries, relative differential invariants.
Z-scan: A simple technique for determination of third-order optical nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Singh, Vijender, E-mail: chahal-gju@rediffmail.com [Department of Applied Science, N.C. College of Engineering, Israna, Panipat-132107, Haryana (India); Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.co.in [Department of Physics, Chaudhary Devi Lal University, Sirsa-125055, Haryana (India)
2015-08-28
Z-scan is a simple experimental technique to measure intensity dependent nonlinear susceptibilities of third-order nonlinear optical materials. This technique is used to measure the sign and magnitude of both real and imaginary part of the third order nonlinear susceptibility (χ{sup (3)}) of nonlinear optical materials. In this paper, we investigate third-order nonlinear optical properties of Ag-polymer composite film by using single beam z-scan technique with Q-switched, frequency doubled Nd: YAG laser (λ=532 nm) at 5 ns pulse. The values of nonlinear absorption coefficient (β), nonlinear refractive index (n{sub 2}) and third-order nonlinear optical susceptibility (χ{sup (3)}) of permethylazine were found to be 9.64 × 10{sup −7} cm/W, 8.55 × 10{sup −12} cm{sup 2}/W and 5.48 × 10{sup −10} esu, respectively.
Magnetic polarizability of pion
Energy Technology Data Exchange (ETDEWEB)
Luschevskaya, E.V., E-mail: luschevskaya@itep.ru [Institute for Theoretical and Experimental Physics, Bolshaia Cheremushkinskaia 25, 117218 Moscow (Russian Federation); School of Biomedicine, Far Eastern Federal University, 690950 Vladivostok (Russian Federation); Solovjeva, O.E., E-mail: olga.solovjeva@itep.ru [Institute for Theoretical and Experimental Physics, Bolshaia Cheremushkinskaia 25, 117218 Moscow (Russian Federation); Teryaev, O.V., E-mail: teryaev@theor.jinr.ru [Joint Institute for Nuclear Research, Dubna, 141980 (Russian Federation); National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute), Kashirskoe highway, 31, 115409 Moscow (Russian Federation)
2016-10-10
We explore the energy dependence of π mesons off the background Abelian magnetic field on the base of quenched SU(3) lattice gauge theory and calculate the magnetic dipole polarizability of charged and neutral pions for various lattice volumes and lattice spacings. The contribution of the magnetic hyperpolarizability to the neutral pion energy has been also found.
DEFF Research Database (Denmark)
Reinholdt, Peter; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard
2017-01-01
We analyze the performance of the polarizable density embedding (PDE) model-a new multiscale computational approach designed for prediction and rationalization of general molecular properties of large and complex systems. We showcase how the PDE model very effectively handles the use of large...
Spin polarizability of hyperons
Indian Academy of Sciences (India)
K B VIJAYA KUMAR. Department of Physics, Mangalore University, Mangalagangothri 574 199, India. E-mail: kbvijayakumar@yahoo.com. DOI: 10.1007/s12043-014-0869-4; ePublication: 4 November 2014. Abstract. We review the recent progress of the theoretical understanding of spin polarizabilities of the hyperon in the ...
Third-order elastic moduli for alkali-halide crystals possessing the sodium chloride structure
International Nuclear Information System (INIS)
Ray, U.
2010-01-01
The values of third-order elastic moduli for alkali halides, having NaCl-type crystal structure are calculated according to the Born-Mayer potential model, considering the repulsive interactions up to the second nearest neighbours and calculating the values of the potential parameters for each crystal, independently, from the compressibility data. This work presents the first published account of the calculation of the third-order elastic moduli taking the actual value of the potential parameter unlike the earlier works. Third-order elastic constants have been computed for alkali halides at 0 and 300 K. The results of the third-order elastic constants are compared with the available experimental and theoretical data. Very good agreement between experimental and theoretical third-order elastic constant data (except C 123 ) is found. We have also computed the values of the pressure derivatives of second-order elastic constants and Anderson-Grueneisen parameter for alkali halides, which agree reasonably well with the experimental values, indicating the satisfactory nature of our computed data for third-order elastic constants.
Validity testing of third-order nonlinear models for synchronous generators
Energy Technology Data Exchange (ETDEWEB)
Arjona, M.A. [Division de Estudios de Posgrado e Investigacion, Instituto Tecnologico de La Laguna Torreon, Coah. (Mexico); Escarela-Perez, R. [Universidad Autonoma Metropolitana - Azcapotzalco, Departamento de Energia, Av. San Pablo 180, Col. Reynosa, C.P. 02200 (Mexico); Espinosa-Perez, G. [Division de Estudios Posgrado de la Facultad de Ingenieria Universidad Nacional Autonoma de Mexico (Mexico); Alvarez-Ramirez, J. [Universidad Autonoma Metropolitana -Iztapalapa, Division de Ciencias Basicas e Ingenieria (Mexico)
2009-06-15
Third-order nonlinear models are commonly used in control theory for the analysis of the stability of both open-loop and closed-loop synchronous machines. However, the ability of these models to describe the electrical machine dynamics has not been tested experimentally. This work focuses on this issue by addressing the parameters identification problem for third-order models for synchronous generators. For a third-order model describing the dynamics of power angle {delta}, rotor speed {omega} and quadrature axis transient EMF E{sub q}{sup '}, it is shown that the parameters cannot be identified because of the effects of the unknown initial condition of E{sub q}{sup '}. To avoid this situation, a model that incorporates the measured electrical power dynamics is considered, showing that state measurements guarantee the identification of the model parameters. Data obtained from a 7 kVA lab-scale synchronous generator and from a 150 MVA finite-element simulation were used to show that, at least for the worked examples, the estimated parameters display only moderate variations over the operating region. This suggests that third-order models can suffice to describe the main dynamical features of synchronous generators, and that third-order models can be used to design and tune power system stabilizers and voltage regulators. (author)
Algebraic Properties of First Integrals for Scalar Linear Third-Order ODEs of Maximal Symmetry
Directory of Open Access Journals (Sweden)
K. S. Mahomed
2013-01-01
Full Text Available By use of the Lie symmetry group methods we analyze the relationship between the first integrals of the simplest linear third-order ordinary differential equations (ODEs and their point symmetries. It is well known that there are three classes of linear third-order ODEs for maximal cases of point symmetries which are 4, 5, and 7. The simplest scalar linear third-order equation has seven-point symmetries. We obtain the classifying relation between the symmetry and the first integral for the simplest equation. It is shown that the maximal Lie algebra of a first integral for the simplest equation y′′′=0 is unique and four-dimensional. Moreover, we show that the Lie algebra of the simplest linear third-order equation is generated by the symmetries of the two basic integrals. We also obtain counting theorems of the symmetry properties of the first integrals for such linear third-order ODEs. Furthermore, we provide insights into the manner in which one can generate the full Lie algebra of higher-order ODEs of maximal symmetry from two of their basic integrals.
Directory of Open Access Journals (Sweden)
K. S. Mahomed
2013-01-01
Full Text Available The relationship between first integrals of submaximal linearizable third-order ordinary differential equations (ODEs and their symmetries is investigated. We obtain the classifying relations between the symmetries and the first integral for submaximal cases of linear third-order ODEs. It is known that the maximum Lie algebra of the first integral is achieved for the simplest equation and is four-dimensional. We show that for the other two classes they are not unique. We also obtain counting theorems of the symmetry properties of the first integrals for these classes of linear third-order ODEs. For the 5 symmetry class of linear third-order ODEs, the first integrals can have 0, 1, 2, and 3 symmetries, and for the 4 symmetry class of linear third-order ODEs, they are 0, 1, and 2 symmetries, respectively. In the case of submaximal linear higher-order ODEs, we show that their full Lie algebras can be generated by the subalgebras of certain basic integrals.
Hyperon polarizabilities in the bound-state soliton model
International Nuclear Information System (INIS)
Gobbi, C.; Scoccola, N.N.
1996-01-01
A detailed calculation of electric and magnetic static polarizabilities of octet hyperons is presented in the framework of the bound-state soliton model. Both seagull and dispersive contributions are considered, and the results are compared with different model predictions. (orig.)
International Nuclear Information System (INIS)
Matsyuk, R.Ya.
1985-01-01
The problem on the existence of the invariant third-order Euler-Poisson equations in the pseudo-Euclidean space is investigated. The locally variational problem is determined by the Lagrangian density over the space of the second-order jets. The one - parameter family of the invariant third-order Euler-Poisson equations is groved to be the only one in the three-dimensional pseudo-Euclidean space. No invariant third-order Euler-Poisson equations exist in the four-dimensional pseudo-Euclidean space. It is shown that the Mathisson equation and the equation of geodesic circles in particular cases may be considered in the context of the Ostrogradiskij mechanics and the Kavaguchi geometry
Third-order nonlinear optical properties of thin sputtered gold films
Xenogiannopoulou, E.; Aloukos, P.; Couris, S.; Kaminska, E.; Piotrowska, A.; Dynowska, E.
2007-07-01
Au films of thickness ranging between 5 and 52 nm were prepared by sputtering on quartz substrates and their third-order nonlinear optical response was investigated by Optical Kerr effect (OKE) and Z-scan techniques using 532 nm, 35 ps laser pulses. All prepared films were characterized by XRD, AFM and UV-VIS-NIR spectrophotometry while their third-order susceptibility χ(3) was measured and found to be of the order of 10 -9 esu. The real and imaginary parts of the third-order susceptibility were found in very good agreement with experimental results and theoretical predictions reported by Smith et al. [D.D. Smith, Y. Yoon, R.W. Boyd, Y.K. Cambell, L.A. Baker, R.M. Crooks, M. George, J. Appl. Phys. 86 (1999) 6200].
Third-order aberration-free ion-optical system for an electromagnetic isotope separator
International Nuclear Information System (INIS)
Chavet, I.
1982-12-01
The essential qualities required of a production isotope separator are high output and high enrichment factor. For this purpose, the imaging system should have as little geometric aberration as possible. In the proposed system, consisting of a homogeneous sector-type analyzing magnet, the beam is crossed in the axial direction at the entrance boundary of the magnetic field and the incidence to this boundary is normal. It is shown that for this case all radial aberrations to the ''practical'' third order can be eliminated provided four optical conditions are satisfied: two related to heterogeneous aberration terms in addition to the two conditions related to the second and third order homogeneous aperture aberration terms. The resulting equations take into account the magnetic fringe-field effects to the third order. (author)
Surface plasmon enhanced third-order optical nonlinearity of Ag nanocomposite film
Energy Technology Data Exchange (ETDEWEB)
Singh, Vijender [Department of Applied Science, N.C. College of Engineering, Israna, Panipat 132107, Haryana (India); Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.in [Department of Physics, Chaudhary Devi Lal University, Sirsa 125055, Haryana (India)
2014-03-17
We obtain a large third-order optical nonlinearity (χ{sup (3)} ≈ 10{sup −10}esu) of silver nanoparticles dispersed in polyvinyl alcohol/tetraethyl orthosilicate matrix using single beam z-scan technique at 532 nm by Q-switched Nd:YAG laser. We have shown that mechanisms responsible for third-order optical nonlinearity of Ag nanocomposite film are reverse saturable absorption (RSA) and self-defocusing in the purlieu of surface plasmon resonance (SPR). Optical band-gap and width of SPR band of Ag nanocomposite film decrease with increasing silver concentration, which leads to enhancement of local electric field and hence third-order optical nonlinearity. Optical limiting, due to RSA has also been demonstrated at 532 nm.
Surface plasmon enhanced third-order optical nonlinearity of Ag nanocomposite film
International Nuclear Information System (INIS)
Singh, Vijender; Aghamkar, Praveen
2014-01-01
We obtain a large third-order optical nonlinearity (χ (3) ≈ 10 −10 esu) of silver nanoparticles dispersed in polyvinyl alcohol/tetraethyl orthosilicate matrix using single beam z-scan technique at 532 nm by Q-switched Nd:YAG laser. We have shown that mechanisms responsible for third-order optical nonlinearity of Ag nanocomposite film are reverse saturable absorption (RSA) and self-defocusing in the purlieu of surface plasmon resonance (SPR). Optical band-gap and width of SPR band of Ag nanocomposite film decrease with increasing silver concentration, which leads to enhancement of local electric field and hence third-order optical nonlinearity. Optical limiting, due to RSA has also been demonstrated at 532 nm
Instability of black strings in the third-order Lovelock theory
Giacomini, Alex; Henríquez-Báez, Carla; Lagos, Marcela; Oliva, Julio; Vera, Aldo
2016-05-01
We show that homogeneous black strings of third-order Lovelock theory are unstable under s-wave perturbations. This analysis is done in dimension D =9 , which is the lowest dimension that allows the existence of homogeneous black strings in a theory that contains only the third-order Lovelock term in the Lagrangian. As is the case in general relativity, the instability is produced by long wavelength perturbations and it stands for the perturbative counterpart of a thermal instability. We also provide a comparative analysis of the instabilities of black strings at a fixed radius in general relativity, Gauss-Bonnet, and third-order Lovelock theories. We show that the minimum critical wavelength that triggers the instability grows with the power of the curvature defined in the Lagrangian. The maximum exponential growth during the time of the perturbation is the largest in general relativity and it decreases with the number of curvatures involved in the Lagrangian.
Polarizability of acetanilide and RDX in the crystal: effect of molecular geometry
Tsiaousis, D.; Munn, R. W.; Smith, P. J.; Popelier, P. L. A.
2004-10-01
Density-functional theory with the B3LYP functional at the 6-311++G** level is used to calculate the dipole moment and the static polarizability for acetanilide and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) in their in-crystal structures. For acetanilide the dipole moment is 2{1}/{2}% larger than for the gas-phase structure and for RDX (where there is a gross geometry change) it is 15% larger. The polarizability for the in-crystal structure is smaller than for the gas-phase structure by 3% for both species, whereas the in-crystal effective optical polarizability is larger than the gas-phase static polarizability for both crystals. Hence, effects in addition to the molecular geometry change in the crystal must be considered in order to interpret the effective polarizability completely.
Density Functional Studies of Molecular Polarizabilities. 7. Anthracene and Phenanthrene
Directory of Open Access Journals (Sweden)
Humberto J. Soscun Machado
2000-03-01
Full Text Available We report accurate Ab Initio studies of the static dipole polarizabilities of anthracene and phenanthrene. Geometries were optimized at the HF/6-311G(3d,2p level of theory. Dipole polarizabilities were calculated at the HF/6-311++G(3d,2p and BLYP/6-311++G(3d,2p levels of theory, using HF/6-311G(3d,2p geometries. The calculated dipole polarizabilities for anthracene are compared with experiment. Inclusion of electron correlation using the BLYP procedure increases the L and M components of the dipole polarizability, but not the perpendicular (N component. Examination of corresponding BLYP results for the polyacene series benzene, naphthalene and anthracene shows that the normal component of the dipole polarizability scales linearly with the number of benzene ring units, with an increment of 20.8 au. The medium component also scales linearly with an increment of 42.8 atomic units. The long component does not scale linearly. Semi-emiprical AM1 calculations are also given for comparison; the normal component of the dipole polarizability tensor is poorly represented by such calculations.
Evaluation of third order nonlinear optical parameters of CdS/PVA nanocomposite
International Nuclear Information System (INIS)
Sharma, Mamta; Tripathi, S. K.
2015-01-01
CdS nanoparticles dispersed in PVA are prepared by Chemical method at room temperature. The nonlinear optical parameters such as nonlinear absorption (β), nonlinear refractive index (n 2 ) and nonlinear susceptibility (χ 3 ) are calculated for this sample by using Z-scan technique. CdS/PVA samples show the two photon absorption mechanism. The third order nonlinear susceptibility is calculated from n 2 and β and is found to be of the order of 10 −7 – 10 −8 m 2 /V 2 . The larger value of third order nonlinear susceptibility is due to dielectric and quantum confinement effect
The third order nonlinear susceptibility of InAs at infrared region
International Nuclear Information System (INIS)
Musayev, M.A.
2008-01-01
Nonlinear susceptibilities of the third order and coefficient of nonlinear absorption in InAs n-type with a different degree of a doping have been measured. The values of the third order nonlinear susceptibilities have derived from these measurements essentially exceed the values calculated on the basis of model featuring nonlinear susceptibility of electrons, being in conduction-band nonparabolicity. It has been shown that the observable discrepancy has been eliminated, if in calculation a dissipation of energy of electrons has been considered. Growth of efficiency at four-wave mixingin narrow-gap semiconductors has been restricted to nonlinear absorption of interacting waves
Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.
Noreen, Saima
2013-01-01
This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.
Alkali-Responsive Absorption Spectra and Third-Order Optical Nonlinearities of Imino Squaramides
International Nuclear Information System (INIS)
Li Zhong-Yu; Xu Song; Zhou Xin-Yu; Zhang Fu-Shi
2012-01-01
Third-order optical nonlinearities and dynamic responses of two imino squaramides under neutral and base conditions were studied using the femtosecond degenerate four-wave mixing technique at 800 nm. Ultrafast optical responses have been observed and the magnitude of the second-order hyperpolarizabilities of the squaramides has been measured to be as large as 10 −31 esu. The absorption spectra, color of solution, and third-order optical nonlinearities of two imino squaramides change with the addition of sodium hydroxide. The γ value under the base condition for each dye is approximately 1.25 times larger than that under neutral conditions. (fundamental areas of phenomenology(including applications))
Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.
Directory of Open Access Journals (Sweden)
Saima Noreen
Full Text Available This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.
An algorithm for solving initial value problems of third order ordinary ...
African Journals Online (AJOL)
Abstract. We propose an implicit multi-step method for the solution of initial value problems (IVPs) of third order ordinary differential equations (ODE) which does not require reducing the ODE to first order before solving. The development of the method is based on collocation of the differential system and interpolation of the ...
Multi-octave analog photonic link with improved second- and third-order SFDRs
Tan, Qinggui; Gao, Yongsheng; Fan, Yangyu; He, You
2018-03-01
The second- and third-order spurious free dynamic ranges (SFDRs) are two key performance indicators for a multi-octave analogy photonic link (APL). The linearization methods for either second- or third-order intermodulation distortion (IMD2 or IMD3) have been intensively studied, but the simultaneous suppression for the both were merely reported. In this paper, we propose an APL with improved second- and third-order SFDRs for multi-octave applications based on two parallel DPMZM-based sub-APLs. The IMD3 in each sub-APL is suppressed by properly biasing the DPMZM, and the IMD2 is suppressed by balanced detecting the two sub-APLs. The experiment demonstrates significant suppression ratios for both the IMD2 and IMD3 after linearization in the proposed link, and the measured second- and third-order SFDRs with the operating frequency from 6 to 40 GHz are above 91 dB ṡHz 1 / 2 and 116 dB ṡHz 2 / 3, respectively.
A Three Step Explicit Method for Direct Solution of Third Order ...
African Journals Online (AJOL)
This study produces a three step discrete Linear Multistep Method for Direct solution of third order initial value problems of ordinary differential equations of the form y'''= f(x,y,y',y''). Taylor series expansion technique was adopted in the development of the method. The differential system from the basis polynomial function to ...
Breakdown of the single-exchange approximation in third-order symmetry-adapted perturbation theory.
Lao, Ka Un; Herbert, John M
2012-03-22
We report third-order symmetry-adapted perturbation theory (SAPT) calculations for several dimers whose intermolecular interactions are dominated by induction. We demonstrate that the single-exchange approximation (SEA) employed to derive the third-order exchange-induction correction (E(exch-ind)((30))) fails to quench the attractive nature of the third-order induction (E(ind)((30))), leading to one-dimensional potential curves that become attractive rather than repulsive at short intermolecular separations. A scaling equation for (E(exch-ind)((30))), based on an exact formula for the first-order exchange correction, is introduced to approximate exchange effects beyond the SEA, and qualitatively correct potential energy curves that include third-order induction are thereby obtained. For induction-dominated systems, our results indicate that a "hybrid" SAPT approach, in which a dimer Hartree-Fock calculation is performed in order to obtain a correction for higher-order induction, is necessary not only to obtain quantitative binding energies but also to obtain qualitatively correct potential energy surfaces. These results underscore the need to develop higher-order exchange-induction formulas that go beyond the SEA. © 2012 American Chemical Society
Directory of Open Access Journals (Sweden)
Araz R. Aliev
2013-10-01
Full Text Available We study a third-order operator-differential equation on the semi-axis with a discontinuous coefficient and boundary conditions which include an abstract linear operator. Sufficient conditions for the well-posed and unique solvability are found by means of properties of the operator coefficients in a Sobolev-type space.
Khataybeh, S. N.; Hashim, I.
2018-04-01
In this paper, we propose for the first time a method based on Bernstein polynomials for solving directly a class of third-order ordinary differential equations (ODEs). This method gives a numerical solution by converting the equation into a system of algebraic equations which is solved directly. Some numerical examples are given to show the applicability of the method.
Directory of Open Access Journals (Sweden)
C.G. Ozoegwu
2016-01-01
Full Text Available The general least squares model for milling process state term is presented. A discrete map for milling stability analysis that is based on the third-order case of the presented general least squares milling state term model is first studied and compared with its third-order counterpart that is based on the interpolation theory. Both numerical rate of convergence and chatter stability results of the two maps are compared using the single degree of freedom (1DOF milling model. The numerical rate of convergence of the presented third-order model is also studied using the two degree of freedom (2DOF milling process model. Comparison gave that stability results from the two maps agree closely but the presented map demonstrated reduction in number of needed calculations leading to about 30% savings in computational time (CT. It is seen in earlier works that accuracy of milling stability analysis using the full-discretization method rises from first-order theory to second-order theory and continues to rise to the third-order theory. The present work confirms this trend. In conclusion, the method presented in this work will enable fast and accurate computation of stability diagrams for use by machinists.
Polarizability sum rules in QED
International Nuclear Information System (INIS)
Llanta, E.; Tarrach, R.
1978-01-01
The well founded total photoproduction and the, assumed subtraction free, longitudinal photoproduction polarizability sum rules are checked in QED at the lowest non-trivial order. The first one is shown to hold, whereas the second one turns out to need a subtraction, which makes its usefulness for determining the electromagnetic polarizabilities of the nucleons quite doubtful. (Auth.)
Analytic behavior of the QED polarizability function at finite temperature
International Nuclear Information System (INIS)
Bernal, A.; Perez, A.
2012-01-01
We revisit the analytical properties of the static quasi-photon polarizability function for an electron gas at finite temperature, in connection with the existence of Friedel oscillations in the potential created by an impurity. In contrast with the zero temperature case, where the polarizability is an analytical function, except for the two branch cuts which are responsible for Friedel oscillations, at finite temperature the corresponding function is non analytical, in spite of becoming continuous everywhere on the complex plane. This effect produces, as a result, the survival of the oscillatory behavior of the potential. We calculate the potential at large distances, and relate the calculation to the non-analytical properties of the polarizability.
Evaluation of third order nonlinear optical parameters of CdS/PVA nanocomposite
Energy Technology Data Exchange (ETDEWEB)
Sharma, Mamta [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160014 (India); Department of Applied Sciences (Physics), UIET, Panjab University, Chandigarh-160014 (India); Tripathi, S. K., E-mail: surya@pu.ac.in, E-mail: surya-tr@yahoo.com [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160014 (India)
2015-06-24
CdS nanoparticles dispersed in PVA are prepared by Chemical method at room temperature. The nonlinear optical parameters such as nonlinear absorption (β), nonlinear refractive index (n{sub 2}) and nonlinear susceptibility (χ{sup 3}) are calculated for this sample by using Z-scan technique. CdS/PVA samples show the two photon absorption mechanism. The third order nonlinear susceptibility is calculated from n{sub 2} and β and is found to be of the order of 10{sup −7} – 10{sup −8} m{sup 2}/V{sup 2}. The larger value of third order nonlinear susceptibility is due to dielectric and quantum confinement effect.
Directory of Open Access Journals (Sweden)
C. Torres-Torres
2012-01-01
Full Text Available We report the transmittance modulation of optical signals in a nanocomposite integrated by two different silver doped zinc oxide thin solid films. An ultrasonic spray pyrolysis approach was employed for the preparation of the samples. Measurements of the third-order nonlinear optical response at a nonresonant 532 nm wavelength of excitation were performed using a vectorial two-wave mixing. It seems that the separated contribution of the optical nonlinearity associated with each film noticeable differs in the resulting nonlinear effects with respect to the additive response exhibited by the bilayer system. An enhancement of the optical Kerr nonlinearity is predicted for prime number arrays of the studied nanoclusters in a two-wave interaction. We consider that the nanostructured morphology of the thin solid films originates a strong modification of the third-order optical phenomena exhibited by multilayer films based on zinc oxide.
Computationally efficient near-field source localization using third-order moments
Chen, Jian; Liu, Guohong; Sun, Xiaoying
2014-12-01
In this paper, a third-order moment-based estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm is proposed for passive localization of near-field sources. By properly choosing sensor outputs of the symmetric uniform linear array, two special third-order moment matrices are constructed, in which the steering matrix is the function of electric angle γ, while the rotational factor is the function of electric angles γ and ϕ. With the singular value decomposition (SVD) operation, all direction-of-arrivals (DOAs) are estimated from a polynomial rooting version. After substituting the DOA information into the steering matrix, the rotational factor is determined via the total least squares (TLS) version, and the related range estimations are performed. Compared with the high-order ESPRIT method, the proposed algorithm requires a lower computational burden, and it avoids the parameter-match procedure. Computer simulations are carried out to demonstrate the performance of the proposed algorithm.
Energy Technology Data Exchange (ETDEWEB)
Yan, Hao-Peng; Liu, Wen-Biao, E-mail: wbliu@bnu.edu.cn
2016-08-10
Using Parikh–Wilczek tunneling framework, we calculate the tunneling rate from a Schwarzschild black hole under the third order WKB approximation, and then obtain the expressions for emission spectrum and black hole entropy to the third order correction. The entropy contains four terms including the Bekenstein–Hawking entropy, the logarithmic term, the inverse area term, and the square of inverse area term. In addition, we analyse the correlation between sequential emissions under this approximation. It is shown that the entropy is conserved during the process of black hole evaporation, which consists with the request of quantum mechanics and implies the information is conserved during this process. We also compare the above result with that of pure thermal spectrum case, and find that the non-thermal correction played an important role.
Third-order nonlinearity of Er3+-doped lead phosphate glass
Energy Technology Data Exchange (ETDEWEB)
Santos, C. C. [Universidade Federal do Ceara, Ceara, Brazil; Guedes Da Silva, Ilde [ORNL; Siqueira, J. P. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Misoguti, L. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Zilio, S. C. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Boatner, Lynn A [ORNL
2010-01-01
The third-order optical susceptibility and dispersion of the linear refractive index of Er3+-doped lead phosphate glass were measured in the wavelength range between 400 and 1940 nm by using the spectrally resolved femtosecond Maker fringes technique. The nonlinear refractive index obtained from the third-order susceptibility was found to be five times higher than that of silica, indicating that Er3+-doped lead phosphate glass is a potential candidate to be used as the base component for the fabrication of photonic devices. For comparison purposes, the Z-scan technique was also employed to obtain the values of the nonlinear refractive index of E-doped lead phosphate glass at several wavelengths, and the values obtained using the two techniques agree to within 15%.
Third-order optical intensity correlation measurements of pseudo-thermal light
International Nuclear Information System (INIS)
Chen Xi-Hao; Wu Wei; Meng Shao-Ying; Li Ming-Fei
2014-01-01
Third-order Hanbrury Brown—Twiss and double-slit interference experiments with a pseudo-thermal light are performed by recording intensities in single, double and triple optical paths, respectively. The experimental results verifies the theoretical prediction that the indispensable condition for achieving a interference pattern or ghost image in Nth-order intensity correlation measurements is the synchronous detection of the same light field by each reference detector, no matter the intensities recorded in one, or two, or N optical paths. It is shown that, when the reference detectors are scanned in the opposite directions, the visibility and resolution of the third-order spatial correlation function of thermal light is much better than that scanned in the same direction, but it is no use for obtaining the Nth-order interference pattern or ghost image in the thermal Nth-order interference or ghost imaging. (general)
Zeolite Y Films as Ideal Platform for Evaluation of Third-Order Nonlinear Optical Quantum Dots
Directory of Open Access Journals (Sweden)
Hyun Sung Kim
2016-01-01
Full Text Available Zeolites are ideal host material for generation and stabilization of regular ultrasmall quantum dots (QDs array with the size below 1.5 nm. Quantum dots (QDs with high density and extinction absorption coefficient have been expected to give high level of third-order nonlinear optical (3rd-NLO and to have great potential applications in optoelectronics. In this paper, we carried out a systematic elucidation of the third-order nonlinear optical response of various types of QDs including PbSe, PbS, CdSe, CdS, ZnSe, ZnS, Ag2Se, and Ag2S by manipulation of QDs into zeolites Y pores. In this respect, we could demonstrate that the zeolite offers an ideal platform for capability comparison 3rd-NLO response of various types of QDs with high sensitivities.
Models for Master-Slave Clock Distribution Networks with Third-Order Phase-Locked Loops
Piqueira, José Roberto Castilho; de Carvalho Freschi, Marcela
2007-01-01
The purpose of this work is to study the processing and transmission of clock signals in networks of geographically distributed nodes, in order to derive conditions for frequency and phase synchronization between the nodes. The focus is on the master-slave architecture, which presents a priority scheme of clock distribution. One-way master-slave (OWMS ) and two-way master-slave (TWMS) chains are studied, considering that the slave nodes are third-order phase-locked loops...
Comparison of second and third orders Runge-Kutta methods for ...
African Journals Online (AJOL)
This work is concerned with the analysis of second and third orders Runge- Kutta formulae capable of solving initial value problems in Ordinary Differential Equations of the form: y1 = f(x, y), y(x0) = y0, a £ x £ b. The intention is to find out which of these two orders can improve the performance of results when implemented ...
Third order mode laser diode: design of a twin photon source
International Nuclear Information System (INIS)
Ducci, S.; Berger, V.; Rossi, A. de; Ortiz, V.; Calligaro, M.; Vinter, B.; Nagle, J.; Berger, V.
2004-01-01
We demonstrate the lasing action on a third order waveguide mode in a laser diode. The AlGaAs heterostructure has been designed to achieve a parametric emission of photons pairs through modal phase matching. This device is very compact and does not generate coupling loss between the laser source and the non-linear waveguide. It is the first step on the way to design a twin photon micro-source. (A.C.)
Symplectic and trigonometrically fitted symplectic methods of second and third order
International Nuclear Information System (INIS)
Monovasilis, Th.; Simos, T.E.
2006-01-01
The numerical integration of Hamiltonian systems by symplectic and trigonometrically symplectic method is considered in this Letter. We construct new symplectic and trigonometrically symplectic methods of second and third order. We apply our new methods as well as other existing methods to the numerical integration of the harmonic oscillator, the 2D harmonic oscillator with an integer frequency ratio and an orbit problem studied by Stiefel and Bettis
Enhancement of third-order harmonic generation by interaction of two IR femtosecond filaments
International Nuclear Information System (INIS)
Liu, Z Y; Ding, P J; Shi, Y C; Lu, X; Liu, Q C; Sun, S H; Ding, B W; Hu, B T; Liu, X L
2012-01-01
Three orders of magnitude in the enhancement of the third-order harmonic (TH) generation induced by the interaction of two femtosecond filaments crossing with small angles in the air is achieved. The dependences of the TH generation on the time delay, the relative polarization, the input laser intensity ratios between the probe and pump beam are measured with the crossing angle of 3.5deg , and the results with quasi-vertical crossing angle are also shown for comparison
Third order effects generated by refractive lenses on sub 20 femtosecond optical pulses
International Nuclear Information System (INIS)
Estrada-Silva, F C; Rosete-Aguilar, M; Garduno-Mejia, J; Gonzalez-Galicia, M A; Bruce, N C; Ortega-Martinez, R
2011-01-01
When using lenses to focus ultra-short pulses, chromatic aberration produces pulse spreading, after propagation through the lens. The focusing of ultra-short pulses has been analyzed by using Fourier optics where the field amplitude of the pulse is evaluated around the focal region of the lens by performing a third order expansion on the wave number around the central frequency of the carrier. In the literature, the pulse focusing in the neighborhood of the focal region of the lens has been calculated by expanding the wave number up to second order. The second order approximation works for pulses with a duration greater than 20fs, or pulses propagating through low dispersion materials; but, it is necessary to do third order approximation for pulses with a shorter duration, or propagating through highly dispersive materials. In this paper we analyze 15fs and 20fs pulses, with a carrier wavelength of 810nm, at the paraxial focal plane of singlets and achromatic doublets. The analysis includes the third order GVD and the results are compared with those obtained when the wave number is expanded up to second order.
Oscillation criteria for third order nonlinear delay differential equations with damping
Directory of Open Access Journals (Sweden)
Said R. Grace
2015-01-01
Full Text Available This note is concerned with the oscillation of third order nonlinear delay differential equations of the form \\[\\label{*} \\left( r_{2}(t\\left( r_{1}(ty^{\\prime}(t\\right^{\\prime}\\right^{\\prime}+p(ty^{\\prime}(t+q(tf(y(g(t=0.\\tag{\\(\\ast\\}\\] In the papers [A. Tiryaki, M. F. Aktas, Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping, J. Math. Anal. Appl. 325 (2007, 54-68] and [M. F. Aktas, A. Tiryaki, A. Zafer, Oscillation criteria for third order nonlinear functional differential equations, Applied Math. Letters 23 (2010, 756-762], the authors established some sufficient conditions which insure that any solution of equation (\\(\\ast\\ oscillates or converges to zero, provided that the second order equation \\[\\left( r_{2}(tz^{\\prime }(t\\right^{\\prime}+\\left(p(t/r_{1}(t\\right z(t=0\\tag{\\(\\ast\\ast\\}\\] is nonoscillatory. Here, we shall improve and unify the results given in the above mentioned papers and present some new sufficient conditions which insure that any solution of equation (\\(\\ast\\ oscillates if equation (\\(\\ast\\ast\\ is nonoscillatory. We also establish results for the oscillation of equation (\\(\\ast\\ when equation (\\(\\ast\\ast\\ is oscillatory.
Parity nonconservation and nuclear polarizabilities
International Nuclear Information System (INIS)
Haxton, W.
1990-01-01
The hadronic weak interaction contributes to parity nonconserving observables in semileptonic interactions. Weak nuclear polarizabilities are frequently important in such interactions. Some of the interesting physics is illustrated by 18 F, a nucleus that provides an important constraint on the neutral weak hadronic current. One observable where the nuclear polarizability is expected to dominate is the nuclear anapole moment. The long-range pion contribution to this weak radiative correction is explored for both nucleons and nuclei. Similar polarizabilities that arise for time-reversal-odd hadronic interactions that conserve or violate parity are discussed in connection with atomic electric dipole moments. 20 refs., 4 figs
Pion electromagnetic polarizabilities and quarks
International Nuclear Information System (INIS)
Llanta, E.; Tarrach, R.
1980-01-01
The electric and magnetic polarizabilities of the neutral and charged pion are calculated in a coloured quark field theory at the one-loop level. The theory has as free parameter the quark mass but our results do not depend on it. We have found that the electric polarizabilities are αsub(π+-) = -0.04 α/m 3 sub(π), αsub(π 0 ) = -0.4 α/m 3 sub(π). These values are compared with calculations in other models and some comments are made about the polarizability sum rules. (orig.)
International Nuclear Information System (INIS)
Sun, Ru; Lu, Yue-Ting; Yan, Bao-Long; Lu, Jian-Mei; Wu, Xing-Zhi; Song, Ying-Lin; Ge, Jian-Feng
2014-01-01
The third-order nonlinear optical properties of poly(methyl methacrylate) films doped with charge flowable 3,7-di(piperidinyl)phenothiazin-5-ium chloride, which tested by Z-scan method with nanosecond laser beam at 532 nm, are reported. Large third-order nonlinear optical susceptibilities (up to 10 −7 esu) and high second hyperpolarizabilities (up to 10 −27 esu) are found. The third-order nonlinear absorptions change from reverse saturated absorptions to saturated absorptions with different percentage of the phenothiazinium dye in the poly(methyl methacrylate) films, which can be explained by the accumulation phenomenon of the phenothiazinium. The results suggest that the phenothiazinium salt is a promising material for third order non-linear applications. - Highlights: • Phenothiazinium containing optical films • Strong third-order nonlinear optical (NLO) absorption • Large third-order NLO susceptibilities
Pion polarizabilities measurement at COMPASS
Guskov, Alexey
2008-01-01
The electromagnetic structure of pions is probed in $\\pi^{−}+(A,Z) \\rightarrow\\pi^{−}+(A,Z)+\\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric ($\\bar{\\alpha_{\\pi}}$) and the magnetic ($\\bar{\\beta_{\\pi}}$) polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of pointlike pions with the measured cross section. The pion polarizability measurement was performed with a $\\pi^{-}$ beam of 190 GeV. The high beam intensity, the good spectrometer resolution, the high rate capability, the high acceptance and the possibility to use pion and muon beams, unique to the COMPASS experiment, provide the tools to measure precisely the pion polarizabilities in the Primakoff reaction.
Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.
Directory of Open Access Journals (Sweden)
Stojan Jovanović
2016-06-01
Full Text Available The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.
International Nuclear Information System (INIS)
Hwang, Jai-chan; Noh, Hyerim
2005-01-01
We consider a general relativistic zero-pressure irrotational cosmological medium perturbed to the third order. We assume a flat Friedmann background but include the cosmological constant. We ignore the rotational perturbation which decays in expanding phase. In our previous studies we discovered that, to the second-order perturbation, except for the gravitational wave contributions, the relativistic equations coincide exactly with the previously known Newtonian ones. Since the Newtonian second-order equations are fully nonlinear, any nonvanishing third- and higher-order terms in the relativistic analyses are supposed to be pure relativistic corrections. In this work, we derive such correction terms appearing in the third order. Continuing our success in the second-order perturbations, we take the comoving gauge. We discover that the third-order correction terms are of φ v order higher than the second-order terms where φ v is a gauge-invariant combination related to the three-space curvature perturbation in the comoving gauge; compared with the Newtonian potential, we have δΦ∼(3/5)φ v to the linear order. Therefore, the pure general relativistic effects are of φ v order higher than the Newtonian ones. The corrections terms are independent of the horizon scale and depend only on the linear-order gravitational potential (curvature) perturbation strength. From the temperature anisotropy of cosmic microwave background, we have (δT/T)∼(1/3)δΦ∼(1/5)φ v ∼10 -5 . Therefore, our present result reinforces our previous important practical implication that near the current era one can use the large-scale Newtonian numerical simulation more reliably even as the simulation scale approaches near (and goes beyond) the horizon
Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.
Jovanović, Stojan; Rotter, Stefan
2016-06-01
The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.
Molecular Properties through Polarizable Embedding
DEFF Research Database (Denmark)
Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob
2011-01-01
We review the theory related to the calculation of electric and magnetic molecular properties through polarizable embedding. In particular, we derive the expressions for the response functions up to the level of cubic response within the density functional theory-based polarizable embedding (PE......-DFT) formalism. In addition, we discuss some illustrative applications related to the calculation of nuclear magnetic resonance parameters, nonlinear optical properties, and electronic excited states in solution....
A covariant Poisson deformation quantization with separation of variables up to the third order
Karabegov, Alexander
2002-01-01
We give a simple formula for the operator C_3 of the standard deformation quantization with separation of variables on a K\\"ahler manifold M. Unlike C_1 and C_2, this operator can not be expressed in terms of the K\\"ahler-Poisson tensor on M. We modify C_3 to obtain a covariant deformation quantization with separation of variables up to the third order which is expressed in terms of the Poisson tensor on M and thus can be defined on an arbitrary complex manifold endowed with a Poisson bivecto...
Limit cycles from a cubic reversible system via the third-order averaging method
Directory of Open Access Journals (Sweden)
Linping Peng
2015-04-01
Full Text Available This article concerns the bifurcation of limit cycles from a cubic integrable and non-Hamiltonian system. By using the averaging theory of the first and second orders, we show that under any small cubic homogeneous perturbation, at most two limit cycles bifurcate from the period annulus of the unperturbed system, and this upper bound is sharp. By using the averaging theory of the third order, we show that two is also the maximal number of limit cycles emerging from the period annulus of the unperturbed system.
First integrals and parametric solutions of third-order ODEs admitting {\\mathfrak{sl}(2, {R})}
Ruiz, A.; Muriel, C.
2017-05-01
A complete set of first integrals for any third-order ordinary differential equation admitting a Lie symmetry algebra isomorphic to sl(2, {R}) is explicitly computed. These first integrals are derived from two linearly independent solutions of a linear second-order ODE, without additional integration. The general solution in parametric form can be obtained by using the computed first integrals. The study includes a parallel analysis of the four inequivalent realizations of sl(2, {R}) , and it is applied to several particular examples. These include the generalized Chazy equation, as well as an example of an equation which admits the most complicated of the four inequivalent realizations.
Third-order WKBJ eigenvalues for Lennard-Jones and Varshni V potentials
International Nuclear Information System (INIS)
Kesarwani, R.N.; Varshni, Y.P.
1978-01-01
The WKBJ method is applied to the third order for obtaining the eigenvalues for the fifth potential of Varshni, and the relevant integrals are analytically evaluated. Numerical results are obtained for the Lennard-Jones Potential, which is a special case of the Varshni V potential, and are compared to the results of Harrison and Bernstein obtained by a numerical integration of the wave equation. Error estimates are made. It is shown that for diatomic potentials, the Langer correction is not needed if the WKBJ approximation is carried to second and higher orders. (author)
Nonlinear absorption and receptivity of the third order in InAs infrared region
International Nuclear Information System (INIS)
Musayev, M.A.
2005-01-01
Nonlinear absorption and receptivity of the third order and coefficient nonlinear absorption in InAs n-type with different degree of alloying was measured. Obtained score considerably exceed sense, calculated on the basis of the models describing nonlinear receptivity of electrons, situated in the nonparabolic area of conductivity. It was shown that, observable deviations withdraw; if in the calculation apply energy dissipation of electrons. Growth of the efficiency under four-wave interaction in low-energy-gap semiconductors confines nonlinear absorption of interacting waves
Third-order perturbation theory for van der Waals interaction coefficients
International Nuclear Information System (INIS)
Tang Liyan; Shi Tingyun; Yan Zongchao; Mitroy, J.
2011-01-01
The third-order expression for the dispersion interaction between two atoms is written as a sum over lists of transition matrix elements. Particular attention is given to the C 9 /R 9 interaction which occurs in the homonuclear case when one atom is in an S state and the other is in a P state. Numerical values of the C 9 coefficient are given for the homonuclear alkali-metal dimers. The size of the C 9 :C 3 dispersion coefficient ratio increases for the heavier alkali-metal atoms. The C 11 and C 13 coefficients between two helium atoms and lithium atoms in their ground states are also given.
Chaos control of third-order phase-locked loops using backstepping nonlinear controller
International Nuclear Information System (INIS)
Harb, Ahmad M.; Harb, Bassam A.
2004-01-01
Previous study showed that a third-order phase-locked loop (PLL) with sinusoidal phase detector characteristics experienced a Hopf bifurcation point as well as chaotic behavior. As a result, this behavior drives the PLL to the out-of-lock (unstable) state. The analysis was based on a modern nonlinear theory such as bifurcation and chaos. The main goal of this paper is to control this chaotic behavior. A nonlinear controller based on the theory of backstepping is designed. The study showed the effectiveness of the designed nonlinear controller in controlling the undesirable unstable behavior and pulling the PLL back to the in-lock state
Third-order correlator for measuring the time profile of petawatt laser pulses
Energy Technology Data Exchange (ETDEWEB)
Ginzburg, V N; Lozhkarev, V V; Luchinin, G A; Mironov, S Yu; Khazanov, Efim A; Yakovlev, I V [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation); Didenko, N V; Konyashchenko, Aleksandr V; Lutsenko, Andrei P [' Avesta-project' Ltd., Troitsk, Moscow Region (Russian Federation)
2008-11-30
A third-order correlator with a single-shot time window and a full dynamic range of 10{sup 8} is developed. The time contrast of radiation from the front-end system of a petawatt femtosecond laser complex measured with the correlator within time windows {+-}1 ps and {+-}100 ps was 10{sup 4} and more than 10{sup 8}, respectively. Based on the theoretical analysis of the cross-correlator operation, a number of requirements providing the optimal functioning of the cross-correlator are found. The reasons restricting the technical parameters of the correlator are discussed. (measurement of parameters of laser radiation)
Dynamical Tangles in Third-Order Oscillator with Single Jump Function
Directory of Open Access Journals (Sweden)
Jiří Petržela
2014-01-01
Full Text Available This contribution brings a deep and detailed study of the dynamical behavior associated with nonlinear oscillator described by a single third-order differential equation with scalar jump nonlinearity. The relative primitive geometry of the vector field allows making an exhaustive numerical analysis of its possible solutions, visualizations of the invariant manifolds, and basins of attraction as well as proving the existence of chaotic motion by using the concept of both Shilnikov theorems. The aim of this paper is also to complete, carry out and link the previous works on simple Newtonian dynamics, and answer the question how individual types of the phenomenon evolve with time via understandable notes.
Third-order correlator for measuring the time profile of petawatt laser pulses
International Nuclear Information System (INIS)
Ginzburg, V N; Lozhkarev, V V; Luchinin, G A; Mironov, S Yu; Khazanov, Efim A; Yakovlev, I V; Didenko, N V; Konyashchenko, Aleksandr V; Lutsenko, Andrei P
2008-01-01
A third-order correlator with a single-shot time window and a full dynamic range of 10 8 is developed. The time contrast of radiation from the front-end system of a petawatt femtosecond laser complex measured with the correlator within time windows ±1 ps and ±100 ps was 10 4 and more than 10 8 , respectively. Based on the theoretical analysis of the cross-correlator operation, a number of requirements providing the optimal functioning of the cross-correlator are found. The reasons restricting the technical parameters of the correlator are discussed. (measurement of parameters of laser radiation)
International Nuclear Information System (INIS)
Ghosh, Binita; Chakraborty, Purushottam
2011-01-01
Silver ion implantations in fused silica glasses have been made to synthesize silver nanocluster-glass composites and a combination of 'Anti-Resonant Interferometric Nonlinear Spectroscopy (ARINS)' and 'Z-scan' techniques has been employed for the measurement of the third-order optical susceptibility of these nanocomposites. The ARINS technique utilizes the dressing of two unequal-intensity counter-propagating pulsed optical beams with differential nonlinear phases, which occurs upon traversing the sample. This difference in phase manifests itself in the intensity-dependent transmission, measurement of which enables us to extract the values of nonlinear refractive index (η 2 ) and nonlinear absorption coefficient (β), finally yielding the real and imaginary parts of the third-order dielectric susceptibility (χ (3) ). The real and imaginary parts of χ (3) are obtained in the orders of 10 -10 e.s.u for silver nanocluster-glass composites. The present value of χ (3) , to our knowledge, is extremely accurate and much more reliable compared to the values previously obtained by other workers for similar silver-glass nanocomposites using only Z-scan technique. Optical nonlinearity has been explained to be due to two-photon absorption in the present nanocomposite glasses and is essentially of electronic origin.
Rani, Sunita; Mohan, Devendra; Kumar, Manish; Sanjay
2018-05-01
Third order nonlinear susceptibility of (GeSe3.5)100-xBix (x = 0, 10, 14) and ZnxSySe100-x-y (x = 2, y = 28; x = 4, y = 20; x = 6, y = 12; x = 8, y = 4) amorphous chalcogenide thin films prepared using thermal evaporation technique is estimated. The dielectric constant at incident and third harmonic wavelength is calculated using "PARAV" computer program. 1064 nm wavelength of Nd: YAG laser is incident on thin film and third harmonic signal at 355 nm wavelength alongwith fundamental light is obtained in reflection that is separated from 1064 nm using suitable optical filter. Reflected third harmonic signal is measured to trace the influence of Bi and Zn on third order nonlinear susceptibility and is found to increase with increase in Bi and Zn content in (GeSe3.5)100-xBix, and ZnxSySe100-x-y chalcogenide thin films respectively. The excellent optical nonlinear property shows the use of chalcogenide thin films in photonics for wavelength conversion and optical data processing.
Third-order QCD corrections to the charged-current structure function F3
International Nuclear Information System (INIS)
Moch, S.; Vermaseren, J.A.M.; Vogt, A.
2008-12-01
We compute the coefficient function for the charge-averaged W ± -exchange structure function F 3 in deep-inelastic scattering (DIS) to the third order in massless perturbative QCD. Our new three-loop contribution to this quantity forms, at not too small values of the Bjorken variable x, the dominant part of the next-to-next-to-next-to-leading order corrections. It thus facilitates improved determinations of the strong coupling α s and of 1/Q 2 power corrections from scaling violations measured in neutrino-nucleon DIS. The expansion of F 3 in powers of α s is stable at all values of x relevant to measurements at high scales Q 2 . At small x the third-order coefficient function is dominated by diagrams with the colour structure d abc d abc not present at lower orders. At large x the coefficient function for F 3 is identical to that of F 1 up to terms vanishing for x→1. (orig.)
Multi-objective optimization of GPU3 Stirling engine using third order analysis
International Nuclear Information System (INIS)
Toghyani, Somayeh; Kasaeian, Alibakhsh; Hashemabadi, Seyyed Hasan; Salimi, Morteza
2014-01-01
Highlights: • A third-order analysis is carried out for optimization of Stirling engine. • The triple-optimization is done on a GPU3 Stirling engine. • A multi-objective optimization is carried out for a Stirling engine. • The results are compared with an experimental previous work for checking the model improvement. • The methods of TOPSIS, Fuzzy, and LINMAP are compared with each other in aspect of optimization. - Abstract: Stirling engine is an external combustion engine that uses any external heat source to generate mechanical power which operates at closed cycles. These engines are good choices for using in power generation systems; because these engines present a reasonable theoretical efficiency which can be closer to the Carnot efficiency, comparing with other reciprocating thermal engines. Hence, many studies have been conducted on Stirling engines and the third order thermodynamic analysis is one of them. In this study, multi-objective optimization with four decision variables including the temperature of heat source, stroke, mean effective pressure, and the engine frequency were applied in order to increase the efficiency and output power and reduce the pressure drop. Three decision-making procedures were applied to optimize the answers from the results. At last, the applied methods were compared with the results obtained of one experimental work and a good agreement was observed
Third-order QCD corrections to the charged-current structure function F{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Vermaseren, J.A.M. [NIKHEF, Amsterdam (Netherlands); Vogt, A. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences
2008-12-15
We compute the coefficient function for the charge-averaged W{sup {+-}}-exchange structure function F{sub 3} in deep-inelastic scattering (DIS) to the third order in massless perturbative QCD. Our new three-loop contribution to this quantity forms, at not too small values of the Bjorken variable x, the dominant part of the next-to-next-to-next-to-leading order corrections. It thus facilitates improved determinations of the strong coupling {alpha}{sub s} and of 1/Q{sup 2} power corrections from scaling violations measured in neutrino-nucleon DIS. The expansion of F{sub 3} in powers of {alpha}{sub s} is stable at all values of x relevant to measurements at high scales Q{sup 2}. At small x the third-order coefficient function is dominated by diagrams with the colour structure d{sup abc}d{sub abc} not present at lower orders. At large x the coefficient function for F{sub 3} is identical to that of F{sub 1} up to terms vanishing for x{yields}1. (orig.)
A third-order asymptotic solution of nonlinear standing water waves in Lagrangian coordinates
International Nuclear Information System (INIS)
Yang-Yih, Chen; Hung-Chu, Hsu
2009-01-01
Asymptotic solutions up to third-order which describe irrotational finite amplitude standing waves are derived in Lagrangian coordinates. The analytical Lagrangian solution that is uniformly valid for large times satisfies the irrotational condition and the pressure p = 0 at the free surface, which is in contrast with the Eulerian solution existing under a residual pressure at the free surface due to Taylor's series expansion. In the third-order Lagrangian approximation, the explicit parametric equation and the Lagrangian wave frequency of water particles could be obtained. In particular, the Lagrangian mean level of a particle motion that is a function of vertical label is found as a part of the solution which is different from that in an Eulerian description. The dynamic properties of nonlinear standing waves in water of a finite depth, including particle trajectory, surface profile and wave pressure are investigated. It is also shown that the Lagrangian solution is superior to an Eulerian solution of the same order for describing the wave shape and the kinematics above the mean water level. (general)
Traversable wormholes satisfying the weak energy condition in third-order Lovelock gravity
Zangeneh, Mahdi Kord; Lobo, Francisco S. N.; Dehghani, Mohammad Hossein
2015-12-01
In this paper, we consider third-order Lovelock gravity with a cosmological constant term in an n -dimensional spacetime M4×Kn -4, where Kn -4 is a constant curvature space. We decompose the equations of motion to four and higher dimensional ones and find wormhole solutions by considering a vacuum Kn -4 space. Applying the latter constraint, we determine the second- and third-order Lovelock coefficients and the cosmological constant in terms of specific parameters of the model, such as the size of the extra dimensions. Using the obtained Lovelock coefficients and Λ , we obtain the four-dimensional matter distribution threading the wormhole. Furthermore, by considering the zero tidal force case and a specific equation of state, given by ρ =(γ p -τ )/[ω (1 +γ )], we find the exact solution for the shape function which represents both asymptotically flat and nonflat wormhole solutions. We show explicitly that these wormhole solutions in addition to traversibility satisfy the energy conditions for suitable choices of parameters and that the existence of a limited spherically symmetric traversable wormhole with normal matter in a four-dimensional spacetime implies a negative effective cosmological constant.
Model Hamiltonian Calculations of the Nonlinear Polarizabilities of Conjugated Molecules.
Risser, Steven Michael
This dissertation advances the theoretical knowledge of the nonlinear polarizabilities of conjugated molecules. The unifying feature of these molecules is an extended delocalized pi electron structure. The pi electrons dominate the electronic properties of the molecules, allowing prediction of molecular properties based on the treatment of just the pi electrons. Two separate pi electron Hamiltonians are used in the research. The principal Hamiltonian used is the non-interacting single-particle Huckel Hamiltonian, which replaces the Coulomb interaction among the pi electrons with a mean field interaction. The simplification allows for exact solution of the Hamiltonian for large molecules. The second Hamiltonian used for this research is the interacting multi-particle Pariser-Parr-Pople (PPP) Hamiltonian, which retains explicit Coulomb interactions. This limits exact solutions to molecules containing at most eight electrons. The molecular properties being investigated are the linear polarizability, and the second and third order hyperpolarizabilities. The hyperpolarizabilities determine the nonlinear optical response of materials. These molecular parameters are determined by two independent approaches. The results from the Huckel Hamiltonian are obtained through first, second and third order perturbation theory. The results from the PPP Hamiltonian are obtained by including the applied field directly in the Hamiltonian and determining the ground state energy at a series of field strengths. By fitting the energy to a polynomial in field strength, the polarizability and hyperpolarizabilities are determined. The Huckel Hamiltonian is used to calculate the third order hyperpolarizability of polyenes. These calculations were the first to show the average hyperpolarizability of the polyenes to be positive, and also to show the saturation of the hyperpolarizability. Comparison of these Huckel results to those from the PPP Hamiltonian shows the lack of explicit Coulomb
Pion polarizabilities measurement at COMPASS
Guskov, Alexey
2008-01-01
The electromagnetic structure of pions is probed in $\\pi^{−} + (A,Z)\\rightarrow\\pi^{−} + (A,Z) +\\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric $(\\bar{\\alpha_{\\pi}})$ and the magnetic $(\\bar{\\beta_{\\pi}})$ polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of pointlike pions with the measured cross section. The pion polarizability measurement was performed with $a \\pi^{−}$ beam of 190 GeV. The high beam intensity, the good spectrometer resolution, the high rate capability, the high acceptance and the possibility to use pion and muon beams, unique to the COMPASS experiment, provide the tools to measure precisely the pion polarizabilities in the Primakoff reaction. The preliminary result for pion polarizabilities under the assumption of $\\bar{\\alpha_{\\pi}} + \\bar{\\beta_{\\pi}} =$ 0 is $\\ba...
International Nuclear Information System (INIS)
Li Yong; Lu Jing; Cui Xiaobing; Xu Jiqing; Li Kechang; Sun Huaying; Li Guanghua; Pan Lingyun; Yang Qingxin
2005-01-01
Both the homometal cluster [P(ph 4 )] 2 [Mo 2 O 2 (μ-S) 2 (S 2 ) 2 ] (1) and [Mo 2 O 2 (μ-S) 2 (Et 2 dtc) 2 ] (2) (Et 2 dtc=diethyl-dithiocarbamate) were successfully synthesized by low-temperature solid-state reactions. X-ray single-crystal diffraction studies suggest that compound (1) is a dinuclear anion cluster, and compound (2) is a dinuclear neutral cluster. The two compounds were characterized by elemental analyses, IR spectra and UV-Vis spectra. The third-order non-linear optical (NLO) properties of the clusters were also investigated and all exhibited nice non-linear absorption and self-defocusing performance with moduli of the hyperpolarizabilities 5.145x10 -30 esu for (1) and 5.428x10 -30 esu for (2)
Diophantine non-integrability of a third-order recurrence with the Laurent property
International Nuclear Information System (INIS)
Hone, A N W
2006-01-01
We consider a one-parameter family of third-order nonlinear recurrence relations. Each member of this family satisfies the singularity confinement test, has a conserved quantity, and moreover has the Laurent property: all of the iterates are Laurent polynomials in the initial data. However, we show that these recurrences are not Diophantine integrable according to the definition proposed by Halburd (2005 J. Phys. A: Math. Gen. 38 L1). Explicit bounds on the asymptotic growth of the heights of iterates are obtained for a special choice of initial data. As a by-product of our analysis, infinitely many solutions are found for a certain family of Diophantine equations, studied by Mordell, that includes Markoff's equation. (letter to the editor)
Spherically Symmetric Gravitational Collapse of a Dust Cloud in Third-Order Lovelock Gravity
Zhou, Kang; Yang, Zhan-Ying; Zou, De-Cheng; Yue, Rui-Hong
We investigate the spherically symmetric gravitational collapse of an incoherent dust cloud by considering a LTB-type spacetime in third-order Lovelock Gravity without cosmological constant, and give three families of LTB-like solutions which separately corresponding to hyperbolic, parabolic and elliptic. Notice that the contribution of high-order curvature corrections have a profound influence on the nature of the singularity, and the global structure of spacetime changes drastically from the analogous general relativistic case. Interestingly, the presence of high order Lovelock terms leads to the formation of massive, naked and timelike singularities in the 7D spacetime, which is disallowed in general relativity. Moveover, we point out that the naked singularities in the 7D case may be gravitational weak therefore may not be a serious threat to the cosmic censorship hypothesis, while the naked singularities in the D ≥ 8 inhomogeneous collapse violate the cosmic censorship hypothesis seriously.
Third-order perturbation theory for van der Waals interaction coefficients
Energy Technology Data Exchange (ETDEWEB)
Tang Liyan; Shi Tingyun [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Yan Zongchao [Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071 (China); Department of Physics, Wuhan University, Wuhan 430072 (China); Department of Physics, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 (Canada); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia)
2011-11-15
The third-order expression for the dispersion interaction between two atoms is written as a sum over lists of transition matrix elements. Particular attention is given to the C{sub 9}/R{sup 9} interaction which occurs in the homonuclear case when one atom is in an S state and the other is in a P state. Numerical values of the C{sub 9} coefficient are given for the homonuclear alkali-metal dimers. The size of the C{sub 9}:C{sub 3} dispersion coefficient ratio increases for the heavier alkali-metal atoms. The C{sub 11} and C{sub 13} coefficients between two helium atoms and lithium atoms in their ground states are also given.
Third-order polynomial model for analyzing stickup state laminated structure in flexible electronics
Meng, Xianhong; Wang, Zihao; Liu, Boya; Wang, Shuodao
2018-02-01
Laminated hard-soft integrated structures play a significant role in the fabrication and development of flexible electronics devices. Flexible electronics have advantageous characteristics such as soft and light-weight, can be folded, twisted, flipped inside-out, or be pasted onto other surfaces of arbitrary shapes. In this paper, an analytical model is presented to study the mechanics of laminated hard-soft structures in flexible electronics under a stickup state. Third-order polynomials are used to describe the displacement field, and the principle of virtual work is adopted to derive the governing equations and boundary conditions. The normal strain and the shear stress along the thickness direction in the bi-material region are obtained analytically, which agree well with the results from finite element analysis. The analytical model can be used to analyze stickup state laminated structures, and can serve as a valuable reference for the failure prediction and optimal design of flexible electronics in the future.
International Nuclear Information System (INIS)
Pelinovsky, Dmitry E.; Yang Jianke
2005-01-01
We study the generalized third-order nonlinear Schroedinger (NLS) equation which admits a one-parameter family of single-hump embedded solitons. Analyzing the spectrum of the linearization operator near the embedded soliton, we show that there exists a resonance pole in the left half-plane of the spectral parameter, which explains linear stability, rather than nonlinear semistability, of embedded solitons. Using exponentially weighted spaces, we approximate the resonance pole both analytically and numerically. We confirm in a near-integrable asymptotic limit that the resonance pole gives precisely the linear decay rate of parameters of the embedded soliton. Using conserved quantities, we qualitatively characterize the stable dynamics of embedded solitons
A fluctuation method to calculate the third order elastic constants in crystalline solids
Energy Technology Data Exchange (ETDEWEB)
Chen, Zimu [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Qu, Jianmin, E-mail: j-qu@northwestern.edu [Department of Civil and Environmental Engineering, Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208 (United States)
2015-05-28
This paper derives exact expressions of the isothermal third order elastic constants (TOE) in crystalline solids in terms of the kinetic and potential energies of the system. These expressions reveal that the TOE constants consist of a Born component and a relaxation component. The Born component is simply the third derivative of the system's potential energy with respect to the deformation, while the relaxation component is related to the non-uniform rearrangements of the atoms when the system is subject to a macroscopic deformation. Further, based on the general expressions derived here, a direct (fluctuation) method of computing the isothermal TOE constants is developed. Numerical examples of using this fluctuation method are given to compute the TOE constants of single crystal iron.
International Nuclear Information System (INIS)
Srivastava, A.C.; Hazarika, G.C.
1990-01-01
An algorithm based on the shooting method has been developed for the solution of a two-point boundary value problem consisting of a system of third order simultaneous ordinary differential equations. The Falkner-Skan equations for electrically conducting viscous fluid with applied magnetic field has been solved by using this algorithm for various values of the wedge angle and magnetic parameters. The shooting method seems to be well convergent for a system as the results are in good agreement with those obtained by other methods. It is observed that both viscous boundary layer and magnetic boundary layer decrease while velocity as well as magnetic field increase with the increase of the wedge angle. (author). 6 tabs., 7 refs
SIMPLE MODELS OF THREE COUPLED PT -SYMMETRIC WAVE GUIDES ALLOWING FOR THIRD-ORDER EXCEPTIONAL POINTS
Directory of Open Access Journals (Sweden)
Jan Schnabel
2017-12-01
Full Text Available We study theoretical models of three coupled wave guides with a PT-symmetric distribution of gain and loss. A realistic matrix model is developed in terms of a three-mode expansion. By comparing with a previously postulated matrix model it is shown how parameter ranges with good prospects of finding a third-order exceptional point (EP3 in an experimentally feasible arrangement of semiconductors can be determined. In addition it is demonstrated that continuous distributions of exceptional points, which render the discovery of the EP3 difficult, are not only a feature of extended wave guides but appear also in an idealised model of infinitely thin guides shaped by delta functions.
Third-order nonlinear optical studies of anthraquinone dyes using a CW He–Ne laser
International Nuclear Information System (INIS)
Pramodini, S; Poornesh, P
2014-01-01
We present investigations on the third-order optical nonlinearity and optical power limiting of anthraquinone dyes. Z-scan measurements were performed using a continuous wave He–Ne laser at 633 nm wavelength as an excitation source. The nonlinear refraction studies exhibited self-defocusing behavior of the dyes. The nonlinear absorption in the dyes was dominated by a reverse saturable absorption process. Self-diffraction ring patterns were observed due to the change in refractive index and thermal lensing. Increase of the electron donating ability of the substituents resulted in enhanced values of the nonlinear optical parameters, establishing the structure–property relationship. The optical limiting study revealed that the dyes possess a lower limiting threshold and clamping level which is very important for eye and sensor protection. Hence, the dyes investigated here emerge as promising candidates for future opto-electronic and photonic device applications such as optical power limiters. (paper)
Third-order nonlinear optical studies of anthraquinone dyes using a CW He-Ne laser
Pramodini, S.; Poornesh, P.
2014-05-01
We present investigations on the third-order optical nonlinearity and optical power limiting of anthraquinone dyes. Z-scan measurements were performed using a continuous wave He-Ne laser at 633 nm wavelength as an excitation source. The nonlinear refraction studies exhibited self-defocusing behavior of the dyes. The nonlinear absorption in the dyes was dominated by a reverse saturable absorption process. Self-diffraction ring patterns were observed due to the change in refractive index and thermal lensing. Increase of the electron donating ability of the substituents resulted in enhanced values of the nonlinear optical parameters, establishing the structure-property relationship. The optical limiting study revealed that the dyes possess a lower limiting threshold and clamping level which is very important for eye and sensor protection. Hence, the dyes investigated here emerge as promising candidates for future opto-electronic and photonic device applications such as optical power limiters.
Hopf bifurcation and chaos in a third-order phase-locked loop
Piqueira, José Roberto C.
2017-01-01
Phase-locked loops (PLLs) are devices able to recover time signals in several engineering applications. The literature regarding their dynamical behavior is vast, specifically considering that the process of synchronization between the input signal, coming from a remote source, and the PLL local oscillation is robust. For high-frequency applications it is usual to increase the PLL order by increasing the order of the internal filter, for guarantying good transient responses; however local parameter variations imply structural instability, thus provoking a Hopf bifurcation and a route to chaos for the phase error. Here, one usual architecture for a third-order PLL is studied and a range of permitted parameters is derived, providing a rule of thumb for designers. Out of this range, a Hopf bifurcation appears and, by increasing parameters, the periodic solution originated by the Hopf bifurcation degenerates into a chaotic attractor, therefore, preventing synchronization.
Energy Technology Data Exchange (ETDEWEB)
Castro, Hemerson P. S.; Alencar, Márcio A. R. C.; Hickmann, Jandir M. [Optics and Materials Group–OPTMA, Universidade Federal de Alagoas, CAIXA POSTAL 2051, 57061-970 Maceió (Brazil); Wender, Heberton [Brazilian Synchrotron National Laboratory (LNLS), CNPEM, Rua Giuseppe Máximo Scolfaro 10.000, 13083-970 Campinas (Brazil); Department of Physics, Universidade Federal do Mato Grosso do Sul, 79070-900, Campo Grande (Brazil); Teixeira, Sergio R. [Institute of Physics, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil); Dupont, Jairton [Laboratory of Molecular Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil)
2013-11-14
The nonlinear optical responses of gold nanoparticles dispersed in castor oil produced by sputtering deposition were investigated, using the thermally managed Z-scan technique. Particles with spherical shape and 2.6 nm of average diameter were obtained and characterized by transmission electron microscopy and small angle X-ray scattering. This colloid was highly stable, without the presence of chemical impurities, neither stabilizers. It was observed that this system presents a large refractive third-order nonlinear response and a negligible nonlinear absorption. Moreover, the evaluation of the all-optical switching figures of merit demonstrated that the colloidal nanoparticles prepared by sputtering deposition have a good potential for the development of ultrafast photonic devices.
Third-order QCD corrections to heavy quark pair production near threshold
Energy Technology Data Exchange (ETDEWEB)
Schuller, Kurt
2008-11-07
The measurement of the top quark mass is an important task at the future International Linear Collider. The most promising process is the top quark pair production in the threshold region. In this region the top quarks behave non-relativistically and a perturbative treatment using effective field theories is possible. Current second order theoretical predictions in a fixed order approach show an uncertainty which is bigger than the expected experimental errors. Therefore, an improvement of the cross section calculation is desirable. There are two ways to incorporate higher order effects, one is to calculate the full next order in the fixed order approach, another possibility is to resum large logarithms. In this work, the fixed order calculation has been extended to the third order in perturbation theory for the QCD corrections. The result is a strongly improved scale behavior and a better understanding of heavy quarkonium systems. The Green function result is given in a semi-analytic form. The energy levels and wave functions for heavy quarkonium states have been calculated from the poles of the Green function and are presented for arbitrary quantum number n. The results have been implemented in a Mathematica program which makes the data easily accessible. Once some missing matching coefficients are calculated, and a complete electroweak calculation is available, the results of this work can be used to improve the precision of the top quark mass measurement to an uncertainty of less than 50 MeV. An inclusion of initial state radiation and beam effects are essential for a realistic observable. In the future, the results obtained could be used for a third order resummation of large logarithms. Further applications are also the extraction of the bottom quark mass with sum rules. (orig.)
International Nuclear Information System (INIS)
Delfin L, A.; Alonso V, G.; Valle G, E. del
2003-01-01
In this work two nodal schemes of finite element are presented, one of second and the other of third order of accurate that allow to determine the radial distribution of power starting from the corresponding reactivities.The schemes here developed were obtained taking as starting point the equation developed by Driscoll et al, the one which is based on the diffusion approach of 1-1/2 energy groups. This equation relates the power fraction of an assemble with their reactivity and with the power fractions and reactivities of the assemblies that its surround it. Driscoll and collaborators they solve in form approximate such equation supposing that the reactivity of each assemble it is but a lineal function of the burnt one of the fuel. The spatial approach carries out it with the classic technique of finite differences centered in mesh. Nevertheless that the algebraic system to which its arrive it can be solved without more considerations introduce some additional suppositions and adjustment parameters that it allows them to predict results comparable to those contributed by three dimensions analysis and this way to reduce the one obtained error when its compare their results with those of a production code like CASMO. Also in the two schemes that here are presented the same approaches of Driscoll were used being obtained errors of the one 10% and of 5% for the second schemes and third order respectively for a test case that it was built starting from data of the Cycle 1 of the Unit 1 of the Laguna Verde Nucleo electric plant. These errors its were obtained when comparing with a computer program based on the matrix response method. It is sought to have this way a quick and efficient tool for the multicycle analysis in the fuel management. However, this model presents problems in the appropriate prediction of the average burnt of the nucleus and of the burnt one by lot. (Author)
Development and application of a third order scheme of finite differences centered in mesh
International Nuclear Information System (INIS)
Delfin L, A.; Alonso V, G.; Valle G, E. del
2003-01-01
In this work the development of a third order scheme of finite differences centered in mesh is presented and it is applied in the numerical solution of those diffusion equations in multi groups in stationary state and X Y geometry. Originally this scheme was developed by Hennart and del Valle for the monoenergetic diffusion equation with a well-known source and they show that the one scheme is of third order when comparing the numerical solution with the analytical solution of a model problem using several mesh refinements and boundary conditions. The scheme by them developed it also introduces the application of numeric quadratures to evaluate the rigidity matrices and of mass that its appear when making use of the finite elements method of Galerkin. One of the used quadratures is the open quadrature of 4 points, no-standard, of Newton-Cotes to evaluate in approximate form the elements of the rigidity matrices. The other quadrature is that of 3 points of Radau that it is used to evaluate the elements of all the mass matrices. One of the objectives of these quadratures are to eliminate the couplings among the Legendre moments 0 and 1 associated to the left and right faces as those associated to the inferior and superior faces of each cell of the discretization. The other objective is to satisfy the particles balance in weighed form in each cell. In this work it expands such development to multiplicative means considering several energy groups. There are described diverse details inherent to the technique, particularly those that refer to the simplification of the algebraic systems that appear due to the space discretization. Numerical results for several test problems are presented and are compared with those obtained with other nodal techniques. (Author)
Nakano, Masayoshi; Kishi, Ryohei; Yoneda, Kyohei; Inoue, Yudai; Inui, Tomoya; Shigeta, Yasuteru; Kubo, Takashi; Champagne, Benoît
2011-08-11
The third-order nonlinear optical (NLO) properties, at the molecular level, the static second hyperpolarizabilities, γ, of supermolecular systems composed of phenalenyl and pyrene rings linked by acetylene units are investigated by employing the long-range corrected spin-unrestricted density functional theory, LC-UBLYP, method. The phenalenyl based superethylene, superallyl, and superbutadiene in their lowest spin states have intermediate diradical characters and exhibit larger γ values than the closed-shell pyrene based superpolyene systems. The introduction of a positive charge into the phenalenyl based superallyl radical changes the sign of γ and enhances its amplitude by a factor of 35. Although such sign inversion is also observed in the allyl radical and cation systems in their ground state equilibrium geometries, the relative amplitude of γ is much different, that is, |γ(regular allyl cation)/γ(regular allyl radical)| = 0.61 versus |γ(phenalenyl based superallyl cation)/γ(phenalenyl based superallyl radical)| = 35. In contrast, the model ethylene, allyl radical/cation, and butadiene systems with stretched carbon-carbon bond lengths (2.0 Å), having intermediate diradical characters, exhibit similar γ features to those of the phenalenyl based superpolyene systems. This exemplifies that the size dependence of γ as well as its sign change by introducing a positive charge on the phenalenyl based superpolyene systems originate from their intermediate diradical characters. In addition, the change from the lowest to the highest π-electron spin states significantly reduces the γ amplitudes of the neutral phenalenyl based superpolyene systems. For phenalenyl based superallyl cation, the sign inversion of γ (from negative to positive) is observed upon switching between the singlet and triplet states, which is predicted to be associated with a modification of the balance between the positive and negative contributions to γ. The present study paves the way
Double-polarizating scanning radiometer
International Nuclear Information System (INIS)
Mishev, D.N.; Nazyrski, T.G.
1986-01-01
The double-polarizating single-channel scanning radiometer comprises the following serial connected parts: a scanning double-polarizating aerial, a block for polarization separation, a radiometer receiver, an analog-to-digit converter and an information flow forming block. The low frequency input of the radiometer receiver is connected with a control block, which is also connected with a first bus of a microprocessor, the second bus of which is connected with the A-D converter. The control input of the scanning double-polarizating aerial is connected with the first microprocessor bus. The control inputs of the block for polarization separation are linked by an electronic switch with the output of the forming block, the input of which is connected to the first input of the control block. The control inputs of the block for polarization separation are connected with the second and the third input of the information flow forming block. 2 cls
Gravitational polarizability of black holes
International Nuclear Information System (INIS)
Damour, Thibault; Lecian, Orchidea Maria
2009-01-01
The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h l of a black hole are defined and computed. They are then compared to their electromagnetic analogs h l EM . The Love numbers h l give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.
Third-order non-Coulomb correction to the S-wave quarkonium wave functions at the origin
International Nuclear Information System (INIS)
Beneke, M.; Kiyo, Y.; Schuller, K.
2008-01-01
We compute the third-order correction to the S-wave quarkonium wave functions |ψ n (0)| 2 at the origin from non-Coulomb potentials in the effective non-relativistic Lagrangian. Together with previous results on the Coulomb correction and the ultrasoft correction computed in a companion paper, this completes the third-order calculation up to a few unknown matching coefficients. Numerical estimates of the new correction for bottomonium and toponium are given
International Nuclear Information System (INIS)
Fakhar, K.; Kara, A. H.
2012-01-01
We study the symmetries, conservation laws and reduction of third-order equations that evolve from a prior reduction of models that arise in fluid phenomena. These could be the ordinary differential equations (ODEs) that are reductions of partial differential equations (PDEs) or, alternatively, PDEs related to given ODEs. In this class, the analysis includes the well-known Blasius, Chazy, and other associated third-order ODEs. (general)
Third-order gas-liquid phase transition and the nature of Andrews critical point
Directory of Open Access Journals (Sweden)
Tian Ma
2011-12-01
Full Text Available The main objective of this article is to study the nature of the Andrews critical point in the gas-liquid transition in a physical-vapor transport (PVT system. A dynamical model, consistent with the van der Waals equation near the Andrews critical point, is derived. With this model, we deduce two physical parameters, which interact exactly at the Andrews critical point, and which dictate the dynamic transition behavior near the Andrews critical point. In particular, it is shown that 1 the gas-liquid co-existence curve can be extended beyond the Andrews critical point, and 2 the transition is first order before the critical point, second-order at the critical point, and third order beyond the Andrews critical point. This clearly explains why it is hard to observe the gas-liquid phase transition beyond the Andrews critical point. Furthermore, the analysis leads naturally the introduction of a general asymmetry principle of fluctuations and the preferred transition mechanism for a thermodynamic system. The theoretical results derived in this article are in agreement with the experimental results obtained in (K. Nishikawa and T. Morita, Fluid behavior at supercritical states studied by small-angle X-ray scattering, Journal of Supercritical Fluid, 13 (1998, pp. 143-148. Also, the derived second-order transition at the critical point is consistent with the result obtained in (M. Fisher, Specific heat of a gas near the critical point, Physical Review, 136:6A (1964, pp. A1599-A1604.
Physical origin of third order non-linear optical response of porphyrin nanorods
International Nuclear Information System (INIS)
Mongwaketsi, N.; Khamlich, S.; Pranaitis, M.; Sahraoui, B.; Khammar, F.; Garab, G.; Sparrow, R.; Maaza, M.
2012-01-01
The non-linear optical properties of porphyrin nanorods were studied using Z-scan, Second and Third harmonic generation techniques. We investigated in details the heteroaggregate behaviour formation of [H 4 TPPS 4 ] 2- and [SnTPyP] 2+ mixture by means of the UV-VIS spectroscopy and aggregates structure and morphology by transmission electron microscopy. The porphyrin nanorods under investigation were synthesized by self assembly and molecular recognition method. They have been optimized in view of future application in the construction of the light harvesting system. The focus of this study was geared towards understanding the influence of the type of solvent used on these porphyrins nanorods using spectroscopic and microscopic techniques. Highlights: ► We synthesized porphyrin nanorods by self assembly and molecular recognition method. ► TEM images confirmed solid cylindrical shapes. ► UV-VIS spectroscopy showed the decrease in the absorbance peaks of the precursors. ► The enhanced third-order nonlinearities were observed.
Third-order nonlinear optical response of Ag-CdSe/PVA hybrid nanocomposite
Energy Technology Data Exchange (ETDEWEB)
Tripathi, S.K.; Kaur, Ramneek; Kaur, Jaspreet; Sharma, Mamta [Panjab University, Department of Physics, Center of Advanced Study in Physics, Chandigarh (India)
2015-09-15
Hybrid nanocomposites of II-VI semiconductor nanoparticles are gaining great interest in nonlinear optoelectronic devices. Present work includes the characterization of CdSe polymer nanocomposite prepared by chemical in situ technique. From X-ray diffraction, the hexagonal wurtzite structure of nanoparticles has been confirmed with spherical morphology from transmission electron microscopy. Ag-CdSe hybrid polymer nanocomposite has been prepared chemically at different Ag concentrations. The presence of Ag in hybrid nanocomposite has been confirmed with energy-dispersive X-ray spectroscopy. The effect of varying Ag concentration on the linear and nonlinear optical properties of the nanocomposites has been studied. In linear optical parameters, the linear absorption coefficient, refractive index, extinction coefficient and optical conductivity have been calculated. The third-order nonlinear optical properties have been observed with open- and closed-aperture Z-scan technique. The large nonlinear refractive index ∝10{sup -5} cm{sup 2}/W with self-focusing behaviour is due to the combined effect of quantum confinement and thermo-optical effects. The enhanced nonlinearity with increasing Ag content is due to the surface plasmon resonance, which enhances the local electric field near the nanoparticle surface. Thus, Ag-CdSe hybrid polymer nanocomposite has favourable nonlinear optical properties for various optoelectronic applications. (orig.)
Third-order nonlinear optical response of Ag-CdSe/PVA hybrid nanocomposite
International Nuclear Information System (INIS)
Tripathi, S.K.; Kaur, Ramneek; Kaur, Jaspreet; Sharma, Mamta
2015-01-01
Hybrid nanocomposites of II-VI semiconductor nanoparticles are gaining great interest in nonlinear optoelectronic devices. Present work includes the characterization of CdSe polymer nanocomposite prepared by chemical in situ technique. From X-ray diffraction, the hexagonal wurtzite structure of nanoparticles has been confirmed with spherical morphology from transmission electron microscopy. Ag-CdSe hybrid polymer nanocomposite has been prepared chemically at different Ag concentrations. The presence of Ag in hybrid nanocomposite has been confirmed with energy-dispersive X-ray spectroscopy. The effect of varying Ag concentration on the linear and nonlinear optical properties of the nanocomposites has been studied. In linear optical parameters, the linear absorption coefficient, refractive index, extinction coefficient and optical conductivity have been calculated. The third-order nonlinear optical properties have been observed with open- and closed-aperture Z-scan technique. The large nonlinear refractive index ∝10 -5 cm 2 /W with self-focusing behaviour is due to the combined effect of quantum confinement and thermo-optical effects. The enhanced nonlinearity with increasing Ag content is due to the surface plasmon resonance, which enhances the local electric field near the nanoparticle surface. Thus, Ag-CdSe hybrid polymer nanocomposite has favourable nonlinear optical properties for various optoelectronic applications. (orig.)
Explicit formulation of second and third order optical nonlinearity in the FDTD framework
Varin, Charles; Emms, Rhys; Bart, Graeme; Fennel, Thomas; Brabec, Thomas
2018-01-01
The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.
Role of third-order dispersion in chirped Airy pulse propagation in single-mode fibers
Cai, Wangyang; Wang, Lei; Wen, Shuangchun
2018-04-01
The dynamic propagation of the initial chirped Airy pulse in single-mode fibers is studied numerically, special attention being paid to the role of the third-order dispersion (TOD). It is shown that for the positive TOD, the Airy pulse experiences inversion irrespective of the sign of initial chirp. The role of TOD in the dynamic propagation of the initial chirped Airy pulse depends on the combined sign of the group-velocity dispersion (GVD) and the initial chirp. If the GVD and chirp have the opposite signs, the chirped Airy pulse compresses first and passes through a breakdown area, then reconstructs a new Airy pattern with opposite acceleration, with the breakdown area becoming small and the main peak of the new Airy pattern becoming asymmetric with an oscillatory structure due to the positive TOD. If the GVD and chirp have the same signs, the finite-energy Airy pulse compresses to a focal point and then inverses its acceleration, in the case of positive TOD, the distance to the focal point becoming smaller. At zero-dispersion point, the finite-energy Airy pulse inverses to the opposite acceleration at a focal point, with the tight-focusing effect being reduced by initial chirp. Under the effect of negative TOD, the initial chirped Airy pulse disperses and the lobes split. In addition, in the anomalous dispersion region, for strong nonlinearity, the initial chirped Airy pulse splits and enters a soliton shedding regime.
International Nuclear Information System (INIS)
Fernández-Hernández, Roberto Carlos; Gleason-Villagran, Roberto; Rodríguez-Fernández, Luis; Crespo-Sosa, Alejandro; Cheang-Wong, Juan Carlos; López-Suárez, Alejandra; Oliver, Alicia; Reyes-Esqueda, Jorge Alejandro; Torres-Torres, Carlos; Rangel-Rojo, Raúl
2012-01-01
Au and Ag isotropic and anisotropic nanocomposites were prepared using the ion implantation technique. Their optical properties were studied at several wavelengths in the optical range 300–800 nm, across their plasmon resonances. The linear regime was characterized by measuring the absorption spectrum and the third-order nonlinear regime by means of the Z-scan technique using a tunable picosecond pulsed laser system (26 ps). Open-aperture Z-scan traces show a superposition of different optical nonlinear absorption (NLA) processes in the whole range studied. We associate these phenomena with the excitation of inter- and intra-band electronic transitions, which contribute with a positive sign to NLA, and to the formation of hot-electrons, which contribute with opposite sign to NLA. Closed-aperture traces for measuring nonlinear refraction (NLR) show different signs for Au and Ag samples, and a change of sign in Au is found when purely inter-band transitions are excited. In this work, for the appropriate wavelength, it is worth remarking on the free-electron response to the exciting light and its strong contribution to the nonlinear optical properties for low (intra-band) and high (hot-electrons) irradiances. (paper)
Stochastic, real-space, imaginary-time evaluation of third-order Feynman–Goldstone diagrams
International Nuclear Information System (INIS)
Willow, Soohaeng Yoo; Hirata, So
2014-01-01
A new, alternative set of interpretation rules of Feynman–Goldstone diagrams for many-body perturbation theory is proposed, which translates diagrams into algebraic expressions suitable for direct Monte Carlo integrations. A vertex of a diagram is associated with a Coulomb interaction (rather than a two-electron integral) and an edge with the trace of a Green's function in real space and imaginary time. With these, 12 diagrams of third-order many-body perturbation (MP3) theory are converted into 20-dimensional integrals, which are then evaluated by a Monte Carlo method. It uses redundant walkers for convergence acceleration and a weight function for importance sampling in conjunction with the Metropolis algorithm. The resulting Monte Carlo MP3 method has low-rank polynomial size dependence of the operation cost, a negligible memory cost, and a naturally parallel computational kernel, while reproducing the correct correlation energies of small molecules within a few mE h after 10 6 Monte Carlo steps
Stochastic, real-space, imaginary-time evaluation of third-order Feynman–Goldstone diagrams
Energy Technology Data Exchange (ETDEWEB)
Willow, Soohaeng Yoo [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784 (Korea, Republic of); Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, Saitama 332-0012 (Japan)
2014-01-14
A new, alternative set of interpretation rules of Feynman–Goldstone diagrams for many-body perturbation theory is proposed, which translates diagrams into algebraic expressions suitable for direct Monte Carlo integrations. A vertex of a diagram is associated with a Coulomb interaction (rather than a two-electron integral) and an edge with the trace of a Green's function in real space and imaginary time. With these, 12 diagrams of third-order many-body perturbation (MP3) theory are converted into 20-dimensional integrals, which are then evaluated by a Monte Carlo method. It uses redundant walkers for convergence acceleration and a weight function for importance sampling in conjunction with the Metropolis algorithm. The resulting Monte Carlo MP3 method has low-rank polynomial size dependence of the operation cost, a negligible memory cost, and a naturally parallel computational kernel, while reproducing the correct correlation energies of small molecules within a few mE{sub h} after 10{sup 6} Monte Carlo steps.
A third-order class-D amplifier with and without ripple compensation
Cox, Stephen M.; du Toit Mouton, H.
2018-06-01
We analyse the nonlinear behaviour of a third-order class-D amplifier, and demonstrate the remarkable effectiveness of the recently introduced ripple compensation (RC) technique in reducing the audio distortion of the device. The amplifier converts an input audio signal to a high-frequency train of rectangular pulses, whose widths are modulated according to the input signal (pulse-width modulation) and employs negative feedback. After determining the steady-state operating point for constant input and calculating its stability, we derive a small-signal model (SSM), which yields in closed form the transfer function relating (infinitesimal) input and output disturbances. This SSM shows how the RC technique is able to linearise the small-signal response of the device. We extend this SSM through a fully nonlinear perturbation calculation of the dynamics of the amplifier, based on the disparity in time scales between the pulse train and the audio signal. We obtain the nonlinear response of the amplifier to a general audio signal, avoiding the linearisation inherent in the SSM; we thereby more precisely quantify the reduction in distortion achieved through RC. Finally, simulations corroborate our theoretical predictions and illustrate the dramatic deterioration in performance that occurs when the amplifier is operated in an unstable regime. The perturbation calculation is rather general, and may be adapted to quantify the way in which other nonlinear negative-feedback pulse-modulated devices track a time-varying input signal that slowly modulates the system parameters.
Photo-physics of third-order nonlinear optical processes in organic dyes
International Nuclear Information System (INIS)
Delysse, Stephane
1997-01-01
We study some aspects of the nonlinear picosecond photo-physics in organic dyes using Kerr ellipsometry. The aim is to establish link between the photo-physics and nonlinear optics in these compounds. First, we study coherent processes directly linked to the third-order susceptibility. Thus, we measure two-photon absorption spectra of large internal charge transfer dyes. We take into account all coupling between three electronic states which can interfere to explain the particular response of some stilbene dyes. On the second hand, we expose a more photophysical approach to determine the S 1 → S n transition energies and moments using the measurement of excited state absorption cross sections. These results allow the prediction of the susceptibilities relevant to alternative nonlinear optical methods. Nevertheless, the stationary approach hides the complex relaxation processes which can take place in organic dyes. As an illustration, we study the formation and disappearance of a TICT (Twisted intramolecular charge transfer) in a pyrylium salt in solvents of increasing viscosity. (author) [fr
Capmany, J; Gasulla, Ivana
2007-08-20
Although a considerable number of multimode fiber (MMF) links operate in a wavelength region around 850 nm where chromatic dispersion of a given modal group mu is described adequately by the second derivative beta(mu) (2) of the propagation constant beta(mu)(omega), there is also an increasing interest in MMF links transmitting in the second spectral window (@1300nm) where this second derivative vanishes being thus necessary to consider the third derivative beta(mu) (3) in the evaluation of the transfer function of the multimode fiber link. We present in this paper, for the first time to our knowledge, an analytical model for the transfer function of a multimode fiber (MMF) optic link taken into account the impact of third-order dispersion. The model extends the operation of a previously reported one for second-order dispersion. Our results show that the performance of broadband radio over fiber transmission through middle-reach distances can be improved by working at the minimum-dispersion wavelength as long as low-linewidth lasers are employed.
Third-order optical nonlinearity of N-doped graphene oxide nanocomposites at different GO ratios
Kimiagar, Salimeh; Abrinaei, Fahimeh
2018-05-01
In the present work, the influence of GO ratios on the structural, linear and nonlinear optical properties of nitrogen-doped graphene oxide nanocomposites (N-GO NCs) has been studied. N-GO NCs were synthesized by hydrothermal method. The XRD, FTIR, SEM, and TEM results confirmed the reduction of GO by nitrogen doping. The energy band gaps of N-GO NCs calculated from UV-Vis analyzed by using Tauc plot. To obtain further insight into potential optical changes in the N-GO NCs by increasing GO contents, Z-scan analysis was performed with nanosecond Nd-YAG laser at 532 nm. The nonlinear absorption coefficient, β, and nonlinear refractive index, n2, for N-GO NCs at the laser intensity of 113 MW/cm were measured and an increase was observed in both parameters after addition of nitrogen to GO. The third-order nonlinear optical susceptibilities of N-GO NCs were measured in the order of 10-9 esu. The results showed that N-GO NCs have negative nonlinearity which can be controlled by GO contents to obtain the highest values for nonlinear optical parameters. The nonlinear optical results not only imply that N-GO NCs can serve as an important material in the advancing of optoelectronics but also open new possibilities for the design of new graphene-based materials by variation of N and GO ratios as well as manufacturing conditions.
Some measurements of H/D polarizability isotope effects using differential refractometry
Energy Technology Data Exchange (ETDEWEB)
Foster Smith, M; Van Hook, W A [Tennessee Univ., Knoxville (USA). Dept. of Chemistry
1989-05-01
Refractive index differences between the H and D isomers of some common molecules in the liquid phase were measured between 404.7 and 690.0 nm. The data are combined with information on molar volume isotope effects to yield values for H/D isotope effects on the static polarizability, the vibrational contribution to the static and frequency dependent parts of the polarizability, and the H/D isotope effect on the second moment of the electronic charge distribution. The present results suffice to demonstrate the practicability of this technique to measure the components of the polarizability listed above. However for accurate resolution of the vibrational and second moment contributions, refractive index data of still greater precision will be required. (orig.).
Some measurements of H/D polarizability isotope effects using differential refractometry
International Nuclear Information System (INIS)
Foster Smith, M.; Van Hook, W.A.
1989-01-01
Refractive index differences between the H and D isomers of some common molecules in the liquid phase were measured between 404.7 and 690.0 nm. The data are combined with information on molar volume isotope effects to yield values for H/D isotope effects on the static polarizability, the vibrational contribution to the static and frequency dependent parts of the polarizability, and the H/D isotope effect on the second moment of the electronic charge distribution. The present results suffice to demonstrate the practicability of this technique to measure the components of the polarizability listed above. However for accurate resolution of the vibrational and second moment contributions, refractive index data of still greater precision will be required. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Jiang, Jun, E-mail: phyjiang@yeah.net [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909 (Australia); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909 (Australia); Cheng, Yongjun, E-mail: cyj83mail@gmail.com [School of Engineering, Charles Darwin University, Darwin, Northern Territory, 0909 (Australia); Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080 (China); Bromley, M.W.J., E-mail: brom@physics.uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4075 (Australia)
2015-01-15
Effective oscillator strength distributions are systematically generated and tabulated for the alkali atoms, the alkaline-earth atoms, the alkaline-earth ions, the rare gases and some miscellaneous atoms. These effective distributions are used to compute the dipole, quadrupole and octupole static polarizabilities, and are then applied to the calculation of the dynamic polarizabilities at imaginary frequencies. These polarizabilities can be used to determine the long-range C{sub 6}, C{sub 8} and C{sub 10} atom–atom interactions for the dimers formed from any of these atoms and ions, and we present tables covering all of these combinations.
International Nuclear Information System (INIS)
Jiang, Jun; Mitroy, J.; Cheng, Yongjun; Bromley, M.W.J.
2015-01-01
Effective oscillator strength distributions are systematically generated and tabulated for the alkali atoms, the alkaline-earth atoms, the alkaline-earth ions, the rare gases and some miscellaneous atoms. These effective distributions are used to compute the dipole, quadrupole and octupole static polarizabilities, and are then applied to the calculation of the dynamic polarizabilities at imaginary frequencies. These polarizabilities can be used to determine the long-range C 6 , C 8 and C 10 atom–atom interactions for the dimers formed from any of these atoms and ions, and we present tables covering all of these combinations
Baev, Alexander; Autschbach, Jochen; Boyd, Robert W; Prasad, Paras N
2010-04-12
Herein, we develop a phenomenological model for microscopic cascading and substantiate it with ab initio calculations. It is shown that the concept of local microscopic cascading of a second-order nonlinearity can lead to a third-order nonlinearity, without introducing any new loss mechanisms that could limit the usefulness of our approach. This approach provides a new molecular design protocol, in which the current great successes achieved in producing molecules with extremely large second-order nonlinearity can be used in a supra molecular organization in a preferred orientation to generate very large third-order response magnitudes. The results of density functional calculations for a well-known second-order molecule, (para)nitroaniline, show that a head-to-tail dimer configuration exhibits enhanced third-order nonlinearity, in agreement with the phenomenological model which suggests that such an arrangement will produce cascading due to local field effects.
DEFF Research Database (Denmark)
Sauer, Stephan P. A.; Paidarová, Ivana; Čársky, Petr
2016-01-01
In this paper we present calculations of the static polarizability and its derivatives for the adamantane molecule carried out at the density functional theory level using the B3LYP exchange correlation functional and Sadlej’s polarized valence triple zeta basis set. It is shown...
A model with charges and polarizability for CS2 in an ionic liquid
Indian Academy of Sciences (India)
RUTH M LYNDEN-BELL
the static electrostatic distribution in the CS2 molecule with 7 charged sites and anisotropic polarizability on the carbon site and isotropic .... the charges modified to reproduce the molecular quad- ... face at 1.5 times the van der Waals radii from the nuclei ..... shows the probability distribution of induced dipoles on the C site ...
Dynamics of solitons and quasisolitons of the cubic third-order nonlinear Schrödinger equation
DEFF Research Database (Denmark)
Karpman, V.I.; Juul Rasmussen, J.; Shagalov, A.G.
2001-01-01
The dynamics of soliton and quasisoliton solutions of the cubic third-order nonlinear Schrodinger equation is studied. Regular solitons exist due to a balance between the nonlinear terms and (linear) third-order dispersion; they are not important at small alpha (3) (alpha (3) is the coefficient...... in the third derivative term) and vanish at alpha3 -->0. The most essential, at small alpha (3), is a quasisoliton emitting resonant radiation (resonantly radiating soliton). Its relationship with the other (steady) quasisoliton, called embedded soliton, is studied analytically and also in numerical...
A Kramers-Moyal approach to the analysis of third-order noise with applications in option valuation.
Popescu, Dan M; Lipan, Ovidiu
2015-01-01
We propose the use of the Kramers-Moyal expansion in the analysis of third-order noise. In particular, we show how the approach can be applied in the theoretical study of option valuation. Despite Pawula's theorem, which states that a truncated model may exhibit poor statistical properties, we show that for a third-order Kramers-Moyal truncation model of an option's and its underlier's price, important properties emerge: (i) the option price can be written in a closed analytical form that involves the Airy function, (ii) the price is a positive function for positive skewness in the distribution, (iii) for negative skewness, the price becomes negative only for price values that are close to zero. Moreover, using third-order noise in option valuation reveals additional properties: (iv) the inconsistencies between two popular option pricing approaches (using a "delta-hedged" portfolio and using an option replicating portfolio) that are otherwise equivalent up to the second moment, (v) the ability to develop a measure R of how accurately an option can be replicated by a mixture of the underlying stocks and cash, (vi) further limitations of second-order models revealed by introducing third-order noise.
DEFF Research Database (Denmark)
Fasano, Andrea; Rasmussen, Henrik K.
2017-01-01
A third order accurate, in time and space, finite element scheme for the numerical simulation of three- dimensional time-dependent flow of the molecular stress function type of fluids in a generalized formu- lation is presented. The scheme is an extension of the K-BKZ Lagrangian finite element me...
On the periodic orbits of the Third-order differential equation x ' ' '- x ' ' x'- x= F(x,x',x ' ')
Llibre, Jaume
2013-01-01
Agraïments: The second author is partially supported by CAPES/MECD-DGU 222/2010 Brazil and Spain In this paper we study the periodic orbits of the third-order differential equation x''' − µx'' + x' − µx = εF(x, x', x''), where ε is a small parameter and the function F is of class C2.
Nishimoto, Yoshio
2015-09-07
We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.
Directory of Open Access Journals (Sweden)
Youliang Fu
2016-01-01
Full Text Available This paper is concerned with the asymptotic properties of solutions to a third-order nonlinear neutral delay differential equation with distributed deviating arguments. Several new theorems are obtained which ensure that every solution to this equation either is oscillatory or tends to zero. Two illustrative examples are included.
Denche, M.; Marhoune, A. L.
2001-01-01
We study a mixed problem with integral boundary conditions for a third-order partial differential equation of mixed type. We prove the existence and uniqueness of the solution. The proof is based on two-sided a priori estimates and on the density of the range of the operator generated by the considered problem.
DEFF Research Database (Denmark)
Karpman, V.I.; Shagalov, A.G.; Juul Rasmussen, J.
2002-01-01
The behavior of steady quasisoliton solutions to the extended third-order nonlinear Schrodinger (NLS) equation is studied in two cases: (i) when the coefficients in the equation approach the Hirota conditions, and (ii) near the limit of the regular NLS equation. (C) 2002 Published by Elsevier...
Third-order particle-hole ring diagrams with contact-interactions and one-pion exchange
Energy Technology Data Exchange (ETDEWEB)
Kaiser, N. [Technische Universitaet Muenchen, Physik-Department T39, Garching (Germany)
2017-05-15
The third-order particle-hole ring diagrams are evaluated for a NN-contact interaction of the Skyrme type. The pertinent four-loop coefficients in the energy per particle anti E(k{sub f}) ∝ k{sub f}{sup 5+2n} are reduced to double integrals over cubic expressions in Euclidean polarization functions. Dimensional regularization of divergent integrals is performed by subtracting power divergences and the validity of this method is checked against the known analytical results at second order. The complete O(p{sup 2}) NN-contact interaction is obtained by adding two tensor terms and their third-order ring contributions are also calculated in detail. The third-order ring energy arising from long-range 1π-exchange is computed and it is found that direct and exchange contributions are all attractive. The very large size of the three-ring energy due to point-like 1π-exchange, anti E(k{sub f0}) ≅ -92 MeV at saturation density, is however in no way representative for that of realistic chiral NN-potentials. Moreover, the third-order (particle-particle and hole-hole) ladder diagrams are evaluated with the full O(p{sup 2}) contact interaction, and the simplest three-ring contributions to the isospin-asymmetry energy A(k{sub f}) ∝ k{sub f}{sup 5} are studied. (orig.)
Counterterms for static Lovelock solutions
International Nuclear Information System (INIS)
Mehdizadeh, M.R.; Dehghani, M.H.; Zangeneh, M.K.
2015-01-01
In this paper, we introduce the counterterms that remove the non-logarithmic divergences of the action in third order Lovelock gravity for static spacetimes. We do this by defining the cosmological constant in such a way that the asymptotic form of the metric have the same form in Lovelock and Einstein gravities. Thus, we employ the counterterms of Einstein gravity and show that the power law divergences of the action of Lovelock gravity for static spacetimes can be removed by suitable choice of coefficients. We find that the dependence of these coefficients on the dimension in Lovelock gravity is the same as in Einstein gravity. We also introduce the finite energy-momentum tensor and employ these counterterms to calculate the finite action and mass of static black hole solutions of third order Lovelock gravity. Next, we calculate the thermodynamic quantities and show that the entropy calculated through the use of Gibbs-Duhem relation is consistent with the obtained entropy by Wald's formula. Furthermore, we find that in contrast to Einstein gravity in which there exists no uncharged extreme black hole, third order Lovelock gravity can have these kind of black holes. Finally, we investigate the stability of static charged black holes of Lovelock gravity in canonical ensemble and find that small black holes show a phase transition between very small and small black holes, while the large ones are stable. (orig.)
Counterterms for static Lovelock solutions
Energy Technology Data Exchange (ETDEWEB)
Mehdizadeh, M.R. [Shahid Bahonar University, Department of Physics, PO Box 76175, Kerman (Iran, Islamic Republic of); Dehghani, M.H. [Research Institute for Astrophysics and Astronomy of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Zangeneh, M.K. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)
2015-06-15
In this paper, we introduce the counterterms that remove the non-logarithmic divergences of the action in third order Lovelock gravity for static spacetimes. We do this by defining the cosmological constant in such a way that the asymptotic form of the metric have the same form in Lovelock and Einstein gravities. Thus, we employ the counterterms of Einstein gravity and show that the power law divergences of the action of Lovelock gravity for static spacetimes can be removed by suitable choice of coefficients. We find that the dependence of these coefficients on the dimension in Lovelock gravity is the same as in Einstein gravity. We also introduce the finite energy-momentum tensor and employ these counterterms to calculate the finite action and mass of static black hole solutions of third order Lovelock gravity. Next, we calculate the thermodynamic quantities and show that the entropy calculated through the use of Gibbs-Duhem relation is consistent with the obtained entropy by Wald's formula. Furthermore, we find that in contrast to Einstein gravity in which there exists no uncharged extreme black hole, third order Lovelock gravity can have these kind of black holes. Finally, we investigate the stability of static charged black holes of Lovelock gravity in canonical ensemble and find that small black holes show a phase transition between very small and small black holes, while the large ones are stable. (orig.)
Computational analysis of electronic polarizabilities in Thomas ...
African Journals Online (AJOL)
The electric polarizability,α, of a molecule is a measure of its ability to respond to an electric field and acquire an electric dipole moment, μ. The electric polarizability, α has been calculated for several ions and atoms by obtaining the perturbation of wave functions by an external field from a numerical solution of differential ...
Microscopic evaluation of the nuclear dipole polarizability
Energy Technology Data Exchange (ETDEWEB)
Lipparini, E; Orlandini, G; Stringari, S; Traini, M [Trento Univ. (Italy). Dept. di Matematica e Fisica
1977-12-01
The dipole polarizability sum rule has been evaluated by means of a restricted Hartree-Fock approach. The method leads to a simple and analytical expression for the dipole polarizability. Explicit calculations have been performed in /sup 16/O and /sup 40/Ca with different types of interaction.
Excited States in Solution through Polarizable Embedding
DEFF Research Database (Denmark)
Olsen, Jógvan Magnus; Aidas, Kestutis; Kongsted, Jacob
2010-01-01
mechanical calculation. The polarizable embedding potential is described by an atomistic representation including terms up to localized octupoles and anisotropic polarizabilities. It is generally applicable to any quantum chemical description but is here implemented for the case of Kohn−Sham density...
Mordik, S N
2002-01-01
The third-order transfer matrices are calculated for an electrostatic toroidal sector condenser using a rigorously conserved matrix method that implies the conservation of the beam phase volume at each step in the calculations. The transfer matrices (matrizants) obtained, include the fringing-field effect due to the stray fields. In the case of a rectangular distribution of the field components along the optical axis, the analytical expressions for all aberration coefficients, including the dispersion ones, are derived accurate to the third-order terms. In simulations of real fields with the stray field width other than zero, a smooth distribution of the field components is used for which similar aberration coefficients were calculated by means of the conserved numerical method . It has been found that for a smooth model, as the stray field width tends to zero, the aberration coefficients approach the corresponding aberration values in the rectangular model.
International Nuclear Information System (INIS)
Davies, J.; Vogt, A.
2016-06-01
We have calculated the coefficient functions for the structure functions F_2, F_L and F_3 in ν- anti ν charged-current deep-inelastic scattering (DIS) at the third order in the strong coupling α_s, thus completing the description of unpolarized inclusive W"±-exchange DIS to this order of massless perturbative QCD. In this brief note, our new results are presented in terms of compact approximate expressions that are sufficiently accurate for phenomenological analyses. For the benefit of such analyses we also collect, in a unified notation, the corresponding lower-order contributions and the flavour non-singlet coefficient functions for ν+ anti ν charged-current DIS. The behaviour of all six third-order coefficient functions at small Bjorken-x is briefly discussed.
Elamien, Mohamed B.; Mahmoud, Soliman A.
2018-03-01
In this paper, a third-order elliptic lowpass filter is designed using highly linear digital programmable balanced OTA. The filter exhibits a cutoff frequency tuning range from 2.2 MHz to 7.1 MHz, thus, it covers W-CDMA, UMTS, and DVB-H standards. The programmability concept in the filter is achieved by using digitally programmable operational transconductors amplifier (DPOTA). The DPOTA employs three linearization techniques which are the source degeneration, double differential pair and the adaptive biasing. Two current division networks (CDNs) are used to control the value of the transconductance. For the DPOTA, the third-order harmonic distortion (HD3) remains below -65 dB up to 0.4 V differential input voltage at 1.2 V supply voltage. The DPOTA and the filter are designed and simulated in 90 nm CMOS technology with LTspice simulator.
Thangaraj, M.; Vinitha, G.; Sabari Girisun, T. C.; Anandan, P.; Ravi, G.
2015-10-01
Optical nonlinearity of metal complexes of p-nitrophenolate (M=Li, Na and K) in ethanol is studied by using a continuous wave (cw) diode pumped Nd:YAG laser (532 nm, 50 mW). The predominant mechanism of observed nonlinearity is thermal in origin. The nonlinear refractive index and the nonlinear absorption coefficient of the samples were found to be in the order of 10-8 cm2/W and 10-3 cm/W respectively. Magnitude of third-order optical parameters varies according to the choice of alkali metal chosen for metal complex formation of p-nitrophenolate. The third-order nonlinear susceptibility was found to be in the order of 10-6 esu. The observed saturable absorption and the self-defocusing effect were used to demonstrate the optical limiting action at 532 nm by using the same cw laser beam.
International Nuclear Information System (INIS)
Mordik, S.N.; Ponomarev, A.G.
2001-01-01
To study nonlinear dynamics of charged particles in magnetic sector analyzers one applied the matriciant method. When calculating matriciants (transfer matrices) one took account of the boundary-value effects associated with the effect of scattering field, as well as, the higher harmonics of the sector magnetic field up to the third order inclusive. In case of the rectangular distribution of field components along the optical axis one obtained analytical expressions for all aberration coefficients up to the third order exclusive. To simulate the real field with the width of scattering field not equal to zero one applied smooth distribution of components for which calculation of similar aberration coefficients was conducted using the conservative numerical method [ru
International Nuclear Information System (INIS)
Mordik, S.N.; Ponomarev, A.G.
2002-01-01
The third-order transfer matrices are calculated for an electrostatic toroidal sector condenser using a rigorously conserved matrix method that implies the conservation of the beam phase volume at each step in the calculations. The transfer matrices (matrizants) obtained, include the fringing-field effect due to the stray fields. In the case of a rectangular distribution of the field components along the optical axis, the analytical expressions for all aberration coefficients, including the dispersion ones, are derived accurate to the third-order terms. In simulations of real fields with the stray field width other than zero, a smooth distribution of the field components is used for which similar aberration coefficients were calculated by means of the conserved numerical method . It has been found that for a smooth model, as the stray field width tends to zero, the aberration coefficients approach the corresponding aberration values in the rectangular model
Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi
2018-06-01
A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.
International Nuclear Information System (INIS)
Afuwape, A.U.; Omari, P.
1987-11-01
This paper deals with the solvability of the nonlinear operator equations in normed spaces Lx=EGx+f, where L is a linear map with possible nontrivial kernel. Applications are given to the existence of periodic solutions for the third order scalar differential equation x'''+ax''+bx'+cx+g(t,x)=p(t), under various conditions on the interaction of g(t,x)/x with spectral configurations of a, b and c. (author). 48 refs
Energy Technology Data Exchange (ETDEWEB)
Tan, Min; Liu, Qiming, E-mail: qmliu@whu.edu.cn [Wuhan University, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology (China)
2016-12-15
Taking advantage of the channel confinement of mesoporous films to prevent the agglomeration of Ag nanoparticles to achieve large third-order optical nonlinearity in amorphous materials, Ag-loaded composite mesoporous silica film was prepared by the electrochemical deposition method on ITO substrate. Ag ions were firstly transported into the channels of mesoporous film by the diffusion and binding force of channels, which were reduced to nanoparticles by applying suitable voltage. The existence and uniform distribution of Ag nanoparticles ranging in 1–10 nm in the mesoporous silica thin films were exhibited by UV spectrophotometer, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The third-order optical nonlinearity induced by Ag nanoparticles was studied by the Z-scan technique. Due to the local field surface plasmon resonance, the maximum third-order nonlinear optical susceptibility of Ag-loaded composite mesoporous silica film is 1.53×10{sup −10} esu, which is 1000 times larger than that of the Ag-contained chalcogenide glasses which showed large nonlinearity in amorphous materials.
Green synthesis and third-order nonlinear optical properties of 6-(9H-carbazol-9-yl) hexyl acetate
Chen, Baili; Geng, Feng; Luo, Xuan; Zhong, Quanjie; Zhang, Qingjun; Fang, Yu; Huang, Chuanqun; Yang, Ruizhuang; Shao, Ting; Chen, Shufan
2016-10-01
An extremely simple and green approach for the synthesis of photoelectric material 6-(9H-carbazol-9-yl) hexy-acetate (CHA) has been described in detail. The molecular structure of CHA was identified with Fourier transform infrared (FT-IR) spectra and 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy. The optical absorption of CHA was recorded using ultraviolet-visible (UV-vis) spectrum. Notably, the reaction was accomplished in water medium instead of traditional toxic solvents (e.g., benzene and chloroform). The yield of CHA is up to 99%, which is increased by 13% compared with the traditional method. The approach developed by us makes it possible to achieve commercial production of CHA. Moreover, the thermal stability of CHA was studied with thermogravimetric (TG) and derivative thermogravimetric (DTG) method. The third-order nonlinear optical (NLO) properties of CHAn (obtained by new method) and CHAt (obtained by traditional method) have been studied by a Z-scan technique at 440 nm. The thermal decomposition temperature is above 200 °C. The third-order NLO of CHAn and CHAt are the same. The third-order NLO susceptibility χ (3) and two photon Figures of Merit (FOMs) of CHA are 1.58 × 10-8 (esu) and 4.55, respectively. The results reveal that CHA may be a promising candidate for all-optical switching application.
Directory of Open Access Journals (Sweden)
Qicheng Meng
2016-04-01
Full Text Available A third-order KdV solution to the internal solitary wave is derived by a new method based on the weakly nonlinear assumptions in a rigid-lid two-layer system. The solution corrects an error by Mirie and Su (1984. A two-dimensional numerical wave tank has been established with the help of the open source CFD library OpenFOAM and the third-party software waves2Foam. Various analytical solutions, including the first-order to third-order KdV solutions, the eKdV solution and the MCC solution, have been used to initialise the flow fields in the CFD simulations of internal solitary waves. Two groups including 11 numerical cases have been carried out. In the same group, the initial wave amplitudes are the same but the implemented analytical solutions are different. The simulated wave profiles at different moments have been presented. The relative errors in terms of the wave amplitude between the last time step and the initial input have been analysed quantitatively. It is found that the third-order KdV solution results in the most stable internal solitary wave in the numerical wave tank for both small-amplitude and finite-amplitude cases. The finding is significant for the further simulations involving internal solitary waves.
Vibrational polarizabilities of hydrogen-bonded water
International Nuclear Information System (INIS)
Torii, Hajime
2013-01-01
Highlights: ► Vibrational polarizabilities of hydrogen-bonded water are analyzed theoretically. ► Total vibrational polarizability is (at least) comparable to the electronic one. ► Molecular translations contribute to the vibrational polarizability below 300 cm −1 . ► Intermolecular charge fluxes along H bonds are induced by molecular translations. ► The results are discussed in relation to the observed dielectric properties. - Abstract: The vibrational polarizabilities and the related molecular properties of hydrogen-bonded water are analyzed theoretically, taking the case of (water) 30 clusters as an example case. It is shown that some off-diagonal dipole derivatives are large for the translations of incompletely hydrogen-bonded molecules, and this is reasonably explained by the scheme of intermolecular charge fluxes induced along hydrogen bonds. In total, because of these intermolecular charge fluxes, molecular translations give rise to the vibrational polarizability of 2.8–3.3 a 0 3 per molecule, which is as large as about 40% of the electronic polarizability, mainly in the frequency region below 300 cm −1 . Adding the contributions of the molecular rotations (librations) and the translation–rotation cross term, the total polarizability (electronic + vibrational) at ∼100 cm −1 is slightly larger than the double of that at >4000 cm −1 . The relation of these results to some observed time- and frequency-dependent dielectric properties of liquid water is briefly discussed
Shining light on polarizable dark particles
Energy Technology Data Exchange (ETDEWEB)
Fichet, Sylvain [ICTP South American Institute for Fundamental Research, Instituto de Fisica Teorica, Sao Paulo State University,Rua Dr. Bento Teobaldo Ferraz 271, Bloco 2, Barra Funda (Brazil)
2017-04-14
We investigate the possibilities of searching for a self-conjugate polarizable particle in the self-interactions of light. We first observe that polarizability can arise either from the exchange of mediator states or as a consequence of the inner structure of the particle. To exemplify this second possibility we calculate the polarizability of a neutral bosonic open string, and find it is described only by dimension-8 operators. Focussing on the spin-0 case, we calculate the light-by-light scattering amplitudes induced by the dimension-6 and 8 polarizability operators. Performing a simulation of exclusive diphoton production with proton tagging at the LHC, we find that the imprint of the polarizable dark particle can be potentially detected at 5σ significance for mass and cutoff reaching values above the TeV scale, for √s=13 TeV and 300 fb{sup −1} of integrated luminosity. If the polarizable dark particle is stable, it can be a dark matter candidate, in which case we argue this exclusive diphoton search may complement the existing LHC searches for polarizable dark matter.
Minamida, Yuka; Kishi, Ryohei; Fukuda, Kotaro; Matsui, Hiroshi; Takamuku, Shota; Yamane, Masaki; Tonami, Takayoshi; Nakano, Masayoshi
2018-02-06
Tunability of the open-shell character, charge asymmetry, and third-order nonlinear optical (NLO) properties of covalently linked (hetero)phenalenyl dimers are investigated by using the density functional theory method. By changing the molecular species X and substitution position (i, j) for the linker part, a variety of intermonomer distances R and relative alignments between the phenalenyl dimers can be realized from the geometry optimizations, resulting in a wide-range tuning of diradical character y and charge asymmetry. It is found that the static second hyperpolarizabilities along the stacking direction, γ yyyy , are one-order enhanced for phenalenyl dimer systems exhibiting intermediate y, a feature that is in good agreement with the "y-γ correlation". By replacing the central carbon atoms of the phenalenyl rings with a boron or a nitrogen, we have also designed covalently linked heterophenalenyl dimers. The introduction of such a charge asymmetry to the open-shell systems, which leads to closed-shell ionic ground states, is found to further enhance the γ yyyy values of the systems having longer intermonomer distance R with intermediate ionic character, that is, charge asymmetry. The present results demonstrate a promising potential of covalently linked NLO dimers with intermediate open-shell/ionic characters as a new building block of highly efficient NLO systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A third-order moving mesh cell-centered scheme for one-dimensional elastic-plastic flows
Cheng, Jun-Bo; Huang, Weizhang; Jiang, Song; Tian, Baolin
2017-11-01
A third-order moving mesh cell-centered scheme without the remapping of physical variables is developed for the numerical solution of one-dimensional elastic-plastic flows with the Mie-Grüneisen equation of state, the Wilkins constitutive model, and the von Mises yielding criterion. The scheme combines the Lagrangian method with the MMPDE moving mesh method and adaptively moves the mesh to better resolve shock and other types of waves while preventing the mesh from crossing and tangling. It can be viewed as a direct arbitrarily Lagrangian-Eulerian method but can also be degenerated to a purely Lagrangian scheme. It treats the relative velocity of the fluid with respect to the mesh as constant in time between time steps, which allows high-order approximation of free boundaries. A time dependent scaling is used in the monitor function to avoid possible sudden movement of the mesh points due to the creation or diminishing of shock and rarefaction waves or the steepening of those waves. A two-rarefaction Riemann solver with elastic waves is employed to compute the Godunov values of the density, pressure, velocity, and deviatoric stress at cell interfaces. Numerical results are presented for three examples. The third-order convergence of the scheme and its ability to concentrate mesh points around shock and elastic rarefaction waves are demonstrated. The obtained numerical results are in good agreement with those in literature. The new scheme is also shown to be more accurate in resolving shock and rarefaction waves than an existing third-order cell-centered Lagrangian scheme.
Directory of Open Access Journals (Sweden)
Gai Gongqi
2011-01-01
Full Text Available Abstract This article studies the boundary value problems for the third-order nonlinear singular difference equations Δ 3 u ( i - 2 + λ a ( i f ( i , u ( i = 0 , i ∈ [ 2 , T + 2 ] , satisfying five kinds of different boundary value conditions. This article shows the existence of positive solutions for positone and semi-positone type. The nonlinear term may be singular. Two examples are also given to illustrate the main results. The arguments are based upon fixed point theorems in a cone. MSC [2008]: 34B15; 39A10.
Pigeon, J. J.; Tochitsky, S. Ya.; Welch, E. C.; Joshi, C.
2018-04-01
We present measurements of the third-order optical nonlinearity of Kr, Xe, N2, O2, and air at a wavelength near 10 µm by using four-wave mixing of ˜15 -GW /c m2 , 200-ps (full width at half maximum) C O2 laser pulses. Measurements in molecular gases resulted in an asymmetric four-wave mixing spectrum indicating that the nonlinear response is strongly affected by the delayed, rotational contribution to the effective nonlinear refractive index. Within the uncertainty of our measurements, we have found that the long-wavelength nonlinear refractive indices of these gases are consistent with measurements performed in the near IR.
Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe
Takahashi, Ryuichi
2008-01-01
We investigate the third-order density perturbation and the one-loop correction to the linear power spectrum in the dark-energy cosmological model. Our main interest is to understand the dark-energy effect on baryon acoustic oscillations in a quasi-nonlinear regime ($k \\approx 0.1h$/Mpc). Analytical solutions and simple fitting formulae are presented for the dark-energy model with the general time-varying equation of state $w(a)$. It turns out that the power spectrum coincides with the approx...
Electric dipole polarizability from first principles calculations
International Nuclear Information System (INIS)
Miorelli, M.; University of British Columbia, Vancouver, BC; Bacca, S.; University of Manitoba; Barnea, N.
2016-01-01
The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for the 4 He, 40 Ca, and 16 O nuclei, and predict the dipole polarizability for the rare nucleus 22 O.
Indian Academy of Sciences (India)
N. Centre for Advanced Scientific Research, Bangalore 560 064, India. 2Indian Institute of ... for rational functions φ with poles off R. In [5,16], Koplienko's trace formula was derived ... be a sequence of complex numbers such that ..... Again if we set the sum of the second and fourth term inside the integral in (2.3) to be. I2 ≡.
Priyadharshini, A.; Kalainathan, S.
2018-04-01
2-(4-fluorobenzylidene) malononitrile (FBM), an organic third order nonlinear (TONLO) single crystal with the dimensions of 32 × 7 × 11 mm3, has been successfully grown in acetone solution by slow evaporation technique at 35 °C. The crystal system (triclinic), space group (P-1) and crystalline purity of the titular crystal were measured by single crystal and powder X-ray diffraction, respectively. The molecular weight and the multiple functional groups of the FBM material were confirmed through the mass and FT-IR spectral analysis. UV-Vis-NIR spectral study enroles that the FBM crystal exhibits excellent transparency (83%) in the entire visible and near infra-red region with a wide bandgap 2.90 eV. The low dielectric constant (εr) value of FBM crystal is appreciable for microelectronics industry applications. Thermal stability and melting point (130.09 °C) were ascertained by TGA-DSC analysis. The laser-induced surface damage threshold (LDT) value of FBM specimen is found to be 2.14 GW/cm2, it is fairly good compared to other reported NLO crystals. The third - order nonlinear optical character of the FBM crystal was confirmed through the typical single beam Z-scan technique. All these finding authorized that the organic crystal of FBM is favorably suitable for NLO applications.
Directory of Open Access Journals (Sweden)
T. William Bentley
2015-05-01
Full Text Available Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1 to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels—an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3 are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides. Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride.
International Nuclear Information System (INIS)
Kobayashi, Takashi; Shinke, Wataru; Nagase, Takashi; Murakami, Shuichi; Naito, Hiroyoshi
2014-01-01
We examined the enhancements in the third-order optical susceptibility (χ (3) ) of spin-coated thin films of poly(3-hexylthiophene) using an anhydrous solvent with a high boiling point. The χ (3) value was found to be enhanced as the boiling point of the solvent increased. In this study, the largest value of χ (3) was obtained for thin films that were spin-coated in an inert atmosphere using anhydrous dichlorobenzene and then was subsequently exposed to its vapor for 1 h. The maximum value of the imaginary part of χ (3) was determined to be 1.8 × 10 -9 esu, which is more than three times greater than that of thin films spin-coated in an ambient atmosphere using a solvent with a low boiling point, such as chloroform. - Highlights: • Enhancements in nonlinear optical properties of a conjugated polymer were examined. • Thin films were fabricated by spin-coating using a solvent with a high boiling point. • The third-order optical susceptibility increased with increasing boiling point. • An additional enhancement was obtained by the vapor-treatment technique. • These thin films were sufficiently homogeneous for use in nonlinear optical devices
International Nuclear Information System (INIS)
Shihong Ma; Liying Liu; Xingze Lu
1995-01-01
Third-order nonlinear susceptibilities χ xxxx (3) (-3ω; ω, ω, ω) have been deduced by measuring third-harmonic generation in Langmuir-Blodgett (LB) films of 1-benzyl-9-hydrofullerene-60 (C 60 -Be). The structural features of the condensed layer at the air-water interface and LB films of the C 60 -Be were investigated by small angle x-ray diffraction (SAXD) and optical measurements. The third-order nonlinear susceptibilities (χ (3) ) were obtained by measuring the THG intensities in LB films of C 60 -Be and comparing with that of CS 2 used as the reference. The value of χ xxxx (3) (2.1 x 10 -11 esu) was deduced at a 65 nm thick films. The χ (3) is attributed to a three-photon near resonance at the energy level of 29410 cm -1 . A new-type of two-chain amphiphilic molecule 1,10-bistearyl-4,6,13, 15-tetra-18-nitrogencrown-6 (NC) was used as insert material to construct mixed C 60 -Be/NC LB films. Our π-A, UV-visible absorption and SAXD measurements showed that the structural improvement in the mixed C 60 -Be/NC LB films was realized by insertion of the C 60 -Be molecules between the two hydrophobic chains of the NC molecules
Energy Technology Data Exchange (ETDEWEB)
Sivakumar, B.; Mohan, R. [Preidency College, Bangalore (India); Raj, S. Gokul [RR and Dr. SR Technical Univ., Avadi (India); Kumar, G. Ramesh [Anna Univ., Arni (India)
2012-11-15
Single crystals of lithium potassium phthalate (LiKP) were successfully grown from aqueous solution by solvent evaporation technique. The grown crystals were characterized by single crystal X-ray diffraction. The lithium potassium phthalate C{sub 16} H{sub 12} K Li{sub 3} O{sub 11} belongs to triclinic system with the following unit-cell dimensions at 298(2) K; a = 7.405(5) A; b = 9.878(5) A; c = 13.396(5) A; α = 71.778(5) .deg.; β = 87.300(5) .deg.; γ = 85.405(5) .deg.; having a space group P1. Mass spectrometric analysis provides the molecular weight of the compound and possible ways of fragmentations occurs in the compound. Thermal stability of the crystal was also studied by both simultaneous TGA/DTA analyses. The UV-Vis-NIR spectrum shows a good transparency in the whole of Visible and as well as in the near IR range. Third order nonlinear optical studies have also been studied by Z-scan technique. Nonlinear absorption and nonlinear refractive index were found out and the third order bulk susceptibility of compound was also estimated.
International Nuclear Information System (INIS)
Ganguly, Jayanta; Ghosh, Manas
2015-01-01
Highlights: • Linear and nonlinear polarizabilities of quantum dot are studied. • Quantum dot is doped with a repulsive impurity. • Doped system is subject to Gaussian white noise. • Dopant migrates under damped condition. • Noise-damping coupling affects polarizabilities. - Abstract: We investigate the profiles of diagonal components of static and frequency-dependent linear, first, and second nonlinear polarizabilities of repulsive impurity doped quantum dot. We have considered propagation of dopant within an environment that damps the motion. Simultaneous presence of noise inherent to the system has also been considered. The dopant has a Gaussian potential and noise considered is a Gaussian white noise. The doped system is exposed to an external electric field which could be static or time-dependent. Noise undergoes direct coupling with damping and the noise-damping coupling strength appears to be a crucial parameter that designs the profiles of polarizability components. This happens because the coupling strength modulates the dispersive and asymmetric character of the system. The frequency of external field brings about additional features in the profiles of polarizability components. The present investigation highlights some useful features in the optical properties of doped quantum dots
Energy Technology Data Exchange (ETDEWEB)
Cobb, J.W.
1995-02-01
There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.
Near resonant and nonresonant third-order optical nonlinearities of colloidal InP/ZnS quantum dots
Wang, Y.; Yang, X.; He, T. C.; Gao, Y.; Demir, H. V.; Sun, X. W.; Sun, H. D.
2013-01-01
We have investigated the third-order optical nonlinearities of high-quality colloidal InP/ZnS core-shell quantum dots (QDs) using Z-scan technique with femtosecond pulses. The two-photon absorption cross-sections as high as 6.2 × 103 GM are observed at 800 nm (non-resonant regime) in InP/ZnS QDs with diameter of 2.8 nm, which is even larger than those of CdSe, CdS, and CdTe QDs at similar sizes. Furthermore, both of the 2.2 nm and 2.8 nm-sized InP/ZnS QDs exhibit strong saturable absorption in near resonant regime, which is attributed to large exciton Bohr radius in this material. These results strongly suggest the promising potential of InP/ZnS QDs for widespread applications, especially in two-photon excited bio-imaging and saturable absorbing.
Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source
Energy Technology Data Exchange (ETDEWEB)
Corona, Maria [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, apdo. postal 70-543, DF 04510 Mexico City (Mexico); Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Apartado Postal 2732, BC 22860 Ensenada (Mexico); Garay-Palmett, Karina; U' Ren, Alfred B. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, apdo. postal 70-543, DF 04510 Mexico City (Mexico)
2011-09-15
We study the third-order spontaneous parametric down-conversion (TOSPDC) process, as a means to generate entangled photon triplets. Specifically, we consider thin optical fibers as the nonlinear medium to be used as the basis for TOSPDC in configurations where phase matching is attained through the use of more than one fiber transverse modes. Our analysis in this paper, which follows from our earlier paper [Opt. Lett. 36, 190-192 (2011)], aims to supply experimentalists with the details required in order to design a TOSPDC photon-triplet source. Specifically, our analysis focuses on the photon triplet state, on the rate of emission, and on the TOSPDC phase-matching characteristics for the cases of frequency-degenerate and frequency nondegenerate TOSPDC.
Behzadi, Kobra; Baghelani, Masoud
2014-05-01
This paper presents a third order continuous time current mode ΣΔ modulator for WLAN 802.11b standard applications. The proposed circuit utilized feedback architecture with scaled and optimized DAC coefficients. At circuit level, we propose a modified cascade current mirror integrator with reduced input impedance which results in more bandwidth and linearity and hence improves the dynamic range. Also, a very fast and precise novel dynamic latch based current comparator is introduced with low power consumption. This ultra fast comparator facilitates increasing the sampling rate toward GHz frequencies. The modulator exhibits dynamic range of more than 60 dB for 20 MHz signal bandwidth and OSR of 10 while consuming only 914 μW from 1.8 V power supply. The FoM of the modulator is calculated from two different methods, and excellent performance is achieved for proposed modulator.
Charged pions polarizability measurement at COMPASS
Guskov, A
2010-01-01
The pion electromagnetic structure can be probed in $\\pi^{−}+(A,Z)\\rightarrow\\pi^{-}+(A,Z)+\\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric $(\\alpha_{\\pi})$ and the magnetic $(\\beta_{\\pi})$ polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of point-like pions with the measured cross section. The opportunity to measure pion polarizability via the Primakoff reaction at the COMPASS experiment was studied with $a$ $\\pi^{-}$ beam of 190 GeV during pilot run 2004. The obtained results were used for preparation of the new data taking which was performed in 2009.
Hadron polarizability data analysis: GoAT
Energy Technology Data Exchange (ETDEWEB)
Stegen, H., E-mail: hkstegen@mta.ca; Hornidge, D. [Mount Allison University, Sackville (Canada); Collicott, C. [Dalhousie University, Halifax (Canada); Martel, P. [Mount Allison University, Sackville (Canada); Johannes Gutenberg University, Mainz (Germany); Ott, P. [Johannes Gutenberg University, Mainz (Germany)
2015-12-31
The A2 Collaboration at the Institute for Nuclear Physics in Mainz, Germany, is working towards determining the polarizabilities of hadrons from nonperturbative quantum chromodynamics through Compton scattering experiments at low energies. The asymmetry observables are directly related to the scalar and spin polarizabilities of the hadrons. Online analysis software, which will give real-time feedback on asymmetries, efficiencies, energies, and angle distributions, has been developed. The new software is a big improvement over the existing online code and will greatly develop the quality of the acquired data.
Hadron polarizability data analysis: GoAT
Stegen, H.; Collicott, C.; Hornidge, D.; Martel, P.; Ott, P.
2015-12-01
The A2 Collaboration at the Institute for Nuclear Physics in Mainz, Germany, is working towards determining the polarizabilities of hadrons from nonperturbative quantum chromodynamics through Compton scattering experiments at low energies. The asymmetry observables are directly related to the scalar and spin polarizabilities of the hadrons. Online analysis software, which will give real-time feedback on asymmetries, efficiencies, energies, and angle distributions, has been developed. The new software is a big improvement over the existing online code and will greatly develop the quality of the acquired data.
Quantum mechanical determination of atomic polarizabilities of ionic liquids.
Heid, Esther; Szabadi, András; Schröder, Christian
2018-04-25
The distribution of a molecule's polarizability to individual atomic sites is inevitable to develop accurate polarizable force fields. We present the direct quantum mechanical calculation of atomic polarizabilities of 27 common ionic liquids. The method is superior to previously published distribution routines based on large databases of the molecular polarizability, and enables the correct description of any ionic liquid and its peculiarities within the quantum mechanical framework.
International Nuclear Information System (INIS)
Vucic, S.; Potvliege, R.M.; Joachain, C.J.; Louvain Univ., Louvain-la-Neuve
1987-01-01
We study the elastic scattering of electrons by the metastable states H(2s), He(2 1 S) and He(2 3 S) at intermediate energies within the framework of the third-order optical potential theory. The first-, second- and third-order contributions to the optical potential are analysed separately, and are compared with the corresponding quantities for e - H(1s) and e - He(1 1 S) elastic scattering. Results for positron impact scattering are also presented. (author)
On the polarizability dyadics of electrically small, convex objects
Lakhtakia, Akhlesh
1993-11-01
This communication on the polarizability dyadics of electrically small objects of convex shapes has been prompted by a recent paper published by Sihvola and Lindell on the polarizability dyadic of an electrically gyrotropic sphere. A mini-review of recent work on polarizability dyadics is appended.
Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals
Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping
2018-06-01
Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I–III–VI semiconductor nanocrystals (NCs), such as CuInS2 and AgInS2. However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS2 and AgInS2/ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS2 and AgInS2/ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility {χ }(3) of AgInS2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.
Almeida, Gustavo F. B.; Almeida, Juliana M. P.; Martins, Renato J.; De Boni, Leonardo; Arnold, Craig B.; Mendonca, Cleber R.
2018-01-01
The development of advanced photonics devices requires materials with large optical nonlinearities, fast response times and high optical transparency, while at the same time allowing for the micro/nano-processing needed for integrated photonics. In this context, glasses have been receiving considerable attention given their relevant optical properties which can be specifically tailored by compositional control. Corning Gorilla® Glass (strengthened alkali aluminosilicate glass) is well-known for its use as a protective screen in mobile devices, and has attracted interest as a potential candidate for optical devices. Therefore, it is crucial not only to expand the knowledge on the fabrication of waveguides in Gorilla Glass under different regimes, but also to determine its nonlinear optical response, both using fs-laser pulses. Thus, this paper reports, for the first time, characterization of the third-order optical nonlinearities of Gorilla Glass, as well as linear and nonlinear characterization of waveguide written with femtosecond pulses under the low repetition rate regime (1 kHz).
International Nuclear Information System (INIS)
Schneider, M.; Wormit, M.; Dreuw, A.; Soshnikov, D. Yu.; Trofimov, A. B.; Holland, D. M. P.; Powis, I.; Antonsson, E.; Patanen, M.; Nicolas, C.; Miron, C.
2015-01-01
The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n 5 with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZ basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed
Karthigha, S.; Krishnamoorthi, C.
2018-03-01
An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.
A third-order gas-kinetic CPR method for the Euler and Navier-Stokes equations on triangular meshes
Zhang, Chao; Li, Qibing; Fu, Song; Wang, Z. J.
2018-06-01
A third-order accurate gas-kinetic scheme based on the correction procedure via reconstruction (CPR) framework is developed for the Euler and Navier-Stokes equations on triangular meshes. The scheme combines the accuracy and efficiency of the CPR formulation with the multidimensional characteristics and robustness of the gas-kinetic flux solver. Comparing with high-order finite volume gas-kinetic methods, the current scheme is more compact and efficient by avoiding wide stencils on unstructured meshes. Unlike the traditional CPR method where the inviscid and viscous terms are treated differently, the inviscid and viscous fluxes in the current scheme are coupled and computed uniformly through the kinetic evolution model. In addition, the present scheme adopts a fully coupled spatial and temporal gas distribution function for the flux evaluation, achieving high-order accuracy in both space and time within a single step. Numerical tests with a wide range of flow problems, from nearly incompressible to supersonic flows with strong shocks, for both inviscid and viscous problems, demonstrate the high accuracy and efficiency of the present scheme.
Directory of Open Access Journals (Sweden)
2008-11-01
Full Text Available A novel poly(urethane-imide (PUI containing dispersed red chromophore was synthesized. The PUI was characterized by FT-IR, UV-Vis, DSC and TGA. The results of DSC and TGA indicated that the PUI exhibited high thermal stability up to its glass-transition temperature (Tg of 196°C and 5% heat weight loss temperature of 229°C. According to UV-Vis spectrum and working curve, the maximum molar absorption coefficient and absorption wavelength were measured. They were used to calculate the third-order nonlinear optical coefficient χ(3. At the same time, the chromophore density of PUI, nonlinear refractive index coefficient and molecular hyperpolarizability of PUI were obtained. The fluorescence spectra of PUI and model compound DR-19 were determined at excitation wavelength 300 nm. The electron donor and acceptor in polymer formed the exciplex through the transfer of the electric charges. The results show that the poly(urethane-imide is a promising candidate for application in optical devices.
Directory of Open Access Journals (Sweden)
Ruzanna Kh. Makaova
2017-12-01
Full Text Available In this paper we study the boundary value problem for a degenerating third order equation of hyperbolic type in a mixed domain. The equation under consideration in the positive part of the domain coincides with the Hallaire equation, which is a pseudoparabolic type equation. Moreover, in the negative part of the domain it coincides with a degenerating hyperbolic equation of the first kind, the particular case of the Bitsadze–Lykov equation. The existence and uniqueness theorem for the solution is proved. The uniqueness of the solution to the problem is proved with the Tricomi method. Using the functional relationships of the positive and negative parts of the domain on the degeneration line, we arrive at the convolution type Volterra integral equation of the 2nd kind with respect to the desired solution by a derivative trace. With the Laplace transform method, we obtain the solution of the integral equation in its explicit form. At last, the solution to the problem under study is written out explicitly as the solution of the second boundary-value problem in the positive part of the domain for the Hallaire equation and as the solution to the Cauchy problem in the negative part of the domain for a degenerate hyperbolic equation of the first kind.
Meng, Lingyi; He, Shanshan; Zhao, Xin Sheng
2017-12-21
Fluorescence correlation spectroscopy (FCS) encodes the information on the equilibrium constant (K), the relative fluorescence brightness of fluorophore (Q), and the forward and backward reaction rate constants (k + and k - ) on a physical or chemical relaxation. However, it has been a long-standing problem to completely resolve the FCS data to get the thermodynamic and kinetic information. Recently, we have solved the problem for fluorescence autocorrelation spectroscopy (FACS). Here, we extend the method to fluorescence cross-correlation spectroscopy (FCCS), which appears when FCS is coupled with fluorescence resonance energy transfer (FRET). Among 12 total second-order and third-order pre-exponential factors in a relaxation process probed by the FRET-FCS technique, 3 are independent. We presented and discussed 3 sets of explicit solutions to use these pre-exponential factors to calculate K and Q. Together with the relaxation time, the acquired K will allow people to obtain k + and k - , so that the goal of deciphering the FRET-FCS data will be fully reached. The theory is verified by extensive computer simulations and tested experimentally on a system of oligonucleotide hybridization.
The determination of accurate dipole polarizabilities alpha and gamma for the noble gases
Rice, Julia E.; Taylor, Peter R.; Lee, Timothy J.; Almloef, Jan
1989-01-01
The static dipole polarizabilities alpha and gamma for the noble gases helium through xenon were determined using large flexible one-particle basis sets in conjunction with high-level treatments of electron correlation. The electron correlation methods include single and double excitation coupled-cluster theory (CCSD), an extension of CCSD that includes a perturbational estimate of connected triple excitations, CCSD(T), and second order perturbation theory (MP2). The computed alpha and gamma values are estimated to be accurate to within a few percent. Agreement with experimental data for the static hyperpolarizability gamma is good for neon and xenon, but for argon and krypton the differences are larger than the combined theoretical and experimental uncertainties. Based on our calculations, we suggest that the experimental value of gamma for argon is too low; adjusting this value would bring the experimental value of gamma for krypton into better agreement with our computed result. The MP2 values for the polarizabilities of neon, argon, krypton and zenon are in reasonabe agreement with the CCSD and CCSD(T) values, suggesting that this less expensive method may be useful in studies of polarizabilities for larger systems.
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Ebert, D.; Volkov, M.K.
1981-01-01
The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given. (orig.)
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Volkov, M.K.; Ehbert, D.
1980-01-01
The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Lanta and Tarrach is given. The results of the paper give evidence to the nonlinear chiral Lagrangian favour
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Volkov, M.K.; Ehbert, D.
1981-01-01
The pion polarizability is calculated in a chiral meson- quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given [ru
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Volkov, M.K.; Ebert, D.
1981-01-01
It is shown that the pion polarizability calculated in a chiral model with quark loops agrees exactly with the analogous quantity found in a chiral meson-baryon model. The results of a paper by Llanta and Tarrach are discussed critically
The polarizable embedding coupled cluster method
DEFF Research Database (Denmark)
Sneskov, Kristian; Schwabe, Tobias; Kongsted, Jacob
2011-01-01
We formulate a new combined quantum mechanics/molecular mechanics (QM/MM) method based on a self-consistent polarizable embedding (PE) scheme. For the description of the QM region, we apply the popular coupled cluster (CC) method detailing the inclusion of electrostatic and polarization effects...
Hadron electric polarizability from lattice QCD
Alexandru, Andrei
2017-09-01
Electromagnetic polarizabilities are important parameters for hadron structure, describing the response of the charge and current distributions inside the hadron to an external electromagnetic field. For most hadrons these quantities are poorly constrained experimentally since they can only be measured indirectly. Lattice QCD can be used to compute these quantities directly in terms of quark and gluons degrees of freedom, using the background field method. We present results for the neutron electric polarizability for two different quark masses, light enough to connect to chiral perturbation theory. These are currently the lightest quark masses used in polarizability studies. For each pion mass we compute the polarizability at four different volumes and perform an infinite volume extrapolation. We also discuss the effect of turning on the coupling between the background field and the sea quarks. A.A. is supported in part by the National Science Foundation CAREER Grant PHY-1151648 and by U.S. DOE Grant No. DE-FG02-95ER40907.
Polarizable Density Embedding Coupled Cluster Method
DEFF Research Database (Denmark)
Hršak, Dalibor; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob
2018-01-01
by an embedding potential consisting of a set of fragment densities obtained from calculations on isolated fragments with a quantum-chemistry method such as Hartree-Fock (HF) or Kohn-Sham density functional theory (KS-DFT) and dressed with a set of atom-centered anisotropic dipole-dipole polarizabilities...
K$_{-}$ and K$_{-}$ polarizability from kaonic atoms
Backenstoss, Gerhard; Bergström, I; Bunaciu, T; Egger, J; Hagelberg, R; Hultberg, S; Koch, H; Lynen, Y; Ritter, H G; Schwitter, A; Tauscher, L
1973-01-01
The K/sup -/ mass was determined from kaonic atomic X-rays from Au and Ba to be 493.691+or-0.040 MeV. An upper limit for the polarizability of the K/sup -/ was found to be 0.020 fm/sup 3/ at 90% confidence. (18 refs).
Polarizability tensor and Kramers-Heisenberg induction
Wijers, Christianus M.J.
2004-01-01
A general expression for the semiclassical, nonrelativistic linear polarizability of an arbitrary volume element V has been derived in the long wavelength approximation. The derivation starts from the expectation value of the dipole strength, as in the original Kramers-Heisenberg paper about optical
Size-scaling behaviour of the electronic polarizability of one-dimensional interacting systems
Chiappe, G.; Louis, E.; Vergés, J. A.
2018-05-01
Electronic polarizability of finite chains is accurately calculated from the total energy variation of the system produced by small but finite static electric fields applied along the chain direction. Normalized polarizability, that is, polarizability divided by chain length, diverges as the second power of length for metallic systems but approaches a constant value for insulating systems. This behaviour provides a very convenient way to characterize the wave-function malleability of finite systems as it avoids the need of attaching infinite contacts to the chain ends. Hubbard model calculations at half filling show that the method works for a small U = 1 interaction value that corresponds to a really small spectral gap of 0.005 (hopping t = ‑1 is assumed). Once successfully checked, the method has been applied to the long-range hopping model of Gebhard and Ruckenstein showing 1/r hopping decay (Gebhard and Ruckenstein 1992 Phys. Rev. Lett. 68 244; Gebhard et al 1994 Phys. Rev. B 49 10926). Metallicity for U values below the reported metal-insulator transition is obtained but the surprise comes for U values larger than the critical one (when a gap appears in the spectral density of states) because a steady increase of the normalized polarizability with size is obtained. This critical size-scaling behaviour can be understood as corresponding to a molecule which polarizability is unbounded. We have checked that a real transfer of charge from one chain end to the opposite occurs as a response to very small electric fields in spite of the existence of a large gap of the order of U for one-particle excitations. Finally, ab initio quantum chemistry calculations of realistic poly-acetylene chains prove that the occurrence of such critical behaviour in real systems is unlikely.
Xu, Kuan-Man; Cheng, Anning
2014-05-01
A high-resolution cloud-resolving model (CRM) embedded in a general circulation model (GCM) is an attractive alternative for climate modeling because it replaces all traditional cloud parameterizations and explicitly simulates cloud physical processes in each grid column of the GCM. Such an approach is called "Multiscale Modeling Framework." MMF still needs to parameterize the subgrid-scale (SGS) processes associated with clouds and large turbulent eddies because circulations associated with planetary boundary layer (PBL) and in-cloud turbulence are unresolved by CRMs with horizontal grid sizes on the order of a few kilometers. A third-order turbulence closure (IPHOC) has been implemented in the CRM component of the super-parameterized Community Atmosphere Model (SPCAM). IPHOC is used to predict (or diagnose) fractional cloudiness and the variability of temperature and water vapor at scales that are not resolved on the CRM's grid. This model has produced promised results, especially for low-level cloud climatology, seasonal variations and diurnal variations (Cheng and Xu 2011, 2013a, b; Xu and Cheng 2013a, b). Because of the enormous computational cost of SPCAM-IPHOC, which is 400 times of a conventional CAM, we decided to bypass the CRM and implement the IPHOC directly to CAM version 5 (CAM5). IPHOC replaces the PBL/stratocumulus, shallow convection, and cloud macrophysics parameterizations in CAM5. Since there are large discrepancies in the spatial and temporal scales between CRM and CAM5, IPHOC used in CAM5 has to be modified from that used in SPCAM. In particular, we diagnose all second- and third-order moments except for the fluxes. These prognostic and diagnostic moments are used to select a double-Gaussian probability density function to describe the SGS variability. We also incorporate a diagnostic PBL height parameterization to represent the strong inversion above PBL. The goal of this study is to compare the simulation of the climatology from these three
Collision-induced polarizabilities of inert gas atoms
International Nuclear Information System (INIS)
Clarke, K.L.; Madden, P.A.; Buckingham, A.D.
1978-01-01
The use of polarizability densities to calculate collision-induced polarizabilities is investigated. One method for computing polarizabilities of inert gas diatoms employs atomic polarizability densities from finite-field Hartree-Fock calculations, together with classical equations for the polarization of dielectrics. It is shown that this model gives inaccurate values for both the local fields and the local response to non-uniform fields. An alternative method incorporating the same physical effects is used to compute the pair polarizabilities to first order in the interatomic interaction. To first order the pair contribution to the trace of the polarizability is negative at short range. The calculated anisotropy does not differ significantly from the DID value, whereas the polarizability density calculation gives a substantial reduction in the anisotropy. (author)
Misra, J. C.; Mallick, B.; Sinha, A.; Roy Chowdhury, A.
2018-05-01
In the case of steady flow of a fluid under the combined influence of external electric and magnetic fields, the fluid moves forward by forming an axial momentum boundary layer. With this end in view a study has been performed here to investigate the problem of entropy generation during electroosmotically modulated flow of a third-order electrically conducting fluid flowing on a microchannel bounded by silicon-made parallel plates under the influence of a magnetic field, by paying due consideration to the steric effect. The associated mechanism of heat transfer has also been duly taken care of, by considering Cattaneo-Christov heat flux. A suitable finite difference scheme has been developed for the numerical procedure. A detailed study of the velocity and temperature distributions has been made by considering their variations with respect to different physical parameters involved in the problem. The results of numerical computation have been displayed graphically. The computational work has been carried out by considering blood as the working fluid, with the motivation of exploring some interesting phenomena in the context of hemodynamical flow in micro-vessels. Among other variables, parametric variations of the important physical variables, viz. i) skin friction and ii) Nusselt number have been investigated. The study confirms that the random motion of the fluid particles can be controlled by a suitable adjustment of the intensity of an externally applied magnetic field in the transverse direction. It is further revealed that the Nusselt number diminishes, as the Prandtl number gradually increases; however, a steady increase in the Nusselt number occurs with increase in thermal relaxation. Entropy generation is also found to be enhanced with increase in Joule heating. The results of the present study have also been validated in a proper manner.
Site specific atomic polarizabilities in endohedral fullerenes and carbon onions
Energy Technology Data Exchange (ETDEWEB)
Zope, Rajendra R., E-mail: rzope@utep.edu; Baruah, Tunna [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Bhusal, Shusil; Basurto, Luis [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Jackson, Koblar [Physics Department and Science of Advanced Materials Ph.D. Program, Central Michigan University, Mt. Pleasant, Michigan 48859 (United States)
2015-08-28
We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolated C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.
Site specific atomic polarizabilities in endohedral fullerenes and carbon onions
International Nuclear Information System (INIS)
Zope, Rajendra R.; Baruah, Tunna; Bhusal, Shusil; Basurto, Luis; Jackson, Koblar
2015-01-01
We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C 60 @C 240 and C 60 @C 180 onions shows that, compared to the polarizability of isolated C 60 fullerene, the encapsulation of the C 60 in C 240 and C 180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C 60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability
Site specific atomic polarizabilities in endohedral fullerenes and carbon onions
Zope, Rajendra R.; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar
2015-08-01
We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.
Polarizabilities of the beryllium clock transition
International Nuclear Information System (INIS)
Mitroy, J.
2010-01-01
The polarizabilities of the three lowest states of the beryllium atom are determined from a large basis configuration interaction calculation. The polarizabilities of the 2s 2 1 S e ground state (37.73a 0 3 ) and the 2s2p 3 P 0 o metastable state (39.04a 0 3 ) are found to be very similar in size and magnitude. This leads to an anomalously small blackbody radiation shift at 300 K of -0.018(4) Hz for the 2s 2 1 S e -2s2p 3 P 0 o clock transition. Magic wavelengths for simultaneous trapping of the ground and metastable states are also computed.
Atomic polarizability in negative-ion photodetachment
International Nuclear Information System (INIS)
Watanabe, S.; Greene, C.H.
1980-01-01
The influence of a strong atomic polarizability on photodetachment processes is isolated. In a model study of K - photodetachment near the 4p/sub 1/2/, 4p/sub 3/2/ levels of K, the polarizability (α/sub 4p/ approx. = 600a 3 0 ) is shown to cause a striking energy dependence of the parameters which determine the cross section. This study extends the effective range theory of O'Malley, Spruch, and Rosenberg to a broader energy range and to multichannel systems. An appendix provides a derivation of the polarization potential (and correction terms) starting from the electron-atom close-coupling equations, showing some new features
Phase coexistence properties of polarizable Stockmayer fluids
International Nuclear Information System (INIS)
Kiyohara, K.; Gubbins, K.E.; Panagiotopoulos, A.Z.
1997-01-01
We report the phase coexistence properties of polarizable Stockmayer fluids of reduced permanent dipoles |m 0 * |= 1.0 and 2.0 and reduced polarizabilities α * = 0.00, 0.03, and 0.06, calculated by a series of grand canonical Monte Carlo simulations with the histogram reweighting method. In the histogram reweighting method, the distributions of density and energy calculated in Grand Canonical Monte Carlo simulations are stored in histograms and analyzed to construct the grand canonical partition function of the system. All thermodynamic properties are calculated from the grand partition function. The results are compared with Wertheim close-quote s renormalization perturbation theory. Deviations between theory and simulation results for the coexistence envelope are near 2% for the lower dipole moment and 10% for the higher dipole moment we studied. copyright 1997 American Institute of Physics
On the dynamic polarizability of atoms
International Nuclear Information System (INIS)
Nuroh, K.; Zaremba, E.
1989-04-01
The positive frequency dependent polarizability of atoms is discussed in terms of the particle-hole polarization propagator. It is considered in the simplest approximation defined by the Bethe-Salpeter equation which includes a subset of particle-hole interactions to all orders in the Coulomb potential. Its solution is used to show the relationship between different formulations of atomic photoabsorption via the effective dipole matrix element (Fermi's 'golden rule'), the TDLDA and the reaction matrix. (author). 21 refs, 7 figs
Electrode redox reactions with polarizable molecules
Matyushov, Dmitry V.
2018-04-01
A theory of redox reactions involving electron transfer between a metal electrode and a polarizable molecule in solution is formulated. Both the existence of molecular polarizability and its ability to change due to electron transfer distinguish this problem from classical theories of interfacial electrochemistry. When the polarizability is different between the oxidized and reduced states, the statistics of thermal fluctuations driving the reactant over the activation barrier becomes non-Gaussian. The problem of electron transfer is formulated as crossing of two non-parabolic free energy surfaces. An analytical solution for these free energy surfaces is provided and the activation barrier of electrode electron transfer is given in terms of two reorganization energies corresponding to the oxidized and reduced states of the molecule in solution. The new non-Gaussian theory is, therefore, based on two theory parameters in contrast to one-parameter Marcus formulation for electrode reactions. The theory, which is consistent with the Nernst equation, predicts asymmetry between the cathodic and anodic branches of the electrode current. They show different slopes at small electrode overpotentials and become curved at larger overpotentials. However, the curvature of the Tafel plot is reduced compared to the Marcus-Hush model and approaches the empirical Butler-Volmer form with different transfer coefficients for the anodic and cathodic currents.
Measurement of molecular polarizability on Rayleigh light scattering
International Nuclear Information System (INIS)
Nerushev, O.A.; Novopashin, S.A.
1994-01-01
The installation for measuring the polarizability of atoms and molecules on Rayleigh light scattering is described. The measurements in gases with the known polarizability are used for a calibration. Test measurements are carried out on nitrogen, argon, carbon dioxide, vapours of water and acetone. The results of measurements are compared with the table data. The technique is used for measuring the polarizability of fullerene molecules. 6 refs., 2 figs
Dielectric constant of atomic fluids with variable polarizability
Alder, B. J.; Beers, J. C.; Strauss, H. L.; Weis, J. J.
1980-01-01
The Clausius-Mossotti function for the dielectric constant is expanded in terms of single atom and pair polarizabilities, leading to contributions that depend on both the trace and the anisotropy of the pair-polarizability tensor. The short-range contribution of the anisotropic part to the pair polarizabilities has previously been obtained empirically from light scattering experiments, whereas the trace contribution is now empirically determined by comparison to dielectric experiments. For he...
Hayton, D. J.; Khudchencko, A.; Pavelyev, D. G.; Hovenier, J. N.; Baryshev, A.; Gao, J. R.; Kao, T. Y.; Hu, Q.; Reno, J. L.; Vaks, V.
2013-01-01
We report on the phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser (QCL) using a room temperature GaAs/AlAs superlattice diode as both a frequency multiplier and an internal harmonic mixer. A signal-to-noise level of 60 dB is observed in the intermediate frequency
Hayton, D.J.; Khudchenko, A.; Pavelyev, D.G.; Hovenier, J.N.; Baryshev, A.; Gao, J.R.; Kao, T.Y.; Hu, Q.; Reno, J.L.; Vaks, V.
2013-01-01
We report on the phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser (QCL) using a room temperature GaAs/AlAs superlattice diode as both a frequency multiplier and an internal harmonic mixer. A signal-to-noise level of 60?dB is observed in the intermediate frequency
Rijmen, Frank; Jeon, Minjeong; von Davier, Matthias; Rabe-Hesketh, Sophia
2014-01-01
Second-order item response theory models have been used for assessments consisting of several domains, such as content areas. We extend the second-order model to a third-order model for assessments that include subdomains nested in domains. Using a graphical model framework, it is shown how the model does not suffer from the curse of…
Energy Technology Data Exchange (ETDEWEB)
Montanez, I.P.; Droser, M.L. (Univ. of California, Riverside (United States))
1991-03-01
The Middle to Late Cambrian Bonanza King Formation (CA, NV) is characterized by superimposed scales of cyclicity. Small-scale cycles (0.5 to 10m) occur as shallowing-upward peritidal and subtidal cycles that repeat at high frequencies (10{sup 4} to 10{sup 5}). Systematic changes in stacking patterns of meter-scale cycles define several large-scale (50-250 m) third-order depositional sequences in the Bonanza King Formation. Third-order depositional sequences can be traced within ranges and correlated regionally across the platform. Peritidal cycles in the Bonanza King Formation are both subtidal- and tidal flat-dominated. Tidal flat-dominated cycles consist of muddy bases grading upward into thrombolites or columnar stromatolites all capped by planar stromatolites. Subtidal cycles in the Bonanza King Formation consist of grainstone bases that commonly fine upward and contain stacked hardgrounds. These are overlain by digitate-algal bioherms with grainstone channel fills and/or bioturbated ribbon carbonates with grainstone lenses. Transgressive depositional facies of third-order depositional sequences consist primarily of stacks of subtidal-dominated pertidial cycles and subtidal cycles, whereas regressive depositional facies are dominated by stacks of tidal flat-dominated peritidal cycles and regoliths developed over laminite cycle caps. The use of high frequency cycles in the Bonanza King Formation to delineate regionally developed third-order depositional sequences thus provides a link between cycle stratigraphy and sequence stratigraphy.
Sakian, P.; Mahmoudi, R.; Roermund, van A.H.M.
2011-01-01
An in-depth analysis is performed on the third-order intermodulation distortions (IMD3) in the switching pair of active CMOS mixers. The nonlinear time-varying switching pair is described by a hypothetical circuit composed of a nonlinear time-invariant circuit cascaded with a linear time-varying
Relativistic Quadrupole Polarizability for the Ground State of Hydrogen-Like Ions
International Nuclear Information System (INIS)
Zhang Yong-Hu; Zhang Xian-Zhou; Tang Li-Yan; Shi Ting-Yun; Mitroy Jim
2012-01-01
The static quadrupole polarizabilities for hydrogen-like ions from Z = 1 to Z = 100 in the 1S 1/2 ground state are calculated to high precision by solving the Dirac equation using the B-spline Galerkin method. The results are consistent with the expression of Kaneko [J. Phys. B 10 (1977) 3347] at low Z. The quadrupole oscillator strength sum Σ n f (2) gn is computed to be zero to a very high degree of precision. (atomic and molecular physics)
Sensitivity of the electric dipole polarizability to the neutron skin thickness in {sup 208}Pb
Energy Technology Data Exchange (ETDEWEB)
Roca-Maza, X.; Agrawal, B. K.; Colo, G.; Nazarewicz, W.; Paar, N.; Piekarewicz, J.; Reinhard, P.-G.; Vretenar, D. [INFN, sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Saha Institute of Nuclear Physics, Kolkata 700064 (India); Dipartimento di Fisica, Universita degli Studi di Milano and INFN, Sezione di Milano, 20133 Milano (Italy); Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Institute of Theoretical Physics, University of Warsaw, Hoza 69, PL-00-681 Warsaw (Poland); Physics Department, Faculty of Science, University of Zagreb, Zagreb (Croatia); Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Institut fuer Theoretische Physik II, Universitaet Erlangen-Nuernberg, Staudtstrasse 7, D-91058 Erlangen (Germany); Physics Department, Faculty of Science, University of Zagreb, Zagreb (Croatia)
2012-10-20
The static dipole polarizability, {alpha}{sub D}, in {sup 208}Pb has been recently measured with highresolution via proton inelastic scattering at the Research Center for Nuclear Physics (RCNP) [1]. This observable is thought to be intimately connected with the neutron skin thickness, r{sub skin}, of the same nucleus and, more fundamentally, it is believed to be associated with the density dependence of the nuclear symmetry energy. The impact of r{sub skin} on {alpha}{sub D} in {sup 208}Pb is investigated and discussed on the basis of a large and representative set of relativistic and non-relativistic nuclear energy density functionals (EDF) [2].
Many-body calculations of molecular electric polarizabilities in asymptotically complete basis sets
Monten, Ruben; Hajgató, Balázs; Deleuze, Michael S.
2011-10-01
The static dipole polarizabilities of Ne, CO, N2, F2, HF, H2O, HCN, and C2H2 (acetylene) have been determined close to the Full-CI limit along with an asymptotically complete basis set (CBS), according to the principles of a Focal Point Analysis. For this purpose the results of Finite Field calculations up to the level of Coupled Cluster theory including Single, Double, Triple, Quadruple and perturbative Pentuple excitations [CCSDTQ(P)] were used, in conjunction with suited extrapolations of energies obtained using augmented and doubly-augmented Dunning's correlation consistent polarized valence basis sets of improving quality. The polarizability characteristics of C2H4 (ethylene) and C2H6 (ethane) have been determined on the same grounds at the CCSDTQ level in the CBS limit. Comparison is made with results obtained using lower levels in electronic correlation, or taking into account the relaxation of the molecular structure due to an adiabatic polarization process. Vibrational corrections to electronic polarizabilities have been empirically estimated according to Born-Oppenheimer Molecular Dynamical simulations employing Density Functional Theory. Confrontation with experiment ultimately indicates relative accuracies of the order of 1 to 2%.
Directory of Open Access Journals (Sweden)
Mei Mingxiang
2013-01-01
Full Text Available The Caledonian orogeny at the end of the Silurian resulted in great changes in the palaeogeography in the Yunnan-Guizhou-Guangxi area of South China; the continental area of the Early Paleozoic evolved into the extensive Dian-Qian-Gui Sea in the Late Paleozoic. Early in the Devonian, as a result of a major transgression, seawater encroached gradually from the south to the north and clastic facies were deposited. Carbonate deposition was then established in the Yunnan-Guizhou-Guangxi area, with a palaeogeography marked by attached platforms, isolated platforms and narrow basins. As a result of the Ziyun movement towards the end of the Devonian, the Upper Devonian strata are regressive and thin out from the open-sea to the land areas. A study of the nature and distribution of sedimentary facies in space and time recognises 13 third-order sequences in the Devonian strata in Yunnan-Guizhou-Guangxi area, and these form two second-order sequences. The strata of the Lower Devonian comprise 5 third-order sequences (SQ1 to SQ5, which are dominated by transgressive clastics. 4 third-order sequences (SQ6 to SQ9 in the Middle Devonian are characterized by alternations of transgressive clastics and highstand carbonates. In the Upper Devonian, carbonates constitute 4 third-order sequences (SQ10 to SQ13, which are generally marked by the transgressive limestones and highstand dolomites. On the basis of earlier biostratigraphic studies, sea-level changes represented by the third-order sequences with their different facies successions are explored, and the sequence stratigraphic framework is established. Therefore, the Devonian strata in the study area provide an example for further understanding of depositional trends within the sequence-stratigraphic framework.
Electronic Polarizability and the Effective Pair Potentials of Water
Leontyev, I. V.; Stuchebrukhov, A. A.
2014-01-01
Employing the continuum dielectric model for electronic polarizability, we have developed a new consistent procedure for parameterization of the effective nonpolarizable potential of liquid water. The model explains the striking difference between the value of water dipole moment μ~3D reported in recent ab initio and experimental studies with the value μeff~2.3D typically used in the empirical potentials, such as TIP3P or SPC/E. It is shown that the consistency of the parameterization scheme can be achieved if the magnitude of the effective dipole of water is understood as a scaled value μeff=μ∕εel, where εel =1.78 is the electronic (high-frequency) dielectric constant of water, and a new electronic polarization energy term, missing in the previous theories, is included. The new term is evaluated by using Kirkwood - Onsager theory. The new scheme is fully consistent with experimental data on enthalpy of vaporization, density, diffusion coefficient, and static dielectric constant. The new theoretical framework provides important insights into the nature of the effective parameters, which is crucial when the computational models of liquid water are used for simulations in different environments, such as proteins, or for interaction with solutes. PMID:25383062
Pion polarizability in nonlocal quark model
International Nuclear Information System (INIS)
Efimov, G.V.; Okhlopkova, V.A.
1978-01-01
The γγ→ππ amplitude was calculated in nonlocal quark model in the fourth order on the perturbation theory. The coefficients of electric[a) and magnetic polarizability (β) determined are equal in magnitude and opposite in sign αsub(π+-)=βsub(π+-)=+0.014α/msub(π)sup(3), αsub(πsup(0))=-βsub(πsup(0))=-0.07α/msub(π)sup(3). The results have been compared with calculations in other models
Polarizability properties of bianisotropic spheres with noncomplete magnetoelectric dyadics
Sihvola, A. H.
1994-02-01
The polarizability expressions for bianisotropic scatterers are often complicated expressions of the material parameters. The communication treats the question how the dyadic inversion operations needed in the expressions can be carried out in a well-behaving way. Also, the particular polarizabilities of biaxial chiral spheres are studied in detail.
Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide
DEFF Research Database (Denmark)
Kjær, Hanna; Nielsen, Monia R.; Pagola, Gabriel I.
2012-01-01
In this paper we present the so far most extended investigation of the calculation of the coupling constant polarizability of a molecule. The components of the coupling constant polarizability are derivatives of the NMR indirect nuclear spin-spin coupling constant with respect to an external elec...
An averaged polarizable potential for multiscale modeling in phospholipid membranes
DEFF Research Database (Denmark)
Witzke, Sarah; List, Nanna Holmgaard; Olsen, Jógvan Magnus Haugaard
2017-01-01
A set of average atom-centered charges and polarizabilities has been developed for three types of phospholipids for use in polarizable embedding calculations. The lipids investigated are 1,2-dimyristoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1-palmitoyl...
Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability
International Nuclear Information System (INIS)
Miffre, A.
2005-06-01
Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, α = (24.33 ± 0.16)*10 -30 m 3 , improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)
International Nuclear Information System (INIS)
Gu, X.; Luo, Y.; Fischer, W.
2010-01-01
In the preparation for the 2011 RHIC 250 GeV polarized proton (pp) run, both experiment and simulation were carried out to investigate the possibility to accelerate the proton beam with a vertical tune near 2/3. It had been found experimentally in Run-9 that accelerating the proton beam with a vertical tune close to 2/3 will greatly benefit the transmission of the proton polarization. In this note, we report the calculated dynamic apertures with the 100 GeV Au run and 250 GeV proton run lattices with vertical tunes close to the third order resonance. We will compare the third order resonance band width between the beam experiment and the simulation with the 100 GeV Au lattices. And we also will compare the calculated resonance band width between the 100 GeV Au and 250 GeV proton run lattices.
Saripalli, Ravi Kiran; Katturi, Naga Krishnakanth; Soma, Venugopal Rao; Bhat, H. L.; Elizabeth, Suja
2017-12-01
The linear, second order, and third order nonlinear optical properties of glucuronic acid γ-lactone single crystals were investigated. The optic axes and principal dielectric axes were identified through optical conoscopy and the principal refractive indices were obtained using the Brewster's angle method. Conic sections were observed which is perceived to be due to spontaneous non-collinear phase matching. The direction of collinear phase matching was determined and the deff evaluated in this direction was 0.71 pm/V. Open and closed aperture Z-scan measurements with femtosecond pulses revealed high third order nonlinearity in the form of self-defocusing, two-photon absorption, as well as saturable absorption.
Measurement of the charged-pion polarizability.
Adolph, C; Akhunzyanov, R; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anosov, V; Austregesilo, A; Badełek, B; Balestra, F; Barth, J; Baum, G; Beck, R; Bedfer, Y; Berlin, A; Bernhard, J; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bodlak, M; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Büchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Colantoni, M; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dinkelbach, A M; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Gnesi, I; Gobbo, B; Goertz, S; Gorzellik, M; Grabmüller, S; Grasso, A; Grube, B; Grussenmeyer, T; Guskov, A; Guthörl, T; Haas, F; von Harrach, D; Hahne, D; Hashimoto, R; Heinsius, F H; Herrmann, F; Hinterberger, F; Höppner, Ch; Horikawa, N; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Jörg, P; Joosten, R; Kabuss, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Krämer, M; Kroumchtein, Z V; Kuchinski, N; Kuhn, R; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levillain, M; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Marchand, C; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Miyachi, Y; Moinester, M A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Novy, J; Nowak, W-D; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Peshekhonov, D; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Rocco, E; Rossiyskaya, N S; Ryabchikov, D I; Rychter, A; Samoylenko, V D; Sandacz, A; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schlüter, T; Schmidt, K; Schmieden, H; Schönning, K; Schopferer, S; Schott, M; Shevchenko, O Yu; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; ter Wolbeek, J; Tessaro, S; Tessarotto, F; Thibaud, F; Uhl, S; Uman, I; Virius, M; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zink, A
2015-02-13
The COMPASS collaboration at CERN has investigated pion Compton scattering, π(-)γ→π(-)γ, at center-of-mass energy below 3.5 pion masses. The process is embedded in the reaction π(-)Ni→π(-)γNi, which is initiated by 190 GeV pions impinging on a nickel target. The exchange of quasireal photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, Q(2)<0.0015 (GeV/c)(2). From a sample of 63,000 events, the pion electric polarizability is determined to be α(π)=(2.0±0.6(stat)±0.7(syst))×10(-4) fm(3) under the assumption α(π)=-β(π), which relates the electric and magnetic dipole polarizabilities. It is the most precise measurement of this fundamental low-energy parameter of strong interaction that has been addressed since long by various methods with conflicting outcomes. While this result is in tension with previous dedicated measurements, it is found in agreement with the expectation from chiral perturbation theory. An additional measurement replacing pions by muons, for which the cross-section behavior is unambiguously known, was performed for an independent estimate of the systematic uncertainty.
Model-independent effects of Δ excitation in nucleon polarizabilities
International Nuclear Information System (INIS)
Pascalutsa, Vladimir; Phillips, Daniel R.
2003-01-01
Model-independent effects of Δ(1232) excitation on nucleon polarizabilities are computed in a Lorentz-invariant fashion. We find a large effect of relative order (M Δ -M)/M in some of the spin polarizabilities, with the backward spin polarizability receiving the largest contribution. Similar subleading effects are found to be important in the fourth-order spin-independent polarizabilities α Eν , α E2 , β Mν , and β M2 . Combining our results with those for the model-independent effects of pion loops we obtain predictions for spin and fourth-order polarizabilities which compare favorably with the results of a recent dispersion-relation analysis of data
Molecular Polarizability of Sc and C (Fullerene and Graphite Clusters
Directory of Open Access Journals (Sweden)
Francisco Torrens
2001-05-01
Full Text Available A method (POLAR for the calculation of the molecular polarizability is presented. It uses the interacting induced dipoles polarization model. As an example, the method is applied to Scn and Cn (fullerene and one-shell graphite model clusters. On varying the number of atoms, the clusters show numbers indicative of particularly polarizable structures. The are compared with reference calculations (PAPID. In general, the Scn calculated (POLAR and Cn computed (POLAR and PAPID are less polarizable than what is inferred from the bulk. However, the Scn calculated (PAPID are more polarizable than what is inferred. Moreover, previous theoretical work yielded the same trend for Sin, Gen and GanAsm small clusters. The high polarizability of the Scn clusters (PAPID is attributed to arise from dangling bonds at the surface of the cluster.
International Nuclear Information System (INIS)
Endo, Tomohiro; Kitamura, Yasunori; Yamane, Yoshihiro
2003-01-01
We have studied a measurement of subcriticality by using the neutron correlation method. Furuhashi proposed an absolute measurement of subcriticality by using the third order neutron correlation factor X in addition to the second order neutron correlation factor Y. In actual experiments, the number of neutron counts data is not infinity so that we take the effect of the finite nature of the neutron counts data into account. We derived new formulas in consideration of the number of data and verified them. (author)
Beshtokov, M. Kh.
2017-12-01
Boundary value problems for loaded third-order pseudo-parabolic equations with variable coefficients are considered. A priori estimates for the solutions of the problems in the differential and difference formulations are obtained. These a priori estimates imply the uniqueness and stability of the solution with respect to the initial data and the right-hand side on a layer, as well as the convergence of the solution of each difference problem to the solution of the corresponding differential problem.
Beshtokov, M. Kh.
2016-10-01
A nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients is considered. For solving this problem, a priori estimates in the differential and difference forms are obtained. The a priori estimates imply the uniqueness and stability of the solution on a layer with respect to the initial data and the right-hand side and the convergence of the solution of the difference problem to the solution of the differential problem.
Directory of Open Access Journals (Sweden)
Wei Han
2008-01-01
Full Text Available Several existence theorems of twin positive solutions are established for a nonlinear m-point boundary value problem of third-order p-Laplacian dynamic equations on time scales by using a fixed point theorem. We present two theorems and four corollaries which generalize the results of related literature. As an application, an example to demonstrate our results is given. The obtained conditions are different from some known results.
Chen, Yong; Yan, Zhenya
2016-03-22
Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields.
International Nuclear Information System (INIS)
Xie, Wenfang
2014-01-01
The optical properties of a neutral donor in a ZnS/InP/ZnSe core/shell spherical quantum dot have been investigated using the variational method and the compact density-matrix approach. Two parametric potential is chosen as a confinement potential for the shell. Considering the band structure of the system it is assumed that electron is localized in InP shell. It is assumed that the impurity is located in the center of quantum dot core (ZnS). The photoionization cross section as well as the third-order nonlinear optical susceptibility of third harmonic generation has been calculated. The results show that the photoionization and the third-order nonlinear optical susceptibility of a donor in a core/shell spherical quantum dot are strongly affected by the shell thickness. We found that small applied shell thickness will lead to a significant blue shift of the peak positions in the optical spectrum. This kind of structure gives an opportunity to tune and control the photoionization and the third-order nonlinear optical susceptibility of third harmonic generation of a donor impurity by changing the shell thickness
Alcaráz, Mirta R; Bortolato, Santiago A; Goicoechea, Héctor C; Olivieri, Alejandro C
2015-03-01
Matrix augmentation is regularly employed in extended multivariate curve resolution-alternating least-squares (MCR-ALS), as applied to analytical calibration based on second- and third-order data. However, this highly useful concept has almost no correspondence in parallel factor analysis (PARAFAC) of third-order data. In the present work, we propose a strategy to process third-order chromatographic data with matrix fluorescence detection, based on an Augmented PARAFAC model. The latter involves decomposition of a three-way data array augmented along the elution time mode with data for the calibration samples and for each of the test samples. A set of excitation-emission fluorescence matrices, measured at different chromatographic elution times for drinking water samples, containing three fluoroquinolones and uncalibrated interferences, were evaluated using this approach. Augmented PARAFAC exploits the second-order advantage, even in the presence of significant changes in chromatographic profiles from run to run. The obtained relative errors of prediction were ca. 10 % for ofloxacin, ciprofloxacin, and danofloxacin, with a significant enhancement in analytical figures of merit in comparison with previous reports. The results are compared with those furnished by MCR-ALS.
A Third-Order p-Laplacian Boundary Value Problem Solved by an SL(3,ℝ Lie-Group Shooting Method
Directory of Open Access Journals (Sweden)
Chein-Shan Liu
2013-01-01
Full Text Available The boundary layer problem for power-law fluid can be recast to a third-order p-Laplacian boundary value problem (BVP. In this paper, we transform the third-order p-Laplacian into a new system which exhibits a Lie-symmetry SL(3,ℝ. Then, the closure property of the Lie-group is used to derive a linear transformation between the boundary values at two ends of a spatial interval. Hence, we can iteratively solve the missing left boundary conditions, which are determined by matching the right boundary conditions through a finer tuning of r∈[0,1]. The present SL(3,ℝ Lie-group shooting method is easily implemented and is efficient to tackle the multiple solutions of the third-order p-Laplacian. When the missing left boundary values can be determined accurately, we can apply the fourth-order Runge-Kutta (RK4 method to obtain a quite accurate numerical solution of the p-Laplacian.
Rovibrational dynamics of the RbCs molecule in static electric fields. Classical study
Energy Technology Data Exchange (ETDEWEB)
Arnaiz, Pedro F.; Iñarrea, Manuel [Área de Física, Universidad de la Rioja, E-26006 Logroño (Spain); Salas, J. Pablo, E-mail: josepablo.salas@unirioja.es [Área de Física, Universidad de la Rioja, E-26006 Logroño (Spain)
2012-04-02
We study the classical dynamics of the RbCs molecule in the presence of a static electric field. Under the Born–Oppenheimer approximation, we perform a rovibrational investigation which includes the interaction of the field with the molecular polarizability. The stability of the equilibrium points and the phase space structure of the system are explored in detail. We find that, for strong electric fields or for energies close to the dissociation threshold, the molecular polarizability causes relevant effects on the system dynamics. -- Highlights: ► We study the classical rovibrational dynamics of the alkali polar dimer RbCs. ► In the model we consider the interaction of the field with the molecular polarizability. ► The potential energy surface is studied depending on the electric field strength. ► Using surfaces of section we study the phase space structure. ► We find that the molecular polarizability causes relevant effects on the system dynamics.
Rovibrational dynamics of the RbCs molecule in static electric fields. Classical study
International Nuclear Information System (INIS)
Arnaiz, Pedro F.; Iñarrea, Manuel; Salas, J. Pablo
2012-01-01
We study the classical dynamics of the RbCs molecule in the presence of a static electric field. Under the Born–Oppenheimer approximation, we perform a rovibrational investigation which includes the interaction of the field with the molecular polarizability. The stability of the equilibrium points and the phase space structure of the system are explored in detail. We find that, for strong electric fields or for energies close to the dissociation threshold, the molecular polarizability causes relevant effects on the system dynamics. -- Highlights: ► We study the classical rovibrational dynamics of the alkali polar dimer RbCs. ► In the model we consider the interaction of the field with the molecular polarizability. ► The potential energy surface is studied depending on the electric field strength. ► Using surfaces of section we study the phase space structure. ► We find that the molecular polarizability causes relevant effects on the system dynamics.
Density and polarizability of liquid 4He
International Nuclear Information System (INIS)
Kempin'ski, V.; Zhuk, T.; Stankovski, Ya.; Sitarzh, S.
1988-01-01
The temperature changes in the density of liquid helium are measured in the temperature range of 1.63 to 4.2 K.; Unlike the conventional pycnometric technique, the changes in the hydrostatic displacement of the liquid were determined. The cirrectness of the method chosen and the appropriate equipment for its realization are substantiated. The results obtained are in good agreement with those of other authors. On the basis of temperature measurements of the dependence of density ρ and permittivity ε, the dependence of polarizability A of liquid 4 He on temperature and density was calculated. The results obtained show an alternating character of the dependences A(T) and A(ρ). These dependences are found to correlate
Accelerating GW calculations with optimal polarizability basis
Energy Technology Data Exchange (ETDEWEB)
Umari, P.; Stenuit, G. [CNR-IOM DEMOCRITOS Theory Elettra Group, Basovizza (Trieste) (Italy); Qian, X.; Marzari, N. [Department of Materials Science and Engineering, MIT, Cambridge, MA (United States); Giacomazzi, L.; Baroni, S. [CNR-IOM DEMOCRITOS Theory Elettra Group, Basovizza (Trieste) (Italy); SISSA - Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy)
2011-03-15
We present a method for accelerating GW quasi-particle (QP) calculations. This is achieved through the introduction of optimal basis sets for representing polarizability matrices. First the real-space products of Wannier like orbitals are constructed and then optimal basis sets are obtained through singular value decomposition. Our method is validated by calculating the vertical ionization energies of the benzene molecule and the band structure of crystalline silicon. Its potentialities are illustrated by calculating the QP spectrum of a model structure of vitreous silica. Finally, we apply our method for studying the electronic structure properties of a model of quasi-stoichiometric amorphous silicon nitride and of its point defects. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Electronic Energy Transfer in Polarizable Heterogeneous Environments
DEFF Research Database (Denmark)
Svendsen, Casper Steinmann; Kongsted, Jacob
2015-01-01
such couplings provide important insight into the strength of interaction between photo-active pigments in protein-pigment complexes. Recently, attention has been payed to how the environment modifies or even controls the electronic couplings. To enable such theoretical predictions, a fully polarizable embedding......-order multipole moments. We use this extended model to systematically examine three different ways of obtaining EET couplings in a heterogeneous medium ranging from use of the exact transition density to a point-dipole approximation. Several interesting observations are made including that explicit use...... of transition densities in the calculation of the electronic couplings - also when including the explicit environment contribution - can be replaced by a much simpler transition point charge description without comprising the quality of the model predictions....
Dielectric constant of atomic fluids with variable polarizability.
Alder, B J; Beers, J C; Strauss, H L; Weis, J J
1980-06-01
The Clausius-Mossotti function for the dielectric constant is expanded in terms of single atom and pair polarizabilities, leading to contributions that depend on both the trace and the anisotropy of the pair-polarizability tensor. The short-range contribution of the anisotropic part to the pair polarizabilities has previously been obtained empirically from light scattering experiments, whereas the trace contribution is now empirically determined by comparison to dielectric experiments. For helium, the short-range trace part agrees well with electronic structure calculations, whereas for argon qualitative agreement is achieved.
Oishi, Masaki; Shinozaki, Tomohisa; Hara, Hikaru; Yamamoto, Kazunuki; Matsusue, Toshio; Bando, Hiroyuki
2018-05-01
The elliptical polarization dependence of the two-photon absorption coefficient β in InP has been measured by the extended Z-scan technique for thick materials in the wavelength range from 1640 to 1800 nm. The analytical formula of the Z-scan technique has been extended with consideration of multiple reflections. The Z-scan results have been fitted very well by the formula and β has been evaluated accurately. The three independent elements of the third-order nonlinear susceptibility tensor in InP have also been determined accurately from the elliptical polarization dependence of β.
International Nuclear Information System (INIS)
Bahedi, K.; Addou, M.; El Jouad, M.; Sofiani, Z.; Alaoui Lamrani, M.; El Habbani, T.; Fellahi, N.; Bayoud, S.; Dghoughi, L.; Sahraoui, B.; Essaidi, Z.
2009-01-01
Zinc oxide (ZnO) and zirconium doped zinc oxide (ZnO:Zr) thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 500 deg. C using zinc and zirconium chlorides as precursors. Effects of zirconium doping agent and surface roughness on the nonlinear optical properties were investigated in detail using atomic force microscopy (AFM) and third harmonic generation (THG) technique. The best value of nonlinear optical susceptibility χ (3) was obtained from the doped films with less roughness. A strong third order nonlinear optical susceptibility χ (3) = 20.12 x 10 -12 (esu) of the studied films was found for the 3% doped sample.
DEFF Research Database (Denmark)
Zhang, Chunjiang; Zhao, Xiaojun; Wang, Xiaohuan
2018-01-01
in the grid voltages, the general SOGI’s performance suffers from its generated dc effect in the lagging sine signal at the output. Therefore, in this paper, a mixed second- and third-order generalized integrator (MSTOGI) is proposed to eliminate this effect caused by the dc offset of grid voltages......The second order generalized integrator (SOGI) has been widely used to implement grid synchronization for grid-connected inverters, and from grid voltages it is able to extract the fundamental components with an output of two orthogonal sinusoidal signals. However, if there is a dc offset existing...
Ryuichi, TAKAHASHI; Department of Physics and Astrophysics, Nagoya University
2008-01-01
We investigate the third-order density perturbation and the one-loop correction to the linear power spectrum in the dark-energy cosmological model. Our main interest is to understand the dark-energy effect on baryon acoustic oscillations in a quasi-nonlinear regime (k≈0.1h/Mpc). Analytical solutions and simple fitting formulae are presented for the dark-energy model with the general time-varying equation of state w(a). It turns out that the power spectrum coincides with the approximate res...
The polarizability of diatomic helium. Ph.D. Thesis
Fortune, P. J.
1974-01-01
The calculation of the electric dipole polarizability tensor of the He 2 dimer is described, and the results are used in the computation of several dielectric and optical properties of helium gas, at both high (322 K) and low (4 K) temperatures. The properties considered are the second dielectric virial coefficient, the second Kerr virial coefficient, and the depolarization ratio of the integrated intensities for the Raman scattering experiments. The thesis consists of five parts: the polarizability and various properties are defined; the calculation of the polarizability in the long-range region in terms of a quantum mechanical multipole expansion is described; the calculation of the He2 polarizability in the overlap region via coupled Hartree-Fock perturbation theory is described; the calculation of the quantum pair distribution function for both the He-3 and He-4 isotopes at 4 K is discussed; and the calculated values of the properties of helium gas are given.
Contributions of polarizabilities to four basis polarizations of electromagnetic media
International Nuclear Information System (INIS)
Bukina, E.N.; Dubovik, V.M.
1999-01-01
All contributions to four basis polarizations of an arbitrary electromagnetic medium at the expense of mixed polarizabilities up to fourth rank tensors are presented. Some concrete examples are considered
Dynamic polarizabilities for the low lying states of Ca+
International Nuclear Information System (INIS)
Tang, Yong-Bo; Shi, Ting-Yun; Qiao, Hao-Xue; Mitroy, J
2014-01-01
The dynamic polarizabilities of the 4s, 3d and 4p states of Ca + are calculated using a relativistic structure model. The wavelengths at which the Stark shifts between different pairs of transitions are zero are calculated. Experimental determination of the magic wavelengths could prove useful in developing better atomic structure models and in particular lead to improved values of the polarizabilities for the Ca + (3d) states
Black-Body Radiation Correction to the Polarizability of Helium
Puchalski, M.; Jentschura, U. D.; Mohr, P. J.
2011-01-01
The correction to the polarizability of helium due to black-body radiation is calculated near room temperature. A precise theoretical determination of the black-body radiation correction to the polarizability of helium is essential for dielectric gas thermometry and for the determination of the Boltzmann constant. We find that the correction, for not too high temperature, is roughly proportional to a modified hyperpolarizability (two-color hyperpolarizability), which is different from the ord...
Effect of core polarizability on photoionization cross-section calculations.
Kirkpatrick, R. C.
1972-01-01
Demonstration of the importance of core polarizability in a case where cancellation is only moderate, with suggestion of an improvement to the scaled Thomas-Fermi (STF) wave functions of Stewart and Rotenberg (1965). The inclusion of dipole polarizability of the core for argon is shown to substantially improve the agreement between the theoretical and experimental photoionization cross sections for the ground-state configuration.
Electric dipole polarizability: from few- to many-body systems
Directory of Open Access Journals (Sweden)
Miorelli Mirko
2016-01-01
Full Text Available We review the Lorentz integral transform coupled-cluster method for the calculation of the electric dipole polarizability. We benchmark our results with exact hyperspherical harmonics calculations for 4He and then we move to a heavier nucleus studying 16O. We observe that the implemented chiral nucleon-nucleon interaction at next-to-next-to-next-to-leading order underestimates the electric dipole polarizability.
Maidur, Shivaraj R.; Patil, Parutagouda Shankaragouda; Rao, S. Venugopal
2018-04-01
In this paper, we present the third-order nonlinear optical (NLO) studies of 1,3-bis(3,4-dimethoxyphenyl)prop-2-en-1-one (abbreviated as VDMC). The chalcone was synthesized by Claisen-Schmidt condensation method. The third-order nonlinear optical properties were evaluated using standard, well-known Z-scan technique under femtosecond laser regime (150 fs, 900 nm) with two different laser repetition rates 500 Hz and 80 MHz. Open aperture studies showed that the molecule possess two photon absorption with the coefficients in the order 10-9 cmW-1. The closed aperture studies have resulted the negative nonlinear refraction with the coefficients in the order 10-14 cm2W-1. The two-photon absorption cross sections were estimated. Optical limiting properties have been studied and the limiting threshold values were found to be in the range 0.86-2.3 mJ/cm2, which suggests that VDMC has better applications in the field of nonlinear optics.
Patro, L N; Burghaus, O; Roling, B
2017-04-21
We have measured the third-order permittivity spectra ε 3 3 of a monocationic and of a dicationic liquid close to the glass transition temperature by applying ac electric fields with large amplitudes up to 180 kV/cm. A peak ("hump") in the modulus of ε 3 3 is observed for a mono-cationic liquid after subtraction of the dc contribution from the imaginary part of ε 3 3 . We show that the origin of this experimental "hump" is a peak in the imaginary part of ε 3 3 , with the peak height strongly increasing with decreasing temperature. Overall, the spectral shape of the third-order permittivity of both ionic liquids is similar to the predictions of a symmetric double well potential model, although this model does not predict a "hump" in the modulus. In contrast, an asymmetric double well potential model predicts a "hump," but the spectral shape of both the real and imaginary part of ε 3 3 deviates significantly from the experimental spectra. These results show that not only the modulus of ε 3 3 but also its phase is an important quantity when comparing experimental results with theoretical predictions.
Zhang, Feng; Han, Xiangyun
2014-09-01
We report an investigation on the optical third-order nonlinear property of the nonpolar A-plane GaN film. The film sample with a thickness of ~2 μm was grown on an r-plane sapphire substrate by metal-organic chemical vapor deposition system. By performing the Z-scan method combined with a mode-locked femtosecond Ti:sapphire laser (800 nm, 50 fs), the optical nonlinearity of the nonpolar A-plane GaN film was measured with the electric vector E of the laser beam being polarized parallel (//) and perpendicular (⊥) to the c axis of the film. The results show that both the third-order nonlinear absorption coefficient β and the nonlinear refractive index n2 of the sample film possess negative and large values, i.e. β// = -135 ± 29 cm/GW, n2// = -(4.0 ± 0.3) × 10-3 cm2/GW and β⊥ = -234 ± 29 cm/GW, n2⊥ = -(4.9 ± 0.4) × 10-3 cm2/GW, which are much larger than those of conventional C-plane GaN film, GaN bulk, and even the other oxide semiconductors.
International Nuclear Information System (INIS)
Carrillo-Delgado, C; Torres-Torres, C; García-Merino, J A; García-Gil, C I; Khomenko, A V; Trejo-Valdez, M; Martínez-Gutiérrez, H; Torres-Martínez, R
2016-01-01
Measurements of the third-order nonlinear optical properties exhibited by a ZnO thin solid film deposited on a SnO 2 substrate are presented. The samples were prepared by a spray pyrolysis processing route. Scanning electron microscopy analysis and UV–Vis spectroscopy studies were carried out. The picosecond response at 1064 nm was explored by the z-scan technique. A large optical Kerr effect with two-photon absorption was obtained. The inhibition of the nonlinear optical absorption together with a noticeable enhancement in the optical Kerr effect in the sample was achieved by the incorporation of Au nanoparticles into the ZnO film. Additionally, a two-wave mixing configuration at 532 nm was performed and an optical Kerr effect was identified as the main cause of the nanosecond third-order optical nonlinearity. The relaxation time of the photothermal response of the sample was estimated to be about 1 s when the sample was excited by nanosecond single-shots. The rotation of the sample during the nanosecond two-wave mixing experiments was analyzed. It was stated that a non-monotonic relation between rotating frequency and pulse repetition rate governs the thermal contribution to the nonlinear refractive index exhibited by a rotating film. Potential applications for switching photothermal interactions in rotating samples can be contemplated. A rotary logic system dependent on Kerr transmittance in a two-wave mixing experiment was proposed. (paper)
Lupinetti, Concetta; Thakkar, Ajit J
2005-01-22
Accurate static dipole polarizabilities and hyperpolarizabilities are calculated for the ground states of the Al, Si, P, S, Cl, and Ar atoms. The finite-field computations use energies obtained with various ab initio methods including Moller-Plesset perturbation theory and the coupled cluster approach. Excellent agreement with experiment is found for argon. The experimental alpha for Al is likely to be in error. Only limited comparisons are possible for the other atoms because hyperpolarizabilities have not been reported previously for most of these atoms. Our recommended values of the mean dipole polarizability (in the order Al-Ar) are alpha/e(2)a(0) (2)E(h) (-1)=57.74, 37.17, 24.93, 19.37, 14.57, and 11.085 with an error estimate of +/-0.5%. The recommended values of the mean second dipole hyperpolarizability (in the order Al-Ar) are gamma/e(4)a(0) (4)E(h) (-3)=2.02 x 10(5), 4.31 x 10(4), 1.14 x 10(4), 6.51 x 10(3), 2.73 x 10(3), and 1.18 x 10(3) with an error estimate of +/-2%. Our recommended polarizability anisotropy values are Deltaalpha/e(2)a(0) (2)E(h) (-1)=-25.60, 8.41, -3.63, and 1.71 for Al, Si, S, and Cl respectively, with an error estimate of +/-1%. The recommended hyperpolarizability anisotropies are Deltagamma/e(4)a(0) (4)E(h) (-3)=-3.88 x 10(5), 4.16 x 10(4), -7.00 x 10(3), and 1.65 x 10(3) for Al, Si, S, and Cl, respectively, with an error estimate of +/-4%. (c) 2005 American Institute of Physics.
Nucleon polarizabilities from deuteron Compton scattering within a Green's function hybrid approach
Energy Technology Data Exchange (ETDEWEB)
Hildebrandt, R.P.; Hemmert, T.R. [Technische Universitaet Muenchen, Institut fuer Theoretische Physik (T39), Physik-Department, Garching (Germany); Griesshammer, H.W. [Technische Universitaet Muenchen, Institut fuer Theoretische Physik (T39), Physik-Department, Garching (Germany); Universitaet Erlangen-Nuernberg, Institut fuer Theoretische Physik III, Naturwissenschaftliche Fakultaet I, Erlangen (Germany); The George Washington University, Center for Nuclear Studies, Department of Physics, Washington DC (United States)
2010-10-15
We examine elastic Compton scattering from the deuteron for photon energies ranging from zero to 100MeV, using state-of-the-art deuteron wave functions and NN potentials. Nucleon-nucleon rescattering between emission and absorption of the two photons is treated by Green's functions in order to ensure gauge invariance and the correct Thomson limit. With this Green's function hybrid approach, we fulfill the low-energy theorem of deuteron Compton scattering and there is no significant dependence on the deuteron wave function used. Concerning the nucleon structure, we use the chiral effective field theory with explicit {delta} (1232) degrees of freedom within the small-scale expansion up to leading-one-loop order. Agreement with available data is good at all energies. Our 2-parameter fit to all elastic {gamma} d data leads to values for the static isoscalar dipole polarizabilities which are in excellent agreement with the isoscalar Baldin sum rule. Taking this value as additional input, we find {alpha}{sub E}{sup s} = (11.3{+-}0.7(stat){+-}0.6(Baldin){+-}1(theory)){sup .}10{sup -4} fm{sup 3} and {beta}{sub M}{sup s} = (3.2{+-}0.7(stat){+-}0.6(Baldin){+-}1(theory)){sup .}10{sup -4} fm{sup 3} and conclude by comparison to the proton numbers that neutron and proton polarizabilities are the same within rather small errors. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lefrancois, Daniel; Dreuw, Andreas, E-mail: dreuw@uni-heidelberg.de [Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg (Germany); Rehn, Dirk R. [Departments of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)
2016-08-28
For the calculation of adiabatic singlet-triplet gaps (STG) in diradicaloid systems the spin-flip (SF) variant of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator in third order perturbation theory (SF-ADC(3)) has been applied. Due to the methodology of the SF approach the singlet and triplet states are treated on an equal footing since they are part of the same determinant subspace. This leads to a systematically more accurate description of, e.g., diradicaloid systems than with the corresponding non-SF single-reference methods. Furthermore, using analytical excited state gradients at ADC(3) level, geometry optimizations of the singlet and triplet states were performed leading to a fully consistent description of the systems, leading to only small errors in the calculated STGs ranging between 0.6 and 2.4 kcal/mol with respect to experimental references.
Pramodini, S.; Sudhakar, Y. N.; SelvaKumar, M.; Poornesh, P.
2014-04-01
We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He-Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm W-1, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications.
Wu, Shaohua; Wu, Xiaozhi; Wang, Rui; Liu, Qing; Gan, Liyong
2014-01-01
Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Bahedi, K., E-mail: bahedikhadija@yahoo.com [Laboratoire Optoelectronique et Physico-chimie des Materiaux Universite Ibn Tofail, Faculte des Sciences BP 133 Kenitra 14000, Maroc (Morocco); Addou, M.; El Jouad, M.; Sofiani, Z.; Alaoui Lamrani, M.; El Habbani, T.; Fellahi, N.; Bayoud, S.; Dghoughi, L. [Laboratoire Optoelectronique et Physico-chimie des Materiaux Universite Ibn Tofail, Faculte des Sciences BP 133 Kenitra 14000, Maroc (Morocco); Sahraoui, B.; Essaidi, Z. [Laboratoire POMA, UMR CNRS 6136, Universite d' Angers 2, Bd Lavoisier, 49045 France (France)
2009-02-01
Zinc oxide (ZnO) and zirconium doped zinc oxide (ZnO:Zr) thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 500 deg. C using zinc and zirconium chlorides as precursors. Effects of zirconium doping agent and surface roughness on the nonlinear optical properties were investigated in detail using atomic force microscopy (AFM) and third harmonic generation (THG) technique. The best value of nonlinear optical susceptibility {chi}{sup (3)} was obtained from the doped films with less roughness. A strong third order nonlinear optical susceptibility {chi}{sup (3)} = 20.12 x 10{sup -12} (esu) of the studied films was found for the 3% doped sample.
Kong, Ming; Liu, Yanqiu; Wang, Hui; Luo, Junshan; Li, Dandan; Zhang, Shengyi; Li, Shengli; Wu, Jieying; Tian, Yupeng
2015-01-01
Four novel Zn(II) terpyridine complexes (ZnLCl2, ZnLBr2, ZnLI2, ZnL(SCN)2) based on carbazole derivative group were designed, synthesized and fully characterized. Their photophysical properties including absorption and one-photon excited fluorescence, two-photon absorption (TPA) and optical power limiting (OPL) were further investigated systematically and interpreted on the basis of theoretical calculations (TD-DFT). The influences of different solvents on the absorption and One-Photon Excited Fluorescence (OPEF) spectral behavior, quantum yields and the lifetime of the chromophores have been investigated in detail. The third-order nonlinear optical (NLO) properties were investigated by open/closed aperture Z-scan measurements using femtosecond pulse laser in the range from 680 to 1080 nm. These results revealed that ZnLCl2 and ZnLBr2 exhibited strong two-photon absorption and ZnLCl2 showed superior optical power limiting property.
Devi, S. Reena; Kalaiyarasi, S.; Zahid, I. MD.; Kumar, R. Mohan
2016-11-01
An ionic organic optical crystal of 4-methylpyridinium p-nitrophenolate was grown from methanol by slow evaporation method at ambient temperature. Powder and single crystal X-ray diffraction studies revealed the crystal system and its crystalline perfection. The rocking curve recorded from HRXRD study confirmed the crystal quality. FTIR spectral analysis confirmed the functional groups present in the title compound. UV-visible spectral study revealed the optical window and band gap of grown crystal. The thermal, electrical and surface laser damage threshold properties of harvested crystal were examined by using TGA/DTA, LCR/Impedance Analyzer and Nd:YAG laser system respectively. The third order nonlinear optical property of grown crystal was elucidated by Z-scan technique.
A 1-V 60-μW 85-dB dynamic range continuous-time third-order sigma-delta modulator
International Nuclear Information System (INIS)
Li Yuanwen; Qi Da; Dong Yifeng; Xu Jun; Ren Junyan
2009-01-01
A 1-V third order one-bit continuous-time (CT) EA modulator is presented. Designed in the SMIC mixed-signal 0.13-μm CMOS process, the modulator utilizes active RC integrators to implement the loop filter. An efficient circuit design methodology for the CT ΣΔ modulator is proposed and verified. Low power dissipation is achieved through the use of two-stage class A/AB amplifiers. The presented modulator achieves 81.4-dB SNDR and 85-dB dynamic range in a 20-kHz bandwidth with an over sampling ratio of 128. The total power consumption of the modulator is only 60 μW from a 1-V power supply and the prototype occupies an active area of 0.12 mm 2 . (semiconductor integrated circuits)
Wu, Shaohua
2014-12-01
Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.
Bharathi, M. Divya; Bhuvaneswari, R.; Srividya, J.; Vinitha, G.; Prithiviraajan, R. N.; Anbalagan, G.
2018-02-01
Single crystals of 8-hydroxyquinolinium 2-carboxy-6-nitrophthalate monohydrate (8HQNP) were obtained from slow evaporation solution growth method using methanol-water (1:1) as a solvent. Powder X-ray diffraction was utilized to compute the unit cell parameters and dislocation density of 8HQNP crystal. The crystalline perfection of the as-grown crystal was investigated by high-resolution X-ray diffraction at room temperature. The molecular structure was analyzed by identifying the functional groups from FT-IR and FT-Raman spectra. The cut-off wavelength and the corresponding optical band gap obtained from an optical spectrum were 376 nm and 3.29 eV respectively. The dispersion nature of refractive index was investigated by the single-oscillator Wemple and Di-Domenico model. Red emission was observed in the photoluminescence spectrum when excited with 376 nm. The low birefringence and high laser damage threshold (8.538 GW/cm2) values dictate the suitability of the crystal for optical devices. Z-scan studies revealed the third order nonlinear absorption coefficient (β) and refractive index (n2) of the 8HQNP crystal. The theoretical value of third order nonlinear susceptibility obtained from density function theory is good accordance with the experimental value. The frontier molecular orbital energy gap decreases with increasing external electric field in different directions which attributed to the enhancement of the second hyperpolarizability. The grown title crystal is thermally stable up to 102 °C which was identified using thermal analysis. Mechanical strength of 8HQNP was estimated by using Vicker's microhardness studies.
Energy Technology Data Exchange (ETDEWEB)
Shkir, Mohd, E-mail: shkirphysics@gmail.com [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University, Abha (Saudi Arabia); Yahia, I.S., E-mail: dr_isyahia@yahoo.com [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University, Abha (Saudi Arabia); Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Al-Qahtani, A.M.A. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University, Abha (Saudi Arabia)
2016-12-01
In the current work, good quality bulk size (∼32 mm × 23 mm × 10 mm) single crystals of HCl added L-alanine with well-defined morphology are successfully grown using slow evaporation technique. Crystal structure and other structural parameters were evaluated from X-ray diffraction data. Vibrational assessment of the grown crystal was done by FT-Raman analysis. The presence of chlorine and good quality of the grown crystal was confirmed by SEM/EDX analysis. Solid state UV–Vis–NIR diffused reflectance was measured and direct and indirect optical band gap was calculated using Kubelka-Munk relation and found to be 5.64 and 5 eV respectively. Dielectric measurement was carried out in high frequency range. Third order nonlinear optical susceptibility value was found to be enhanced from 1.91 × 10{sup −6} (pure) to 8.6 × 10{sup −6} esu (LAHCl). Good thermal stability of grown crystals was confirmed from DSC analysis. The enhancement in mechanical strength and crystalline perfection was also observed. - Highlights: • Bulk size (32 mm × 23 mm × 10 mm), good crystalline perfection HCl added L-alanine monocrystal is grown. • The shift in X-ray diffraction and vibrational peaks confirms the interaction of HCl. • The high optical transparency and band gap confirms its application in optoelectronic devices. • Third order NLO properties are found to be enhanced in HCl added L-alanine crystals. • The mechanical strength of the grown crystals is found to be enhanced due HCl addition.
DEFF Research Database (Denmark)
Hedegård, Erik D.; Olsen, Jógvan Magnus Haugaard; Knecht, Stefan
2015-01-01
. To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality......We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE......-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory...
Static and radiating solutions of Lovelock gravity in the presence of a perfect fluid
International Nuclear Information System (INIS)
Dehghani, M.H.; Farhangkhah, N.
2009-01-01
We present a general solution of third order Lovelock gravity in the presence of a specific type II perfect fluid. This solution for linear equation of state, p=w(ρ-4B) contains all the known solutions of third order Lovelock gravity in the literature and some new static and radiating solutions for different values of w and B. Specially, we consider the properties of static and radiating solutions for w=0 and w=(n-2) -1 with B=0 and B≠0. These solutions are asymptotically flat for B=0, while they are asymptotically (anti-)de Sitter for B≠0. The new static solutions for these choices of B and w present black holes with one or two horizons, extreme black holes or naked singularities provided the parameters of the solutions are chosen suitable. The static solution with w=0 and vanishing geometrical mass (m=0) may present a black hole with two inner and outer horizons. This is a peculiar feature of the third order Lovelock gravity, which does not occur in lower order Lovelock gravity. We also, investigate the properties of radiating solutions for these values of B and w, and compare the singularity strengths of them with the known radiating solutions of third order Lovelock gravity.
Polarizability tensor invariants of H2, HD, and D2
Raj, Ankit; Hamaguchi, Hiro-o.; Witek, Henryk A.
2018-03-01
We report an exhaustive compilation of wavelength-dependent matrix elements over the mean polarizability (α ¯ ) and polarizability anisotropy (γ) operators for the rovibrational states of the H2, HD, and D2 molecules together with an accompanying computer program for their evaluation. The matrix elements can be readily evaluated using the provided codes for rovibrational states with J = 0-15 and v = 0-4 and for any laser wavelengths in the interval 182.25-1320.6 nm corresponding to popular, commercially available lasers. The presented results substantially extend the scope of the data available in the literature, both in respect of the rovibrational transitions analyzed and the range of covered laser frequencies. The presented detailed tabulation of accurate polarizability tensor invariants is essential for successful realization of our main long-term goal: developing a universal standard for determining absolute Raman cross sections and absolute Raman intensities in experimental Rayleigh and Raman scattering studies of molecules.
The possibility for a pion polarizability measurement at COMPASS
Guskov, A
2010-01-01
The pion electromagnetic structure can be probed in $\\pi^{−}+(A,Z)\\rightarrow\\pi^{-}+(A,Z) + \\gamma$ Compton scattering in inverse kinematics (Primakoff reaction) and described by the electric $(\\alpha_{\\pi})$ and the magnetic $(\\beta_{\\pi})$ polarizabilities that depend on the rigidity of pion’s internal structure as a composite particle. Values for pion polarizabilities can be extracted from the comparison of the differential cross section for scattering of point-like pions with the measured cross section. The opportunity to measure pion polarizability via the Primakoff reaction at the COMPASS experiment was studied with a $\\pi^{−}$ beam of 190 GeV. The obtained results are used for preparation of the new measurement.
Polarizability of Fluid Droplets and the Kerr Effect on Microemulsions
Lisy, V
2001-01-01
Spheroidal fluid droplets immersed in another fluid and thermally fluctuating in the shape are considered. The polarizability of the droplet is evaluated up to the second order in the fluctuation amplitudes. The correlation functions of the polarizability tensor components are found and used to describe the polarized and depolarized scattering of light, and the Kerr effect on microemulsions. By comparison of the theoretical results with the Kerr constant measurements from the literature, we estimate the bending rigidity of the surfactant monolayer that separates the oil and water phases in droplet microemulsions.
Open-ended response theory with polarizable embedding
DEFF Research Database (Denmark)
Steindal, Arnfinn Hykkerud; Beerepoot, Maarten T P; Ringholm, Magnus
2016-01-01
We present the theory and implementation of an open-ended framework for electric response properties at the level of Hartree-Fock and Kohn-Sham density functional theory that includes effects from the molecular environment modeled by the polarizable embedding (PE) model. With this new state......-of-the-art multiscale functionality, electric response properties to any order can be calculated for molecules embedded in polarizable atomistic molecular environments ranging from solvents to complex heterogeneous macromolecules such as proteins. In addition, environmental effects on multiphoton absorption (MPA...
Compton scattering, meson exchange, and the polarizabilities of bound nucleons
International Nuclear Information System (INIS)
Feldman, G.; Mellendorf, K.E.; Eisenstein, R.A.; Federspiel, F.J.; Garino, G.; Igarashi, R.; Kolb, N.R.; Lucas, M.A.; MacGibbon, B.E.; Mize, W.K.; Nathan, A.M.; Pywell, R.E.; Wells, D.P.
1996-01-01
Elastic photon scattering cross sections on 16 O have been measured in the energy range 27 endash 108 MeV. These data are inconsistent with a conventional interpretation in which the electric and magnetic polarizabilities of the bound nucleon are unchanged from the free values and the meson-exchange seagull amplitude is taken in the zero-energy limit. Agreement with the data can be achieved by invoking either strongly modified polarizabilities or a substantial energy dependence to the meson-exchange seagull amplitude. It is argued that these seemingly different explanations are experimentally indistinguishable and probably physically equivalent. copyright 1996 The American Physical Society
Blackbody-radiation correction to the polarizability of helium
International Nuclear Information System (INIS)
Puchalski, M.; Jentschura, U. D.; Mohr, P. J.
2011-01-01
The correction to the polarizability of helium due to blackbody radiation is calculated near room temperature. A precise theoretical determination of the blackbody radiation correction to the polarizability of helium is essential for dielectric gas thermometry and for the determination of the Boltzmann constant. We find that the correction, for not too high temperature, is roughly proportional to a modified hyperpolarizability (two-color hyperpolarizability), which is different from the ordinary hyperpolarizability of helium. Our explicit calculations provide a definite numerical result for the effect and indicate that the effect of blackbody radiation can be excluded as a limiting factor for dielectric gas thermometry using helium or argon.
Energy Technology Data Exchange (ETDEWEB)
Trejo-Valdez, Martin, E-mail: martin.trejo@laposte.net [ESIQIE, Instituto Politécnico Nacional, México, D.F. 07738, México (Mexico); Sobral, Hugo [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Apartado Postal 70-186, México, D.F. 04510, México (Mexico); Martínez-Gutiérrez, Hugo [Centro de Nanociencias y Micro y Nanotecnologías del Instituto Politécnico Nacional, México, D.F. 07738, México (Mexico); Torres-Torres, Carlos [Sección de Estudios de Posgrado e Investigación, ESIME ZAC, Instituto Politécnico Nacional, México, D.F. 07738, México (Mexico)
2016-04-30
Zinc oxide films doped with platinum and gold nanoparticles were deposited by the spray pyrolysis technique on glass substrates. A titanium dioxide sol–gel solution containing gold and platinum aqueous ions was employed for synthesizing the nanoparticles by ultraviolet-light irradiation. The conductive properties of the samples were characterized by the electrochemical impedance spectroscopy technique. Our results showed that the impedance of zinc oxide films doped with metallic nanoparticles was, by far, lower than typical measurements in zinc oxide films. A strong enhancement in the nanosecond nonlinear optical response was also obtained in the studied metallic doped films. A vectorial two-mixing experiment performed at 532 nm and 4 ns allowed us to evaluate the sample with a third order optical nonlinearity described by approximately | χ{sub 1111}{sup (3)}| = 2.6 × 10{sup −8} esu. - Highlights: • ZnO films doped with Pt and Au nanoparticles were synthetized. • The inclusion of metallic nanoparticles in the film improves optical nonlinearities. • Conductivity of the films was enhanced by the contribution of the nanoparticles.
Li, Kang; Tang, Guodong; Kou, ShanShan; Culnane, Lance F; Zhang, Yu; Song, Yinglin; Li, Rongqing; Wei, Changmei
2015-03-15
Three complexes of M(DPIP)2 (M=Cu, Co, Zn as 1, 2, 3) were synthesized and characterized by elemental analysis, IR, UV-Vis, thermogravimetry, and X-ray diffraction. Their nonlinear optical properties were measured by the Z-scan technique and yielded a normalized transmittance of about 70% for complex 1 (45 μJ pulse), and 93% for complex 3 (68 μJ pulse at the focus point). The nonlinear absorption coefficient, β, is 1.4×10(-11) m/W for 1 and 5.6×10(-13) m/W for 3, and the third-order nonlinear refraction index, n2, is 1.0×10(-18) m(2)/W for 3. Complex 1 shows self-defocusing property, while complex 3 exhibits self-focusing property. The thermogravimetric results show that the frame structure of compounds 1-3 begin to collapse at 400, 250 and 280°C, respectively, which suggests that they elicit excellent thermal stability. This research aims to provide better understanding of these compounds, and offer preliminary explanations for the significant differences between compounds 1-3, in order to potentially help in the designing of future novel materials with NLO properties. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Kang; Tang, Guodong; Kou, ShanShan; Culnane, Lance F.; Zhang, Yu; Song, Yinglin; Li, Rongqing; Wei, Changmei
2015-03-01
Three complexes of M(DPIP)2 (M = Cu, Co, Zn as 1, 2, 3) were synthesized and characterized by elemental analysis, IR, UV-Vis, thermogravimetry, and X-ray diffraction. Their nonlinear optical properties were measured by the Z-scan technique and yielded a normalized transmittance of about 70% for complex 1 (45 μJ pulse), and 93% for complex 3 (68 μJ pulse at the focus point). The nonlinear absorption coefficient, β, is 1.4 × 10-11 m/W for 1 and 5.6 × 10-13 m/W for 3, and the third-order nonlinear refraction index, n2, is 1.0 × 10-18 m2/W for 3. Complex 1 shows self-defocusing property, while complex 3 exhibits self-focusing property. The thermogravimetric results show that the frame structure of compounds 1-3 begin to collapse at 400, 250 and 280 °C, respectively, which suggests that they elicit excellent thermal stability. This research aims to provide better understanding of these compounds, and offer preliminary explanations for the significant differences between compounds 1-3, in order to potentially help in the designing of future novel materials with NLO properties.
International Nuclear Information System (INIS)
Pramodini, S; Poornesh, P; Sudhakar, Y N; SelvaKumar, M
2014-01-01
We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He–Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of β eff , n 2 and χ (3) were found to be of the order of 10 −2 cm W −1 , 10 -5 esu and 10 −7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications. (paper)
基于三次B样条函数的SEM图像处理%SEM Image Processing Based on Third- order B- spline Function
Institute of Scientific and Technical Information of China (English)
张健
2011-01-01
SEM images, for its unique practical testing significance, need in denoising also highlight its edges and accurate edge extraction positioning, So this paper adopts a partial differential method which can maintain the edges of the denoising and a extensive application of multi - scale wavelet analysis to detect edges, all based on third - order B - spline function as the core operator, for line width test of SEM image processing, This algorithm obtained the better denoising effect and maintained edge features for SEM images.%SEM图像由于其独特的实际测试意义,需要在去噪的同时突出边缘和准确的边缘提取定位,所以提出采用能够保持边缘的偏微分方法去噪和广泛应用的多尺度小波提取边缘,基于三次B样条函数作为核心算子,对用于线宽测试的SEM图像进行处理,获得了较好的去噪并保持边缘的效果以及清晰的图像边缘检测效果.
Izsák, Róbert; Neese, Frank
2013-07-01
The 'chain of spheres' approximation, developed earlier for the efficient evaluation of the self-consistent field exchange term, is introduced here into the evaluation of the external exchange term of higher order correlation methods. Its performance is studied in the specific case of the spin-component-scaled third-order Møller--Plesset perturbation (SCS-MP3) theory. The results indicate that the approximation performs excellently in terms of both computer time and achievable accuracy. Significant speedups over a conventional method are obtained for larger systems and basis sets. Owing to this development, SCS-MP3 calculations on molecules of the size of penicillin (42 atoms) with a polarised triple-zeta basis set can be performed in ∼3 hours using 16 cores of an Intel Xeon E7-8837 processor with a 2.67 GHz clock speed, which represents a speedup by a factor of 8-9 compared to the previously most efficient algorithm. Thus, the increased accuracy offered by SCS-MP3 can now be explored for at least medium-sized molecules.
Gnaneswara Reddy, M.
2017-09-01
This communication presents the transportation of third order hydromagnetic fluid with thermal radiation by peristalsis through an irregular channel configuration filled a porous medium under the low Reynolds number and large wavelength approximations. Joule heating, Hall current and homogeneous-heterogeneous reactions effects are considered in the energy and species equations. The Second-order velocity and energy slip restrictions are invoked. Final dimensionless governing transport equations along the boundary restrictions are resolved numerically with the help of NDsolve in Mathematica package. Impact of involved sundry parameters on the non-dimensional axial velocity, fluid temperature and concentration characteristics have been analyzed via plots and tables. It is manifest that an increasing porosity parameter leads to maximum velocity in the core part of the channel. Fluid velocity boosts near the walls of the channel where as the reverse effect in the central part of the channel for higher values of first order slip. Larger values of thermal radiation parameter R reduce the fluid temperature field. Also, an increase in heterogeneous reaction parameter Ks magnifies the concentration profile. The present study has the crucial application of thermal therapy in biomedical engineering.
Xu, Liang; Zhang, Dingfeng; Zhou, Yecheng; Zheng, Yusen; Cao, Liu; Jiang, Xiao-Fang; Lu, Fushen
2017-08-01
In this paper, mono- and di-4-N,N-bis(4-methoxylphenyl)aniline-substituted anthraquinone have been designed and synthesized through Suzuki reaction. For mono-4-N,N-bis(4-methoxylphenyl)aniline-substituted anthraquinone, polymorphous crystal structures have been obtained in different crystallization conditions. Electrochemical characterization combined with theoretical calculation suggests that the addition of a second triphenylamine unit causes a larger band gap with higher lying LUMO (Lowest Unoccupied Molecular Orbital) and HOMO (Highest Occupied Molecular Orbital). The linear optical property shows that the introduction of a second triphenylamine unit bring about a significant hyperchromic effect with the extinction coefficients increasing from 11199 M-1 cm-1 to 22136 M-1 cm-1. The third-order nonlinear optical properties indicate that the introduction of a second triphenylamine unit lead to a much larger nonlinear absorption coefficient and two-photon absorption cross section, with the relevant value increasing from 2.04 × 10-12 cm W-1 to 3.91 × 10-12 cm W-1, and from 148 GM to 286 GM, respectively.
DEFF Research Database (Denmark)
Hršak, Dalibor; Nørby, Morten Steen; Coriani, Sonia
2018-01-01
We present a formulation of the polarizable density embedding (PDE) method in combination with the complex polarization propagator (CPP) method for the calculation of absorption spectra of molecules in solutions. The method is particularly useful for the calculation of near-edge X-ray absorption...... fine structure (NEXAFS) spectra. We compare the performance of PDE-CPP with the previously formulated polarizable embedding (PE)-CPP model for the calculation of the NEXAFS spectra of adenine, formamide, glycine, and adenosine triphosphate (ATP) in water at the carbon and nitrogen K-edges, as well...
Partial Molar Volume of Methanol in Water: Effect of Polarizability
Czech Academy of Sciences Publication Activity Database
Moučka, F.; Nezbeda, Ivo
2009-01-01
Roč. 74, č. 4 (2009), s. 559-563 ISSN 0010-0765 R&D Projects: GA AV ČR IAA400720802 Institutional research plan: CEZ:AV0Z40720504 Keywords : water–methanol mixtures * partial molar volume * polarizability Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.856, year: 2009
Theory and applications of atomic and ionic polarizabilities
Energy Technology Data Exchange (ETDEWEB)
Mitroy, J [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Safronova, M S [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Clark, Charles W, E-mail: jxm107@rsphysse.anu.edu.a, E-mail: msafrono@udel.ed, E-mail: charles.clark@nist.go [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, MD 20899-8410 (United States)
2010-10-28
Atomic polarization phenomena impinge upon a number of areas and processes in physics. The dielectric constant and refractive index of any gas are examples of macroscopic properties that are largely determined by the dipole polarizability. When it comes to microscopic phenomena, the existence of alkaline-earth anions and the recently discovered ability of positrons to bind to many atoms are predominantly due to the polarization interaction. An imperfect knowledge of atomic polarizabilities is presently looming as the largest source of uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available by a variety of techniques. These include refined many-body perturbation theory and coupled-cluster calculations sometimes combined with precise experimental data for selected transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index measurements in microwave cavities, ab initio calculations of atomic structures using explicitly correlated wavefunctions, interferometry with atom beams and velocity changes of laser cooled atoms induced by an electric field. This review examines existing theoretical methods of determining atomic and ionic polarizabilities, and discusses their relevance to various applications with particular emphasis on cold-atom physics and the metrology of atomic frequency standards. (topical review)
Molecular polarizabilities and susceptibilities from Frost-model wavefunctions
International Nuclear Information System (INIS)
Amos, A.T.; Yoffe, J.A.
1975-01-01
Average polarizabilities and susceptibilities of a number of molecules are computed from Frost-model wavefunctions using a form of symmetry-adapted double perturbation theory. The anisotropy of α and chi is found for a few molecules using the elliptical Gaussian form of the Frost model. The results obtained are in reasonable agreement with experiment and other calculated values
Theory and applications of atomic and ionic polarizabilities
International Nuclear Information System (INIS)
Mitroy, J; Safronova, M S; Clark, Charles W
2010-01-01
Atomic polarization phenomena impinge upon a number of areas and processes in physics. The dielectric constant and refractive index of any gas are examples of macroscopic properties that are largely determined by the dipole polarizability. When it comes to microscopic phenomena, the existence of alkaline-earth anions and the recently discovered ability of positrons to bind to many atoms are predominantly due to the polarization interaction. An imperfect knowledge of atomic polarizabilities is presently looming as the largest source of uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available by a variety of techniques. These include refined many-body perturbation theory and coupled-cluster calculations sometimes combined with precise experimental data for selected transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index measurements in microwave cavities, ab initio calculations of atomic structures using explicitly correlated wavefunctions, interferometry with atom beams and velocity changes of laser cooled atoms induced by an electric field. This review examines existing theoretical methods of determining atomic and ionic polarizabilities, and discusses their relevance to various applications with particular emphasis on cold-atom physics and the metrology of atomic frequency standards. (topical review)
Polarizability and Aqueous Solvation of the Sulfate Dianion
Czech Academy of Sciences Publication Activity Database
Jungwirth, Pavel; Curtis, J. E.; Tobias, D. J.
2003-01-01
Roč. 367, - (2003), s. 704-710 ISSN 0009-2614 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : polarizability * aqueous solvation * dianion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.438, year: 2003
Polarizability effects on the structure and dynamics of ionic liquids
Energy Technology Data Exchange (ETDEWEB)
Cavalcante, Ary de Oliveira, E-mail: arycavalcante@ufam.edu.br [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil); Departamento de Química, Universidade Federal do Amazonas, Av. Rodrigo Octávio, 6200, Coroado, Manaus, AM (Brazil); Ribeiro, Mauro C. C. [Laboratório de Espectroscopia Molecular, Instituto de Química, Universidade de São Paulo, São Paulo, SP C.P. 26077, 05513 970 São Paulo, SP (Brazil); Skaf, Munir S. [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil)
2014-04-14
Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup −} and PF{sub 6}{sup −}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (χ) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibrium structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.
Electro-optical parameters of bond polarizability model for aluminosilicates.
Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam
2006-04-06
Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.
Communication: A simplified coupled-cluster Lagrangian for polarizable embedding.
Krause, Katharina; Klopper, Wim
2016-01-28
A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.
Communication: A simplified coupled-cluster Lagrangian for polarizable embedding
International Nuclear Information System (INIS)
Krause, Katharina; Klopper, Wim
2016-01-01
A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian
Substituent effects of the alkyl groups: Polarity vs. polarizability
Czech Academy of Sciences Publication Activity Database
Exner, Otto; Böhm, S.
-, č. 17 (2007), s. 2870-2876 ISSN 1434-193X Institutional research plan: CEZ:AV0Z40550506 Keywords : density functional calculations * hyperconjugation * inductive effect * polarizability Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.914, year: 2007
Wojcik, E. A.; Ni, D.; Lam, T. M.; Le Coz, Y. L.
2015-07-01
We have created the first stochastic SoP (Sum-over-Paths) algorithm to extract third-order impulse-response (IR) moment within RC IC interconnects. It employs a newly discovered Feynman SoP Postulate. Importantly, our algorithm maintains computational efficiency and full parallelism. Our approach begins with generation of s-domain nodal-voltage equations. We then perform a Taylor-series expansion of the circuit transfer function. These expansions yield transition diagrams involving mathematical coupling constants, or weight factors, in integral powers of complex frequency s. Our SoP Postulate enables stochastic evaluation of path sums within the circuit transition diagram to order s3-corresponding to the order of IR moment (m3) we seek here. We furnish, for the first time, an informal algebraic proof independently validating our SoP Postulate and algorithm. We list, as well, detailed procedural steps, suitable for coding, that define an efficient stochastic algorithm for m3 IR extraction. Origins of the algorithm's statistical "capacitor-number cubed" correction and "double-counting" weight factors are explained, for completeness. Our algorithm was coded and successfully tested against exact analytical solutions for 3-, 5-, and 10-stage RC lines. We achieved better than 0.65% 1-σ error convergence, after only 10K statistical samples, in less than 1 s of 2-GHz Pentium® execution time. These results continue to suggest that stochastic SoP algorithms may find useful application in circuit analysis of massively coupled networks, such as those encountered in high-end digital IC-interconnect CAD.
Simon, P.; Semboloni, E.; van Waerbeke, L.; Hoekstra, H.; Erben, T.; Fu, L.; Harnois-Déraps, J.; Heymans, C.; Hildebrandt, H.; Kilbinger, M.; Kitching, T. D.; Miller, L.; Schrabback, T.
2015-05-01
We study the correlations of the shear signal between triplets of sources in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) to probe cosmological parameters via the matter bispectrum. In contrast to previous studies, we adopt a non-Gaussian model of the data likelihood which is supported by our simulations of the survey. We find that for state-of-the-art surveys, similar to CFHTLenS, a Gaussian likelihood analysis is a reasonable approximation, albeit small differences in the parameter constraints are already visible. For future surveys we expect that a Gaussian model becomes inaccurate. Our algorithm for a refined non-Gaussian analysis and data compression is then of great utility especially because it is not much more elaborate if simulated data are available. Applying this algorithm to the third-order correlations of shear alone in a blind analysis, we find a good agreement with the standard cosmological model: Σ _8=σ _8(Ω _m/0.27)^{0.64}=0.79^{+0.08}_{-0.11} for a flat Λ cold dark matter cosmology with h = 0.7 ± 0.04 (68 per cent credible interval). Nevertheless our models provide only moderately good fits as indicated by χ2/dof = 2.9, including a 20 per cent rms uncertainty in the predicted signal amplitude. The models cannot explain a signal drop on scales around 15 arcmin, which may be caused by systematics. It is unclear whether the discrepancy can be fully explained by residual point spread function systematics of which we find evidence at least on scales of a few arcmin. Therefore we need a better understanding of higher order correlations of cosmic shear and their systematics to confidently apply them as cosmological probes.
International Nuclear Information System (INIS)
Crosby, D.A.; Zorn, J.C.
1977-01-01
The static dipole polarizability of helium atoms in the metastable 2 3 S 1 and 2 1 S 0 states has been determined by measuring the deflection of a beam of excited helium atoms that is caused by an inhomogeneous electric field of known properties. The necessary velocity distribution information is obtained from time-of-flight measurements, and a resonance quenching technique made it possible to distinguish the singlet and triplet components of the beam. The results, α(2 3 S 1 ) = (44.6 +- 3) x 10 -24 cm 3 and α(2 1 S 0 ) = (108 +- 13) x 10 -24 cm 3 , agree with the theoretical value that has been used to calibrate earlier polarizability measurements of the alkali metals and the heavier noble gases
A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water
Energy Technology Data Exchange (ETDEWEB)
Schwörer, Magnus; Wichmann, Christoph; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)
2016-03-21
The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As QM approach to NMA we choose grid-based density functional theory (DFT). For the surrounding MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM) model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole, five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding GP6P liquid with reference data obtained from a “first-principles” DFT-MD simulation. Finally, IR spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific frequency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD simulations with GP6P and with the optimized LJ parameters then excellently predict the effects of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous solution are now at hand.
Energy Technology Data Exchange (ETDEWEB)
Yin, Congfei; Liang, Xiaojuan, E-mail: lxj6126@126.com; Hu, Guangcai; Hu, Xie; Chen, Xipeng; Li, Pengzhi; Xiang, Weidong, E-mail: xiangweidong001@126.com
2017-04-15
The titanate, is a material of interest for various energy applications, including photovoltaics, catalysts, and high-rate energy storage devices. Herein, its related materials, CuO/CaTi{sub 4}O{sub 9} [CCTO] thin films, were successfully fabricated on SrTiO{sub 3} (100) substrates by RF magnetron sputtering assisted with subsequent oxygen annealing. This obtained CCTO thin films were then systemically studied by X-ray powder diffraction (XRD), atomic force microscopy (AFM), scan electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). It was found that CuO and CaTi{sub 4}O{sub 9} (001) particles were closely accumulated together on the surface of the substrate in the annealing process after comparing with that of the as-prepared thin film, which was verified by SEM and AFM results. Furthermore, we investigated the third-order nonlinear optical (NLO) properties of the as-prepared and annealed CCTO thin film by means of the Z-scan technique using 650 nm femtosecond laser pulse. Post-deposition oxygen annealing was found to modify the morphological characteristics of the films, resulting in enhancing their NLO properties. The observation of NLO performance of annealed CCTO thin film indicates that RF magnetron sputtering is a feasible method for the fabrication of optical thin films, which can be expanded to fabricate other NLO materials from the corresponding dispersions. Naturally, we concluded that the CCTO thin film occupy a better NLO property, and thus enlarge its application in nonlinear optics. - Highlights: • The CCTO thin film was prepared using the RF magnetron sputtering and oxygen annealing. • The film was prepared on the SrTiO{sub 3}(100) substrates with a Ca{sub 2}CuO{sub 3} target. • The oxygen annealing was found can effectively enhance the film quality and NLO property. • The film was characterized using XPS, SEM, AFM, TEM, XRD and Z-scan techniques.
Measurement of the charged pion polarizability at COMPASS
International Nuclear Information System (INIS)
Nagel, Thiemo Christian Ingo
2012-01-01
The reaction π - +Z→π - +γ+Z in which a photon is produced by a beam pion scattering off a quasi-real photon of the Coulomb field of the target nucleus is identified experimentally by the tiny magnitude of the momentum transfer to the nucleus. This process gives access to the charged pion polarizabilities α π and β π whose experimental determination constitutes an important test of Chiral Perturbation Theory. In this work, the pion polarizability is obtained as α π =(1.9±0.7 stat. ±0.8 syst. ) x 10 -4 fm 3 from data taken with 190 GeV/c hadron beam provided by SPS to the COMPASS experiment at CERN in November 2009 and under the assumption of α π +β π =0.
Dynamic polarizability of a complex atom in strong laser fields
International Nuclear Information System (INIS)
Rapoport, L.P.; Klinskikh, A.F.; Mordvinov, V.V.
1997-01-01
An asymptotic expansion of the dynamic polarizability of a complex atom in a strong circularly polarized light field is found for the case of high frequencies. The self-consistent approximation of the Hartree-Fock type for the ''atom+field'' system is developed, within the framework of which a numerical calculation of the dynamic polarizability of Ne, Kr, and Ar atoms in a strong radiation field is performed. The strong field effect is shown to manifest itself not only in a change of the energy spectrum and the character of behavior of the wave functions of atomic electrons, but also in a modification of the one-electron self-consistent potential for the atom in the field
Measurement of the charged pion polarizability at COMPASS
Energy Technology Data Exchange (ETDEWEB)
Nagel, Thiemo Christian Ingo
2012-09-26
The reaction {pi}{sup -}+Z{yields}{pi}{sup -}+{gamma}+Z in which a photon is produced by a beam pion scattering off a quasi-real photon of the Coulomb field of the target nucleus is identified experimentally by the tiny magnitude of the momentum transfer to the nucleus. This process gives access to the charged pion polarizabilities {alpha}{sub {pi}} and {beta}{sub {pi}} whose experimental determination constitutes an important test of Chiral Perturbation Theory. In this work, the pion polarizability is obtained as {alpha}{sub {pi}}=(1.9{+-}0.7{sub stat.}{+-}0.8{sub syst.}) x 10{sup -4} fm{sup 3} from data taken with 190 GeV/c hadron beam provided by SPS to the COMPASS experiment at CERN in November 2009 and under the assumption of {alpha}{sub {pi}}+{beta}{sub {pi}}=0.
Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability.
Appelquist, T; Berkowitz, E; Brower, R C; Buchoff, M I; Fleming, G T; Jin, X-Y; Kiskis, J; Kribs, G D; Neil, E T; Osborn, J C; Rebbi, C; Rinaldi, E; Schaich, D; Schroeder, C; Syritsyn, S; Vranas, P; Weinberg, E; Witzel, O
2015-10-23
We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar "stealth baryon" dark matter candidate, arising from a dark SU(4) confining gauge theory-"stealth dark matter." In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest "baryon" states in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be potentially detectable in the dark matter mass range of about 200-700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m(B)(6), suggests the observable dark matter mass range is not appreciably modified. We briefly highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.
Electric field enhanced hydrogen storage on polarizable materials substrates
Zhou, J.; Wang, Q.; Sun, Q.; Jena, P.; Chen, X. S.
2010-01-01
Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H2 molecules is adsorbed on a BN sheet, the binding energy per H2 molecule increases from 0.03 eV/H2 in the field-free case to 0.14 eV/H2 in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H2 can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H2 molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials. PMID:20133647
Experimental Constraints on Polarizability Corrections to Hydrogen Hyperfine Structure
International Nuclear Information System (INIS)
Nazaryan, Vahagn; Carlson, Carl E.; Griffioen, Keith A.
2006-01-01
We present a state-of-the-art evaluation of the polarizability corrections--the inelastic nucleon corrections--to the hydrogen ground-state hyperfine splitting using analytic fits to the most recent data. We find a value Δ pol =1.3±0.3 ppm. This is 1-2 ppm smaller than the value of Δ pol deduced using hyperfine splitting data and elastic nucleon corrections obtained from modern form factor fits
Time reversal violating nuclear polarizability and atomic electric dipole moment
International Nuclear Information System (INIS)
Ginges, J.S.M.; Flambaum, V.V.; Mititelu, G.
2000-01-01
Full text: We propose a nuclear mechanism which can induce an atomic electric dipole moment (EDM). The interaction of external electric E and magnetic H fields with nuclear electric and magnetic dipole moments, d and ,u, gives rise to an energy shift, U= -β ik E i H k , where β ik is the nuclear polarizability. Parity and time invariance violating (P,T-odd) nuclear forces generate a mixed P,T-odd nuclear polarizability, whereψ 0 and ψ n are P,T-odd perturbed ground and excited nuclear states, respectively. In the case of a heavy spherical nucleus with a single unpaired nucleon, the perturbed wavefunctions are U = -β ik E i H k , where ξis a constant proportional to the strength of the nuclear P,T-odd interaction, σ is the nuclear spin operator, and ψ n is an unperturbed wavefunction. There are both scalar and tensor contributions to the nuclear P,T-odd polarizability. An atomic EDM is induced by the interaction of the fields of an unpaired electron in an atom with the P,T-odd perturbed atomic nucleus. An estimate for the value of this EDM has been made. The measurements of atomic EDMs can provide information about P,T-odd nuclear forces and test models of CP-violation
Safronova, U. I.; Safronova, M. S.
2014-05-01
Excitation energies of the [Xe]nd (n =5-9), [Xe]ns (n =6-10), [Xe]np (n =6-9), [Xe]nf (n =4-8), and [Xe]ng (n =5-8) states in La iii, where [Xe] = 1s22s22p63s23p63d104s24p64d105s25p6, are evaluated. Electric dipole matrix elements for the allowed transitions between the low-lying [Xe]nd, [Xe]ns, [Xe]np, [Xe]nf, and [Xe]ng states in the La iii ion are calculated using the high-precision relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. Recommended values are provided for a large number of electric dipole matrix elements, oscillator strengths, transition rates, and lifetimes. Scalar and tensor polarizabilities of the states listed above are evaluated. The uncertainties of the recommended values are estimated. Electric quadrupole and magnetic dipole matrix elements are calculated to determine lifetimes of the 5d5/2 and 6s metastable levels. The ground-state E1, E2, and E3 static polarizabilities are calculated. This work provides recommended values critically evaluated for their accuracy for a number of La iii atomic properties for use in planning and analysis of various experiments as well as theoretical modeling.
Bisplinghoff, Raymond L; Pian, Theodore HH
2014-01-01
Profusely illustrated exposition of fundamentals of solid mechanics and principles of mechanics, statics, and simple statically indeterminate systems. Covers strain and stress in three-dimensional solids, elementary elasticity, energy principles in solid continuum, and more. 1965 edition.
Dynamic dipole polarizabilities of the Li atom and the Be+ ion
International Nuclear Information System (INIS)
Tang Liyan; Yan Zongchao; Shi Tingyun; Mitroy, J.
2010-01-01
The dynamic dipole polarizabilities for Li atoms and Be + ions in the 2 2 S and 2 2 P states are calculated using the variational method with a Hylleraas basis. The present polarizabilities represent the definitive values in the nonrelativistic limit. Corrections due to relativistic effects are also estimated. Analytic representations of the polarizabilities for frequency ranges encompassing the n=3 excitations are presented. The recommended polarizabilities for 7 Li and 9 Be + are 164.11±0.03 a 0 3 and 24.489±0.004 a 0 3 , respectively.
Physical Principles of Development of the State Standard of Biological Cell Polarizability
Shuvalov, G. V.; Generalov, K. V.; Generalov, V. M.; Kruchinina, M. V.; Koptev, E. S.; Minin, O. V.; Minin, I. V.
2018-03-01
A new state standard of biological cell polarizability based on micron-size latex particles has been developed. As a standard material, it is suggested to use polystyrene. Values of the polarizability calculated for erythrocytes and values of the polarizability of micron-size spherical latex particles measured with measuring-computing complexes agree within the limits of satisfactory relative error. The Standard allows one the unit of polarizability measurements [m3] to be assigned to cells and erythrocytes for the needs of medicine.
Chiral model predictions for electromagnetic polarizabilities of the nucleon: A 'consumer report'
International Nuclear Information System (INIS)
Broniowski, W.
1992-01-01
This contribution has two parts: (1) The author critically discusses predictions for the electromagnetic polarizabilities of the nucleon obtained in two different approaches: (a) hedgehog models (HM), such as Skyrmions, chiral quark models, hybrid bags, NJL etc., and (b) chiral perturbation theory (χPT). (2) The author shows new results obtained in HM: N c -counting of polarizabilities, splitting of the neutron and proton polarizabilities (he argues that α n > α p in models with pionic clouds), relevance of dispersive terms in the magnetic polarizability β, important role of the Δ resonance in pionic loops, and the effects of non-minimal substitution terms in the effective lagrangian. 3 refs
Vacuum static compactified wormholes in eight-dimensional Lovelock theory
International Nuclear Information System (INIS)
Canfora, Fabrizio; Giacomini, Alex
2008-01-01
In this paper, new exact solutions in eight-dimensional Lovelock theory will be presented. These solutions are the vacuum static wormhole, the black hole, and generalized Bertotti-Robinson space-times with nontrivial torsion. All of the solutions have a cross product structure of the type M 5 xΣ 3 , where M 5 is a five-dimensional manifold and Σ 3 a compact constant curvature manifold. The wormhole is the first example of a smooth vacuum static Lovelock wormhole which is neither Chern-Simons nor Born-Infeld. It will be also discussed how the presence of torsion affects the 'navigableness' of the wormhole for scalar and spinning particles. It will be shown that the wormhole with torsion may act as 'geometrical filter': A very large torsion may 'increase the traversability' for scalars while acting as a 'polarizator' on spinning particles. This may have interesting phenomenological consequences.
Eriksen, Janus J; Sauer, Stephan P A; Mikkelsen, Kurt V; Jensen, Hans J Aa; Kongsted, Jacob
2012-09-30
We investigate the effect of including a dynamic reaction field at the lowest possible ab inito wave function level of theory, namely the Hartree-Fock (HF) self-consistent field level within the polarizable embedding (PE) formalism. We formulate HF based PE within the linear response theory picture leading to the PE-random-phase approximation (PE-RPA) and bridge the expressions to a second-order polarization propagator approximation (SOPPA) frame such that dynamic reaction field contributions are included at the RPA level in addition to the static response described at the SOPPA level but with HF induced dipole moments. We conduct calculations on para-nitro-aniline and para-nitro-phenolate using said model in addition to dynamic PE-RPA and PE-CAM-B3LYP. We compare the results to recently published PE-CCSD data and demonstrate how the cost effective SOPPA-based model successfully recovers a great portion of the inherent PE-RPA error when the observable is the solvatochromic shift. We furthermore demonstrate that whenever the change in density resulting from the ground state-excited state electronic transition in the solute is not associated with a significant change in the electric field, dynamic response contributions formulated at the HF level of theory manage to capture the majority of the system response originating from derivative densities. Copyright © 2012 Wiley Periodicals, Inc.
Adaptive resolution simulation of polarizable supramolecular coarse-grained water models
International Nuclear Information System (INIS)
Zavadlav, Julija; Praprotnik, Matej; Melo, Manuel N.; Marrink, Siewert J.
2015-01-01
Multiscale simulations methods, such as adaptive resolution scheme, are becoming increasingly popular due to their significant computational advantages with respect to conventional atomistic simulations. For these kind of simulations, it is essential to develop accurate multiscale water models that can be used to solvate biophysical systems of interest. Recently, a 4-to-1 mapping was used to couple the bundled-simple point charge water with the MARTINI model. Here, we extend the supramolecular mapping to coarse-grained models with explicit charges. In particular, the two tested models are the polarizable water and big multiple water models associated with the MARTINI force field. As corresponding coarse-grained representations consist of several interaction sites, we couple orientational degrees of freedom of the atomistic and coarse-grained representations via a harmonic energy penalty term. This additional energy term aligns the dipole moments of both representations. We test this coupling by studying the system under applied static external electric field. We show that our approach leads to the correct reproduction of the relevant structural and dynamical properties
Calculations of polarizabilities and hyperpolarizabilities for the Be+ ion
International Nuclear Information System (INIS)
Tang Liyan; Zhang Junyi; Mitroy, J.; Yan Zongchao; Shi Tingyun; Babb, James F.
2009-01-01
The polarizabilities and hyperpolarizabilities of the Be + ion in the 2 2 S state and the 2 2 P state are determined. Calculations are performed using two independent methods: (i) variationally determined wave functions using Hylleraas basis set expansions and (ii) single electron calculations utilizing a frozen-core Hamiltonian. The first few parameters in the long-range interaction potential between a Be + ion and a H, He, or Li atom, and the leading parameters of the effective potential for the high-L Rydberg states of beryllium were also computed. All the values reported are the results of calculations close to convergence. Comparisons are made with published results where available.
Electric and magnetic polarizabilities of hadrons via elastic Compton scattering at KAON
International Nuclear Information System (INIS)
Moinester, M.A.; Blecher, M.
1990-08-01
The study of dynamic properties of hadrons presents a challenge. Among the most basic of these are the electric and magnetic polarizabilities describing the electromagnetic structure of hadrons. They characterize the induced transient dipole moments of hadrons in an external electromagnetic field. During gamma-hadron Compton scattering the lowest order scattering is determined by the charge and magnetic moment. The next order scattering is determined by the induced dipole moments. The dipole polarizabilities probe the rigidity of the internal structure of baryons and mesons, the dipole moments being induced by the rearrangement of the hadron constituents driven by the presence of the electric and magnetic fields of the photon during scattering. A sophisticated understanding of hadrons within the framework of QCD will be tested, in part, by the prediction of these quantities. For the light charged pion, chiral symmetry leads to a precise prediction for the polarizabilities. For the heavier charged kaon, chiral perturbation theory can be applied to predict the polarizabilities. For these cases, the experimental polarizabilities subject the underlying chiral symmetry and chiral perturbation techniques of QCD to new and serious tests. Here the physics of electromagnetic polarizabilities is first described, followed by a review of previous experimental and theoretical polarizability results for the proton, neutron, pion, and kaon. A brief description is then given of how polarizabilities for these hadrons can be studied at the proposed TRIUMF KAON facility. (36 refs., 4 figs.)
Do the seagull terms really survive for the electric polarizability of the nucleon?
International Nuclear Information System (INIS)
Saito, S.
1998-01-01
The seagull terms for the electric polarizability of the nucleon are shown indeed to vanish, if one introduces fluctuations around the Skyrmion configuration, and the origin of the electric polarizability cannot after all be attributed to the seagull terms in the Skyrme model. (orig.)
The electric double layer at high surface potentials: The influence of excess ion polarizability
Hatlo, M. M.; van Roij, R.H.H.G.; Lue, L.
2012-01-01
By including the excess ion polarizability into the Poisson-Boltzmann theory, we show that the decrease in differential capacitance with voltage, observed for metal electrodes above a threshold potential, can be understood in terms of thickening of the double layer due to ion-induced polarizability
Effective electric and magnetic polarizabilities of pointlike spin-1/2 particles
Silenko, A. J.
2014-01-01
Effective electric and magnetic polarizabilities of pointlike spin-1/2 particles possesing an anomalous magnetic moment are calculated with the transformation of an initial Hamiltonian to the Foldy-Wouthuysen representation. Polarizabilities of spin-1/2 and spin-1 particles are compared.
International Nuclear Information System (INIS)
Hollauer, E.; Nascimento, M.A.C.
1985-01-01
The photoionization cross-section and dynamic polarizability for lithium atom are calculated using a discrete basis set to represent both the bound and the continuum-states of the atom, to construct an approximation to the dynamic polarizability. From the imaginary part of the complex dynamic polarizability one extracts the photoionization cross-section and from its real part the dynamic polarizability. The results are in good agreement with the experiments and other more elaborate calculations (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Miffre, A
2005-06-15
Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, {alpha} = (24.33 {+-} 0.16)*10{sup -30} m{sup 3}, improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)
Energy Technology Data Exchange (ETDEWEB)
Miffre, A
2005-06-15
Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, {alpha} = (24.33 {+-} 0.16)*10{sup -30} m{sup 3}, improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)
Static electromagnetic frequency changers
Rozhanskii, L L
1963-01-01
Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work
Transferability of polarizable models for ion-water electrostatic interaction
International Nuclear Information System (INIS)
Masia, Marco
2009-01-01
Studies of ion-water systems at condensed phase and at interfaces have pointed out that molecular and ionic polarization plays an important role for many phenomena ranging from hydrogen bond dynamics to water interfaces' structure. Classical and ab initio Molecular Dynamics simulations reveal that induced dipole moments at interfaces (e.g. air-water and water-protein) are usually high, hinting that polarizable models to be implemented in classical force fields should be very accurate in reproducing the electrostatic properties of the system. In this paper the electrostatic properties of three classical polarizable models for ion-water interaction are compared with ab initio results both at gas and condensed phase. For Li + - water and Cl - -water dimers the reproducibility of total dipole moments obtained with high level quantum chemical calculations is studied; for the same ions in liquid water, Car-Parrinello Molecular Dynamics simulations are used to compute the time evolution of ionic and molecular dipole moments, which are compared with the classical models. The PD2-H2O model developed by the author and coworkers [Masia et al. J. Chem. Phys. 2004, 121, 7362] together with the gaussian intermolecular damping for ion-water interaction [Masia et al. J. Chem. Phys. 2005, 123, 164505] showed to be the fittest in reproducing the ab initio results from gas to condensed phase, allowing for force field transferability.
Excitations in opal photonic crystals infiltrated with polarizable media
Eradat, Nayer; Sivachenko, A. Y.; Raikh, Mikhail E.; Vardeny, Z. Valy; Zakhidov, Anvar A.; Li, S.; Baughman, Ray H.
2002-12-01
Photonic crystals (PC) are a class of artificial structures with a periodic dielectric function. PCs can be a laboratory for testing fundamental processes involving interactions of radiation with matter in novel conditions. We have studied the optical properties of opal PCs that are infiltrated with highly polarizable media such as j-aggregates of cyanine dyes. Opals are self-assembled structures of silica spheres. We report our studies on clarifying the relationship between a polaritonic gap and a photonic stop band (Bragg gap) when they resonantly coexist in the same structure. Infiltration of opal with polarizable molecules combines the polaritonic and Bragg diffractive effects. Both effects exist independently when the Bragg (at ω = ωB) and polaritonic (ω = ωT) resonances are well separated in frequency. A completely different situation occurs when ωT ~ωB. Such a condition was achieved in opals that were infiltrated with J-aggregates of cyanine dyes that have large Rabi frequency. Our measurements show some dramatic changes in the shape of the reflectivity plateaus, which are due to the interplay between the photonic band gap and the polaritonic gap. The experimental results on reflectivity and its dependence on the light propagation angle and concentration of the cyanie dyes are in agreement with the theoretical calculations.
Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model
Pande, Vijay S.; Head-Gordon, Teresa; Ponder, Jay W.
2016-01-01
A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. The protocol uses an automated procedure, ForceBalance, to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimentally obtained data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The new AMOEBA14 water model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures ranging from 249 K to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to a variety of experimental properties as a function of temperature, including the 2nd virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient and dielectric constant. The viscosity, self-diffusion constant and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2 to 20 water molecules, the AMOEBA14 model yields results similar to the AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model. PMID:25683601
Measurement of the proton scalar polarizabilities at MAMI
Energy Technology Data Exchange (ETDEWEB)
Mornacchi, Edoardo [Institut fuer Kernphysik, Universitaet Mainz (Germany); Collaboration: A2-Collaboration
2016-07-01
The electric (α{sub E{sub 1}}) and magnetic (β{sub M1}) scalar polarizabilities are fundamental properties related to the internal structure of the nucleon. They play a crucial role not only in our understanding of the nucleon, but also in other areas such as atomic physics, where they provide e.g. corrections to the Lamb Shift. In order to determine the scalar polarizabilities of the proton, the beam asymmetry Σ{sub 3} was measured, for the first time for the Compton scattering, below the pion photoproduction threshold. The measurement was performed at the MAMI accelerator facility in Mainz. The linearly polarized primary photons impinged on a liquid hydrogen target and the outgoing particles were detected in a nearly 4π detector setup, composed by Crystall Ball and TAPS calorimeters. In this talk the results on the Compton scattering beam asymmetry Σ{sub 3} and their influence on the extraction of α{sub E{sub 1}} and β{sub M1} are discussed.
Spectra of turbulent static pressure fluctuations in jet mixing layers
Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.
1977-01-01
Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.
Polarizability of KC60: Evidence for Potassium Skating on the C60 Surface
Rayane, D.; Antoine, R.; Dugourd, Ph.; Benichou, E.; Allouche, A. R.; Aubert-Frécon, M.; Broyer, M.
2000-02-01
We present the first measurement of the polarizability and the permanent dipole moment of isolated KC60 molecules by molecular beam deflection technique. We have obtained a value of 2506+/-250 Å3 for the polarizability at room temperature. The addition of a potassium atom enhances by more than a factor of 20 the polarizability of a pure C60 molecule. This very high polarizability and the lack of observed permanent dipole show that the apparent polarizability of KC60 is induced by the free skating of the potassium atom on the C60 surface, resulting in a statistical orientation of the dipole. The results are interpreted with a simple model similar to the Langevin theory for paramagnetic systems.
International Nuclear Information System (INIS)
Zhao Xinyu; Wang Xiaoli; Lin Hai; Wang Zhiqiang
2008-01-01
On the basis of new electronegativity values, electronic polarizability and optical basicity of lanthanide oxides are calculated from the concept of average electronegativity given by Asokamani and Manjula. The estimated values are in close agreement with our previous conclusion. Particularly, we attempt to obtain new data of electronic polarizability and optical basicity of lanthanide sesquioxides for different coordination numbers (6-12). The present investigation suggests that both electronic polarizability and optical basicity increase gradually with increasing coordination number. We also looked for another double peak effect, that is, electronic polarizability and optical basicity of trivalent lanthanide oxides show a gradual decrease and then an abrupt increase at the Europia and Ytterbia. Furthermore, close correlations are investigated among average electronegativity, optical basicity, electronic polarizability and coordination number in this paper
Dielectric constant of polarizable, nonpolar fluids and suspensions
International Nuclear Information System (INIS)
Cichocki, B.; Felderhof, B.U.
1988-01-01
We study the dielectric constant of a polarizable, nonpolar fluid or suspension of spherical particles by use of a renormalized cluster expansion.The particles may have induced multipole moments of any order. We show that the Clausius-Mossotti formula results from a virtual overlap contribution. The corrections to the Clausius-Mossotti formula are expressed with the aid of a cluster expansion. The integrands of the cluster integrals are expressed in terms of two-body nodal connectors which incorporate all reflections between a pair of particles. We study the two- and three-body cluster integrals in some detail and show how these are related to the dielectric virial expansion and to the first term of the Kirkwood-Yvon expansion
Dynamic polarizabilities and Rydberg states of the argon isoelectronic sequence
International Nuclear Information System (INIS)
Ghosh, T.K.; Das, A.K.; Castro, M.; Canuto, S.; Mukherjee, P.K.
1993-01-01
Dynamic dipole polarizabilities α d (ω) have been calculated within and beyond the normal-dispersion region for the isoelectronic members of argon up to Mn 7+ using time-dependent coupled Hartree-Fock theory. Excitation energies, oscillator strengths, and quantum-defect values have been estimated for the dipole-allowed transitions 3p 6 1 Se→3p 5 ( 2 P)ns 1 Po (n=4,...,7) and 3p 6 1 Se→3p 5 ( 2 P)nd 1 Po (n=3,...,7). Analytic representations of the singly excited Rydberg orbitals have been obtained. The results compare favorably with the existing theoretical and experimental data. The oscillator strengths show an interesting trend of variation along the isoelectronic sequence
Modeling Electronic Circular Dichroism within the Polarizable Embedding Approach
DEFF Research Database (Denmark)
Nørby, Morten S; Olsen, Jógvan Magnus Haugaard; Steinmann, Casper
2017-01-01
We present a systematic investigation of the key components needed to model single chromophore electronic circular dichroism (ECD) within the polarizable embedding (PE) approach. By relying on accurate forms of the embedding potential, where especially the inclusion of local field effects...... are in focus, we show that qualitative agreement between rotatory strength parameters calculated by full quantum mechanical calculations and the more efficient embedding calculations can be obtained. An important aspect in the computation of reliable absorption parameters is the need for conformational...... sampling. We show that a significant number of snapshots are needed to avoid artifacts in the calculated electronic circular dichroism parameters due to insufficient configurational sampling, thus highlighting the efficiency of the PE model....
Energy Technology Data Exchange (ETDEWEB)
Nivetha, K. [Centre for Crystal Growth, School of Advanced Sciences, VIT University, Vellore 632 014 (India); Kalainathan, S., E-mail: kalainathan@yahoo.com [Centre for Crystal Growth, School of Advanced Sciences, VIT University, Vellore 632 014 (India); Yamada, M. [Research Center for Engineering Science, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502 (Japan); Kondo, Y. [Department of Life Science, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502 (Japan); Hamada, F. [Department of Applied Chemistry, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502 (Japan)
2017-02-15
A new organic stilbazolium derivative, 1-Ethyl-2-(2-p-tolyl-vinyl)-pyridinium iodide (TASI), was grown from methanol:acetonitrile (1:3) mixed solvent by slow evaporation technique. Single crystal X-ray diffraction analysis revealed that TASI crystallizes in triclinic system with a centrosymmetric space group P-1. The molecular structure and the presence of expected functional groups of TASI were confirmed by {sup 1}H NMR and FT-IR spectroscopic studies. The HOMO and LUMO energies influence the charge transfer takes place within the molecule. The grown crystal was thermally stable up to 210 °C as determined by TG/DTA analysis. UV-Vis-NIR spectral study showed that the grown crystal was transparent in the wavelength range of 438–1100 nm. Mechanical behaviour and surface laser damage threshold were studied to find the suitability of the grown crystal for device fabrication. Studies of its third-order nonlinear optical properties using a Z-scan technique demonstrates that TASI crystal is capable of exhibiting reverse saturable absorption and self-focusing performance with the second-order molecular hyperpolarizability (γ) 4.983 × 10{sup −34} esu. The third-order nonlinear susceptibility of TASI was found to be 8.931 × 10{sup −6} esu, which is higher than a few other stilbazolium derivative crystals. - Highlights: • TASI is a new organic stilbazolium derivative and was grown by slow evaporation technique. • HOMO-LUMO analysis helps to explain charge transfer interaction within the molecule. • The grown crystal has 80% transmittance in the visible and near-IR spectral range. • Thermally, electrically and mechanically efficient for NLO applications. • Z-scan measurements reveal the aptness of the grown crystal for third order NLO applications.
Theoretical studies of the global minima and polarizabilities of small lithium clusters
Energy Technology Data Exchange (ETDEWEB)
Hu, Hanshi; Zhao, Ya-Fan; Hammond, Jeffrey R.; Bylaska, Eric J.; Apra, Edoardo; van Dam, Hubertus JJ; Li, Jun; Govind, Niranjan; Kowalski, Karol
2016-01-16
Lithium clusters Lin (n=1-20) have been investigated with density functional theory (DFT) and coupled—cluster (CC) methods. The global-minimum structures are located via an improved basin---hopping algorithm and the lowest energy Lin isomers are confirmed with DFT geometry optimizations, CCSD(T) energy calculations, and by comparing simulated and experimental polarizabilities. The tetrahedral Li4 structure is found to be the basic building block of lithium clusters Lin (n=6-20). Simulated polarizabilities, including thermal effects at room temperature, are in good agreement with measured isotropic polarizabilities.
Relativity, nuclear polarizability, and screening in sub-Coulomb elastic scattering
International Nuclear Information System (INIS)
Lynch, W.G.; Tsang, M.B.; Bhang, H.C.; Cramer, J.G.; Puigh, R.J.
Elastic scattering of p-shell nuclear projectiles from 208 Pb has been examined for deviations from Rutherford scattering. Four effects can be important: atomic screening, vacuum polarization, nuclear polarizability and a relativistic effect of dynamical origin. The presence of atomic screening, nuclear polarizability and the relativistic effect was observed thus constituting the first measurement of this relativistic effect using complex nuclei and the first measurement of this relativistic effect using complex nuclei and the first measurement of nuclear polarizability in an external Coulomb field
Rectifier cabinet static breaker
International Nuclear Information System (INIS)
Costantino, R.A. Jr; Gliebe, R.J.
1992-01-01
A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload. 7 figs
Rectifier cabinet static breaker
Costantino, Jr, Roger A.; Gliebe, Ronald J.
1992-09-01
A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.
International Nuclear Information System (INIS)
Leander, G.A.
1985-01-01
Certain nuclei can be described as having intrinsic shapes with parity breaking static moments. The rationale for this description is discussed, spectroscopic models are outlined and their consequences are compared with experiment. (orig.)
Third Order Susceptibility of Platinum Sulfide Sol
National Research Council Canada - National Science Library
LaiHing, Kenneth
1992-01-01
.... Experimentally this is determined using degenerate four-wave mixing (DFWM). Pure sulfur sol was prepared by dissolving the solid sulfur in hydrazine, followed by addition of distilled water with vigorous stirring...
Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities
International Nuclear Information System (INIS)
Stuyver, T.; Fias, S.; De Proft, F.; Geerlings, P.; Fowler, P. W.
2015-01-01
The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability
DEFF Research Database (Denmark)
Schwabe, Tobias; Olsen, Magnus; Sneskov, Kristian
2011-01-01
The polarizable embedding (PE) approach, which combines quantum mechanics (QM) and molecular mechanics (MM), is applied to predict solvatochromic effects on excitation energies of several representative molecules in aqueous, methanol, acetonitrile, and carbon tetrachloride solutions. Good agreement...
Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities
Energy Technology Data Exchange (ETDEWEB)
Stuyver, T.; Fias, S., E-mail: sfias@vub.ac.be; De Proft, F.; Geerlings, P. [ALGC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium); Fowler, P. W. [Department of Chemistry, University of Sheffield, Sheffield S3 7HF (United Kingdom)
2015-03-07
The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.
Conduction of molecular electronic devices: qualitative insights through atom-atom polarizabilities.
Stuyver, T; Fias, S; De Proft, F; Fowler, P W; Geerlings, P
2015-03-07
The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.
Metal-organic materials (MOMs) for adsorption of polarizable gases and methods of using MOMs
Zaworotko, Michael; Mohamed, Mona H.; Elsaidi, Sameh
2017-06-14
Embodiments of the present disclosure provide for multi-component metal-organic materials (MOMs), systems including the MOM, systems for separating components in a gas, methods of separating polarizable gases from a gas mixture, and the like.
Charged ion source with a polarizable probe and with a cyclotron electronic resonance
International Nuclear Information System (INIS)
Briand, P.
1992-01-01
This invention is about ion sources with a polarizable probe able to produce, from neutral atoms, highly charged ions. This source is composed of an hyperfrequency cavity, production means of an axial magnetic field in the cavity, production means of a multipolar radial magnetic field in this cavity, a high frequency inlet, gas input in the cavity, ion extraction means and a polarizable probe in tension to improve gas ionization
Observing the Forces Involved in Static Friction under Static Situations
Kaplan, Daniel
2013-01-01
Static friction is an important concept in introductory physics. Later in the year students apply their understanding of static friction under more complex conditions of static equilibrium. Traditional lab demonstrations in this case involve exceeding of the maximum level of static friction, resulting in the "onset of motion." (Contains…
Enhanced polarizability of aromatic molecules placed in the vicinity of silver clusters
International Nuclear Information System (INIS)
Mayer, A; Schatz, G C
2009-01-01
We use a charge-dipole interaction model to study the polarizability of aromatic molecules that are placed between two silver clusters. In particular we examine the enhancement in polarizability induced by the clusters at plasmon-like resonant frequencies of the cluster-molecule-cluster system. The model used for these simulations relies on representation of the atoms by both a net electric charge and a dipole. By relating the time variation of the atomic charges to the currents that flow through the bonds of the structures considered, a least-action principle can be formulated that enables the atomic charges and dipoles to be determined. We consider benzene, naphthalene and anthracene for this study, comparing the polarizability of these aromatic molecules when placed in the middle between two Ag 120 clusters, with their polarizability as isolated molecules. We find that the polarizability of these molecules is enhanced by the clusters, and this increases the electromagnetic coupling between the two clusters. This results in significant red-shifting (by up to 0.8 eV) of the lowest energy optical transition in the cluster-molecule-cluster system compared to plasmon-like excitation in the cluster-cluster system. The resulting resonant polarizability enhancement leads to an electromagnetic enhancement in surface-enhanced Raman scattering of over 10 6 .
Analytical transition-matrix treatment of electric multipole polarizabilities of hydrogen-like atoms
International Nuclear Information System (INIS)
Kharchenko, V.F.
2015-01-01
The direct transition-matrix approach to the description of the electric polarization of the quantum bound system of particles is used to determine the electric multipole polarizabilities of the hydrogen-like atoms. It is shown that in the case of the bound system formed by the Coulomb interaction the corresponding inhomogeneous integral equation determining an off-shell scattering function, which consistently describes virtual multiple scattering, can be solved exactly analytically for all electric multipole polarizabilities. Our method allows to reproduce the known Dalgarno–Lewis formula for electric multipole polarizabilities of the hydrogen atom in the ground state and can also be applied to determine the polarizability of the atom in excited bound states. - Highlights: • A new description for electric polarization of hydrogen-like atoms. • Expression for multipole polarizabilities in terms of off-shell scattering functions. • Derivation of integral equation determining the off-shell scattering function. • Rigorous analytic solving the integral equations both for ground and excited states. • Study of contributions of virtual multiple scattering to electric polarizabilities
International Nuclear Information System (INIS)
Ganguly, Jayanta; Ghosh, Manas
2014-01-01
Highlights: • Linear polarizability of quantum dot has been studied. • Quantum dot is doped with a repulsive impurity. • The polarizabilities are frequency-dependent. • Influence of Gaussian white noise has been monitored. • Noise exploited is of additive and multiplicative nature. - Abstract: We investigate the profiles of diagonal components of frequency-dependent linear (α xx and α yy ) optical response of repulsive impurity doped quantum dots. The dopant impurity potential chosen assumes Gaussian form. The study principally puts emphasis on investigating the role of noise on the polarizability components. In view of this we have exploited Gaussian white noise containing additive and multiplicative characteristics (in Stratonovich sense). The frequency-dependent polarizabilities are studied by exposing the doped dot to a periodically oscillating external electric field of given intensity. The oscillation frequency, confinement potentials, dopant location, and above all, the noise characteristics tune the linear polarizability components in a subtle manner. Whereas the additive noise fails to have any impact on the polarizabilities, the multiplicative noise influences them delicately and gives rise to additional interesting features
Spin Sum Rules and Polarizabilities: Results from Jefferson Lab
International Nuclear Information System (INIS)
Jian-Ping Chen
2006-01-01
The nucleon spin structure has been an active, exciting and intriguing subject of interest for the last three decades. Recent experimental data on nucleon spin structure at low to intermediate momentum transfers provide new information in the confinement regime and the transition region from the confinement regime to the asymptotic freedom regime. New insight is gained by exploring moments of spin structure functions and their corresponding sum rules (i.e. the generalized Gerasimov-Drell-Hearn, Burkhardt-Cottingham and Bjorken). The Burkhardt-Cottingham sum rule is verified to good accuracy. The spin structure moments data are compared with Chiral Perturbation Theory calculations at low momentum transfers. It is found that chiral perturbation calculations agree reasonably well with the first moment of the spin structure function g 1 at momentum transfer of 0.05 to 0.1 GeV 2 but fail to reproduce the neutron data in the case of the generalized polarizability (delta) LT (the (delta) LT puzzle). New data have been taken on the neutron ( 3 He), the proton and the deuteron at very low Q 2 down to 0.02 GeV 2 . They will provide benchmark tests of Chiral dynamics in the kinematic region where the Chiral Perturbation theory is expected to work
Determination of lifetimes and nonadiabatic correlations from measured dipole polarizabilities
International Nuclear Information System (INIS)
Curtis, Lorenzo J
2007-01-01
In atomic systems for which the total oscillator strength of excitations from the ground state is dominated by the transition to the lowest resonance level, the f-sum rule provides a bracketing inequality connecting the lifetime τ of that level to the dipole polarizability α d . This relationship has been used previously to deduce α d from τ. It is shown here that improved spectroscopic accuracies now permit this procedure to be inverted, with τ deduced from a value for α d obtained spectroscopically using the core polarization model. A similar quantitative relationship exists connecting the nonadiabatic correlation factor β to τ, and thus also to α d . The method is applied to a recent measurement of α d for Kr 6+ to obtain the values τ(4s4p 1 P 1 ) 0.096 ± 0.003 ns and β(Kr 6+ ) = 1.71 ± 0.03a 5 0 . It is shown that the use of this method to make precision lifetime determinations for a small number of ions in an isoelectronic sequence permits the exploitation of observed semiempirical regularities to specify the lifetimes of all ions in that sequence
Generalized polarizabilities of the nucleon in baryon chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Lensky, Vadim [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Pascalutsa, Vladimir; Vanderhaeghen, Marc [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany)
2017-02-15
The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep → epγ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (BχPT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χPT (HBχPT) - and discuss the differences between BχPT and HBχPT responsible for these discrepancies. (orig.)
The muon anomalous magnetic moment and the pion polarizability
Energy Technology Data Exchange (ETDEWEB)
Engel, Kevin T. [University of Maryland, College Park, MD 20742 (United States); Ramsey-Musolf, Michael J. [Physics Department, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)
2014-11-10
We compute the charged pion loop contribution to the muon anomalous magnetic moment a{sub μ}, taking into account the previously omitted effect of the charged pion polarizability, (α{sub 1}−β{sub 1}){sub π{sup +}}. We evaluate this contribution using two different models that are consistent with the requirements of chiral symmetry in the low-momentum regime and perturbative quantum chromodynamics in the asymptotic region. The result may increase the disagreement between the present experimental value for a{sub μ} and the theoretical, Standard Model prediction by as much as ∼60×10{sup −11}, depending on the value of (α{sub 1}−β{sub 1}){sub π{sup +}} and the choice of the model. The planned determination of (α{sub 1}−β{sub 1}){sub π{sup +}} at Jefferson Laboratory will eliminate the dominant parametric error, leaving a theoretical model uncertainty commensurate with the error expected from planned Fermilab measurement of a{sub μ}.
Dipole polarizability of neutron rich nuclei and the symmetry energy
Energy Technology Data Exchange (ETDEWEB)
Horvat, Andrea; Johansen, Jacob; Miki, Kenjiro; Schindler, Fabia; Schrock, Philipp [IKP, TU Darmstadt (Germany); Aumann, Thomas [IKP, TU Darmstadt (Germany); GSI, Darmstadt (Germany); Boretzky, Konstanze [GSI, Darmstadt (Germany); Collaboration: R3B-Collaboration
2015-07-01
As a part of a systematic investigation of the dipole response of stable up to very neutron rich tin isotopes, nuclear and electromagnetic excitation of {sup 124}Sn-{sup 134}Sn has been investigated at relativistic energies in inverse kinematics induced by carbon and lead targets at the LAND-R3B setup at GSI in Darmstadt. The electric dipole response and the nuclear reaction cross section, total and charge-changing, are obtained from the kinematically complete determination of momenta of all particles on an event by event basis. The dipole polarizability is extracted from the Coulomb excitation interaction channel, in order to make use of relevant correlations of this observable with nuclear matter properties such as the symmetry energy at saturation density (J) and it's slope (L). The systematics of the low-lying ''pygmy'' dipole strength, the giant dipole resonance (GDR) and the neutron skin thickness are determined with respect to increasing isospin asymmetry. This talk also discusses the correlations and sensitivities of these variables and observables obtained within the framework of nuclear energy density functional theory.
New experimental method for investigation of the nucleon polarizabilities
International Nuclear Information System (INIS)
Yevetska, O.; Watzlawik, S.; Ahrens, J.; Alkhazov, G.D.; Chizhov, V.P.; Maev, E.M.; Neumann-Cosel, P. von; Orischin, E.M.; Petrov, G.E.; Porte, J.-M.; Richter, A.; Sarantsev, V.V.; Schrieder, G.; Smirenin, Yu.V.
2010-01-01
At the continuous wave (cw) Superconducting Darmstadt Electron Linear Accelerator S-DALINAC, a new method has been developed for the determination of the electric (α-bar) and magnetic (β-bar) polarizabilities of the proton and the deuteron. For that purpose the energy and angular dependence of the differential cross-section for elastic γp and γd scattering of bremsstrahlung photons in the energy range between 20 and 100 MeV is measured by detecting the recoiling proton (deuteron) in coincidence with the scattered bremsstrahlung photon. α-bar and β-bar are then found by means of a best fit to a theoretical description of the scattering cross-section with these quantities as open parameters. The experimental setup consists of a bremsstrahlung photon facility, two specially designed high pressure hydrogen (deuterium) ionization chambers which serve as targets and detectors of the recoil proton (deuteron), NaI gamma spectrometers and several additional detectors for beam diagnostics and normalization. The whole setup was tested using bremsstrahlung photon beams with endpoint energies of 60 and 79.3 MeV. The results of the test experiments show that future high-statistics measurements are feasible.
El Naschie's structures in the electrodynamics of polarizable media
International Nuclear Information System (INIS)
Agop, M.; Merches, I.; Enache, V.
2005-01-01
Using the concept of 'combined field', an electrodynamics of polarizable media on a fractal space-time is constructed. In this context, using the scale relativity theory, the permanent electric moment, the induced electric moment, the vacuum fluctuations, the paraelectrics, the diaelectrics, the electric Zeeman-type effect, the electric Einstein-de Haas-type effect, the electric Aharonov-Bohm-type effect, the superconductors in the 'combined field', the double layers as coherent structures, the magnetic Aharonov-Casher-type effect, are analyzed. Correspondence with the ε (∞) space-time is accomplished either by admitting an anomal electric Zeeman-type effect, or through a fractal string as in the case of a superconductor in 'combined field', or, by phase coherence of the electron-ion pairs from the electric double layers (El Naschie's coherence). Moreover, the electric double layer or multiple layer may be considered as two-dimensional projections of the same El Naschie's fractal strings (higher-dimensional strings in ε (∞) space-time)
Mérawa, M.; Dargelos, A.
1998-07-01
The present paper gives an account of investigations of the polarizability of the alkali atoms Li, Na, diatomics homonuclear and heteronuclear Li2, Na2 and NaLi at SCF (Self Consistent Field) level of approximation and at correlated level, using a time Time-Dependent Gauge Invariant method (TDGI). Our static polarizability values agree with the best experimental and theoretical determinations. The Van der Waals C6 coefficients for the atom-atom, atom-dimer and dimer-dimer interactions have been evaluated. Les polarisabilités des atomes alcalins Li, Na, et des molécules diatomiques homonucléaires et hétéronucléaire Li2, Na2 et NaLi, ont été calculées au niveau SCF (Self Consistent Field) et au niveau corrélé à partir d'une méthode invariante de jauge dépendante du temps(TDGI). Nos valeurs des polarisabilités statiques sont en accord avec les meilleurs déterminations expérimentales et théoriques. Les coefficients C6 de Van de Waals pour les interactions atome-atome, atome-dimère et dimère-dimère ont également été évalués.
Gould, Tim; Bučko, Tomáš
2016-08-09
Using time-dependent density functional theory (TDDFT) with exchange kernels, we calculate and test imaginary frequency-dependent dipole polarizabilities for all atoms and many ions in rows 1-6 of the periodic table. These are then integrated over frequency to produce C6 coefficients. Results are presented under different models: straight TDDFT calculations using two different kernels; "benchmark" TDDFT calculations corrected by more accurate quantum chemical and experimental data; and "benchmark" TDDFT with frozen orbital anions. Parametrizations are presented for 411+ atoms and ions, allowing results to be easily used by other researchers. A curious relationship, C6,XY ∝ [αX(0)αY(0)](0.73), is found between C6 coefficients and static polarizabilities α(0). The relationship C6,XY = 2C6,XC6,Y/[(αX/αY)C6,Y + (αY/αX)C6,X] is tested and found to work well (30% errors) in a small fraction of cases.
Messerle, H K; Declaris, Nicholas
2013-01-01
Energy Conversion Statics deals with equilibrium situations and processes linking equilibrium states. A development of the basic theory of energy conversion statics and its applications is presented. In the applications the emphasis is on processes involving electrical energy. The text commences by introducing the general concept of energy with a survey of primary and secondary energy forms, their availability, and use. The second chapter presents the basic laws of energy conversion. Four postulates defining the overall range of applicability of the general theory are set out, demonstrating th
DEFF Research Database (Denmark)
Danvy, Olivier; Damian, Daniel
2001-01-01
Starting from an operational specification of a translation from a structured to an unstructured imperative language, we point out how a compositional and context-insensitive translation gives rise to static chains of jumps. Taking an inspiration from the notion of continuation, we state a new...... compositional and context-sensitive specification that provably gives rise to no static chains of jumps, no redundant labels, and no unused labels. It is defined with one inference rule per syntactic construct and operates in linear time and space on the size of the source program (indeed it operates in one...
Energy Technology Data Exchange (ETDEWEB)
Delfin L, A.; Alonso V, G. [ININ, Km. 36.5 Carretera Mexico-Toluca, 52045 Ocoyocac, Estado de Mexico (Mexico); Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: adl@nuclear.inin.mx
2003-07-01
In this work two nodal schemes of finite element are presented, one of second and the other of third order of accurate that allow to determine the radial distribution of power starting from the corresponding reactivities.The schemes here developed were obtained taking as starting point the equation developed by Driscoll et al, the one which is based on the diffusion approach of 1-1/2 energy groups. This equation relates the power fraction of an assemble with their reactivity and with the power fractions and reactivities of the assemblies that its surround it. Driscoll and collaborators they solve in form approximate such equation supposing that the reactivity of each assemble it is but a lineal function of the burnt one of the fuel. The spatial approach carries out it with the classic technique of finite differences centered in mesh. Nevertheless that the algebraic system to which its arrive it can be solved without more considerations introduce some additional suppositions and adjustment parameters that it allows them to predict results comparable to those contributed by three dimensions analysis and this way to reduce the one obtained error when its compare their results with those of a production code like CASMO. Also in the two schemes that here are presented the same approaches of Driscoll were used being obtained errors of the one 10% and of 5% for the second schemes and third order respectively for a test case that it was built starting from data of the Cycle 1 of the Unit 1 of the Laguna Verde Nucleo electric plant. These errors its were obtained when comparing with a computer program based on the matrix response method. It is sought to have this way a quick and efficient tool for the multicycle analysis in the fuel management. However, this model presents problems in the appropriate prediction of the average burnt of the nucleus and of the burnt one by lot. (Author)
Directory of Open Access Journals (Sweden)
Thadeu Keller Filho
2006-09-01
Full Text Available O objetivo deste trabalho foi verificar se as ocorrências de dias secos e chuvosos são condicionalmente dependentes da seqüência dos três dias secos e chuvosos anteriores, numa zona pluviometricamente homogênea, por meio da cadeia não-homogênea de Markov de terceira ordem. Os resultados mostraram que as probabilidades diárias de transição podem ser adequadamente estimadas, com base em dados agregados bimestralmente, seguidas de interpolação por meio de funções sinusoidais. Além disso, evidenciou-se que, naquela zona, as ocorrências diárias de chuva são condicionalmente dependentes da seqüência de dias secos e chuvosos nos três dias anteriores. A cadeia não-homogênea de Markov de terceira ordem é um importante instrumento para a análise da dependência entre as seqüências de dias secos e chuvosos em determinadas regiões.The aim of this work was to verify if the occurrence of dry and wet days are conditionally dependent on the sequences of the dry and wet three preceding days, in a rainfall homogeneous area, using the nonhomogeneous third-order Markov chains. The results showed that daily transition probabilities can be properly estimated from two-month aggregate data, and then adjusted by means of sinusoidal functions. Besides, it was evidenced that everyday rain events in that area are conditionally dependent on the sequences of the dry and wet three days previous to occurrences. The third-order nonhomogeneous Markov chains are an important instrument for the analysis of the dependence between sequences of dry and wet days in certain areas.
Energy Technology Data Exchange (ETDEWEB)
Delfin L, A.; Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: adl@nuclear.inin.mx
2003-07-01
In this work the development of a third order scheme of finite differences centered in mesh is presented and it is applied in the numerical solution of those diffusion equations in multi groups in stationary state and X Y geometry. Originally this scheme was developed by Hennart and del Valle for the monoenergetic diffusion equation with a well-known source and they show that the one scheme is of third order when comparing the numerical solution with the analytical solution of a model problem using several mesh refinements and boundary conditions. The scheme by them developed it also introduces the application of numeric quadratures to evaluate the rigidity matrices and of mass that its appear when making use of the finite elements method of Galerkin. One of the used quadratures is the open quadrature of 4 points, no-standard, of Newton-Cotes to evaluate in approximate form the elements of the rigidity matrices. The other quadrature is that of 3 points of Radau that it is used to evaluate the elements of all the mass matrices. One of the objectives of these quadratures are to eliminate the couplings among the Legendre moments 0 and 1 associated to the left and right faces as those associated to the inferior and superior faces of each cell of the discretization. The other objective is to satisfy the particles balance in weighed form in each cell. In this work it expands such development to multiplicative means considering several energy groups. There are described diverse details inherent to the technique, particularly those that refer to the simplification of the algebraic systems that appear due to the space discretization. Numerical results for several test problems are presented and are compared with those obtained with other nodal techniques. (Author)
Energy Technology Data Exchange (ETDEWEB)
Hassanien, Ahmed Saeed, E-mail: a.s.hassanien@gmail.com [Engineering Mathematics and Physics Department, Faculty of Engineering (Shoubra), Benha University (Egypt); Physics Department, Faculty of Science and Humanities in Ad-Dawadmi, Shaqra University, 11911 (Saudi Arabia)
2016-06-25
The objective of this work is to study the influence of the addition of more Se on dielectric properties, opto-electrical parameters and electronic polarizability of amorphous chalcogenide Cd{sub 50}S{sub 50−x}Se{sub x} thin films (30 ≤ x ≤ 50 at%). Thin films of thickness 200 nm were synthesized by vacuum deposition at ≈8.2 × 10{sup −4} Pa. Both refractive index and extinction coefficient were used to obtain all the studied parameters. The high frequency dielectric constant, real and imaginary parts of dielectric constant were discussed. Drude theory was applied to investigate opto-electrical parameters, like optical carrier concentration, optical mobility and optical resistivity. Moreover, other parameters were investigated and studied, e.g. Drude parameters, volume and surface energy loss functions, dielectric loss factor, dielectric relaxation time, complex optical conductivity and electronic polarizability as well as optical electronegativity and third-order nonlinear optical susceptibility. Values of electronic polarizability and nonlinear optical susceptibility were found to be decreased while optical electronegativity increased as Se-content was increased. Increment of Se-content in amorphous Cd{sub 50}S{sub 50−x}Se{sub x} thin films has also led to minimize the energy losses when electromagnetic waves propagate through films as well as optical conductivity and the speed of light increased. The other studied properties and parameters of Cd{sub 50}S{sub 50−x}Se{sub x} films were found to be strongly dependent upon Se-content. - Highlights: • Thermally evaporated amorphous Cd{sub 50}S{sub 50−x}Se{sub x} (30 ≤ x ≤ 50) thin films were deposited. • Refractive index and absorption index were used to determine almost all properties. • Dielectric properties, Drude parameters and electronic polarizability were studied. • Addition of more Se to CdSSe matrix led to improve the opto-electrical properties. • New data were obtained and
Curvature contributions to the static electrical properties of push-pull molecules
International Nuclear Information System (INIS)
Squitieri, Emilio
2005-01-01
Calculations of the curvature contribution to the diagonals components of the static dipole moment (μ), polarizability (α), first (β) and second (γ) hyperpolarizability of push-pull molecules are presented. This contribution was obtained from the analytical evaluation of electrical properties method using the harmonic zero-point energy. The valence-bond charge-transfer model was employed to obtain the field-dependent force constant and their derivates with respect to electric field. Our results show a relationship between the curvature and electronic contributions. We have also found that the curvature contribution is important in a numerical estimation of β and γ
Explosions and static electricity
DEFF Research Database (Denmark)
Jonassen, Niels M
1995-01-01
The paper deals with the problem of electrostatic discharges as causes of ignition of vapor/gas and dust/gas mixtures. A series of examples of static-caused explosions will be discussed. The concepts of explosion limits, the incendiveness of various discharge types and safe voltages are explained...
DEFF Research Database (Denmark)
Danvy, Olivier; Damian, Daniel
2001-01-01
Starting from an operational specification of a translation from a structured to an unstructured imperative language, we point out how a compositional and context-insensitive translation gives rise to static chains of jumps. Taking an inspiration from the notion of continuation, we state a new co...
International Nuclear Information System (INIS)
Begue, D.
1999-01-01
Many criteria have been used to translate correctly the dynamical vectors of the electric properties: taking into account many spectroscopic states, the gauge and the quasi-spectral series to determine the analytical equation of the one order function. This approach is applied to two iso-electronic systems: CO and BF. The TDGI method allows to access the systems properties in their fundamental state and in their excited states. This work is illustrated by the beryllium atom study for the five first spectroscopic states. A theoretical study, based on the perturbations method, is presented for the determination of the interaction energy between two distant atoms. The formalism giving the general expression of the matrix elements of the dispersion energy needed to the Van der Waals, has been developed. Three examples illustrate this work: Be 2 , BeLi and K 2 . For this last one, the correlations between the calculation and the experimental observations are presented. Some theoretical results on the static and dynamic properties of beryllium clusters (Be N with N=2,3 and 4). The developed approach allowed to show the variations laws of polarizability with the cluster size and to show the asymptotical behavior of the property. (A.L.B.)
Energy Technology Data Exchange (ETDEWEB)
Dimitrov, Vesselin, E-mail: vesselin@uctm.edu [Department of Silicate Technology, University of Chemical Technology and Metallurgy, 8, Kl. Ohridski Blvd., Sofia 1756 (Bulgaria); Komatsu, Takayuki, E-mail: komatsu@mst.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan)
2012-12-15
A suitable relationship between free-cation polarizability and electronegativity of elements in different valence states and with the most common coordination numbers has been searched on the basis of the similarity in physical nature of both quantities. In general, the cation polarizability increases with decreasing element electronegativity. A systematic periodic change in the polarizability against the electronegativity has been observed in the isoelectronic series. It has been found that generally the optical basicity increases and the single bond strength of simple oxides decreases with decreasing the electronegativity. The observed trends have been discussed on the basis of electron donation ability of the oxide ions and type of chemical bonding in simple oxides. - Graphical abstract: This figure shows the single bond strength of simple oxides as a function of element electronegativity. A remarkable correlation exists between these independently obtained quantities. High values of electronegativity correspond to high values of single bond strength and vice versa. It is obvious that the observed trend in this figure is closely related to the type of chemical bonding in corresponding oxide. Highlights: Black-Right-Pointing-Pointer A suitable relationship between free-cation polarizability and electronegativity of elements was searched. Black-Right-Pointing-Pointer The cation polarizability increases with decreasing element electronegativity. Black-Right-Pointing-Pointer The single bond strength of simple oxides decreases with decreasing the electronegativity. Black-Right-Pointing-Pointer The observed trends were discussed on the basis of type of chemical bonding in simple oxides.
Nomura, Yasunori
2012-01-01
We consider the multiverse in the intrinsically quantum mechanical framework recently proposed in Refs. [1,2]. By requiring that the principles of quantum mechanics are universally valid and that physical predictions do not depend on the reference frame one chooses to describe the multiverse, we find that the multiverse state must be static---in particular, the multiverse does not have a beginning or end. We argue that, despite its naive appearance, this does not contradict observation, inclu...
Investigation of Compton effect on π-meson and charged pion polarizability
International Nuclear Information System (INIS)
Antipov, Yu.M.; Batarin, V.A.; Bezzubov, V.A.
1986-01-01
The results of an experiment aimed at the study of the 40 GeV/c pion radiative scattering on nuclei at small momentum transfers are presented. Compton effect on the pion was investigated and the charged pion polarizability was measured. The pion Compton-effect cross section dependence on the incident photon energy ω' 1 (rest pion frame) was measured in the 100 - 600 MeV range. The polarizability of charged pion from the analysis of Compton-effect events has been found to be β π =-α π =(-6.9 ± 1.4 stat. ± 1.2 syst. )x10 -43 cm 3 and the sun of pion electrical α π and magnetic β π polarizability has been estimated to be in agreement with theoretical predictions: α π +β π ≅ 0
Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform.
Peng, Xiangda; Zhang, Yuebin; Chu, Huiying; Li, Guohui
2016-03-05
The free energy calculation library PLUMED has been incorporated into the OpenMM simulation toolkit, with the purpose to perform enhanced sampling MD simulations using the AMOEBA polarizable force field on GPU platform. Two examples, (I) the free energy profile of water pair separation (II) alanine dipeptide dihedral angle free energy surface in explicit solvent, are provided here to demonstrate the accuracy and efficiency of our implementation. The converged free energy profiles could be obtained within an affordable MD simulation time when the AMOEBA polarizable force field is employed. Moreover, the free energy surfaces estimated using the AMOEBA polarizable force field are in agreement with those calculated from experimental data and ab initio methods. Hence, the implementation in this work is reliable and would be utilized to study more complicated biological phenomena in both an accurate and efficient way. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds
Energy Technology Data Exchange (ETDEWEB)
Kaya, Savaş, E-mail: savaskaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140 (Turkey); Kaya, Cemal, E-mail: kaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140 (Turkey); Islam, Nazmul, E-mail: nazmul.islam786@gmail.com [Theoretical and Computational Chemistry Research Laboratory, Department of Basic Science and Humanities/Chemistry Techno Global-Balurghat, Balurghat, D. Dinajpur 733103 (India)
2016-03-15
The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.
Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds
International Nuclear Information System (INIS)
Kaya, Savaş; Kaya, Cemal; Islam, Nazmul
2016-01-01
The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.
International Nuclear Information System (INIS)
Schaefer, Sascha; Mehring, Max; Schaefer, Rolf; Schwerdtfeger, Peter
2007-01-01
The dielectric response to an inhomogeneous electric field has been investigated for Ba and Ba 2 within a molecular beam experiment. The ratio of the polarizabilities per atom of Ba 2 and Ba is determined to be 1.30±0.13. The experimental result is compared to a high level ab initio quantum chemical coupled cluster calculation with an energy-consistent scalar relativistic small-core pseudopotential for Ba. For the barium atom a polarizability of 40.82 A 3 is obtained and the isotropic value of the polarizability calculated for Ba 2 is 97.88 A 3 , which is in good agreement with the experimental results, demonstrating that a quantitative understanding of the interaction between two closed-shell heavy element metal atoms has been achieved
DEFF Research Database (Denmark)
Hrsak, Dalibor; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob
2017-01-01
Embedding techniques in combination with response theory represent a successful approach to calculate molecular properties and excited states in large molecular systems such as solutions and proteins. Recently, the polarizable embedding model has been extended by introducing explicit electronic...... densities of the molecules in the nearest environment, resulting in the polarizable density embedding (PDE) model. This improvement provides a better description of the intermolecular interactions at short distances. However, the electronic densities of the environment molecules are calculated in isolation...... interaction energies calculated on the basis of full quantum-mechanical calculations. The obtained optimal factors are used in PDE calculations of various ground- and excited-state properties of molecules embedded in solvents described as polarizable environments. © 2017 Wiley Periodicals, Inc....
Energy Technology Data Exchange (ETDEWEB)
Praveen, P. A.; Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in [Crystal Growth and Thin films Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli - 620 024, Tamilnadu (India)
2016-05-23
In this report, the polarizability and first and second order hyperpolarizability values of bis benzimidazole Zn(II)-2R and bis benzimidazole Cd(II)-2R complexes, with different electron donating moieties R (R= Cl, Br, I, Acetate) were calculated using time dependent Hartree-Fock (TDHF) formalism embedded in MOPAC2012 package. Further the role of substituents on polarizability and hyperpolarizability values is investigated for the first time by analyzing the frontier molecular orbitals of the complexes with respect to the electronegativity of the substituents. It is found that the increase in electronegativity of the substituents correspondingly increases the energy gap of the molecules, which in turn reduces the polarizability values of both Zn and Cd benzimidazole complexes. Similarly, increase in electronegativity reduces the electric quadrupole moments of both the metal complexes, which in turn reduces the hyperpolarizability values.
Dipole polarizability and neutron skin in {sup 68}Ni
Energy Technology Data Exchange (ETDEWEB)
Rossi, Dominic [GSI Darmstadt (Germany); Univ. Mainz (Germany); NSCL, MSU (United States); Aumann, Thomas [TU Darmstadt (Germany); Boretzky, Konstanze [GSI Darmstadt (Germany); Collaboration: R3B-Collaboration
2014-07-01
The symmetry energy term E{sub sym} of the nuclear equation-of-state describes fundamental phenomena both in nuclear physics and in astrophysics. The electric dipole (E1) response of nuclei as a function of the isospin asymmetry is driven by E{sub sym} and in particular by its density dependence. Studies of the Pygmy Dipole Resonance (PDR) in exotic nuclei have been used to constrain E{sub sym} or the neutron skin thickness ΔR{sub n,p}. The electric dipole polarizability α{sub D}, being very sensitive to the low-lying E1 strength, is correlated to ΔR{sub n,p} in a robust and only moderately less model-dependent manner [PRC 81, 051303 (2010)]. Recently, for the stable nucleus, 208Pb the neutron skin thickness was extracted from the measured αD. Here, a first experimental determination of α{sub D} in an unstable nucleus and the derivation of its ΔR{sub n,p} will be reported. Coulomb excitation in inverse kinematics at the R3B-LAND setup at GSI allows for the investigation of the dipole strength distribution in the neutron-rich {sup 68}Ni covering the pygmy (PDR) and giant dipole resonance (GDR). The E1 strength distribution in the neutron-rich {sup 68}Ni covering the pygmy (PDR) and giant dipole resonance (GDR) s investigated using the R3B-LAND setup at GSI. From the E1 strength distribution in {sup 68}Ni measured using the R3B-LAND setup at GSI, the resonance parameters for the observed PDR at 9.55(17) MeV and the giant dipole resonance at 17.1(2) MeV are determined. In combination with results from Wieland et al. [PRL 102, 092502 (2009)] an unexpectedly large direct photon-decay branching ratio of 7(2) is observed for the PDR. The measured α{sub D} of 3.40(23) fm{sup 3} is compared to relativistic RPA calculations yielding ΔR{sub n,p} of 0.17(2) fm for {sup 68}Ni.
DEFF Research Database (Denmark)
Paidarová, Ivana; Sauer, Stephan P. A.
2012-01-01
We have compared the performance of density functional theory (DFT) using five different exchange-correlation functionals with four coupled cluster theory based wave function methods in the calculation of geometrical derivatives of the polarizability tensor of methane. The polarizability gradient...
PEBBLES Simulation of Static Friction and New Static Friction Benchmark
International Nuclear Information System (INIS)
Cogliati, Joshua J.; Ougouag, Abderrafi M.
2010-01-01
Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.
Raman polarizabilities of the ν2, ν5 bands of CD3Cl
International Nuclear Information System (INIS)
Escribano, R.; Hernandez, M.G.; Mejias, M.; Brodersen, S.
1985-01-01
The Raman spectrum of the Coriolis interacting ν 2 , ν 5 bands of CD 3 Cl was recorded with a resolution of ca 0.6 cm -1 . Using the vibrational-rotational parameters of Yamada and Hirota, a computer simulation of the Raman contour was performed, yielding relative values of Raman polarizability derivatives for these bands. By comparison with the absolute intensity measurement of Orza et al., absolute values of the Raman polarizabilities were obtained. The sign of the Raman intensity perturbation was found to be negative. (author)
Polarizable atomistic calculation of site energy disorder in amorphous Alq3.
Nagata, Yuki
2010-02-01
A polarizable molecular dynamics simulation and calculation scheme for site energy disorder is presented in amorphous tris(8-hydroxyquinolinato)aluminum (Alq(3)) by means of the charge response kernel (CRK) method. The CRK fit to the electrostatic potential and the tight-binding approximation are introduced, which enables modeling of the polarizable electrostatic interaction for a large molecule systematically from an ab initio calculation. The site energy disorder for electron and hole transfers is calculated in amorphous Alq(3) and the effect of the polarization on the site energy disorder is discussed.
Effect of impurities on the two-dimensional electron gas polarizability
International Nuclear Information System (INIS)
Nkoma, J.S.
1980-06-01
The polarizability for a two-dimensional electron gas is calculated in the presence of impurities by a Green function formalism. This leads to a system with finite mean free path due to electrons scattering off impurities. The calculated polarizability is found to be strongly dependent on the mean free path. The main feature is the suppression of the sharp corner at wave vector 2ksub(F) for finite mean free paths, and the pure metal result is recovered for the infinite mean free path. A possible application of the results to the transport properties of semiconductor inversion layers is discussed. (author)
Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus
2007-10-25
The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.
Energy Technology Data Exchange (ETDEWEB)
Longmire, Conrad L [University of California, Los Alamos Scientific Laboratory, Los Alamos, NM (United States)
1958-07-01
In a pinch, the outward diffusion of plasma due to collisions can be balanced by the inward drift resulting from ExB, where E is the applied electric field and B the magnetic field. From the equation expressing the balance of these two effects, together with the pressure balance equation, one obtains the perpendicular conductivity, which is about one-half of the classical parallel conductivity. This result has been applied to the problem of a static pinch under the assumptions: 1) there is an applied longitudinal (B{sub z}) magnetic field; 2) the plasma is isothermal; 3) the solution depends only on the radial coordinate.
Jayaprakash, P.; Sangeetha, P.; Kumari, C. Rathika Thaya; Caroline, M. Lydia
2017-08-01
A nonlinear optical bulk single crystal of L-methionine admixtured D-mandelic acid (LMDMA) has been grown by slow solvent evaporation technique using water as solvent at ambient temperature. The crystallized LMDMA single crystal subjected to single crystal X-ray diffraction study confirmed monoclinic system with the acentric space group P21. The FTIR analysis gives information about the modes of vibration in the various functional groups present in LMDMA. The UV-visible spectral analysis assessed the optical quality and linear optical properties such as extinction coefficient, reflectance, refractive index and from which optical conductivity and electric susceptibility were also evaluated. The frequency doubling efficiency was observed using Kurtz Perry powder technique. A multiple shot laser was utilized to evaluate the laser damage threshold energy of the crystal. Discrete thermodynamic properties were carried out by TG-DTA studies. The hardness, Meyer's index, yield strength, elastic stiffness constant, Knoop hardness, fracture toughness and brittleness index were analyzed using Vickers microhardness tester. Layer growth pattern and the surface defect were examined by chemical etching studies using optical microscope. Fluorescence emission spectrum was recorded and lifetime was also studied. The electric field response of crystal was investigated from the dielectric studies at various temperatures at different frequencies. The third-order nonlinear optical response in LMDMA has been investigated using Z-scan technique with He-Ne laser at 632.8 nm and nonlinear parameters such as refractive index (n2), absorption coefficient (β) and susceptibility (χ3) investigated extensively for they are in optical phase conjucation, high-speed optical switches and optical dielectric devices.
Yuvaraj, S.; Manikandan, N.; Vinitha, G.
2017-11-01
Mn0.55Cu0.45Fe2O4 nanoparticles were synthesized by wet chemical co-precipitation method. The obtained samples were annealed at different temperatures (500 °C to 1250 °C). All annealed samples were characterized for their structural, magnetic, linear and non-linear optical properties. XRD results confirm single phase cubic spinel structure only for samples annealed at 800 °C and 1250 °C. The average crystallite sizes of the samples are in the range of 11-37 nm. HR-SEM image of the sample annealed at 800 °C exposed spherical morphology. The quantitative analysis of EDX results is close to the expected values. Bandgaps were evaluated from UV-DRS. The FTIR spectrum showing the essential peaks around 452.1 and 567.2 cm-1 prove the formation of spinel nanoparticles. In PL spectrum, a broad emission peak is attained in visible region at 485 nm. The saturation magnetization (M s), coercivity (H c) and remanence magnetization (M r) are obtained from the hysteresis curve. Nonlinear absorption coefficients (10-4 cm W-1), nonlinear indices of refraction (10-8 cm2 W-1) and the third order nonlinear susceptibilities (10-6 esu) are determined using Z-scan experiment. CW laser beam is utilized to study the optical limiting characteristics and the results prove these materials to be a potential candidate for device applications like optical switches and power limiters.
A quantum-mechanical perspective on linear response theory within polarizable embedding
DEFF Research Database (Denmark)
List, Nanna Holmgaard; Norman, Patrick; Kongsted, Jacob
2017-01-01
We present a derivation of linear response theory within polarizable embedding starting from a rigorous quantum-mechanical treatment of a composite system. To this aim, two different subsystem decompositions (symmetric and nonsymmetric) of the linear response function are introduced and the pole...
DEFF Research Database (Denmark)
Amorim, B.; Dias Gonçalves, Paulo André; Vasilevskiy, M. I.
2017-01-01
We discuss the renormalization of the polarizability of a nanoparticle in the presence of either: (1) a continuous graphene sheet; or (2) a plasmonic graphene grating, taking into account retardation effects. Our analysis demonstrates that the excitation of surface plasmon polaritons in graphene...
Finite-volume and partial quenching effects in the magnetic polarizability of the neutron
Hall, J. M. M.; Leinweber, D. B.; Young, R. D.
2014-03-01
There has been much progress in the experimental measurement of the electric and magnetic polarizabilities of the nucleon. Similarly, lattice QCD simulations have recently produced dynamical QCD results for the magnetic polarizability of the neutron approaching the chiral regime. In order to compare the lattice simulations with experiment, calculation of partial quenching and finite-volume effects is required prior to an extrapolation in quark mass to the physical point. These dependencies are described using chiral effective field theory. Corrections to the partial quenching effects associated with the sea-quark-loop electric charges are estimated by modeling corrections to the pion cloud. These are compared to the uncorrected lattice results. In addition, the behavior of the finite-volume corrections as a function of pion mass is explored. Box sizes of approximately 7 fm are required to achieve a result within 5% of the infinite-volume result at the physical pion mass. A variety of extrapolations are shown at different box sizes, providing a benchmark to guide future lattice QCD calculations of the magnetic polarizabilities. A relatively precise value for the physical magnetic polarizability of the neutron is presented, βn=1.93(11)stat(11)sys×10-4 fm3, which is in agreement with current experimental results.
Finite volume effects on the electric polarizability of neutral hadrons in lattice QCD
Lujan, M.; Alexandru, A.; Freeman, W.; Lee, F. X.
2016-10-01
We study the finite volume effects on the electric polarizability for the neutron, neutral pion, and neutral kaon using eight dynamically generated two-flavor nHYP-clover ensembles at two different pion masses: 306(1) and 227(2) MeV. An infinite volume extrapolation is performed for each hadron at both pion masses. For the neutral kaon, finite volume effects are relatively mild. The dependence on the quark mass is also mild, and a reliable chiral extrapolation can be performed along with the infinite volume extrapolation. Our result is αK0 phys=0.356 (74 )(46 )×10-4 fm3 . In contrast, for neutron, the electric polarizability depends strongly on the volume. After removing the finite volume corrections, our neutron polarizability results are in good agreement with chiral perturbation theory. For the connected part of the neutral pion polarizability, the negative trend persists, and it is not due to finite volume effects but likely sea quark charging effects.
Electric dipole, polarizability and structure of cesium chloride clusters with one-excess electron
International Nuclear Information System (INIS)
Jraij, A.; Allouche, A.R.; Rabilloud, F.; Korek, M.; Aubert-Frecon, M.; Rayane, D.; Compagnon, I.; Antoine, R.; Broyer, M.; Dugourd, Ph.
2006-01-01
The measurement of the electric dipole of gas phase one-excess electron Cs n Cl n-1 clusters is reported together with a theoretical ab initio prediction of stable structures, dipole moments and electronic polarizabilities for these species in their ground state. Results are in agreement with NaCl cubic structures
Polarizability of the Nitrate Anion and Its Solvation at the Air/Water Interface
Czech Academy of Sciences Publication Activity Database
Salvador, P.; Curtis, J. E.; Tobias, D. J.; Jungwirth, Pavel
2003-01-01
Roč. 5, - (2003), s. 3752-3757 ISSN 1463-9076 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : polarizability * nitrate anion * air/water Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.959, year: 2003
Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions
Directory of Open Access Journals (Sweden)
M.K. Halimah
Full Text Available Zinc borotellurite glasses doped with lanthanum oxide were successfully prepared through melt-quenching technique. The amorphous nature of the glass system was validated by the presence of a broad hump in the XRD result. The refractive index of the prepared glass samples was calculated by using the equation proposed by Dimitrov and Sakka. The theoretical value of molar refraction, electronic polarizability, oxide ion polarizability and metallization criterion were calculated by using Lorentz-Lorenz equation. Meanwhile, expression proposed by Duffy and Ingram for the theoretical value of optical basicity of multi-component glasses were applied to obtain energy band gap based optical basicity and refractive index based optical basicity. The optical basicity of prepared glasses decreased with the increasing concentration of lanthanum oxide. Metallization criterion on the basis of refractive index showed an increasing trend while energy band gap based metallization criterion showed a decreasing trend. The small metallization criterion values of the glass samples represent that the width of the conduction band becomes larger which increase the tendency for metallization of the glasses. The results obtained indicates that the fabricated glasses have high potential to be applied on optical limiting devices in photonic field. Keywords: Borotellurite glasses, Refractive index, Electronic polarizability, Oxide ion polarizability, Optical basicity, Metallization criterion
''Atomic'' Bremsstrahlung or polarizational radiation in collision of many-electron ions
International Nuclear Information System (INIS)
Amusia, M.Ya.; Solov'yov, A.V.
1991-01-01
In this work the so-called ''Atomic'' bremsstrahlung (AB) or polarizational radiation, created in collisions of atoms or ions, is discussed. This kind of radiation arises due to the polarization of the electron shell of colliding particles. It is created by the structured projectiles and targets if the constituents are electrically charged. 6 refs, 2 figs
Seldam, C.A. ten; Groot, S.R. de
1952-01-01
From Jensen's and Gombás' modification of the statistical Thomas-Fermi atom model, a theory for compressed atoms is developed by changing the boundary conditions. Internal kinetic energy and polarizability of argon are calculated as functions of pressure. At 1000 atm. an internal kinetic energy of
Collision-induced absorption intensity redistribution and the atomic pair polarizabilities
International Nuclear Information System (INIS)
Bulanin, M. O.
1997-01-01
A modified relation between the trace polarizability of a diatom and the S(-2) dipole sum is proposed that accounts for the effect of atomic collisions on the dipole oscillator strength distribution. Contribution to the collision-induced trace due to redistribution in the ionization continuum of Ar is evaluated and is found to be significant
Czech Academy of Sciences Publication Activity Database
Středa, Pavel; Jonckheere, T.; Martin, T.
2008-01-01
Roč. 100, - (2008), 146804/1-146804/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/05/0365 Institutional research plan: CEZ:AV0Z10100521 Keywords : electron polarizability * quantum Hall effect * topological numbers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.180, year: 2008
Ciancio, V.; Kluitenberg, G.A.
1990-01-01
Using the general methods of non-equilibrium thermodynamics, a theory for anisotropic polarizable media in which dielectric relaxation phenomena occur is developed. Assuming that ii microscopic phenomena give rise to dielectric relaxation, the contributions of these phenomena to the macroscopic
Bauer, Brad A; Warren, G Lee; Patel, Sandeep
2009-02-10
anticipated in regions with both liquid and vapor character, interfacial simulations of TIP4P-QDP were performed and compared to TIP4P-FQ, a static polarizability analog. Despite similar features in density profiles such as the position of the GDS and interfacial width, enhanced dipole moments are observed for the TIP4P-QDP interface and onset of the vapor phase. Water orientational profiles show an increased preference (over TIP4P-FQ) in the orientation of the permanent dipole vector of the molecule within the interface; an enhanced z-induced dipole moment directly results from this preference. Hydrogen bond formation is lower, on average, in the bulk for TIP4P-QDP than TIP4P-FQ. However, the average number of hydrogen bonds formed by TIP4P-QDP in the interface exceeds that of TIP4P-FQ, and observed hydrogen bond networks extend further into the gaseous region. The TIP4P-QDP interfacial potential, calculated to be -11.98(±0.08) kcal/mol, is less favorable than that for TIP4P-FQ by approximately 2% as a result of a diminished quadrupole contribution. Surface tension is calculated within a 1.3% reduction from the experimental value. Results reported demonstrate TIP4P-QDP as a model comparable to the popular TIP4P-FQ while accounting for a physical effect previously neglected by other water models. Further refinements to this model, as well as future applications are discussed.
Bauer, Brad A.; Warren, G. Lee; Patel, Sandeep
2012-01-01
anticipated in regions with both liquid and vapor character, interfacial simulations of TIP4P-QDP were performed and compared to TIP4P-FQ, a static polarizability analog. Despite similar features in density profiles such as the position of the GDS and interfacial width, enhanced dipole moments are observed for the TIP4P-QDP interface and onset of the vapor phase. Water orientational profiles show an increased preference (over TIP4P-FQ) in the orientation of the permanent dipole vector of the molecule within the interface; an enhanced z-induced dipole moment directly results from this preference. Hydrogen bond formation is lower, on average, in the bulk for TIP4P-QDP than TIP4P-FQ. However, the average number of hydrogen bonds formed by TIP4P-QDP in the interface exceeds that of TIP4P-FQ, and observed hydrogen bond networks extend further into the gaseous region. The TIP4P-QDP interfacial potential, calculated to be -11.98(±0.08) kcal/mol, is less favorable than that for TIP4P-FQ by approximately 2% as a result of a diminished quadrupole contribution. Surface tension is calculated within a 1.3% reduction from the experimental value. Results reported demonstrate TIP4P-QDP as a model comparable to the popular TIP4P-FQ while accounting for a physical effect previously neglected by other water models. Further refinements to this model, as well as future applications are discussed. PMID:23133341
Ellwood, R; Stratoudaki, T; Sharples, S D; Clark, M; Somekh, M G
2014-03-01
The third-order elastic constants of a material are believed to be sensitive to residual stress, fatigue, and creep damage. The acoustoelastic coefficient is directly related to these third-order elastic constants. Several techniques have been developed to monitor the acoustoelastic coefficient using ultrasound. In this article, two techniques to impose stress on a sample are compared, one using the classical method of applying a static strain using a bending jig and the other applying a dynamic stress due to the presence of an acoustic wave. Results on aluminum samples are compared. Both techniques are found to produce similar values for the acoustoelastic coefficient. The dynamic strain technique however has the advantages that it can be applied to large, real world components, in situ, while ensuring the measurement takes place in the nondestructive, elastic regime.
On the theory of electric double layer with explicit account of a polarizable co-solvent
Energy Technology Data Exchange (ETDEWEB)
Budkov, Yu. A., E-mail: urabudkov@rambler.ru [Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); Department of Applied Mathematics, National Research University Higher School of Economics, Moscow (Russian Federation); Kolesnikov, A. L. [Institut für Nichtklassische Chemie e.V., Universität Leipzig, Leipzig (Germany); Kiselev, M. G. [Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation)
2016-05-14
We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On