An easily implemented static condensation method for structural sensitivity analysis
Gangadharan, S. N.; Haftka, R. T.; Nikolaidis, E.
1990-01-01
A black-box approach to static condensation for sensitivity analysis is presented with illustrative examples of a cube and a car structure. The sensitivity of the structural response with respect to joint stiffness parameter is calculated using the direct method, forward-difference, and central-difference schemes. The efficiency of the various methods for identifying joint stiffness parameters from measured static deflections of these structures is compared. The results indicate that the use of static condensation can reduce computation times significantly and the black-box approach is only slightly less efficient than the standard implementation of static condensation. The ease of implementation of the black-box approach recommends it for use with general-purpose finite element codes that do not have a built-in facility for static condensation.
Structural Analysis of Cabinet Support under Static and Seismic Loads
International Nuclear Information System (INIS)
Jung, Kwangsub; Lee, Sangjin; Oh, Jinho
2014-01-01
The cabinet support consists of frames including steel channels and steel square tubes. Four tap holes for screw bolts are located on the support frame of a steel channel to fix the cabinet on the support. The channels and square tubes are assembled by welded joints. The cabinet supports are installed on the outer walls of the reactor concrete island. The KEPIC code, MNF, is used for the design of the cabinet support. In this work, the structural integrity of the cabinet support is analyzed under consideration of static and seismic loads. A 3-D finite element model of the cabinet support was developed. The structural integrity of the cabinet support under postulated service loading conditions was evaluated through a static analysis, modal analysis, and response spectrum analysis. From the structural analysis results, it was concluded that the structural integrity of the cabinet support is guaranteed
Formula for Forced Vibration Analysis of Structures Using Static ...
African Journals Online (AJOL)
Some methods of dynamic analysis are based on using static factored response ... on a false assumption of direct linear variation in the stress-displacement relationship. Based on the flexible frame model and stiffness formulation a formula for ...
Static Structural and Modal Analysis of Gas Turbine Blade
Ranjan Kumar, Ravi; Pandey, K. M., Prof.
2017-08-01
Gas turbine is one of the most versatile items of turbo machinery nowadays. It is used in different modes such as power generation, oil and gas, process plants, aviation, domestic and related small industries. This paper is based on the problems concerning blade profile selection, material selection and turbine rotor blade vibration that seriously impact the induced stress-deformation and structural functioning of developmental gas turbine engine. In this paper for generating specific power by rotating blade at specific RPM, blade profile and material has been decided by static structural analysis. Gas turbine rotating blade RPM is decided by Modal Analysis so that the natural frequency of blade should not match with the excitation frequency. For the above blade profile has been modeled in SOLIDWORKS and analysis has been done in ANSYS WORKBENCH 14. Existing NACA6409 profile has been selected as base model and then it is modified by bending it through 72.5° and 145°. Hence these three different blade profiles have been analyzed for three different materials viz. Super Alloy X, Nimonic 80A and Inconel 625 at three different speed viz. 20000, 40000 and 60000RPM. It is found that NACA6409 with 72.5° bent gives best result for all material at all speed. Among all the material Inconel 625 gives best result. Hence Blade of Inconel 625 having 72.5° bent profile is the best combination for all RPM.
Static and Dynamic Analysis in Design of Exoskeleton Structure
Ivánkova, Ol'ga; Méri, Dávid; Vojteková, Eva
2017-10-01
This paper introduces a numerical experiment of creating the load bearing system of a high rise building. When designing the high-rise building, it is always an important task to find the right proportion between the height of the building and its perceptive width from the various angles of street view. Investigated high rise building in this article was designed according to these criteria. The load bearing structure of the analysed object consists of a reinforced core, plates and steel tubes of an exoskeleton. Eight models of the building were created using the spatial variant of FEM in Scia Engineer Software. Individual models varied in number and dimensions of diagrids in the exoskeleton. In the models, loadings due to the own weight, weight of external glass cladding, and due to the wind according to the Standard, have been considered. The building was loaded by wind load from all four main directions with respect to its shape. Wind load was calculated using the 3D wind generator, which is a part of the Scia Engineer Software. For each model the static analysis was performed. Its most important criterion was the maximum or minimum horizontal displacement (rotation) of the highest point of the building. This displacement was compared with the limit values of the displacement of the analysed high-rise building. By step-by-step adding diagrids and optimizing their dimensions the building model was obtained that complied with the criteria of the Limit Serviceability State. The last model building was assessed also for the Ultimate Limit State. This model was loaded also by seismic loads for comparison with the load due to the wind.
Continuum soil modeling in the static analysis of buried structures
International Nuclear Information System (INIS)
Julyk, L.J.; Marlow, R.S.; Moore, C.J.; Day, J.P.; Dyrness, A.D.
1993-10-01
Soil loading traditionally has been modeled as a hydrostatic pressure, a practice acceptable for many design applications. In the analyses of buried structure with predictive goals, soil compliance and load redistribution in the presence of soil plasticity are important factors to consider in determining the appropriate response of the structure. In the analysis of existing buried waste-storage tanks at the US Department of Energy's Hanford Site, three soil-tank interaction modeling considerations are addressed. First, the soil interacts with the tank as the tank expands and contracts during thermal cycles associated with changes in the heat generated by the waste material as a result of additions and subtractions of the waste. Second, the soil transfers loads from the surface to the tank and provides support by resisting radial displacement of the tank haunch. Third, conventional finite-element mesh development causes artificial stress concentrations in the soil associated with differential settlement
Statics and Mechanics of Structures
DEFF Research Database (Denmark)
Krenk, Steen; Høgsberg, Jan Becker
The statics and mechanics of structures form a core aspect of civil engineering. This book provides an introduction to the subject, starting from classic hand-calculation types of analysis and gradually advancing to a systematic form suitable for computer implementation. It starts with statically...
Statics and mechanics of structures
Krenk, Steen
2013-01-01
The statics and mechanics of structures form a core aspect of civil engineering. This book provides an introduction to the subject, starting from classic hand-calculation types of analysis and gradually advancing to a systematic form suitable for computer implementation. It starts with statically determinate structures in the form of trusses, beams and frames. Instability is discussed in the form of the column problem - both the ideal column and the imperfect column used in actual column design. The theory of statically indeterminate structures is then introduced, and the force and deformation methods are explained and illustrated. An important aspect of the book’s approach is the systematic development of the theory in a form suitable for computer implementation using finite elements. This development is supported by two small computer programs, MiniTruss and MiniFrame, which permit static analysis of trusses and frames, as well as linearized stability analysis. The book’s final section presents related ...
Inherent Conservatism in Deterministic Quasi-Static Structural Analysis
Verderaime, V.
1997-01-01
The cause of the long-suspected excessive conservatism in the prevailing structural deterministic safety factor has been identified as an inherent violation of the error propagation laws when reducing statistical data to deterministic values and then combining them algebraically through successive structural computational processes. These errors are restricted to the applied stress computations, and because mean and variations of the tolerance limit format are added, the errors are positive, serially cumulative, and excessively conservative. Reliability methods circumvent these errors and provide more efficient and uniform safe structures. The document is a tutorial on the deficiencies and nature of the current safety factor and of its improvement and transition to absolute reliability.
Static analysis of unbounded structures in object-oriented programs
Grabe, Immo
2012-01-01
In this thesis we investigate different techniques and formalisms to address complexity introduced by unbounded structures in object-oriented programs. We give a representation of a weakest precondition calculus for abstract object creation in dynamic logic. Based on this calculus we define symbolic
STRUCTURAL ANALYSIS, GEOMETRY AND STATICS OF A COACH UNFOLDING MECHANISM
Directory of Open Access Journals (Sweden)
Ovidiu ANTONESCU
2016-05-01
Full Text Available Starting from the constructive scheme of the mechanism, the kinematic scheme is drawn in three distinct positions (folded, middle and unfolded. By means of this scheme the mobility of the mechanism is calculated and the structural-topological formula of it is obtained. In the last section of the paper an algorithm of geometric calculus has been elaborated, starting from a kinematic link articulated to the base, element which is considered the driving component.
Structural design concept and static analysis of CANDU spent fuel compact dry storage system
International Nuclear Information System (INIS)
Choi, K. S.; Yang, K. H.; Paek, C. R.; Jung, J. S.; Lee, H. Y.
2003-01-01
In this study, an structural design concept on CANDU spent fuel compact dry storage system MACSTOR/KN-400 module has been established with a view to optimally design the structural members of the system. Design loads, loading combination and structural safety criteria of the module were reviewed assuming W olsung Site. The static analysis of the module showed that compressive stress concentration due to dead load and live load occurred around the center of roof slab. Maximum stress resulted from dead load is about twice as much as the stress from live load, and structural behavior of module caused by wind load was not significant. The static analysis results will have influence on the reinforcement bar design of structural members with other structural analyses
Energy Technology Data Exchange (ETDEWEB)
Bussche, E Vanden [Department of Radiotherapy Nuclear Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent (Belgium); Deene, Y de [Department of Radiotherapy Nuclear Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent (Belgium); Dubruel, P [Polymer Material Research Group, Ghent University, Krijgslaan 281, 9000 Ghent (Belgium); Vergote, K [Department of Radiotherapy Nuclear Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent (Belgium); Schacht, E [Polymer Material Research Group, Ghent University, Krijgslaan 281, 9000 Ghent (Belgium); Wagter, C de [Department of Radiotherapy Nuclear Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent (Belgium)
2004-01-01
Static light scattering (SLS) could be a worthy technique to perform a structure analysis of the polymer structures inside radiation sensitive gels. The information obtained with SLS is a static characterization of the particle structures inside the gel. SLS will be combined with NMR relaxometry and NMR diffusion measurements, which deliver a hydrodynamic characterization of the microstructure of the gels.
SAP-4, Static and Dynamic Linear System Stress Analysis for Various Structures
International Nuclear Information System (INIS)
Zawadzki, S.
1984-01-01
1 - Description of problem or function: SAP4 is a structural analysis program for determining the static and dynamic response of linear systems. The structural systems to be analyzed may be composed of combinations of a number of different structural elements. Currently the program contains the following element types - (a) three-dimensional truss element, (b) three-dimensional beam element, (c) plane stress and plane strain element, (d) two-dimensional axisymmetric solid, (e) three-dimensional solid, (f) variable-number nodes thick shell and three-dimensional element, (g) thin-plate or thin-shell element, (h) boundary element, and (i) pipe element (tangent and bend). 2 - Method of solution: The formation of the structure matrices is carried out in the same way in a static or dynamic analysis. The static analysis is continued by solving the equations of equilibrium followed by the computation of element stresses. In a dynamic analysis the choice is between frequency calculations only, frequency calculations followed by response history analysis, frequency calculations followed by response spectrum analysis, or response history analysis by direct integration. To obtain the frequencies and vibration mode shapes, solution routines are used which calculate the required eigenvalues and eigenvectors directly without a transformation of the structure stiffness matrix and mass matrix to a reduced form. To perform the direct integration an unconditionally stable scheme is used, which also operates on the original structure stiffness matrix and mass matrix. In this manner the program operation and input data required for a dynamic analysis are simple extensions of those needed for a static analysis. 3 - Restrictions on the complexity of the problem: The capacity of the program depends mainly on the total number of nodal points in the system, the number of eigenvalues needed in the dynamic analysis, and the computer used. There is practically no restriction on the number of
Static/dynamic fluid-structure interaction analysis for 3-D rotary blade model
International Nuclear Information System (INIS)
Kim, Dong Hyun; Kim, Yu Sung; Kim, Dong Man; Park, Kang Kyun
2009-01-01
In this study, static/dynamic fluid-structure interaction analyses have been conducted for a 3D rotary blade model like a turbo-machinery or wind turbine blade. Advanced computational analysis system based on Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) has been developed in order to investigate detailed dynamic responses of rotary type models. Fluid domains are modeled using the computational grid system with local grid deforming techniques. Reynolds-averaged Navier-Stokes equations with various turbulence model are solved for unsteady flow problems of the rotating blade model. Detailed static/dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating blades.
Minute, Stephen A.
2013-01-01
Mr. Christopher Miller with the Kennedy Space Center (KSC) NASA Safety & Mission Assurance (S&MA) office requested the NASA Engineering and Safety Center's (NESC) technical support on March 15, 2012, to review and make recommendations on the structural analysis being performed for the Orbiter Atlantis static display at the KSC Visitor Center. The principal focus of the assessment was to review the engineering firm's structural analysis for lifting and aligning the orbiter and its static display configuration
Narayanan, Ajit; Chen, Yi; Pang, Shaoning; Tao, Ban
2013-01-01
The continuous growth of malware presents a problem for internet computing due to increasingly sophisticated techniques for disguising malicious code through mutation and the time required to identify signatures for use by antiviral software systems (AVS). Malware modelling has focused primarily on semantics due to the intended actions and behaviours of viral and worm code. The aim of this paper is to evaluate a static structure approach to malware modelling using the growing malware signature databases now available. We show that, if malware signatures are represented as artificial protein sequences, it is possible to apply standard sequence alignment techniques in bioinformatics to improve accuracy of distinguishing between worm and virus signatures. Moreover, aligned signature sequences can be mined through traditional data mining techniques to extract metasignatures that help to distinguish between viral and worm signatures. All bioinformatics and data mining analysis were performed on publicly available tools and Weka.
Directory of Open Access Journals (Sweden)
Yusuf ÖNER
2005-03-01
Full Text Available The friction loss of electrical machines is an important problem as like in other rotary machines. In addition, the bearings, where the friction losses occur, also require lubrication at periodic intervals and need to be maintained. In this study, to minimize the friction loss of electrical motor, two dimentional static magnetic analysis of radial magnetic bearing systems with different structures are performed and compared with each other; also, magnetic bearing system with four-pole is realized and applied to an induction motor. In simulation, the forces applied to the rotor of induction motor from designed magnetic bearing system are calculated in a computer by using FEMM software package. In application, when comparing designed magnetic bearing system with mechanical bearings up to the revolution of 350 rpm, it was observed that the loss of no-load operating condition of induction motor is decreased about 15 % with magnetic bearing system. In addition to this, mechanical noisy of the motor is also decreased considerably.
Analysis of the Nonlinear Static and Dynamic Behavior of Offshore Structures
Alfosail, Feras
2015-07-01
Understanding static and dynamic nonlinear behavior of pipes and risers is crucial for the design aspects in offshore engineering fields. In this work, we examine two nonlinear problems in offshore engineering field: vortex Induced vibration of straight horizontal pipes, and boundary layer static solution of inclined risers. In the first study, we analyze the effect of the internal velocity of straight horizontal pipe and obtain the vortex induced vibration forces via coupling the pipe equation of motion with the recently modified Van Der Pol oscillator governing the lift coefficient. Our numerical results are obtained for two different pipe configurations: hinged-hinged, and clamped- clamped. The results show that the internal velocity reduces the vibration and the oscillation amplitudes. Also, it is shown that the clamped-clamped pipe configuration offers a wider range of internal velocities before buckling instability occurs. The results also demonstrate the effect of the end condition on the amplitudes of vibration. In the second study, we develop a boundary layer perturbation static solution to govern and simulate the static behavior of inclined risers. In the boundary layer analysis, we take in consideration the effects of the axial stretch, applied tension, and internal velocity. Our numerical simulation results show good agreement with the exact solutions for special cases. In addition, our developed method overcomes the mathematical and numerical limitations of the previous methods used before.
Photovoltaic static concentrator analysis
Almonacid, G.; Luque, A.; Molledo, A. G.
1984-12-01
Ray tracing is the basis of the present analysis of truncated bifacial compound parabolic concentrators filled with a dielectric substance, which are of interest in photovoltaic applications where the bifacial cells allow higher static concentrations to be achieved. Among the figures of merit for this type of concentrator, the directional intercept factor plays a major role and is defined as the ratio of the power of the collector to that at the entry aperture, in a lossless concentrator illuminated by light arriving from a given direction. A procedure for measuring outdoor, full size panels has been developed, and a correction method for avoiding the effect of unwanted diffuse radiation during the measurements is presented.
Static and Dynamic Membrane Structures
Directory of Open Access Journals (Sweden)
Sergiu Ivanov
2012-10-01
Full Text Available While originally P systems were defined to contain multiset rewriting rules, it turned out that considering different types of rules may produce important results, such as increasing the computational power of the rules. This paper focuses on factoring out the concept of a membrane structure out of various P system models with the goal of providing useful formalisations. Both static and dynamic membrane structures are considered.
Non linear fe analysis on the static buckling behavior of the spacer grid structures
International Nuclear Information System (INIS)
Song, K.N.; Yoon, K.H.
2001-01-01
In this study considered is the static buckling behavior of spacer grids in the fuel assembly, which are required to have a sufficient strength against an accident like earthquake. Special attention is given to the finite element modeling of the spot-welding and the constraints between the spacer strips assembled together: it is found that a proper treatment of the constraints is critical for accurate assessment of the buckling behavior including strain localization at the point of spot welding. The buckling strength of the 17 x 17 spacer grid, which is difficult to analyze due to a large number of degrees of freedom, is estimated from analysis for the smaller models 3 x 3, 5 x 5, 7 x 7, and 9 x 9 spacer grids. (authors)
Static Analysis of Mobile Programs
2017-02-01
and not allowed, to do. The second issue was that a fully static analysis was never a realistic possibility, because Java , the programming langauge...scale to large programs it had to handle essentially all of the features of Java and could also be used as a general-purpose analysis engine. The...static analysis of imperative languages. • A framework for adding specifications about the behavior of methods, including methods that were
Analysis of the Nonlinear Static and Dynamic Behavior of Offshore Structures
Alfosail, Feras
2015-01-01
Understanding static and dynamic nonlinear behavior of pipes and risers is crucial for the design aspects in offshore engineering fields. In this work, we examine two nonlinear problems in offshore engineering field: vortex Induced vibration
International Nuclear Information System (INIS)
Ghodrati Amiri, G.; Amidi, S.; Khorasani, M.
2008-01-01
In the recent years, scientists developed the seismic rehabilitation of structures and their view points were changed from sufficient strength to the performance of structures (Performance Base Design) to prepare a safe design. Nonlinear Static Procedure analysis (NSP) or pushover analysis is a new method that is chosen for its speed and simplicity in calculations. 'Seismic Rehabilitation Code for Existing Buildings' and FEMA 356 considered this method. Result of this analysis is a target displacement that is the base of the performance and rehabilitation procedure of the structures. Exact recognition of that displacement could develop the workability of pushover analysis. In these days, Nonlinear Dynamic Analysis (NDP) is only method can exactly apply the seismic ground motions. In this case because it consumes time, costs very high and is more difficult than other methods, is not applicable as much as NSP. A coefficient used in NSP for determining the target displacement is C2 (Stiffness and Strength Degradations Coefficient) and is applicable for correcting the errors due to eliminating the stiffness and strength degradations in hysteretic loops. In this study it has been tried to analysis three concrete frames with shear walls by several accelerations that scaled according to FEMA 273 and FEMA 356. These structures were designed with Iranian 2800 standard (vers.3). Finally after the analyzing by pushover method and comparison results with dynamic analysis, calculated C2 was comprised with values in rehabilitation codes
Harris, Christopher
In the U.S., science and math are taking spotlight in education, and rightfully so as they directly impact economic progression. Curiously absent is computer science, which despite its numerous job opportunities and growth does not have as much focus. This thesis develops a source code analysis framework using language translation, and machine learning classifiers to analyze programs written in Bricklayer for the purposes of programmatically identifying relative success or failure of a students Bricklayer program, helping teachers scale in the amount of students they can support, and providing better messaging. The thesis uses as a case study a set of student programs to demonstrate the possibilities of the framework.
DEFF Research Database (Denmark)
Skrypnyuk, Nataliya; Nielson, Flemming; Pilegaard, Henrik
2012-01-01
hand, checking properties on process algebraic descriptions is often hard, while “unfolding” them into the Labelled Transition Systems can lead to the infamous state space explosion problem.In this work we use a subtype of Data Flow Analysis on systems defined by finite-state process algebras with CSP...... used as an intermediate representation format, which is more concise than the Labelled Transition System with all the states explicitly represented and more suitable for devising efficient verification algorithms of concurrent systems than their process algebraic descriptions – see, for example...
Static Analysis for Systems Biology
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis; Rosa, D. Schuch da
2004-01-01
This paper shows how static analysis techniques can help understanding biological systems. Based on a simple example we illustrate the outcome of performing three different analyses extracting information of increasing precision. We conclude by reporting on the potential impact and exploitation o...... of these techniques in systems biology....
Static Analysis for Dynamic XML
DEFF Research Database (Denmark)
Christensen, Aske Simon; Møller, Anders; Schwartzbach, Michael Ignatieff
2002-01-01
We describe the summary graph lattice for dataflow analysis of programs that dynamically construct XML documents. Summary graphs have successfully been used to provide static guarantees in the JWIG language for programming interactive Web services. In particular, the JWIG compiler is able to check...
Static Analysis of Functional Programs
van den Berg, Klaas; van den Broek, P.M.
1994-01-01
In this paper, the static analysis of programs in the functional programming language Miranda is described based on two graph models. A new control-flow graph model of Miranda definitions is presented, and a model with four classes of caligraphs. Standard software metrics are applicable to these
Sawja: Static Analysis Workshop for Java
Hubert, Laurent; Barré, Nicolas; Besson, Frédéric; Demange, Delphine; Jensen, Thomas; Monfort, Vincent; Pichardie, David; Turpin, Tiphaine
Static analysis is a powerful technique for automatic verification of programs but raises major engineering challenges when developing a full-fledged analyzer for a realistic language such as Java. Efficiency and precision of such a tool rely partly on low level components which only depend on the syntactic structure of the language and therefore should not be redesigned for each implementation of a new static analysis. This paper describes the Sawja library: a static analysis workshop fully compliant with Java 6 which provides OCaml modules for efficiently manipulating Java bytecode programs. We present the main features of the library, including i) efficient functional data-structures for representing a program with implicit sharing and lazy parsing, ii) an intermediate stack-less representation, and iii) fast computation and manipulation of complete programs. We provide experimental evaluations of the different features with respect to time, memory and precision.
3-dimensional finite element modelling of reactor building internal structure for static analysis
International Nuclear Information System (INIS)
Joshi, M.H.; Reddy, V.J.; Kushwaha, H.S.; Reddy, G.R.; Karandikar, G.V.
1991-01-01
a) Thin shell element gives fairly accurate results when compared to 3-D Brick element for the type of structure and loading in Reactor Building. b) The maximum element size is fixed from model 3(c) i.e. 2.0 m. c) Openings with size smaller than 0.5 m can be neglected without affecting the results very much. d) For any such problem, the methodology described in this paper can be used to take rational decisions which will ensure reasonable accuracy. (author)
Extending Graphic Statics for User-Controlled Structural Morphogenesis
Fivet, Corentin; Zastavni, Denis; Cap, Jean-François; Structural Morphology Group International Seminar 2011
2011-01-01
The first geometrical definitions of any structure are of primary importance when considering pertinence and efficiency in structural design processes. Engineering history has taught us how graphic statics can be a very powerful tool since it allows the designer to take shapes and forces into account simultaneously. However, current and past graphic statics methods are more suitable for analysis than structural morphogenesis. This contribution introduces new graphical methods that can supp...
Static Analysis of Dynamic Languages
DEFF Research Database (Denmark)
Madsen, Magnus
Dynamic programming languages are highly popular and widely used. Java- Script is often called the lingua franca of the web and it is the de facto standard for client-side web programming. On the server-side the PHP, Python and Ruby languages are prevalent. What these languages have in common...... with static type systems, such as Java and C# , but the same features are rarely available for dynamic languages such as JavaScript. The aim of this thesis is to investigate techniques for improving the tool- support for dynamic programming languages without imposing any artificial restrictions...... of new dataflow analysis techniques to tackle the nature of dynamic programming languages....
Structural testing for static failure, flutter and other scary things
Ricketts, R. H.
1983-01-01
Ground test and flight test methods are described that may be used to highlight potential structural problems that occur on aircraft. Primary interest is focused on light-weight general aviation airplanes. The structural problems described include static strength failure, aileron reversal, static divergence, and flutter. An example of each of the problems is discussed to illustrate how the data acquired during the tests may be used to predict the occurrence of the structural problem. While some rules of thumb for the prediction of structural problems are given the report is not intended to be used explicitly as a structural analysis handbook.
International Nuclear Information System (INIS)
Dearien, J.A.; Uldrich, E.D.
1975-01-01
1 - Description of problem or function: The code STRAP (Structural Analysis Package) was developed to analyze the response of structural systems to static and dynamic loading conditions. STRAP-S solves for the displacements and member forces of structural systems under static loads and temperature gradients. STRAP-D will solve numerically a given structural dynamics problem. 2 - Method of solution: STRAP-S generates the stiffness matrix of a structure by the finite element method and solves the resulting equations for structural displacements and member forces. STRAP-D generates the stiffness matrix, solves for eigenvalues and eigenvectors, uncouples and solves the series of second-order ordinary differential equations, and then calculates and plots the requested member forces. 3 - Restrictions on the complexity of the problem: STRAP-S maxima: 250 degrees of freedom, 100 members; STRAP-D maxima: 100 degrees of freedom, 80 time-steps in the forcing function input
Mohamad, M. L.; Rahman, M. T. A.; Khan, S. F.; Basha, M. H.; Adom, A. H.; Hashim, M. S. M.
2017-10-01
The main purpose of this study is to make improvement for the UniMAP Automotive Racing Team car chassis which has several problems associated with the chassis must be fixed and some changes are needed to be made in order to perform well. This study involves the process of designing three chassis that are created based on the rules stated by FSAE rules book (2017/2018). The three chassis will undergo analysis test that consists of five tests which are main roll hoop test, front roll hoop test, static shear, side impact, static torsional loading and finally one of them will be selected as the best design in term of Von Mises Stress and torsional displacement. From the results obtained, the new selected chassis design which also declared as the new improved design poses the weight of 27.66 kg which was decreased by 16.7% from the existing chassis (32.77 kg). The torsional rigidity of the improved chassis increased by 37.74%.
International Nuclear Information System (INIS)
Shakib, H.; Dehghani Ashkezari, G.
2002-01-01
In this study, based on the equivalent static analysis method of the Iranian seismic code, an algorithm is presented to consider the soil-structure interaction (SSI) effects. Modifications of free field motion and structural properties like period and damping due to soil situation are considered in the proposed algorithm. An increase for fundamental period of structure and a modification (usually increase) for it's effective damping are observed. The increase of period is due to the flexibility of the soil foundation and modification of damping is due to the dissipating energy in soil. In order to propose the relative expressions in the presented algorithm, the soil-structure analyses of 8, 10, 13 and 16 stories frames are carried out. By considering the NEHRP soil-structure interaction algorithm and findings of soil-structure interaction analyses carried out in this study, the algorithm based on the equivalent static analysis method of the Iranian seismic building code to consider the effect of soil-structure interaction
Static structure of active Brownian hard disks
de Macedo Biniossek, N.; Löwen, H.; Voigtmann, Th; Smallenburg, F.
2018-02-01
We explore the changes in static structure of a two-dimensional system of active Brownian particles (ABP) with hard-disk interactions, using event-driven Brownian dynamics simulations. In particular, the effect of the self-propulsion velocity and the rotational diffusivity on the orientationally-averaged fluid structure factor is discussed. Typically activity increases structural ordering and generates a structure factor peak at zero wave vector which is a precursor of motility-induced phase separation. Our results provide reference data to test future statistical theories for the fluid structure of active Brownian systems. This manuscript was submitted for the special issue of the Journal of Physics: Condensed Matter associated with the Liquid Matter Conference 2017.
Quasi-static structural optimization under the seismic loads
International Nuclear Information System (INIS)
Choi, W. S.; Lee, K. M.; Kim, T. W.
2001-01-01
For preliminaries to optimization of SMART under the seismic loads, a quasi-static structural optimization for elastic structures under dynamic loads is presented. An equivalent static load (ESL) set is defined as a static load set, which generates the same displacement field as that from a dynamic load at a certain time. Multiple ESL sets calculated at all the time intervals are employed to represent the various states of the structure under the dynamic load. They can cover all the critical states that might happen at arbitrary times. The continuous characteristics of a dynamic load are considered by multiple static load sets. The calculated sets of ESLs are utilized as a multiple loading condition in the optimization process. A design cycle is defined as a circulated process between an analysis domain and a design domain. The analysis domain gives the loading condition needed in the design domain. The design domain gives a new updated design to be verified by the analysis domain in the next design cycle. The design cycles are iterated until the design converges. Structural optimization with dynamic loads is tangible by the proposed method. Standard example problems are solved to verify the validity of the method
Static Analysis for JavaScript
DEFF Research Database (Denmark)
Jensen, Simon Holm
. This dissertation describes the design and implementation of a static analysis for JavaScript that can assist programmers in finding bugs in code during development. We describe the design of a static analysis tool for JavaScript, built using the monotone framework. This analysis infers detailed type information......Web applications present unique challenges to designers of static analysis tools. One of these challenges is the language JavaScript used for client side scripting in the browser. JavaScript is a complex language with many pitfalls and poor tool support compared to other languages...... about programs. This information can be used to detect bugs such as null pointer dereferences and unintended type coercions. The analysis is sound, enabling it to prove the absence of certain program errors. JavaScript is usually run within the context of the browser and the DOM API. The major...
Structural Encoding of Static Single Assignment Form
DEFF Research Database (Denmark)
Gal, Andreas; Probst, Christian; Franz, Michael
2005-01-01
Static Single Assignment (SSA) form is often used as an intermediate representation during code optimization in Java Virtual Machines. Recently, SSA has successfully been used for bytecode verification. However, constructing SSA at the code consumer is costly. SSAbased mobile code transport formats...... Java bytecode. While the resulting bytecode sequence can still be directly executed by traditional Virtual Machines, our novel VM can infer SSA form and confirm its safety with virtually no overhead....... have been shown to eliminate this cost by shifting SSA creation to the code producer. These new formats, however, are not backward compatible with the established Java class-file format. We propose a novel approach to transport SSA information implicitly through structural code properties of standard...
Extending and Enhancing SAS (Static Analysis Suite)
Ho, David
2016-01-01
The Static Analysis Suite (SAS) is an open-source software package used to perform static analysis on C and C++ code, helping to ensure safety, readability and maintainability. In this Summer Student project, SAS was enhanced to improve ease of use and user customisation. A straightforward method of integrating static analysis into a project at compilation time was provided using the automated build tool CMake. The process of adding checkers to the suite was streamlined and simplied by developing an automatic code generator. To make SAS more suitable for continuous integration, a reporting mechanism summarising results was added. This suitability has been demonstrated by inclusion of SAS in the Future Circular Collider Software nightly build system. Scalability of the improved package was demonstrated by using the tool to analyse the ROOT code base.
Static timing analysis for nanometer designs
Bhasker, J
2009-01-01
Covers topics such as cell timing and power modeling; interconnect modeling and analysis, delay calculation, crosstalk, noise and the chip timing verification using static timing analysis. For each of these topics, this book provides a theoretical background as well as detailed examples to elaborate the concepts.
From Static Output Feedback to Structured Robust Static Output Feedback: A Survey
Sadabadi , Mahdieh ,; Peaucelle , Dimitri
2016-01-01
This paper reviews the vast literature on static output feedback design for linear time-invariant systems including classical results and recent developments. In particular, we focus on static output feedback synthesis with performance specifications, structured static output feedback, and robustness. The paper provides a comprehensive review on existing design approaches including iterative linear matrix inequalities heuristics, linear matrix inequalities with rank constraints, methods with ...
STATIC ANALYSIS FOR HARDY COUPLI
Directory of Open Access Journals (Sweden)
MIHAELA Urdea
2014-07-01
Full Text Available Couplings are machine parts for transmitting rotational movement and torque without changing the law of movement. Couplings have a great variety of constructive shapes; this paper refers to elastic couplings especially to Hardy couplings. The main goal of this work is to generate a finite element model for a Hardy coupling. In order to prepare the model for analysis with finite element, the coupling has been modeled in CATIA, especially for this activity. The analysis model should have the same behavior as in reality, so the contact with shafts and keyways is replaced with rigid elements.
Static Analysis Alert Audits: Lexicon and Rules
2016-11-04
1 Audit Rules and Lexicon Date 00, 2016 © 2016 Carnegie Mellon University [DISTRIBUTION STATEMENT A] This material has been approved for public...DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. REV-03.18.2016.0 Static Analysis Alert Audits ...Lexicon And Rules William Snavely 2 Audit Rules and Lexicon Date 00, 2016 © 2016 Carnegie Mellon University [DISTRIBUTION STATEMENT A] This material
QuickChecking Static Analysis Properties
DEFF Research Database (Denmark)
Midtgaard, Jan; Møller, Anders
2015-01-01
A static analysis can check programs for potential errors. A natural question that arises is therefore: who checks the checker? Researchers have given this question varying attention, ranging from basic testing techniques, informal monotonicity arguments, thorough pen-and-paper soundness proofs...... of a lattice. Moreover, we offer a number of generic, type-safe combinators to check transfer functions and operators on lattices, to help ensure that these are, e.g., monotone, strict, or invariant. We substantiate our claims by quickchecking a type analysis for the Lua programming language...
QuickChecking static analysis properties
DEFF Research Database (Denmark)
Midtgaard, Jan; Møller, Anders
2017-01-01
A static analysis can check programs for potential errors. A natural question that arises is therefore: who checks the checker? Researchers have given this question varying attention, ranging from basic testing techniques, informal monotonicity arguments, thorough pen-and-paper soundness proofs....... Moreover, we offer a number of generic, type-safe combinators to check transfer functions and operators on lattices, to help ensure that these are, eg, monotone, strict, or invariant. We substantiate our claims by quickchecking a type analysis for the Lua programming language....
Andreaus, Ugo; Spagnuolo, Mario; Lekszycki, Tomasz; Eugster, Simon R.
2018-04-01
We present a finite element discrete model for pantographic lattices, based on a continuous Euler-Bernoulli beam for modeling the fibers composing the pantographic sheet. This model takes into account large displacements, rotations and deformations; the Euler-Bernoulli beam is described by using nonlinear interpolation functions, a Green-Lagrange strain for elongation and a curvature depending on elongation. On the basis of the introduced discrete model of a pantographic lattice, we perform some numerical simulations. We then compare the obtained results to an experimental BIAS extension test on a pantograph printed with polyamide PA2200. The pantographic structures involved in the numerical as well as in the experimental investigations are not proper fabrics: They are composed by just a few fibers for theoretically allowing the use of the Euler-Bernoulli beam theory in the description of the fibers. We compare the experiments to numerical simulations in which we allow the fibers to elastically slide one with respect to the other in correspondence of the interconnecting pivot. We present as result a very good agreement between the numerical simulation, based on the introduced model, and the experimental measures.
Static analysis of software the abstract interpretation
Boulanger, Jean-Louis
2013-01-01
The existing literature currently available to students and researchers is very general, covering only the formal techniques of static analysis. This book presents real examples of the formal techniques called ""abstract interpretation"" currently being used in various industrial fields: railway, aeronautics, space, automotive, etc. The purpose of this book is to present students and researchers, in a single book, with the wealth of experience of people who are intrinsically involved in the realization and evaluation of software-based safety critical systems. As the authors are people curr
Static Code Analysis with Gitlab-CI
Datko, Szymon Tomasz
2016-01-01
Static Code Analysis is a simple but efficient way to ensure that application’s source code is free from known flaws and security vulnerabilities. Although such analysis tools are often coming with more advanced code editors, there are a lot of people who prefer less complicated environments. The easiest solution would involve education – where to get and how to use the aforementioned tools. However, counting on the manual usage of such tools still does not guarantee their actual usage. On the other hand, reducing the required effort, according to the idea “setup once, use anytime without sweat” seems like a more promising approach. In this paper, the approach to automate code scanning, within the existing CERN’s Gitlab installation, is described. For realization of that project, the Gitlab-CI service (the “CI” stands for "Continuous Integration"), with Docker assistance, was employed to provide a variety of static code analysers for different programming languages. This document covers the gene...
Static electric field enhancement in nanoscale structures
Energy Technology Data Exchange (ETDEWEB)
Lepetit, Bruno, E-mail: bruno.lepetit@irsamc.ups-tlse.fr; Lemoine, Didier, E-mail: didier.lemoine@irsamc.ups-tlse.fr [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Márquez-Mijares, Maykel, E-mail: mmarquez@instec.cu [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Instituto Superior de Tecnologías y Ciencias Aplicadas, Avenida Salvador Allende 1110, Quinta de los Molinos, La Habana (Cuba)
2016-08-28
We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.
Static analysis of an office desk construction
Directory of Open Access Journals (Sweden)
Milan Novotný
2011-01-01
Full Text Available The objective of the paper is a static analysis of a desk construction and the determination of its probable mechanical behaviour using Finite Element Method. The construction was modelled and numerically analysed in Autocad Inventor 2011 and the stability of the entire desk was calculated with the size and placement of the loading force based on the standards and cited literature. Possible locations and directions of the deformation were analysed and a solution for its prevention was proposed and the stability of the desk as well as the extreme position of the stand were calculated. The verification of the obtained results in an accredited furniture testing lab is planned using a prototype of the office desk.
Relationship between Static Stiffness and Modal Stiffness of Structures
Directory of Open Access Journals (Sweden)
Tianjian Ji Tianjian Ji
2010-02-01
Full Text Available This paper derives the relationship between the static stiffness and modal stiffness of a structure. The static stiffness and modal stiffness are two important concepts in both structural statics and dynamics. Although both stiffnesses indicate the capacity of the structure to resist deformation, they are obtained using different methods. The former is calculated by solving the equations of equilibrium and the latter can be obtained by solving an eigenvalue problem. A mathematical relationship between the two stiffnesses was derived based on the definitions of two stiffnesses. This relationship was applicable to a linear system and the derivation of relationships does not reveal any other limitations. Verification of the relationship was given by using several examples. The relationship between the two stiffnesses demonstrated that the modal stiffness of the fundamental mode was always larger than the static stiffness of a structure if the critical point and the maximum mode value are at the same node, i.e. for simply supported beam and seven storeys building are 1.5% and 15% respectively. The relationship could be applied into real structures, where the greater the number of modes being considered, the smaller the difference between the modal stiffness and the static stiffness of a structure.
A static analysis tool set for assembler code verification
International Nuclear Information System (INIS)
Dhodapkar, S.D.; Bhattacharjee, A.K.; Sen, Gopa
1991-01-01
Software Verification and Validation (V and V) is an important step in assuring reliability and quality of the software. The verification of program source code forms an important part of the overall V and V activity. The static analysis tools described here are useful in verification of assembler code. The tool set consists of static analysers for Intel 8086 and Motorola 68000 assembly language programs. The analysers examine the program source code and generate information about control flow within the program modules, unreachable code, well-formation of modules, call dependency between modules etc. The analysis of loops detects unstructured loops and syntactically infinite loops. Software metrics relating to size and structural complexity are also computed. This report describes the salient features of the design, implementation and the user interface of the tool set. The outputs generated by the analyser are explained using examples taken from some projects analysed by this tool set. (author). 7 refs., 17 figs
Requirements for moment connections in statically indeterminate timber structures
Leijten, A.J.M.
2011-01-01
In statically indeterminate structures, connections play a vital role in the moment distribution. Demonstrated here is a method to evaluate the conditions, taking full advantage of the benefits offered by the indeterminate nature of the structures, and using the well-established, graphical beam-line
Reactance, Restoration, and Cognitive Structure: Comparative Statics
Bessarabova, Elena; Fink, Edward L.; Turner, Monique
2013-01-01
This study (N = 143) examined the effects of freedom threat on cognitive structures, using recycling as its topic. The results of a 2(Freedom Threat: low vs. high) x 2(Postscript: restoration vs. filler) plus 1(Control) experiment indicated that, relative to the control condition, high freedom threat created a boomerang effect for the targeted…
Static structure factor of liquid parahydrogen
International Nuclear Information System (INIS)
Dawidowski, J.; Bermejo, F.J.; Ristig, M.L.; Faak, B.; Cabrillo, C.; Fernandez-Perea, R.; Kinugawa, K.; Campo, J.
2004-01-01
The single-differential neutron-scattering cross section of liquid parahydrogen has been measured at 15.2 K and 2 bars of applied pressure by means of low-energy neutron diffraction. Our experimental conditions enable the direct observation of the peak of the liquid structure factor and therefore largely improve the signal-to-noise ratio with respect to measurements carried out using higher-energy neutron diffraction. This avoids the need of performing corrections of approximate nature to the measured cross section that is dominated by molecular rotational components if measured by conventional neutron diffraction
Survey of approaches for handling static analysis alarms
Muske, T.; Serebrenik, A.
2016-01-01
Static analysis tools have showcased their importance and usefulness in automated detection of code anomalies and defects. However, the large number of alarms reported and cost incurred in their manual inspections have been the major concerns with the usage of static analysis tools. Existing studies
Quark structure of static correlators in high temperature QCD
Bernard, Claude; DeGrand, Thomas A.; DeTar, Carleton; Gottlieb, Steven; Krasnitz, A.; Ogilvie, Michael C.; Sugar, R. L.; Toussaint, D.
1992-07-01
We present results of numerical simulations of quantum chromodynamics at finite temperature with two flavors of Kogut-Susskind quarks on the Intel iPSC/860 parallel processor. We investigate the properties of the objects whose exchange gives static screening lengths by reconstructing their correlated quark-antiquark structure.
Quark structure of static correlators in high temperature QCD
International Nuclear Information System (INIS)
Bernard, C.; Ogilvie, M.C.; DeGrand, T.A.; DeTar, C.; Gottlieb, S.; Krasnitz, A.; Sugar, R.L.; Toussaint, D.
1992-01-01
We present results of numerical simulations of quantum chromodynamics at finite temperature with two flavors of Kogut-Susskind quarks on the Intel iPSC/860 parellel processor. We investigate the properties of the objects whose exhange gives static screening lengths by reconstructing their correlated quark-antiquark structure. (orig.)
Quark structure of static correlators in high temperature QCD
Energy Technology Data Exchange (ETDEWEB)
Bernard, C.; Ogilvie, M.C. (Washington Univ., St. Louis, MO (United States). Dept. of Physics); DeGrand, T.A. (Colorado Univ., Boulder, CO (United States). Physics Dept.); DeTar, C. (Utah Univ., Salt Lake City, UT (United States). Physics Dept.); Gottlieb, S.; Krasnitz, A. (Indiana Univ., Bloomington, IN (United States). Dept. of Physics); Sugar, R.L. (California Univ., Santa Barbara, CA (United States). Dept. of Physics); Toussaint, D. (Arizona Univ., Tucson, AZ (United States). Dept. of Physics)
1992-07-20
We present results of numerical simulations of quantum chromodynamics at finite temperature with two flavors of Kogut-Susskind quarks on the Intel iPSC/860 parellel processor. We investigate the properties of the objects whose exhange gives static screening lengths by reconstructing their correlated quark-antiquark structure. (orig.).
Static Analysis for Java Servlets and JSP
DEFF Research Database (Denmark)
Kirkegaard, Christian; Møller, Anders
2006-01-01
We present an approach for statically reasoning about the behavior of Web applications that are developed using Java Servlets and JSP. Specifically, we attack the problems of guaranteeing that all output is well-formed and valid XML and ensuring consistency of XHTML form fields and session state...
Static Analysis of XML Transformations in Java
DEFF Research Database (Denmark)
Kirkegaard, Christian; Møller, Anders; Schwartzbach, Michael I.
2004-01-01
of XML documents to be defined, there are generally no automatic mechanisms for statically checking that a program transforms from one class to another as intended. We introduce Xact, a high-level approach for Java using XML templates as a first-class data type with operations for manipulating XML values...
International Nuclear Information System (INIS)
Aurich, D.; Gerwien, P.; Huenecke, J.; Klingbeil, D.; Krafka, H.; Kuenecke, G.; Ohm, K.; Veith, H.; Wossidlo, P.; Haecker, R.
1998-01-01
The crack growth resistance behaviour of the steels StE 460 and 22NiMoCr3-7 was determined in the temperature range from 23 C to 350 C by means of C(T), M(T), and ISO-V specimens tested under quasistatic and dynamic loads. The Russian steel 15Ch2NMFA-A was tested at room temperature and 50 C. In the steels StE 460 and 22 NiMoCr3-7, the minimum crack growth resistance is observed at about 250 C, with measured values always being higher for the latter steel type. The crack growth resistance behaviour of the tested materials correlates with the behaviour of flow curve, yield strength, and notch impact toughness as a function of temperature. Impact tests of ISO-V specimens give higher crack resistance values than quasistatic load tests, and the temperature dependence is significantly lower than those of specimens tested under static loads. A metallurgical analysis of the materials shows the causes of the dissimilar behaviour. The stretching zones determined for the C(T) specimen correspond to the toughness of the steels examined, and they are not much influenced by the temperature. The numerical analysis using damaging models for simulation of ductile crack growth is reported for all specimen types and two different temperatures each. (orig./CB) [de
International Nuclear Information System (INIS)
Stepanek, P.; Stastnik, S.; Salajka, V.; Hradil, P.; Skolar, J.; Chlanda, V.
2003-01-01
The contribution presents some aspects of the static reliability of concrete structures under temperature effects and under mechanical loading. The mathematical model of a load-bearing concrete structure was performed using the FEM method. The temperature field and static stress that generated states of stress were taken into account. A brief description of some aspects of evaluation of the reliability within the primary circuit concrete structures is stated. The knowledge of actual physical and mechanical characteristics and chemical composition of concrete were necessary for obtaining correct results of numerical analysis. (author)
Static Analysis of Steel Fiber Concrete Beam With Heterosis Finite Elements
Directory of Open Access Journals (Sweden)
James H. Haido
2014-08-01
Full Text Available Steel fiber is considered as the most commonly used constructional fibers in concrete structures. The formulation of new nonlinearities to predict the static performance of steel fiber concrete composite structures is considered essential. Present study is devoted to investigate the efficiency of utilizing heterosis finite elements analysis in static analysis of steel fibrous beams. New and simple material nonlinearities are proposed and used in the formulation of these elements. A computer program coded in FORTRAN was developed to perform current finite element static analysis with considering four cases of elements stiffness matrix determination. The results are compared with the experimental data available in literature in terms of central deflections, strains, and failure form, good agreement was found. Suitable outcomes have been observed in present static analysis with using of tangential stiffness matrix and stiffness matrix in second iteration of the load increment.
Zawaira, Alexander; Coulson, Lauren; Gallotta, Marco; Karimanzira, Owen; Blackburn, Jonathan
2011-02-01
Differential tunnel-opening patterns were established in static structures of mammalian CYP450 isoforms and subsequently applied to identify tunnel-intersecting residues. The identified tunnel-intersecting residues permitted the subsequent construction of gating models via the identification of intra-protein interactions. We define 28 two-state gating models and 37 singlet gating-residue models. Our results reveal the preponderance of aromatic gating residues in CYP3A4 and CYP2A6, whereas we find a preponderance of polar/charged residues in CYP2C5. In CYP2C8 there is balanced presence of polar/charged and hydrophobic aliphatic residues in gating models, whilst in CYP2C9 there is balanced presence of all residue-types. These patterns suggest fast evolutionary dynamics for gating residues and we find that the average rate of evolution of gating residues in CYP2C5, CYP2C8, CYP2C9 and CYP2A6 is significantly faster than the average rate of evolution of the entire sequence. Our study identifies 67% of calculable gating models identified in the literature by molecular dynamics approaches and 92% of residues appearing in literature models appear in our models. However, only 6% of the models identified in this work had been previously-described in the literature. This suggests that our study has defined the most comprehensive list yet of tunnel-gating models in mammalian CYP450 and in doing so have created a benchmark for molecular dynamics approaches to the ligand-tunnelling problem in CYP450. Copyright © 2010 Elsevier Inc. All rights reserved.
STUDYING DEFORMATIONS OF AN FLAT TRUSS STRUCTURE STATICALLY INDETERMINATED EXTERNALLY
Directory of Open Access Journals (Sweden)
Kirsanov Mikhail Nikolaevich
2017-08-01
Full Text Available A flat statically determinate parallel-chord truss structure has a cross-shaped grid and rests upon two rigid pin-bearing supports. Loads in bars are determined in a symbol form using the method of joint isolation by the computer mathematics Maple system. The peculiarity of the considered truss structure is its external static indeterminacy. In fact, all efforts and reactions of supports can be determined from the equilibrium conditions. But the inconvenience is necessary to consider the equilibrium of all the nodes of the truss. The Ritter cross-section method is not applicable to this truss structure. The sections that cut the truss into two parts and pass through the three rods, here exist only for several rods of the extreme panels. The purpose of this paper is to calculate a truss structure with a different number of panels in analytical and numerical form. Finite element calculation method with the use of software LISA 8.0 is applied. It’s noted that a truss structure is kinetically changeable when the number of spans is odd. The corresponding plan of probable velocities is given. In order to receive analytic dependence of deflection on the span number, the induction method and Maxwell-Moor formula has been applied. The operators of the compilation and solution of recurrence equations are involved in determining the general terms of the coefficient sequences. The formulas for calculation of loads in the most compressed bars of a truss structure were received.
Determinacy in Static Analysis of jQuery
DEFF Research Database (Denmark)
Andreasen, Esben; Møller, Anders
2014-01-01
Static analysis for JavaScript can potentially help programmers find errors early during development. Although much progress has been made on analysis techniques, a major obstacle is the prevalence of libraries, in particular jQuery, which apply programming patterns that have detrimental conseque......Static analysis for JavaScript can potentially help programmers find errors early during development. Although much progress has been made on analysis techniques, a major obstacle is the prevalence of libraries, in particular jQuery, which apply programming patterns that have detrimental...... present a static dataflow analysis for JavaScript that infers and exploits determinacy information on-the-fly, to enable analysis of some of the most complex parts of jQuery. The techniques are implemented in the TAJS analysis tool and evaluated on a collection of small programs that use jQuery. Our...
International Nuclear Information System (INIS)
Hoffmann, Alain; Jeanpierre, Francoise.
1976-01-01
The TRICO subroutine of the CEASEMT system is especially intended for elastic or plastic computation of structures made of thin shells and beams. TRICO involves the finite element method for shells and beams, and is also suitable for a dynamic structural analysis: eigenmode and eigenfrequency analysis, and analysis of the response to various sinusoidal excitations, or time dependent elastic and plastic loading. Structures may have various shapes composed of a number of materials. Data are distributed between different optional commands having a precise physical sense, corresponding to a sequential program. A dynamic memory control provides the adaptation of the size of the program to that of the problem to be solved [fr
Interfacial ionic 'liquids': connecting static and dynamic structures.
Uysal, Ahmet; Zhou, Hua; Feng, Guang; Lee, Sang Soo; Li, Song; Cummings, Peter T; Fulvio, Pasquale F; Dai, Sheng; McDonough, John K; Gogotsi, Yury; Fenter, Paul
2015-01-28
It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene-RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (∼0.15 eV).
Analysis of static and dynamic pile-soil-jacket behaviour
Energy Technology Data Exchange (ETDEWEB)
Azadi, Mohammad Reza Emami
1998-12-31
In the offshore industry, recent extreme storms, severe earthquakes and subsidence of the foundation of jacket platforms have shown that new models and methods must take into account the jacket- pile-soil foundation interaction as well as the non-linear dynamic performance/loading effects. This thesis begins with a review of the state of art pile-soil interaction model, recognizing that most existing pile-soil models have been established based on large diameter pile tests on specific sites. The need for site independent and mechanistic pile-soil interaction models led to the development of new (t-z) and (p-y) disk models. These are validated using the available database from recent large diameter pile tests in the North Sea and Gulf of Mexico. The established static disk models are applied for non-linear static analysis of the jacket-pile-soil system under extreme wave loading. Dynamic pile-soil interaction is studied and a new disk-cone model is developed for the non-linear and non-homogeneous soils. This model is applied to both surface and embedded disks in a soil layer with non-linear properties. Simplified non-linear as well as more complex analysis methods are used to study the dynamic response of the jacket platform under extreme sea and seismic loading. Ductility spectra analysis is introduced and used to study the dynamic performance of the jacket systems near collapse. Case studies are used to illustrate the effects of structural, foundation failure characteristics as well as dynamic loading effects on the overall performance of the jacket-pile-soil systems near ultimate collapse. 175 refs., 429 figs., 70 tabs.
Technical study on semi-object emulation of structural statics problem
MoJun; LiuXingFu; LiuZhiYong; Shi Pin Gan
2002-01-01
Structural strength analysis depends mainly on finite element method and experiments. For complex structural system, a rather large error can be caused by some uncertain factors, such as load distributions, boundary conditions and constitutive relations in numerical analysis. At the same time, owing to the limitation of measuring and testing techniques, the strength and stiffness of key components can not be estimated by using the limited test data. To simulate stresses accurately under complex static environment, improve man-machine interactive system, and make the best use of fore- and post-processing function in graphic data processing, the combine numerical analysis with experimental technique and have developed the semi-object emulation technique to analyze the nonlinear problem of structure statics. The modern optical measuring techniques and image processing techniques are firstly used for the method to acquire displacement data of the vessel surface, and the data are used for the boundary condition to...
Sedov, A. V.; Kalinchuk, V. V.; Bocharova, O. V.
2018-01-01
The evaluation of static stresses and strength of units and components is a crucial task for increasing reliability in the operation of vehicles and equipment, to prevent emergencies, especially in structures made of metal and composite materials. At the stage of creation and commissioning of structures to control the quality of manufacturing of individual elements and components, diagnostic control methods are widely used. They are acoustic, ultrasonic, X-ray, radiation methods and others. The using of these methods to control the residual life and the degree of static stresses of units and parts during operation is fraught with great difficulties both in methodology and in instrumentation. In this paper, the authors propose an effective approach of operative control of the degree of static stresses of units and parts of mechanical structures which are in working condition, based on recording the changing in the surface wave properties of a system consisting of a sensor and a controlled environment (unit, part). The proposed approach of low-frequency diagnostics of static stresses presupposes a new adaptive-spectral analysis of a surface wave created by external action (impact). It is possible to estimate implicit stresses of structures in the experiment due to this approach.
Static Analysis of Lockless Microcontroller C Programs
Directory of Open Access Journals (Sweden)
Eva Beckschulze
2012-11-01
Full Text Available Concurrently accessing shared data without locking is usually a subject to race conditions resulting in inconsistent or corrupted data. However, there are programs operating correctly without locking by exploiting the atomicity of certain operations on a speciﬁc hardware. In this paper, we describe how to precisely analyze lockless microcontroller C programs with interrupts by taking the hardware architecture into account. We evaluate this technique in an octagon-based value range analysis using access-based localization to increase efﬁciency.
Development of the static analyzer ANALYSIS/EX for FORTRAN programs
International Nuclear Information System (INIS)
Osanai, Seiji; Yokokawa, Mitsuo
1993-08-01
The static analyzer 'ANALYSIS' is the software tool for analyzing tree structure and COMMON regions of a FORTRAN program statically. With the installation of the new FORTRAN compiler, FORTRAN77EX(V12), to the computer system at JAERI, a new version of ANALYSIS, 'ANALYSIS/EX', has been developed to enhance its analyzing functions. In addition to the conventional functions of ANALYSIS, the ANALYSIS/EX is capable of analyzing of FORTRAN programs written in the FORTRAN77EX(V12) language grammar such as large-scale nuclear codes. The analyzing function of COMMON regions are also improved so as to obtain the relation between variables in COMMON regions in more detail. In this report, results of improvement and enhanced functions of the static analyzer ANALYSIS/EX are presented. (author)
Compatibility of candidate structural materials with static gallium
International Nuclear Information System (INIS)
Luebbers, P.R.; Michaud, W.F.; Chopra, O.K.
1993-01-01
Scoping tests were conducted on compatibility of gallium with candidate structural materials, e.g., Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, as well as Armco iron, Nickel 270, and pure chronimum. Type 316 stainless steel is least resistant and Nb-5 Mo-1 Zr alloy is most resistant to corrosion in static gallium. At 400 degrees C, corrosion rates are ∼4.0, 0.5, and 0.03 mm/y for Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, respectively. The pure metals react rapidly with gallium. In contrast to findings in earlier studies, pure iron shows greater corrosion than does nickel. The corrosion rates at 400 degrees C are ≥90 and 17 mm/y, respectively, for Armco iron and Nickel 270. The results indicate that at temperatures up to 400 degrees C, corrosion occurs primarily by dissolution accompanied by formation of metal/gallium intermetallic compounds
Quasi-static elastography comparison of hyaline cartilage structures
McCredie, A. J.; Stride, E.; Saffari, N.
2009-11-01
Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.
Static analysis of a piping system with elbows
International Nuclear Information System (INIS)
Bryan, B.J.
1994-01-01
Vibration tests of elbows to failure were performed in Japan in the early 1970s. The piping system included two elbows and an eccentric mass. Tests were run both pressurized and unpressurized. This report documents a static analysis of the piping system in which the elbows are subjected to out of plane bending. The effects of internal pressure and material plasticity are investigated
Model Checking Is Static Analysis of Modal Logic
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis
2010-01-01
Flow Logic is an approach to the static analysis of programs that has been developed for functional, imperative and object-oriented programming languages and for concurrent, distributed, mobile and cryptographic process calculi. In this paper we extend it; to deal with modal logics and prove...
Supporting secure programming in web applications through interactive static analysis
Zhu, Jun; Xie, Jing; Lipford, Heather Richter; Chu, Bill
2013-01-01
Many security incidents are caused by software developers’ failure to adhere to secure programming practices. Static analysis tools have been used to detect software vulnerabilities. However, their wide usage by developers is limited by the special training required to write rules customized to application-specific logic. Our approach is interactive static analysis, to integrate static analysis into Integrated Development Environment (IDE) and provide in-situ secure programming support to help developers prevent vulnerabilities during code construction. No additional training is required nor are there any assumptions on ways programs are built. Our work is motivated in part by the observation that many vulnerabilities are introduced due to failure to practice secure programming by knowledgeable developers. We implemented a prototype interactive static analysis tool as a plug-in for Java in Eclipse. Our technical evaluation of our prototype detected multiple zero-day vulnerabilities in a large open source project. Our evaluations also suggest that false positives may be limited to a very small class of use cases. PMID:25685513
Supporting secure programming in web applications through interactive static analysis
Directory of Open Access Journals (Sweden)
Jun Zhu
2014-07-01
Full Text Available Many security incidents are caused by software developers’ failure to adhere to secure programming practices. Static analysis tools have been used to detect software vulnerabilities. However, their wide usage by developers is limited by the special training required to write rules customized to application-specific logic. Our approach is interactive static analysis, to integrate static analysis into Integrated Development Environment (IDE and provide in-situ secure programming support to help developers prevent vulnerabilities during code construction. No additional training is required nor are there any assumptions on ways programs are built. Our work is motivated in part by the observation that many vulnerabilities are introduced due to failure to practice secure programming by knowledgeable developers. We implemented a prototype interactive static analysis tool as a plug-in for Java in Eclipse. Our technical evaluation of our prototype detected multiple zero-day vulnerabilities in a large open source project. Our evaluations also suggest that false positives may be limited to a very small class of use cases.
Stability Analysis of Static Slip-Energy Recovery Drive via ...
African Journals Online (AJOL)
The stability of the sub synchronous static slip energy recovery scheme for the speed control of slip-ring induction motor is presented. A set of nonlinear differential equations which describe the system dynamics are derived and linearized about an operating point using perturbation technique. The Eigenvalue analysis of the ...
Supporting secure programming in web applications through interactive static analysis.
Zhu, Jun; Xie, Jing; Lipford, Heather Richter; Chu, Bill
2014-07-01
Many security incidents are caused by software developers' failure to adhere to secure programming practices. Static analysis tools have been used to detect software vulnerabilities. However, their wide usage by developers is limited by the special training required to write rules customized to application-specific logic. Our approach is interactive static analysis, to integrate static analysis into Integrated Development Environment (IDE) and provide in-situ secure programming support to help developers prevent vulnerabilities during code construction. No additional training is required nor are there any assumptions on ways programs are built. Our work is motivated in part by the observation that many vulnerabilities are introduced due to failure to practice secure programming by knowledgeable developers. We implemented a prototype interactive static analysis tool as a plug-in for Java in Eclipse. Our technical evaluation of our prototype detected multiple zero-day vulnerabilities in a large open source project. Our evaluations also suggest that false positives may be limited to a very small class of use cases.
Static aeroelastic analysis and tailoring of a single-element racing car wing
Sadd, Christopher James
This thesis presents the research from an Engineering Doctorate research programme in collaboration with Reynard Motorsport Ltd, a manufacturer of racing cars. Racing car wing design has traditionally considered structures to be rigid. However, structures are never perfectly rigid and the interaction between aerodynamic loading and structural flexibility has a direct impact on aerodynamic performance. This interaction is often referred to as static aeroelasticity and the focus of this research has been the development of a computational static aeroelastic analysis method to improve the design of a single-element racing car wing. A static aeroelastic analysis method has been developed by coupling a Reynolds-Averaged Navier-Stokes CFD analysis method with a Finite Element structural analysis method using an iterative scheme. Development of this method has included assessment of CFD and Finite Element analysis methods and development of data transfer and mesh deflection methods. Experimental testing was also completed to further assess the computational analyses. The computational and experimental results show a good correlation and these studies have also shown that a Navier-Stokes static aeroelastic analysis of an isolated wing can be performed at an acceptable computational cost. The static aeroelastic analysis tool was used to assess methods of tailoring the structural flexibility of the wing to increase its aerodynamic performance. These tailoring methods were then used to produce two final wing designs to increase downforce and reduce drag respectively. At the average operating dynamic pressure of the racing car, the computational analysis predicts that the downforce-increasing wing has a downforce of C[1]=-1.377 in comparison to C[1]=-1.265 for the original wing. The computational analysis predicts that the drag-reducing wing has a drag of C[d]=0.115 in comparison to C[d]=0.143 for the original wing.
A Scrutiny of the Equivalent Static Lateral Load Method of Design for Multistory Masonry Structures
International Nuclear Information System (INIS)
Touqan, A. R.; Helou, S. H.
2008-01-01
Building structures with a soft storey are gaining widespread popularity in urban areas due to the scarcity of land and due to the pressing need for wide open spaces at the entrance level. In earthquake prone zones dynamic analysis based on the Equivalent Static Lateral Load method is attractive to the novice and the design codes leave the choice of the analysis procedure up to the discretion of the designer. The following is a comparison of the said method with the more elaborate Response Spectrum Method of analysis as they apply to a repertoire of different structural models. The results clearly show that the former provides similar results of response in structures with gradual change in storey stiffness; while it is over conservative for a bare frame structure. It is however less conservative for structures with a soft storey
Reachability for Finite-State Process Algebras Using Static Analysis
DEFF Research Database (Denmark)
Skrypnyuk, Nataliya; Nielson, Flemming
2011-01-01
of the Data Flow Analysis are used in order to “cut off” some of the branches in the reachability analysis that are not important for determining, whether or not a state is reachable. In this way, it is possible for our reachability algorithm to avoid building large parts of the system altogether and still......In this work we present an algorithm for solving the reachability problem in finite systems that are modelled with process algebras. Our method uses Static Analysis, in particular, Data Flow Analysis, of the syntax of a process algebraic system with multi-way synchronisation. The results...... solve the reachability problem in a precise way....
Combined Differential and Static Pressure Sensor based on a Double-Bridged Structure
DEFF Research Database (Denmark)
Pedersen, Casper; Jespersen, S.T.; Krog, J.P.
2005-01-01
A combined differential and static silicon microelectromechanical system pressure sensor based on a double piezoresistive Wheatstone bridge structure is presented. The developed sensor has a conventional (inner) bridge on a micromachined diaphragm and a secondary (outer) bridge on the chip...... substrate. A novel approach is demonstrated with a combined measurement of outputs from the two bridges, which results in a combined deduction of both differential and static media pressure. Also following this new approach, a significant improvement in differential pressure sensor accuracy is achieved....... Output from the two bridges depends linearly on both differential and absolute (relative to atmospheric pressure) media pressure. Furthermore, the sensor stress distributions involved are studied by three-dimensional finite-element (FE) stress analysis. Furthermore, the FE analysis evaluates current...
Compatibility of ITER candidate structural materials with static gallium
International Nuclear Information System (INIS)
Luebbers, P.R.; Michaud, W.F.; Chopra, O.K.
1993-12-01
Tests were conducted on the compatibility of gallium with candidate structural materials for the International Thermonuclear Experimental Reactor, e.g., Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, as well as Armco iron, Nickel 270, and pure chromium. Type 316 stainless steel is least resistant to corrosion in static gallium and Nb-5 Mo-1 Zr alloy is most resistant. At 400 degrees C, corrosion rates are ∼4.0, 0.5, and 0.03 mm/yr for type 316 SS, Inconel 625, and Nb-5 Mo- 1 Zr alloy, respectively. The pure metals react rapidly with gallium. In contrast to findings in earlier studies, pure iron shows greater corrosion than nickel. The corrosion rates at 400 degrees C are ≥88 and 18 mm/yr, respectively, for Armco iron and Nickel 270. The results indicate that at temperatures up to 400 degrees C, corrosion occurs primarily by dissolution and is accompanied by formation of metal/gallium intermetallic compounds. The solubility data for pure metals and oxygen in gallium are reviewed. The physical, chemical, and radioactive properties of gallium are also presented. The supply and availability of gallium, as well as price predictions through the year 2020, are summarized
International Nuclear Information System (INIS)
Hu, Bin; Hu, Ning; Cai, Yindi; Furukawa, Manabu; Matsushita, Makoto; Yuan, Weifeng; Cai, Yong; Yan, Cheng
2013-01-01
Compared to conventional metal-foil strain gauges, nanocomposite piezoresistive strain sensors have demonstrated high strain sensitivity and have been attracting increasing attention in recent years. To fulfil their ultimate success, the performance of vapor growth carbon fiber (VGCF)/epoxy nanocomposite strain sensors subjected to static cyclic loads was evaluated in this work. A strain-equivalent quantity (resistance change ratio) in cantilever beams with intentionally induced notches in bending was evaluated using the conventional metal-foil strain gauges and the VGCF/epoxy nanocomposite sensors. Compared to the metal-foil strain gauges, the nanocomposite sensors are much more sensitive to even slight structural damage. Therefore, it was confirmed that the signal stability, reproducibility, and durability of these nanocomposite sensors are very promising, leading to the present endeavor to apply them for static structural health monitoring. (paper)
International Nuclear Information System (INIS)
Gong, C.; Miller, R.F.
1995-01-01
This analysis of the plutonium oxide/metal storage containers is in support of the design and testing project The results from the dynamic analysis show some important facts that have not been considered before. The internal bagless transfer can will have higher stress than the primary container. The quasi-static analysis provides a conservative solution. In both vertical upright drop (dynamic) and inclined upside down drop (quasi-static) the containers are structurally sound
Comparing of Normal Stress Distribution in Static and Dynamic Soil-Structure Interaction Analyses
International Nuclear Information System (INIS)
Kholdebarin, Alireza; Massumi, Ali; Davoodi, Mohammad; Tabatabaiefar, Hamid Reza
2008-01-01
It is important to consider the vertical component of earthquake loading and inertia force in soil-structure interaction analyses. In most circumstances, design engineers are primarily concerned about the analysis of behavior of foundations subjected to earthquake-induced forces transmitted from the bedrock. In this research, a single rigid foundation with designated geometrical parameters located on sandy-clay soil has been modeled in FLAC software with Finite Different Method and subjected to three different vertical components of earthquake records. In these cases, it is important to evaluate effect of footing on underlying soil and to consider normal stress in soil with and without footing. The distribution of normal stress under the footing in static and dynamic states has been studied and compared. This Comparison indicated that, increasing in normal stress under the footing caused by vertical component of ground excitations, has decreased dynamic vertical settlement in comparison with static state
A Simple Semantics and Static Analysis for Stack Inspection
Directory of Open Access Journals (Sweden)
Anindya Banerjee
2013-09-01
Full Text Available The Java virtual machine and the .NET common language runtime feature an access control mechanism specified operationally in terms of run-time stack inspection. We give a denotational semantics in "eager" form, and show that it is equivalent to the "lazy" semantics using stack inspection. We give a static analysis of safety, i.e., the absence of security errors, that is simpler than previous proposals. We identify several program transformations that can be used to remove run-time checks. We give complete, detailed proofs for safety of the analysis and for the transformations, exploiting compositionality of the eager semantics.
Static aeroelastic analysis including geometric nonlinearities based on reduced order model
Directory of Open Access Journals (Sweden)
Changchuan Xie
2017-04-01
Full Text Available This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model (ROM. The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities; meanwhile, the non-planar effects of aerodynamics and follower force effect have been considered. ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method (FEM especially in aeroelastic solutions. The approach for structure modeling presented here is on the basis of combined modal/finite element (MFE method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis. Moreover, the non-planar aerodynamic force is computed by the non-planar vortex lattice method (VLM. Structure and aerodynamics can be coupled with the surface spline method. The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.
Technical study on semi-object emulation of structural statics problem
International Nuclear Information System (INIS)
Mo Jun; Shi Pingan; Liu Xingfu; Liu Zhiyong; Fu Chunyu
2002-01-01
Structural strength analysis depends mainly on finite element method and experiments. For complex structural system, a rather large error can be caused by some uncertain factors, such as load distributions, boundary conditions and constitutive relations in numerical analysis. At the same time, owing to the limitation of measuring and testing techniques, the strength and stiffness of key components can not be estimated by using the limited test data. To simulate stresses accurately under complex static environment, improve man-machine interactive system, and make the best use of fore- and post-processing function in graphic data processing, the authors combine numerical analysis with experimental technique and have developed the semi-object emulation technique to analyze the nonlinear problem of structure statics. The modern optical measuring techniques and image processing techniques are firstly used for the method to acquire displacement data of the vessel surface, and the data are used for the boundary condition to determine the geometrical size of disfigurement in the wall of vessel and the stress level. The experimental verification of a given test model show that these adverse problem can be solved by using semi-object emulation technology
Static analysis of a Model of the LDL degradation pathway
DEFF Research Database (Denmark)
Pilegaard, Henrik; Nielson, Flemming; Nielson, Hanne Riis
2005-01-01
BioAmbients is a derivative of mobile ambients that has shown promise of describing interesting features of the behaviour of biological systems. As for other ambient calculi static program analysis can be used to compute safe approximations of the behavior of modelled systems. We use these tools ...... to model and analyse the production of cholesterol in living cells and show that we are able to pinpoint the difference in behaviour between models of healthy systems and models of mutated systems giving rise to known diseases....
Static Analysis for Event-Based XML Processing
DEFF Research Database (Denmark)
Møller, Anders
2008-01-01
Event-based processing of XML data - as exemplified by the popular SAX framework - is a powerful alternative to using W3C's DOM or similar tree-based APIs. The event-based approach is a streaming fashion with minimal memory consumption. This paper discusses challenges for creating program analyses...... for SAX applications. In particular, we consider the problem of statically guaranteeing the a given SAX program always produces only well-formed and valid XML output. We propose an analysis technique based on ecisting anglyses of Servlets, string operations, and XML graphs....
International Nuclear Information System (INIS)
Yoo, Nam-sun; Jung, Ui-Jin; Park, Gyung-Jin; Kim, Tai-Kyung
2014-01-01
An optimization method is proposed for the simultaneous design of structural and control systems using the equivalent static loads. In the past researches, the control parameters of such feedback gains are obtained to improve some performance in the steady-state. However, the actuators which have position and velocity feedback gains should be designed to exhibit a good performance in the time domain. In other words, the system analysis should be conducted for the transient-state in dynamic manner. In this research, a new equivalent static loads method is presented to treat the control variables as the design variables. The equivalent static loads (ESLs) set is defined as a static load set which generates the same displacement field as that from dynamic loads at a certain time. The calculated sets of ESLs are applied as multiple loading conditions in the optimization process. Several examples are solved to validate the proposed method
International Nuclear Information System (INIS)
1977-01-01
The TRICO part of the CEA-SEMT system is concerned with the elasticity or plasticity computation of structures made of thin shells and beams. TRICO uses the finite element method for shells and beams. TRICO also allows the dynamic computing of structures: search for eigenmodes and eigenfrequencies or response to any sinusoidal excitation, response to time dependent loads (direct integration) in elasticity or plasticity. The mechanical structures can offer any shape and be composed of a number of materials. A special effort has been put on data input (read without any format), the data being arranged in optional commands with a precise physical sense corresponding to an order for the program. A dynamic control of the memory allows the size of the program to be adapted to that the problem to be processed. Results are printed on listing, or many be described on a magnetic tape [fr
Dynamic Inheritance and Static Analysis can be Reconciled
DEFF Research Database (Denmark)
Ernst, Erik
1998-01-01
the exibility and expressivity of staticlanguages while preserving the safety properties. It is an inheritancemechanism, with standard single inheritance as a special case. It al-lows both compile-time and run-time construction of new classes. More-over, it supports specialization of existing objects at run......-time. This helpsavoiding the combinatorial explosion in the number of classes associatedwith multiple inheritance, and it supports a better separation of con-cerns in large systems. Pre-methoding|inheritance applied to behavioraldescriptors|has been used for the construction of control structures formany years, in Beta....... With dynamic inheritance, pre-methoding becomesmore expressive, supporting control structures as rst class values whichmay be constructed and combined dynamically. Even though the conceptof pre-methoding is missing from most other languages, the basic ideacould be applied to any statically typed object...
MODELLING AND SIMULATION MATTERS UPON THE STATIC ANALYSIS OF A BUILDING
Directory of Open Access Journals (Sweden)
DUTA Alina
2017-05-01
Full Text Available The present paper puts forward a method applied to determine the static analysis and the stress of a two-level building, via an analysis with finite elements for building construction domain. Prior to this, we shall deal with a strategic issue, i.e. the achievement of a model with finite elements to validate the best approximation for the building structure. The method endorsed comes to replace the mathematical model, which is more complicated. However, a central issue that has to be dealt with before determining the displacements and the stress analysis is the achievement of the model with finite elements, as the best approximation of the building structure.
Static Voltage Stability Analysis by Using SVM and Neural Network
Directory of Open Access Journals (Sweden)
Mehdi Hajian
2013-01-01
Full Text Available Voltage stability is an important problem in power system networks. In this paper, in terms of static voltage stability, and application of Neural Networks (NN and Supported Vector Machine (SVM for estimating of voltage stability margin (VSM and predicting of voltage collapse has been investigated. This paper considers voltage stability in power system in two parts. The first part calculates static voltage stability margin by Radial Basis Function Neural Network (RBFNN. The advantage of the used method is high accuracy in online detecting the VSM. Whereas the second one, voltage collapse analysis of power system is performed by Probabilistic Neural Network (PNN and SVM. The obtained results in this paper indicate, that time and number of training samples of SVM, are less than NN. In this paper, a new model of training samples for detection system, using the normal distribution load curve at each load feeder, has been used. Voltage stability analysis is estimated by well-know L and VSM indexes. To demonstrate the validity of the proposed methods, IEEE 14 bus grid and the actual network of Yazd Province are used.
Quasi-Static Indentation Analysis of Carbon-Fiber Laminates.
Energy Technology Data Exchange (ETDEWEB)
Briggs, Timothy [Sandia National Lab. (SNL-CA), Livermore, CA (United States); English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nelson, Stacy Michelle [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2015-12-01
A series of quasi - static indentation experiments are conducted on carbon fiber reinforced polymer laminates with a systematic variation of thicknesses and fixture boundary conditions. Different deformation mechanisms and their resulting damage mechanisms are activated b y changing the thickn ess and boundary conditions. The quasi - static indentation experiments have been shown to achieve damage mechanisms similar to impact and penetration, however without strain rate effects. The low rate allows for the detailed analysis on the load response. Moreover, interrupted tests allow for the incremental analysis of various damage mechanisms and pr ogressions. The experimentally tested specimens are non - destructively evaluated (NDE) with optical imaging, ultrasonics and computed tomography. The load displacement responses and the NDE are then utilized in numerical simulations for the purpose of model validation and vetting. The accompanying numerical simulation work serves two purposes. First, the results further reveal the time sequence of events and the meaning behind load dro ps not clear from NDE . Second, the simulations demonstrate insufficiencies in the code and can then direct future efforts for development.
On the static structural design of climbing robots: part 2.
Ahmed, Ausama Hadi; Menon, Carlo
This manuscript is the second of two parts of a work investigating optimal configurations of legged climbing robots while loitering on vertical surfaces. In this Part 2, a structural analysis based on the finite element method, specifically the stiffness method, is performed to address the problem. Parameters that are investigated in this Part 2 include the inclination of both the body and the legs of the robot. Outcomes of the performed study are validated by analyzing the posture of 150 ants when loitering on vertical surfaces. The obtained validation ensures the predictions of the developed structural model are correct and can be used to identify optimal configurations of legged robots when loitering on vertical surfaces.
Static analysis of topology-dependent broadcast networks
DEFF Research Database (Denmark)
Nanz, Sebastian; Nielson, Flemming; Nielson, Hanne Riis
2010-01-01
changing network topology is a crucial ingredient. In this paper, we develop a static analysis that automatically constructs an abstract transition system, labelled by actions and connectivity information, to yield a mobility-preserving finite abstraction of the behaviour of a network expressed......Broadcast semantics poses significant challenges over point-to-point communication when it comes to formal modelling and analysis. Current approaches to analysing broadcast networks have focused on fixed connectivities, but this is unsuitable in the case of wireless networks where the dynamically...... in a process calculus with asynchronous local broadcast. Furthermore, we use model checking based on a 3-valued temporal logic to distinguish network behaviour which differs under changing connectivity patterns. (C) 2009 Elsevier Inc. All rights reserved....
Su, Yen-Shuo; Liu, Yu-Hsuan; I, Lin
2012-11-01
Whether the static microstructural order information is strongly correlated with the subsequent structural rearrangement (SR) and their predicting power for SR are investigated experimentally in the quenched dusty plasma liquid with microheterogeneities. The poor local structural order is found to be a good alarm to identify the soft spot and predict the short term SR. For the site with good structural order, the persistent time for sustaining the structural memory until SR has a large mean value but a broad distribution. The deviation of the local structural order from that averaged over nearest neighbors serves as a good second alarm to further sort out the short time SR sites. It has the similar sorting power to that using the temporal fluctuation of the local structural order over a small time interval.
Static inelastic analysis of steel frames with flexible connections
Directory of Open Access Journals (Sweden)
Nefovska-Danilović M.
2004-01-01
Full Text Available The effects of connection flexibility and material yielding on the behavior of plane steel frames subjected to static (monotonic loads are presented in this paper. Two types of material nonlinearities are considered: flexible nodal connections and material yielding, as well as geometric nonlinearity of the structure. To account for material yielding, a plastic hinge concept is adopted. A flexible connection is idealized by nonlinear rotational spring. Plastic hinge is also idealized by nonlinear rotational spring attached in series with the rotational spring that accounts for connection flexibility. The stiffness matrix for the beam with flexible connections and plastic hinges at its ends is obtained. To illustrate the validity and accuracy of the proposed numerical model, several examples have been conducted.
On the equivalent static loads approach for dynamic response structural optimization
DEFF Research Database (Denmark)
Stolpe, Mathias
2014-01-01
The equivalent static loads algorithm is an increasingly popular approach to solve dynamic response structural optimization problems. The algorithm is based on solving a sequence of related static response structural optimization problems with the same objective and constraint functions...... as the original problem. The optimization theoretical foundation of the algorithm is mainly developed in Park and Kang (J Optim Theory Appl 118(1):191–200, 2003). In that article it is shown, for a certain class of problems, that if the equivalent static loads algorithm terminates then the KKT conditions...
Screw-vector bond graphs for kinetic-static modelling and analysis of mechanisms
International Nuclear Information System (INIS)
Bidard, Catherine
1994-01-01
This dissertation deals with the kinetic-static modelling and analysis of spatial mechanisms used in robotics systems. A framework is proposed, which embodies a geometrical and a network approach for kinetic-static modelling. For this purpose we use screw theory and bond graphs. A new form of bond graphs is introduced: the screw-vector bond graph, whose power variables are defined to be wrenches and twists expressed as intrinsic screw-vectors. The mechanism is then identified as a network, whose components are kinematic pairs and whose topology is described by a directed graph. A screw-vector Simple Junction Structure represents the topological constraints. Kinematic pairs are represented by one-port elements, defined by two reciprocal screw-vector spaces. Using dual bases of screw-vectors, a generic decomposition of kinematic pair elements is given. The reduction of kinetic-static models of series and parallel kinematic chains is used in order to derive kinetic-static functional models in geometric form. Thereupon, the computational causality assignment is adapted for the graphical analysis of the mobility and the functioning of spatial mechanisms, based on completely or incompletely specified models. (author) [fr
Spectral analysis of viscous static compressible fluid equilibria
Energy Technology Data Exchange (ETDEWEB)
Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)
2001-05-25
It is generally assumed that the study of the spectrum of the linearized Navier-Stokes equations around a static state will provide information about the stability of the equilibrium. This is obvious for inviscid barotropic compressible fluids by the self-adjoint character of the relevant operator, and rather easy for viscous incompressible fluids by the compact character of the resolvent. The viscous compressible linearized system, both for periodic and homogeneous Dirichlet boundary problems, satisfies neither condition, but it does turn out to be the generator of an immediately continuous, almost stable semigroup, which justifies the analysis of the spectrum as predictive of the initial behaviour of the flow. As for the spectrum itself, except for a unique negative finite accumulation point, it is formed by eigenvalues with negative real part, and nonreal eigenvalues are confined to a certain bounded subset of complex numbers. (author)
International Nuclear Information System (INIS)
Monniaux, D.
2009-06-01
Software operating critical systems (aircraft, nuclear power plants) should not fail - whereas most computerised systems of daily life (personal computer, ticket vending machines, cell phone) fail from time to time. This is not a simple engineering problem: it is known, since the works of Turing and Cook, that proving that programs work correctly is intrinsically hard. In order to solve this problem, one needs methods that are, at the same time, efficient (moderate costs in time and memory), safe (all possible failures should be found), and precise (few warnings about nonexistent failures). In order to reach a satisfactory compromise between these goals, one can research fields as diverse as formal logic, numerical analysis or 'classical' algorithmics. From 2002 to 2007 I participated in the development of the Astree static analyser. This suggested to me a number of side projects, both theoretical and practical (use of formal proof techniques, analysis of numerical filters...). More recently, I became interested in modular analysis of numerical property and in the applications to program analysis of constraint solving techniques (semi-definite programming, SAT and SAT modulo theory). (author)
Directory of Open Access Journals (Sweden)
Kołakowski Zbigniew
2016-06-01
Full Text Available A review of papers that investigate the static and dynamic coupled buckling and post-buckling behaviour of thin-walled structures is carried out. The problem of static coupled buckling is sufficiently well-recognized. The analysis of dynamic interactive buckling is limited in practice to columns, single plates and shells. The applications of finite element method (FEM or/and analytical-numerical method (ANM to solve interaction buckling problems are on-going. In Poland, the team of scientists from the Department of Strength of Materials, Lodz University of Technology and co-workers developed the analytical-numerical method. This method allows to determine static buckling stresses, natural frequencies, coefficients of the equation describing the post-buckling equilibrium path and dynamic response of the plate structure subjected to compression load and/or bending moment. Using the dynamic buckling criteria, it is possible to determine the dynamic critical load. They presented a lot of interesting results for problems of the static and dynamic coupled buckling of thin-walled plate structures with complex shapes of cross-sections, including an interaction of component plates. The most important advantage of presented analytical-numerical method is that it enables to describe all buckling modes and the post-buckling behaviours of thin-walled columns made of different materials. Thin isotropic, orthotropic or laminate structures were considered.
Internal structure of multicomponent static spherical gravitating fluids
International Nuclear Information System (INIS)
Olson, E.; Bailyn, M.
1975-01-01
The Maxwell--Einstein equations for a fluid comprised of more than one type of particle are not a determinate system even if an equation of state is added. The problem of what the charge distribution is in such fluids is therefore also not determinate. To complete the definition of the problem, more equations are needed. We obtain these for the simple case of a static spherically symmetric multicomponent system (imbedded in a Minkowskian background) by minimizing the energy of the fluid with respect to variations in the number densities of the constituents, with the side conditions that the total number of each constituent is constant during the variations. This procedure results in a determinate set of hydrostatic equilibrium equations, the sum of which is the familiar Tolman--Oppenheimer--Volkoff equation. Some general conclusions can be drawn. For example, the necessary and sufficient condition for charge neutrality is that the mass-energy density be some (arbitrary) function of some (arbitrary) linear combination of the number densities. Thus, since it is well known that the electrons in a white dwarf star at absolute zero form a degenerate gas, there must be a charge imbalance throughout such a star. This imbalance can then be computed self-consistently. An over-all physical interpretation of the new equations is that in equilibrium at any point in the fluid the sum of the non-gravitational forces per unit energy is the same for constituent 1 as for constituent 2 and so on. This is the analog of the corresponding (Galilean) statement for gravitational forces that is valid even without equilibrium
Convolutional Sparse Coding for Static and Dynamic Images Analysis
Directory of Open Access Journals (Sweden)
B. A. Knyazev
2014-01-01
Full Text Available The objective of this work is to improve performance of static and dynamic objects recognition. For this purpose a new image representation model and a transformation algorithm are proposed. It is examined and illustrated that limitations of previous methods make it difficult to achieve this objective. Static images, specifically handwritten digits of the widely used MNIST dataset, are the primary focus of this work. Nevertheless, preliminary qualitative results of image sequences analysis based on the suggested model are presented.A general analytical form of the Gabor function, often employed to generate filters, is described and discussed. In this research, this description is required for computing parameters of responses returned by our algorithm. The recursive convolution operator is introduced, which allows extracting free shape features of visual objects. The developed parametric representation model is compared with sparse coding based on energy function minimization.In the experimental part of this work, errors of estimating the parameters of responses are determined. Also, parameters statistics and their correlation coefficients for more than 106 responses extracted from the MNIST dataset are calculated. It is demonstrated that these data correspond well with previous research studies on Gabor filters as well as with works on visual cortex primary cells of mammals, in which similar responses were observed. A comparative test of the developed model with three other approaches is conducted; speed and accuracy scores of handwritten digits classification are presented. A support vector machine with a linear or radial basic function is used for classification of images and their representations while principal component analysis is used in some cases to prepare data beforehand. High accuracy is not attained due to the specific difficulties of combining our model with a support vector machine (a 3.99% error rate. However, another method is
On static triplet structures in fluids with quantum behavior
Sesé, Luis M.
2018-03-01
The problem of the equilibrium triplet structures in fluids with quantum behavior is discussed. Theoretical questions of interest to the real space structures are addressed by studying the three types of structures that can be determined via path integrals (instantaneous, centroid, and total thermalized-continuous linear response). The cases of liquid para-H2 and liquid neon on their crystallization lines are examined with path-integral Monte Carlo simulations, the focus being on the instantaneous and the centroid triplet functions (equilateral and isosceles configurations). To analyze the results further, two standard closures, Kirkwood superposition and Jackson-Feenberg convolution, are utilized. In addition, some pilot calculations with path integrals and closures of the instantaneous triplet structure factor of liquid para-H2 are also carried out for the equilateral components. Triplet structural regularities connected to the pair radial structures are identified, a remarkable usefulness of the closures employed is observed (e.g., triplet spatial functions for medium-long distances, triplet structure factors for medium k wave numbers), and physical insight into the role of pair correlations near quantum crystallization is gained.
Energy Technology Data Exchange (ETDEWEB)
Jovanovic, S M [Nikola Tesla Inst., Belgrade (YU)
1990-01-01
This paper presents a model and an appropriate numerical procedure for a four-level time decomposition quasi-static power flow and successive disturbances analysis of power systems. The analysis consists of the sequential computation of the zero, primary, secondary and tertiary quasi-static states and of the estimation of successive structural disturbances during the 1200 s dynamics after a structural disturbance. The model is developed by detailed inspection of the time decomposition characteristics of automatic protection and control devices. Adequate speed of the numerical procedure is attained by a specific application of the inversion matrix lemma and the decoupled model constant coefficient matrices. The four-level time decomposition quasi-static method is intended for security and emergency analysis. (author).
Complex dynamic and static structures in interconnected particle systems
International Nuclear Information System (INIS)
Kristiansen, Kai de Lange
2004-01-01
, and may also be a subject. for future studies. The diffusive behaviour of a cluster of a semi-large number spheres in a soft potential undergoes transitions in length scale from super diffusion via normal diffusion to sub diffusion. This analysis follows the motion of one sphere over a large time span. Knot theory can be used to get other measures of the collective behaviour, e.g. the linking number seems to be a promising measure and would be worth studying. This quantity represents the number of times the world lines from two spheres cross each other in a preferred direction of rotation. Random dense packing of spheres is a useful model for disordered and granular media. The monolayer of non-magnetic spheres in a ferro fluid is used to simulate this packing in 2D. Our experiments show packing structures similar to previous results. In 3D we have used a mechanical contraction method, paper 5, to simulate rapid sedimentation of binary mixture of spherical colloidal particles. The densities as function of sphere composition were found to be similar to results from the experiments. For a random dense packing it would be interesting to follow the idea of the excluded volume argument to explain quantitatively the density as function of size- and shape distributions. The mechanical contraction method seems to be ideal for doing these kinds of numerical calculations. The coordination number is difficult to find in a real system of colloidal particles, but is easily obtained in numerical simulations. Nucleation of a colloidal monolayer in all alternating electric field has been studied recently. The magnetic hole system may be used to show a similar behaviour in a magnetic field. With this system we can study the nucleation process from the beginning and also to investigate the nucleation rate. Preliminary experiments have also been done that show large differences in the behaviour in systems with only free spheres and systems with some obstacles or fixed spheres among the
Complex dynamic and static structures in interconnected particle systems
Energy Technology Data Exchange (ETDEWEB)
Kristiansen, Kai de Lange
2004-07-01
-Mandelbrot relation is not fully understood, and may also be a subject. for future studies. The diffusive behaviour of a cluster of a semi-large number spheres in a soft potential undergoes transitions in length scale from super diffusion via normal diffusion to sub diffusion. This analysis follows the motion of one sphere over a large time span. Knot theory can be used to get other measures of the collective behaviour, e.g. the linking number seems to be a promising measure and would be worth studying. This quantity represents the number of times the world lines from two spheres cross each other in a preferred direction of rotation. Random dense packing of spheres is a useful model for disordered and granular media. The monolayer of non-magnetic spheres in a ferro fluid is used to simulate this packing in 2D. Our experiments show packing structures similar to previous results. In 3D we have used a mechanical contraction method, paper 5, to simulate rapid sedimentation of binary mixture of spherical colloidal particles. The densities as function of sphere composition were found to be similar to results from the experiments. For a random dense packing it would be interesting to follow the idea of the excluded volume argument to explain quantitatively the density as function of size- and shape distributions. The mechanical contraction method seems to be ideal for doing these kinds of numerical calculations. The coordination number < C > is difficult to find in a real system of colloidal particles, but is easily obtained in numerical simulations. Nucleation of a colloidal monolayer in all alternating electric field has been studied recently. The magnetic hole system may be used to show a similar behaviour in a magnetic field. With this system we can study the nucleation process from the beginning and also to investigate the nucleation rate. Preliminary experiments have also been done that show large differences in the behaviour in systems with only free spheres and systems with some
Analytical static structure factor for a two-component system ...
Indian Academy of Sciences (India)
Marwan Al-Raeei
2018-03-29
Mar 29, 2018 ... be useful in studying biomolecular fluids and other soft matter fluids. Keywords. Ornstein–Zernike ... partial structure factor; isothermal compressibility; soft matter. PACS No. 05.20.Jj. 1. ..... computing. Users need to have ...
Directory of Open Access Journals (Sweden)
Vahid Reza Afkhami
2017-12-01
Full Text Available In the steel frames, beam-column connections are traditionally assumed to be rigid or pinned, but in the steel frames, most types of beam-column connections are semi-rigid. Recent studies and some new codes, especially EC3 and EC4, include methods and formulas to estimate the resistance and stiffness of the panel zone. Because of weaknesses of EC3 and EC4 in some cases, Bayo et al. proposed a new component-based method (cruciform element method to model internal and external semi-rigid connections that revived and modified EC methods. The nonlinear modelling of structures plays an important role in the analysis and design of structures and nonlinear static analysis is a rather simple and efficient technique for analysis of structures. This paper presents nonlinear static (pushover analysis technique by new nonlinearity factor and Bayo et al. model of two types of semi-rigid connections, end plate connection and top and seat angles connection. Two types of lateral loading, uniform and triangular distributions are considered. Results show that the frames with top and seat angles connection have fewer initial stiffness than frames with semi-rigid connection and P-Δ effect more decreases base shear capacity in the case of top and seat angles connection. P-Δ effect in decrease of base shear capacity increases with the increase of number of stories.
Static analysis of triple-effect adsorption refrigeration with compressor
Directory of Open Access Journals (Sweden)
Fumi Watanabe
2017-03-01
Full Text Available In order to improve the efficiency of the adsorption refrigeration cycle, this study proposes a triple-effect adsorption refrigeration cycle equipped with a compressor. This cycle can run in order to create a large variation in adsorbent concentration range by the compressor, even if there is little temperature variation in the desorption and adsorption processes. The objective of this study is to clarify the effect that regulating adsorption pressure using a compressor has on the adsorption refrigeration cycle, and to that end cycle efficiency was calculated using a static analysis based on a state of equilibrium. As a results from the simulation, the triple-effect cycles can operate by regulating adsorption pressure. Both COP and exergy efficiency can be improved by a factor of 1.2 if the cycled is regulated the adsorption pressure of each cycle rather than using a shared adsorption pressure. For heat sources in the temperature range of 70–100 °C, this method is superior in terms of COP and exergy efficiency. COP values of approximately 1.7–1.8 can be obtained, which is three times higher than single-effect cycles. The triple-effect cycles have one-third the SCE of single-effect cycles but about the same SCE as double-effect cycles.
Static and quasi-static analysis of lobed-pumpkin balloon
Nakashino, Kyoichi; Sasaki, Makoto; Hashimoto, Satoshi; Saito, Yoshitaka; Izutsu, Naoki
The present study is motivated by the need to improve design methodology for super pressure balloon with 3D gore design concept, currently being developed at the Scientific Balloon Center of ISAS/JAXA. The distinctive feature of the 3-D gore design is that the balloon film has excess materials not only in the circumferential direction but also in the meridional direction; the meridional excess is gained by attaching the film boundaries to the corresponding tendons of a shorter length with a controlled shortening rate. The resulting balloon shape is a pumpkin-like shape with large bulges formed between adjacent tendons. The balloon film, when fully inflated, develops wrinkles in the circumferential direction over its entire region, so that the stresses in the film are limited to a small amount of uniaxial tension in the circumferential direction while the high meridional loads are carried by re-enforced tendons. Naturally, the amount of wrinkling in the film is dominated by the shortening rate between the film boundaries and the tendon curve. In the 3-D gore design, as a consequence, the shortening rate becomes a fundamental design parameter along with the geometric parameters of the gore. In view of this, we have carried out a series of numerical study of the lobed-pumpkin balloon with varying gore geometry as well as with varying shortening rate. The numerical simula-tions were carried out with a nonlinear finite element code incorporating the wrinkling effect. Numerical results show that there is a threshold value for the shortening rate beyond which the stresses in the balloon film increases disproportionately. We have also carried out quasi-static simulations of the inflation process of the lobed-pumpkin balloon, and have obtained asymmetric deformations when the balloon films are in uniaxial tension state.
Analyzing the State of Static Analysis : A Large-Scale Evaluation in Open Source Software
Beller, M.; Bholanath, R.; McIntosh, S.; Zaidman, A.E.
2016-01-01
The use of automatic static analysis has been a software engineering best practice for decades. However, we still do not know a lot about its use in real-world software projects: How prevalent is the use of Automated Static Analysis Tools (ASATs) such as FindBugs and JSHint? How do developers use
static analysis of circular cylindrical shell under hydrostatic and ring
African Journals Online (AJOL)
DEPT OF AGRICULTURAL ENGINEERING
(Golzan et al, 2008). Circular cylindrical shells are used in a large variety of civil engineering structures, e.g. off-shore platforms, chimneys, silos, pipelines, bridge arches or wind turbine towers (Winterstetter et al, 2002). This work is concerned with the analysis of circular cylindri- cal shell subjected to hydrostatic pressure in.
3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis
Irina Alexandra Paun; Roxana Cristina Popescu; Bogdan Stefanita Calin; Cosmin Catalin Mustaciosu; Maria Dinescu; Catalin Romeo Luculescu
2018-01-01
We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite. In vitro experime...
Theoretical analysis of static properties of mixed ionic crystal ...
Indian Academy of Sciences (India)
In the present paper, we have investigated the static properties of the mixed ionic crystal NH4Cl1−Br using three-body potential model (TBPM) by the application of Vegard's law. The results for the mixed crystal counterparts are also in fair agreement with the pseudo-experimental data generated from the application of ...
The “ductility exhaustion” method for static strength assessment of fusion structures
Energy Technology Data Exchange (ETDEWEB)
Thompson, Vaughan, E-mail: vaughan.thompson@ccfe.ac.uk; Vizvary, Zsolt
2015-10-15
Graphical abstract: - Highlights: • Reduced conservatism and more complex geometry. • Assessment process simplified. • Gives insight into real material behaviour – virtual proof test. • Leads onto structural failure modelling. • Ductility exhaustion and global plastic collapse structural assessment. - Abstract: The traditional method for static strength assessment of structures uses elastic stresses computed along critical ligaments and then divided into categories depending on their nature e.g. bending/membrane and primary/secondary. More recently, highly realistic plastic simulations are possible using FE (finite elements) which offer useful advantages over the traditional approach including (a) more accurate modelling of complex geometries, (b) a more straightforward assessment process and (c) a less conservative approach. The plastic analysis must consider both global and local effects, and the paper looks in detail at the “ductility exhaustion” method for the latter. Simple test cases show how the method can be applied in both the Abaqus and ANSYS FE Codes and for the case of a JET beryllium tile, the method has improved reserve factors for disruption loads considerably to the point where the lower operating temperature can be safely lowered from 200 °C to 100 °C where the low ductility of beryllium is an issue.
Schilder, Constanze; Kohlhoff, Harald; Hofmann, Detlef; Basedau, Frank; Habel, Wolfgang R.; Baeßler, Matthias; Niederleithinger, Ernst; Georgi, Steven; Herten, Markus
2013-05-01
Static and dynamic pile tests are carried out to determine the load bearing capacity and the quality of reinforced concrete piles. As part of a round robin test to evaluate dynamic load tests, structure integrated fibre optic strain sensors were used to receive more detailed information about the strains along the pile length compared to conventional measurements at the pile head. This paper shows the instrumentation of the pile with extrinsic Fabry-Perot interferometers sensors and fibre Bragg gratings sensors together with the results of the conducted static load test as well as the dynamic load tests and pile integrity tests.
International Nuclear Information System (INIS)
Leonard, J.W.
1975-01-01
This work is concerned with the evaluation of a quasi-static method as applied to a swing check valve designed to provide emergency shut-off capability subsequent to a postulated break in a steam line. The impact analysis of swinging disk upon the valve seat is an asymmetric problem in dynamic elastoplasticity with potentially large displacements and strains resulting from the impact. To perform a quasi-static analysis for this component the disk and seat region of the valve was isolated from the piping system by special boundary elements and an elastic-plastic finite element model was generated assuming axisymmetric solid ring elements. An equivalent static axisymmetric incremental load system was used to approximate the nonsymmetric initial velocity of impact. Subsequent to the nonlinear incremental finite element analysis by a standard computer software package (MARC-CDC program), a special post-processing program was employed to calculate the incremental sum of external work due to the defined load system. Equating this external work to the initial kinetic energy of impact, parametric curves for displacements, stresses, and strains were obtained as functions of various levels of kinetic energy imparted to the valve at closure. To verify the conservative nature of the assumptions made in the quasi-static model, a comparison was made with a time-dependent, nonlinear, axisymmetric, elastic-plastic finite difference simulation. Another standard computer software package (PISCES-2DL) was used for this dynamic simulation. For a check-point value of initial impact kinetic energy, correlation between the quasi-static finite element and dynamic finite difference analyses is presented. Validations of the assumptions made in the quasi-static analysis and of the results obtained are discussed in detail
International Nuclear Information System (INIS)
Jiang, Jian-ping; Li, Dong-xu
2010-01-01
This paper is devoted to the study of the decentralized guaranteed cost static output feedback vibration control for piezoelectric smart structures. A smart panel with collocated piezoelectric actuators and velocity sensors is modeled using a finite element method, and then the size of the model is reduced in the state space using the modal Hankel singular value. The necessary and sufficient conditions of decentralized guaranteed cost static output feedback control for the reduced system have been presented. The decentralized and centralized static output feedback matrices can be obtained from solving two linear matrix inequalities. A comparison between centralized control and decentralized control is performed in order to investigate their effectiveness in suppressing vibration of a smart panel. Numerical results show that when the system is subjected to initial displacement or white noise disturbance, the decentralized and centralized controls are both very effective and the control results are very close
3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis
Directory of Open Access Journals (Sweden)
Irina Alexandra Paun
2018-02-01
Full Text Available We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite. In vitro experiments using MG-63 osteoblast-like cells for 3D structures with gradients of pore size helped us to find an optimum pore size between 20–40 µm. Starting from optimized 3D structures, we evaluated both qualitatively and quantitatively the effects of static magnetic fields of up to 250 mT on cell proliferation and differentiation, by ALP (alkaline phosphatase production, Alizarin Red and osteocalcin secretion measurements. We demonstrated that the synergic effect of 3D structure optimization and static magnetic stimulation enhances the bone regeneration by a factor greater than 2 as compared with the same structure in the absence of a magnetic field.
3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis.
Paun, Irina Alexandra; Popescu, Roxana Cristina; Calin, Bogdan Stefanita; Mustaciosu, Cosmin Catalin; Dinescu, Maria; Luculescu, Catalin Romeo
2018-02-07
We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite. In vitro experiments using MG-63 osteoblast-like cells for 3D structures with gradients of pore size helped us to find an optimum pore size between 20-40 µm. Starting from optimized 3D structures, we evaluated both qualitatively and quantitatively the effects of static magnetic fields of up to 250 mT on cell proliferation and differentiation, by ALP (alkaline phosphatase) production, Alizarin Red and osteocalcin secretion measurements. We demonstrated that the synergic effect of 3D structure optimization and static magnetic stimulation enhances the bone regeneration by a factor greater than 2 as compared with the same structure in the absence of a magnetic field.
Atmospheric stability analysis over statically and dynamically rough surfaces
Maric, Emina; Metzger, Meredith; Singha, Arindam; Sadr, Reza
2011-11-01
The ratio of buoyancy flux to turbulent kinetic energy production in the atmospheric surface layer is investigated experimentally for air flow over two types of surfaces characterized by static and dynamic roughness. In this study, ``static'' refers to the time-invariant nature of naturally-occurring roughness over a mud/salt playa; while, ``dynamic'' refers to the behavior of water waves along an air-water interface. In both cases, time-resolved measurements of the momentum and heat fluxes were acquired from synchronized 3D sonic anemometers mounted on a vertical tower. Field campaigns were conducted at two sites, representing the ``statically'' and ``dynamically'' rough surfaces, respectively: (1) the SLTEST facility in Utah's western desert, and (2) the new Doha airport in Qatar under construction along the coast of the Persian Gulf. Note, at site 2, anemometers were located directly above the water by extension from a tower secured to the end of a 1 km-long pier. Comparisons of the Monin-Obukhov length, flux Richardson number, and gradient Richardson number are presented, and discussed in the context of the observed evolution of the turbulent spectra in response to diurnal variations of atmospheric stability. Supported by the Qatar National Research Fund.
Static contribution of the higher modes in the dynamic response of structures
International Nuclear Information System (INIS)
Barbosa, H.J.C.
1982-03-01
In the dynamic response of structures by the modal superposition method usually only the lower modes are taken into account and a procedure that could estimate the contribution due to the higher modes without calculating them would be useful. The technique which consists of assuming that the higher modes respond statically is discussed here. Structures subjected to support motion which are analysed by response spectra techniques are considered and some numerical results are presented. (Author) [pt
Analysis of Static Load Test of a Masonry Arch Bridge
Shi, Jing-xian; Fang, Tian-tian; Luo, Sheng
2018-03-01
In order to know whether the carrying capacity of the masonry arch bridge built in the 1980s on the shipping channel entering and coming out of the factory of a cement company can meet the current requirements of Level II Load of highway, through the equivalent load distribution of the test vehicle according to the current design specifications, this paper conducted the load test, evaluated the bearing capacity of the in-service stone arch bridge, and made theoretical analysis combined with Midas Civil. The results showed that under the most unfavorable load conditions the measured strain and deflection of the test sections were less than the calculated values, the bridge was in the elastic stage under the design load; the structural strength and stiffness of the bridge had a certain degree of prosperity, and under the in the current conditions of Level II load of highway, the bridge structure was in a safe state.
A contribution to the static and dynamic calculation of research reactor structures
International Nuclear Information System (INIS)
Goncalves Filho, O.J.A.; Brito Aghina, L.O. de; Gomes, P.A.
1978-01-01
Some results in the analysis of a research reactor, using the finite element method are presented. The distribution of internal forces is discussed for the conditions of a Borax accident. An special computer automatic program for the static and dynamic analysis of this Kind of reactor buildings was developed. The program may use either plane triangular elements or double-curvature shell elements and allows the analysis of laminated shells, as it the case of concrete containment vessels with steel liners. (Author)
The quasi-equilibrium response of MOS structures: Quasi-static factor
Okeke, M.; Balland, B.
1984-07-01
The dynamic response of a MOS structure driven into a non-equilibrium behaviour by a voltage ramp is presented. In contrast to Khun's quasi-static technique it is shown that any ramp-driven MOS structure has some degree of non-equilibrium. A quasi staticity factor μAK which serves as a measure of the degree of quasi-equilibrium, has been introduced for the first time. The mathematical model presented in the paper allows a better explanation of the experimental recordings. It is shown that this model could be used to analyse the various features of the response of the structure and that such physical parameters as the generation-rate, trap activation energy, and the effective capture constants could be obtained.
Analysis of the static yield stress for giant electrorheological fluids
Seo, Youngwook P.; Choi, Hyoung Jin; Seo, Yongsok
2017-08-01
Cheng et al. (2010)'s experimental results for the static yield stress of giant electrorheological (GER) fluids over the full range of electric field strengths were reanalyzed by applying Seo's scaling function which could include both the polarization and the conductivity models. The Seo's scaling function could correctly fit the yield stress behavior of GER suspensions behavior after if a proper normalization of the yield stress data was taken which collapse them onto a single curve. The model predictions were also contrasted with recently proposed Choi et al.'s scaling function to rouse the attention for a proper consideration of the GER fluid mechanisms.
Overview of the 6 Meter HIAD Inflatable Structure and Flexible TPS Static Load Test Series
Swanson, Greg; Kazemba, Cole; Johnson, Keith; Calomino, Anthony; Hughes, Steve; Cassell, Alan; Cheatwood, Neil
2014-01-01
To support NASAs long term goal of landing humans on Mars, technologies which enable the landing of heavy payloads are being developed. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current launch vehicle fairing limitations. Therefore, past and present technologies are now being explored to provide a mass and volume efficient solution to atmospheric entry, including Hypersonic Inflatable Aerodynamic Decelerators (HIADs). At the beginning of 2014, a 6m HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify the designs structural performance. The 6m HIAD structure was constructed in a stacked toroid configuration using nine inflatable torus segments composed of fiber reinforced thin films, which were joined together using adhesives and high strength textile woven structural straps to help distribute the loads throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials to protect the inflatable structure from heat loads that would be seen during atmospheric entry. To perform the static load test series, a custom test fixture was constructed. The fixture consisted of a structural tub rim with enough height to allow for displacement of the inflatable structure as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The centerbody of the inflatable structure was attached to a pedestal mount as seen in Figure 1. Using an impermeable membrane seal draped over the test article, partial vacuum was pulled beneath the HIAD, resulting in a uniform static pressure load applied to the outer surface. During the test series an extensive amount of instrumentation was used to provide many data sets including: deformed shape, shoulder deflection, strap loads, cord loads, inflation pressures, and applied static load
DEFF Research Database (Denmark)
Jerke, G.; Pedersen, J.S.; Egelhaaf, S.U.
1997-01-01
We report a systematic investigation of the static structure factor S(q,c) of polymerlike reverse micelles formed by soybean lecithin and trace amounts of water in deuterated isooctane using small-angle neutron scattering and static light scattering. The experimental data for different concentrat......We report a systematic investigation of the static structure factor S(q,c) of polymerlike reverse micelles formed by soybean lecithin and trace amounts of water in deuterated isooctane using small-angle neutron scattering and static light scattering. The experimental data for different...
Rodriguez, G.; Scheid, R. E., Jr.
1986-01-01
This paper outlines methods for modeling, identification and estimation for static determination of flexible structures. The shape estimation schemes are based on structural models specified by (possibly interconnected) elliptic partial differential equations. The identification techniques provide approximate knowledge of parameters in elliptic systems. The techniques are based on the method of maximum-likelihood that finds parameter values such that the likelihood functional associated with the system model is maximized. The estimation methods are obtained by means of a function-space approach that seeks to obtain the conditional mean of the state given the data and a white noise characterization of model errors. The solutions are obtained in a batch-processing mode in which all the data is processed simultaneously. After methods for computing the optimal estimates are developed, an analysis of the second-order statistics of the estimates and of the related estimation error is conducted. In addition to outlining the above theoretical results, the paper presents typical flexible structure simulations illustrating performance of the shape determination methods.
Montes-Perez, J; Cruz-Vera, A; Herrera, J N
2011-12-01
This work presents the full analytic expressions for the thermodynamic properties and the static structure factor for a hard sphere plus 1-Yukawa fluid within the mean spherical approximation. To obtain these properties of the fluid type Yukawa analytically it was necessary to solve an equation of fourth order for the scaling parameter on a large scale. The physical root of this equation was determined by imposing physical conditions. The results of this work are obtained from seminal papers of Blum and Høye. We show that is not necessary the use the series expansion to solve the equation for the scaling parameter. We applied our theoretical result to find the thermodynamic and the static structure factor for krypton. Our results are in good agreement with those obtained in an experimental form or by simulation using the Monte Carlo method.
Future-based Static Analysis of Message Passing Programs
Directory of Open Access Journals (Sweden)
Wytse Oortwijn
2016-06-01
Full Text Available Message passing is widely used in industry to develop programs consisting of several distributed communicating components. Developing functionally correct message passing software is very challenging due to the concurrent nature of message exchanges. Nonetheless, many safety-critical applications rely on the message passing paradigm, including air traffic control systems and emergency services, which makes proving their correctness crucial. We focus on the modular verification of MPI programs by statically verifying concrete Java code. We use separation logic to reason about local correctness and define abstractions of the communication protocol in the process algebra used by mCRL2. We call these abstractions futures as they predict how components will interact during program execution. We establish a provable link between futures and program code and analyse the abstract futures via model checking to prove global correctness. Finally, we verify a leader election protocol to demonstrate our approach.
Static structure of superionic conducting glass of Ag-Ge-Se system
Energy Technology Data Exchange (ETDEWEB)
Suenaga, R; Nakashima, S; Tahara, S; Takeda, S [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Kawakita, Y [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Kohara, S [Japan Synchrotron Radiation Research Inst., 1-1-1 Kouto, Sayo-cho, Hyogo 679-5198 (Japan)], E-mail: takeda@rc.kyushu-u.ac.jp
2008-02-15
Superionic conducting glasses are the important materials as solid electrolytes. Amorphous Ag-Ge-Se system is well known to exhibit the superionic conducting behavior where silver ions easily migrate into the mixed structure of Ag{sub 2}Se and Ge-Se chalcogenide glass. It will be good material to study how the superionic conducting region distributes in the glassy network, and whether the conducting paths extends to the entire of the material, or the localized and limited area in an isolated region. In this paper, we will present the results of the static structure of Ag-Ge-Se system by high-energy X-ray diffraction measurements.
Directory of Open Access Journals (Sweden)
Ali Reza Ghanizadeh
2018-01-01
Full Text Available New trend in design of flexible pavements is mechanistic-empirical approach. The first step for applying this method is analyzing the pavement structure for several times and computation of critical stresses and strains, which needs a fast analysis method with good accuracy. This paper aims to introduce a new rapid pavement analysis approach, which can consider the history of loading and rate effect. To this end, 1200 flexible pavement sections were analyzed, and equivalent frequencies (EF were calculated using Fast Fourier Transform (FFT method at various depths of asphalt layer. A nonlinear regression equation has been presented for determining EF at different depths of asphalt layer. For more accurate predicting of EF at low frequencies, a feed-forward Artificial Neural Network (ANN was employed, which allows accurate prediction of EF. The frequencies obtained by the proposed regression equation and ANN were compared with frequencies observed in Virginia Smart Road project, and it was found that there is a good agreement between observed and predicted frequencies. Comparison of quasi-static analysis of flexible pavements by frequencies obtained using FFT method and full dynamic analysis by 3D-Move program approves that the critical responses of pavement computed by proposed quasi-static analysis approach are comparable to critical responses computed using full dynamic analysis. Keywords: Equivalent frequency, Fast Fourier Transform (FFT, Pavement quasi-static analysis, Dynamic modulus, Artificial Neural Network (ANN
Spacetime structure of static solutions in Gauss-Bonnet gravity: Neutral case
International Nuclear Information System (INIS)
Torii, Takashi; Maeda, Hideki
2005-01-01
We study the spacetime structures of the static solutions in the n-dimensional Einstein-Gauss-Bonnet-Λ system systematically. We assume the Gauss-Bonnet coefficient α is non-negative and a cosmological constant is either positive, zero, or negative. The solutions have the (n-2)-dimensional Euclidean submanifold, which is the Einstein manifold with the curvature k=1, 0, and -1. We also assume 4α-tilde/l 2 ≤1, where l is the curvature radius, in order for the sourceless solution (M=0) to be defined. The general solutions are classified into plus and minus branches. The structures of the center, horizons, infinity, and the singular point depend on the parameters α, l 2 , k, M, and branches complicatedly so that a variety of global structures for the solutions are found. In our analysis, the M-tilde-r diagram is used, which makes our consideration clear and enables easy understanding by visual effects. In the plus branch, all the solutions have the same asymptotic structure at infinity as that in general relativity with a negative cosmological constant. For the negative-mass parameter, a new type of singularity called the branch singularity appears at nonzero finite radius r=r b >0. The divergent behavior around the singularity in Gauss-Bonnet gravity is milder than that around the central singularity in general relativity. There are three types of horizons: inner, black hole, and cosmological. In the k=1,0 cases, the plus-branch solutions do not have any horizon. In the k=-1 case, the radius of the horizon is restricted as r h h >√(2α-tilde)) in the plus (minus) branch. The black hole solution with zero or negative mass exists in the plus branch even for the zero or positive cosmological constant. There is also the extreme black hole solution with positive mass. We briefly discuss the effect of the Gauss-Bonnet corrections on black hole formation in a collider and the possibility of the violation of the third law of the black hole thermodynamics
Axial vector diquark correlations in the nucleon: structure functions and static properties
Energy Technology Data Exchange (ETDEWEB)
Mineo, H. E-mail: mineo@nt.phys.s.u-tokyo.ac.jp; Bentz, W.; Ishii, N.; Yazaki, K
2002-06-03
In order to extract information on the strength of quark-quark correlations in the axial vector (a.v.) diquark channel (J{sup P}=1{sup +},T=1), we analyze the quark light cone momentum distributions in the nucleon, in particular their flavor dependencies, and the static properties of the nucleon. To construct the nucleon as a relativistic 3-quark bound state, we use a simple 'static' approximation to the full Faddeev equation in the Nambu-Jona-Lasinio model, including correlations in the scalar (J{sup P}=0{sup +},T=0) and a.v. diquark channels. It is shown that the a.v. diquark correlations should be rather weak compared to the scalar ones. From our analysis we extract information on the strength of the correlations as well as on the probability of the a.v. diquark channel.
Wang, Wei
2018-05-11
Android platform has dominated the Operating System of mobile devices. However, the dramatic increase of Android malicious applications (malapps) has caused serious software failures to Android system and posed a great threat to users. The effective detection of Android malapps has thus become an emerging yet crucial issue. Characterizing the behaviors of Android applications (apps) is essential to detecting malapps. Most existing work on detecting Android malapps was mainly based on string static features such as permissions and API usage extracted from apps. There also exists work on the detection of Android malapps with structural features, such as Control Flow Graph (CFG) and Data Flow Graph (DFG). As Android malapps have become increasingly polymorphic and sophisticated, using only one type of static features may result in false negatives. In this work, we propose DroidEnsemble that takes advantages of both string features and structural features to systematically and comprehensively characterize the static behaviors of Android apps and thus build a more accurate detection model for the detection of Android malapps. We extract each app’s string features, including permissions, hardware features, filter intents, restricted API calls, used permissions, code patterns, as well as structural features like function call graph. We then use three machine learning algorithms, namely, Support Vector Machine (SVM), k-Nearest Neighbor (kNN) and Random Forest (RF), to evaluate the performance of these two types of features and of their ensemble. In the experiments, We evaluate our methods and models with 1386 benign apps and 1296 malapps. Extensive experimental results demonstrate the effectiveness of DroidEnsemble. It achieves the detection accuracy as 95.8% with only string features and as 90.68% with only structural features. DroidEnsemble reaches the detection accuracy as 98.4% with the ensemble of both types of features, reducing 9 false positives and 12 false
Venkatakrishnan, Balasubramanian; Palii, Miorel-Lucian; Agbandje-McKenna, Mavis; McKenna, Robert
2012-03-01
The Protein Data Bank (PDB) contains over 71,000 structures. Extensively studied proteins have hundreds of submissions available, including mutations, different complexes, and space groups, allowing for application of data-mining algorithms to analyze an array of static structures and gain insight about a protein's structural variation and possibly its dynamics. This investigation is a case study of HIV protease (PR) using in-house algorithms for data mining and structure superposition through generalized formulæ that account for multiple conformations and fractional occupancies. Temperature factors (B-factors) are compared with spatial displacement from the mean structure over the entire study set and separately over bound and ligand-free structures, to assess the significance of structural deviation in a statistical context. Space group differences are also examined.
The hidden symmetries and their algebraic structure of the static axially symmetric SDYM fields
International Nuclear Information System (INIS)
Hao Sanru
1993-01-01
A new explicit transformation about the static axially symmetric self-dual Yang-Mills (SDYM) fields is presented. The theory has proved that the new transformation is a symmetric one. For the two kinds of the Lie algebraic generators of the Lie group SL (N. R) /SO (N), the corresponding transformations are given. By making use of the Yang-Baxter equality and their square brackets, the loop and conformal algebraic structures of the symmetric transformations for the basic fields have been obtained. All the results obtained can be directly generalized to the other models
Electronic structure and static dipole polarizability of C60-C240
International Nuclear Information System (INIS)
Zope, Rajendra R
2008-01-01
The electronic structure of C 60 -C 240 and its first-order response to a static electric field is studied by an all-electron density functional theory calculation using large polarized Gaussian basis sets. Our results show that the outer C 240 shell almost completely shields the inner C 60 as inferred from the practically identical values of dipole polarizability of the C 60 -C 240 onion (449 A 3 ) and that of the isolated C 240 fullerene (441 A 3 ). The C 60 -C 240 is thus a near-perfect Faraday cage
A static analysis method to determine the availability of kinetic energy from wind turbines
Rawn, B.G.; Gibescu, M.; Kling, W.L.
2010-01-01
This paper introduces definitions and an analysis method for estimating how much kinetic energy can be made available for inertial response from a wind turbine over a year, and how much energy capture must be sacrificed to do so. The analysis is based on the static characteristics of wind turbines,
International Nuclear Information System (INIS)
Futakawa, M.; Iyoku, T.
1996-01-01
For pt.IV see ibid., vol.154, p.83-95, 1995. The graphite components in high temperature gas-cooled reactors are connected to each other through a key-keyway structure that has gaps between the key and the keyway to accommodate thermal expansion. Because a dynamic load concentrates on the key-keyway structure during earthquakes, it is considered to be a crucial element for assessing the integrity of the graphite components. A combination of experiments and analyses was employed to investigate the dynamic behavior of the key-keyway structure, i.e. the equivalent stiffness associated with vibrational characteristics of the graphite components and the stress distribution under dynamic loading. The experiments were performed using a graphite scale model and a dynamic photo-elastic method. The analysis was carried out using the finite element method (FEM) code ABAQUS, taking account of the contact behavior between the key and the keyway. The following conclusions were derived. (1) The equivalent stiffness of the key-keyway structure shows nonlinearity, owing to the contact deformation. (2) The equivalent stiffness evaluated by the FEM analysis, taking account of the non-linear contact deformation, is applicable for predicting the vibrational characteristics of the key-keyway structure. (3) The stress concentration under dynamic loading is lower than or nearly equal to that under static loading. The maximum stress concentration of the seismic load can be sufficiently evaluated under static loading conditions. (orig.)
Dikshit, Vishwesh; Nagalingam, Arun Prasanth; Yap, Yee Ling; Sing, Swee Leong; Yeong, Wai Yee; Wei, Jun
2017-01-01
The objective of this investigation was to determine the quasi-static indentation response and failure mode in three-dimensional (3D) printed trapezoidal core structures, and to characterize the energy absorbed by the structures. In this work, the trapezoidal sandwich structure was designed in the following two ways. Firstly, the trapezoidal core along with its facesheet was 3D printed as a single element comprising a single material for both core and facesheet (type A); Secondly, the trapezoidal core along with facesheet was 3D printed, but with variation in facesheet materials (type B). Quasi-static indentation was carried out using three different indenters, namely standard hemispherical, conical, and flat indenters. Acoustic emission (AE) technique was used to capture brittle cracking in the specimens during indentation. The major failure modes were found to be brittle failure and quasi-brittle fractures. The measured indentation energy was at a maximum when using a conical indenter at 9.40 J and 9.66 J and was at a minimum when using a hemispherical indenter at 6.87 J and 8.82 J for type A and type B series specimens respectively. The observed maximum indenter displacements at failure were the effect of material variations and composite configurations in the facesheet. PMID:28772649
The Static and Molecular Structure of Barium Dibromide: A Theoretical Study
International Nuclear Information System (INIS)
Guerbuez, H.
2004-01-01
The geometry of barium dibromide was first determined by electron diffraction by Akishin and Spiridov. That study concluded that the molecule is linear, but recent modern electron diffraction and quantum chemical studies of BaBr 2 indicated that its equilibrium geometry is bent. The geometrical parameters, namely, bond lengths and bond angles of barium dibromide were calculated from different levels of computation and experimentally. In this work we have calculated the molecular structure of the BaCl 2 using the Interionic Force model. On the other hand, we have calculated the interionic potentials with two different rigid ion model potentials (RIM) which one is the Vashista-Rahman (VR) semi-empirical potential and second one is the RIM potential with parametrization of Tatlipinar. These two model potential are compared with each other by reproducing the experimental static structure. The structure calculations have been performed by solving numerically the hypernetted chain approximate of liquids
Directory of Open Access Journals (Sweden)
Ivankova Olga
2017-01-01
Full Text Available This paper deals with the analysis of 21-storeyed cast in-situ reinforced concrete high-rise building. Two different 3D models were created, because of two considered values of subsoil stiffness coefficient -fixed structure (alt. 1 and the structure supported by elastic soil (alt. 2. For both alternatives of foundation of structure, required analyses (static and dynamic were done and obtained results were compared in this paper. Short description of the structure, applied loads and other input parameters are also mentioned here. The main purpose of this analysis was to provide more information to planning engineers about the behaviour of structure exposed the wind load or seismic load when different soil conditions were considered.
Locality-Driven Parallel Static Analysis for Power Delivery Networks
Zeng, Zhiyu
2011-06-01
Large VLSI on-chip Power Delivery Networks (PDNs) are challenging to analyze due to the sheer network complexity. In this article, a novel parallel partitioning-based PDN analysis approach is presented. We use the boundary circuit responses of each partition to divide the full grid simulation problem into a set of independent subgrid simulation problems. Instead of solving exact boundary circuit responses, a more efficient scheme is proposed to provide near-exact approximation to the boundary circuit responses by exploiting the spatial locality of the flip-chip-type power grids. This scheme is also used in a block-based iterative error reduction process to achieve fast convergence. Detailed computational cost analysis and performance modeling is carried out to determine the optimal (or near-optimal) number of partitions for parallel implementation. Through the analysis of several large power grids, the proposed approach is shown to have excellent parallel efficiency, fast convergence, and favorable scalability. Our approach can solve a 16-million-node power grid in 18 seconds on an IBM p5-575 processing node with 16 Power5+ processors, which is 18.8X faster than a state-of-the-art direct solver. © 2011 ACM.
Arirajan, K. A.; Chockalingam, K.; Vignesh, C.
2018-04-01
Implants are the artificial parts to replace the missing bones or joints in human anatomy to give mechanical support. Hip joint replacement is an important issue in orthopaedic surgery. The main concern limiting the long-run success of the total hip replacement is the limited service life. Hip replacement technique is widely used in replacing the femur head and acetabular cup by materials that are highly biocompatible. The success of the artificial hip replacement depends upon proper material selection, structure, and shape of the hip prosthesis. Many orthopaedic analyses have been tried with different materials, but ended with partial success on the application side. It is a critical task for selecting the best material pair in the hip prosthesis design. This work develops the finite element analysis of an artificial hip implant to study highest von Mises stress, contact pressure and elastic strain occurs for the dissimilar material combination. The different bearing couple considered for the analysis are Metal on Metal, Metal on Plastic, Metal on Ceramic, Ceramic on Plastic, Ceramic on Ceramic combinations. The analysis is carried out at different static positions of a human (i.e) standing, sitting. The results reveals that the combination with metal in contact with plastic (i.e) Titanium femoral head paired with Ultra High Molecular Weight Poly Ethylene acetabular cup reduces maximum von Mises stress and also it gives lowest contact pressure than other combination of bearing couples.
Static analysis of worst-case stack cache behavior
DEFF Research Database (Denmark)
Jordan, Alexander; Brandner, Florian; Schoeberl, Martin
2013-01-01
Utilizing a stack cache in a real-time system can aid predictability by avoiding interference that heap memory traffic causes on the data cache. While loads and stores are guaranteed cache hits, explicit operations are responsible for managing the stack cache. The behavior of these operations can......-graph, the worst-case bounds can be efficiently yet precisely determined. Our evaluation using the MiBench benchmark suite shows that only 37% and 21% of potential stack cache operations actually store to and load from memory, respectively. Analysis times are modest, on average running between 0.46s and 1.30s per...
Kim, Seong-Gil; Kim, Wan-Soo
2018-05-15
BACKGROUND The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. MATERIAL AND METHODS This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. RESULTS In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (psimple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (plinear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). CONCLUSIONS Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement.
International Nuclear Information System (INIS)
Siegel, E.
1982-01-01
The generalized-disorder collective-boson mode-softening universality-principle (GDCBMSUP) for collective-boson mode dispersion in disordered systems (liquids, quantum liquids, glasses, powders, disordered magnets, plasmas...), a unified qualitative and semi-qualitative and semi-quantitative descriptive prescription for treating the properties of very differently disordered systems, is directly dependent upon a measurement (or calculation) of the static structure factor S(k) determined from a frequency average of the dynamic structure factor S(k,w), a multiple of the inelastic differential neutron scattering cross section d 2 sigma/dwdOMEGA. The prescription for this principle is given and, because of its universal applicability to disordered systems of any type with any type and/or degree of disorder, the neutron scattering determination of S(k) takes on renewed importance
International Nuclear Information System (INIS)
Shaik Dawood, M S I; Iannucci, L; Greenhalgh, E S
2008-01-01
In this work, based on a linear piezoelectric constitutive model, a three-dimensional finite element code using an eight-node brick element that includes the anisotropic and coupled field effects of piezoelectric actuators has been developed for the static shape control analysis of fibre reinforced composite laminates. The code was used to study voltage sensing and actuation capabilities of piezoelectric actuators on composite laminates. The required input voltages to the actuators in order to achieve a specified structural shape were determined using a weighted shape control method. The code was validated using two test cases obtained from the literature. The results were found to show good correlation for voltage actuation. However, since determining input voltages to achieve the desired structural shape is a type of inverse problem, there are no explicit solutions and hence the results obtained from the present model were not similar to those reported in the literature. The second validation also suggests that the anisotropic and coupled field effects of the piezoelectric actuators cannot be neglected as this has been shown to underestimate the required control voltages. The effects of different lamination angles, boundary conditions, plate length-to-thickness ratios and actuator dimensions on the control voltages have also been reported
Quasi-Static Single-Component Hybrid Simulation of a Composite Structure with Multi-Axis Control
DEFF Research Database (Denmark)
Høgh, J.; Waldbjørn, J.; Wittrup-Schmidt, J.
2015-01-01
This paper presents a quasi-static hybrid simulation performed on a single component structure. Hybrid simulation is a substructural technique, where a structure is divided into two sections: a numerical section of the main structure and a physical experiment of the remainder. In previous cases...
Faghihi, Hassan
2011-01-01
This thesis is composed by an experimental part and numerical part, aimed at contributing to a better knowledge of the behavior of plastic parts under different loading conditions. The study is intended to validate a FE model for simulating exterior plastic components of car especially the A-decor and plastic clips in the context of thermal and static load analysis. From the comparison of numerical and experimental results in the terms of thermal and static deformation of the A-decor, it is c...
UAV : Warnings From Multiple Automated Static Analysis Tools At A Glance
Buckers, T.B.; Cao, C.S.; Doesburg, M.S.; Gong, Boning; Wang, Sunwei; Beller, M.M.; Zaidman, A.E.; Pinzger, Martin; Bavota, Gabriele; Marcus, Andrian
2017-01-01
Automated Static Analysis Tools (ASATs) are an integral part of today’s software quality assurance practices. At present, a plethora of ASATs exist, each with different strengths. However, there is little guidance for developers on which of these ASATs to choose and combine for a project. As a
Modeling the HTML DOM and Browser API in Static Analysis of JavaScript Web Applications
DEFF Research Database (Denmark)
Jensen, Simon Holm; Madsen, Magnus; Møller, Anders
2011-01-01
of reasoning about the flow of control and data in modern JavaScript applications that interact with the HTML DOM and browser API. One application of such a static analysis is to detect type-related and dataflow-related programming errors. We report on experiments with a range of modern web applications...
International Nuclear Information System (INIS)
Martinez, M; Rocha, B; Li, M; Shi, G; Beltempo, A; Rutledge, R; Yanishevsky, M
2012-01-01
The National Research Council Canada (NRC) has worked on the development of structural health monitoring (SHM) test platforms for assessing the performance of sensor systems for load monitoring applications. The first SHM platform consists of a 5.5 m cantilever aluminum beam that provides an optimal scenario for evaluating the ability of a load monitoring system to measure bending, torsion and shear loads. The second SHM platform contains an added level of structural complexity, by consisting of aluminum skins with bonded/riveted stringers, typical of an aircraft lower wing structure. These two load monitoring platforms are well characterized and documented, providing loading conditions similar to those encountered during service. In this study, a micro-electro-mechanical system (MEMS) for acquiring data from triads of gyroscopes, accelerometers and magnetometers is described. The system was used to compute changes in angles at discrete stations along the platforms. The angles obtained from the MEMS were used to compute a second, third or fourth order degree polynomial surface from which displacements at every point could be computed. The use of a new Kalman filter was evaluated for angle estimation, from which displacements in the structure were computed. The outputs of the newly developed algorithms were then compared to the displacements obtained from the linear variable displacement transducers connected to the platforms. The displacement curves were subsequently post-processed either analytically, or with the help of a finite element model of the structure, to estimate strains and loads. The estimated strains were compared with baseline strain gauge instrumentation installed on the platforms. This new approach for load monitoring was able to provide accurate estimates of applied strains and shear loads. (paper)
Combining Static Analysis and Runtime Checking in Security Aspects for Distributed Tuple Spaces
DEFF Research Database (Denmark)
Yang, Fan; Aotani, Tomoyuki; Masuhara, Hidehiko
2011-01-01
Enforcing security policies to distributed systems is difficult, in particular, to a system containing untrusted components. We designed AspectKE*, an aspect-oriented programming language based on distributed tuple spaces to tackle this issue. One of the key features in AspectKE* is the program...... analysis predicates and functions that provide information on future behavior of a program. With a dual value evaluation mechanism that handles results of static analysis and runtime values at the same time, those functions and predicates enable the users to specify security policies in a uniform manner....... Our two-staged implementation strategy gathers fundamental static analysis information at load-time, so as to avoid performing all analysis at runtime. We built a compiler for AspectKE*, and successfully implemented security aspects for a distributed chat system and an electronic healthcare record...
PPM-One: a static protein structure based chemical shift predictor
International Nuclear Information System (INIS)
Li, Dawei; Brüschweiler, Rafael
2015-01-01
We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM-One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain protons and it is found that the prediction accuracy is at a level allowing an independent assessment of stereospecific assignments. For a previously established set of test proteins some overall improvement was achieved over current top-performing chemical shift prediction programs
STRUCTURAL CALCULATION OF AN EMPLACEMENT PALLET STATICALLY LOADED BY A WASTE PACKAGE
International Nuclear Information System (INIS)
S. Mastilovic
2000-01-01
The purpose of this calculation is to determine the structural response of the emplacement pallet (EP) subjected to static load from the mounted waste package (WP). The scope of this document is limited to reporting the calculation results in terms of stress intensity magnitudes. This calculation is associated with the waste emplacement systems design; calculations are performed by the Waste Package Design group. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to perform the calculation and develop the document. The finite element solutions are performed by using the commercially available ANSYS Version (V) 5.4 finite element code. The results of these calculations are provided in terms of maximum stress intensity magnitudes
Electronic structure and static dipole polarizability of C{sub 60}-C{sub 240}
Energy Technology Data Exchange (ETDEWEB)
Zope, Rajendra R [Department of Physics, University of Texas at El Paso, El Paso, TX 79958 (United States)
2008-04-28
The electronic structure of C{sub 60}-C{sub 240} and its first-order response to a static electric field is studied by an all-electron density functional theory calculation using large polarized Gaussian basis sets. Our results show that the outer C{sub 240} shell almost completely shields the inner C{sub 60} as inferred from the practically identical values of dipole polarizability of the C{sub 60}-C{sub 240} onion (449 A{sup 3}) and that of the isolated C{sub 240} fullerene (441 A{sup 3}). The C{sub 60}-C{sub 240} is thus a near-perfect Faraday cage.
Kim, Seong-Gil
2018-01-01
Background The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. Material/Methods This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. Results In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (pregression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). Conclusions Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement. PMID:29760375
International Nuclear Information System (INIS)
Krueger, P.; Stucky, T.; Boewe, M.; Neuhaeuser, H.
1993-01-01
Quasi-static stress relaxation and dynamic internal friction measurements of stress induced reversible structural relaxation were performed on the amorphous alloy Fe 40 Ni 40 B 20 . The kinetics can be well described by a stretched exponential Kohlrausch-Williams-Watts quasi-static relaxation. The thermally activated part of the internal friction shows an Arrhenius temperature behaviour for a fixed vibration frequency and an inverse power frequency behaviour for a fixed temperature. The activation energies calculated from the Arrhenius equation and from the frequency shift method are significantly different. In order to explain this discrepancy the relation between the quasi-static and the dynamic descriptions of the reversible relaxation is reexamined. In particular it is shown that these two activation energies are connected by the Kohlrausch exponent of the quasi-static relaxation. (orig.)
Finite element analysis of GFRP reinforced concrete pavement under static load
Li, Shiping; Hu, Chunhua
2018-02-01
GFRP was more corrosion resistant than traditional reinforced, it is lightweight, high strength thermal expansion coefficient is more close to the concrete and a poor conductor of electromagnetic. Therefore, the use of GFRP to replace the traditional reinforcement in concrete pavement application has excellent practical value. This paper uses ANSYS to establish delamination and reinforcement of Pavement model and analyzed response of GFRP concrete and ordinary concrete pavement structural mechanics on effects of different factors under the action of static. The results showed that under static load, pavement surface layer presented similar changes on stress of surface layer, vertical and horizontal deformation in two kinds of pavement structure, but indicators of GFRP reinforced concrete pavement were obviously better than that of ordinary concrete pavement.
Seismic analysis and design of NPP structures
International Nuclear Information System (INIS)
de Carvalho Santos, S.H.; da Silva, R.E.
1989-01-01
Numerical methods for static and dynamic analysis of structures, as well as for the design of individual structural elements under the applied loads are under continuous development, being very sophisticated methods nowadays available for the engineering practice. Nevertheless, this sophistication will be useless if some important aspects necessary to assure full compatability between analysis and design are disregarded. Some of these aspects are discussed herein. This paper presents an integrated approach for the seismic analysis and design of NPP structures: the development of models for the seismic analysis, the distribution of the global seismic forces among the seismic-resistant elements and the criteria for the design of the individual elements for combined static and dynamic forces are the main topics to be discussed herein. The proposed methodology is illustrated. Some examples taken from the project practice are presented for illustration the exposed concepts
Omar, Mohamed A
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations.
Statistical modeling of static strengths of nuclear graphites with relevance to structural design
International Nuclear Information System (INIS)
Arai, Taketoshi
1992-02-01
Use of graphite materials for structural members poses a problem as to how to take into account of statistical properties of static strength, especially tensile fracture stresses, in component structural design. The present study concerns comprehensive examinations on statistical data base and modelings on nuclear graphites. First, the report provides individual samples and their analyses on strengths of IG-110 and PGX graphites for HTTR components. Those statistical characteristics on other HTGR graphites are also exemplified from the literature. Most of statistical distributions of individual samples are found to be approximately normal. The goodness of fit to normal distributions is more satisfactory with larger sample sizes. Molded and extruded graphites, however, possess a variety of statistical properties depending of samples from different with-in-log locations and/or different orientations. Second, the previous statistical models including the Weibull theory are assessed from the viewpoint of applicability to design procedures. This leads to a conclusion that the Weibull theory and its modified ones are satisfactory only for limited parts of tensile fracture behavior. They are not consistent for whole observations. Only normal statistics are justifiable as practical approaches to discuss specified minimum ultimate strengths as statistical confidence limits for individual samples. Third, the assessment of various statistical models emphasizes the need to develop advanced analytical ones which should involve modeling of microstructural features of actual graphite materials. Improvements of other structural design methodologies are also presented. (author)
Static analysis of the hull plate using the finite element method
Ion, A.
2015-11-01
This paper aims at presenting the static analysis for two levels of a container ship's construction as follows: the first level is at the girder / hull plate and the second level is conducted at the entire strength hull of the vessel. This article will describe the work for the static analysis of a hull plate. We shall use the software package ANSYS Mechanical 14.5. The program is run on a computer with four Intel Xeon X5260 CPU processors at 3.33 GHz, 32 GB memory installed. In terms of software, the shared memory parallel version of ANSYS refers to running ANSYS across multiple cores on a SMP system. The distributed memory parallel version of ANSYS (Distributed ANSYS) refers to running ANSYS across multiple processors on SMP systems or DMP systems.
Directory of Open Access Journals (Sweden)
A Martowicz
2016-09-01
Full Text Available The paper presents the results of an application of response surface method to aid the analysis of variation of static and dynamic properties of micromirror. The multiphysics approach was taken into account to elaborate finite element model of electrostatically actuated microdevice and coupled analyses were carried out to yield the results. Used procedure of metamodel fitting is described and its quality is discussed. Elaborated approximations were used to perform the sensitivity analysis as well as to study the propagation of variation introduced by uncertain and control parameters. The input parameters deal with geometry, material properties and control voltage. As studied output characteristics there were chosen the resultant static vertical displacement of reflecting surfaces and the resonance frequency related to the first normal mode of vibration.
Le, Jia-Liang; Bažant, Zdeněk P.; Bazant, Martin Z.
2011-07-01
strength and tests of the power law for the crack growth rate. The theory is shown to match closely numerous test data on strength and static lifetime of ceramics and concrete, and explains why their histograms deviate systematically from the straight line in Weibull scale. Although the present unified theory is built on several previous advances, new contributions are here made to address: (i) a crack in a disordered nano-structure (such as that of hydrated Portland cement), (ii) tail probability of a fiber bundle (or parallel coupling) model with softening elements, (iii) convergence of this model to the Gaussian distribution, (iv) the stress-life curve under constant load, and (v) a detailed random walk analysis of crack front jumps in an atomic lattice. The nonlocal behavior is captured in the present theory through the finiteness of the number of links in the weakest-link model, which explains why the mean size effect coincides with that of the previously formulated nonlocal Weibull theory. Brittle structures correspond to the large-size limit of the present theory. An important practical conclusion is that the safety factors for strength and tolerable minimum lifetime for large quasibrittle structures (e.g., concrete structures and composite airframes or ship hulls, as well as various micro-devices) should be calculated as a function of structure size and geometry.
Dead zone analysis of ECAL barrel modules under static and dynamic load
Pierre-Emile, T.; Anduze, M.
2018-03-01
In the context of ILD project, impact studies of environmental loads on the Electromagnetic CALorimeter (ECAL) have been initiated. The ECAL part considered is the barrel and it consists of several independent modules which are mounted on the Hadronic CALorimeter barrel (HCAL) itself mounted on the cryostat coil and the yoke. The estimate of the gap required between each ECAL modules is fundamental to define the assembly step and avoid mechanical contacts over the barrel lifetime. In the meantime, it has to be done in consideration to the dead spaces reduction and detector hermiticity optimization. Several Finite Element Analysis (FEA) with static and dynamic loads have been performed in order to define correctly the minimum values for those gaps. Due to the implantation site of the whole project in Japan, seismic analysis were carried out in addition to the static ones. This article shows results of these analysis done with the Finite Element Method (FEM) in ANSYS. First results show the impact of HCAL design on the ECAL modules motion in static load. The second study dedicated to seismic approach on a larger model (including yoke and cryostat) gives additional results on earthquake consequences.
The static structure factor of liquid 4He: some new aspects
International Nuclear Information System (INIS)
Khalil, K.Y.
1986-08-01
The thesis is concerned with three complementary problems. The first deals with a new interpretation of the elusive nature of the roton. This is motivated by the observation that the 'rotonic' minimum in the dispersion curve, which is intimately related to the principal peak of the static structure factor, is a common feature not only for He II but also for He I and almost all other condensed systems. The second problem concerns the precise asymptotic behaviour of the pair correlation function for liquid sup 4 He, whose Fourier transform is essentially the long-wavelength liquid structure factor. The third problem deals with the implications of this new formulation as related to Bose-Einstein condensation and superfluidity, as well as to other physical properties of the system. The thesis concludes with a partial list of open problems and with two possible extensions, including a complete development of an exceedingly simple method for determining the second virial coefficient of the sup 4 He gas over a wide temperature range. 122 refs., 2 figs., 5 tabs. (A.M.H)
Effect of stress level on static young's modulus of certain structural materials
Energy Technology Data Exchange (ETDEWEB)
Vojtenko, A.F.; Skripnik, Yu.D.; Solov' eva, N.G.; Nadezhdin, G.N. (AN Ukrainskoj SSR, Kiev. Inst. Problem Prochnosti)
1982-11-01
Certain steels, titanium and aluminium alloys have been studied for their dynamic and static Young moduli. It is shown that a stress rise in materials to the level of microplastic strain realization results in a significant reduction of the static modulus of elasticity in the materials studied.
Effect of stress level on static young's modulus of certain structural materials
International Nuclear Information System (INIS)
Vojtenko, A.F.; Skripnik, Yu.D.; Solov'eva, N.G.; Nadezhdin, G.N.
1982-01-01
Certain steels, titanium and aluminium alloys have been studied for their dynamic and static Young moduli. It is shown that a stress rise in materials to the level of microplastic strain realization results in a significant reduction of the static modulus of elasticity in the materials studied
Directory of Open Access Journals (Sweden)
Angga Dwinovantyo
2017-01-01
Full Text Available The application of Acoustic Doppler Current Profiler (ADCP can be used not only for measuring ocean currents, but also for quantifying suspended sediment concentrations (SSC from acoustic backscatter strength based on sonar principle. Suspended sediment has long been recognized as the largest sources of sea contaminant and must be considered as one of the important parameters in water quality of seawater. This research was to determine SSC from measured acoustic backscattered intensity of static and mobile ADCP. In this study, vertically mounted 400 kHz and 750 kHz static ADCP were deployed in Lembeh Strait, North Sulawesi. A mobile ADCP 307.2 kHz was also mounted on the boat and moved to the predefined cross-section, accordingly. The linear regression analysis of echo intensity measured by ADCP and by direct measurement methods showed that ADCP is a reliable method to measure SSC with correlation coefficient (r 0.92. Higher SSC was observed in low water compared to that in high water and near port area compared to those in observed areas. All of this analysis showed that the combination of static and mobile ADCP methods produces reasonably good spatial and temporal data of SSC.
Sensitivity analysis of complex models: Coping with dynamic and static inputs
International Nuclear Information System (INIS)
Anstett-Collin, F.; Goffart, J.; Mara, T.; Denis-Vidal, L.
2015-01-01
In this paper, we address the issue of conducting a sensitivity analysis of complex models with both static and dynamic uncertain inputs. While several approaches have been proposed to compute the sensitivity indices of the static inputs (i.e. parameters), the one of the dynamic inputs (i.e. stochastic fields) have been rarely addressed. For this purpose, we first treat each dynamic as a Gaussian process. Then, the truncated Karhunen–Loève expansion of each dynamic input is performed. Such an expansion allows to generate independent Gaussian processes from a finite number of independent random variables. Given that a dynamic input is represented by a finite number of random variables, its variance-based sensitivity index is defined by the sensitivity index of this group of variables. Besides, an efficient sampling-based strategy is described to estimate the first-order indices of all the input factors by only using two input samples. The approach is applied to a building energy model, in order to assess the impact of the uncertainties of the material properties (static inputs) and the weather data (dynamic inputs) on the energy performance of a real low energy consumption house. - Highlights: • Sensitivity analysis of models with uncertain static and dynamic inputs is performed. • Karhunen–Loève (KL) decomposition of the spatio/temporal inputs is performed. • The influence of the dynamic inputs is studied through the modes of the KL expansion. • The proposed approach is applied to a building energy model. • Impact of weather data and material properties on performance of real house is given
Pan, Peng; Wu, Shoujun; Wang, Haishen; Nie, Xin
2018-04-01
Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism. This damage mode results in poor ductility and limited energy dissipation. Continuous components offer alternatives that may avoid such failures. A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics. Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used. However, a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported. In this study, a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing. Critical joints were designed and verified. Numerical models were established and calibrated to estimate frame shear forces. The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms. Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall. Drift distribution becomes more uniform with height. Concrete cracks and damage occurs in desired areas. The infilled rocking wall frame offers a promising approach to achieving seismic resilience.
Directory of Open Access Journals (Sweden)
Ana Paula Pinto Pinheiro
Full Text Available ABSTRACT Wood is the best-known biological material used as a raw material since the dawn of mankind until present days. As a natural and renewable composite, its lifetime is limited by the degradation of its basic elements. This degradation can be caused by chemical reactions or by biological agents capable of accelerating the process of deterioration. In this work, the wear, thermal, and micro-structural characteristics, as also the bio-degradation behavior in static systems, of the wood species Brazilwood (Caesalpinia echinata were studied under laboratory conditions in order to use these woods in design. The results show that Brazilwood has a good visual performance after abrasion test, since it has not shown any representative roughness increase. In addition, Brazilwood has high level of crystallinity of, approximately, 68% and was almost insensitive to fungi attack, forming only 5.3 x 103 CFU/mL. Besides, its texture did not change due to exposure to water or sweat.
Thovex, Christophe; Trichet, Francky
The objective of our work is to extend static and dynamic models of Social Networks Analysis (SNA), by taking conceptual aspects of enterprises and institutions social graph into account. The originality of our multidisciplinary work is to introduce abstract notions of electro-physic to define new measures in SNA, for new decision-making functions dedicated to Human Resource Management (HRM). This paper introduces a multidimensional system and new measures: (1) a tension measure for social network analysis, (2) an electrodynamic, predictive and semantic system for recommendations on social graphs evolutions and (3) a reactance measure used to evaluate the individual stress at work of the members of a social network.
Static/dynamic Analysis and Optimization of Z-axis Stand of PCB CNC Drilling Machine*
Directory of Open Access Journals (Sweden)
Zhou Yanjun
2016-01-01
Full Text Available The finite element analysis is used for the static and dynamic analysis of the Z axis brace of PCB CNC drilling machine. With its results of maximum displacement deformation and von Mises stress and modal frequency, the defect of original design was found out. On such bases, a variety of optimization scheme is put forward and the best size of the Z axis brace is obtained by the performance comparison of the schemes. This method offers bases for the design and renovation of other machine tool components.
A computer program for structural analysis of fuel elements
International Nuclear Information System (INIS)
Hayashi, I.M.V.; Perrotta, J.A.
1988-01-01
It's presented the code ELCOM for the matrix analysis of tubular structures coupled by rigid spacers, typical of PWR's fuel elements. The code ELCOM makes a static structural analysis, where the displacements and internal forces are obtained for each structure at the joints with the spacers, and also, the natural frequencies and vibrational modes of an equivalent integrated structure are obtained. The ELCOM result is compared to a PWR fuel element structural analysis obtained in published paper. (author) [pt
A code for structural analysis of fuel assemblies
International Nuclear Information System (INIS)
Hayashi, I.M.V.; Perrotta, J.A.
1988-08-01
It's presented the code ELCOM for the matrix analysis of tubular structures coupled by rigid spacers, typical of PWR's fuel elements. The code ELCOM makes a static structural analysis, where the displacements and internal forces are obtained for each tubular structure at the joints with the spacers, and also, the natural frequencies and vibrational modes of an equilavent integrated structure are obtained. The ELCOM result is compared to a PWR fuel element structural analysis obtained in published paper. (author) [pt
Static Extraction and Conformance Analysis of Hierarchical Runtime Architectural Structure
2010-05-14
information as a separate input. For instance, the Software Bookshelf (Finnigan et al. 1997), of which (PBS 2000) is an instantiation, has the...Kostas Kontogiannis, Hausi A. Müller, John Mylopoulos, Stephen G. Perelgut, Martin Stanley, and Kerny Wong. The Soft- ware Bookshelf . IBM Systems...pages 70–79, 2004. PBS. PBS: The Portable Bookshelf . http://www.swag.uwaterloo.ca/pbs/, 2000. Dewayne E. Perry and Alexander L. Wolf. Foundations for
THE USE OF SPRINGS IN STATIC ANALYSIS OF STRUCTURES ...
African Journals Online (AJOL)
compressible layers of different properties and varying thickness. ... foundation shapes, foundation embedment, soil layering, dynamic ... easily justified on the mere ground of unavailability ... Figure 1 (a) An ideally flexible circular footing on.
Implementation and Optimization of GPU-Based Static State Security Analysis in Power Systems
Directory of Open Access Journals (Sweden)
Yong Chen
2017-01-01
Full Text Available Static state security analysis (SSSA is one of the most important computations to check whether a power system is in normal and secure operating state. It is a challenge to satisfy real-time requirements with CPU-based concurrent methods due to the intensive computations. A sensitivity analysis-based method with Graphics processing unit (GPU is proposed for power systems, which can reduce calculation time by 40% compared to the execution on a 4-core CPU. The proposed method involves load flow analysis and sensitivity analysis. In load flow analysis, a multifrontal method for sparse LU factorization is explored on GPU through dynamic frontal task scheduling between CPU and GPU. The varying matrix operations during sensitivity analysis on GPU are highly optimized in this study. The results of performance evaluations show that the proposed GPU-based SSSA with optimized matrix operations can achieve a significant reduction in computation time.
Structural Analysis in a Conceptual Design Framework
Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.
2012-01-01
Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.
Fast and Safe Concrete Code Execution for Reinforcing Static Analysis and Verification
Directory of Open Access Journals (Sweden)
M. Belyaev
2015-01-01
Full Text Available The problem of improving precision of static analysis and verification techniques for C is hard due to simplification assumptions these techniques make about the code model. We present a novel approach to improving precision by executing the code model in a controlled environment that captures program errors and contract violations in a memory and time efficient way. We implemented this approach as an executor module Tassadar as a part of bounded model checker Borealis. We tested Tassadar on two test sets, showing that its impact on performance of Borealis is minimal.The article is published in the authors’ wording.
Quasi-static Cycle Performance Analysis of Micro Modular Reactor for Heat Sink Temperature Variation
Energy Technology Data Exchange (ETDEWEB)
Cho, Seong Kuk; Lee, Jekyoung; Ahn, Yoonhan; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Cha, Jae Eun [KAERI, Daejeon (Korea, Republic of)
2015-10-15
A Supercritical CO{sub 2} (S-CO{sub 2}) cycle has potential for high thermal efficiency in the moderate turbine inlet temperature (450 - 750 .deg. C) and achieving compact system size because of small specific volume and simple cycle layouts. Owing to small specific volume of S-CO{sub 2} and the development of heat exchanger technology, it can accomplish complete modularization of the system. The previous works focused on the cycle performance analysis for the design point only. However, the heat sink temperature can be changed depending on the ambient atmosphere condition, i.e. weather, seasonal change. This can influence the compressor inlet temperature, which alters the cycle operating condition overall. To reflect the heat sink temperature variation, a quasi-static analysis code for a simple recuperated S-CO{sub 2} Brayton cycle has been developed by the KAIST research team. Thus, cycle performance analysis is carried out with a compressor inlet temperature variation in this research. In the case of dry air-cooling system, the ambient temperature of the local surrounding can affect the compressor inlet temperature. As the compressor inlet temperature increases, thermal efficiency and generated electricity decrease. As further works, the experiment of S-CO{sub 2} integral test loop will be performed to validate in-house codes, such as KAIST{sub T}MD and the quasi-static code.
Ground state structure of U2Mo: static and lattice dynamics study
International Nuclear Information System (INIS)
Mukherjee, D.; Sahoo, B.D.; Joshi, K.D.; Kaushik, T.C.
2016-01-01
According to experimental reports, the ground state stable structure of U 2 Mo is tetragonal. However, various theoretical studies performed in past do not get tetragonal phase as the stable structure at ambient conditions. Therefore, the ground state structure of U 2 Mo is still unresolved. In an attempt to understand the ground state properties of this system, we have carried out first principle electronic band structure calculations. The structural stability analysis carried out using evolutionary structure search algorithm in conjunction with ab-inito method shows that a hexagonal structure (space group P6/mmm) is the lowest enthalpy structure at ambient condition and remains stable upto 200 GPa. The elastic and lattice dynamical stability further supports the stability of this phase at ambient condition. Further, using the 0 K calculations in conjunction with finite temperature corrections, we have derived the isotherm and shock adiabat (Hugoniot) of this material. Various equilibrium properties such as ambient pressure volume, bulk modulus, pressure derivative of bulk modulus etc. are derived from equation of state. (author)
Directory of Open Access Journals (Sweden)
Ion DIMA
2017-03-01
Full Text Available This article aims to provide a quick methodology to determine the critical values of the forces, displacements and stress function of frequency, under a combined linear static (101 Solution - Linear Static and dynamic load in frequency response (108 Solution - Frequency Response, Direct Method, applied to a micro launcher engine test bench, using NASTRAN 400 Solution - Implicit Nonlinear. NASTRAN/PATRAN software is used. Practically in PATRAN the preprocessor has to define a linear or nonlinear static load at step 1 and a dynamic in frequency response load (time dependent at step 2. In Analyze the following options are chosen: for Solution Type Implicit Nonlinear Solution (SOL 400 is selected, for Subcases Static Load and Transient Dynamic is chosen and for Subcase Select the two cases static and dynamic will be selected. NASTRAN solver will overlap results from static analysis with the dynamic analysis. The running time will be reduced three times if using Krylov solver. NASTRAN SYSTEM (387 = -1 instruction is used in order to activate Krylov option. Also, in Analysis the OP2 Output Format shall be selected, meaning that in bdf NASTRAN input file the PARAM POST 1 instruction shall be written. The structural damping can be defined in two different ways: either at the material card or using the PARAM, G, 0.05 instruction (in this example a damping coefficient by 5% was used. The SDAMPING instruction in pair with TABDMP1 work only for dynamic in frequency response, modal method, or in direct method with viscoelastic material, not for dynamic in frequency response, direct method (DFREQ, with linear elastic material. The Direct method – DFREQ used in this example is more accurate. A set in translation of boundary conditions was used and defined at the base of the test bench.
“Markhi” spatial design structure: numerical study of its work under static load
Directory of Open Access Journals (Sweden)
Alpatov Vadim
2016-01-01
Full Text Available There is a problem of internal stress volume existing for some types of spatial structures and their joint connections. The problem occurs when a massive body is used as a joint connector. It is quite simple to determine tension on this joint connector surface using electric resistive tensometry method. It is not simple though to empirically determine internal tension in the massive body of the connector. To determine internal tension we can use modern calculation systems, such as Ansys, Abaqus, CosmosWorks, Nastran, Autodesk Inventor, Robot Structural Analysis, Bentley STAAD, CSI SAP2000; etc: Internal tension analysis in a massive joint connector makes possible to select both surplus stock parts and shortage stock parts. In this paper the authors base their analysis on both surface and internal tension of MARKHI connector and come up with solutions for its improvement.
Directory of Open Access Journals (Sweden)
Francesco Caputo
2018-01-01
Full Text Available In this paper, a new methodology supporting the design of landing gears is proposed. Generally, a preliminary step is performed with simplified FE model, usually one-dimensional, to achieve the reaction forces involving each component during all aforementioned aircraft operations. Though this approach gives a valid support to the designer, it is characterized by several problems, such as the related approximations. So, it is important, by a numerical point of view, to develop an isostatic FE model equivalent to the real one. In fact, if the landing gear is modelled as hyperstatic, the static equilibrium equations are insufficient for determining the internal forces and reactions on each sub-component; so, the modelled material properties and geometries assume an increasing importance, which gets the model too approximating. The proposed methodology consists of achieving the reaction forces by means of multibody simulations, by overcoming such problems, since each component is modelled as rigid. In this paper, also a FE model for the investigation of the structural response is proposed. Aimed to Certification by Analysis purposes, the developed multibody and the FE models have been assessed against an experimental landing gear drop test carried out by Magnaghi Aeronautica S.p.A., according to the EASA CS 25 regulations
Directory of Open Access Journals (Sweden)
Şeref Doğuşcan Akbaş
2013-01-01
Full Text Available Geometrically nonlinear static analysis of edge cracked cantilever Timoshenko beams composed of functionally graded material (FGM subjected to a nonfollower transversal point load at the free end of the beam is studied with large displacements and large rotations. Material properties of the beam change in the height direction according to exponential distributions. The cracked beam is modeled as an assembly of two subbeams connected through a massless elastic rotational spring. In the study, the finite element of the beam is constructed by using the total Lagrangian Timoshenko beam element approximation. The nonlinear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The convergence study is performed for various numbers of finite elements. In the study, the effects of the location of crack, the depth of the crack, and various material distributions on the nonlinear static response of the FGM beam are investigated in detail. Also, the difference between the geometrically linear and nonlinear analysis of edge cracked FGM beam is investigated in detail.
Institute of Scientific and Technical Information of China (English)
赵长军; 胡隽; 徐兴
2002-01-01
A three-dimensional finite element model was established for a large span concrete filled steel tubular (CFST) arch bridge which is currently under construction. The arch rib, the spandrel columns, the prestressed concrete box-beam, the cast-in-situ concrete plate of bridge deck, the steel box-beam and the crossbeams connecting the two pieces of arch ribs, were modeled by three-dimensional Timoshenko beam elements (3DTBE). The suspenders were modeled by three-dimensional cable elements (3DCE). Both geometric nonlinearity and prestress effect could be included in each kind of element. At the same time a second finite element model with the same geometric and material properties excepted for the sectional dimension of arch rib was set up. Static dynamic analyses were performed to determine the corresponding characteristics of the structure. The results showed that the arch rib's axial rigidity could be determined by static analysis. The stability and vibration of this system could be separated into in-plane modes, out-of-plane modes and coupled modes. The in-plane stability and dynamic characteristics are determined by the arch rib's vertical stiffness and that of out-of-plane is determined by the crossbeams' stiffness and arch rib's lateral stiffness mainly. The in-plane stiffness is much greater than that of out-of-plane for this kind of bridge . The effect of geometric nonlinearity and prestress effect on bridge behavior is insignificant.
International Nuclear Information System (INIS)
Souto, J; Alemany, M M G; Gallego, L J; González, L E; González, D J
2013-01-01
We report an ab initio molecular dynamics study of the static, dynamic and electronic properties of the liquid Bi x Li 1−x alloy, which is a complex binary system with a marked tendency to heterocoordination. The calculated total static structure factors are in good agreement with the available experimental data. The partial dynamic structure factors exhibit side peaks indicative of propagating density fluctuations, and for some concentrations we have found a density fluctuation mode with phase velocity greater than the hydrodynamic sound velocity. We have also evaluated other dynamical properties such as the diffusion coefficients, the shear viscosity and the adiabatic sound velocity. The electronic density of states show that the liquid Bi x Li 1−x alloy has a metallic character, although with strong deviations from the free-electron parabolic curve. The results reported improve the understanding of binary liquid alloys with both fast and slow propagating collective modes. (paper)
FINITE ELEMENT ANALYSIS OF STRUCTURES
Directory of Open Access Journals (Sweden)
PECINGINA OLIMPIA-MIOARA
2015-05-01
Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.
Reliability analysis of prestressed concrete containment structures
International Nuclear Information System (INIS)
Jiang, J.; Zhao, Y.; Sun, J.
1993-01-01
The reliability analysis of prestressed concrete containment structures subjected to combinations of static and dynamic loads with consideration of uncertainties of structural and load parameters is presented. Limit state probabilities for given parameters are calculated using the procedure developed at BNL, while that with consideration of parameter uncertainties are calculated by a fast integration for time variant structural reliability. The limit state surface of the prestressed concrete containment is constructed directly incorporating the prestress. The sensitivities of the Choleskey decomposition matrix and the natural vibration character are calculated by simplified procedures. (author)
Statically vs dynamically balanced gait: Analysis of a robotic exoskeleton compared with a human.
Barbareschi, Giulia; Richards, Rosie; Thornton, Matt; Carlson, Tom; Holloway, Catherine
2015-01-01
In recent years exoskeletons able to replicate human gait have begun to attract growing popularity for both assistive and rehabilitative purposes. Although wearable robots often need the use of external support in order to maintain stability, the REX exoskeleton by REX Bionics is able to self-balance through the whole cycle. However this statically balanced gait presents important differences with the dynamically balanced gait of human subjects. This paper will examine kinematic and kinetic differences between the gait analysis performed on a subject wearing the REX exoskeleton and human gait analysis data as presented in literature. We will also provide an insight on the impact that these differences can have for both rehabilitative and assistive applications.
Lyle, Karen H.
2015-01-01
Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology demonstration via flight-testing. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. This publication summarizes results comparing analytical results with test data for two concepts subjected to representative entry, static loading. The level of agreement and ability to predict the load distribution is considered sufficient to enable analytical predictions to be used in the design process.
Directory of Open Access Journals (Sweden)
H. M. Chandima Chathuranga Somarathna
2016-05-01
Full Text Available In recent years, attention has been focused on elastomeric polymers as a potential retrofitting material considering their capability in contributing towards the impact resistance of various structural elements. A comprehensive understanding of the behavior and the morphology of this material are essential to propose an effective and feasible alternative to existing structural strengthening and retrofitting materials. This article presents the findings obtained from a series of experimental investigations to characterize the physical, mechanical, chemical and thermal behavior of eight types of palm-based polyurethane (PU elastomers, which were synthesized from the reaction between palm kernel oil-based monoester polyol (PKO-p and 4,4-diphenylmethane diisocyanate (MDI with polyethylene glycol (PEG as the plasticizer via pre-polymerization. Fourier transform infrared (FT-IR spectroscopy analysis was conducted to examine the functional groups in PU systems. Mechanical and physical behavior was studied with focus on elongation, stresses, modulus, energy absorption and dissipation, and load dispersion capacities by conducting hardness, tensile, flexural, Izod impact, and differential scanning calorimetry tests. Experimental results suggest that the palm-based PU has positive effects as a strengthening and retrofitting material against dynamic impulsive loadings both in terms of energy absorption and dissipation, and load dispersion. In addition, among all PUs with different plasticizer contents, PU2 to PU8 (which contain 2% to 8% (w/w PEG with respect to PKO-p content show the best correlation with mechanical response under quasi-static conditions focusing on energy absorption and dissipation and load dispersion characteristics.
Analysis of Critical Thinking Skills on The Topic of Static Fluid
Puspita, I.; Kaniawati, I.; Suwarma, I. R.
2017-09-01
This study aimed to know the critical thinking skills profil of senior high school students. This research using a descriptive study to analysis student test results of critical thinking skill of 40 students XI grade in one of the senior high school in Bogor District. The method used is survey research with sample determined by purposive sampling technique. The instrument used is test of critical thinking skill by 5 indicators on static fluid topics. Questions consist of 11 set. It is has been developed by researcher and validated by experts. The results showed students critical thinking skills are still low. Is almost every indicator of critical thinking skills only reaches less than 30%. 28% for elementary clarification, 10% for the basic for decisions/basic support, 6% for inference, 6% for advanced clarification, 4% for strategies and tactics.
Static Analysis of Laminated Composite Plate using New Higher Order Shear Deformation Plate Theory
Directory of Open Access Journals (Sweden)
Ibtehal Abbas Sadiq
2017-02-01
Full Text Available In the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The modal of the present work has been verified by comparing the results of shape functions with that were obtained by other workers. Result shows the good agreement with 3D elasticity solution and that published by other researchers.
Farinha, Maria Luísa Braga; Azevedo, Nuno Monteiro; Candeias, Mariline
2017-02-01
The explicit formulation of a small displacement model for the coupled hydro-mechanical analysis of concrete gravity dam foundations based on joint finite elements is presented. The proposed coupled model requires a thorough pre-processing stage in order to ensure that the interaction between the various blocks which represent both the rock mass foundation and the dam is always edge to edge. The mechanical part of the model, though limited to small displacements, has the advantage of allowing an accurate representation of the stress distribution along the interfaces, such as rock mass joints. The hydraulic part and the mechanical part of the model are fully compatible. The coupled model is validated using a real case of a dam in operation, by comparison of the results with those obtained with a large displacement discrete model. It is shown that it is possible to assess the sliding stability of concrete gravity dams using small displacement models under both static and dynamic conditions.
Krušinský, Peter; Capková, Eva; Gocál, Jozef; Holešová, Michaela
2015-12-01
The truss of the Roman Catholic Church of the holy Kozma and Damian was managed to date to the year 1470/71d. It represents one of the few well-preserved medieval structures in this region. The form of roofs is a typical for rafter collar-beam construction without stiffening frame. The geometrical analysis of the main roofs trusses is based on logical dependencies and a description of a process in the truss design, pointing to evaluative relations resulting especially from the Pythagorean Geometry. Consequently, a spatial numerical model of the roof structure was developed in order to perform a static analysis of the roof structure in accordance with present standards. Due to the fact that during the diagnostic survey there were noted some missing structural elements in the roof construction (angle braces), in further analysis, an attention was paid to the importance of the selected structural elements and their role in the construction of the truss itself.
Directory of Open Access Journals (Sweden)
Hakan Ozbasaran
2017-01-01
Full Text Available Trusses have an important place amongst engineering structures due to many advantages such as high structural efficiency, fast assembly and easy maintenance. Iterative truss design procedures, which require analysis of a large number of candidate structural systems such as size, shape and topology optimization with stochastic methods, mostly lead the engineer to establish a link between the development platform and external structural analysis software. By increasing number of structural analyses, this (probably slow-response link may climb to the top of the list of performance issues. This paper introduces a software for static, global member buckling and frequency analysis of 2D and 3D trusses to overcome this problem for Mathematica users.
An empirical analysis of China's energy efficiency from both static and dynamic perspectives
International Nuclear Information System (INIS)
Wang, Zhaohua; Feng, Chao; Zhang, Bin
2014-01-01
Utilizing the global DEA (data envelopment analysis), this paper analyzes China's energy efficiency from both static and dynamic perspectives based on China's provincial panel data for the period of 2001–2010. We present the evolution of energy efficiency in China from 2001 to 2010, and identify the key factors influencing the energy efficiency from the aspects of technical progress, productive scale and management level. The results show that there was an overall declining trend for China's energy efficiency from 2001 to 2005, and technical regress and the decrease in scale efficiency were the main reasons for this decline. Then an overall rising trend appeared during 2005–2010, and technical progress was the most important motivation for this increase. Moreover, among the three main regions in China, the eastern China was leading in the energy efficiency during the sample period, while the energy efficiency in western China fell far behind since the beginning. And the energy efficiency in central China was in the middle. This indicates that west region may be China's promising growth engine of energy efficiency in the future, and further technical progress is thought to be the key motivation for this improvement. - Highlights: • We analyze China's energy efficiency from both static and dynamic perspectives. • The global DEA (data envelopment analysis) method is utilized in this paper. • Technical progress is the key factor for the change of China's energy efficiency. • There are significant differences in energy efficiency of different regions in China. • Western area is China's promising growth engine of energy efficiency in the future
Multiscale Static Analysis of Notched and Unnotched Laminates Using the Generalized Method of Cells
Naghipour Ghezeljeh, Paria; Arnold, Steven M.; Pineda, Evan J.; Stier, Bertram; Hansen, Lucas; Bednarcyk, Brett A.; Waas, Anthony M.
2016-01-01
The generalized method of cells (GMC) is demonstrated to be a viable micromechanics tool for predicting the deformation and failure response of laminated composites, with and without notches, subjected to tensile and compressive static loading. Given the axial [0], transverse [90], and shear [+45/-45] response of a carbon/epoxy (IM7/977-3) system, the unnotched and notched behavior of three multidirectional layups (Layup 1: [0,45,90,-45](sub 2S), Layup 2: [0,60,0](sub 3S), and Layup 3: [30,60,90,-30, -60](sub 2S)) are predicted under both tensile and compressive static loading. Matrix nonlinearity is modeled in two ways. The first assumes all nonlinearity is due to anisotropic progressive damage of the matrix only, which is modeled, using the multiaxial mixed-mode continuum damage model (MMCDM) within GMC. The second utilizes matrix plasticity coupled with brittle final failure based on the maximum principle strain criteria to account for matrix nonlinearity and failure within the Finite Element Analysis--Micromechanics Analysis Code (FEAMAC) software multiscale framework. Both MMCDM and plasticity models incorporate brittle strain- and stress-based failure criteria for the fiber. Upon satisfaction of these criteria, the fiber properties are immediately reduced to a nominal value. The constitutive response for each constituent (fiber and matrix) is characterized using a combination of vendor data and the axial, transverse, and shear responses of unnotched laminates. Then, the capability of the multiscale methodology is assessed by performing blind predictions of the mentioned notched and unnotched composite laminates response under tensile and compressive loading. Tabulated data along with the detailed results (i.e., stress-strain curves as well as damage evolution states at various ratios of strain to failure) for all laminates are presented.
International Nuclear Information System (INIS)
Armellini, A.; Casarsa, L.; Mucignat, C.
2011-01-01
The flow field inside a modern internal cooling channel specifically designed for the trailing edge of gas turbine blades has been experimentally investigated under static and rotating conditions. The passage is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers, while particular care was put in the implementation of proper pressure conditions at the channel exits to allow the comparison between data under static and rotating conditions. The flow velocity was measured by means of 2D and Stereo-PIV techniques applied in the absolute frame of reference. The relative velocity fields were obtained through a pre-processing procedure of the PIV images developed on purpose. Time averaged flow fields inside the stationary and rotating channels are analyzed and compared. A substantial modification of the whole flow behavior due to rotational effects is commented, nevertheless no trace of rotation induced secondary Coriolis vortices has been found because of the progressive flow discharge along the trailing edge. For Ro = 0.23, at the channel inlet the high aspect-ratio of the cross section enhances inviscid flow effects which determine a mass flow redistribution towards the leading edge side. At the trailing edge exits, the distortion of the flow path observed in the channel central portion causes a strong reduction in the dimensions of the 3D separation structures that surround the pedestals.
Static structure of chameleon dark matter as an explanation of dwarf spheroidal galaxy cores
Chanda, Prolay Krishna; Das, Subinoy
2017-04-01
We propose a novel mechanism that explains the cored dark matter density profile in recently observed dark matter rich dwarf spheroidal galaxies. In our scenario, dark matter particle mass decreases gradually as a function of distance towards the center of a dwarf galaxy due to its interaction with a chameleon scalar. At closer distance towards the Galactic center the strength of attractive scalar fifth force becomes much stronger than gravity and is balanced by the Fermi pressure of the dark matter cloud; thus, an equilibrium static configuration of the dark matter halo is obtained. Like the case of soliton star or fermion Q-star, the stability of the dark matter halo is obtained as the scalar achieves a static profile and reaches an asymptotic value away from the Galactic center. For simple scalar-dark matter interaction and quadratic scalar self-interaction potential, we show that dark matter behaves exactly like cold dark matter (CDM) beyond a few kpc away from the Galactic center but at closer distance it becomes lighter and Fermi pressure cannot be ignored anymore. Using Thomas-Fermi approximation, we numerically solve the radial static profile of the scalar field, fermion mass and dark matter energy density as a function of distance. We find that for fifth force mediated by an ultralight scalar, it is possible to obtain a flattened dark matter density profile towards the Galactic center. In our scenario, the fifth force can be neglected at distance r ≥1 kpc from the Galactic center and dark matter can be simply treated as heavy nonrelativistic particles beyond this distance, thus reproducing the success of CDM at large scales.
Structural stability analysis considerations in fusion reactor plasma chamber design
International Nuclear Information System (INIS)
Delaney, M.J.; Cramer, B.A.
1978-01-01
This paper presents an approach to analyzing a toroidal plasma chamber for the prevention of both static and dynamic buckling. Results of stability analyses performed for the doublet shaped plasma chamber of the General Atomic 3.8 meter radius TNS ignition test reactor are presented. Load conditions are the static external atmospheric pressure load and the dynamic plasma disruption pulse load. Methods for analysis of plasma chamber structures are presented for both types of load. Analysis for static buckling is based on idealizing the plasma chamber into standard structural shapes and applying classical cylinder and circular torus buckling equations. Results are verified using the Buckling of Shells of Revolution (BOSOR4) finite difference computer code. Analysis for the dynamic loading is based on a pulse buckling analysis method for circular cylinders
Structural Analysis of Kufasat Using Ansys Program
Al-Maliky, Firas T.; AlBermani, Mohamed J.
2018-03-01
The current work focuses on vibration and modal analysis of KufaSat structure using ANSYS 16 program. Three types of Aluminum alloys (5052-H32, 6061-T6 and 7075-T6) were selected for investigation of the structure under design loads. Finite element analysis (FEA) in design static load of 51 g was performed. The natural frequencies for five modes were estimated using modal analysis. In order to ensure that KufaSat could withstand with various conditions during launch, the Margin of safety was calculated. The results of deformation and Von Mises stress for linear buckling analysis were also performed. The comparison of data was done to select the optimum material for KufaSat structures.
Decomposition of Polarimetric SAR Images Based on Second- and Third-order Statics Analysis
Kojima, S.; Hensley, S.
2012-12-01
There are many papers concerning the research of the decomposition of polerimetric SAR imagery. Most of them are based on second-order statics analysis that Freeman and Durden [1] suggested for the reflection symmetry condition that implies that the co-polarization and cross-polarization correlations are close to zero. Since then a number of improvements and enhancements have been proposed to better understand the underlying backscattering mechanisms present in polarimetric SAR images. For example, Yamaguchi et al. [2] added the helix component into Freeman's model and developed a 4 component scattering model for the non-reflection symmetry condition. In addition, Arii et al. [3] developed an adaptive model-based decomposition method that could estimate both the mean orientation angle and a degree of randomness for the canopy scattering for each pixel in a SAR image without the reflection symmetry condition. This purpose of this research is to develop a new decomposition method based on second- and third-order statics analysis to estimate the surface, dihedral, volume and helix scattering components from polarimetric SAR images without the specific assumptions concerning the model for the volume scattering. In addition, we evaluate this method by using both simulation and real UAVSAR data and compare this method with other methods. We express the volume scattering component using the wire formula and formulate the relationship equation between backscattering echo and each component such as the surface, dihedral, volume and helix via linearization based on second- and third-order statics. In third-order statics, we calculate the correlation of the correlation coefficients for each polerimetric data and get one new relationship equation to estimate each polarization component such as HH, VV and VH for the volume. As a result, the equation for the helix component in this method is the same formula as one in Yamaguchi's method. However, the equation for the volume
Energy Technology Data Exchange (ETDEWEB)
Beng, Yeo Kiam; Tzeng, Woo Wen [Universiti Malaysia Sabah, Sabah (Malaysia)
2017-02-15
This study presents the finite element analysis of plastic collapse and energy absorption of polyurethane-filled aluminium circular tubes under quasi-static transverse loading. Increasing focuses were given to impact damage of structures where energy absorbed during impact could be controlled to avoid total structure collapse of energy absorbers and devices designed to dissipate energy. ABAQUS finite element analysis application was utilized for modelling and simulating the polyurethane-filled aluminium tubes, different set of diameterto- thickness ratios and span lengths, subjected to transverse three-point-bending load. Different sets of polyurethane-filled aluminium tubes subjected to the transverse loading were modelled and simulated. The failure modes and mechanisms of filled tubes and its capabilities as energy absorbers to further improve and strengthening of empty tube were also identified. The results showed that plastic deformation response was affected by the geometric constraints and parameters of the specimens. The diameter-to-thickness ratio and span lengths had shown to play crucial role in optimizing the PU-filled tube as energy absorber.
Muscle Fatigue Analysis of the Deltoid during Three Head-Related Static Isometric Contraction Tasks
Directory of Open Access Journals (Sweden)
Wenxiang Cui
2017-05-01
Full Text Available This study aimed to investigate the fatiguing characteristics of muscle-tendon units (MTUs within skeletal muscles during static isometric contraction tasks. The deltoid was selected as the target muscle and three head-related static isometric contraction tasks were designed to activate three heads of the deltoid in different modes. Nine male subjects participated in this study. Surface electromyography (SEMG signals were collected synchronously from the three heads of the deltoid. The performances of five SEMG parameters, including root mean square (RMS, mean power frequency (MPF, the first coefficient of autoregressive model (ARC1, sample entropy (SE and Higuchi’s fractal dimension (HFD, in quantification of fatigue, were evaluated in terms of sensitivity to variability ratio (SVR and consistency firstly. Then, the HFD parameter was selected as the fatigue index for further muscle fatigue analysis. The experimental results demonstrated that the three deltoid heads presented different activation modes during three head-related fatiguing contractions. The fatiguing characteristics of the three heads were found to be task-dependent, and the heads kept in a relatively high activation level were more prone to fatigue. In addition, the differences in fatiguing rate between heads increased with the increase in load. The findings of this study can be helpful in better understanding the underlying neuromuscular control strategies of the central nervous system (CNS. Based on the results of this study, the CNS was thought to control the contraction of the deltoid by taking the three heads as functional units, but a certain synergy among heads might also exist to accomplish a contraction task.
Static Analysis of Processes for No Read-Up and No Write-Down
DEFF Research Database (Denmark)
Bodei, C.; Degano, P.; Nielson, Flemming
1999-01-01
We study a variant of the no read-up/no write-down security property of Bell and LaPadula for processes in the π-calculus. Once processes are given levels of security clearance, we statically check that a process at a high level never sends names to processes at a lower level. The static check...
Directory of Open Access Journals (Sweden)
Xiangwu Yan
2018-03-01
Full Text Available The increasing penetration rate of grid connected renewable energy power generation reduces the primary frequency regulation capability of the system and poses a challenge to the security and stability of the power grid. In this paper, a distributed photovoltaic (PV storage virtual synchronous generator system is constructed, which realizes the external characteristics of synchronous generator/motor. For this kind of input/output bidirectional devices (e.g., renewable power generation/storage combined systems, pumped storage power stations, battery energy storage systems, and vehicle-to-grid electric vehicles, a synthesis analysis method for system power-frequency considering source-load static frequency characteristics (S-L analysis method is proposed in order to depict the system’s power balance dynamic adjustment process visually. Simultaneously, an inertia matching method is proposed to solve the problem of inertia matching in the power grid. Through the simulation experiment in MATLAB, the feasibility of the distributed PV storage synchronous virtual machine system is verified as well as the effectiveness of S-L analysis method and inertia matching method.
Basic Static Code Analysis Untuk Mendeteksi Backdoor Shell Pada Web Server
Directory of Open Access Journals (Sweden)
Nelly Indriani Widiastuti
2017-05-01
Full Text Available Mengakses sistem komputer tanpa ijin merupakan kejahatan yang dilakukan dengan memasuki atau menyusup kedalam suatu sistem jaringan komputer tanpa sepengetahuan dari pemilik sistem tersebut. Kejahatan tersebut bertujuan untuk mengintai atau mencuri informasi penting dan rahasia. Dalam praktiknya peretas menyisipkan berkas backdoor shell pada lokasi yang sulit ditemukan oleh pemilik sistem. Beberapa perangkat yang sudah ada masih dalam bentuk terminal. Perangkat tersebut melakukan pencarian berkas berdasarkan nama-nama yang telah terdaftar sebelumnya. Akibatnya, pada saat berkas backdoor shell jenis baru menginfeksi, tools tersebut tidak dapat mendeteksi keberadaannya. Berdasarkan hal tersebut, maka dalam penelitian ini pencarian backdoor shell pada web server menggunakan metode basic static code analysis. File sistem diproses melalui dua tahap utama yaitu string matching dan taint analysis. Dalam proses taint analysis, sistem menghitung peluang kemungkinan setiap signature sebagai backdoor untuk mengatasi kamus backdoor yang tidak lengkap. Berdasarkan hasil yang didapat dari pengujian yang dilakukan terhadap 3964 berkas diperoleh tingkat akurasi yang lebih besar dibandingkan dengan aplikasi php shell detector sebesar 75%.
Directory of Open Access Journals (Sweden)
Zhenhua Yan
2015-01-01
Full Text Available Low-frequency vibrations (0.5–5 Hz that harm drivers occur in off-road vehicles. Thus, researchers have focused on finding methods to effectively isolate or control low-frequency vibrations. A novel nonlinear seat suspension structure for off-road vehicles is designed, whose static characteristics and seat-human system dynamic response are modeled and analyzed, and experiments are conducted to verify the theoretical solutions. Results show that the stiffness of this nonlinear seat suspension could achieve real zero stiffness through well-matched parameters, and precompression of the main spring could change the nonlinear seat suspension performance when a driver’s weight changes. The displacement transmissibility curve corresponds with the static characteristic curve of nonlinear suspension, where the middle part of the static characteristic curve is gentler and the resonance frequency of the displacement transmissibility curve and the isolation minimum frequency are lower. Damping should correspond with static characteristics, in which the corresponding suspension damping value should be smaller given a flatter static characteristic curve to prevent vibration isolation performance reduction.
Scott, Robert C.; Bartels, Robert E.
2009-01-01
This paper examines the aeroelastic stability of an on-orbit installable Space Shuttle patch panel. CFD flutter solutions were obtained for thick and thin boundary layers at a free stream Mach number of 2.0 and several Mach numbers near sonic speed. The effect of structural damping on these flutter solutions was also examined, and the effect of structural nonlinearities associated with in-plane forces in the panel was considered on the worst case linear flutter solution. The results of the study indicated that adequate flutter margins exist for the panel at the Mach numbers examined. The addition of structural damping improved flutter margins as did the inclusion of nonlinear effects associated with a static pressure difference across the panel.
Huang, Wen; Koric, Seid; Yu, Xin; Hsia, K Jimmy; Li, Xiuling
2014-11-12
Micro- and nanoscale tubular structures can be formed by strain-induced self-rolled-up nanomembranes. Precision engineering of the shape and dimension determines the performance of devices based on this platform for electronic, optical, and biological applications. A transient quasi-static finite element method (FEM) with moving boundary conditions is proposed as a general approach to design diverse types of three-dimensional (3D) rolled-up geometries. This method captures the dynamic release process of membranes through etching driven by mismatch strain and accurately predicts the final dimensions of rolled-up structures. Guided by the FEM modeling, experimental demonstration using silicon nitride membranes was achieved with unprecedented precision including controlling fractional turns of a rolled-up membrane, anisotropic rolling to form helical structures, and local stress control for 3D hierarchical architectures.
DEFF Research Database (Denmark)
Skafte, Anders; Kristoffersen, Julie; Vestermark, Jonas
2017-01-01
into two parts using complementary filters: Low frequency response caused by the quasi-static effect of the waves acting on the structure, and the high frequency response given by the modal properties of the structure. The high frequency response is then decomposed into modal coordinates using...... the experimental mode shapes. Strain histories are predicted by multiplying the modal coordinates with the expanded strain mode shapes. The low frequency response is decomposed using Ritz-vectors corresponding to the shapes that the structure vibrates with due to the wave loading. Strain Ritz......-vectors are then extracted from the finite element model by applying a load corresponding to a representative wave and the strain history for the low frequency response is found by multiplying the decomposed signal with the strain Ritz-vectors. Finally the combined strain history is found by adding the strain histories from...
International Nuclear Information System (INIS)
Sharma, Akanshu; Reddy, G.R.; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.
2009-07-01
It is now a well-known fact that beam-column connections are one of the most vulnerable zones of a reinforced concrete framed structure subjected to seismic loads. Under dynamic reversing loading, as in case of earthquakes, the inelastic hysteretic behavior of the members joining at these joints provides major contribution towards absorbing the external energy. The energy absorption capacity of a joint mainly depends on the ductility, i.e. capacity to undergo large displacements beyond yield, without significant strength degradation, of the members and the joint itself. Even if the members possess sufficient ductile behavior, the overall ductility of the joint is not warranted, until and unless the joint core itself has capacity to withstand large joint shear forces. Else, the joint core itself fails prematurely and leads to poor performance of the sub-assemblage. Another major objective of this program was to develop a simple yet effective analysis procedure that can closely predict the load-displacement behavior of the joints. Nonlinear dynamic analysis, although effective, is highly time consuming and complex. Resorting to such complex analysis is not encouraging to the practicing civil engineers or even researchers. However, as more and more emphasis is laid on nonlinear analysis and performance based design, nonlinear static pushover analysis is one such tool that is simple and effective and many researchers and engineers are getting encouraged to follow this analytical method. This report includes complete details of all the joints tested and their analysis. It gives complete theoretical formulations and assumptions used in the analysis. In the end, all the results are summarized and observations, conclusions and recommendations are made regarding the effect of various parameters on ductility of a joint. (author)
Large-deflection statics analysis of active cardiac catheters through co-rotational modelling.
Peng Qi; Chen Qiu; Mehndiratta, Aadarsh; I-Ming Chen; Haoyong Yu
2016-08-01
This paper presents a co-rotational concept for large-deflection formulation of cardiac catheters. Using this approach, the catheter is first discretized with a number of equal length beam elements and nodes, and the rigid body motions of an individual beam element are separated from its deformations. Therefore, it is adequate for modelling arbitrarily large deflections of a catheter with linear elastic analysis at the local element level. A novel design of active cardiac catheter of 9 Fr in diameter at the beginning of the paper is proposed, which is based on the contra-rotating double helix patterns and is improved from the previous prototypes. The modelling section is followed by MATLAB simulations of various deflections when the catheter is exerted different types of loads. This proves the feasibility of the presented modelling approach. To the best knowledge of the authors, it is the first to utilize this methodology for large-deflection static analysis of the catheter, which will enable more accurate control of robot-assisted cardiac catheterization procedures. Future work would include further experimental validations.
STEM - software test and evaluation methods: fault detection using static analysis techniques
International Nuclear Information System (INIS)
Bishop, P.G.; Esp, D.G.
1988-08-01
STEM is a software reliability project with the objective of evaluating a number of fault detection and fault estimation methods which can be applied to high integrity software. This Report gives some interim results of applying both manual and computer-based static analysis techniques, in particular SPADE, to an early CERL version of the PODS software containing known faults. The main results of this study are that: The scope for thorough verification is determined by the quality of the design documentation; documentation defects become especially apparent when verification is attempted. For well-defined software, the thoroughness of SPADE-assisted verification for detecting a large class of faults was successfully demonstrated. For imprecisely-defined software (not recommended for high-integrity systems) the use of tools such as SPADE is difficult and inappropriate. Analysis and verification tools are helpful, through their reliability and thoroughness. However, they are designed to assist, not replace, a human in validating software. Manual inspection can still reveal errors (such as errors in specification and errors of transcription of systems constants) which current tools cannot detect. There is a need for tools to automatically detect typographical errors in system constants, for example by reporting outliers to patterns. To obtain the maximum benefit from advanced tools, they should be applied during software development (when verification problems can be detected and corrected) rather than retrospectively. (author)
Directory of Open Access Journals (Sweden)
Abbas AbdulMajeed Allawi
2016-06-01
Full Text Available This paper studies the combination fluid viscous dampers in the outrigger system to add supplementary damping into the structure, which purpose to remove the dependability of the structure to lower variable intrinsic damping. It works by connecting the central core, comprising either shear walls or braced frames, to the outer perimeter columns. The modal considered is a 36 storey square high rise reinforced concrete building. By constructing a discrete lumped mass model, and using frequency-based response function, two systems of dampers, parallel and series systems are studied. The maximum lateral load at the top of the building is calculated, and this load will be applied at every floor of the building, giving a conservative solution. For static study Equivalent Lateral Force (ELF was conducted. MATLAB software, has been used in this study. From analysis data, it is observed that the parallel system of dampers result lower amplitude of vibration and achieved more efficiently compared to the series system, and the horizontal displacement for each configurations by using MATLAB software is less than the analytical solution using a uniformly distributed load of 36 nodal point forces that divided the total height.
Qi, Fei; Ju, Feng; Bai, Dong Ming; Chen, Bai
2018-02-01
For the outstanding compliance and dexterity of continuum robot, it is increasingly used in minimally invasive surgery. The wide workspace, high dexterity and strong payload capacity are essential to the continuum robot. In this article, we investigate the workspace of a cable-driven continuum robot that we proposed. The influence of section number on the workspace is discussed when robot is operated in narrow environment. Meanwhile, the structural parameters of this continuum robot are optimized to achieve better kinematic performance. Moreover, an indicator based on the dexterous solid angle for evaluating the dexterity of robot is introduced and the distal end dexterity is compared for the three-section continuum robot with different range of variables. Results imply that the wider range of variables achieve the better dexterity. Finally, the static model of robot based on the principle of virtual work is derived to analyze the relationship between the bending shape deformation and the driven force. The simulations and experiments for plane and spatial motions are conducted to validate the feasibility of model, respectively. Results of this article can contribute to the real-time control and movement and can be a design reference for cable-driven continuum robot.
The Multifactorial Analysis of Static and Repetitive Work. Study of the Work in Services Activities
Directory of Open Access Journals (Sweden)
Blanca Andrea Ramírez C.
2009-04-01
Full Text Available The office work and specifically the workwith computer are develop in long periods ofstatic work, which is associated with the developmentof muscle skeletal disorders. In consequence,the authors made a transverse studywith office workers (n=377 of a companydedicated to service activities (managementof information and attention to costumersin order to explore the relationship betweenthe work structure, the nature of the tasks and thepresence of muscle skeletal disorders, and toidentify a strategy to stimulate the posturaltransition.The information was collected in a questionpaper that went into variables related to the typeof task that the worker develops, the time that hededicates to office and computer activities, disabilities,medical precedents and current symptomatology.The main medical precedents founded inthe evaluated population was: arterial hypertension(HTA, 8%; lipidomics, 23%; diabetes, 3%,and hypoglycemia, 4%. In the evaluated populationwas found that 80% suffer pain, specificallyrelative to upper limbs: hands, 26%; elbows, 3%,and shoulders 4%. In cervical column, 32%; lumbarcolumn, 16%; and dorsal column, 6%. Finally,it was proved that 80% of the worker’s time isdedicated to static work, specifically to typinginformation.The results of this study are applied to thedevelopment of principles to design tasks andto develop a strategy to promote the posturetransitions at work.
Probabilistic Structural Analysis Program
Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.
2010-01-01
NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.
Analysis of temperature difference on the total of energy expenditure during static bicycle exercise
Sugiono
2016-04-01
How to manage energy expenditure for cyclist is very crucial part to achieve a good performance. As the tropical situation, the differences of temperature level might be contributed in energy expenditure and durability. The aim of the paper is to estimate and to analysis the configuration of energy expenditure for static cycling activity based on heart rate value in room with air conditioning (AC)/no AC treatment. The research is started with study literatures of climate factors, temperature impact on human body, and definition of energy expenditure. The next step is design the experiment for 5 participants in 2 difference models for 26.80C - 74% relative humidity (room no AC) and 23,80C - 54.8% relative humidity (room with AC). The participants’ heart rate and blood pressure are measured in rest condition and in cycling condition to know the impact of difference temperature in energy expenditure profile. According to the experiment results, the reducing of the temperature has significantly impact on the decreasing of energy expenditure at average 0.3 Kcal/minute for all 5 performers. Finally, the research shows that climate condition (temperature and relative humidity) are very important factors to manage and to reach a higher performance of cycling sport.
STATIC CODE ANALYSIS FOR SOFTWARE QUALITY IMPROVEMENT: A CASE STUDY IN BCI FRAMEWORK DEVELOPMENT
Directory of Open Access Journals (Sweden)
Indar Sugiarto
2008-01-01
Full Text Available This paper shows how the systematic approach in software testing using static code analysis method can be used for improving the software quality of a BCI framework. The method is best performed during the development phase of framework programs. In the proposed approach, we evaluate several software metrics which are based on the principles of object oriented design. Since such method is depending on the underlying programming language, we describe the method in term of C++ language programming whereas the Qt platform is also currently being used. One of the most important metric is so called software complexity. Applying the software complexity calculation using both McCabe and Halstead method for the BCI framework which consists of two important types of BCI, those are SSVEP and P300, we found that there are two classes in the framework which have very complex and prone to violation of cohesion principle in OOP. The other metrics are fit the criteria of the proposed framework aspects, such as: MPC is less than 20; average complexity is around value of 5; and the maximum depth is below 10 blocks. Such variables are considered very important when further developing the BCI framework in the future.
A quasi-static polynomial nodal method for nuclear reactor analysis
International Nuclear Information System (INIS)
Gehin, J.C.
1992-09-01
Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation
A quasi-static polynomial nodal method for nuclear reactor analysis
Energy Technology Data Exchange (ETDEWEB)
Gehin, Jess C. [Massachusetts Inst. of Tech., Cambridge, MA (United States)
1992-09-01
Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation.
Structural optimization of static power control programs of nuclear power plants with WWER-1000
International Nuclear Information System (INIS)
Kokol, E.O.
2015-01-01
The question of possibility the power control programs switching for WWER-1000 is considered. The aim of this research is to determine the best program for the power control of nuclear reactor under cyclic diurnal behavior of electrical generation, as well as the switching implementation. The considered problem of finding the best control program refers to the multicriteria optimization class of problems. Operation of the nuclear power generation system simulated using the following power control programs: with constant average temperature of transfer fluid, with constant pressure in the reactor secondary circuit, with constant temperature in input of the nuclear reactor. The target function was proposed. It consists of three normalized criteria: the burn up fraction, the damage level of fuel rod array shells, as well as changes in the power values. When simulation of the nuclear power generation system operation within the life was done, the values of the selected criteria were obtained and inserted in the target function. The minimum of three values of the target function depending on the control program at current time defined the criterion of switching of considered static power control programs for nuclear power generation system
Quasi-static drift-tube accelerating structures for low-speed heavy ions
International Nuclear Information System (INIS)
Faltens, A.; Keefe, D.
1978-01-01
A pulsed drift-tube accelerating structure for use in Heavy Ion Fusion applications is described. Possible arrangements of components in such a structure, the injector design needs, and the influence of the existing state of component technology on drift-tube structure design are considered. It is concluded that the major attractions of the pulsed drift tubes are that they are nonresonant structures and that they appear suitable for accelerating a very high current bunch at low energies. The mechanical tolerances of the nonresonant structure are very loose and the cost per meter should be low; the cost of the transport system is expected to be the major cost. The pulse-power modulators used to drive the drift tubes are inexpensive compared with rf sources of equivalent peak power. The longitudinal emittance of the beam emerging from the structure could be extremely low. (U.K.)
Energy Technology Data Exchange (ETDEWEB)
Xu, Ke [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Niu, Liang-Liang [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI 48109 (United States); Jin, Shuo, E-mail: jinshuo@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Shu, Xiaolin [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Xie, Hongxian [School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132 (China); Wang, Lifang; Lu, Guang-Hong [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China)
2017-02-15
Atomistic simulations have been used to investigate the core structures, static properties of isolated 1/2 <1 1 1> screw dislocations, and their interaction with vacancies in bcc tungsten (W) based on three empirical interatomic potentials. Differential displacement maps show that only one embedded atom method potential is able to reproduce the compact non-degenerate core as evidenced by ab initio calculations. The obtained strain energy and stress distribution from atomistic simulations are, in general, consistent with elasticity theory predictions. In particular, one component of the calculated shear stress, which is not present according to elasticity theory, is non-negligible in the core region of our dislocation model. The differences between the results calculated from three interatomic potentials are in details, such as the specific value and the symmetry, but the trend of spatial distributions of static properties in the long range are close to each other. By calculating the binding energies between the dislocations and vacancies, we demonstrate that the dislocations act as vacancy sinks, which may be important for the nucleation and growth of hydrogen bubbles in W under irradiation.
International Nuclear Information System (INIS)
Knudsen, D.J.; Kelley, M.C.; Earle, G.D.; Vickrey, J.F.; Boehm, M.
1990-01-01
The authors present and analyze sounding rocket and HILAT satellite measurements of the low frequency ( 0 in the auroral oval. By examining the time-domain field data it is often difficult to distinguish temporal fluctuations from static structures which are Doppler shifted to a non-zero frequency in the spacecraft frame. However, they show that such a distinction can be made by constructing the impedance function Z(f). Using Z(f) they find agreement with the static field interpretation below about 0.1 Hz in the spacecraft frame, i.e. Z(f) = Σ p -1 where Σ p is the height-integrated Pedersen conductivity of the ionosphere. About 0.1 Hz the authors find Z(f) > Σ p -1 , which they argue to be due to the presence of Alfven waves incident from the magnetosphere and reflecting from the lower ionosphere, forming a standing wave pattern. These waves may represent an electromagnetic coupling mechanism between the auroral acceleration region and the ionosphere
Yang, Zhichun; Zhou, Jian; Gu, Yingsong
2014-10-01
A flow field modified local piston theory, which is applied to the integrated analysis on static/dynamic aeroelastic behaviors of curved panels, is proposed in this paper. The local flow field parameters used in the modification are obtained by CFD technique which has the advantage to simulate the steady flow field accurately. This flow field modified local piston theory for aerodynamic loading is applied to the analysis of static aeroelastic deformation and flutter stabilities of curved panels in hypersonic flow. In addition, comparisons are made between results obtained by using the present method and curvature modified method. It shows that when the curvature of the curved panel is relatively small, the static aeroelastic deformations and flutter stability boundaries obtained by these two methods have little difference, while for curved panels with larger curvatures, the static aeroelastic deformation obtained by the present method is larger and the flutter stability boundary is smaller compared with those obtained by the curvature modified method, and the discrepancy increases with the increasing of curvature of panels. Therefore, the existing curvature modified method is non-conservative compared to the proposed flow field modified method based on the consideration of hypersonic flight vehicle safety, and the proposed flow field modified local piston theory for curved panels enlarges the application range of piston theory.
Directory of Open Access Journals (Sweden)
Maziar Janghorban
Full Text Available Static and free vibration analysis of carbon nano wires with rectangular cross section based on Timoshenko beam theory is studied in this research. Differential quadrature method (DQM is employed to solve the governing equations. From the knowledge of author, it is the first time that free vibration of nano wires is investigated. It is also the first time that differential quadrature method is used for bending analysis of nano wires.
Development and static testing of the 18x6 m SSU-TTMBF spatial structural unit
Deordiev, S.; Frolovskaia, A.; Krasiev, M.
2018-03-01
The aim of this work is the development of a fragment of the structural covering, consisting of a triangular block of frames, the choice of step size (width) of the structural unit and a study of its mode of deformation by comparing experimental and theoretical results of research.
Quasi-static drift-tube accelerating structures for low-speed heavy ions
International Nuclear Information System (INIS)
Faltens, A.; Keefe, D.
1977-01-01
The major attractions of the pulsed drift-tubes are that they are non-resonant structures and that they appear suitable for accelerating a very high current bunch at low energies. The mechanical tolerances of the non-resonant structure are very loose and the cost per meter should be low; the cost of the transport system is expected to be the major cost. The pulse power modulators used to drive the drift-tubes are inexpensive compared to r.f. sources with equivalent peak-power. The longitudinal emittance of the beam emerging from the structure could be extremely low
Yan, Zhenhua; Zhu, Bing; Li, Xuefei; Wang, Guoqiang
2015-01-01
Low-frequency vibrations (0.5–5 Hz) that harm drivers occur in off-road vehicles. Thus, researchers have focused on finding methods to effectively isolate or control low-frequency vibrations. A novel nonlinear seat suspension structure for off-road vehicles is designed, whose static characteristics and seat-human system dynamic response are modeled and analyzed, and experiments are conducted to verify the theoretical solutions. Results show that the stiffness of this nonlinear seat suspension...
Multiphase static droplet simulations in hierarchically structured super-hydrophobic surfaces
Energy Technology Data Exchange (ETDEWEB)
Lee, Jung Shin; Lee, Joon Sang [School of Mechanical Engineering, Yonsei University, Seoul (Korea, Republic of)
2016-08-15
The surface of first part of study is textured with microscopic pillars of prototypical top geometries as a rectangle. The second one is textured with a hierarchical structure, composed of secondary pillar structures added on the primary texture. The length ratio between two scales of texture is 1:16. We evaluated the non-wetting characteristics of two types of surfaces by measuring CAs as well as the transition from the Wenzel's to Cassie's regimes. We measure the Contact angles (CAs), using the Lattice Boltzmann model (LBM), for two different surface configurations. We evaluated the effect of the hierarchical structure; the robustness of the Cassie regime is enhanced and the apparent contact angle is increased by the secondary structures. This is achieved by increasing the energy barrier against the transition between wetting and non-wetting regimes.
Kinematics/statics analysis of a novel serial-parallel robotic arm with hand
International Nuclear Information System (INIS)
Lu, Yi; Dai, Zhuohong; Ye, Nijia; Wang, Peng
2015-01-01
A robotic arm with fingered hand generally has multi-functions to complete various complicated operations. A novel serial-parallel robotic arm with a hand is proposed and its kinematics and statics are studied systematically. A 3D prototype of the serial-parallel robotic arm with a hand is constructed and analyzed by simulation. The serial-parallel robotic arm with a hand is composed of an upper 3RPS parallel manipulator, a lower 3SPR parallel manipulator and a hand with three finger mechanisms. Its kinematics formulae for solving the displacement, velocity, acceleration of are derived. Its statics formula for solving the active/constrained forces is derived. Its reachable workspace and orientation workspace are constructed and analyzed. Finally, an analytic example is given for solving the kinematics and statics of the serial-parallel robotic arm with a hand and the analytic solutions are verified by a simulation mechanism.
Kinematics/statics analysis of a novel serial-parallel robotic arm with hand
Energy Technology Data Exchange (ETDEWEB)
Lu, Yi; Dai, Zhuohong; Ye, Nijia; Wang, Peng [Yanshan University, Hebei (China)
2015-10-15
A robotic arm with fingered hand generally has multi-functions to complete various complicated operations. A novel serial-parallel robotic arm with a hand is proposed and its kinematics and statics are studied systematically. A 3D prototype of the serial-parallel robotic arm with a hand is constructed and analyzed by simulation. The serial-parallel robotic arm with a hand is composed of an upper 3RPS parallel manipulator, a lower 3SPR parallel manipulator and a hand with three finger mechanisms. Its kinematics formulae for solving the displacement, velocity, acceleration of are derived. Its statics formula for solving the active/constrained forces is derived. Its reachable workspace and orientation workspace are constructed and analyzed. Finally, an analytic example is given for solving the kinematics and statics of the serial-parallel robotic arm with a hand and the analytic solutions are verified by a simulation mechanism.
International Nuclear Information System (INIS)
Gray, M.N.; Cheung, S.C.H.; Dixon, D.A.
1984-09-01
A laboratory investigation of the vertical and lateral swelling pressures developed in statically compacted, air-dry specimens of sodium (Na)-bentonite:silica sand mixtures as they are saturated in confined conditions with double-distilled, deionized water is described. The results are interpreted with the aid of observations of the compacted soil structures made in a scanning electron microscope. It is shown that the sand acts as an inert filler material and vertical swelling pressures are controlled by a parameter termed the effective clay dry density (qsub(c)). A limiting value of qsub(c) exists below which vertical and lateral swelling pressures do not differ and are theoretically predictable. Above this value, vertical pressures exceed lateral ones. This is related to a change from an isotropic to an anisotropic soil fabric as qsub(c) is increased above the limiting value
Structural analysis for Diagnosis
DEFF Research Database (Denmark)
Izadi-Zamanabadi, Roozbeh; Blanke, M.
2001-01-01
Aiming at design of algorithms for fault diagnosis, structural analysis of systems offers concise yet easy overall analysis. Graph-based matching, which is the essential technique to obtain redundant information for diagnosis, is re-considered in this paper. Matching is re-formulated as a problem...... of relating faults to known parameters and measurements of a system. Using explicit fault modelling, minimal over-determined subsystems are shown to provide necessary redundancy relations from the matching. Details of the method are presented and a realistic example used to clearly describe individual steps...
Structural analysis for diagnosis
DEFF Research Database (Denmark)
Izadi-Zamanabadi, Roozbeh; Blanke, M.
2002-01-01
Aiming at design of algorithms for fault diagnosis, structural analysis of systems offers concise yet easy overall analysis. Graph-based matching, which is the essential tech-nique to obtain redundant information for diagnosis, is reconsidered in this paper. Matching is reformulated as a problem...... of relating faults to known parameters and measurements of a system. Using explicit fault modelling, minimal overdetermined subsystems are shown to provide necessary redundancy relations from the matching. Details of the method are presented and a realistic example used to clearly describe individual steps....
Error analysis and prevention of cosmic ion-induced soft errors in static CMOS RAMS
International Nuclear Information System (INIS)
Diehl, S.E.; Ochoa, A. Jr.; Dressendorfer, P.V.; Koga, R.; Kolasinski, W.A.
1982-06-01
Cosmic ray interactions with memory cells are known to cause temporary, random, bit errors in some designs. The sensitivity of polysilicon gate CMOS static RAM designs to logic upset by impinging ions has been studied using computer simulations and experimental heavy ion bombardment. Results of the simulations are confirmed by experimental upset cross-section data. Analytical models have been extended to determine and evaluate design modifications which reduce memory cell sensitivity to cosmic ions. A simple design modification, the addition of decoupling resistance in the feedback path, is shown to produce static RAMs immune to cosmic ray-induced bit errors
International Nuclear Information System (INIS)
Ruffino, E.; Scalerandi, M.
2000-01-01
As discovered by recent quasi-static and dynamic resonance experiments, the classical nonlinear theory fails in describing the hysteretic behaviour of nonlinear mesoscopic materials like rocks, concrete, etc. The paper applies the local interaction simulation approach (LISA) for studying such kind of nonclassical nonlinearity. To this purpose, in the LISA treatment of ultrasonic wave propagation has been included a phenomenological model, based on the PM space approach, of the local mesoscopic features of rocks and other materials with localized damages. A quantitative comparison of simulation and experimental results in quasi-static experiments is also presented
DEFF Research Database (Denmark)
Poulsen, Mikael Zebbelin
2002-01-01
, by the implementation of the Simpy tool box. This is an object oriented system implemented in the Python language. It can be used for analysis of DAEs, ODEs and non-linear equation and uses e.g. symbolic representations of expressions and equations. The presentations of theory and algorithms for structural index......Differential algebraic equations (DAEs) constitute a fundamental model class for many modelling purposes in engineering and other sciences, especially for dynamical simulation of component based systems. This thesis describes a practical methodology and approach for analysing general DAE...... analysis of DAE is original in the sense that it is based on a new matrix representation of the structural information of a general DAE system instead of a graph oriented representation. Also the presentation of the theory is found to be more complete compared to other presentations, since it e.g. proves...
International Nuclear Information System (INIS)
Sun, Zuo-Yu; Li, Guo-Xiu; Wang, Lan; Wang, Wei-Hong; Gao, Qing-Xiu; Wang, Jie
2016-01-01
Highlights: • The static electromagnetic characteristics of solenoid valve were numerically studied. • The effects of driving current were considered. • The effects of solenoid valve’s eight essential structure parameters were considered. - Abstract: In the present paper, the effects of driving current and solenoid valve’s structure parameters (including iron-core’s length, magnetic pole’s cross-sectional area, coil turn, coil’s position, armature’s thickness, damping hole’s position, damping hole’s size, and width of working air–gap) on the static electromagnetic characteristics have been numerically investigated. From the results, it can be known that the electromagnetic energy conversion will be seriously influenced by driving current for its effects on magnetic field strength and magnetic saturation phenomenon, an excessive increase of current will weak electromagnetic energy conversion for the accelerating power losses. The capacity of electromagnetic energy conversion is also relative to each solenoid valve’s parameter albeit it is not very sensitive to each parameters. The generated electromagnetic force will be enhanced by rising iron-core’s length, equalizing the cross-sectional areas of major and vice poles, increasing coil turn within a moderate range, closing the coil’s position towards armature’s centre, enlarging armature’s thickness, pushing the damping holes’ positions away from armature’s centre, reducing the sizes of damping holes, and reducing the width of working air–gap; but such enhancements won’t be realized once the driving current is excessively higher.
Enabling Rapid and Robust Structural Analysis During Conceptual Design
Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu
2015-01-01
This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.
Dynamic and Static Combination Analysis Method of Slope Stability Analysis during Earthquake
Liang Lu; Zongjian Wang; Xiaoyuan Huang; Bin Zheng; Katsuhiko Arai
2014-01-01
The results of laboratory model tests for simulating the slope failure due to vibration, including unreinforced slope and the slope reinforced by using geotextile, show that the slope failure occurs when a cumulative plastic displacement exceeds a certain critical value. To overcome the defects of conventional stability analysis, which evaluates the slope characteristics only by its strength parameters, a numerical procedure considering the stiffness and deformation of materials and geosynthe...
International Nuclear Information System (INIS)
Lumma, D.; Lurio, L. B.; Borthwick, M. A.; Falus, P.; Mochrie, S. G. J.
2000-01-01
X-ray photon correlation spectroscopy and small-angle x-ray scattering measurements are applied to characterize the dynamics and structure of concentrated suspensions of charge-stabilized polystyrene latex spheres dispersed in glycerol, for volume fractions between 2.7% and 52%. The static structures of the suspensions show essentially hard-sphere behavior. The short-time dynamics shows good agreement with predictions for the wave-vector-dependent collective diffusion coefficient, which are based on a hard-sphere model [C. W. J. Beenakker and P. Mazur, Physica A 126, 349 (1984)]. However, the intermediate scattering function is found to violate a scaling behavior found previously for a sterically stabilized hard-sphere suspension [P. N. Segre and P. N. Pusey, Phys. Rev. Lett. 77, 771 (1996)]. Our measurements are parametrized in terms of a viscoelastic model for the intermediate scattering function [W. Hess and R. Klein, Adv. Phys. 32, 173 (1983)]. Within this framework, two relaxation modes are predicted to contribute to the decay of the dynamic structure factor, with mode amplitudes depending on both wave vector and volume fraction. Our measurements indicate that, for particle volume fractions smaller than about 0.30, the intermediate scattering function is well described in terms of single-exponential decays, whereas a double-mode structure becomes apparent for more concentrated systems
DEFF Research Database (Denmark)
Jakobsen, Bo
2006-01-01
The main goal of the study presented in this thesis was to perform in-situ investigations on deformation structures in plastically deformed polycrystalline copper at low degrees of tensile deformation (model system for cell forming pure fcc metals. Anovel synchrotron...... grains in polycrystalline samples during tensile deformation. We have shown that the resulting 3D reciprocal space maps from tensile deformed copper comprise a pronounced structure, consisting of bright sharp peaks superimposed on a cloud of enhanced intensity. Based on the integrated intensity......, the width of the peaks, and spatial scanning experiments it is concluded that the individual peaks arise from individual dislocation-free regions (the subgrains) in the dislocation structure. The cloud is attributed to the dislocation rich walls. Samples deformed to 2% tensile strain were investigated under...
National Research Council Canada - National Science Library
Pastore, C. M
1999-01-01
.... Some specific applications of the developed analysis are shown on the examples of transverse dynamic bending of simply supported laminated plate and 3D contact analysis for a multi-brick structure...
STRUCTURAL ANALYSIS OF SUPERCONDUCTING ACCELERATOR CAVITIES
International Nuclear Information System (INIS)
Schrage, D.
2000-01-01
The static and dynamic structural behavior of superconducting cavities for various projects was determined by finite element structural analysis. The β = 0.61 cavity shape for the Neutron Science Project was studied in detail and found to meet all design requirements if fabricated from five millimeter thick material with a single annular stiffener. This 600 MHz cavity will have a Lorentz coefficient of minus1.8 Hz/(Mv/meter) 2 and a lowest structural resonance of more than 100 Hz. Cavities at β = 0.48, 0.61, and 0.77 were analyzed for a Neutron Science Project concept which would incorporate 7-cell cavities. The medium and high beta cavities were found to meet all criteria but it was not possible to generate a β = 0.48 cavity with a Lorentz coefficient of less than minus3 Hz/(Mv/meter) 2
Analog automatic test pattern generation for quasi-static structural test.
Zjajo, A.; Pineda de Gyvez, J.
2009-01-01
A new approach for structural, fault-oriented analog test generation methodology to test for the presence of manufacturing-related defects is proposed. The output of the test generator consists of optimized test stimuli, fault coverage and sampling instants that are sufficient to detect the failure
International Nuclear Information System (INIS)
Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd; Tamin, M. N.
2016-01-01
We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step
Energy Technology Data Exchange (ETDEWEB)
Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat (Malaysia); Tamin, M. N. [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru (Malaysia)
2016-11-15
We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step.
Energy Technology Data Exchange (ETDEWEB)
Metzler, J.; Ferrier, G.A.; Farahani, M.; Chan, P.K.; Corcoran, E.C., E-mail: Joseph.Metzler@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)
2014-07-01
Stress corrosion cracking can cause failures of CANDU Zircaloy-4 fuel sheathing. A series of static loading tests were performed on slotted ring samples in support of ongoing efforts to analyze the effects of iodine concentration, temperature, and stress levels on the corrosion of Zircaloy-4. The corrosive degradation of Zircaloy-4 was evaluated using deflection measurements. A regression analysis determined that iodine concentration and temperature have had a linear effect on deflection results thus far, while the stress level has not. (author)
Static disorder and structural correlations in the low-temperature phase of lithium imide
Miceli, Giacomo; Ceriotti, Michele; Bernasconi, Marco; Parrinello, Michele
2011-02-01
Based on ab initio molecular dynamics simulations, we investigate the low-temperature crystal structure of Li2NH which in spite of its great interest as H-storage material is still a matter of debate. The dynamical simulations reveal a precise correlation in the fractional occupation of Li sites which leads average atomic positions in excellent agreement with diffraction data and solves the inconsistencies of previous proposals.
A quasi-static approach to structure formation in black hole universes
Energy Technology Data Exchange (ETDEWEB)
Durk, Jessie; Clifton, Timothy, E-mail: j.durk@qmul.ac.uk, E-mail: t.clifton@qmul.ac.uk [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London (United Kingdom)
2017-10-01
Motivated by the existence of hierarchies of structure in the Universe, we present four new families of exact initial data for inhomogeneous cosmological models at their maximum of expansion. These data generalise existing black hole lattice models to situations that contain clusters of masses, and hence allow the consequences of cosmological structures to be considered in a well-defined and non-perturbative fashion. The degree of clustering is controlled by a parameter λ, in such a way that for λ ∼ 0 or 1 we have very tightly clustered masses, whilst for λ ∼ 0.5 all masses are separated by cosmological distance scales. We study the consequences of structure formation on the total net mass in each of our clusters, as well as calculating the cosmological consequences of the interaction energies both within and between clusters. The locations of the shared horizons that appear around groups of black holes, when they are brought sufficiently close together, are also identified and studied. We find that clustering can have surprisingly large effects on the scale of the cosmology, with models that contain thousands of black holes sometimes being as little as 30% of the size of comparable Friedmann models with the same total proper mass. This deficit is comparable to what might be expected to occur from neglecting gravitational interaction energies in Friedmann cosmology, and suggests that these quantities may have a significant influence on the properties of the large-scale cosmology.
Directory of Open Access Journals (Sweden)
Slava Svitlana S.
2015-03-01
Full Text Available Under current conditions in Ukraine, when the vector is directed at increasing self-sufficiency of the regions, diagnostics of structural transformations in their economic systems is a mandatory and necessary component to identify potential points of the region development. Accordingly, the purpose of the article is to study the structural trends in the economy of the Transcarpathian region and identify its leading sectors under the pre-crisis and crisis conditions, balance in dynamics of the main indicators — the volume of sales, regional value added, capital investment and the number of employees, as well as formation of the main directions in development of the regional economy. It has been revealed that for the past ten years the restructuring of the region economic did not go on too rapidly and it is still difficult to speak about a clear trend of transition to a post-industrial system. Given the current characteristics of the economy of Transcarpathia, the article defined the basic problematic aspects of its structural transformation. It allowed to determine the long-term, according to the authors, ways of “modernization” of economic processes in terms of attracting investments, increasing innovation, business activity, formation of a complete production cycle, use of alternative energy sources, implementation of the EU requirements.
A quasi-static approach to structure formation in black hole universes
International Nuclear Information System (INIS)
Durk, Jessie; Clifton, Timothy
2017-01-01
Motivated by the existence of hierarchies of structure in the Universe, we present four new families of exact initial data for inhomogeneous cosmological models at their maximum of expansion. These data generalise existing black hole lattice models to situations that contain clusters of masses, and hence allow the consequences of cosmological structures to be considered in a well-defined and non-perturbative fashion. The degree of clustering is controlled by a parameter λ, in such a way that for λ ∼ 0 or 1 we have very tightly clustered masses, whilst for λ ∼ 0.5 all masses are separated by cosmological distance scales. We study the consequences of structure formation on the total net mass in each of our clusters, as well as calculating the cosmological consequences of the interaction energies both within and between clusters. The locations of the shared horizons that appear around groups of black holes, when they are brought sufficiently close together, are also identified and studied. We find that clustering can have surprisingly large effects on the scale of the cosmology, with models that contain thousands of black holes sometimes being as little as 30% of the size of comparable Friedmann models with the same total proper mass. This deficit is comparable to what might be expected to occur from neglecting gravitational interaction energies in Friedmann cosmology, and suggests that these quantities may have a significant influence on the properties of the large-scale cosmology.
A quasi-static approach to structure formation in black hole universes
Durk, Jessie; Clifton, Timothy
2017-10-01
Motivated by the existence of hierarchies of structure in the Universe, we present four new families of exact initial data for inhomogeneous cosmological models at their maximum of expansion. These data generalise existing black hole lattice models to situations that contain clusters of masses, and hence allow the consequences of cosmological structures to be considered in a well-defined and non-perturbative fashion. The degree of clustering is controlled by a parameter λ, in such a way that for λ ~ 0 or 1 we have very tightly clustered masses, whilst for λ ~ 0.5 all masses are separated by cosmological distance scales. We study the consequences of structure formation on the total net mass in each of our clusters, as well as calculating the cosmological consequences of the interaction energies both within and between clusters. The locations of the shared horizons that appear around groups of black holes, when they are brought sufficiently close together, are also identified and studied. We find that clustering can have surprisingly large effects on the scale of the cosmology, with models that contain thousands of black holes sometimes being as little as 30% of the size of comparable Friedmann models with the same total proper mass. This deficit is comparable to what might be expected to occur from neglecting gravitational interaction energies in Friedmann cosmology, and suggests that these quantities may have a significant influence on the properties of the large-scale cosmology.
International Nuclear Information System (INIS)
Liang Shangming; Yan Xijiang; Mo Chunhua; Hou Binglin; Li Pengyuan; Jian Guangde; Liu Dequan; Zhou Caipin
2010-01-01
According to the characteristics of the gravity support system of ITER, a finite element static analysis method of the system was proposed. ANSYS was applied to built the three dimensional model of the system. A mesh dividing method,which has high precision and an acceptable calculating scale, was used. After the mesh of the model had been divided, the contact elements were defined on interfaces between volumes. The finite element static analysis of the gravity support system under the dead weight and seismic loads was performed. The stress distributions and the maximal stress values of all parts of the gravity support system were obtained, and the stress strength of the parts was analyzed. The results showed that the maximum stresses of the TF leg, the flexible-plate, the ring support and the support column occur respectively on the joint of TF leg and equivalent toroidal shell, at the corner of the weld joint of the flexible-plate and its lower flange, on the joint of the upper transverse plane and internal stiffening rib of the ring support, and on the support column's upper transverse plane. These maximum stresses are smaller than their respective allowable stress limits. All parts of the gravity support system have enough mechanical strength according to the ASME See. III-NF Code. The results of static analysis lay the solid foundation for the design and improvement of the gravity supports system of ITER. (authors)
Jiang, Caigui
2014-09-01
This paper builds on recent progress in computing with geometric constraints, which is particularly relevant to architectural geometry. Not only do various kinds of meshes with additional properties (like planar faces, or with equilibrium forces in their edges) become available for interactive geometric modeling, but so do other arrangements of geometric primitives, like honeycomb structures. The latter constitute an important class of geometric objects, with relations to “Lobel” meshes, and to freeform polyhedral patterns. Such patterns are particularly interesting and pose research problems which go beyond what is known for meshes, e.g. with regard to their computing, their flexibility, and the assessment of their fairness.
QUASI-STATIC MODEL OF MAGNETICALLY COLLIMATED JETS AND RADIO LOBES. II. JET STRUCTURE AND STABILITY
Energy Technology Data Exchange (ETDEWEB)
Colgate, Stirling A.; Li, Hui [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fowler, T. Kenneth [University of California, Berkeley, CA 94720 (United States); Hooper, E. Bickford [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McClenaghan, Joseph; Lin, Zhihong [University of California, Irvine, CA 92697 (United States)
2015-11-10
This is the second in a series of companion papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetically driven, and mediated helix that could explain both the observed radio jet/lobe structures and ultimately the enormous power inferred from the observed ultrahigh-energy cosmic rays. In the first paper, we showed self-consistently that minimizing viscous dissipation in the disk naturally leads to jets of maximum power with boundary conditions known to yield jets as a low-density, magnetically collimated tower, consistent with observational constraints of wire-like currents at distances far from the black hole. In this paper we show that these magnetic towers remain collimated as they grow in length at nonrelativistic velocities. Differences with relativistic jet models are explained by three-dimensional magnetic structures derived from a detailed examination of stability properties of the tower model, including a broad diffuse pinch with current profiles predicted by a detailed jet solution outside the collimated central column treated as an electric circuit. We justify our model in part by the derived jet dimensions in reasonable agreement with observations. Using these jet properties, we also discuss the implications for relativistic particle acceleration in nonrelativistically moving jets. The appendices justify the low jet densities yielding our results and speculate how to reconcile our nonrelativistic treatment with general relativistic MHD simulations.
DEFF Research Database (Denmark)
Larsen, Michael Holm
1999-01-01
This note introduces the IDEF0 modelling language (semantics and syntax), and associated rules and techniques, for developing structured graphical representations of a system or enterprise. Use of this standard for IDEF0 permits the construction of models comprising system functions (activities...... that require a modelling technique for the analysis, development, re-engineering, integration, or acquisition of information systems; and incorporate a systems or enterprise modelling technique into a business process analysis or software engineering methodology.This note is a summary of the Standard...... for Integration Definition for Function Modelling (IDEF0). I.e. the Draft Federal Information Processing Standards Publication 183, 1993, December 21, Announcing the Standard for Integration Definition for Function Modelling (IDEF0)....
The temperature dependence of the static structure factor for liquid 4He below Tsub(lambda)
International Nuclear Information System (INIS)
Puoskari, M.; Kallio, A.; Pollari, P.
1984-01-01
The temperature dependence of the structure factor S(k,T) is studied based on an assumption that the anomalous behaviour of S(k,T) below Tsub(lambda) is due to thermally excited rotons and phonons. The calculation of S(k,T) is performed with the help of the HNC-equation from a model density matrix of Penrose which in turn is obtained from a quasiparticle Hamiltonian describing elementary excitations of liquid helium (both phonons and rotons). The results are in qualitative agreement with recent neutron and X-ray scattering experiments below Tsub(lambda). The theoretical temperature correction is used to deduce S(k,T=0) separately from the most recent X-ray and neutron scattering experiments. (Auth.)
International Nuclear Information System (INIS)
Ohsawa, A
2011-01-01
This paper presents a statistical analysis of 153 accidents attributable to static electricity in Japanese industry over the last 50 years. A more thorough understanding of their causes could help prevent similar incidents and identify hazards that could assist in the task of risk assessment. Most of the incidents occurred during operations performed by workers. In addition, more than 70% of the flammable atmospheres resulted from the presence of vapours. A noteworthy finding is that at least 70% of the ignitions were caused by isolated conductors including operators' bodies leading to spark discharges, which could have easily been prevented with earthing. These tendencies indicate that, when operators handle flammable liquids with any conductors, the ignition risk is significantly high. A serious lack of information regarding fundamental countermeasures for static electricity seems to be the main cause of such hazards. Only organised management, including education and risk communication, would prevent them.
Synthesis and Analysis of a Quaternary Static RAM Using Quantizing Circuits
Syuto, Makoto; Magata, Hiroshi; Tanno, Koichi; Ishizuka, Okihiko
1999-09-01
In this paper, a voltage mode multiple valued static random access memory (MVSRAM) with a multiple valued quantizer is described. The proposed circuit has the merits of simplicity and low cost on fabrication, since it is implemented by standard CMOs process, instead of the conventional multi-level ion implantation usually applied in the voltage-mode multi-valued logic (MVL) circuit. The performance of the proposed MVSRAM is estimated by HSPICE simulations with MOSIS 2.0 microns CMOs process parameter.
Small static electric field strength promotes aggregation-prone structures in amyloid-β(29-42)
Lu, Yan; Shi, Xiao-Feng; Salsbury, Freddie R.; Derreumaux, Philippe
2017-04-01
The formation of senile plaques in central neural system resulting from the aggregation of the amyloid β (Aβ) of 40 and 42 residues is one of the two hallmarks of Alzheimer's disease. Numerous experiments and computational studies have shown that the aggregation of Aβ peptides in vitro is very complex and depends on many factors such as pH, agitation, temperature, and peptide concentration. The impact of a static electric field (EF) on amyloid peptide aggregation has been much less studied, although EFs may have some applications to treat Parkinson's disease symptoms. Here, we study the influence of an EF strength of 20 mV/nm, present in the human brains, on the conformation of the Aβ29-42 dimer. Our 7 μs non-equilibrium atomistic simulations in aqueous solution show that this field-strength promotes substantially the formation of β-hairpins, believed to be a very important intermediate state during aggregation. This work also suggests that structural biology experiments conducted under appropriate EF strengths may help reduce the conformational heterogeneity of Aβ1-40/Aβ1-42 dimers and provide significant insights into their structures that may be disease-causing.
Udovenko, Anatoly; Laptash, Natalia
2015-08-01
Single crystals of tungsten double salt (NH4)3WO2F5 = (NH4)3[WO2F4]F have been synthesized by solid-state reaction or from fluoride solution and its crystal structures at 296 and 193 K were determined by X-ray diffraction. At room temperature, the crystal structure of the compound is dynamically disordered with the ligand atoms statistically distributed on two positions (6e and 24m) of the Pm3m unit cell [a = 6.0298 (1) Å], and the tungsten atom dynamically disordered on 12 orientations forming a spatial cuboctahedron [W12] that enables the real geometry of cis-WO2F4 octahedron to be determined with two short W-O distances. On cooling, the compound undergoes a first-order phase transition with the symmetry change Pm3m → Pa3 and a doubling of the unit-cell parameter [a = 11.9635 (7) Å]. The ligand F(O) atoms statistically occupy two general 24d sites and form W1X6 and W2X6 octahedra, in which the O and F atoms are not crystallographically different that means a static orientational disorder of (NH4)3WO2F5.
Ventilation and internal structure effects on naturally induced flows in a static aircraft wing
International Nuclear Information System (INIS)
Moore, Daithi; Newport, David; Egan, Vanessa; Lacarac, Vesna
2012-01-01
The ventilation performance within an aircraft wing leading edge is investigated for a number of enclosure and ventilation configurations. The natural convection regime present is found to be highly sensitive to enclosure conditions, particularly the introduction of a partition. The presence of a partition reduced the overall heat exhausted from the cavity by up to 60%. The optimum ventilation strategy is also changed from a forward biased vent orientation (found for the unpartitioned case), to one where both the rear and front vents within the enclosure had the same open area. Cylinder plume effects dominate within the enclosure and were the main driver of the convective regime, with steady-state enclosure conditions highly dependent upon cylinder placement and plume orientation. An externally heated enclosure with internal heat source, combined with ventilation and an internal structure produced a complex natural convection regime which is sensitive to enclosure conditions. Hence an adequate knowledge of such conditions is necessary in order to fully appreciate the convective regime. - Highlights: → Optimum ventilation strategy changed between unpartitioned and partitioned cases. → Flow path and plume orientation are important to consider when analysing ventilation. → Bleed duct placement significantly alters flow path and temperature distribution. → Enclosure partitioning reduced heat exhaustion by 60%.
Directory of Open Access Journals (Sweden)
Gao-Xin Wang
2015-01-01
Full Text Available Taking advantage of the structural health monitoring system installed on the steel truss arch girder of Dashengguan Yangtze Bridge, the temperature field data and static strain data are collected and analyzed for the static performance assessment of the bridge. Through analysis, it is found that the static strain changes are mainly caused by temperature field (temperature and temperature difference and train. After the train-induced static strains are removed, the correlation between the remaining static strains and the temperature field shows apparent linear characteristics, which can be mathematically modeled for the description of static performance. Therefore, multivariate linear regression function combined with principal component analysis is introduced to mathematically model the correlation. Furthermore, the residual static strains of mathematical model are adopted as assessment indicator and three kinds of degradation regulations of static performance are obtained after simulation of the residual static strains. Finally, it is concluded that the static performance of Dashengguan Yangtze Bridge was in a good condition during that period.
Peng, Wei; Ding, Fei
2017-10-24
Chirality is a ubiquitous basic attribute of nature, which inseparably relates to the life activity of living organisms. However, enantiomeric differences have still failed to arouse enough attention during the biological evaluation and practical application of chiral substances, and this poses a large threat to human health. In the current study, we explore the enantioselective biorecognition of a chiral compound by an asymmetric biomolecule, and then decipher the molecular basis of such a biological phenomenon on the static and, in particular, the dynamic scale. In light of the wet experiments, in silico docking results revealed that the orientation of the latter part of the optical isomer structures in the recognition domain can be greatly affected by the chiral carbon center in a model ligand molecule, and this event may induce large disparities between the static chiral bioreaction modes and noncovalent interactions (especially hydrogen bonding). Dynamic stereoselective biorecognition assays indicated that the conformational stability of the protein-(S)-diclofop system is clearly greater than the protein-(R)-diclofop adduct; and moreover, the conformational alterations of the diclofop enantiomers in the dynamic process will directly influence the conformational flexibility of the key residues found in the biorecognition region. These points enable the changing trends of biopolymer structural flexibility and free energy to exhibit significant distinctions when proteins sterically recognize the (R)-/(S)-stereoisomers. The outcomes of the energy decomposition further showed that the van der Waals' energy has roughly the same contribution to the chiral recognition biosystems, whereas the contribution of electrostatic energy to the protein-(R)-diclofop complex is notably smaller than to the protein-(S)-diclofop bioconjugate. This proves that differences in the noncovalent bonds would have a serious impact on the stereoselective biorecognition between a
Energy Technology Data Exchange (ETDEWEB)
Ingram, J.C.; Groenewold, G.S.; Appelhans, A.D.; Delmore, J.E.; Olson, J.E.; Miller, D.L. [Idaho National Engineering Lab., Idaho Falls, ID (United States)
1997-02-01
Direct surface analyses by static secondary ion mass spectrometry (SIMS) were performed for the following pesticides adsorbed on dandelion leaves, grass, soil, and stainless steel samples: alachlor, atrazine, captan, carbofuran, chlorpyrifos, chlorosulfuron, chlorthal-dimethyl, cypermethrin, 2,4-D, diuron, glyphosate, malathion, methomyl, methyl arsonic acid, mocap, norflurazon, oxyfluorfen, paraquat, temik, and trifluralin. The purpose of this study was to evaluate static SIMS as a tool for pesticide analysis, principally for use in screening samples for pesticides. The advantage of direct surface analysis compared with conventional pesticide analysis methods is the elimination of sample pretreatment including extraction, which streamlines the analysis substantially; total analysis time for SIMS analysis was ca. 10 min/sample. Detection of 16 of the 20 pesticides on all four substrates was achieved. Of the remaining four pesticides, only one (trifluralin) was not detected on any of the samples. The minimum detectable quantity was determined for paraquat on soil in order to evaluate the efficacy of using SIMS as a screening tool. Paraquat was detected at 3 pg/mm{sup 2} (c.a. 0.005 monolayers). The results of these studies suggest that SIMS is capable of direct surface detection of a range of pesticides, with low volatility, polar pesticides being the most easily detected. 25 refs., 2 figs., 2 tabs.
MEMS linear and nonlinear statics and dynamics
Younis, Mohammad I
2011-01-01
MEMS Linear and Nonlinear Statics and Dynamics presents the necessary analytical and computational tools for MEMS designers to model and simulate most known MEMS devices, structures, and phenomena. This book also provides an in-depth analysis and treatment of the most common static and dynamic phenomena in MEMS that are encountered by engineers. Coverage also includes nonlinear modeling approaches to modeling various MEMS phenomena of a nonlinear nature, such as those due to electrostatic forces, squeeze-film damping, and large deflection of structures. The book also: Includes examples of nume
Optimal analysis of structures by concepts of symmetry and regularity
Kaveh, Ali
2013-01-01
Optimal analysis is defined as an analysis that creates and uses sparse, well-structured and well-conditioned matrices. The focus is on efficient methods for eigensolution of matrices involved in static, dynamic and stability analyses of symmetric and regular structures, or those general structures containing such components. Powerful tools are also developed for configuration processing, which is an important issue in the analysis and design of space structures and finite element models. Different mathematical concepts are combined to make the optimal analysis of structures feasible. Canonical forms from matrix algebra, product graphs from graph theory and symmetry groups from group theory are some of the concepts involved in the variety of efficient methods and algorithms presented. The algorithms elucidated in this book enable analysts to handle large-scale structural systems by lowering their computational cost, thus fulfilling the requirement for faster analysis and design of future complex systems. The ...
DEFF Research Database (Denmark)
Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil
2011-01-01
The competitive ion transport through anion exchange membranes under current load conditions, referred to as the electro-enhanced dialysis process, is modeled and investigated through simulations. A dynamic model has been developed for simultaneous transport of multiple ions based on the Nernst......–Plank equation. This model accounts for the convective transport of the dissociated and undissociated species in the module channels, and the diffusion and migration across the boundary layers and membranes. The potential static flux enhancement is evaluated and compared to Donnan dialysis operation for lactate...
Disk in a groove with friction: An analysis of static equilibrium and indeterminacy
Donolato, Cesare
2018-05-01
This note studies the statics of a rigid disk placed in a V-shaped groove with frictional walls and subjected to gravity and a torque. The two-dimensional equilibrium problem is formulated in terms of the angles that contact forces form with the normal to the walls. This approach leads to a single trigonometric equation in two variables whose domain is determined by Coulomb's law of friction. The properties of solutions (existence, uniqueness, or indeterminacy) as functions of groove angle, friction coefficient and applied torque are derived by a simple geometric representation. The results modify some of the conclusions by other authors on the same problem.
Towards Static Analysis of Policy-Based Self-adaptive Computing Systems
DEFF Research Database (Denmark)
Margheri, Andrea; Nielson, Hanne Riis; Nielson, Flemming
2016-01-01
For supporting the design of self-adaptive computing systems, the PSCEL language offers a principled approach that relies on declarative definitions of adaptation and authorisation policies enforced at runtime. Policies permit managing system components by regulating their interactions...... and by dynamically introducing new actions to accomplish task-oriented goals. However, the runtime evaluation of policies and their effects on system components make the prediction of system behaviour challenging. In this paper, we introduce the construction of a flow graph that statically points out the policy...... evaluations that can take place at runtime and exploit it to analyse the effects of policy evaluations on the progress of system components....
International Nuclear Information System (INIS)
Subudhi, M.; Bezler, P.
1984-01-01
Multiple independent support excitation time history formulations have been used to investigate simplified methods to predict the inertial (or dynamic) component of response as well as the pseudo-static (or static) component of response of secondary structures subjected to seismic excitations. For the dynamic component the independent response spectrum method is used with current industry practice for the modal and direction of excitation combinations being adopted and various procedures for the group combination and sequence being investigated. SRSS combination between support groups is found to yield satisfactory results. For the static component, support grouping by elevation for preliminary design followed by support grouping by attachment point for final design assure overall safety in the design
Structural analysis of ITER multi-purpose deployer
International Nuclear Information System (INIS)
Manuelraj, Manoah Stephen; Dutta, Pramit; Gotewal, Krishan Kumar; Rastogi, Naveen; Tesini, Alessandro; Choi, Chang-Hwan
2016-01-01
Highlights: • System modelling for structural analysis of the Multi-Purpose Deployer (MPD). • Finite element modeling of the Multi-Purpose Deployer (MPD). • Static, modal and seismic response analysis of the Multi-Purpose Deployer (MPD). • Iterative structural analysis and design update to satisfy the structural criteria. • Modal analysis for various kinematic configurations. • Reaction force calculations on the interfacing systems. - Abstract: The Multi-Purpose Deployer (MPD) is a general purpose ITER in-vessel remote handling (RH) system. The main handling equipment, known as the MPD Transporter, consists of a series of linked bodies, which provide anchoring to the vacuum vessel port and an articulated multi-degree of freedom motion to perform various in-vessel maintenance tasks. During the in-vessel operations, the structural integrity of the system should be guaranteed against various operational and seismic loads. This paper presents the structural analysis results of the concept design of the MPD Transporter considering the seismic events. Static structural, modal and frequency response spectrum analyses have been performed to verify the structural integrity of the system, and to provide reaction forces to the interfacing systems such as vacuum vessel and cask. Iterative analyses and design updates are carried out based on the reference design of the system to improve the structural behavior of the system. The frequency responses of the system in various kinematics and payloads are assessed.
International Nuclear Information System (INIS)
Li Weijie; Wu Zhongdi; Nong Guowei; Zeng Shi
2014-01-01
The hydraulic characteristic roots of a centrifuge cascade represent an important property of the cascade performance. Regulators and centrifuges are the key components that have a significant influence on the cascade hydraulic performance. The method used in diffusion cascades was adopted to obtain the static characteristic roots by solving the small disturbance equation for an adjustable centrifuge cascade in which all stages have the same fluid parameters. As the light stream flowrate of a centrifuge is irrelevant to the pressure at the outlet of the light flow, and the heavy stream flows at the speed of sound, there are only 2 static characteristic roots in the centrifuge cascade: the first root Z_1 is the main characteristic root and the second one Z_2 comes into play only when there exists a feed. The value of the main characteristic root is influenced by the amplification factor of the regulators, the fluid resistance in the main feed pipe and other factors. When Z_1 is smaller than 1, it increases with the fluid resistance. A large enough amplification factor has little impact on Z_1. The same distribution of the relative changes of the light fraction along the cascade is obtained by an analytical and a numerical method. (authors)
Simulation of the Static VAR Compensator Culiacan Three Substation for the Analysis of Transients
Directory of Open Access Journals (Sweden)
Coronel-Mercado Luis Enrique
2013-06-01
Full Text Available Since its emergence in the late 60’s the FACTS (Flexible AC Transmission Systems have been and continue to be studied and implemented in all electrical networks around the world, becoming an essential element for stability, control and maximum exploitation of thereof. One of the most used FACTS devices is the Static VAR Compensator or SVC. In this work, the modeling in Simulink of the Static VAR Compensator installed at the substation Culiacán Tres (CUT belonging to CFE is presented. The SVC is the ability of ±100 MVAR and ABB brand. The modeling was performed to visually program in detail the different subsystems in Simulink such as the timing unit, the TSC (thyristor switched capacitor, TCR (thyristor controlled reactors, filters of the 5th and the 7th harmonic, the transformer bank, the control unit, distribution unit and the measurement unit. Data for major components were taken from data sheet and equipment manuals. ASPEN software was used in order to obtain Thevenin equivalent of the EPS to connect to them the SVC model to test the step and three-phase short circuit. The results of these tests were compared with test results of commissioning of the SVC.
Energy Technology Data Exchange (ETDEWEB)
Aurich, D.; Gerwien, P.; Huenecke, J.; Klingbeil, D.; Krafka, H.; Kuenecke, G.; Ohm, K.; Veith, H.; Wossidlo, P. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Haecker, R.; 1
1998-11-01
The crack growth resistance behaviour of the steels StE 460 and 22NiMoCr3-7 was determined in the temperature range from 23 C to 350 C by means of C(T), M(T), and ISO-V specimens tested under quasistatic and dynamic loads. The Russian steel 15Ch2NMFA-A was tested at room temperature and 50 C. In the steels StE 460 and 22 NiMoCr3-7, the minimum crack growth resistance is observed at about 250 C, with measured values always being higher for the latter steel type. The crack growth resistance behaviour of the tested materials correlates with the behaviour of flow curve, yield strength, and notch impact toughness as a function of temperature. Impact tests of ISO-V specimens give higher crack resistance values than quasistatic load tests, and the temperature dependence is significantly lower than those of specimens tested under static loads. A metallurgical analysis of the materials shows the causes of the dissimilar behaviour. The stretching zones determined for the C(T) specimen correspond to the toughness of the steels examined, and they are not much influenced by the temperature. The numerical analysis using damaging models for simulation of ductile crack growth is reported for all specimen types and two different temperatures each. (orig./CB) [Deutsch] Mit C(T)-, M(T)- sowie quasistatisch und dynamisch geprueften ISO-V-Proben wurde das Risswiderstandsverhalten fuer die Staehle StE 460 und 22NiMoCr3-7 im Temperaturbereich von 23 C bis 350 C ermittelt, waehrend der russische Stahl 15Ch2NMFA-A fuer Raumtemperatur und fuer 50 C untersucht wurde. Das Minimum der Risszaehigkeit stellt sich bei StE 460 und 22 NiMoCr3-7 um etwa 250 C ein, wobei die Werte fuer den 22NiMoCr3-7 bei allen Temperaturen wesentlich hoeher liegen als beim StE 460. Dabei korreliert das Risswiderstandsverhalten der untersuchten Werkstoffe mit dem Verhalten von Fliesskurven, Streckgrenzen und Kerbschlagzaehigkeiten in Abhaengigkeit von der Temperatur. Schlagartig beanspruchte ISO-V-Proben liefern
Skoog, Richard B
1951-01-01
A theoretical analysis of the effects of aeroelasticity on the stick-fixed static longitudinal stability and elevator angle required for balance of an airplane is presented together with calculated effects for a swept-wing bomber of relatively high flexibility. Although large changes in stability due to certain parameters are indicated for the example airplane, the over-all stability change after considering all parameters was quite small, compared to the individual effects, due to the counterbalancing of wing and tail contributions. The effect of flexibility on longitudinal control for the example airplane was found to be of little real importance.
Optimization and Static Stress Analysis of Hybrid Fiber Reinforced Composite Leaf Spring
Directory of Open Access Journals (Sweden)
Luay Muhammed Ali Ismaeel
2015-01-01
Full Text Available A monofiber reinforced composite leaf spring is proposed as an alternative to the typical steel one as it is characterized by high strength-to-weight ratio. Different reinforcing schemes are suggested to fabricate the leaf spring. The composite and the typical steel leaf springs are subjected to the same working conditions. A weight saving of about more than 60% can be achieved while maintaining the strength for the structures under consideration. The objective of the present study was to replace material for leaf spring. This study suggests various materials of hybrid fiber reinforced plastics (HFRP. Also the effects of shear moduli of the fibers, matrices, and the composites on the composites performance and responses are discussed. The results and behaviors of each are compared with each other and verified by comparison with analytical solution; a good convergence is found between them. The elastic properties of the hybrid composites are calculated using rules of mixtures and Halpin-Tsi equation through the software of MATLAB v-7. The problem is also analyzed by the technique of finite element analysis (FEA through the software of ANSYS v-14. An element modeling was done for every leaf with eight-node 3D brick element (SOLID185 3D 8-Node Structural Solid.
Indian Academy of Sciences (India)
The Structures Panel of the Aeronautics Research and Development Board of India ... A great variety of topics was covered, including themes such as nonlinear finite ... or shell structures, and three are on the composite form of construction, ...
Monitoring As A Helpful Means In Forensic Analysis Of Dams Static Instability Events
Solimene, Pellegrino
2013-04-01
Monitoring is a means of controlling the behavior of a structure, which during its operational life is subject to external actions as ordinary loading conditions and disturbing ones; these factors overlap with the random manner defined by the statistical parameter of the return period. The analysis of the monitoring data is crucial to gain a reasoned opinion on the reliability of the structure and its components, and also allows to identify, in the overall operational scenario, the time when preparing interventions aimed at maintaining the optimum levels of functionality and safety. The concept of monitoring in terms of prevention is coupled with the activity of Forensic Engineer who, by Judiciary appointment for the occurrence of an accident, turns its experience -the "Scientific knowledge"- in an "inverse analysis" in which he summed up the results of a survey, which also draws on data sets arising in the course of the constant control of the causes and effects, so to determine the correlations between these factors. His activity aims at giving a contribution to the identification of the typicality of an event, which represents, together with "causal link" between the conduct and events and contra-juridical, the factors judging if there an hypothesis of crime, and therefore liable according to law. In Italy there are about 10,000 dams of varying sizes, but only a small portion of them are considered "large dams" and subjected to a rigorous program of regular inspections and monitoring, in application of specific rules. The rest -"small" dams, conventionally defined as such by the standard, but not for the impact on the area- is affected by a heterogeneous response from the local authorities entrusted with this task: there is therefore a high potential risk scenario, as determined by the presence of not completely controlled structures that insist even on areas heavily populated. Risk can be traced back to acceptable levels if they were implemented with the
Composite slab behavior and strength analysis under static and dynamic loads
Directory of Open Access Journals (Sweden)
Florin Radu HARIGA
2012-07-01
Full Text Available Steel-framed buildings are typically constructed using steel-deck-reinforced concrete floor slabs. The in-plane (or diaphragm strength and stiffness of the floor system are frequently utilized in the lateral load-resisting system design. This paper presents the results of an experimental research program in which four full size composite diaphragms were vertically loaded to the limit state, under static or dynamic loads. Two test specimens were provided with longitudinal steel-deck ribs, and the other two specimens with cross steel-deck ribs. Typical composite diaphragm limit states are described, and the controlling limit state for each of the full size tests is indicated. The interaction effects between the reinforced concrete slab and the steel girder on the composite slab strength and stiffness were mainly studied.
Okajima, Kenji; Imai, Junichi; Tanaka, Tadatsugu; Iida, Toshiaki
Damage to piles in the liquefied ground is frequently reported. Buckling by the excess vertical load could be one of the causes of the pile damage, as well as the lateral flow of the ground and the lateral load at the pile head. The buckling mechanism is described as a complicated interaction between the pile deformation by the vertical load and the earth pressure change cased by the pile deformation. In this study, series of static buckling model tests of a pile were carried out in dried sand ground with various thickness of the layer. Finite element analysis was applied to the test results to verify the effectiveness of the elasto-plastic finite element analysis combining the implicit-explicit mixed type dynamic relaxation method with the return mapping method to the pile buckling problems. The test results and the analysis indicated the possibility that the buckling load of a pile decreases greatly where the thickness of the layer increases.
DEFF Research Database (Denmark)
Danvy, Olivier; Damian, Daniel
2001-01-01
Starting from an operational specification of a translation from a structured to an unstructured imperative language, we point out how a compositional and context-insensitive translation gives rise to static chains of jumps. Taking an inspiration from the notion of continuation, we state a new co...
Jalaei, M. H.; Arani, A. Ghorbanpour
2018-02-01
By considering the small scale effect based on the nonlocal Eringen's theory, the static and dynamic analysis of viscoelastic orthotropic double-layered graphene sheets subjected to longitudinal magnetic field and mechanical load is investigated analytically. For this objective, first order shear deformation theory (FSDT) is proposed. The surrounding medium is simulated by visco-Pasternak foundation model in which damping, normal and transverse shear loads are taken into account. The governing equations of motion are obtained via energy method and Hamilton's principle which are then solved analytically by means of Navier's approach and Laplace inversion technique in the space and time domains, respectively. Through various parametric studies, the influences of the nonlocal parameter, structural damping, van der Waals (vdW) interaction, stiffness and damping coefficient of the foundation, magnetic parameter, aspect ratio and length to thickness ratio on the static and dynamic response of the nanoplates are examined. The results depict that when the vdW interaction is considered to be zero, the upper layer deflection reaches a maximum point whereas the lower layer deflection becomes zero. In addition, it is observed that with growing the vdW interaction, the effect of magnetic field on the deflection of the lower layer increases while this effect reduces for the upper layer deflection.
Review of Preliminary Analysis Techniques for Tension Structures.
1984-02-01
however,a linear dinamic analysis can be conducted for purposes of preliminary design, relative to the static configuration. It is noted that the amount of...16 Chapter 3. PRELIMINARY DESIGN OF TENSION STRUCTURES . . .. .. .. .... 22 S.3.1 Cable Systems . . . . . . . . . . . . .. .. .. .... 23...3.1.1 Singly-Connected Segments. .. .... ... 24 3.1.2 Multiply-Connected Segments . . .. .. .. .. 27 3.1.3 Linearized Dynamics of Cable Systems . . . . 29
International Nuclear Information System (INIS)
Mucignat, C.; Armellini, A.; Casarsa, L.
2013-01-01
Highlights: • Detailed PIV and Stereo PIV investigation on a rotating test section. • Static channel: absence of guiding effect for inclined ribs. • Static channel: the ribs influence significantly the flow also at the trailing edge. • Rotating channel: opposite flow features with respect to the static case. • The analyzed flow features justify the previously observed thermal performances. -- Abstract: The present work is part of a wider research program which concerns the aero-thermal characterization of cooling channels for the trailing edge of gas turbine blades. The selected passage model is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. In this contribution, a new channel configuration provided with inclined ribs installed inside the radial development region is analyzed, extending the previous results and completing the already available data base, thus providing an overall review of the aero-thermal performance of the considered passage. The velocity field inside the channel was measured by means of 2D and Stereo-PIV techniques in multiple flow planes under static and rotating conditions. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers. Time averaged flow fields and velocity fluctuation data inside the stationary and rotating channels are analyzed and also critically compared with the data acquired without ribs. In this way the effects on the flow field induced by both rotation and ribs are clearly described. In particular, the ribs modify substantially both the flow field on the channel walls where they are installed and the 3D separation structures that surround the pedestals. If also rotation is taken into account, the relative flow field is characterized by a considerable guiding effect of the ribs coupled
International Nuclear Information System (INIS)
David, M.; Karmrodt, J.; Herwelling, A.; Bletz, C.; David, S.; Heussel, C.P.; Markstaller, K.
2005-01-01
Purpose: To study quantitative changes of lung density distributions when recording in- and expiratory static pressure-volume curves by single slice computed tomography (CT). Materials and Methods: Static in- and expiratory pressure volume curves (0 to 1000 ml, increments of 100 ml) were obtained in random order in 10 pigs after induction of lung damage by saline lavage. Simultaneously, CT acquisitions (slice thickness 1 mm, temporal increment 2 s) were performed in a single slice (3 cm below the carina). In each CT image lung segmentation and planimetry of defined density ranges were achieved. The lung density ranges were defined as: hyperinflated (-1024 to -910 HU), normal aerated (-910 to -600 HU), poorly aerated (-600 to -300 HU), and non aerated (-300 to 200 HU) lung. Fractional areas of defined density ranges in percentage of total lung area were compared to recorded volume increments and airway pressures (atmospheric pressure, lower inflection point (LIP), LIP*0.5, LIP*1.5, peak airway pressure) of in- and expiratory pressure-volume curves. Results: Quantitative analysis of defined density ranges showed no differences between in- and expiratory pressure-volume curves. The amount of poorly aerated lung decreased and normal aerated lung increased constantly when airway pressure and volume were increased during inspiratory pressure-volume curves and vice versa during expiratory pressure-volume loops. Conclusion: Recruitment and derecruitment of lung atelectasis during registration of static in- and expiratory pressure-volume loops occurred constantly, but not in a stepwise manner. CT was shown to be an appropriate method to analyse these recruitment process. (orig.)
DEFF Research Database (Denmark)
Danvy, Olivier; Damian, Daniel
2001-01-01
Starting from an operational specification of a translation from a structured to an unstructured imperative language, we point out how a compositional and context-insensitive translation gives rise to static chains of jumps. Taking an inspiration from the notion of continuation, we state a new...... compositional and context-sensitive specification that provably gives rise to no static chains of jumps, no redundant labels, and no unused labels. It is defined with one inference rule per syntactic construct and operates in linear time and space on the size of the source program (indeed it operates in one...
Static pressure recovery analysis in the vane island diffuser of a centrifugal pump
Energy Technology Data Exchange (ETDEWEB)
Si, Qiaorui [National Research Center of Pumps, Jiangsu University, Zhenjiang (China); Dupont, Patrick; Bayeul-Laine, Annie-Claude; Dazin, Antoine; Roussette, Olivier; Bois, Gerard [LML, UMR CNRS 8107 Ecole Centrale de Lille, Lille (France)
2016-02-15
The overall performance of a vane-island type diffuser of a centrifugal pump model was obtained by means of directional probe traverses. These measurements were performed in an air model of a real hydraulic pump for five volume flow rates. Directional probe traverses are performed with a classical three-hole probe to cover most of the complete inlet section of the diffuser from hub to shroud and from pressure to suction side. Existing Particle image velocimetry (PIV) measurement results are also used to compare probe measurement results between the inlet and outlet throats of vane island diffuser at mid-span. Some assistance from already existing unsteady calculation, including leakage effects, is used to evaluate the numerical approach capability and to correctly define the mean initial conditions at impeller's outlet section. Pressure recovery and the measured total pressure loss levels inside this particular vane diffuser geometry are then calculated. Detailed analysis of the flow structure at the inlet section of the vane island diffuser is presented to focus on pressure evolution inside the entire diffuser section for different flow rates. The combined effects of incidence angle and blockage distributions along hub to shroud direction are found to play an important role on loss distribution in such a diffuser.
International Nuclear Information System (INIS)
Jesus Miranda, C.A. de.
1992-01-01
An integrated 3-D model of a research PWR reactor core support internals structures was developed for its dynamic analyses. The static tests for the validation of the model are presented. There are about 90 super-elements with, approximately, 85000 degrees of freedom (DoF), 8200 masters DoF, 12000 elements with about 8400 thin shell elements. A DEC VAX computer 11/785 model and the ANSYS program were used. If impacts occurs the spectral seismic analysis will be changed to a non-linear one with direct integration of the displacement pulse derived from the seismic accelerogram. This last will be obtained from the seismic acceleration response spectra. (author)
Implementation of inter-unit analysis for C and C++ languages in a source-based static code analyzer
Directory of Open Access Journals (Sweden)
A. V. Sidorin
2015-01-01
Full Text Available The proliferation of automated testing capabilities arises a need for thorough testing of large software systems, including system inter-component interfaces. The objective of this research is to build a method for inter-procedural inter-unit analysis, which allows us to analyse large and complex software systems including multi-architecture projects (like Android OS as well as to support complex assembly systems of projects. Since the selected Clang Static Analyzer uses source code directly as input data, we need to develop a special technique to enable inter-unit analysis for such analyzer. This problem is of special nature because of C and C++ language features that assume and encourage the separate compilation of project files. We describe the build and analysis system that was implemented around Clang Static Analyzer to enable inter-unit analysis and consider problems related to support of complex projects. We also consider the task of merging abstract source trees of translation units and its related problems such as handling conflicting definitions, complex build systems and complex projects support, including support for multi-architecture projects, with examples. We consider both issues related to language design and human-related mistakes (that may be intentional. We describe some heuristics that were used for this work to make the merging process faster. The developed system was tested using Android OS as the input to show it is applicable even for such complicated projects. This system does not depend on the inter-procedural analysis method and allows the arbitrary change of its algorithm.
Directory of Open Access Journals (Sweden)
RUKKUMANI V.
2016-12-01
Full Text Available Aggressive scaling of transistor dimensions with each technology generation has resulted an increased integration density and improved device performance at the expense of increased leakage current. The Supply voltage scaling is an effective way of reducing dynamic as well as leakage power consumption. However the sensitivity of the circuit parameters increases with reduction of the supply voltage. SRAM bit- cells utilizing minimum sized transistors are susceptible to various random process variations. The Schmitt Trigger based operation gives better readconstancy as well as superior write-ability compared to the standard bitcell configurations. The proposed Schmitt Trigger based bitcells integrate a built-in feedback mechanism make the process with high tolerance. In this paper an obsolete design of a differential sensing Static Random Access Memory (SRAM bit cells for ultralow-power and ultralow-area Schmitt trigger operation is introduced. The ST bit cells incorporate a built-in feedback mechanism, provided by separate control signal if the feedback is given by the internal nodes, achieving process variation tolerance that must be used for future nano-scaled technology nodes. In this we proposed 32nm technology for designing 10T SRAM cell using Microwind.Total power about 30% is reduced due to 32 nm technology as compared to 65 nm technlology.
Role of optimization criterion in static asymmetric analysis of lumbar spine load.
Daniel, Matej
2011-10-01
A common method for load estimation in biomechanics is the inverse dynamics optimization, where the muscle activation pattern is found by minimizing or maximizing the optimization criterion. It has been shown that various optimization criteria predict remarkably similar muscle activation pattern and intra-articular contact forces during leg motion. The aim of this paper is to study the effect of the choice of optimization criterion on L4/L5 loading during static asymmetric loading. Upright standing with weight in one stretched arm was taken as a representative position. Musculoskeletal model of lumbar spine model was created from CT images of Visible Human Project. Several criteria were tested based on the minimization of muscle forces, muscle stresses, and spinal load. All criteria provide the same level of lumbar spine loading (difference is below 25%), except the criterion of minimum lumbar shear force which predicts unrealistically high spinal load and should not be considered further. Estimated spinal load and predicted muscle force activation pattern are in accordance with the intradiscal pressure measurements and EMG measurements. The L4/L5 spine loads 1312 N, 1674 N, and 1993 N were predicted for mass of weight in hand 2, 5, and 8 kg, respectively using criterion of mininum muscle stress cubed. As the optimization criteria do not considerably affect the spinal load, their choice is not critical in further clinical or ergonomic studies and computationally simpler criterion can be used.
Akbar, P. A.; Hakim, D. L.; Sucita, T.
2018-02-01
In this research, testing improvements to the distribution voltage electricity at 150 kV transmission subsystem Bandung Selatan and New Ujungberung using Flexible AC Transmission System (FACTS) technology. One of them is by doing the control of active and reactive power through the power electronics equipment Static Synchronous Compensator (STATCOM). The subsystem is tested because it has a voltage profile are relatively less well when based on the IEEE / ANSI C.84.1 (142.5 - 157.5 kV). This study was conducted by analyzing the Newton-Raphson power flow on the simulator DigSilent Power Factory 15 to determine the profile of the voltage (V) on the system. Bus which has the lowest voltage to be a reference in the installation of STATCOM. From this research is known that the voltage on the conditions of the existing bus 28, as many as 21-23 still below standard buses (142.5 kV), after the installation is done using STATCOM, voltage on the buses improved by increasing the number of tracks that follow the standard / is in the range 142.5 kV -157.5 kV as many as 23-27 buses or 78.6% - 96%, with the optimum mounting on a bus Rancaekek STATCOM II with a capacity of 300 MVA.
Analysis of the static properties of cluster formations in symmetric linear multiblock copolymers
International Nuclear Information System (INIS)
Fytas, N G; Theodorakis, P E
2011-01-01
We use molecular dynamics simulations to study the static properties of a single linear multiblock copolymer chain under poor solvent conditions varying the block length N, the number of blocks n, and the solvent quality by variation of the temperature T. We study the most symmetrical case, where the number of blocks of monomers of type A, n A , equals that of monomers B, n B (n A = n B = n/2), the length of all blocks is the same irrespective of their type, and the potential parameters are also chosen symmetrically, as for a standard Lennard-Jones fluid. Under poor solvent conditions the chains collapse and blocks with monomers of the same type form clusters, which are phase separated from the clusters with monomers of the other type. We study the dependence of the size of the clusters formed on n, N and T. Furthermore, we discuss our results with respect to recent simulation data on the phase behaviour of such macromolecules, providing a complete picture for the cluster formations in single multiblock copolymer chains under poor solvent conditions.
Thermodynamic Analysis of the Static Spherically Symmetric Field Equations in Rastall Theory
International Nuclear Information System (INIS)
Moradpour, Hooman; Salako, Ines G.
2016-01-01
The restrictions on the Rastall theory due to application of the Newtonian limit to the theory are derived. In addition, we use the zero-zero component of the Rastall field equations as well as the unified first law of thermodynamics to find the Misner-Sharp mass content confined to the event horizon of the spherically symmetric static spacetimes in the Rastall framework. The obtained relation is calculated for the Schwarzschild and de-Sitter back holes as two examples. Bearing the obtained relation for the Misner-Sharp mass in mind together with recasting the one-one component of the Rastall field equations into the form of the first law of thermodynamics, we obtain expressions for the horizon entropy and the work term. Finally, we also compare the thermodynamic quantities of system, including energy, entropy, and work, with their counterparts in the Einstein framework to have a better view about the role of the Rastall hypothesis on the thermodynamics of system.
The Cross-Flow Mixing Analysis of Quasi-Static Pebble Flow in Pebble Bed Reactor
International Nuclear Information System (INIS)
Fang Xiang; Liu Zhiyong; Sun Yanfei; Yang Xingtuan; Jiang Shengyao
2014-01-01
In the pebble bed reactor, large number of fuel pebbles’ movement law and moving state can affect the reactor’s design, operation and safety directly. Therefore the pebble flow, which is based on the theory of particle streaming, is one of the most important research subjects of the pebble bed reactor engineering. The in-core pebble flow is a very slow particle flow (or called quasi-static particle flow), which is very different from the usual particle motion. How to accurately describe the characteristics of in-core pebble flow is a central issue for this subject. Due to the presence of random flow, the cross-mixing phenomenon will occur inevitably. In the present paper, the mixing phenomenon of pebble flow is generalized on the basis of experiment results. The pebble flow cross-mixing probability serves as the parameter which describes both the regularity and the randomness of pebble flow. The results are provided in the form of diagrammatic presentation. (author)
Fuchs, Maurice Bernard
2016-01-01
Addressing structures, this book presents a classic discipline in a modern setting by combining illustrated examples with insights into the solutions. It is the fruit of the author’s many years of teaching the subject and of just as many years of research into the design of optimal structures. Although intended for an advanced level of instruction it has an undergraduate course at its core. Further, the book was written with the advantage of having massive computer power in the background, an aspect which changes the entire approach to many engineering disciplines and in particular to structures. This paradigm shift has dislodged the force (flexibility) method from its former prominence and paved the way for the displacement (stiffness) method, despite the multitude of linear equations it spawns. In this book, however, both methods are taught: the force method offers a perfect vehicle for understanding structural behavior, bearing in mind that it is the displacement method which does the heavy number crunch...
Thimm, Jens C
2017-12-01
The Computerized Adaptive Test of Personality Disorder-Static Form (CAT-PD-SF) is a self-report inventory developed to assess pathological personality traits. The current study explored the reliability and higher order factor structure of the Norwegian version of the CAT-PD-SF and the relationships between the CAT-PD traits and domains of personality functioning in an undergraduate student sample ( N = 375). In addition to the CAT-PD-SF, the short form of the Severity Indices of Personality Problems and the Brief Symptom Inventory were administered. The results showed that the Norwegian CAT-PD-SF has good score reliability. Factor analysis of the CAT-PD-SF scales indicated five superordinate factors that correspond to the trait domains of the alternative DSM-5 model for personality disorders. The CAT-PD traits were highly predictive of impaired personality functioning after controlling for psychological distress. It is concluded that the CAT-PD-SF is a promising tool for the assessment of personality disorder traits.
Nguyen-Thanh, Nhon; Li, Weidong; Zhou, Kun
2018-03-01
This paper develops a coupling approach which integrates the meshfree method and isogeometric analysis (IGA) for static and free-vibration analyses of cracks in thin-shell structures. In this approach, the domain surrounding the cracks is represented by the meshfree method while the rest domain is meshed by IGA. The present approach is capable of preserving geometry exactness and high continuity of IGA. The local refinement is achieved by adding the nodes along the background cells in the meshfree domain. Moreover, the equivalent domain integral technique for three-dimensional problems is derived from the additional Kirchhoff-Love theory to compute the J-integral for the thin-shell model. The proposed approach is able to address the problems involving through-the-thickness cracks without using additional rotational degrees of freedom, which facilitates the enrichment strategy for crack tips. The crack tip enrichment effects and the stress distribution and displacements around the crack tips are investigated. Free vibrations of cracks in thin shells are also analyzed. Numerical examples are presented to demonstrate the accuracy and computational efficiency of the coupling approach.
Sub-hour solar data for power system modeling from static spatial variability analysis
Energy Technology Data Exchange (ETDEWEB)
Hummon, Marissa R.; Ibanez, Eduardo; Brinkman, Gregory; Lew, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2012-07-01
High penetration renewable integration studies need high quality solar power data with spatial-temporal correlations that are representative of a real system. For instance, as additional solar power sites are added, the relative amount of variability should decrease due to spatial averaging of localized irradiance fluctuations. This presentation will summarize the research relating sequential point-source sub-hour global horizontal irradiance (GHI) values to static, spatially distributed GHI values. This research led to the development of an algorithm for generating coherent sub-hour datasets that span distances ranging from 10 km to 4,000 km. The algorithm, in brief, generates synthetic GHI values at an interval of one minute, for a specific location, using SUNY/Clean Power Research, satellite-derived, hourly irradiance values for the nearest grid cell to that location and grid cells within 40 km. During each hour, the observed GHI value for the grid cell of interest and the surrounding grid cells is related, via probability distributions, to one of live temporal cloud coverage classifications (class I, II, III, IV, V). Synthesis algorithms are used to select one-minute time step GHI values based on the classification of the grid cell of interest in a particular hour. Three primary statistical measures of the dataset are demonstrated: reduction in ramps as a function of aggregation; coherence of GHI values across sites ranging from 6 to 400 km apart over time scales from one minute to three hours; and ramp magnitude and duration distributions as a function of time of day and day of year. (orig.)
Serrano, María; Gallego, Mercedes; Silva, Manuel
2017-11-17
Volatile aldehydes appear in canned vegetables as constituents and some of them can also be present as disinfection by-products (DBPs) because of the contact between vegetables and treated water. This paper describes two static headspace-gas chromatography-mass spectrometry (SHS-GC-MS) methods to determine 15 aldehydes in both the solid and the liquid phases of canned vegetables. The treatment for both phases of samples was carried out simultaneously into an SHS unit, including the leaching of the aldehydes (from the vegetable), their derivatization and volatilization of the oximes formed. Detection limits were obtained within the range of 15-400μg/kg and 3-40μg/L for aldehydes in the solid and the liquid phases of the food, respectively. The relative standard deviation was lower than 7% -for the whole array of the target analytes-, the trueness evaluated by recovery experiments provided %recoveries between 89 and 99% and short- and long-term stability studies indicated there was no significant variation in relative peak areas of all aldehydes in both phases of canned vegetables after their storing at 4°C for two weeks. The study of the origin of the 15 aldehydes detected between both phases of canned vegetables showed that: i) the presence of 13 aldehydes -at average concentrations of 2.2-39μg/kg and 0.25-71μg/L for the solid and the liquid phases, respectively- is because they are natural constituents of vegetables; and ii) the presence of glyoxal and methylglyoxal -which are mainly found in the liquid phase (average values, 1.4-4.1μg/L)- is ascribed to the use of treated water, thereby being DBPs. Copyright © 2017 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Tchangnwa Nya, F; Ayadim, A; Germain, Ph; Amokrane, S
2012-01-01
We examine the question of the accuracy of the static correlation functions used as input in the mode coupling theory (MCT) of non-ergodic states in binary mixtures. We first consider hard-sphere mixtures and compute the static pair structure from the Ornstein-Zernike equations with the Percus-Yevick closure and more accurate ones that use bridge functions deduced from Rosenfeld’s fundamental measures functional. The corresponding MCT predictions for the non-ergodicity lines and the transitions between multiple glassy states are determined from the long-time limit of the density autocorrelation functions. We find that while the non-ergodicity transition line is not very sensitive to the input static structure, up to diameter ratios D 2 /D 1 = 10, quantitative differences exist for the transitions between different glasses. The discrepancies with the more accurate closures become even qualitative for sufficiently asymmetric mixtures. They are correlated with the incorrect behavior of the PY structure at high size asymmetry. From the example of ultra-soft potential it is argued that this issue is of general relevance beyond the hard-sphere model. (paper)
Collapse Analysis of Timber Structures
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Sørensen, John Dalsgaard
2008-01-01
of Structures and a probabilistic modelling of the timber material proposed in the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS). Due to the framework in the Danish Code the timber structure has to be evaluated with respect to the following criteria where at least one shall...... to criteria a) and b) the timber frame structure has one column with a reliability index a bit lower than an assumed target level. By removal three columns one by one no significant extensive failure of the entire structure or significant parts of it are obtained. Therefore the structure can be considered......A probabilistic based collapse analysis has been performed for a glulam frame structure supporting the roof over the main court in a Norwegian sports centre. The robustness analysis is based on the framework for robustness analysis introduced in the Danish Code of Practice for the Safety...
Network Analysis of Commuting Flows: A Comparative Static Approach to German Data
Patuelli, R.; Reggiani, A.; Nijkamp, P.; Bade, F-J
2007-01-01
The analysis of complex networks has recently received considerable attention. The work by Albert and Barabási presented a research challenge to network analysis, that is, growth of the network. The present paper offers a network analysis of the spatial commuting network in Germany. First, we study
Directory of Open Access Journals (Sweden)
Dahaoui M.
2018-01-01
Full Text Available The static corrections are a necessary step in the sequence of the seismic processing. This paper presents a study of these corrections in the Essaouira basin. The main objective of this study is to calculate the static corrections by exploiting the seismic data acquired in the field to improve the deep structures imaging. It is to determine the roof and the basis of the superficial layers which constitute the weathered zone while calculating the delays of seismic wave’s arrivals in these layers. The purpose is to cancel the effect of the topography and the weathered zone, in order to avoid any confusion when the seismic and geological interpretation. The results obtained show the average values of the static corrections varying between - 127 and 282 ms (double time, with existence of high values by location, particularly in the Eastern and North-Eastern of the basin, which meant the presence of altered zone with irregular topography and whose thickness and speeds vary laterally. In effect the variations of velocities in the fifty meters from the surface may introduce significant anomalies in seismic refraction, with heavy consequences when the interpretation or the drilling establishment. These variations are mainly due to lateral changes in facies and variations in the formations thickness. The calculation of the static corrections, revealed high values at certain areas (East and North-East, which will enable us to better orient the future campaigns in these zones. It is therefore necessary to concentrate the seismic cores drillings and the small refraction seismic profiles by tightening the seismic lines meshes in order to have the maximum values of static corrections and thereafter a better imaging of the reflectors.
Structural systems reliability analysis
International Nuclear Information System (INIS)
Frangopol, D.
1975-01-01
For an exact evaluation of the reliability of a structure it appears necessary to determine the distribution densities of the loads and resistances and to calculate the correlation coefficients between loads and between resistances. These statistical characteristics can be obtained only on the basis of a long activity period. In case that such studies are missing the statistical properties formulated here give upper and lower bounds of the reliability. (orig./HP) [de
Directory of Open Access Journals (Sweden)
N. Halem
2013-06-01
Full Text Available Unfortunately, motor current signature analysis (MCSA cannot detect the small degrees of the purely static eccentricity (SE defects, while the air-gap magnetic flux signature analysis (FSA is applied successfully. The simulation results are obtained by using time stepping finite elements (TSFE method. In order to show the impact of magnetic saturation upon the diagnosis of SE fault, the analysis is carried out for saturated induction motors. The index signatures of static eccentricity fault around fundamental and PSHs are detected successfully for saturated motor.
Directory of Open Access Journals (Sweden)
N. Halem
2013-06-01
Full Text Available Unfortunately, motor current signature analysis (MCSA cannot detect the small degrees of the purely static eccentricity (SE defects, while the air-gap magnetic flux signature analysis (FSA is applied successfully. The simulation results are obtained by using time stepping finite elements (TSFE method. In order to show the impact of magnetic saturation upon the diagnosis of SE fault, the analysis is carried out for saturated induction motors. The index signatures of static eccentricity fault around fundamental and PSHs are detected successfully for saturated motor.
Directory of Open Access Journals (Sweden)
N. Halem
2015-07-01
Full Text Available Unfortunately, motor current signature analysis (MCSA cannot detect the small degrees of the purely static eccentricity (SE defects, while the air-gap magnetic flux signature analysis (FSA is applied successfully. The simulation results are obtained by using time stepping finite elements (TSFE method. In order to show the impact of magnetic saturation upon the diagnosis of SE fault, the analysis is carried out for saturated induction motors. The index signatures of static eccentricity fault around fundamental and PSHs are detected successfully for saturated motor.
Energy Technology Data Exchange (ETDEWEB)
Monniaux, D.
2009-06-15
Software operating critical systems (aircraft, nuclear power plants) should not fail - whereas most computerised systems of daily life (personal computer, ticket vending machines, cell phone) fail from time to time. This is not a simple engineering problem: it is known, since the works of Turing and Cook, that proving that programs work correctly is intrinsically hard. In order to solve this problem, one needs methods that are, at the same time, efficient (moderate costs in time and memory), safe (all possible failures should be found), and precise (few warnings about nonexistent failures). In order to reach a satisfactory compromise between these goals, one can research fields as diverse as formal logic, numerical analysis or 'classical' algorithmics. From 2002 to 2007 I participated in the development of the Astree static analyser. This suggested to me a number of side projects, both theoretical and practical (use of formal proof techniques, analysis of numerical filters...). More recently, I became interested in modular analysis of numerical property and in the applications to program analysis of constraint solving techniques (semi-definite programming, SAT and SAT modulo theory). (author)
Evaluation of Advanced Nonlinear Static Procedure
Directory of Open Access Journals (Sweden)
Mohsen Ali Shayanfar
2015-03-01
Full Text Available Having very simplicity, nonlinear static procedures (NSPs are the most popular tools for estimation of structural capacity. These approaches construct a graphic display of the overall structural response via a pushover curve. The overall response of the system provides a direct simulation of the building as single degree of freedom (SDOF system that simplifies the design and evaluation of the structure. In this research, the first step in any nonlinear static analysis or in other words perform a pushover analysis has been studied. Applied lateral load to the structural model not only affects the overall responses of the structure through structural capacity curve, but also directly affects the local responses of the structure. In order to evaluate these lateral loads, steel buckling restrained braced frame structures are examined by advanced modal pushovers. Next, the results of these pushover analyses will be compared with nonlinear time history analysis as the most accurate method. Finally, the most efficient method in this particular structure is introduced. The analysis conducted in these structures shows that the lateral load pattern based on story shears offers a good prediction of the maximum response of the concentrically buckling restrained braced frame buildings.
International Nuclear Information System (INIS)
Kasahara, Seiji; Onuki, Kaoru; Nomura, Mikihiro; Nakao, Shin-ichi
2006-01-01
A sensitivity analysis of the operation parameters and the chemical properties in the thermochemical hydrogen production IS process (iodine-sulfur process) was carried out for a static flow sheet. These parameters were evaluated by hydrogen production thermal efficiency, the mass flow rate or heat exchange based on the heat/mass balance. The most important parameters were the concentration of HI after electro-electrodialysis (EED) and the apparent transport number of protons of the cation exchange membrane in the EED cell. HI concentration operation should be operated carefully because the parameters for optimum thermal efficiency and for the optimum flow rate and heat exchange were different. For the chemical properties, composition at the inlet of the HI decomposition procedure and HI x pseudo-azeotropic composition had great effects. The HI concentration after the EED should be optimized for each composition. The order of priority for the assessment of the operation parameters and chemical properties was determined by the evaluation. (author)
Rusconi, C. C.; Pöchhacker, V.; Cirac, J. I.; Romero-Isart, O.
2017-10-01
We theoretically study the levitation of a single magnetic domain nanosphere in an external static magnetic field. We show that, apart from the stability provided by the mechanical rotation of the nanomagnet (as in the classical Levitron), the quantum spin origin of its magnetization provides two additional mechanisms to stably levitate the system. Despite the Earnshaw theorem, such stable phases are present even in the absence of mechanical rotation. For large magnetic fields, the Larmor precession of the quantum magnetic moment stabilizes the system in full analogy with magnetic trapping of a neutral atom. For low magnetic fields, the magnetic anisotropy stabilizes the system via the Einstein-de Haas effect. These results are obtained with a linear stability analysis of a single magnetic domain rigid nanosphere with uniaxial anisotropy in a Ioffe-Pritchard magnetic field.
DEFF Research Database (Denmark)
Mihet-Popa, Lucian; Groza, V.
2011-01-01
of the Smart Grids (SGs). A SG can operate interconnected to the main distribution grid or in islanded mode. This paper presents experimental tests for static and dynamic stability analysis carried out in a dedicated laboratory for research in distributed control and smart grid with a high share of renewable......The distributed energy resources (DER) contains several technologies, such as diesel engines, small wind turbines, photovoltaic inverters, etc. The control of DER components with storage devices and (controllable) loads, such as batteries, capacitors, dump loads, are central to the concept...... energy production. Moreover to point out, on a laboratory scale, the coupling between DR and storage and to effectively compensate wind fluctuations a number of tests have been done. In order to find out the parameters of various types of DER components for dynamic simulation models a number of tests...
Directory of Open Access Journals (Sweden)
Moses Omolayo PETINRIN
2010-12-01
Full Text Available In this work, the capability of MATLAB software package to develop graphical user interface (GUI package was demonstrated. A GUI was successfully developed using MATLAB programming language to study the behaviour of a suspended column under uniaxial static loading by solving the numerical model created based on the finite element method (FEM. The comparison between the exact solution from previous researches and the numerical analysis showed good agreement. The column average strain, average stress and average load are equivalent but more accurate to the ones obtained when the whole column is taken as one element (two nodes for one dimensional linear finite element problem. It was established in this work that MATLAB is not only a software package for numerical computation but also for application development.
International Nuclear Information System (INIS)
Lim, Jung Pil; Rho, Jong Seok; Yi, Kyung Pyo; Jung, Hyun Kyo; Seo, Jung Moo
2009-01-01
A characteristic analysis of an ultrasonic motor (USM) at the design stage has thus far been impossible. Therefore, a characteristic analysis method is suggested on the basis of a proposed model describing the complex nonlinear contact condition between the rotor and stator. The proposed contact model and analysis method can guide theoretical research on the minimization of the main disadvantages of the USM, which mainly result from the contact mechanism. The validity and usefulness of the suggested analysis method is verified by experimental data from a prototyped USM
Analysis of frame structure of medium and small truck crane
Cao, Fuyi; Li, Jinlong; Cui, Mengkai
2018-03-01
Truck crane is an important part of hoisting machinery. Frame, as the support component of the quality of truck crane, determines the safety of crane jib load and the rationality of structural design. In this paper, the truck crane frame is a box structure, the three-dimensional model is established in CATIA software, and imported into Hyperworks software for finite element analysis. On the base of doing constraints and loads for the finite element model of the frame, the finite element static analysis is carried out. And the static stress test verifies whether the finite element model and the frame structure design are reasonable; then the free modal analysis of the frame and the analysis of the first 8 - order modal vibration deformation are carried out. The analysis results show that the maximum stress value of the frame is greater than the yield limit value of the material, and the low-order modal value is close to the excitation frequency value, which needs to be improved to provide theoretical reference for the structural design of the truck crane frame.
Kurtin, Philip Sebastian; Bekooij, Marco Jan Gerrit
2016-01-01
Real-time streaming applications with cyclic data dependencies that are executed on multiprocessor systems with processor sharing usually require a temporal analysis to give guarantees on their temporal behavior at design time. Current accurate analysis techniques for cyclic applications that are
Garkushin, G. V.; Razorenov, S. V.; Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.
2015-02-01
The elastic limit and tensile strength of deformed magnesium alloys Ma2-1 with different structures and textures were measured with the aim of finding a correlation between the spectrum of defects in the material and the resistance to deformation and fracture under quasi-static and dynamic loading conditions. The studies were performed using specimens in the as-received state after high-temperature annealing and specimens subjected to equal-channel angular pressing at a temperature of 250°C. The anisotropy of strength characteristics of the material after shock compression with respect to the direction of rolling of the original alloy was investigated. It was shown that, in contrast to the quasi-static loading conditions, under the shock wave loading conditions, the elastic limit and tensile strength of the magnesium alloy Ma2-1 after equal-channel angular pressing decrease as compared to the specimens in the as-received state.
Structural analysis and evaluation of the 241SY101 tank annulus heat-up
International Nuclear Information System (INIS)
Ziada, H.H.
1994-01-01
This document provides the structural analysis (static and thermal loads) of the 241SY101 tank to determine the maximum allowable temperature and rate of heating that could be applied to tank 241SY101 through annulus air heating without detrimental effects to the structural integrity of the concrete and steel liner of the tank
Computational Analysis of Static and Dynamic Behaviour of Magnetic Suspensions and Magnetic Bearings
Britcher, Colin P. (Editor); Groom, Nelson J.
1996-01-01
Static modelling of magnetic bearings is often carried out using magnetic circuit theory. This theory cannot easily include nonlinear effects such as magnetic saturation or the fringing of flux in air-gaps. Modern computational tools are able to accurately model complex magnetic bearing geometries, provided some care is exercised. In magnetic suspension applications, the magnetic fields are highly three-dimensional and require computational tools for the solution of most problems of interest. The dynamics of a magnetic bearing or magnetic suspension system can be strongly affected by eddy currents. Eddy currents are present whenever a time-varying magnetic flux penetrates a conducting medium. The direction of flow of the eddy current is such as to reduce the rate-of-change of flux. Analytic solutions for eddy currents are available for some simplified geometries, but complex geometries must be solved by computation. It is only in recent years that such computations have been considered truly practical. At NASA Langley Research Center, state-of-the-art finite-element computer codes, 'OPERA', 'TOSCA' and 'ELEKTRA' have recently been installed and applied to the magnetostatic and eddy current problems. This paper reviews results of theoretical analyses which suggest general forms of mathematical models for eddy currents, together with computational results. A simplified circuit-based eddy current model proposed appears to predict the observed trends in the case of large eddy current circuits in conducting non-magnetic material. A much more difficult case is seen to be that of eddy currents in magnetic material, or in non-magnetic material at higher frequencies, due to the lower skin depths. Even here, the dissipative behavior has been shown to yield at least somewhat to linear modelling. Magnetostatic and eddy current computations have been carried out relating to the Annular Suspension and Pointing System, a prototype for a space payload pointing and vibration
Constraint Solver Techniques for Implementing Precise and Scalable Static Program Analysis
DEFF Research Database (Denmark)
Zhang, Ye
solver using unification we could make a program analysis easier to design and implement, much more scalable, and still as precise as expected. We present an inclusion constraint language with the explicit equality constructs for specifying program analysis problems, and a parameterized framework...... developers to build reliable software systems more quickly and with fewer bugs or security defects. While designing and implementing a program analysis remains a hard work, making it both scalable and precise is even more challenging. In this dissertation, we show that with a general inclusion constraint...... data flow analyses for C language, we demonstrate a large amount of equivalences could be detected by off-line analyses, and they could then be used by a constraint solver to significantly improve the scalability of an analysis without sacrificing any precision....
Evaluation of static analysis tools used to assess software important to nuclear power plant safety
Energy Technology Data Exchange (ETDEWEB)
Ourghanlian, Alain [EDF Lab CHATOU, Simulation and Information Technologies for Power Generation Systems Department, EDF R and D, Cedex (France)
2015-03-15
We describe a comparative analysis of different tools used to assess safety-critical software used in nuclear power plants. To enhance the credibility of safety assessments and to optimize safety justification costs, Electricit e de France (EDF) investigates the use of methods and tools for source code semantic analysis, to obtain indisputable evidence and help assessors focus on the most critical issues. EDF has been using the PolySpace tool for more than 10 years. Currently, new industrial tools based on the same formal approach, Abstract Interpretation, are available. Practical experimentation with these new tools shows that the precision obtained on one of our shutdown systems software packages is substantially improved. In the first part of this article, we present the analysis principles of the tools used in our experimentation. In the second part, we present the main characteristics of protection-system software, and why these characteristics are well adapted for the new analysis tools.
Kurtin, Philip Sebastian; Hausmans, J.P.H.M.; Geuns, S.J.; Bekooij, Marco Jan Gerrit
2014-01-01
Stream processing applications executed on embedded multiprocessor systems regularly contain cyclic data dependencies due to the presence of feedback loops and bounded FIFO buffers. Dataflow modeling is suitable for the temporal analysis of such applications. However, the accuracy can be
Practical static analysis of JavaScript applications in the presence of frameworks and libraries
DEFF Research Database (Denmark)
Madsen, Magnus; Livshits, Benjamin; Fanning, Michael
2013-01-01
and complex libraries and frameworks, often written in a combination of JavaScript and native code such as C and C++. Stubs have been commonly employed as a partial specification mechanism to address the library problem; however, they are tedious to write, incomplete, and occasionally incorrect. However......JavaScript is a language that is widely-used for both web- based and standalone applications such as those in the upcoming Windows 8 operating system. Analysis of JavaScript has long been known to be challenging due to its dynamic nature. On top of that, most JavaScript applications rely on large......, the manner in which library code is used within applications often sheds light on what library APIs return or consume as parameters. In this paper, we propose a technique which combines pointer analysis with use analysis to handle many challenges posed by large JavaScript libraries. Our approach enables...
Directory of Open Access Journals (Sweden)
Husain M. Husain
2013-05-01
Full Text Available In this work a program is developed to carry out the nonlinear analysis (material nonlinearity of prestressed concrete beams using tendons of carbon fiber reinforced polymer (CFRP instead of steel. The properties of this material include high strength, light weight, and insusceptibility to corrosion and magnetism. This material is still under investigation, therefore it needs continuous work to make it beneficial in concrete design. Four beams which are tested experimentally by Yan et al. are examined by the developed computer program to reach a certain analytical approach of the design and analysis of such beams because there is no available restrictions or recommendations covering this material in the codes. The program uses the finite element analysis by dividing the beams into isoparametric 20-noded brick elements. The results obtained are good in comparison with experimental results.
The analysis of cracked structures
International Nuclear Information System (INIS)
Davidson, I.
1974-01-01
A brief review of the general problem of stable crack systems in many classes of structures, notably reinforced concrete structures, is made. Very simple methods of analysis are derived and some elaboration is described, as well as methods of optimising the calculations. Analytical methods are compared with experiments
Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion
van der Helm, Frans C T; Veeger, H. E J
During wheelchair propulsion the largest net joint moments and net joint powers are generated around the shoulder. The analysis of the contribution of arm- and shoulder muscles to the joint moments could explain the low efficiency of wheelchair propulsion. Basically, it is assumed that a large
Static secondary ion mass spectrometry for organic and inorganic molecular analysis in solids
International Nuclear Information System (INIS)
Ham, Rita van; Vaeck, Luc van; Adriaens, Annemie; Adams, Freddy
2003-01-01
The use of mass spectra in secondary ion mass spectrometry (S-SIMS) to characterise the molecular composition of inorganic and organic analytes at the surface of solid samples is investigated. Methodological aspects such as mass resolution, mass accuracy, precision and accuracy of isotope abundance measurements, influence of electron flooding and sample morphology are addressed to assess the possibilities and limitations that the methodology can offer to support the structural assignment of the detected ions. The in-sample and between-sample reproducibility of relative peak intensities under optimised conditions is within 10%, but experimental conditions and local hydration, oxidation or contamination can drastically affect the mass spectra. As a result, the use of fingerprinting for identification becomes compromised. Therefore, the preferred way of interpretation becomes the deductive structural approach, based on the use of the empirical desorption-ionisation model. This approach is shown to allow the molecular composition of inorganic and organic components at the surface of solids to be characterised. Examples of inorganic speciation and identification of organic additives with unknown composition in inorganic salt mixtures are given. The methodology is discussed in terms of foreseen developments with respect to the use of polyatomic primary ions
Dependability Assessment by Static Analysis of Software Important to Nuclear Power Plant Safety
Energy Technology Data Exchange (ETDEWEB)
Ourghanlian, Alain [EDF Lab, Chatou (France)
2014-08-15
We describe a practical experimentation of safety assessment of safety-critical software used in Nuclear Power Plants. To enhance the credibility of safety assessments and to optimize safety justification costs, Electricite de France (EDF) investigates the use of methods and tools for source code semantic analysis, to obtain indisputable evidence and help assessors focus on the most critical issues. EDF has been using the PolySpace tool for more than 10 years. Today, new industrial tools, based on the same formal approach, Abstract Interpretation, are available. Practical experimentation with these new tools shows that the precision obtained on one of our shutdown systems software is very significantly improved. In a first part, we present the analysis principles of the tools used in our experimentation. In a second part, we present the main characteristics of protection-system software, and why these characteristics are well adapted for the new analysis tools. In the last part, we present an overview of the results and the limitation of the tools.
Tereshchenko, N. A.; Tabatchikova, T. I.; Yakovleva, I. L.; Makovetskii, A. N.; Shander, S. V.
2017-07-01
The static cracking resistance of a number of welded joints made from pipe steels of K60 strength class has been determined. It has been established that the deformation parameter CTOD varies significantly at identical parameters of weldability of steels. The character of fracture has been investigated and the zone of local brittleness of welded joints has been studied. It has been shown that the ability of a metal to resist cracking is determined by the austenite grain size and by the bainite morphology in the region of overheating in the heat-affected zone of a welded joint.
Energy Technology Data Exchange (ETDEWEB)
Mote, Kaustubh R. [University of Minnesota, Department of Chemistry (United States); Gopinath, T. [University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics (United States); Veglia, Gianluigi, E-mail: vegli001@umn.edu [University of Minnesota, Department of Chemistry (United States)
2013-10-15
The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD {approx}0.44 A, a tilt angle of 24 Degree-Sign {+-} 1 Degree-Sign , and an azimuthal angle of 55 Degree-Sign {+-} 6 Degree-Sign . This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.
Structural analysis of NPP components and structures
International Nuclear Information System (INIS)
Saarenheimo, A.; Keinaenen, H.; Talja, H.
1998-01-01
Capabilities for effective structural integrity assessment have been created and extended in several important cases. In the paper presented applications deal with pressurised thermal shock loading, PTS, and severe dynamic loading cases of containment, reinforced concrete structures and piping components. Hydrogen combustion within the containment is considered in some severe accident scenarios. Can a steel containment withstand the postulated hydrogen detonation loads and still maintain its integrity? This is the topic of Chapter 2. The following Chapter 3 deals with a reinforced concrete floor subjected to jet impingement caused by a postulated rupture of a near-by high-energy pipe and Chapter 4 deals with dynamic loading resistance of the pipe lines under postulated pressure transients due to water hammer. The reliability of the structural integrity analysing methods and capabilities which have been developed for application in NPP component assessment, shall be evaluated and verified. The resources available within the RATU2 programme alone cannot allow performing of the large scale experiments needed for that purpose. Thus, the verification of the PTS analysis capabilities has been conducted by participation in international co-operative programmes. Participation to the European Network for Evaluating Steel Components (NESC) is the topic of a parallel paper in this symposium. The results obtained in two other international programmes are summarised in Chapters 5 and 6 of this paper, where PTS tests with a model vessel and benchmark assessment of a RPV nozzle integrity are described. (author)
International Nuclear Information System (INIS)
Pan Heng; Wang Li; Wu Hong; Guo Xinglong; Xu Fengyu
2010-01-01
The stresses in the coupling superconducting solenoid coil assembly, which is applied in the Muon Ionization Cooling Experiment (MICE), are critical for the structure design and mechanical stability because of a large diameter and relative high magnetic field. This paper presents an analytical stress solution for the MICE coupling coil assembly. The stress due to winding tension is calculated by assuming the coil package as a set of combined cylinders. The thermal and electromechanical stresses are obtained by solving the partial differential equations of displacement based on the power series expansion method. The analytical stress solution is proved to be feasible by calculating stresses in a tested superconducting solenoid with 2.58 m bore at room temperature. The analytical result of the MICE coupling coil is in good agreement with that of the finite element which shows that the transverse shear stress induced by Lorentz force is principally dominant to magnet instability. (authors)
Finite element analysis of plantar fascia during walking: a quasi-static simulation.
Chen, Yen-Nien; Chang, Chih-Wei; Li, Chun-Ting; Chang, Chih-Han; Lin, Cheng-Feng
2015-01-01
The plantar fascia is a primary arch supporting structure of the foot and is often stressed with high tension during ambulation. When the loading on the plantar fascia exceeds its capacity, the inflammatory reaction known as plantar fasciitis may occur. Mechanical overload has been identified as the primary causative factor of plantar fasciitis. However, a knowledge gap exists between how the internal mechanical responses of the plantar fascia react to simple daily activities. Therefore, this study investigated the biomechanical responses of the plantar fascia during loaded stance phase by use of the finite element (FE) modeling. A 3-dimensional (3-D) FE foot model comprising bones, cartilage, ligaments, and a complex-shaped plantar fascia was constructed. During the stance phase, the kinematics of the foot movement was reproduced and Achilles tendon force was applied to the insertion site on the calcaneus. All the calculations were made on a single healthy subject. The results indicated that the plantar fascia underwent peak tension at preswing (83.3% of the stance phase) at approximately 493 N (0.7 body weight). Stress concentrated near the medial calcaneal tubercle. The peak von Mises stress of the fascia increased 2.3 times between the midstance and preswing. The fascia tension increased 66% because of the windlass mechanism. Because of the membrane element used in the ligament tissue, this FE model was able to simulate the mechanical structure of the foot. After prescribing kinematics of the distal tibia, the proposed model indicated the internal fascia was stressed in response to the loaded stance phase. Based on the findings of this study, adjustment of gait pattern to reduce heel rise and Achilles tendon force may lower the fascia loading and may further reduce pain in patients with plantar fasciitis. © The Author(s) 2014.
Probabilistic Structural Analysis Theory Development
Burnside, O. H.
1985-01-01
The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.
Measurements of Soil Carbon by Neutron-Gamma Analysis in Static and Scanning Modes.
Yakubova, Galina; Kavetskiy, Aleksandr; Prior, Stephen A; Torbert, H Allen
2017-08-24
The herein described application of the inelastic neutron scattering (INS) method for soil carbon analysis is based on the registration and analysis of gamma rays created when neutrons interact with soil elements. The main parts of the INS system are a pulsed neutron generator, NaI(Tl) gamma detectors, split electronics to separate gamma spectra due to INS and thermo-neutron capture (TNC) processes, and software for gamma spectra acquisition and data processing. This method has several advantages over other methods in that it is a non-destructive in situ method that measures the average carbon content in large soil volumes, is negligibly impacted by local sharp changes in soil carbon, and can be used in stationary or scanning modes. The result of the INS method is the carbon content from a site with a footprint of ~2.5 - 3 m 2 in the stationary regime, or the average carbon content of the traversed area in the scanning regime. The measurement range of the current INS system is >1.5 carbon weight % (standard deviation ± 0.3 w%) in the upper 10 cm soil layer for a 1 hmeasurement.
Revisiting of Multiscale Static Analysis of Notched Laminates Using the Generalized Method of Cells
Naghipour Ghezeljeh, Paria; Arnold, Steven M.; Pineda, Evan J.
2016-01-01
Composite material systems generally exhibit a range of behavior on different length scales (from constituent level to macro); therefore, a multiscale framework is beneficial for the design and engineering of these material systems. The complex nature of the observed composite failure during experiments suggests the need for a three-dimensional (3D) multiscale model to attain a reliable prediction. However, the size of a multiscale three-dimensional finite element model can become prohibitively large and computationally costly. Two-dimensional (2D) models are preferred due to computational efficiency, especially if many different configurations have to be analyzed for an in-depth damage tolerance and durability design study. In this study, various 2D and 3D multiscale analyses will be employed to conduct a detailed investigation into the tensile failure of a given multidirectional, notched carbon fiber reinforced polymer laminate. Threedimensional finite element analysis is typically considered more accurate than a 2D finite element model, as compared with experiments. Nevertheless, in the absence of adequate mesh refinement, large differences may be observed between a 2D and 3D analysis, especially for a shear-dominated layup. This observed difference has not been widely addressed in previous literature and is the main focus of this paper.
Structural decomposition analysis of Australia's greenhouse gas emissions
International Nuclear Information System (INIS)
Wood, Richard
2009-01-01
A complex system of production links our greenhouse gas emissions to our consumer demands. Whilst progress may be made in improving efficiency, other changes in the production structure may easily annul global improvements. Utilising a structural decomposition analysis, a comparative-static technique of input-output analysis, over a time period of around 30 years, net greenhouse emissions are decomposed in this study into the effects, due to changes in industrial efficiency, forward linkages, inter-industry structure, backward linkages, type of final demand, cause of final demand, population affluence, population size, and mix and level of exports. Historically, significant competing forces at both the whole of economy and industrial scale have been mitigating potential improvements. Key sectors and structural influences are identified that have historically shown the greatest potential for change, and would likely have the greatest net impact. Results clearly reinforce that the current dichotomy of growth and exports are the key problems in need of address.
Ergonomic study and static analysis for new design of electric scooter
Fadzly, M. K.; Munirah, Anis; Shayfull, Z.; Saad, Mohd Sazli
2017-09-01
The purposes of this project are to design and diversify the function of a battery powered scooter frame which is more practical for the human factor in ergonomic and optimum design. The new design is based on ideas which are studied from existing scooter frame, United States Patent design and European States International Patent design. The final idea of concept design for scooter frame is based on concept chosen from the best characteristics and it is divided into three main difference ideas and the matrix evaluation method is applied. Analysis that applies to frame design, arm, rim and drive train component is based on Cosmos Express program. As a conclusion, the design that is produce are able to carry the maximum also has more practical features in ergonomic view.
Directory of Open Access Journals (Sweden)
Laura Costello
2016-03-01
Full Text Available Objective – To discover whether there is a difference in use over time between dynamically updated and changing subscription e-reference titles and collections, and static purchased e-reference titles and collections. Design – Case study. Setting – A multi-campus Canadian university with 9,200 students enrolled in both graduate and undergraduate programs. Subjects – E-reference book packages and individual e-reference titles. Methods – The author compared data from individual e-reference books and packages. First, individual subscription e-reference books that periodically added updated content were compared to individually purchased e-reference books that remained static after purchase. The author then compared two e-reference book packages that provided new and updated content to two static e-reference book packages. The author compared data from patron usage to new content added over time using regression analysis. Main Results – As the library acquired e-reference titles, dynamic title subscriptions added to the collection were associated with 2,246 to 4,635 views per subscription while static title additions were associated with 8 to 123 views per purchase. The author also found that there was a strong linear relationship between views and dynamic titles added to the collection (R2=0.79 and a very weak linear relationship (R2=0.18 with views when static titles are added to the collection. Regression analysis of dynamic e-reference collections revealed that the number of titles added to each collection was strongly associated with views of the material (R2=0.99, while static e-reference collections were less strongly linked (R2=0.43. Conclusion – Dynamic e-reference titles and collections experienced increases in usage each year while static titles and collections experienced decreases in usage. This indicates that collections and titles that offer new content to users each year will continue to see growth in usage while static
Axelson, John A.; Crown, J. Conrad
1948-01-01
An analysis is presented of the influence of wing aspect ratio and tail location on the effects of compressibility upon static longitudinal stability. The investigation showed that the use of reduced wing aspect ratios or short tail lengths leads to serious reductions in high-speed stability and the possibility of high-speed instability.
Integrated piping structural analysis system
International Nuclear Information System (INIS)
Motoi, Toshio; Yamadera, Masao; Horino, Satoshi; Idehata, Takamasa
1979-01-01
Structural analysis of the piping system for nuclear power plants has become larger in scale and in quantity. In addition, higher quality analysis is regarded as of major importance nowadays from the point of view of nuclear plant safety. In order to fulfill to the above requirements, an integrated piping structural analysis system (ISAP-II) has been developed. Basic philosophy of this system is as follows: 1. To apply the date base system. All information is concentrated. 2. To minimize the manual process in analysis, evaluation and documentation. Especially to apply the graphic system as much as possible. On the basis of the above philosophy four subsystems were made. 1. Data control subsystem. 2. Analysis subsystem. 3. Plotting subsystem. 4. Report subsystem. Function of the data control subsystem is to control all information of the data base. Piping structural analysis can be performed by using the analysis subsystem. Isometric piping drawing and mode shape, etc. can be plotted by using the plotting subsystem. Total analysis report can be made without the manual process through the reporting subsystem. (author)
Static bending test after proximal femoral nail (PFN removal - in vitro analysis
Directory of Open Access Journals (Sweden)
Leonardo Morais Paiva
Full Text Available Abstract Objective To evaluate, through biomechanical testing, the resistance to and energy required for the occurrence of proximal femoral fracture in synthetic bone after removal of a proximal femoral nail model (PFN, comparing the results obtained with a reinforcement technique using polymethylmethacrylate (PMMA. Methods Fifteen synthetic bones were used: five units for the control group (CG, five for the test group without reinforcement (TGNR, and five for the test group with reinforcement (TGR. The biomechanical analysis was performed simulating a fall on the trochanter using a servo-hydraulic machine. In the GC, the assay was performed with the PFN intact. In the TGNR and TGR groups, a model of PFN was introduced and the tests were performed in the TGNR, after simple removal of the synthesis material, and in the TGR, after removal of the same PFN model and filling of the cavity in the femoral neck with PMMA. Results All groups presented a basicervical fracture. The CG presented a mean of 1427.39 Newtons (N of maximum load and 10.14 Joules (J of energy for the occurrence of the fracture. The TGNR and TGR presented 892.14 N and 1477.80 N of maximum load, and 6.71 J and 11.99 J of energy, respectively. According to the Kruskal-Wallis ANOVA, there was a significant difference in the maximum load (p = 0.009 and energy (p = 0.007 between these groups. Conclusion The simple removal of a PFN in synthetic bone showed a significant reduction of the maximum load and energy for the occurrence of fracture, which were re-established with a reinforcement technique using PMMA.
Electron and gamma-ray irradiated NTD Si p-n structures static and dynamic parameters trade-off
International Nuclear Information System (INIS)
Marchenko, I.G.; Zhdanovich, N.E.; Karas', V.I.
2005-01-01
The comparison of different radiation defects types influence on static and dynamic parameters trade-off of power diodes fabricated on neutron-transmutation doped silicon have been fulfilled. Various defects sets were introduced utilizing electron irradiation (E=6 MeV), gamma-ray Co 60 irradiation and electron irradiation and subsequent annealing at temperature 700 degrees centigrade. It is established that optimal trade-of between forward voltage drop and operation speed is achieved in case of electron irradiation and annealing. In this case recombination process is governed by defect with energy level near middle of forbidden gap (E c -0.53 eV). The results obtained indicate on possibility of using these defect recombination properties for speed control in production of power fast high-voltage devices on the base of neutron-transmutation doped silicon. (authors)
Energy Technology Data Exchange (ETDEWEB)
Rakhecha, Shalu, E-mail: shalurakhecha@yahoo.com; Vyas, P. R.; Gohel, V. B. [Department of Physics, School of Sciences, Gujarat University, Ahmedabad - 380009, Gujarat (India); Bhatt, N. K. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar - 388120, Gujarat (India)
2016-05-06
In the present communication, we have computed static and dynamic properties (binding energy-E, bulk modulus-B and second moment- <ω{sup 2}>) as well as first order pressure induced phase transition (FCC-BCC) using local form of pseudopotential for Calcium and Strontium. The form of pseudopotential used for the computation is directly extracted from Generalized Pseudopotential Theory (GPT) which contains three parameters (r{sub c}, r{sub d} and β). We have suggested a simple method using which pseudopotential is determined by single parameter (β). Our computed results for binding energy and bulk modulii are in excellent agreement with experimental findings and are better than other theoretical results. The present study confirms that s-d hybridization is accounted properly in the presently used pseudopotential and can be extended for the study of lattice mechanical properties of these metals.
Weng, Hanli; Li, Youping
2017-04-01
The working principle, process device and test procedure of runner static balancing test method by weighting with three-pivot pressure transducers are introduced in this paper. Based on an actual instance of a V hydraulic turbine runner, the error and sensitivity of the three-pivot pressure transducer static balancing method are analysed. Suggestions about improving the accuracy and the application of the method are also proposed.
Performance evaluation of existing building structure with pushover analysis
Handana, MAP; Karolina, R.; Steven
2018-02-01
In the management of the infrastructure of the building, during the period of buildings common building damage as a result of several reasons, earthquakes are common. The building is planned to work for a certain service life. But during the certain service life, the building vulnerable to damage due to various things. Any damage to cultivate can be detected as early as possible, because the damage could spread, triggering and exacerbating the latest. The newest concept to earthquake engineering is Performance Based Earthquake Engineering (PBEE). PBEE divided into two, namely Performance Based Seismic Design (PBSD) and Performance Based Seismic Evaluation (PBSE). Evaluation on PBSE one of which is the analysis of nonlinear pushover. Pushover analysis is a static analysis of nonlinear where the influence of the earthquake plan on building structure is considered as burdens static catch at the center of mass of each floor, which it was increased gradually until the loading causing the melting (plastic hinge) first within the building structure, then the load increases further changes the shapes of post-elastic large it reached the condition of elastic. Then followed melting (plastic hinge) in the location of the other structured.
Thermal effects in static friction: thermolubricity.
Franchini, A; Bortolani, V; Santoro, G; Brigazzi, M
2008-10-01
We present a molecular dynamics analysis of the static friction between two thick slabs. The upper block is formed by N2 molecules and the lower block by Pb atoms. We study the effects of the temperature as well as the effects produced by the structure of the surface of the lower block on the static friction. To put in evidence the temperature effects we will compare the results obtained with the lower block formed by still atoms with those obtained when the atoms are allowed to vibrate (e.g., with phonons). To investigate the importance of the geometry of the surface of the lower block we apply the external force in different directions, with respect to a chosen crystallographic direction of the substrate. We show that the interaction between the lattice dynamics of the two blocks is responsible for the strong dependence of the static friction on the temperature. The lattice dynamics interaction between the two blocks strongly reduces the static friction, with respect to the case of the rigid substrate. This is due to the large momentum transfer between atoms and the N2 molecules which disorders the molecules of the interface layer. A further disorder is introduced by the temperature. We perform calculations at T = 20K which is a temperature below the melting, which for our slab is at 50K . We found that because of the disorder the static friction becomes independent of the direction of the external applied force. The very low value of the static friction seems to indicate that we are in a regime of thermolubricity similar to that observed in dynamical friction.
Directory of Open Access Journals (Sweden)
Olaf Andersen
2016-05-01
Full Text Available Rigid metallic fiber structures made from a variety of different metals and alloys have been investigated mainly with regard to their functional properties such as heat transfer, pressure drop, or filtration characteristics. With the recent advent of aluminum and magnesium-based fiber structures, the application of such structures in light-weight crash absorbers has become conceivable. The present paper therefore elucidates the mechanical behavior of rigid sintered fiber structures under quasi-static and dynamic loading. Special attention is paid to the strongly anisotropic properties observed for different directions of loading in relation to the main fiber orientation. Basically, the structures show an orthotropic behavior; however, a finite thickness of the fiber slabs results in moderate deviations from a purely orthotropic behavior. The morphology of the tested specimens is examined by computed tomography, and experimental results for different directions of loading as well as different relative densities are presented. Numerical calculations were carried out using real structural data derived from the computed tomography data. Depending on the direction of loading, the fiber structures show a distinctively different deformation behavior both experimentally and numerically. Based on these results, the prevalent modes of deformation are discussed and a first comparison with an established polymer foam and an assessment of the applicability of aluminum fiber structures in crash protection devices is attempted.
Structural analysis for LMFBR applications
International Nuclear Information System (INIS)
1983-01-01
Firstly, we discuss the use of elastic analysis for structural design of LMFBR components. The elastic analysis methods have been used for structural design of the Fast Breeder Test Reactor as well as the proposed prototype Test Breeder Reactor. The design of Fast Breeder Test Reactor which is nearing completion is the same as that of Rapsodie. Nevertheless, the design had to he checked against the latest design codes available, namely the ASME Code case 1592. This paper however, is confined to Structural analysis of PFBR components. The problems faced in the design of some of the components, in particular, the inner vessel (plenum separator) are discussed. As far as design codes are concerned, we make use of ASME Code Section III and the Code Case N-47, for high temperature design. The problem faced in the use of these rules are also described along with the description of analysis. Studies in the field of cyclic loading include extension of Bree's breakdown and plastic cycling criteria for ratchet free operation to biaxial stress fields. In other fields, namely, inelastic analysis, piping analysis in the creep regime etc. we are only at a start
VIPR III VADR SPIDER Structural Design and Analysis
Li, Wesley; Chen, Tony
2016-01-01
In support of the National Aeronautics and Space Administration (NASA) Vehicle Integrated Propulsion Research (VIPR) Phase III team to evaluate the volcanic ash environment effects on the Pratt & Whitney F117-PW-100 turbofan engine, NASA Armstrong Flight Research Center has successfully performed structural design and analysis on the Volcanic Ash Distribution Rig (VADR) and the Structural Particulate Integration Device for Engine Research (SPIDER) for the ash ingestion test. Static and dynamic load analyses were performed to ensure no structural failure would occur during the test. Modal analysis was conducted, and the results were used to develop engine power setting avoidance zones. These engine power setting avoidance zones were defined to minimize the dwell time when the natural frequencies of the VADR/SPIDER system coincided with the excitation frequencies of the engine which was operating at various revolutions per minute. Vortex-induced vibration due to engine suction air flow during the ingestion test was also evaluated, but was not a concern.
Static Analysis Numerical Algorithms
2016-04-01
an Abstract Interpretation framework, written in Ocaml , that is meant to be specialized to particular programming languages and program properties...of interest. A specific analyzer tool is built for a specific combination of language /properties by specializing the Ocaml source and compiling to...breaking the monolithic Ocaml compilation and resulting in a mixed language system that (currently) runs only on MacOS (see 3.3.4 below). Approved for
Kwan, Betty P.; O'Brien, T. Paul
2015-06-01
The Aerospace Corporation performed a study to determine whether static percentiles of AE9/AP9 can be used to approximate dynamic Monte Carlo runs for radiation analysis of spiral transfer orbits. Solar panel degradation is a major concern for solar-electric propulsion because solar-electric propulsion depends on the power output of the solar panel. Different spiral trajectories have different radiation environments that could lead to solar panel degradation. Because the spiral transfer orbits only last weeks to months, an average environment does not adequately address the possible transient enhancements of the radiation environment that must be accounted for in optimizing the transfer orbit trajectory. Therefore, to optimize the trajectory, an ensemble of Monte Carlo simulations of AE9/AP9 would normally be run for every spiral trajectory to determine the 95th percentile radiation environment. To avoid performing lengthy Monte Carlo dynamic simulations for every candidate spiral trajectory in the optimization, we found a static percentile that would be an accurate representation of the full Monte Carlo simulation for a representative set of spiral trajectories. For 3 LEO to GEO and 1 LEO to MEO trajectories, a static 90th percentile AP9 is a good approximation of the 95th percentile fluence with dynamics for 4-10 MeV protons, and a static 80th percentile AE9 is a good approximation of the 95th percentile fluence with dynamics for 0.5-2 MeV electrons. While the specific percentiles chosen cannot necessarily be used in general for other orbit trade studies, the concept of determining a static percentile as a quick approximation to a full Monte Carlo ensemble of simulations can likely be applied to other orbit trade studies. We expect the static percentile to depend on the region of space traversed, the mission duration, and the radiation effect considered.
Shakedown analysis of elastoplastic structures
International Nuclear Information System (INIS)
Koenig, J.A.
1981-01-01
Classical shakedown analysis rests on the assumptions of perfectly plastic, associative temperature-independent constitutive laws, negligible inertia and damping forces and negligible geometric effects. This paper provides a survey of the recent literature on the structural behaviour under variable repeated loads, with emphasis on the developments which relaxed some of the above assumptions, but preserved the character of generalization of limit analysis typical of the 'classical' shakedown theory and methods of analysis and design (in contrast to evolutive, step-by-step approaches of incremental plasticity). (orig.)
Analysis of seismic effects on reinforced concrete structures
International Nuclear Information System (INIS)
Tai, A.A.
1981-12-01
An important bibliographical research was undertaken in order to make the best possible analysis of the dynamic behaviour of materials and of structural components. This research work was completed by the study of the structures tested on a seismic table. The results obtained from this preliminary study, particularly those concerning the modification in the rigidity of reinforced concrete structures under alternate and seismic loading, enabled a calculation method (called ''equivalent static'') to be drawn up for analyzing the behaviour of reinforced concrete structures in earthquakes. This method takes into account the non-linearity of the behaviour of materials, in particular. The earthquake responses that were obtained by this method on gantries tested on a vibrating table, tally very satisfactorily with the test figures [fr
Probabilistic safety analysis of earth retaining structures during earthquakes
Grivas, D. A.; Souflis, C.
1982-07-01
A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.
Structural analysis of syndiotactic polystyrene
Energy Technology Data Exchange (ETDEWEB)
Mitani, Masahiro
1988-09-01
Since the stereostructure of a high-molecular compound includes three types of isotactic, atactic and sydiotactic structures, a high-molecular compound with excellent properties can be produced by controlling the stereogularity of the compound with the identical composition. The stereoregularity of a stereogular polystyrene, or syndiotactic polystyrene (SPS), which had been successfully synthesized recently was quantitatively determined and the open chain structure by polymerization was investigated by nuclear magnetic resonance spectroscopy. Two SPSs were synthesized from cis-beta-d/sub/1-styrene and trans-beta-d/sub/1-styrene with alpha, beta, beta-d/sub/3-styrene. The results of spectral analysis of these two SPSs indicate that the former is of trans-conformation and the latter is of gauche conformation and that accordingly the open chain structure by polymerization of SPS is of cis-open chain and SPS has a planar zigzag structure even in the solution. (5 figs, 9 refs)
Wang, Dengfeng; Cai, Kefang
2018-04-01
This article presents a hybrid method combining a modified non-dominated sorting genetic algorithm (MNSGA-II) with grey relational analysis (GRA) to improve the static-dynamic performance of a body-in-white (BIW). First, an implicit parametric model of the BIW was built using SFE-CONCEPT software, and then the validity of the implicit parametric model was verified by physical testing. Eight shape design variables were defined for BIW beam structures based on the implicit parametric technology. Subsequently, MNSGA-II was used to determine the optimal combination of the design parameters that can improve the bending stiffness, torsion stiffness and low-order natural frequencies of the BIW without considerable increase in the mass. A set of non-dominated solutions was then obtained in the multi-objective optimization design. Finally, the grey entropy theory and GRA were applied to rank all non-dominated solutions from best to worst to determine the best trade-off solution. The comparison between the GRA and the technique for order of preference by similarity to ideal solution (TOPSIS) illustrated the reliability and rationality of GRA. Moreover, the effectiveness of the hybrid method was verified by the optimal results such that the bending stiffness, torsion stiffness, first order bending and first order torsion natural frequency were improved by 5.46%, 9.30%, 7.32% and 5.73%, respectively, with the mass of the BIW increasing by 1.30%.
Structural weights analysis of advanced aerospace vehicles using finite element analysis
Bush, Lance B.; Lentz, Christopher A.; Rehder, John J.; Naftel, J. Chris; Cerro, Jeffrey A.
1989-01-01
A conceptual/preliminary level structural design system has been developed for structural integrity analysis and weight estimation of advanced space transportation vehicles. The system includes a three-dimensional interactive geometry modeler, a finite element pre- and post-processor, a finite element analyzer, and a structural sizing program. Inputs to the system include the geometry, surface temperature, material constants, construction methods, and aerodynamic and inertial loads. The results are a sized vehicle structure capable of withstanding the static loads incurred during assembly, transportation, operations, and missions, and a corresponding structural weight. An analysis of the Space Shuttle external tank is included in this paper as a validation and benchmark case of the system.
Directory of Open Access Journals (Sweden)
Lyakhovich Leonid
2017-01-01
Full Text Available This paper is devoted to formulation and general principles of approximation of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method (FEM discrete-continual finite element method (DCFEM. The field of application of DCFEM comprises structures with regular physical and geometrical parameters in some dimension (“basic” dimension. DCFEM presupposes finite element approximation for non-basic dimension while in the basic dimension problem remains continual. DCFEM is based on analytical solutions of resulting multipoint boundary problems for systems of ordinary differential equations with piecewise-constant coefficients.
Structural analysis for LMFBR applications
International Nuclear Information System (INIS)
Vaze, M.K.K.
1983-01-01
The use of elastic analysis for structural design of LMFBR components is discussed. The elastic analysis methods have been used for structural design of the Fast Breeder Test Reactor as well as the proposed Prototype Fast Breeder Reactor. The design of Fast Breeder Test Reactor which is nearing completion is same as that of Rapsodie. Nevertheless, the design had to be checked against the latest design codes available, namely the ASME Code case 1592. This paper however, is confined to Structural analysis of PFBR components. The problems faced in the design of some of the components, in particular, the inner vessel (plenum separator) are discussed. As far as design codes are concerned, ASME Code Section III and the Code Case N-47 are used for high temperature design. The problems faced in the use of these rules are also described along with the description of analysis. Studies in the field of cyclic loading include extension of Bree's shakedown and plastic cycling criteria for ratchet free operation to biaxial stress fields
Structural Analysis of Complex Networks
Dehmer, Matthias
2011-01-01
Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,
Cluster analysis of track structure
International Nuclear Information System (INIS)
Michalik, V.
1991-01-01
One of the possibilities of classifying track structures is application of conventional partition techniques of analysis of multidimensional data to the track structure. Using these cluster algorithms this paper attempts to find characteristics of radiation reflecting the spatial distribution of ionizations in the primary particle track. An absolute frequency distribution of clusters of ionizations giving the mean number of clusters produced by radiation per unit of deposited energy can serve as this characteristic. General computation techniques used as well as methods of calculations of distributions of clusters for different radiations are discussed. 8 refs.; 5 figs
Total Analysis System for Ship Structural Strength
Takuya, Yoneya; Hiroyuki, Kobayashi; Abdul M., Rahim; Yoshimichi, Sasaki; Masaki, Irisawa; Technical Investigation and Information Department, Research Center; Technical Investigation and Information Department, Research Center; Singapore Office; Technical Investigation and Information Department, Research Center; Technical Investigation and Information Department, Research Center
2001-01-01
This paper outlines a total analysis system for ship hull structures, which integrates a wide variety of analysis functions to realise practical applications of rational methods for assessing ship structural strength. It is based on direct calculation of wave-induced loads as well as three-dimensional structural analysis of an entire-ship or hold structure. Three major analysis functions of the total system are ship motion and wave load analysis, ship structural analysis and statistical analy...
Shafaei, S M; Kamgar, S
2017-07-01
This paper deals with studying and modeling static friction coefficient (SFC) and dynamic friction coefficient (DFC) of wheat grain as affected by several treatments. Significance of single effect (SE) and dual interaction effect (DIE) of treatments (moisture content and contact surface) on SFC and, SE, DIE, and triple interaction effect (TIE) of treatments (moisture content, contact surface and sliding velocity) on DFC were determined using statistical analysis methods. Multiple linear regression (MLR) modeling was employed to predict SFC and DFC on different contact surfaces. Predictive ability of developed MLR models was evaluated using some statistical parameters (coefficient of determination ( R 2 ), root mean square error (RMSE), and mean relative deviation modulus (MRDM)). Results indicated that significant increasing DIE of treatments on SFC was 3.2 and 3 times greater than significant increasing SE of moisture content and contact surface, respectively. In case of DFC, the significant increasing TIE of treatments was 8.8, 3.7, and 8.9 times greater than SE of moisture content, contact surface, and sliding velocity, respectively. It was also found that the SE of contact surface on SFC was 1.1 times greater than that of moisture content and the SE of contact surface on DFC was 2.4 times greater than that of moisture content or sliding velocity. According to the reasonable average of statistical parameters ( R 2 = 0.955, RMSE = 0.01788 and MRDM = 3.152%), the SFC and DFC could be successfully predicted by suggested MLR models. Practically, it is recommended to apply the models for direct prediction of SFC and DFC, respective to each contact surface, based on moisture content and sliding velocity.
Directory of Open Access Journals (Sweden)
O. F. Nikitin
2015-01-01
Full Text Available The article deals with the static calculations in designing a high-performance fixed fluid power drive with a single positive-displacement hydraulic motor. Designing is aimed at using a drive that is under development and yet unavailable to find and record the minimum of calculations and maximum of existing hydraulic units that enable clear and unambiguous performance, taking into consideration an available assortment of hydraulic units of hydraulic drives, to have the best efficiency.The specified power (power, moment and kinematics (linear velocity or angular velocity of rotation parameters of the output element of hydraulic motor determine the main output parameters of the hydraulic drive and the useful power of the hydraulic drive under development. The value of the overall efficiency of the hydraulic drive enables us to judge the efficiency of high-performance fixed fluid power drive.The energy analysis of a diagram of the high-performance fixed fluid power drive shows that its high efficiency is achieved when the flow rate of fluid flowing into each cylinder and the magnitude of the feed pump unit (pump are as nearly as possible.The paper considers the ways of determining the geometric parameters of working hydromotors (effective working area or working volume, which allow a selection of the pumping unit parameters. It discusses the ways to improve hydraulic drive efficiency. Using the principle of holding constant conductivity allows us to specify the values of the pressure losses in the hydraulic units used in noncatalog modes. In case of no exact matching between the parameters of existing hydraulic power modes and a proposed characteristics of the pump unit, the nearest to the expected characteristics is taken as a working version.All of the steps allow us to create the high-performance fixed fluid power drive capable of operating at the required power and kinematic parameters with high efficiency.
Trautmann-Lengsfeld, Sina Alexa; Domínguez-Borràs, Judith; Escera, Carles; Herrmann, Manfred; Fehr, Thorsten
2013-01-01
A recent functional magnetic resonance imaging (fMRI) study by our group demonstrated that dynamic emotional faces are more accurately recognized and evoked more widespread patterns of hemodynamic brain responses than static emotional faces. Based on this experimental design, the present study aimed at investigating the spatio-temporal processing of static and dynamic emotional facial expressions in 19 healthy women by means of multi-channel electroencephalography (EEG), event-related potentials (ERP) and fMRI-constrained regional source analyses. ERP analysis showed an increased amplitude of the LPP (late posterior positivity) over centro-parietal regions for static facial expressions of disgust compared to neutral faces. In addition, the LPP was more widespread and temporally prolonged for dynamic compared to static faces of disgust and happiness. fMRI constrained source analysis on static emotional face stimuli indicated the spatio-temporal modulation of predominantly posterior regional brain activation related to the visual processing stream for both emotional valences when compared to the neutral condition in the fusiform gyrus. The spatio-temporal processing of dynamic stimuli yielded enhanced source activity for emotional compared to neutral conditions in temporal (e.g., fusiform gyrus), and frontal regions (e.g., ventromedial prefrontal cortex, medial and inferior frontal cortex) in early and again in later time windows. The present data support the view that dynamic facial displays trigger more information reflected in complex neural networks, in particular because of their changing features potentially triggering sustained activation related to a continuing evaluation of those faces. A combined fMRI and EEG approach thus provides an advanced insight to the spatio-temporal characteristics of emotional face processing, by also revealing additional neural generators, not identifiable by the only use of an fMRI approach. PMID:23818974
Stereological analysis of spatial structures
DEFF Research Database (Denmark)
Hansen, Linda Vadgård
The thesis deals with stereological analysis of spatial structures. One area of focus has been to improve the precision of well-known stereological estimators by including information that is available via automatic image analysis. Furthermore, the thesis presents a stochastic model for star......-shaped three-dimensional objects using the radial function. It appears that the model is highly fleksiblel in the sense that it can be used to describe an object with arbitrary irregular surface. Results on the distribution of well-known local stereological volume estimators are provided....
Thermal and Structural Analysis of FIMS Grating
Directory of Open Access Journals (Sweden)
K.-I. Seon
2001-06-01
Full Text Available Far ultraviolet IMaging Spectrograph (FIMS should be designed to maintain its structural stability and to minimize optical performance degradation in launch and in operation enviroments. The structural and thermal analyzes of grating and grating mount system, which are directly related to FIMS optical performance, was performed using finite element method. The grating mount was made to keep the grating stress down, while keeping the natural frequency of the grating mount higher than 100 Hz. Transient and static thermal analyzes were also performed and the results shows that the thermal stress on the grating can be attenuated sufficiently The optical performance variation due to temperature variation was within the allowed range.
Initial postbuckling analysis of elastoplastic thin-shear structures
Carnoy, E. G.; Panosyan, G.
1984-01-01
The design of thin shell structures with respect to elastoplastic buckling requires an extended analysis of the influence of initial imperfections. For conservative design, the most critical defect should be assumed with the maximum allowable magnitude. This defect is closely related to the initial postbuckling behavior. An algorithm is given for the quasi-static analysis of the postbuckling behavior of structures that exhibit multiple buckling points. the algorithm based upon an energy criterion allows the computation of the critical perturbation which will be employed for the definition of the critical defect. For computational efficiency, the algorithm uses the reduced basis technique with automatic update of the modal basis. The method is applied to the axisymmetric buckling of cylindrical shells under axial compression, and conclusions are given for future research.
International Nuclear Information System (INIS)
Jmal, Hamdi; Ju, Ming Lei; Dupuis, Raphael; Aubry, Evelyne
2014-01-01
Polyurethane foam is a cellular material characterized by an interesting mechanical spectrum of properties: low density, capacity to absorb the deformation energy and low stiffness. This spectrum of properties makes polyurethane foam commonly used in many thermal, acoustic and comfort applications. Several models, such as memory, hyper-elastic and pseudo-elastic models have been developed in the literature to describe the mechanical response of polyurethane foam under quasi-static and dynamic test conditions. The main disadvantage of these models is the dependence of their parameters against the test conditions (strain rate, maximum compression level, etc). This affects the general character of their representativeness to the quasi-static and dynamic behaviours of polyurethane foam. The main goal of this article is to implement reliable mechanical model which is able to provide the quasi-static response of the polyurethane foam under different strain rates and large compressive deformation. The dimensional parameters of our model can be expressed by the product of two independent parts; the first contain only the test conditions and the second define the dimensionless and invariant parameters that characterize the foam material. The developed model has been proposed after several experimental studies allowing the apprehension of the quasi-static behaviour (through unidirectional compression tests). The polyurethane foam, under large deformations, exhibits a nonlinear elastic behaviour and viscoelastic behaviour. To assess the ability of our model to be a general representation, three industrial polyurethane foams have been considered.
Denawaka, Chamila J; Fowlis, Ian A; Dean, John R
2014-04-18
An evaluation of static headspace-multicapillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS) has been undertaken to assess its applicability for the determination of 32 volatile compounds (VCs). The key experimental variables of sample incubation time and temperature have been evaluated alongside the MCC-GC variables of column polarity, syringe temperature, injection temperature, injection volume, column temperature and carrier gas flow rate coupled with the IMS variables of temperature and drift gas flow rate. This evaluation resulted in six sets of experimental variables being required to separate the 32 VCs. The optimum experimental variables for SHS-MCC-GC-IMS, the retention time and drift time operating parameters were determined; to normalise the operating parameters, the relative drift time and normalised reduced ion mobility for each VC were determined. In addition, a full theoretical explanation is provided on the formation of the monomer, dimer and trimer of a VC. The optimum operating condition for each VC calibration data was obtained alongside limit of detection (LOD) and limit of quantitation (LOQ) values. Typical detection limits ranged from 0.1ng bis(methylthio)methane, ethylbutanoate and (E)-2-nonenal to 472ng isovaleric acid with correlation coefficient (R(2)) data ranging from 0.9793 (for the dimer of octanal) through to 0.9990 (for isobutyric acid). Finally, the developed protocols were applied to the analysis of malodour in sock samples. Initial work involved spiking an inert matrix and sock samples with appropriate concentrations of eight VCs. The average recovery from the inert matrix was 101±18% (n=8), while recoveries from the sock samples were lower, that is, 54±30% (n=8) for sock type 1 and 78±24% (n=6) for sock type 2. Finally, SHS-MCC-GC-IMS was applied to sock malodour in a field trial based on 11 volunteers (mixed gender) over a 3-week period. By applying the SHS-MCC-GC-IMS database, four VCs were
Finite element analysis of degraded concrete structures - Workshop proceedings
International Nuclear Information System (INIS)
1999-09-01
This workshop is related to the finite element analysis of degraded concrete structures. It is composed of three sessions. The first session (which title is: the use of finite element analysis in safety assessments) comprises six papers which titles are: Historical Development of Concrete Finite Element Modeling for Safety Evaluation of Accident-Challenged and Aging Concrete Structures; Experience with Finite Element Methods for Safety Assessments in Switzerland; Stress State Analysis of the Ignalina NPP Confinement System; Prestressed Containment: Behaviour when Concrete Cracking is Modelled; Application of FEA for Design and Support of NPP Containment in Russia; Verification Problems of Nuclear Installations Safety Software of Strength Analysis (NISS SA). The second session (title: concrete containment structures under accident loads) comprises seven papers which titles are: Two Application Examples of Concrete Containment Structures under Accident Load Conditions Using Finite Element Analysis; What Kind of Prediction for Leak rates for Nuclear Power Plant Containments in Accidental Conditions; Influence of Different Hypotheses Used in Numerical Models for Concrete At Elevated Temperatures on the Predicted Behaviour of NPP Core Catchers Under Severe Accident Conditions; Observations on the Constitutive Modeling of Concrete Under Multi-Axial States at Elevated Temperatures; Analyses of a Reinforced Concrete Containment with Liner Corrosion Damage; Program of Containment Concrete Control During Operation for the Temelin Nuclear Power Plant; Static Limit Load of a Deteriorated Hyperbolic Cooling Tower. The third session (concrete structures under extreme environmental load) comprised five papers which titles are: Shear Transfer Mechanism of RC Plates After Cracking; Seismic Back Calculation of an Auxiliary Building of the Nuclear Power Plant Muehleberg, Switzerland; Seismic Behaviour of Slightly Reinforced Shear Wall Structures; FE Analysis of Degraded Concrete
Structural Analysis of Fungal Cerebrosides
Directory of Open Access Journals (Sweden)
Eliana eBarreto-Bergter
2011-12-01
Full Text Available Of the ceramide monohexosides (CMHs, gluco- and galactosylceramides are the main neutral glycosphingolipids expressed in fungal cells. Their structural determination is greatly dependent on the use of mass spectrometric techniques, including fast atom bombardment-mass spectrometry (FAB-MS, electrospray ionization (ESI-MS, and energy collision-induced dissociation mass spectrometry (ESI-MS/CID-MS. Nuclear magnetic resonance (NMR has also been used successfully. Such a combination of techniques, combined with classical analytical separation, such as HPTLC and column chromatography, has led to the structural elucidation of a great number of fungal CMHs. The structure of fungal CMH is conserved among fungal species and consists of a glucose or galactose residue attached to a ceramide moiety containing 9-methyl-4,8-sphingadienine with an amidic linkage to hydroxylated fatty acids, most commonly having 16 or 18 carbon atoms and unsaturation between C-3 and C-4. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. Fungal cerebrosides were also characterized as antigenic molecules directly or indirectly involved in cell growth or differentiation in Schizophyllum commune, Cryptococcus neoformans, Pseudallescheria boydii, Candida albicans, Aspergillus nidulans, A.fumigatus and Colletotrichum gloeosporioides. Besides classical techniques for cerebroside (CMH analysis, we now describe new approaches, combining conventional TLC and mass spectrometry, as well as emerging technologies for subcellular localization and distribution of glycosphingolipids by SIMS and imaging MALDI TOF .
Structural analysis of nuclear components
International Nuclear Information System (INIS)
Ikonen, K.; Hyppoenen, P.; Mikkola, T.; Noro, H.; Raiko, H.; Salminen, P.; Talja, H.
1983-05-01
THe report describes the activities accomplished in the project 'Structural Analysis Project of Nuclear Power Plant Components' during the years 1974-1982 in the Nuclear Engineering Laboratory at the Technical Research Centre of Finland. The objective of the project has been to develop Finnish expertise in structural mechanics related to nuclear engineering. The report describes the starting point of the research work, the organization of the project and the research activities on various subareas. Further the work done with computer codes is described and also the problems which the developed expertise has been applied to. Finally, the diploma works, publications and work reports, which are mainly in Finnish, are listed to give a view of the content of the project. (author)
Akaygun, Sevil
2016-01-01
Visualizing the chemical structure and dynamics of particles has been challenging for many students; therefore, various visualizations and tools have been used in chemistry education. For science educators, it has been important to understand how students visualize and represent particular phenomena--i.e., their mental models-- to design more…
Bisplinghoff, Raymond L; Pian, Theodore HH
2014-01-01
Profusely illustrated exposition of fundamentals of solid mechanics and principles of mechanics, statics, and simple statically indeterminate systems. Covers strain and stress in three-dimensional solids, elementary elasticity, energy principles in solid continuum, and more. 1965 edition.
Functional Generalized Structured Component Analysis.
Suk, Hye Won; Hwang, Heungsun
2016-12-01
An extension of Generalized Structured Component Analysis (GSCA), called Functional GSCA, is proposed to analyze functional data that are considered to arise from an underlying smooth curve varying over time or other continua. GSCA has been geared for the analysis of multivariate data. Accordingly, it cannot deal with functional data that often involve different measurement occasions across participants and a large number of measurement occasions that exceed the number of participants. Functional GSCA addresses these issues by integrating GSCA with spline basis function expansions that represent infinite-dimensional curves onto a finite-dimensional space. For parameter estimation, functional GSCA minimizes a penalized least squares criterion by using an alternating penalized least squares estimation algorithm. The usefulness of functional GSCA is illustrated with gait data.
Gavva, L. M.; Endogur, A. I.
2018-02-01
The mathematical model relations for stress-strain state and for buckling investigation of structurally-anisotropic panels made of composite materials are presented. The mathematical model of stiffening rib being torsioned under one-side contact with the skin is refined. One takes into account the influence of panel production technology: residual thermal stresses and reinforcing fibers preliminary tension. The resolved eight order equation and natural boundary conditions are obtained with variation Lagrange procedure. Exact analytical solutions for edge problems are considered. Computer program package is developed using operating MATLAB environment. The influence of the structure parameters on the level of stresses, displacements, of critical buckling forces for bending and for torsion modes has analyzed.
Static and high-frequency magnetic properties of stripe domain structure in a plate of finite sizes
International Nuclear Information System (INIS)
Mal'ginova, S.D.; Doroshenko, R.A.; Shul'ga, N.V.
2006-01-01
A model that enables to carry out self-consistent calculations of the main parameters of stripe domain structure (DS) and at the same time those of properties of domain walls (DW) of a multiple-axis finite (in all directions) ferromagnet depending on the sizes of a sample, material parameters and intensity of a magnetic field is offered. The calculations of the properties of DS (direction of magnetization in domains, widths, ferromagnetic resonance, etc.) are carried out on a computer for plates (1 1 0), rectangular shapes of a cubic ferromagnet with axes of light magnetization along trigonal directions in a magnetic field [-1 1 0]. It is shown, that in plates of different shapes there can be a structure with Neel DW alongside with DS with Bloch DW. Their features are noticeably exhibited, in particular, in different dependence of the number of domains, and also frequencies of a ferromagnetic resonance from a magnetic field
Energy Technology Data Exchange (ETDEWEB)
Werner, Ulrich [Siemens AG, Nuernberg (Germany). Industry, Drive Technologies, Large Drives, Industry Development
2010-03-15
The paper shows a computational methodology for calculating the relative shaft vibrations in the sleeve bearings of two-pole induction machines regarding excitation due to an electromagnetic force, which is caused by static rotor eccentricity. For a worst case calculation concerning the height of exciting magnetic force electromagnetic field damping effects and magnetic resistance concerning the homopolar flux are neglected. The calculated magnetic force, acting on the rotor core with double supply frequency in direction of the smallest air gap, is implemented into a finite element rotor dynamic model. With this model the influence of the rotor speed as well as influence of the direction of the magnetic force on the relative shaft displacements can be analyzed. Therefore the paper shows a computational methodology to check, whether the rotor-bearing design is sensitive for electromagnetic excitations due to static rotor eccentricity and prepares therefore the possibility to introduce improvements during the design phase of the induction motor. (orig.)
Ren, Peng; Guo, Zitao
Quasi-static and dynamic fracture initiation toughness of gy4 armour steel material are investigated using three point bend specimen. The modified split Hopkinson pressure bar (SHPB) apparatus with digital image correlation (DIC) system is applied to dynamic loading experiments. Full-field deformation measurements are obtained by using DIC to elucidate on the strain fields associated with the mechanical response. A series of experiments are conducted at different strain rate ranging from 10-3 s-1 to 103 s-1, and the loading rate on the fracture initiation toughness is investigated. Specially, the scanning electron microscope imaging technique is used to investigate the fracture failure micromechanism of fracture surfaces. The gy4 armour steel material fracture toughness is found to be sensitive to strain rate and higher for dynamic loading as compared to quasi-static loading. This work is supported by National Nature Science Foundation under Grant 51509115.
The Kinematic and Static Analysis of the Tibio-Femoral Joint Based on a Novel Spatial Mechanism
Directory of Open Access Journals (Sweden)
Yonggang Xu
2012-11-01
Full Text Available To reveal the characteristics of knee movement and tibio-femoral joint contact force, a novel single degree of freedom spatial mechanism is built to simulate the joint kinematics based on a three dimensional model of the human knee. The length changes of the three ligaments can be obtained by establishing and solving the kinematics spiral function. Based on this mechanism, a static model is built where linear springs are used to model the ligaments and whose stiffness coefficients are obtained by the finite element method. The main strength of the proposed model is that it associates the knee's flexion motion with internal/external rotation of the tibia based on the isometricity of the anterior cruciate ligament. This offers an efficient method to model and analyse the changes of ligament lengths and static kinematics after ligament reconstruction, which is crucial in designing knee recovery and rehabilitation equipment.
Meoni, Andrea; D'Alessandro, Antonella; Downey, Austin; García-Macías, Enrique; Rallini, Marco; Materazzi, A Luigi; Torre, Luigi; Laflamme, Simon; Castro-Triguero, Rafael; Ubertini, Filippo
2018-03-09
The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix mterials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation. Previous work by the authors was devoted to material fabrication, modeling and applications in SHM. In this paper, we investigate the behavior of several sensors fabricated with and without aggregates and with different MWCNT contents. The strain sensitivity of the sensors, in terms of fractional change in electrical resistivity for unit strain, as well as their linearity are investigated through experimental testing under both quasi-static and sine-sweep dynamic uni-axial compressive loadings. Moreover, the responses of the sensors when subjected to destructive compressive tests are evaluated. Overall, the presented results contribute to improving the scientific knowledge on the behavior of smart concrete sensors and to furthering their understanding for SHM applications.
Directory of Open Access Journals (Sweden)
Andrea Meoni
2018-03-01
Full Text Available The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM of reinforced concrete structures. These sensors are fabricated by doping cement-matrix mterials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs, and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation. Previous work by the authors was devoted to material fabrication, modeling and applications in SHM. In this paper, we investigate the behavior of several sensors fabricated with and without aggregates and with different MWCNT contents. The strain sensitivity of the sensors, in terms of fractional change in electrical resistivity for unit strain, as well as their linearity are investigated through experimental testing under both quasi-static and sine-sweep dynamic uni-axial compressive loadings. Moreover, the responses of the sensors when subjected to destructive compressive tests are evaluated. Overall, the presented results contribute to improving the scientific knowledge on the behavior of smart concrete sensors and to furthering their understanding for SHM applications.
International Nuclear Information System (INIS)
Civalek, Ö.
2014-01-01
In the present study nonlinear static and dynamic responses of shallow spherical shells resting on Winkler–Pasternak elastic foundations are carried out. The formulation of the shells is based on the Donnell theory. The nonlinear governing equations of motion of shallow shells are discretized in space and time domains using the discrete singular convolution and the differential quadrature methods, respectively. The validity of the present method is demonstrated by comparing the present results with those available in the open literature. The effects of the Winkler and Pasternak foundation parameters on nonlinear static and dynamic response of shells are investigated. Some results are also presented for circular plate as special case. Damping effect on nonlinear dynamic response of shells is studied. It is important to state that the increase in damping parameter causes decrease in the dynamic response of the shells. It is shown that the shear parameter of the foundation has a significant influence on the dynamic and static response of the shells. Also, the response of the shell is decreased with the increasing value of the shear parameter of the foundation. Parametric studies considering different geometric variables have also been investigated. -- Highlights: • Nonlinear responses of shallow spherical shells are presented. • The effects of foundation parameters are investigated. • Damping effect on nonlinear dynamic response of shells is also studied
Directory of Open Access Journals (Sweden)
Christopher eDickinson
2013-01-01
Full Text Available Two experiments are reported that further explore the processes underlying dynamic search. In Experiment 1, observers’ oculomotor behavior was monitored while they searched for a randomly oriented T among oriented L distractors under static and dynamic viewing conditions. Despite similar search slopes, eye movements were less frequent and more spatially constrained under dynamic viewing relative to static, with misses also increasing more with target eccentricity in the dynamic condition. These patterns suggest that dynamic search involves a form of sit-and-wait strategy in which search is restricted to a small group of items surrounding fixation. To evaluate this interpretation, we developed a computational model of a sit-and-wait process hypothesized to underlie dynamic search. In Experiment 2 we tested this model by varying fixation position in the display and found that display positions optimized for a sit-and-wait strategy resulted in higher d' values relative to a less optimal location. We conclude that different strategies, and therefore underlying processes, are used to search static and dynamic displays.
Directory of Open Access Journals (Sweden)
Jože Guna
2014-02-01
Full Text Available We present the results of an evaluation of the performance of the Leap Motion Controller with the aid of a professional, high-precision, fast motion tracking system. A set of static and dynamic measurements was performed with different numbers of tracking objects and configurations. For the static measurements, a plastic arm model simulating a human arm was used. A set of 37 reference locations was selected to cover the controller’s sensory space. For the dynamic measurements, a special V-shaped tool, consisting of two tracking objects maintaining a constant distance between them, was created to simulate two human fingers. In the static scenario, the standard deviation was less than 0.5 mm. The linear correlation revealed a significant increase in the standard deviation when moving away from the controller. The results of the dynamic scenario revealed the inconsistent performance of the controller, with a significant drop in accuracy for samples taken more than 250 mm above the controller’s surface. The Leap Motion Controller undoubtedly represents a revolutionary input device for gesture-based human-computer interaction; however, due to its rather limited sensory space and inconsistent sampling frequency, in its current configuration it cannot currently be used as a professional tracking system.
Guna, Jože; Jakus, Grega; Pogačnik, Matevž; Tomažič, Sašo; Sodnik, Jaka
2014-02-21
We present the results of an evaluation of the performance of the Leap Motion Controller with the aid of a professional, high-precision, fast motion tracking system. A set of static and dynamic measurements was performed with different numbers of tracking objects and configurations. For the static measurements, a plastic arm model simulating a human arm was used. A set of 37 reference locations was selected to cover the controller's sensory space. For the dynamic measurements, a special V-shaped tool, consisting of two tracking objects maintaining a constant distance between them, was created to simulate two human fingers. In the static scenario, the standard deviation was less than 0.5 mm. The linear correlation revealed a significant increase in the standard deviation when moving away from the controller. The results of the dynamic scenario revealed the inconsistent performance of the controller, with a significant drop in accuracy for samples taken more than 250 mm above the controller's surface. The Leap Motion Controller undoubtedly represents a revolutionary input device for gesture-based human-computer interaction; however, due to its rather limited sensory space and inconsistent sampling frequency, in its current configuration it cannot currently be used as a professional tracking system.
de Wit, A.J.; Akcay-Perdahcioglu, Didem; van den Brink, W.M.; de Boer, Andries; Rolfes, R.; Jansen, E.L.
2011-01-01
Depending on the type of analysis, Finite Element(FE) models of different fidelity are necessary. Creating these models manually is a labor intensive task. This paper discusses a generic approach for generating FE models of different fidelity from a single reference FE model. These different
Dynamic analysis of embedded structures
International Nuclear Information System (INIS)
Kausel, E.; Whitman, R.V.; Morray, J.P.
1977-01-01
The paper presents simplified rules to account for embeddment and soil layering in the soil-structure interaction problem, to be used in dynamic analysis. The relationship between the spring method, and a direct solution (in which both soil and structure are modeled with finite elements and linear members) is first presented. It is shown that for consistency of the results with the two solution methods the spring method should be performed in the following three steps: 1. Determination of the motion of the massless foundation (having the same shape as the actual one) when subjected to the same input motion as the direct solution. 2. Determination of the frequency dependent subgrade stiffness for the relevant degrees of freedom. 3. Computations of the response of the real structure supported on frequency dependent soil springs and subjected at the base of these springs to the motion computed in step 1. The first two steps require, in general, finite element methods, which would make the procedure not attractive. It is shown in the paper, however, that excellent approximations can be obtained, on the basis of 1-dimensional wave propagation theory for the solution of step 1, and correction factors modifying for embeddment the corresponding springs of a surface footing on a layered stratum, for the solution of step 2. (Auth.)
The finite element structural analysis code SAP IV conversion from CDC to IBM
International Nuclear Information System (INIS)
Harrop, L.P.
1977-02-01
SAP IV is a general three dimensional, linear, static and dynamic finite element structural analysis program. The program which was obtained from the Earthquake Engineering Research Center, University of California, Berkeley, was written in FORTRAM for a CDC 6400. Its main use was anticipated to be the seismic analysis of reactor structures. SAP IV may also prove useful for fracture mechanics studies as well as the usual elastic stress analysis of structures. A brief description of SAP IV and a more detailed account of the FORTRAN conversion required to make SAP IV run successfully on the UKAEA Harwell IBM 370/168 are given. (author)
Effects of a static electric field on nonsequential double ionization
International Nuclear Information System (INIS)
Li Hongyun; Wang Bingbing; Li Xiaofeng; Fu Panming; Chen Jing; Liu Jie; Jiang Hongbing; Gong Qihuang; Yan Zongchao
2007-01-01
Using a three-dimensional semiclassical method, we perform a systematic analysis of the effects of an additional static electric field on nonsequential double ionization (NSDI) of a helium atom in an intense, linearly polarized laser field. It is found that the static electric field influences not only the ionization rate, but also the kinetic energy of the ionized electron returning to the parent ion, in such a way that, if the rate is increased, then the kinetic energy of the first returning electron is decreased, and vice versa. These two effects compete in NSDI. Since the effect of the static electric field on the ionization of the first electron plays a more crucial role in the competition, the symmetric double-peak structure of the He 2+ momentum distribution parallel to the polarization of the laser field is destroyed. Furthermore, the contribution of the trajectories with multiple recollisions to the NSDI is also changed dramatically by the static electric field. As the static electric field increases, the trajectories with two recollisions, which start at the time when the laser and the static electric field are in the same direction, become increasingly important for the NSDI
Energy Technology Data Exchange (ETDEWEB)
Kundu, Ananya; Pradhan, Subrata, E-mail: pradhan@ipr.res.in; Ghate, Mahesh; Kanabar, Deven; Roy, Swati; Kumar, Nitish
2017-01-15
3D transient thermo-structural analyses and steady state magnetic field analyses of 1:1 prototyped JET Edge Localized Mode (ELM) coils have been carried out. Temperature distribution within the magnet winding as well as the temperature evolution have also been simulated as a function of pulsed transport currents in both large and small ELM coils as per the operational scenarios. The induced thermal stresses along with the shear stress components acting on the winding elements have also been analyzed. The deformations caused by thermal stresses have been calculated for the case, the conductor bundle and the insulation layers within the coils. In addition to thermo-structural analyses, steady state magnetic field analyses have also been carried out in the current carrying ELM coils. These values have been compared with the experimental values. The experimentally obtained values matches well with those obtained in simulations indicating that the prototyped ELM coils can operate successfully in JET operational scenarios. Additionally, the R & D and technologies developed in the context of JET ELM coils have also been validated with the magnet performances experimentally.
International Nuclear Information System (INIS)
Giginyak, F.F.
1979-01-01
The analysis of available data shows that depending upon the material used breaking stresses of pressure vessels can correlate with certain mechanical characteristics of the material. The correlation of breaking stresses of welded spherical pressure vessels of the VT-14 high-strength titanium alloy with different mechanical properties of the plate, used to make vessels, is investigated. Stress intensity coefficients Ksub(c), determined on the basic metal of plate-witnesses shows the best correlation with breaking stresses of such vessels
Analysis of Pumphouse RCC Frame Structure for Soil Structure Interaction
Mr A.S. Thombare; Prof. V.P. Kumbhar; Prof. A.H. Kumbhar
2016-01-01
When structure is built on ground some elements of structure are direct contact with soil. When loads are applied on structure internal forces are developed in both the structure as well as in soil. It results in deformation of both the components which are independent to each other. This are called soil structure interaction. The analysis is done by using (Bentley STAAD.Pro V8i Version 2007) software. The analysis carried out been pump house structure R.C.C. frame structure find ...
Sensitivity Analysis of Viscoelastic Structures
Directory of Open Access Journals (Sweden)
A.M.G. de Lima
2006-01-01
Full Text Available In the context of control of sound and vibration of mechanical systems, the use of viscoelastic materials has been regarded as a convenient strategy in many types of industrial applications. Numerical models based on finite element discretization have been frequently used in the analysis and design of complex structural systems incorporating viscoelastic materials. Such models must account for the typical dependence of the viscoelastic characteristics on operational and environmental parameters, such as frequency and temperature. In many applications, including optimal design and model updating, sensitivity analysis based on numerical models is a very usefull tool. In this paper, the formulation of first-order sensitivity analysis of complex frequency response functions is developed for plates treated with passive constraining damping layers, considering geometrical characteristics, such as the thicknesses of the multi-layer components, as design variables. Also, the sensitivity of the frequency response functions with respect to temperature is introduced. As an example, response derivatives are calculated for a three-layer sandwich plate and the results obtained are compared with first-order finite-difference approximations.
Soil Retaining Structures : Development of models for structural analysis
Bakker, K.J.
2000-01-01
The topic of this thesis is the development of models for the structural analysis of soil retaining structures. The soil retaining structures being looked at are; block revetments, flexible retaining walls and bored tunnels in soft soil. Within this context typical structural behavior of these
Hamid, Nubailah Abd; Ismail, Muhammad Hussain; Ibrahim, Azmi; Adnan, Azlan
2018-05-01
Reinforced concrete beam has been among major applications in construction nowadays. However, the application of nickel titanium alloy as a replacement for steel rebar in reinforced concrete beam is a new approach nowadays despite of their ability to undergo large deformations and return to their undeformed shape by removal of stresses. In this paper, the response of simply supported reinforced concrete (RC) beams with smart rebars, control beam subjected to static load has been numerically studied, and highlighted, using finite element method (FEM) where the material employed in this study is the superelastic shape memory alloys (SESMA). The SESMA is a unique alloy that has the ability to undergo large deformations and return to their undeformed shape by removal of stresses. The size of the analysed beam is 125 mm × 270 mm × 2800 mm with 2 numbers of 12 mm diameter bars as main reinforcement for compression and 12 numbers of 12 as tension or hanger bars while 6 mm diameter at 100 mm c/c used as shear reinforcement bars respectively. The concrete was modelled using solid 65 element (in ANSYS) and rebars were modelled using beam 188 elements (in ANSYS). The result for reinforced concrete with nickel titanium alloy rebar is compared with the result obtained for reinforced concrete beam with steel rebar in term of flexural behavior, load displacement relationship, crack behaviour and failure modes for various loading conditions starting from 10kN to 100kN using 3D FE modelling in ANSYS v 15. The response and result obtained from the 3D finite element analysis used in this study is load-displacement curves, residual displacements, Von-Misses, strain and stiffness are suitable for the corresponding result showed a satisfactory performance in the structural analysis. Resultant displacement, Von-Mises stress and maximum strain were influenced by the factors of the material properties, load increments and the mesh size. Nickel titanium alloy was superior to the
Maurer, M M; Badir, S; Pensalfini, M; Bajka, M; Abitabile, P; Zimmermann, R; Mazza, E
2015-06-25
Measuring the stiffness of the uterine cervix might be useful in the prediction of preterm delivery, a still unsolved health issue of global dimensions. Recently, a number of clinical studies have addressed this topic, proposing quantitative methods for the assessment of the mechanical properties of the cervix. Quasi-static elastography, maximum compressibility using ultrasound and aspiration tests have been applied for this purpose. The results obtained with the different methods seem to provide contradictory information about the physiologic development of cervical stiffness during pregnancy. Simulations and experiments were performed in order to rationalize the findings obtained with ultrasound based, quasi-static procedures. The experimental and computational results clearly illustrate that standardization of quasi-static elastography leads to repeatable strain values, but for different loading forces. Since force cannot be controlled, this current approach does not allow the distinction between a globally soft and stiff cervix. It is further shown that introducing a reference elastomer into the elastography measurement might overcome the problem of force standardization, but a careful mechanical analysis is required to obtain reliable stiffness values for cervical tissue. In contrast, the maximum compressibility procedure leads to a repeatable, semi-quantitative assessment of cervical consistency, due to the nonlinear nature of the mechanical behavior of cervical tissue. The evolution of cervical stiffness in pregnancy obtained with this procedure is in line with data from aspiration tests. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Sokolov, N. S., E-mail: nsokolov@fl.ioffe.ru; Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Bursian, V. E.; Lutsev, L. V. [Ioffe Physical-Technical Institute of Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Maksimova, K. Yu.; Grunin, A. I. [Immanuel Kant Baltic Federal University, Kaliningrad 236041 (Russian Federation); Tabuchi, M. [Synchrotron Radiation Research Center, Nagoya University, Nagoya 464-8603 (Japan)
2016-01-14
Pulsed laser deposition has been used to grow thin (10–84 nm) epitaxial layers of Yttrium Iron Garnet Y{sub 3}Fe{sub 5}O{sub 12} (YIG) on (111)–oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films.
International Nuclear Information System (INIS)
Sokolov, N. S.; Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Bursian, V. E.; Lutsev, L. V.; Maksimova, K. Yu.; Grunin, A. I.; Tabuchi, M.
2016-01-01
Pulsed laser deposition has been used to grow thin (10–84 nm) epitaxial layers of Yttrium Iron Garnet Y 3 Fe 5 O 12 (YIG) on (111)–oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films
Statics of historic masonry constructions
Como, Mario
2017-01-01
Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments of its architectural heritage. Given the age of these constructions, the demand for safety assessments and restoration projects is pressing and constant; still within the broad studies in the subject it is not yet recognised, in particular within the seismic area, a unitary approach to deal with Masonry structures. This successful book contributes to clarify the issues with a rigorous approach offering a comprehensive new Statics of Masonry Constructions. This third edition has been driven by some recent developments of the research in the field, and it gives the fundamentals of Statics with an original and rigorous mathematical formulation, further in-depth inquired in this new version. With many refinements and improvements, the book investigates the static behaviour of many historic monuments, such as the Gothic Cathedrals, the Mycenaean Tholoi, the Pantheon, the Colosseum, the dome...
Structural Modeling and Analysis of a Wave Energy Converter Applying Dynamical Substructuring Method
DEFF Research Database (Denmark)
Zurkinden, Andrew Stephen; Damkilde, Lars; Gao, Zhen
2013-01-01
to the relative stiff behavior of the arm the calculation can be reduced to a quasi-static analysis. The hydrodynamic and the structural analyses are thus performed separately. In order to reduce the computational time of the finite element calculation the main structure is modeled as a superelement......This paper deals with structural modeling and analysis of a wave energy converter. The device, called Wavestar, is a bottom fixed structure, located in a shallow water environment at the Danish Northwest coast. The analysis is concentrated on a single float and its structural arm which connects...... the WEC to a jackup structure. The wave energy converter is characterized by having an operational and survival mode. The survival mode drastically reduces the exposure to waves and therfore to the wave loads. Structural response analysis of the Wavestar arm is carried out in this study. Due...
International Nuclear Information System (INIS)
Budinger, T.F.; DeLand, F.H.; Duggan, H.E.; Bouz, J.J.; Hoop, B. Jr.; McLaughlin, W.T.; Weber, P.M.
1975-01-01
Two-dimensional computer image-processing techniques have not proved to be of importance in diagnostic nuclear medicine primarily because the radionuclide distribution represents a three-dimensional problem. More recent developments in three-dimensional reconstruction from multiple views or multiple detectors promise to overcome the major limitations in previous work with digital computers. These techniques are now in clinical use for static imaging; however, speed limitations have prevented application to dynamic imaging. The future development of these methods will require innovations in patient positioning and multiple-view devices for either single-gamma or positron annihilation detection
International Nuclear Information System (INIS)
Marinković, D; Köppe, H; Gabbert, U
2008-01-01
Active piezoelectric thin-walled structures, especially those with a notably higher membrane than bending stiffness, are susceptible to large rotations and transverse deflections. Recent investigations conducted by a number of researchers have shown that the predicted behavior of piezoelectric structures can be significantly influenced by the assumption of large displacements and rotations of the structure, thus demanding a geometrically nonlinear formulation in order to investigate it. This paper offers a degenerated shell element and a simplified formulation that relies on small incremental steps for the geometrically nonlinear analysis of piezoelectric composite structures. A set of purely mechanical static cases is followed by a set of piezoelectric coupled static cases, both demonstrating the applicability of the proposed formulation
Milojević, Slavka; Stojanovic, Vojislav
2017-04-01
Due to the continuous development of the seismic acquisition and processing method, the increase of the signal/fault ratio always represents a current target. The correct application of the latest software solutions improves the processing results and justifies their development. A correct computation and application of static corrections represents one of the most important tasks in pre-processing. This phase is of great importance for further processing steps. Static corrections are applied to seismic data in order to compensate the effects of irregular topography, the difference between the levels of source points and receipt in relation to the level of reduction, of close to the low-velocity surface layer (weathering correction), or any reasons that influence the spatial and temporal position of seismic routes. The refraction statics method is the most common method for computation of static corrections. It is successful in resolving of both the long-period statics problems and determining of the difference in the statics caused by abrupt lateral changes in velocity in close to the surface layer. XtremeGeo FlatironsTM is a program whose main purpose is computation of static correction through a refraction statics method and allows the application of the following procedures: picking of first arrivals, checking of geometry, multiple methods for analysis and modelling of statics, analysis of the refractor anisotropy and tomography (Eikonal Tomography). The exploration area is located on the southern edge of the Pannonian Plain, in the plain area with altitudes of 50 to 195 meters. The largest part of the exploration area covers Deliblato Sands, where the geological structure of the terrain and high difference in altitudes significantly affects the calculation of static correction. Software XtremeGeo FlatironsTM has powerful visualization and tools for statistical analysis which contributes to significantly more accurate assessment of geometry close to the surface
Observations on the structural design and analysis of a piping system
International Nuclear Information System (INIS)
Hsieh, B.J.; Kot, C.A.
1991-01-01
This paper reports on the structural design/analysis of a gas exhaust system at a nuclear facility used to investigate some aspects of current piping design procedures. Specifically the effect of using various stress measures including ASME Boiler and Pressure Vessel (B and PV) Code formulas is evaluated. It is found that large differences in local maximums tress values may be calculated depending on the stress criterion used. The effect of using an Equivalent Static Method (ESM) analysis is also evaluated by comparing its results with those obtained from a Response Spectrum Method (RSM) analysis. It is shown that a spectrum amplification factor (equivalent static coefficient greater than unity) of at least 1.32 must be used in the current application of the ESM analysis in order to obtain results which are conservative in all aspects relative to the RMS analysis
Structural and stress analysis of nuclear piping systems
International Nuclear Information System (INIS)
Hata, Hiromichi
1982-01-01
The design of the strength of piping system is important in plant design, and its outline on the example of PWRs is reported. The standards and guides concerning the design of the strength of piping system are shown. The design condition for the strength of piping system is determined by considering the requirements in the normal operation of plants and for the safety design of plants, and the loads in normal operation, testing, credible accident and natural environment are explained. The methods of analysis for piping system are related to the transient phenomena of fluid, piping structure and local heat conduction, and linear static analysis, linear time response analysis, nonlinear time response analysis, thermal stress analysis and fluid transient phenomenon analysis are carried out. In the aseismatic design of piping system, it is desirable to avoid the vibration together with a building supporting it, and as a rule, to make it into rigid structure. The piping system is classified into high temperature and low temperature pipings. The formulas for calculating stress and the allowable condition, the points to which attention must be paid in the design of piping strength and the matters to be investigated hereafter are described. (Kako, I.)
Directory of Open Access Journals (Sweden)
He Juan
2013-01-01
Full Text Available Using the age-stage two-sex life table, this work was undertaken in order to determine the effect of static magnetic fields (SMFs at two flux densities (0.176T and 0.065T applied at increasing times of duration (0.25, 0.5, 1 and 2 h on the development, fecundity and reproduction of the aphid, Sitobion avenae. Exposed nymphs had a statistically significant shortened first instar period and adult longevity and prolonged fourth instar periods compared to controls. There were significant differences in the population parameters for two exposure combinations, 0.176T for 0.5 h and 0.065T for 1 h. The intrinsic rate of increase (r, net reproductive rate (R0 and mean generation time (T were 0.1165, 3.5 and 11.7 days, respectively, 0.176 T for 0.5 h and -0.0198, 0.7 and 11.8 days, respectively, 0.065T for 1 h. We therefore recommend using the age-stage, two-sex life table to study the effect of the static magnetic field on development and growth of the aphid, Sitobion avenae.
International Nuclear Information System (INIS)
White, J.R.
1985-04-01
This report provides the background theory, user input, and sample problems required for the efficient application of the DEPTH-CHARGE system - a code black for both static and time-dependent perturbation theory and data sensitivity analyses. The DEPTH-CHARGE system is of modular construction and has been implemented within the VENTURE-BURNER computational system at Oak Ridge National Laboratory. The DEPTH module (coupled with VENTURE) solves for the three adjoint functions of Depletion Perturbation Theory and calculates the desired time-dependent derivatives of the response with respect to the nuclide concentrations and nuclear data utilized in the reference model. The CHARGE code is a collection of utility routines for general data manipulation and input preparation and considerably extends the usefulness of the system through the automatic generation of adjoint sources, estimated perturbed responses, and relative data sensitivity coefficients. Combined, the DEPTH-CHARGE system provides, for the first time, a complete generalized first-order perturbation/sensitivity theory capability for both static and time-dependent analyses of realistic multidimensional reactor models. This current documentation incorporates minor revisions to the original DEPTH-CHARGE documentation (ORNL/CSD-78) to reflect some new capabilities within the individual codes
Gehrke, Sergio Alexandre; Pérez-Díaz, Leticia; Dedavid, Berenice Anina
2018-01-30
New manufacturing methods was developed to improve the tissues integration with the titanium alloy pieces. The present in vitro study was to assess the resistance and fracture mode after applied a quasi-static compressive force on the two dental implants manufactured by direct metal laser sintering. Twenty dental implants manufactured by direct metal laser sintering, using titanium alloy (Ti-6Al-4V) granules in two designs (n = 10 per group): Conventional dental implant (group Imp1) two-piece implant design, where the surgical implant and prosthetic abutment are two separate components and, the one-piece implant (group Imp2), where the surgical implant and prosthetic abutment are one integral piece. All samples were subjected to quasi-static loading at a 30° angle to the implant axis in a universal testing machine. The mean fracture strengths were 1269.2 ± 128.8 N for the group Imp1 and, 1259.5 ± 115.1 N for the group Imp2, without statistical differences (P = .8722). In both groups, the fracture surface does not present crack between the compact core and the superficial (less dense and porous) part of the implants. Based on the measured resistance data for the two implant models manufactured by direct metal laser sintering tested in the present study, we can suggest that they have adequate capacity to withstand the masticatory loads. © 2018 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
CHETAN VASUDEVA
2017-10-01
Full Text Available Researchers have always shown keen interest in predetermining the electromagnetic field behavior inside an electrical machine at the design stage. Material properties of permanent magnet, selection of optimum air gap during the electromagnetic, thermal and structural design of generator are considered to be vital factors for an ideal machine. Generator output, heat rise, weight, and cost are a few of the characteristics which are directly influenced by the selection of the most advantageous material properties. Moreover, most theoretical studies have been conducted assuming that the air gap flux is sinusoidally distributed. The actual conduct of the air gap flux with the length of air gap and its impression on the performance of the generator has not been analyzed so far. In this paper, field analysis of permanent magnet generator using finite element method has been carried out to show the best material properties and air gap for optimum pattern.
Static electromagnetic frequency changers
Rozhanskii, L L
1963-01-01
Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work
International Nuclear Information System (INIS)
Ambrosini, Daniel; Codina, Ramón H.; Curadelli, Oscar; Martínez, Carlos A.
2017-01-01
Highlights: • Structural analysis of CAREM-25 NPP is presented. • Full 3D numerical model was developed. • Transient thermal and static structural analyses were performed. • Modeling guidelines for numerical structural analysis of NPP are recommended. • Envelope condition of DBA dominates the structural behavior. - Abstract: In this paper, a numerical study about the structural response of the Argentine nuclear power plant CAREM-25 subjected to the design basis accident (DBA) and seismic loads is presented. Taking into account the hardware capabilities available, a full 3D finite element model was adopted. A significant part of the building was modeled using more than 2 M solid elements. In order to take into account the foundation flexibility, linear springs were used. The springs and the model were calibrated against a greater model used to study the soil-structure interaction. The structure was subjected to the DBA and seismic loads as combinations defined by ASME international code. First, a transient thermal analysis was performed with the conditions defined by DBA and evaluating the time history of the temperature of the model, each 1 h until 36 h. The final results of this stage were considered as initial conditions of a static structural analysis including the pressure defined by DBA. Finally, an equivalent static analysis was performed to analyze the seismic response considering the design basis spectra for the site. The different loads were combined and the abnormal/extreme environmental combination was the most unfavorable for the structure, defining the design.
Automated analysis and design of complex structures
International Nuclear Information System (INIS)
Wilson, E.L.
1977-01-01
This paper discusses the following: 1. The relationship of analysis to design. 2. New methods of analysis. 3. Improved finite elements. 4. Effect of minicomputer on structural analysis methods. 5. The use of system of microprocessors for nonlinear structural analysis. 6. The role of interacting graphics systems in future analysis and design. The discussion focusses on the impact of new inexpensive computer hardware on design and analysis methods. (Auth.)
A simple model for the dynamic analysis of deteriorating structures
International Nuclear Information System (INIS)
Andreaus, U.; Ceradini, G.; D'Asdia, P.
1983-01-01
A simple model exhibiting a multi-linear constitutive law is presented which describes the behaviour of structural members and subassemblages under severe cyclic loading. The proposed model allows for: 1) pinched form of force-displacement diagrams due to, e.g., cracks in reinforced concrete members and masonry panels; 2) slippage effects due to lack of bond of steel bars in reinforced concrete and clearances in steel bolted connections; 3) post-buckling behaviour of subassemblages with unstable members; 4) cumulative damage affecting strength and/or stiffness at low cycle fatigue. The parameters governing the model behaviour have to be estimated on the basis of experimental results. The model is well suitable for analysis under statically applied cyclic displacements and forces, and under earthquake excitation. An X-type bracing system is then worked out where the member behaviour is schematized according to the proposed model. (orig.)
Peng, Heng; Liu, Yinghua; Chen, Haofeng
2018-05-01
In this paper, a novel direct method called the stress compensation method (SCM) is proposed for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to solve the specific mathematical programming problem, the SCM is a two-level iterative procedure based on a sequence of linear elastic finite element solutions where the global stiffness matrix is decomposed only once. In the inner loop, the static admissible residual stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing load multipliers are updated to approach to the shakedown limit multiplier by using an efficient and robust iteration control technique, where the static shakedown theorem is adopted. Three numerical examples up to about 140,000 finite element nodes confirm the applicability and efficiency of this method for two-dimensional and three-dimensional elastoplastic structures, with detailed discussions on the convergence and the accuracy of the proposed algorithm.
Energy Technology Data Exchange (ETDEWEB)
Al-Muslim, Husain Mohammed; Arif, Abul Fazal M. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)
2010-07-01
Mechanical damage in transportation pipelines is an issue of extreme importance to pipeline operators and many others. Appropriate procedures for severity assessment are necessary. This paper mainly studies the effect of geometry, material and pressure variability on strain and stress fields in dented pipelines subjected to static and cyclic pressure. Finite element analysis (FEA) has often been used to overcome the limitations of a full-scale test, but it is still impossible to run FEA for all possible combinations of parameters. Probabilistic analysis offers an excellent alternative method to determine the sensitivity of the strain and stress fields to each of those input parameters. A hundred cases were randomly generated with Monte Carlo simulations and analyzed, a general formula was proposed to relate the output variables in terms of practically measured variables, and regression analysis was performed to confirm the appropriateness of the general formula.
Data Structure Analysis to Represent Basic Models of Finite State Automation
Directory of Open Access Journals (Sweden)
V. V. Gurenko
2015-01-01
Full Text Available Complex system engineering based on the automaton models requires a reasoned data structure selection to implement them. The problem of automaton representation and data structure selection to be used in it has been understudied. Arbitrary data structure selection for automaton model software implementation leads to unnecessary computational burden and reduces the developed system efficiency. This article proposes an approach to the reasoned selection of data structures to represent finite algoristic automaton basic models and gives practical considerations based on it.Static and dynamic data structures are proposed for three main ways to assign Mealy and Moore automatons: a transition table, a matrix of coupling and a transition graph. A thirddimensional array, a rectangular matrix and a matrix of lists are the static structures. Dynamic structures are list-oriented structures: two-level and three-level Ayliff vectors and a multi-linked list. These structures allow us to store all required information about finite state automaton model components - characteristic set cardinalities and data of transition and output functions.A criterion system is proposed for data structure comparative evaluation in virtue of algorithmic features of automata theory problems. The criteria focused on capacitive and time computational complexity of operations performed in tasks such as equivalent automaton conversions, proving of automaton equivalence and isomorphism, and automaton minimization.A data structure comparative analysis based on the criterion system has done for both static and dynamic type. The analysis showed advantages of the third-dimensional array, matrix and two-level Ayliff vector. These are structures that assign automaton by transition table. For these structures an experiment was done to measure the execution time of automation operations included in criterion system.The analysis of experiment results showed that a dynamic structure - two
Decision analysis for deteriorating structures
International Nuclear Information System (INIS)
Val, Dimitri V.; Stewart, Mark G.
2005-01-01
Measures that improve durability of a structure usually increase its initial cost. Thus, in order to make a decision about a cost-effective solution the life-cycle cost of a structure including cost of structural failure needs to be considered. Due to uncertainties associated with structural properties, loads and environmental conditions the cost of structural failure is a random variable. The paper derives probability distributions of the cost of failure of a single structure and a group of identical structures when single or multiple failures are possible during the service life of a structure. The probability distributions are based on cumulative probabilities of failure of a single structure over its service life. It is assumed that failures occur at discrete points in time, the cost of failure set at the time of decision making remains constant for a particular design solution and the discount rate is a deterministic parameter not changing with time. The probability distributions can be employed to evaluate the expected life-cycle cost or the expected utility, which is then used in decision making. An example, which considers the selection of durability specifications for a reinforced concrete structure built on the coast, illustrates the use of the derived probability distributions
Akar, Mehmet
2013-01-01
In this study, a new method was presented for the detection of a static eccentricity fault in a closed loop operating induction motor driven by inverter. Contrary to the motors supplied by the line, if the speed and load, and therefore the amplitude and frequency, of the current constantly change then this also causes a continuous change in the location of fault harmonics in the frequency spectrum. Angular Domain Order Tracking analysis (AD-OT) is one of the most frequently used fault diagnosis methods in the monitoring of rotating machines and the analysis of dynamic vibration signals. In the presented experimental study, motor phase current and rotor speed were monitored at various speeds and load levels with a healthy and static eccentricity fault in the closed loop driven induction motor with vector control. The AD-OT method was applied to the motor current and the results were compared with the traditional FFT and Fourier Transform based Order Tracking (FT-OT) methods. The experimental results demonstrate that AD-OT method is more efficient than the FFT and FT-OT methods for fault diagnosis, especially while the motor is operating run-up and run-down. Also the AD-OT does not incur any additional cost for the user because in inverter driven systems, current and speed sensor coexist in the system. The main innovative parts of this study are that AD-OT method was implemented on the motor current signal for the first time.
PLASTIC ANALYSIS OF STEEL FRAME STRUCTURE
Directory of Open Access Journals (Sweden)
M. Rogac
2013-05-01
Full Text Available This paper presents the plastic analysis of steel frame structure loaded by gravity loads. By applying the cinematic theorem of ultimate analysis, the ultimate load for the case of elastic - ideally plastic material is calculated. The identical structure was treated in the computer program SAP2000 where the zone of material reinforcement in the plastic area was covered. Keywords: Steel frame structure, plastic analysis, ultimate gravity load, material reinforcement.
Robustness Analysis of Kinetic Structures
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Sørensen, John Dalsgaard
2009-01-01
Kinetic structures in architecture follows a new trend which is emerging in responsive architecture coined by Nicholas Negroponte when he proposed that architecture may benefit from the integration of computing power into built spaces and structures, and that better performing, more rational...
Finite element analysis of structural response of superconducting magnet for a fusion reactor
International Nuclear Information System (INIS)
Reich, M.; Powell, J.; Bezler, P.; Chang, T.Y.; Prachuktam, S.
1975-01-01
In the proposal Tokamak fusion reactor, the superconducting unit consists of an assembly of D-shaped magnets standing vertically and arranged in a toroidal configuration. Each magnet is a composite structure comprised of Nb-22%Ti and Nb-48%Ti, and stabilizing metals such as copper and aluminum or stainless steel held together by reinforced epoxies which also serve as insulators and spacers. The magnets are quite large, typically 15-20 meters in diameter with rectangular cross sections around 0.93x2m. Under static loading condition, the magnet is subjected to dead weight and large magnetic field forces, which may induce high stresses in the structure. Furthermore, additional stresses due to earthquake must also be considered for the design of the component. Both static and dynamic analyses of a typical field magnet have been performed by use of the finite element method. The magnet was assumed to be linearly elastic with equivalent homogeneous material properties. Various finite element models have been considered in order to better represent the structure for a particular loading case. For earthquake analysis, the magnet was assumed to be subjected to 50% of the El Centro 1940 earthquake and the dynamic response was obtained by the displacement spectrum analysis procedure. In the paper, numerical results are presented and the structure behavior of the magnet under static and dynamic loading conditions is discussed
Modeling, Analysis, and Optimization Issues for Large Space Structures
Pinson, L. D. (Compiler); Amos, A. K. (Compiler); Venkayya, V. B. (Compiler)
1983-01-01
Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design.
Tseng, Chien-Hsun
2018-06-01
This paper aims to develop a multidimensional wave digital filtering network for predicting static and dynamic behaviors of composite laminate based on the FSDT. The resultant network is, thus, an integrated platform that can perform not only the free vibration but also the bending deflection of moderate thick symmetric laminated plates with low plate side-to-thickness ratios (< = 20). Safeguarded by the Courant-Friedrichs-Levy stability condition with the least restriction in terms of optimization technique, the present method offers numerically high accuracy, stability and efficiency to proceed a wide range of modulus ratios for the FSDT laminated plates. Instead of using a constant shear correction factor (SCF) with a limited numerical accuracy for the bending deflection, an optimum SCF is particularly sought by looking for a minimum ratio of change in the transverse shear energy. This way, it can predict as good results in terms of accuracy for certain cases of bending deflection. Extensive simulation results carried out for the prediction of maximum bending deflection have demonstratively proven that the present method outperforms those based on the higher-order shear deformation and layerwise plate theories. To the best of our knowledge, this is the first work that shows an optimal selection of SCF can significantly increase the accuracy of FSDT-based laminates especially compared to the higher order theory disclaiming any correction. The highest accuracy of overall solution is compared to the 3D elasticity equilibrium one.
Cai, Ying; Yan, Zhihong; Wang, Lijia; NguyenVan, Manh; Cai, Qingyun
2016-01-15
A magnetic solid phase extraction (MSPE) protocol combining a static headspace gas chromatography coupled to mass spectrometry (HS-GC-MS) method has been developed for extraction, and determination of 16 polycyclic aromatic hydrocarbons (PAHs) in drinking water samples. Magnetic nanoparticles (MNPs) were coated with 3-aminopropyltriethoxysilane and modified by cholesterol chloroformate. Transmission electron microscope, vibrating sample magnetometer, Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy were used to characterize the cholesterol-functionalized sorbents, and the main parameters affecting the extraction as well as HS sampling, such as sorbent amount, extraction time, oven temperature and equilibration time have been investigated and established. Combination with HS sampling, the MSPE procedure was simple, fast and environmentally friendly, without need of any organic solvent. Method validation proved the feasibility of the developed sorbents for the quantitation of the investigated analytes at trace levels obtaining the limit of detection (S/N=3) ranging from 0.20 to 7.8 ng/L. Good values for intra and inter-day precision were obtained (RSDs ≤ 9.9%). The proposed method was successfully applied to drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Li, Hejie; Jiang, Zhengyi; Wei, Dongbin; Gao, Xingjian; Xu, Jianzhong; Zhang, Xiaoming
2015-01-01
Highlights: • We used AFM and EBSD to analyses the surface asperity flattening process. • Analysis of the influence of deformation rate on the surface asperity flattening. • Investigation of the effect of lubrication on microstructure development. • Deformation rate influence the generation of orientation components obviously. - Abstract: In a quasi-static cold uniaxial planar compression, surface asperity evolution and microstructure analysis of Al 6061T5 alloy are carried out by employing Atomic Force Microscope (AFM) and Electron Backscattered Diffraction (EBSD) methods. Strain rate affects the surface asperity evolution obviously. While lubrication can hinder the surface asperity flattening by constraining the surface localized deformation. Lubrication can accelerate the crystallization in CUPC process. It also impedes the activation of some orientation components by hindering the activation of related slip systems in light metal Al alloy
DEFF Research Database (Denmark)
Alexandrov, Yuriy; Nikolic, Dino Solar; Dunsby, Christopher
2018-01-01
Förster resonant energy transfer (FRET) measurements are widely used to obtain information about molecular interactions and conformations through the dependence of FRET efficiency on the proximity of donor and acceptor fluorophores. Fluorescence lifetime measurements can provide quantitative...... into new software for fitting donor emission decay profiles. Calculated FRET parameters, including molar population fractions, are compared for the analysis of simulated and experimental FRET data under the assumption of static and dynamic fluorophores and the intermediate regimes between fully dynamic...... analysis of FRET efficiency and interacting population fraction. Many FRET experiments exploit the highly specific labelling of genetically expressed fluorescent proteins, applicable in live cells and organisms. Unfortunately, the typical assumption of fast randomization of fluorophore orientations...
Rast, S; Borel, A; Helm, L; Belorizky, E; Fries, P H; Merbach, A E
2001-03-21
For the first time, a very general theoretical method is proposed to interpret the full electron paramagnetic resonance (EPR) spectra at multiple temperatures and frequencies in the important case of S-state metal ions complexed in liquid solution. This method is illustrated by a careful analysis of the measured spectra of two Gd3+ (S = 7/2) complexes. It is shown that the electronic relaxation mechanisms at the origin of the EPR line shape arise from the combined effects of the modulation of the static crystal field by the random Brownian rotation of the complex and of the transient zero-field splitting. A detailed study of the static crystal field mechanism shows that, contrarily to the usual global models involving only second-order terms, the fourth and sixth order terms can play a non-negligible role. The obtained parameters are well interpreted in the framework of the physics of the various underlying relaxation processes. A better understanding of these mechanisms is highly valuable since they partly control the efficiency of paramagnetic metal ions in contrast agents for medical magnetic resonance imaging (MRI).
International Nuclear Information System (INIS)
Bhaumik, Lopamudra; Raychowdhury, Prishati
2013-01-01
Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, S a (T 1 )is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure
Energy Technology Data Exchange (ETDEWEB)
Bhaumik, Lopamudra, E-mail: lbhaumi2@illinois.edu [University of Illinois at Urbana-Champaign (United States); Raychowdhury, Prishati, E-mail: prishati@iitk.ac.in [Indian Institute of Technology Kanpur (India)
2013-12-15
Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, S{sub a}(T{sub 1})is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure.
Autodesk Robot Structural Analysis Professional 2016 essentials
Marsh, Ken
2016-01-01
Autodesk Robot Structural Analysis Professional 2016 - Essentials is an excellent introduction to the essential features, functions, and workflows of Autodesk Robot Structural Analysis Professional. Master the tools you will need to make Robot work for you: Go from zero to proficiency with this thorough and detailed introduction to the essential concepts and workflows of Robot Structural Analysis Professional 2016. - Demystify the interface - Manipulate and manage Robot tables like a pro - Learn how to use Robot's modeling tools - Master loading techniques - Harness Robot automated load combinations - Decipher simplified seismic loading - Discover workflows for steel and concrete design - Gain insights to help troubleshoot issues Guided exercises are provided to help cement fundamental concepts in Robot Structural Analysis and drive home key functions. Get up to speed quickly with this essential text and add Robot Structural Analysis Professional 2016 to your analysis and design toolbox. New in 2016: AWC-NDS ...
Automated analysis and design of complex structures
International Nuclear Information System (INIS)
Wilson, E.L.
1977-01-01
The present application of optimum design appears to be restricted to components of the structure rather than to the total structural system. Since design normally involved many analysis of the system any improvement in the efficiency of the basic methods of analysis will allow more complicated systems to be designed by optimum methods. The evaluation of the risk and reliability of a structural system can be extremely important. Reliability studies have been made of many non-structural systems for which the individual components have been extensively tested and the service environment is known. For such systems the reliability studies are valid. For most structural systems, however, the properties of the components can only be estimated and statistical data associated with the potential loads is often minimum. Also, a potentially critical loading condition may be completely neglected in the study. For these reasons and the previous problems associated with the reliability of both linear and nonlinear analysis computer programs it appears to be premature to place a significant value on such studies for complex structures. With these comments as background the purpose of this paper is to discuss the following: the relationship of analysis to design; new methods of analysis; new of improved finite elements; effect of minicomputer on structural analysis methods; the use of system of microprocessors for nonlinear structural analysis; the role of interacting graphics systems in future analysis and design. This discussion will focus on the impact of new, inexpensive computer hardware on design and analysis methods
Structure of polysaccharide and structural analysis by x-ray
International Nuclear Information System (INIS)
Yuguchi, Yoshiaki
2010-01-01
Polysaccharides occur in plants and the living body in the solid, gel, or liquid. They have a highly structural diversity and possess the potential to be used for development of new materials and energy sources. So it is very important to understand their molecular structure under various conditions. This review introduces the structural characteristics of polysaccharides and the examples of their analysis by the X-ray scattering method. (author)
Rectifier cabinet static breaker
International Nuclear Information System (INIS)
Costantino, R.A. Jr; Gliebe, R.J.
1992-01-01
A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload. 7 figs
Rectifier cabinet static breaker
Costantino, Jr, Roger A.; Gliebe, Ronald J.
1992-09-01
A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.
Directory of Open Access Journals (Sweden)
Miguel Antônio Rahal
2015-03-01
Full Text Available OBJECTIVE: To determine whether Tai Chi Chuan or ballroom dancing promotes better performance with respect to postural balance, gait, and postural transfer among elderly people. METHODS: We evaluated 76 elderly individuals who were divided into two groups: the Tai Chi Chuan Group and the Dance Group. The subjects were tested using the NeuroCom Balance Master¯ force platform system with the following protocols: static balance tests (the Modified Clinical Tests of Sensory Interaction on Balance and Unilateral Stance and dynamic balance tests (the Walk Across Test and Sit-to-stand Transfer Test. RESULTS: In the Modified Clinical Test of Sensory Interaction on Balance, the Tai Chi Chuan Group presented a lower sway velocity on a firm surface with open and closed eyes, as well as on a foam surface with closed eyes. In the Modified Clinical Test of Sensory Interaction on Unilateral Stance, the Tai Chi Chuan Group presented a lower sway velocity with open eyes, whereas the Dance Group presented a lower sway velocity with closed eyes. In the Walk Across Test, the Tai Chi Chuan Group presented faster walking speeds than those of the Dance Group. In the Sit-to-stand Transfer Test, the Tai Chi Chuan Group presented shorter transfer times from the sitting to the standing position, with less sway in the final standing position. CONCLUSION: The elderly individuals who practiced Tai Chi Chuan had better bilateral balance with eyes open on both types of surfaces compared with the Dance Group. The Dance Group had better unilateral postural balance with eyes closed. The Tai Chi Chuan Group had faster walking speeds, shorter transfer times, and better postural balance in the final standing position during the Sit-to-stand Test.
International Nuclear Information System (INIS)
Rescigno, T.N.; Bender, C.F.; McKoy, B.V.; Langhoff, P.W.
1978-01-01
Theoretical investigations of photoexcitation and ionization cross sections in molecular nitrogen are reported employing the recently devised Stieltjes--Tchebycheff moment-theory technique in the static-exchange approximation. The coupled-channel equations for photoabsorption are separated approximately by identifying the important physically distinct excitation processes associated with formation of the three lowest electronic states of the parent molecular ion. Approximate Rydberg series and pseudospectra of transition frequencies and oscillator strengths are constructed for the seven individual channel components identified using Hartree--Fock ionic core functions and normalizable Gaussian orbitals to describe the photoexcited and ejected electrons. Detailed comparisons of the theoretically determined discrete excitation series with available spectral data indicate general accord between the calculated and observed excitation frequencies and oscillator strengths, although there are some discrepancies and certain Rydberg series have apparently not yet been identified in the measured spectra. The total Stieltjes--Tchebycheff vertical photoionization cross section obtained from the discrete pseudospectra is in excellent agreement with recent electron--ion coincidence measurement of the cross section for parent--ion production from threshold to 50 eV excitation energy. Similarly, e calculated vertical partial cross sections for the production of the three lowest electronic states in the parent molecular ion are in excellent accord with the results of recent electron--electron coincidence and synchrotron--radiation branching ratio measurements. The origins of particularly intense resonancelike features in the discrete and continuum portions of the photoabsorption cross sections are discussed in terms of excitations into valencelike molecular orbitals
Maillot, N; Guenancia, C; Yameogo, N V; Gudjoncik, A; Garnier, F; Lorgis, L; Chagué, F; Cottin, Y
2018-02-01
To interpret the electrocardiogram (ECG) of athletes, the recommendations of the ESC and the Seattle criteria define type 1 peculiarities, those induced by training, and type 2, those not induced by training, to rule out cardiomyopathy. The specificity of the screening was improved by Sheikh who defined "Refined Criteria," which includes a group of intermediate peculiarities. The aim of our study was to investigate the influence of static and dynamic components on the prevalence of different types of abnormalities. The ECGs of 1030 athletes performed during preparticipation screening were interpreted using these three classifications. Our work revealed 62/16%, 69/13%, and 71/7% of type 1 peculiarities and type 2 abnormalities for the ESC, Seattle, and Refined Criteria algorithms, respectively(P<.001). For type 2 abnormalities, three independent factors were found for the ESC and Seattle criteria: age, Afro-Caribbean origin, and the dynamic component with, for the latter, an OR[95% CI] of 2.35[1.28-4.33] (P=.006) and 1.90[1.03-3.51] (P=.041), respectively. In contrast, only the Afro-Caribbean origin was associated with type 2 abnormalities using the Refined Criteria: OR[95% CI] 2.67[1.60-4.46] (P<.0001). The Refined Criteria classified more athletes in the type 1 category and fewer in the type 2 category compared with the ESC and Seattle algorithms. Contrary to previous studies, a high dynamic component was not associated with type 2 abnormalities when the Refined Criteria were used; only the Afro-Caribbean origin remained associated. Further research is necessary to better understand adaptations with regard to duration and thus improve the modern criteria for ECG screening in athletes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Dynamic analysis of an industrial structure with fluid-structure interaction
International Nuclear Information System (INIS)
Sigrist, J.F.
2006-01-01
The present paper deals with the dynamic analysis of a nuclear reactor subjected to a shock loading with fluid-structure interaction modeling. The general framework of the study is that of linear vibrations, which are investigated for coupled fluid-structure problems. From a methodological point of view, energy deformation and modal mass calculation are exposed for elasto-acoustic systems. From an industrial point of view, the influence of elasto-acoustic coupling effects are highlighted for the studied structure. The dynamic analysis of the coupled system is carried out with various procedures (static, spectral and temporal methods), which are exposed and compared. As a general result, the spectral method is proved to be the most effective for the industrial problem. From the numerical point of view, the discretization procedure is based on a finite element method for the coupled problem, using a displacement and pressure-displacement potential coupled formulation with axi-symmetric representation of the problem unknowns. A finite element code is developed within MATLAB for the specific study, the numerical calculations presented in the paper are used as reference test cases for integration of the (u,p,φ) formulation in the commercial finite element code Ansys. (author)
Dynamic analysis program for frame structure
International Nuclear Information System (INIS)
Ando, Kozo; Chiba, Toshio
1975-01-01
A general purpose computer program named ISTRAN/FD (Isub(HI) STRucture ANalysis/Frame structure, Dynamic analysis) has been developed for dynamic analysis of three-dimensional frame structures. This program has functions of free vibration analysis, seismic response analysis, graphic display by plotter and CRT, etc. This paper introduces ISTRAN/FD; examples of its application are shown with various problems : idealization of the cantilever, dynamic analysis of the main tower of the suspension bridge, three-dimensional vibration in the plate girder bridge, seismic response in the boiler steel structure, and dynamic properties of the underground LNG tank. In this last example, solid elements, in addition to beam elements, are especially used for the analysis. (auth.)
Analysis and design of SSC underground structures
International Nuclear Information System (INIS)
Clark, G.T.
1993-01-01
This paper describes the analysis and design of underground structures for the Superconducting Super Collider (SSC) Project. A brief overview of the SSC Project and the types of underground structures are presented. Engineering properties and non-linear behavior of the geologic materials are reviewed. The three-dimensional sequential finite element rock-structure interaction analysis techniques developed by the author are presented and discussed. Several examples of how the method works, specific advantages, and constraints are presented. Finally, the structural designs that resulted from the sequential interaction analysis are presented
Analysis of Nonlinear Dynamic Structures
African Journals Online (AJOL)
Bheema
work a two degrees of freedom nonlinear system with zero memory was ... FRF is the most widely used method in structural dynamics which gives information about the ..... 3.6, which is the waterfall diagram of the same response, as well.
International Nuclear Information System (INIS)
Leander, G.A.
1985-01-01
Certain nuclei can be described as having intrinsic shapes with parity breaking static moments. The rationale for this description is discussed, spectroscopic models are outlined and their consequences are compared with experiment. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Santos, Jose Vicente Canto dos
1993-12-01
The main objective of static safety's analysis in power systems is the determination of the level of gravity of the different contingencies that can occur in a system. Habitually, static safety's analysis is divided in two parts: selection and analysis of contingencies. In this work, they are studied several criteria of selection of applicable contingencies to the sub-problem reactive and are introduced comparisons among results provided by different criteria. They are also studied several forms of evaluation of the impact caused by contingencies on the power systems reactive profile.
Energy Technology Data Exchange (ETDEWEB)
Santos, Jose Vicente Canto dos
1993-12-01
The main objective of static safety's analysis in power systems is the determination of the level of gravity of the different contingencies that can occur in a system. Habitually, static safety's analysis is divided in two parts: selection and analysis of contingencies. In this work, they are studied several criteria of selection of applicable contingencies to the sub-problem reactive and are introduced comparisons among results provided by different criteria. They are also studied several forms of evaluation of the impact caused by contingencies on the power systems reactive profile.
2009-11-01
Current practice with regard to designing bridge structures to resist impact loads associated with barge collisions relies upon the : use of the American Association of State Highway and Transportation Officials (AASHTO) bridge design specifications....
Structural analysis in medical imaging
International Nuclear Information System (INIS)
Dellepiane, S.; Serpico, S.B.; Venzano, L.; Vernazza, G.
1987-01-01
The conventional techniques in Pattern Recognition (PR) have been greatly improved by the introduction of Artificial Intelligence (AI) approaches, in particular for knowledge representation, inference mechanism and control structure. The purpose of this paper is to describe an image understanding system, based on the integrated approach (AI - PR), developed in the author's Department to interpret Nuclear Magnetic Resonance (NMR) images. The system is characterized by a heterarchical control structure and a blackboard model for the global data-base. The major aspects of the system are pointed out, with particular reference to segmentation, knowledge representation and error recovery (backtracking). The eye slices obtained in the case of two patients have been analyzed and the related results are discussed
Eulerian fluid-structure analysis of BWR
International Nuclear Information System (INIS)
McMaster, W.H.
1979-05-01
A fluid-structure-interaction algorithm is developed for the analysis of the dynamic response of a BWR pressure-suppression pool and containment structure. The method is incorporated into a two-dimensional semi-implicit Eulerian hydrodynamics code, PELE-IC, for the solution of incompressible flow coupled to flexible structures. The fluid, structure, and coupling algorithms have been verified by calculation of solved problems from the literature and by comparison with air and steam blowdown experiments
Structural Analysis of Natural Products
Czech Academy of Sciences Publication Activity Database
Přichystal, Jakub; Schug, K. A.; Lemr, Karel; Novák, Jiří; Havlíček, Vladimír
2016-01-01
Roč. 88, č. 21 (2016), s. 10338-10346 ISSN 0003-2700 R&D Projects: GA MŠk(CZ) LO1509; GA MŠk(CZ) LH14064; GA ČR(CZ) GA16-20229S Institutional support: RVO:61388971 Keywords : IONIZATION-MASS-SPECTROMETRY * BIOSYNTHETIC GENE CLUSTERS * STRUCTURE ELUCIDATION Subject RIV: EE - Microbiology, Virology Impact factor: 6.320, year: 2016
Analysis of Smart Composite Structures Including Debonding
Chattopadhyay, Aditi; Seeley, Charles E.
1997-01-01
Smart composite structures with distributed sensors and actuators have the capability to actively respond to a changing environment while offering significant weight savings and additional passive controllability through ply tailoring. Piezoelectric sensing and actuation of composite laminates is the most promising concept due to the static and dynamic control capabilities. Essential to the implementation of these smart composites are the development of accurate and efficient modeling techniques and experimental validation. This research addresses each of these important topics. A refined higher order theory is developed to model composite structures with surface bonded or embedded piezoelectric transducers. These transducers are used as both sensors and actuators for closed loop control. The theory accurately captures the transverse shear deformation through the thickness of the smart composite laminate while satisfying stress free boundary conditions on the free surfaces. The theory is extended to include the effect of debonding at the actuator-laminate interface. The developed analytical model is implemented using the finite element method utilizing an induced strain approach for computational efficiency. This allows general laminate geometries and boundary conditions to be analyzed. The state space control equations are developed to allow flexibility in the design of the control system. Circuit concepts are also discussed. Static and dynamic results of smart composite structures, obtained using the higher order theory, are correlated with available analytical data. Comparisons, including debonded laminates, are also made with a general purpose finite element code and available experimental data. Overall, very good agreement is observed. Convergence of the finite element implementation of the higher order theory is shown with exact solutions. Additional results demonstrate the utility of the developed theory to study piezoelectric actuation of composite
Reliability analysis and assessment of structural systems
International Nuclear Information System (INIS)
Yao, J.T.P.; Anderson, C.A.
1977-01-01
The study of structural reliability deals with the probability of having satisfactory performance of the structure under consideration within any specific time period. To pursue this study, it is necessary to apply available knowledge and methodology in structural analysis (including dynamics) and design, behavior of materials and structures, experimental mechanics, and the theory of probability and statistics. In addition, various severe loading phenomena such as strong motion earthquakes and wind storms are important considerations. For three decades now, much work has been done on reliability analysis of structures, and during this past decade, certain so-called 'Level I' reliability-based design codes have been proposed and are in various stages of implementation. These contributions will be critically reviewed and summarized in this paper. Because of the undesirable consequences resulting from the failure of nuclear structures, it is important and desirable to consider the structural reliability in the analysis and design of these structures. Moreover, after these nuclear structures are constructed, it is desirable for engineers to be able to assess the structural reliability periodically as well as immediately following the occurrence of severe loading conditions such as a strong-motion earthquake. During this past decade, increasing use has been made of techniques of system identification in structural engineering. On the basis of non-destructive test results, various methods have been developed to obtain an adequate mathematical model (such as the equations of motion with more realistic parameters) to represent the structural system
Structural analysis of ITER sub-assembly tools
International Nuclear Information System (INIS)
Nam, K.O.; Park, H.K.; Kim, D.J.; Ahn, H.J.; Lee, J.H.; Kim, K.K.; Im, K.; Shaw, R.
2011-01-01
The ITER Tokamak assembly tools are purpose-built assembly tools to complete the ITER Tokamak machine which includes the cryostat and the components contained therein. The sector sub-assembly tools descried in this paper are main assembly tools to assemble vacuum vessel, thermal shield and toroidal filed coils into a complete 40 o sector. The 40 o sector sub-assembly tools are composed of sector sub-assembly tool, including radial beam, vacuum vessel supports and mid-plane brace tools. These tools shall have sufficient strength to transport and handle heavy weight of the ITER Tokamak machine reached several hundred tons. Therefore these tools should be designed and analyzed to confirm both the strength and structural stability even in the case of conservative assumptions. To verify structural stabilities of the sector sub-assembly tools in terms of strength and deflection, ANSYS code was used for linear static analysis. The results of the analysis show that these tools are designed with sufficient strength and stiffness. The conceptual designs of these tools are briefly described in this paper also.
Structure analysis - chiromancy of the rock
International Nuclear Information System (INIS)
Huber, A.; Huber, M.
1989-01-01
The reader may initially be surprised by a comparison between structure analysis and palmistry which is, in effect, a comparison between a scientific research method on the one hand and art which is equated with magical powers on the other. In the figurative sense, however, these two fields have some points in common which should help us to obtain a first impression of the nature of geological structure analysis. Chiromancy uses the lines and the form of the hand to predict the character and the future of the person in question. In the same way, geologists use rocks and rock forms to obtain information on structure and behaviour of different formations. Structure analysis is a specialised field of geological investigation in which traces of deformation are interpreted as expressions of rockforming forces. This article discusses how and why the character of a rock formation as well as its past, present and even future behaviour can be determined using structure analysis. (author) 11 figs
Directory of Open Access Journals (Sweden)
Chen Yong Jian
2018-01-01
Full Text Available The Beam String Structure structural system, also called BSS, has the advantages of lighter dead weight and greater flexibility. The wind load is the main design control factor. The dynamic characteristics and wind-induced displacement response of BSS are studied by the finite element method. The roof structure of the stadium roof of the Fuzhou Olympic Sports Center is the engineering background. 1The numerical model was built by ANSYS, by shape finding, determine the initial stress state of structural members such as external cables; 2From the analysis of dynamic characteristics, the main mode of vibration is the vibration of cables; 3The wind speed spectrum of MATLAB generation structure is obtained by AR method, the structural response of the structure under static wind load and fluctuating wind load is calculated. From the analysis result, considering the equivalent static wind load of BSS , the design of adverse wind is not safe, and the fluctuating wind load should be taken into account.
Structural analysis consultation using artificial intelligence
Melosh, R. J.; Marcal, P. V.; Berke, L.
1978-01-01
The primary goal of consultation is definition of the best strategy to deal with a structural engineering analysis objective. The knowledge base to meet the need is designed to identify the type of numerical analysis, the needed modeling detail, and specific analysis data required. Decisions are constructed on the basis of the data in the knowledge base - material behavior, relations between geometry and structural behavior, measures of the importance of time and temperature changes - and user supplied specifics characteristics of the spectrum of analysis types, the relation between accuracy and model detail on the structure, its mechanical loadings, and its temperature states. Existing software demonstrated the feasibility of the approach, encompassing the 36 analysis classes spanning nonlinear, temperature affected, incremental analyses which track the behavior of structural systems.
Robustness Analysis of Timber Truss Structure
DEFF Research Database (Denmark)
Rajčić, Vlatka; Čizmar, Dean; Kirkegaard, Poul Henning
2010-01-01
The present paper discusses robustness of structures in general and the robustness requirements given in the codes. Robustness of timber structures is also an issues as this is closely related to Working group 3 (Robustness of systems) of the COST E55 project. Finally, an example of a robustness...... evaluation of a widespan timber truss structure is presented. This structure was built few years ago near Zagreb and has a span of 45m. Reliability analysis of the main members and the system is conducted and based on this a robustness analysis is preformed....
Observing the Forces Involved in Static Friction under Static Situations
Kaplan, Daniel
2013-01-01
Static friction is an important concept in introductory physics. Later in the year students apply their understanding of static friction under more complex conditions of static equilibrium. Traditional lab demonstrations in this case involve exceeding of the maximum level of static friction, resulting in the "onset of motion." (Contains…
Structural Analysis Algorithms for Nanomaterials
DEFF Research Database (Denmark)
Larsen, Peter Mahler
the existing factorial-time bound. This method is subsequently extended to two-dimensional monolayers. A method is presented for the identication of ordered crystalline phases in molecular dynamics simulations. A robust classication is obtained by the use of template matching, also formulated as a bipartite......-strain interfaces. The stable, low-energy interfaces which are found as a result are intended for use in the design and construction of topological superconductors, which have important applications in quantum computing. Cluster expansion models are used to nd ground-state structures in gold-silver nanoparticles......, which are used in a variety of catalysis processes. In addition to this concrete application, theoretical methods are developed for the optimal construction of cluster expansion models, the exact determination of ground states in a large model, and the exhaustive determination of all possible ground...
Statics of historic masonry constructions
Como, Mario
2016-01-01
This successful book, which is now appearing in its second edition, presents a comprehensive new Statics of Masonry Constructions. Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments in its architectural heritage. Given the age of these constructions, the demand for safety assessments and restoration projects is pressing and constant. The book you hold in hands contributes to fill this demand. The second edition integrates the original text of the first edition with new developments, widening and revisions, due to recent research studies achievements. The result is a book that gives a complete picture of the behaviour of the Masonry Constructions. First of all, it gives the fundamentals of its Statics, based on the no-tension assumption, and then it develops the Limit Analysis for the Masonry Constructions. In this framework, through an interdisciplinary approach combining Engineering and Architecture, the book also investigates the sta...
Structural Dynamics and Data Analysis
Luthman, Briana L.
2013-01-01
This project consists of two parts, the first will be the post-flight analysis of data from a Delta IV launch vehicle, and the second will be a Finite Element Analysis of a CubeSat. Shock and vibration data was collected on WGS-5 (Wideband Global SATCOM- 5) which was launched on a Delta IV launch vehicle. Using CAM (CAlculation with Matrices) software, the data is to be plotted into Time History, Shock Response Spectrum, and SPL (Sound Pressure Level) curves. In this format the data is to be reviewed and compared to flight instrumentation data from previous flights of the same launch vehicle. This is done to ensure the current mission environments, such as shock, random vibration, and acoustics, are not out of family with existing flight experience. In family means the peaks on the SRS curve for WGS-5 are similar to the peaks from the previous flights and there are no major outliers. The curves from the data will then be compiled into a useful format so that is can be peer reviewed then presented before an engineering review board if required. Also, the reviewed data will be uploaded to the Engineering Review Board Information System (ERBIS) to archive. The second part of this project is conducting Finite Element Analysis of a CubeSat. In 2010, Merritt Island High School partnered with NASA to design, build and launch a CubeSat. The team is now called StangSat in honor of their mascot, the mustang. Over the past few years, the StangSat team has built a satellite and has now been manifested for flight on a SpaceX Falcon 9 launch in 2014. To prepare for the final launch, a test flight was conducted in Mojave, California. StangSat was launched on a Prospector 18D, a high altitude rocket made by Garvey Spacecraft Corporation, along with their sister satellite CP9 built by California Polytechnic University. However, StangSat was damaged during an off nominal landing and this project will give beneficial insights into what loads the CubeSat experienced during the crash
Structural analysis of fuel handling systems
Energy Technology Data Exchange (ETDEWEB)
Lee, L S.S. [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)
1997-12-31
The purpose of this paper has three aspects: (i) to review `why` and `what` types of structural analysis, testing and report are required for the fuel handling systems according to the codes, or needed for design of a product, (ii) to review the input requirements for analysis and the analysis procedures, and (iii) to improve the communication between the analysis and other elements of the product cycle. The required or needed types of analysis and report may be categorized into three major groups: (i) Certified Stress Reports for design by analysis, (ii) Design Reports not required for certification and registration, but are still required by codes, and (iii) Design Calculations required by codes or needed for design. Input requirements for structural analysis include: design, code classification, loadings, and jurisdictionary boundary. Examples of structural analysis for the fueling machine head and support structure are given. For improving communication between the structural analysis and the other elements of the product cycle, some areas in the specification of design requirements and load rating are discussed. (author). 6 refs., 1 tab., 4 figs.
Structural analysis of fuel handling systems
International Nuclear Information System (INIS)
Lee, L.S.S.
1996-01-01
The purpose of this paper has three aspects: (i) to review 'why' and 'what' types of structural analysis, testing and report are required for the fuel handling systems according to the codes, or needed for design of a product, (ii) to review the input requirements for analysis and the analysis procedures, and (iii) to improve the communication between the analysis and other elements of the product cycle. The required or needed types of analysis and report may be categorized into three major groups: (i) Certified Stress Reports for design by analysis, (ii) Design Reports not required for certification and registration, but are still required by codes, and (iii) Design Calculations required by codes or needed for design. Input requirements for structural analysis include: design, code classification, loadings, and jurisdictionary boundary. Examples of structural analysis for the fueling machine head and support structure are given. For improving communication between the structural analysis and the other elements of the product cycle, some areas in the specification of design requirements and load rating are discussed. (author). 6 refs., 1 tab., 4 figs
NAPS: Network Analysis of Protein Structures
Chakrabarty, Broto; Parekh, Nita
2016-01-01
Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue–residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein–protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201
Structural design and analysis of test mass module for DECIGO Pathfinder
International Nuclear Information System (INIS)
Wakabayashi, Y; Ejiri, Y; Suzuki, R; Sugamoto, A; Obuchi, Y; Okada, N; Torii, Y; Ueda, A; Kawamura, S; Araya, A; Ando, M; Sato, S
2010-01-01
Deci-hertz Interferometer Gravitational-Wave Observatory: DECIGO is a project aimed at future detection of deci-hertz gravitational waves in space. DECIGO Pathfinder: DPF is a precursor mission to test the key technologies with one spacecraft. Our work in this article was to examine the strength of the DPF test mass module to ensure that it is sufficiently robust for launch with a launch vehicle. We designed the test mass module, and examined the structural strength of this model by structural analysis, Quasi-static acceleration analysis and Modal analysis using FEA (Finite Element Analysis). We found that the results of each analysis fulfilled all requirements. We are confident that the DPF test mass module will withstand Quasi-static acceleration or coupling with vibration of launch vehicle during launch, if the design matches the current design. For more detail, further analysis including Response analysis and Thermal analysis are recommended. In addition, it will be necessary to lighten the model in the next step.
Dynamic analysis and design of offshore structures
Chandrasekaran, Srinivasan
2015-01-01
This book attempts to provide readers with an overall idea of various types of offshore platform geometries. It covers the various environmental loads encountered by these structures, a detailed description of the fundamentals of structural dynamics in a class-room style, estimate of damping in offshore structures and their applications in the preliminary analysis and design. Basic concepts of structural dynamics are emphasized through simple illustrative examples and exercises. Design methodologies and guidelines, which are FORM based concepts are explained through a few applied example structures. Each chapter also has tutorials and exercises for self-learning. A dedicated chapter on stochastic dynamics will help the students to extend the basic concepts of structural dynamics to this advanced domain of research. Hydrodynamic response of offshore structures with perforated members is one of the recent research applications, which is found to be one of the effective manner of retrofitting offshore structur...
Analysis of SMA Hybrid Composite Structures in MSC.Nastran and ABAQUS
Turner, Travis L.; Patel, Hemant D.
2005-01-01
A thermoelastic constitutive model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures was recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilever beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilever beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.
Calculation of equivalent static loads and its application
International Nuclear Information System (INIS)
Choi, Woo-Seok; Park, K.B.; Park, G.J.
2005-01-01
All the forces in the real world act dynamically on structures. Since dynamic loads are extremely difficult to handle in analysis and design, static loads are usually utilized with dynamic factors. Generally, the dynamic factors are determined from design codes or experience. Therefore, static loads may not give accurate solutions in analysis and design and structural engineers often come up with unreliable solutions. Two different methods are proposed for the transformation of dynamic loads into equivalent static loads (ESLs). One is an analytical method for exact ESLs and the other is an approximation method. The exact ESLs are calculated to generate identical response fields such as displacement and stress with those from dynamic loads at a certain time. Some approximation methods are proposed in engineering applications, which generate similar response fields from dynamic loads. They are divided into the displacement-based approach and the stress-based approach. The process is derived and evaluated mathematically. Standard examples are selected and solved by the proposed method and error analyses are conducted. Applications of the method to structural optimization are discussed
Nonlinear seismic analysis of reinforced concrete framed structures considering joint distortion
International Nuclear Information System (INIS)
Sharma, Akanshu; Reddy, G.R.; Vaze, K.K.; Eligehausen, Rolf; Hofmann, J.
2012-01-01
Seismic behavior of a reinforced concrete framed structure can be assessed with various analytical tools that may broadly be classified as linear elastic procedures and non-linear or inelastic analysis procedures. Since the reinforced concrete structures generally go in the inelastic range due to seismic loading, it can be easily said that the inelastic procedures would predict the performance of the structures in a much better and realistic way than the linear elastic procedures. However, at the same time, the inelastic procedures are computationally much more demanding. Thus, a good balance between accuracy and computational effort is often sought for. To assess the seismic behaviour of reinforced concrete framed structures, various experimental procedures can be used. Pushover tests that consist of loading the structure monotonically till failure can be conducted on large scale structures and give information about the load carrying and deformational capacity of the structure along with sequence of failure modes but only in one direction. Static cyclic tests, where inertia effects are not included give the above mentioned information for to and fro loading direction along with the information on energy consumption. Shake table tests, which are closest to the real life earthquake tests provide almost all the information required to understand the seismic behaviour but the scale of such tests are usually limited by the capacity of the shaking table facility. In this work, practically usable and sufficiently accurate models are reported to realistically model the inelastic response of the structures. A new model to consider the inelastic behaviour of the joints of poorly detailed structures is developed and presented. A practical hysteretic rule based on the extension of Pivot hysteretic model is developed for members and beam-column joints and the same is also reported. The analytical models are validated against the experimental results using pushover analysis
Czech Academy of Sciences Publication Activity Database
Samec, P.; Rychtecká, P.; Tuček, P.; Bojko, J.; Zapletal, Miloš; Cudlín, Pavel
2016-01-01
Roč. 22, č. 2 (2016), s. 259-274 ISSN 1392-1355 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : forest state monitoring * EMEP-LRTAP * floodplain * mountain forests * canonical correlation analysis Subject RIV: EH - Ecology, Behaviour Impact factor: 0.635, year: 2016
Clan structure analysis and rapidity gap probability
International Nuclear Information System (INIS)
Lupia, S.; Giovannini, A.; Ugoccioni, R.
1995-01-01
Clan structure analysis in rapidity intervals is generalized from negative binomial multiplicity distribution to the wide class of compound Poisson distributions. The link of generalized clan structure analysis with correlation functions is also established. These theoretical results are then applied to minimum bias events and evidentiate new interesting features, which can be inspiring and useful in order to discuss data on rapidity gap probability at TEVATRON and HERA. (orig.)