WorldWideScience

Sample records for static numerical relativity

  1. Comparing numerically exact and modelled static friction

    Directory of Open Access Journals (Sweden)

    Krengel Dominik

    2017-01-01

    Full Text Available Currently there exists no mechanically consistent “numerically exact” implementation of static and dynamic Coulomb friction for general soft particle simulations with arbitrary contact situations in two or three dimension, but only along one dimension. We outline a differential-algebraic equation approach for a “numerically exact” computation of friction in two dimensions and compare its application to the Cundall-Strack model in some test cases.

  2. de Sitter relativity in static charts

    Energy Technology Data Exchange (ETDEWEB)

    Cotaescu, Ion I. [West University of Timisoara, Timisoara (Romania)

    2018-02-15

    The relative geodesic motion in static (and spherically symmetric) local charts on the (1 + 3)-dimensional de Sitter spacetimes is studied in terms of conserved quantities. The Lorentzian isometries are derived, relating the coordinates of the local chart of a fixed observer with the coordinates of a mobile chart considered as the rest frame of a massive particle freely moving on a timelike geodesic. The time dilation and Lorentz contraction are discussed pointing out some notable features of the de Sitter relativity in static charts. (orig.)

  3. Static Load Test on Instrumented Pile - Field Data and Numerical Simulations

    Science.gov (United States)

    Krasiński, Adam; Wiszniewski, Mateusz

    2017-09-01

    Static load tests on foundation piles are generally carried out in order to determine load - the displacement characteristic of the pile head. For standard (basic) engineering practices this type of test usually provides enough information. However, the knowledge of force distribution along the pile core and its division into the friction along the shaft and the resistance under the base can be very useful. Such information can be obtained by strain gage pile instrumentation [1]. Significant investigations have been completed on this technology, proving its utility and correctness [8], [10], [12]. The results of static tests on instrumented piles are not easy to interpret. There are many factors and processes affecting the final outcome. In order to understand better the whole testing process and soil-structure behavior some investigations and numerical analyses were done. In the paper, real data from a field load test on instrumented piles is discussed and compared with numerical simulation of such a test in similar conditions. Differences and difficulties in the results interpretation with their possible reasons are discussed. Moreover, the authors used their own analytical solution for more reliable determination of force distribution along the pile. The work was presented at the XVII French-Polish Colloquium of Soil and Rock Mechanics, Łódź, 28-30 November 2016.

  4. Numerical relativity

    CERN Document Server

    Shibata, Masaru

    2016-01-01

    This book is composed of two parts: First part describes basics in numerical relativity, that is, the formulations and methods for a solution of Einstein's equation and general relativistic matter field equations. This part will be helpful for beginners of numerical relativity who would like to understand the content of numerical relativity and its background. The second part focuses on the application of numerical relativity. A wide variety of scientific numerical results are introduced focusing in particular on the merger of binary neutron stars and black holes.

  5. Static Load Test on Instrumented Pile – Field Data and Numerical Simulations

    Directory of Open Access Journals (Sweden)

    Krasiński Adam

    2017-09-01

    Full Text Available Static load tests on foundation piles are generally carried out in order to determine load – the displacement characteristic of the pile head. For standard (basic engineering practices this type of test usually provides enough information. However, the knowledge of force distribution along the pile core and its division into the friction along the shaft and the resistance under the base can be very useful. Such information can be obtained by strain gage pile instrumentation [1]. Significant investigations have been completed on this technology, proving its utility and correctness [8], [10], [12]. The results of static tests on instrumented piles are not easy to interpret. There are many factors and processes affecting the final outcome. In order to understand better the whole testing process and soil-structure behavior some investigations and numerical analyses were done. In the paper, real data from a field load test on instrumented piles is discussed and compared with numerical simulation of such a test in similar conditions. Differences and difficulties in the results interpretation with their possible reasons are discussed. Moreover, the authors used their own analytical solution for more reliable determination of force distribution along the pile. The work was presented at the XVII French-Polish Colloquium of Soil and Rock Mechanics, Łódź, 28–30 November 2016.

  6. THE EFFECT OF THE STATIC RELATIVE STRENGTH ON THE MAXIMUM RELATIVE RECEIVING OF OXYGEN

    Directory of Open Access Journals (Sweden)

    Abdulla Elezi

    2011-09-01

    Full Text Available Based on research on the sample of 263 students of age- 18 years, and used batteries of 9 tests for evaluation of the static relative strength and the criterion variable- maximum relative receiving of oxygen (VO2 ml / kg / min based on the Astrand test ,and on regression analysis to determine the influence of the static relative strength on the criterion variable maximum relative oxygen receiving, can be generally concluded that from 9 predictor variables statistically significant partial effect have 2variables. In hierarchical order, they are: the variable of static relative leg strength - endurance of the fingers (the angle of the lower leg and thigh 900 (SRL2 which arithmetic mean is 25.04 seconds and variable ctatic relative strength of arms and shoulders – push-up endurance in the balance beam (angle of the forearm and upper arm 900 ( SRA2 with arithmetic mean of 17.75 seconds. From the statistically influential significant predictor variables on the criterion variable one is from the static relative leg strength (SRL2 and the other is from the static relative strength of arm and shoulder area (SRA2. With the analysis of these relations we can conclude that the isometric contractions of the four headed thigh muscle and the isometric contractions of the three headed upper arm muscle are predominantly responsible for the successful execution of doing actions on a bicycle ergometer and not on the maximum relative receiving of oxygen.

  7. Numerical relativity

    International Nuclear Information System (INIS)

    Piran, T.

    1982-01-01

    There are many recent developments in numerical relativity, but there remain important unsolved theoretical and practical problems. The author reviews existing numerical approaches to solution of the exact Einstein equations. A framework for classification and comparison of different numerical schemes is presented. Recent numerical codes are compared using this framework. The discussion focuses on new developments and on currently open questions, excluding a review of numerical techniques. (Auth.)

  8. Numerical study on static component generation from the primary Lamb waves propagating in a plate with nonlinearity

    Science.gov (United States)

    Wan, Xiang; Tse, Peter W.; Zhang, Xuhui; Xu, Guanghua; Zhang, Qing; Fan, Hongwei; Mao, Qinghua; Dong, Ming; Wang, Chuanwei; Ma, Hongwei

    2018-04-01

    Under the discipline of nonlinear ultrasonics, in addition to second harmonic generation, static component generation is another frequently used nonlinear ultrasonic behavior in non-destructive testing (NDT) and structural health monitoring (SHM) communities. However, most previous studies on static component generation are mainly based on using longitudinal waves. It is desirable to extend static component generation from primary longitudinal waves to primary Lamb waves. In this paper, static component generation from the primary Lamb waves is studied. Two major issues are numerically investigated. First, the mode of static displacement component generated from different primary Lamb wave modes is identified. Second, cumulative effect of static displacement component from different primary Lamb wave modes is also discussed. Our study results show that the static component wave packets generated from the primary S0, A0 and S1 modes share the almost same group velocity equal to the phase velocity of S0 mode tending to zero frequency c plate . The finding indicates that whether the primary mode is S0, A0 or S1, the static components generated from these primary modes always share the nature of S0 mode. This conclusion is also verified by the displacement filed of these static components that the horizontal displacement field is almost uniform and the vertical displacement filed is antisymmetric across the thickness of the plate. The uniform distribution of horizontal displacement filed enables the static component, regardless of the primary Lamb modes, to be a promising technique for evaluating microstructural damages buried in the interior of a structure. Our study also illustrates that the static components are cumulative regardless of whether the phase velocity of the primary and secondary waves is matched or not. This observation indicates that the static component overcomes the limitations of the traditional nonlinear Lamb waves satisfying phase velocity

  9. Numerical study of the static and pitching RISØ-B1-18 airfoil

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2004-01-01

    The objective of this report is the better understanding of the physics of the aeroelastic motion of wind turbine blades in order to improve the numerical models used for their design. In this study, the case of the RISØ-B1-18 airfoil which was equippedand measured in an open jet wind tunnel...... that are available both for the static airfoil and in the case of pitching motions. It is shown that the Navier-Stokes simulations can reproduced the maincharacteristic features of the flow. The DES model seems also to be able to reproduce some details of the unsteady aerodynamics. The Navier-Stokes computations can...

  10. Methods of numerical relativity

    International Nuclear Information System (INIS)

    Piran, T.

    1983-01-01

    Numerical Relativity is an alternative to analytical methods for obtaining solutions for Einstein equations. Numerical methods are particularly useful for studying generation of gravitational radiation by potential strong sources. The author reviews the analytical background, the numerical analysis aspects and techniques and some of the difficulties involved in numerical relativity. (Auth.)

  11. RELATION BETWEEN THE PHYSICAL WORKING CAPACITY (PWC170 AND STATIC RELATIVE STRENGTH

    Directory of Open Access Journals (Sweden)

    Abdulla Elezi

    2012-09-01

    Full Text Available Determining the relationship within the segments, and establish the correlation between the functional and motor areas may be important for programming load both in education and in sports and recreation. For this reason we set goals and work this year. The main objective of this research is to determine association and motor characteristics impact on functional ability (physical work capacity. The sample is defined as a sample of 263 respondents drawn from the population of secondary schools: Gymnasium Zenel Hajdini; Marin Barleti and Mehmet Isai in city of Gjilan. Nine tests were used to estimate motoric capabilities and a test of functional capacity of aerobic-type (physical work capacity. To determine the relation between the predictor (motor variables and criterion variables (physical working capacity - PWC170 it is prepared the regression analysis of the manifest space. Analyses were made to the program SPSS 12.0 for Windows. The connection of the entire system of variables static relative strength with a score of Physics working capacity (PWC170 on a bicycle ergo meter as aerobic type variable explains the coefficient of multiple correlations, which is RO 0.394. Regression analysis indicates that the better results on a bicycle ergo meter will have respondents who score better in tests of static relative strength of the leg (at the test isometric muscle contraction quadriceps thighs and static tests of the relative strength of arm and shoulder area (at the test of isometric contraction triceps muscle circumference.

  12. Relationship between functional assessments and exercise-related changes during static balance.

    Science.gov (United States)

    Clifton, Daniel R; Harrison, Blain C; Hertel, Jay; Hart, Joseph M

    2013-04-01

    The Functional Movement Screen (FMS) is currently used for injury risk prediction, although researchers have not studied its relationships to injury risk factors. The purpose of this study was to compare FMS scores at rest to changes in static balance after exercise. Second, we examined FMS scores pre and post exercise. Twenty-five participants performed center of pressure (COP) measures and FMS testing. An acclimatization session for the FMS occurred on day 1, whereas day 2 involved COP measures for static balance and FMS testing before and after a 36-minute exercise protocol. Center of pressure standard deviations in the frontal (COPML-SD) and sagittal (COPAP-SD) planes, center of pressure velocity (COP-Velocity), center of pressure area (COP-Area), and FMS scores were recorded. No significant correlations occurred between preexercise FMS scores and change in COP measures. Preexercise hurdle step scores related to preexercise COPML-SD (p = -0.46), COPAP-SD (p = -0.43), and COP-Area (p = -0.50). Preexercise in-line lunge scores related to postexercise COPAP-SD (p = -0.44) and COP-Velocity (p = -0.39), whereas preexercise active straight leg raise (ASLR) scores related to postexercise COPML-SD (p = -0.46). Functional Movement Screen scores were not related to changes in static balance after exercise and may therefore not be useful to predict who will experience greater static balance deficits after exercise. Additionally, FMS scores did not differ before and after exercise. Clinicians aiming to identify injury risk from a general static balance standpoint may find the hurdle step, in-line lunge, and ASLR useful. Clinicians aiming to identify injury risk from a change in static balance standpoint may need to explore other screening tools.

  13. Experimental and Numerical Studies on Development of Fracture Process Zone (FPZ) in Rocks under Cyclic and Static Loadings

    Science.gov (United States)

    Ghamgosar, M.; Erarslan, N.

    2016-03-01

    The development of fracture process zones (FPZ) in the Cracked Chevron Notched Brazilian Disc (CCNBD) monsonite and Brisbane tuff specimens was investigated to evaluate the mechanical behaviour of brittle rocks under static and various cyclic loadings. An FPZ is a region that involves different types of damage around the pre-existing and/or stress-induced crack tips in engineering materials. This highly damaged area includes micro- and meso-cracks, which emerge prior to the main fracture growth or extension and ultimately coalescence to macrofractures, leading to the failure. The experiments and numerical simulations were designed for this study to investigate the following features of FPZ in rocks: (1) ligament connections and (2) microcracking and its coalescence in FPZ. A Computed Tomography (CT) scan technique was also used to investigate the FPZ behaviour in selected rock specimens. The CT scan results showed that the fracturing velocity is entirely dependent on the appropriate amount of fracture energy absorbed in rock specimens due to the change of frequency and amplitudes of the dynamic loading. Extended Finite Element Method (XFEM) was used to compute the displacements, tensile stress distribution and plastic energy dissipation around the propagating crack tip in FPZ. One of the most important observations, the shape of FPZ and its extension around the crack tip, was made using numerical and experimental results, which supported the CT scan results. When the static rupture and the cyclic rupture were compared, the main differences are twofold: (1) the number of fragments produced is much greater under cyclic loading than under static loading, and (2) intergranular cracks are formed due to particle breakage under cyclic loading compared with smooth and bright cracks along cleavage planes under static loading.

  14. Numerical Relativity

    Science.gov (United States)

    Baker, John G.

    2009-01-01

    Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.

  15. Constrained evolution in numerical relativity

    Science.gov (United States)

    Anderson, Matthew William

    The strongest potential source of gravitational radiation for current and future detectors is the merger of binary black holes. Full numerical simulation of such mergers can provide realistic signal predictions and enhance the probability of detection. Numerical simulation of the Einstein equations, however, is fraught with difficulty. Stability even in static test cases of single black holes has proven elusive. Common to unstable simulations is the growth of constraint violations. This work examines the effect of controlling the growth of constraint violations by solving the constraints periodically during a simulation, an approach called constrained evolution. The effects of constrained evolution are contrasted with the results of unconstrained evolution, evolution where the constraints are not solved during the course of a simulation. Two different formulations of the Einstein equations are examined: the standard ADM formulation and the generalized Frittelli-Reula formulation. In most cases constrained evolution vastly improves the stability of a simulation at minimal computational cost when compared with unconstrained evolution. However, in the more demanding test cases examined, constrained evolution fails to produce simulations with long-term stability in spite of producing improvements in simulation lifetime when compared with unconstrained evolution. Constrained evolution is also examined in conjunction with a wide variety of promising numerical techniques, including mesh refinement and overlapping Cartesian and spherical computational grids. Constrained evolution in boosted black hole spacetimes is investigated using overlapping grids. Constrained evolution proves to be central to the host of innovations required in carrying out such intensive simulations.

  16. Comparison of Numerical Analyses with a Static Load Test of a Continuous Flight Auger Pile

    Science.gov (United States)

    Hoľko, Michal; Stacho, Jakub

    2014-12-01

    The article deals with numerical analyses of a Continuous Flight Auger (CFA) pile. The analyses include a comparison of calculated and measured load-settlement curves as well as a comparison of the load distribution over a pile's length. The numerical analyses were executed using two types of software, i.e., Ansys and Plaxis, which are based on FEM calculations. Both types of software are different from each other in the way they create numerical models, model the interface between the pile and soil, and use constitutive material models. The analyses have been prepared in the form of a parametric study, where the method of modelling the interface and the material models of the soil are compared and analysed. Our analyses show that both types of software permit the modelling of pile foundations. The Plaxis software uses advanced material models as well as the modelling of the impact of groundwater or overconsolidation. The load-settlement curve calculated using Plaxis is equal to the results of a static load test with a more than 95 % degree of accuracy. In comparison, the load-settlement curve calculated using Ansys allows for the obtaining of only an approximate estimate, but the software allows for the common modelling of large structure systems together with a foundation system.

  17. Reconciling experimental and static-dynamic numerical estimations of seismic anisotropy in Alpine Fault mylonites

    Science.gov (United States)

    Adam, L.; Frehner, M.; Sauer, K. M.; Toy, V.; Guerin-Marthe, S.; Boulton, C. J.

    2017-12-01

    Reconciling experimental and static-dynamic numerical estimations of seismic anisotropy in Alpine Fault mylonitesLudmila Adam1, Marcel Frehner2, Katrina Sauer3, Virginia Toy3, Simon Guerin-Marthe4, Carolyn Boulton5(1) University of Auckland, New Zealand, (2) ETH Zurich, Switzerland, (3) University of Otago, New Zealand (4) Durham University, Earth Sciences, United Kingdom (5) Victoria University of Wellington, New Zealand Quartzo-feldspathic mylonites and schists are the main contributors to seismic wave anisotropy in the vicinity of the Alpine Fault (New Zealand). We must determine how the physical properties of rocks like these influence elastic wave anisotropy if we want to unravel both the reasons for heterogeneous seismic wave propagation, and interpret deformation processes in fault zones. To study such controls on velocity anisotropy we can: 1) experimentally measure elastic wave anisotropy on cores at in-situ conditions or 2) estimate wave velocities by static (effective medium averaging) or dynamic (finite element) modelling based on EBSD data or photomicrographs. Here we compare all three approaches in study of schist and mylonite samples from the Alpine Fault. Volumetric proportions of intrinsically anisotropic micas in cleavage domains and comparatively isotropic quartz+feldspar in microlithons commonly vary significantly within one sample. Our analysis examines the effects of these phases and their arrangement, and further addresses how heterogeneity influences elastic wave anisotropy. We compare P-wave seismic anisotropy estimates based on millimetres-scale ultrasonic waves under in situ conditions, with simulations that account for micrometre-scale variations in elastic properties of constitutent minerals with the MTEX toolbox and finite-element wave propagation on EBSD images. We observe that the sorts of variations in the distribution of micas and quartz+feldspar within any one of our real core samples can change the elastic wave anisotropy by 10

  18. A contribution to the numerical calculation of static electromagnetic fields in unbounded domains

    International Nuclear Information System (INIS)

    Krawczyk, F.

    1990-11-01

    The numerical calculation of static electromagnetic fields for arbitrarily shaped three-dimensional structures, especially in unbounded domains, is very memory and cpu-time consuming. In this thesis several schemes that reduce memory and cpu-time consumption have been developed or introduced. The memory needed can be reduced by a special simulation of boundaries towards open space and by the use of a scalar potential for the field description. Known disadvantages of the use of such a potential are avoided by an improved formulation of the used algorithms. The cpu-time for the calculations can be reduced remarkably in many cases by using a multigrid solution scheme including a defect-correction. A computer code has been written that uses these algorithms. With the help of this program it has been demonstrated that using these algorithms, distinct improvements in terms of computer memory, cpu-time consumption and accuracy can be achieved. (orig.) [de

  19. Influence of the void ratio and the confining on the static liquefaction in slopes in shangi sand

    Directory of Open Access Journals (Sweden)

    Alfonso Mariano Ramos Cañón

    2015-01-01

    Full Text Available A numerical study on the onset of static liquefaction in slopes under undrained conditions of loading was developed based on a general liquefaction flow instability criterion for elastoplastic soils based on the concept of loss of controllability. The criterion is applied to the case of axisymmetric loading to detect the onset of static liquefaction. The criterion is used in conjunction with an elastoplastic model for sands and is tested by means of numerical simulations of element tests. The numerical results are compared with experimental evidence obtaining good agreement. A quantitative study of the influence of the mean pressure, void ratio and the anisotropy of stress on the onset of static liquefaction is presented for the Changi sand. From the analysis of the numerical results, it can be concluded that: a. the mobilized friction angle at the onset of liquefaction is not an intrinsic property of the material, but is a state variable b. Despite of the multiple variables involved in the process of generation of undrained instability, the state of stresses at the onset of static liquefaction can be conveniently represented by a linear relation between Dq/po and no . This graphical representation can be used in the practice of geotechnical engineering to quantify the margin of security against the static liquefaction of a sandy slope.

  20. Numerical study of the static and pitching RISOe-B1-18 airfoil[STALL

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.

    2004-01-01

    The objective of this report is the better understanding of the physics of the aeroelastic motion of wind turbine blades in order to improve the numerical models used for their design. In this study, the case of the RISOe-B1-18 airfoil which was equipped and measured in an open jet wind tunnel is studied. Two and three dimensional Navier-Stokes calculations using the k-w SST and Detached Eddy Simulation turbulence models are conducted. An engineering semi-empirical dynamic stall model is also used for performing calculations. Computational results are compared to the experimental results that are available both for the static airfoil and in the case of pitching motions. It is shown that the Navier-Stokes simulations can reproduced the main characteristic features of the flow. The DES model seems also to be able to reproduce some details of the unsteady aerodynamics. The Navier-Stokes computations can then be used to improve the performance of the engineering model. (au)

  1. Static dipole polarizabilities of Scn (n ≤ 15) clusters

    International Nuclear Information System (INIS)

    Xi-Bo, Li; Jiang-Shan, Luo; Wei-Dong, Wu; Yong-Jian, Tang; Hong-Yan, Wang; Yun-Dong, Guo

    2009-01-01

    The static dipole polarizabilities of scandium clusters with up to 15 atoms are determined by using the numerically finite field method in the framework of density functional theory. The electronic effects on the polarizabilities are investigated for the scandium clusters. We examine a large highest occupied molecular orbital — the lowest occupied molecular orbital (HOMO–LUMO) gap of a scandium cluster usually corresponds to a large dipole moment. The static polarizability per atom decreases slowly and exhibits local minimum with increasing cluster size. The polarizability anisotropy and the ratio of mean static polarizability to the HOMO–LUMO gap can also reflect the cluster stability. The polarizability of the scandium cluster is partially related to the HOMO–LUMO gap and is also dependent on geometrical characteristics. A strong correlation between the polarizability and ionization energy is observed. (atomic and molecular physics)

  2. Present status on numerical algorithms and benchmark tests for point kinetics and quasi-static approximate kinetics

    International Nuclear Information System (INIS)

    Ise, Takeharu

    1976-12-01

    Review studies have been made on algorithms of numerical analysis and benchmark tests on point kinetics and quasistatic approximate kinetics computer codes to perform efficiently benchmark tests on space-dependent neutron kinetics codes. Point kinetics methods have now been improved since they can be directly applied to the factorization procedures. Methods based on Pade rational function give numerically stable solutions and methods on matrix-splitting are interested in the fact that they are applicable to the direct integration methods. An improved quasistatic (IQ) approximation is the best and the most practical method; it is numerically shown that the IQ method has a high stability and precision and the computation time which is about one tenth of that of the direct method. IQ method is applicable to thermal reactors as well as fast reactors and especially fitted for fast reactors to which many time steps are necessary. Two-dimensional diffusion kinetics codes are most practicable though there exist also three-dimensional diffusion kinetics code as well as two-dimensional transport kinetics code. On developing a space-dependent kinetics code, in any case, it is desirable to improve the method so as to have a high computing speed for solving static diffusion and transport equations. (auth.)

  3. Numerical relativity

    CERN Document Server

    Nakamura, T

    1993-01-01

    In GR13 we heard many reports on recent. progress as well as future plans of detection of gravitational waves. According to these reports (see the report of the workshop on the detection of gravitational waves by Paik in this volume), it is highly probable that the sensitivity of detectors such as laser interferometers and ultra low temperature resonant bars will reach the level of h ~ 10—21 by 1998. in this level we may expect the detection of the gravitational waves from astrophysical sources such as coalescing binary neutron stars once a year or so. Therefore the progress in numerical relativity is urgently required to predict the wave pattern and amplitude of the gravitational waves from realistic astrophysical sources. The time left for numerical relativists is only six years or so although there are so many difficulties in principle as well as in practice.

  4. Consideration on the relation between dynamic seismic motion and static seismic coefficient for the earthquake proof design of slope around nuclear power plant

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Kitahara, Yoshihiro; Hirata, Kazuta

    1986-01-01

    When the large cutting slopes are constructed closed to around nuclear power plants, it is important to evaluate the stability of the slopes during the strong earthquake. In the evaluation, it may be useful to clarify relationship between the static seismic coefficient and dynamic seismic force corresponded to the basic seismic motion which is specified for designing the nuclear power facilities. To investigate this relation some numerical analyses are conducted in this paper. As the results, it is found that dynamic forces considering the amplified responses of the slopes subjected to the basic seismic motion with a peak acceleration of 500 gals at the toe of the slopes, are approximately equal to static seismic force which generates in the slopes when the seismic coefficients of k = 0.3 is applied. (author)

  5. Numerical modeling of mechanical behavior of multilayered composite plates with defects under static loading

    Science.gov (United States)

    Korepanov, V. V.; Serovaev, G. S.

    2017-06-01

    Evaluation of the mechanical state of a structure or its components in the process of operation based on detection of internal damages (damage detection) becomes especially important in such rapidly developing spheres of production as machine building, aerospace industry, etc. One of the most important features of these industries is the application of new types of materials among which polymer based composite materials occupy a significant position. Hence, they must have sufficient operational rigidity and strength. However, defects of various kinds may arise during the manufacture. Delamination is the most common defect in structures made from composite materials and represents a phenomenon that involves the complex fracture of layers and interlayer compounds. Among the reasons of delamination occurrence are: disposition of anti-adhesive lubricants, films; insufficient content of binder, high content of volatile elements; violation of the molding regime; poor quality of anti-adhesive coating on the surface of the tooling. One of the effective methods for analyzing the influence of defects is numerical simulation. With the help of numerical methods, it is possible to track the evolution of various parameters when the defect size and quantity change. In the paper, a multilayered plate of an equally resistant carbon fiber reinforced plastic was considered, with a thickness of each layer equal to 0.2 mm. Various static loading cases are studied: uniaxial tension, three and four-point bending. For each type of loading, a numerical calculation of the stress-strain state was performed for healthy and delaminated plates, with different number and size of the defects. Contact interaction between adjacent surfaces in the zone of delamination was taken into account.

  6. Towards standard testbeds for numerical relativity

    International Nuclear Information System (INIS)

    Alcubierre, Miguel; Allen, Gabrielle; Bona, Carles; Fiske, David; Goodale, Tom; Guzman, F Siddhartha; Hawke, Ian; Hawley, Scott H; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David; Salgado, Marcelo; Schnetter, Erik; Seidel, Edward; Shinkai, Hisa-aki; Shoemaker, Deirdre; Szilagyi, Bela; Takahashi, Ryoji; Winicour, Jeff

    2004-01-01

    In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community

  7. Towards standard testbeds for numerical relativity

    Energy Technology Data Exchange (ETDEWEB)

    Alcubierre, Miguel [Inst. de Ciencias Nucleares, Univ. Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico Distrito Federal 04510 (Mexico); Allen, Gabrielle; Goodale, Tom; Guzman, F Siddhartha; Hawke, Ian; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm (Germany); Bona, Carles [Departament de Fisica, Universitat de les Illes Balears, Ctra de Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Fiske, David [Dept. of Physics, Univ. of Maryland, College Park, MD 20742-4111 (United States); Hawley, Scott H [Center for Relativity, Univ. of Texas at Austin, Austin, Texas 78712 (United States); Salgado, Marcelo [Inst. de Ciencias Nucleares, Univ. Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico Distrito Federal 04510 (Mexico); Schnetter, Erik [Inst. fuer Astronomie und Astrophysik, Universitaet Tuebingen, 72076 Tuebingen (Germany); Seidel, Edward [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Inst., 14476 Golm (Germany); Shinkai, Hisa-aki [Computational Science Div., Inst. of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Shoemaker, Deirdre [Center for Radiophysics and Space Research, Cornell Univ., Ithaca, NY 14853 (United States); Szilagyi, Bela [Dept. of Physics and Astronomy, Univ. of Pittsburgh, Pittsburgh, PA 15260 (United States); Takahashi, Ryoji [Theoretical Astrophysics Center, Juliane Maries Vej 30, 2100 Copenhagen, (Denmark); Winicour, Jeff [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm (Germany)

    2004-01-21

    In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community.

  8. Influence of relative humidity and temperature on quantity of electric charge of static protective clothing used in petrochemical industry

    Science.gov (United States)

    Zhang, Yunpeng; Liu, Quanzhen; Liu, Baoquan; Li, Yipeng; Zhang, Tingting

    2013-03-01

    In this paper, the working principle of static protective clothing and its testing method of quantity of electric charge are introduced, and the influence of temperature and relative humidity on the quantity of electric charge (qe) of static protective clothing is studied by measuring qe of different clothing samples. The result shows that temperature and relative humidity can influence qe of static protective clothing to some extent and the influence of relative humidity is bigger than that of temperature. According to experimental results, the relationship of qe and relative humidity and temperature was analysed, and the safety boundary of quantity of electric charge is discussed. In order to reduce the occurrence of electrostatic accidents and ensure safe production and operation of petrochemical industry, some suggestions on choosing and using of static protective clothing are given for guaranteeing its static protective performance.

  9. Mesoscopic analyses of porous concrete under static compression and drop weight impact tests

    DEFF Research Database (Denmark)

    Agar Ozbek, A.S.; Pedersen, R.R.; Weerheijm, J.

    2008-01-01

    was considered as a four-phase material incorporating aggregates, bulk cement paste, interfacial transition zones and meso-size air pores. The stress-displacement relations obtained from static compression tests, the stress values, and the corresponding damage levels provided by the drop weight impact tests were......The failure process in highly porous concrete was analyzed experimentally and numerically. A triaxial visco-plastic damage model and a mesoscale representation of the material composition were considered to reproduce static compression and drop weight impact tests. In the mesoscopic model, concrete...

  10. Technical study on semi-object emulation of structural statics problem

    CERN Document Server

    MoJun; LiuXingFu; LiuZhiYong; Shi Pin Gan

    2002-01-01

    Structural strength analysis depends mainly on finite element method and experiments. For complex structural system, a rather large error can be caused by some uncertain factors, such as load distributions, boundary conditions and constitutive relations in numerical analysis. At the same time, owing to the limitation of measuring and testing techniques, the strength and stiffness of key components can not be estimated by using the limited test data. To simulate stresses accurately under complex static environment, improve man-machine interactive system, and make the best use of fore- and post-processing function in graphic data processing, the combine numerical analysis with experimental technique and have developed the semi-object emulation technique to analyze the nonlinear problem of structure statics. The modern optical measuring techniques and image processing techniques are firstly used for the method to acquire displacement data of the vessel surface, and the data are used for the boundary condition to...

  11. The Riemann surface of static limit dispersion relation and projective spaces

    International Nuclear Information System (INIS)

    Majewski, M.; Meshcheryakov, V.A.; Meshcheryakov, D.V.; Tran Quang Tuyet

    2004-01-01

    The rigorous Bogolyubov's proof of the dispersion relations (DR) for pion-nucleon scattering is a good foundation for the static models. DR contain a small parameter (ratio of the pion-nucleon masses). The static models arise when this parameter goes to zero. The S-matrix in the static models has a block structure. Each block of the S-matrix has a finite order NxN and is a matrix of meromorphic functions of the light particle energy ω in the complex plane with cuts (-∞, -1], [+1,+∞). In the elastic case, it reduces to N functions S i (ω) connected by the NxN crossing-symmetry matrix A. The unitarity and the crossing symmetry are the base for the system of nonlinear boundary value problems. It defines the analytical continuation of S i (ω) from the physical sheet to the unphysical ones and can be treated as a system of nonlinear difference equations. The problem is solvable for any 2x2 crossing-symmetry matrix A that permits one to calculate the Regge trajectories for the SU(2) static model. It is shown that global analyses of this system can be carried out effectively in projective spaces P N-1 and P N . The connection between the spaces P N-1 and P N is discussed. Some particular solutions of the system are found

  12. The Riemann Surface of Static Limit Dispersion Relation and Projective Spaces

    CERN Document Server

    Majewski, M; Meshcheryakov, D V; Tran Quang Tuyet

    2004-01-01

    The rigorous Bogoliubov's prove of the dispersion relations (DR) for pion-nucleon scattering is a good foundation for the static models. DR contain the small parameter (ratio of the pion-nucleon masses). The static models arise when this parameter goes to zero. The S-matrix in the static models has a block structure. Each block of the S-matrix has a finite order N\\times N and is a matrix of meromorphic functions of the light particle energy \\omega in the complex plane with cuts (-\\inf,-1], [+1, +\\inf). In the elastic case, it reduces to N functions S_{i}(\\omega) connected by N\\times N the crossing-symmetry matrix A. The unitarity and the crossing symmetry are the base for the system of nonlinear boundary value problems. It defines the analytical continuation of S_{i}(\\omega) from the physical sheet to the unphysical ones and can be treated as a system of nonlinear difference equations. The problem is solvable for any 2\\times 2 crossing-symmetry matrix A that permits one to calculate the Regge trajectories for...

  13. Influence of relative humidity and temperature on quantity of electric charge of static protective clothing used in petrochemical industry

    International Nuclear Information System (INIS)

    Zhang, Yunpeng; Liu, Quanzhen; Liu, Baoquan; Li, Yipeng; Zhang, Tingting

    2013-01-01

    In this paper, the working principle of static protective clothing and its testing method of quantity of electric charge are introduced, and the influence of temperature and relative humidity on the quantity of electric charge (q e ) of static protective clothing is studied by measuring q e of different clothing samples. The result shows that temperature and relative humidity can influence q e of static protective clothing to some extent and the influence of relative humidity is bigger than that of temperature. According to experimental results, the relationship of q e and relative humidity and temperature was analysed, and the safety boundary of quantity of electric charge is discussed. In order to reduce the occurrence of electrostatic accidents and ensure safe production and operation of petrochemical industry, some suggestions on choosing and using of static protective clothing are given for guaranteeing its static protective performance.

  14. Experimental and Numerical Evaluation of the Mechanical Behavior of Strongly Anisotropic Light-Weight Metallic Fiber Structures under Static and Dynamic Compressive Loading

    Directory of Open Access Journals (Sweden)

    Olaf Andersen

    2016-05-01

    Full Text Available Rigid metallic fiber structures made from a variety of different metals and alloys have been investigated mainly with regard to their functional properties such as heat transfer, pressure drop, or filtration characteristics. With the recent advent of aluminum and magnesium-based fiber structures, the application of such structures in light-weight crash absorbers has become conceivable. The present paper therefore elucidates the mechanical behavior of rigid sintered fiber structures under quasi-static and dynamic loading. Special attention is paid to the strongly anisotropic properties observed for different directions of loading in relation to the main fiber orientation. Basically, the structures show an orthotropic behavior; however, a finite thickness of the fiber slabs results in moderate deviations from a purely orthotropic behavior. The morphology of the tested specimens is examined by computed tomography, and experimental results for different directions of loading as well as different relative densities are presented. Numerical calculations were carried out using real structural data derived from the computed tomography data. Depending on the direction of loading, the fiber structures show a distinctively different deformation behavior both experimentally and numerically. Based on these results, the prevalent modes of deformation are discussed and a first comparison with an established polymer foam and an assessment of the applicability of aluminum fiber structures in crash protection devices is attempted.

  15. Impact of element-level static condensation on iterative solver performance

    KAUST Repository

    Pardo, D.

    2015-10-02

    This paper provides theoretical estimates that quantify and clarify the savings associated to the use of element-level static condensation as a first step of an iterative solver. These estimates are verified numerically. The numerical evidence shows that static condensation at the element level is beneficial for higher-order methods. For lower-order methods or when the number of iterations required for convergence is low, the setup cost of the elimination as well as its implementation may offset the benefits obtained during the iteration process. However, as the iteration count (e.g., above 50) or the polynomial order (e.g., above cubics) grows, the benefits of element-level static condensation are significant.

  16. Photodetachment of H- by a short laser pulse in crossed static electric and magnetic fields

    International Nuclear Information System (INIS)

    Peng Liangyou; Wang Qiaoling; Starace, Anthony F.

    2006-01-01

    We present a detailed quantum mechanical treatment of the photodetachment of H - by a short laser pulse in the presence of crossed static electric and magnetic fields. An exact analytic formula is presented for the final state electron wave function (describing an electron in both static electric and magnetic fields and a short laser pulse of arbitrary intensity). In the limit of a weak laser pulse, final state electron wave packet motion is examined and related to the closed classical electron orbits in crossed static fields predicted by Peters and Delos [Phys. Rev. A 47, 3020 (1993)]. Owing to these closed orbit trajectories, we show that the detachment probability can be modulated, depending on the time delay between two laser pulses and their relative phase, thereby providing a means to partially control the photodetachment process. In the limit of a long, weak pulse (i.e., a monochromatic radiation field) our results reduce to those of others; however, for this case we analyze the photodetachment cross section numerically over a much larger range of electron kinetic energy (i.e., up to 500 cm -1 ) than in previous studies and relate the detailed structures both analytically and numerically to the above-mentioned, closed classical periodic orbits

  17. Computational Fluid Dynamics and Experimental Studies of a New Mixing Element in a Static Mixer as a Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Konopacki Maciej

    2015-03-01

    Full Text Available The main aim of this work is to study the thermal efficiency of a new type of a static mixer and to analyse the flow and temperature patterns and heat transfer efficiency. The measurements were carried out for the static mixer equipped with a new mixing insert. The heat transfer enhancement was determined by measuring the temperature profiles on each side of the heating pipe as well as the temperature field inside the static mixer. All experiments were carried out with varying operating parameters for four liquids: water, glycerol, transformer oil and an aqueous solution of molasses. Numerical CFD simulations were carried out using the two-equation turbulence k-ω model, provided by ANSYS Workbench 14.5 software. The proposed CFD model was validated by comparing the predicted numerical results against experimental thermal database obtained from the investigations. Local and global convective heat transfer coefficients and Nusselt numbers were detrmined. The relationship between heat transfer process and hydrodynamics in the static mixer was also presented. Moreover, a comparison of the thermal performance between the tested static mixer and a conventional empty tube was carried out. The relative enhancement of heat transfer was characterised by the rate of relative heat transfer intensification.

  18. Static quarks with improved statistical precision

    International Nuclear Information System (INIS)

    Della Morte, M.; Duerr, S.; Molke, H.; Heitger, J.

    2003-09-01

    We present a numerical study for different discretisations of the static action, concerning cut-off effects and the growth of statistical errors with Euclidean time. An error reduction by an order of magnitude can be obtained with respect to the Eichten-Hill action, for time separations up to 2 fm, keeping discretization errors small. The best actions lead to a big improvement on the precision of the quark mass M b and F B s in the static approximation. (orig.)

  19. Introduction to 3+1 numerical relativity

    CERN Document Server

    Alcubierre, Miguel

    2008-01-01

    This book introduces the modern field of 3+1 numerical relativity. The book has been written in a way as to be as self-contained as possible, and only assumes a basic knowledge of special relativity. Starting from a brief introduction to general relativity, it discusses the different concepts and tools necessary for the fully consistent numerical simulation of relativistic astrophysical systems, with strong and dynamical gravitational fields. Among the topics discussed in detail arethe following: the initial data problem, hyperbolic reductions of the field equations, gauge conditions, the evol

  20. Numeric Input Relations for Relational Learning with Applications to Community Structure Analysis

    DEFF Research Database (Denmark)

    Jiang, Jiuchuan; Jaeger, Manfred

    2015-01-01

    distribution is defined by the model from numerical input variables that are only used for conditioning the distribution of discrete response variables. We show how numerical input relations can very easily be used in the Relational Bayesian Network framework, and that existing inference and learning methods......Most work in the area of statistical relational learning (SRL) is focussed on discrete data, even though a few approaches for hybrid SRL models have been proposed that combine numerical and discrete variables. In this paper we distinguish numerical random variables for which a probability...... use the augmented RBN framework to define probabilistic models for multi-relational (social) networks in which the probability of a link between two nodes depends on numeric latent feature vectors associated with the nodes. A generic learning procedure can be used to obtain a maximum-likelihood fit...

  1. Quasi-static responses and variational principles in gradient plasticity

    Science.gov (United States)

    Nguyen, Quoc-Son

    2016-12-01

    Gradient models have been much discussed in the literature for the study of time-dependent or time-independent processes such as visco-plasticity, plasticity and damage. This paper is devoted to the theory of Standard Gradient Plasticity at small strain. A general and consistent mathematical description available for common time-independent behaviours is presented. Our attention is focussed on the derivation of general results such as the description of the governing equations for the global response and the derivation of related variational principles in terms of the energy and the dissipation potentials. It is shown that the quasi-static response under a loading path is a solution of an evolution variational inequality as in classical plasticity. The rate problem and the rate minimum principle are revisited. A time-discretization by the implicit scheme of the evolution equation leads to the increment problem. An increment of the response associated with a load increment is a solution of a variational inequality and satisfies also a minimum principle if the energy potential is convex. The increment minimum principle deals with stables solutions of the variational inequality. Some numerical methods are discussed in view of the numerical simulation of the quasi-static response.

  2. High-resolution numerical modeling of mesoscale island wakes and sensitivity to static topographic relief data

    Directory of Open Access Journals (Sweden)

    C. G. Nunalee

    2015-08-01

    Full Text Available Recent decades have witnessed a drastic increase in the fidelity of numerical weather prediction (NWP modeling. Currently, both research-grade and operational NWP models regularly perform simulations with horizontal grid spacings as fine as 1 km. This migration towards higher resolution potentially improves NWP model solutions by increasing the resolvability of mesoscale processes and reducing dependency on empirical physics parameterizations. However, at the same time, the accuracy of high-resolution simulations, particularly in the atmospheric boundary layer (ABL, is also sensitive to orographic forcing which can have significant variability on the same spatial scale as, or smaller than, NWP model grids. Despite this sensitivity, many high-resolution atmospheric simulations do not consider uncertainty with respect to selection of static terrain height data set. In this paper, we use the Weather Research and Forecasting (WRF model to simulate realistic cases of lower tropospheric flow over and downstream of mountainous islands using the default global 30 s United States Geographic Survey terrain height data set (GTOPO30, the Shuttle Radar Topography Mission (SRTM, and the Global Multi-resolution Terrain Elevation Data set (GMTED2010 terrain height data sets. While the differences between the SRTM-based and GMTED2010-based simulations are extremely small, the GTOPO30-based simulations differ significantly. Our results demonstrate cases where the differences between the source terrain data sets are significant enough to produce entirely different orographic wake mechanics, such as vortex shedding vs. no vortex shedding. These results are also compared to MODIS visible satellite imagery and ASCAT near-surface wind retrievals. Collectively, these results highlight the importance of utilizing accurate static orographic boundary conditions when running high-resolution mesoscale models.

  3. Comparing flow-through and static ice cave models for Shoshone Ice Cave

    Directory of Open Access Journals (Sweden)

    Kaj E. Williams

    2015-05-01

    Full Text Available In this paper we suggest a new ice cave type: the “flow-through” ice cave. In a flow-through ice cave external winds blow into the cave and wet cave walls chill the incoming air to the wet-bulb temperature, thereby achieving extra cooling of the cave air. We have investigated an ice cave in Idaho, located in a lava tube that is reported to have airflow through porous wet end-walls and could therefore be a flow-through cave. We have instrumented the site and collected data for one year. In order to determine the actual ice cave type present at Shoshone, we have constructed numerical models for static and flow-through caves (dynamic is not relevant here. The models are driven with exterior measurements of air temperature, relative humidity and wind speed. The model output is interior air temperature and relative humidity. We then compare the output of both models to the measured interior air temperatures and relative humidity. While both the flow-through and static cave models are capable of preserving ice year-round (a net zero or positive ice mass balance, both models show very different cave air temperature and relative humidity output. We find the empirical data support a hybrid model of the static and flow-through models: permitting a static ice cave to have incoming air chilled to the wet-bulb temperature fits the data best for the Shoshone Ice Cave.

  4. Static and dynamic cyclotorsion measurement and evaluation of related factors in patients candidates for PRK

    Directory of Open Access Journals (Sweden)

    Mohammadreza Shayegan

    2016-10-01

    Full Text Available To evaluate the degree of static and dynamic cyclotorsion and related factors in patients candidate for photorefractive keratectomy. In this analytic-descriptive study, 400 patients (aged 18-55 years who were candidates for photorefractive keratectomy with laser excimer (zyoptix 100 HZ by a single ophthalmologist in Khatam-al-Anbia Hospital were enrolled. The patients' age, sex, myopic and astigmatism degrees and static and dynamic cyclotorsion degree were measured and registered. Finally, the data was analyzed statistically. 73% of patients (n=146 were female and the mean age of all patients was 29.8±5.7 years (19-49. The mean preoperative sphere and cylinder degree of patients was -3.24±1.72 and -1.06±1.04, respectively. The mean spheric equivalent (SE was -3.78±1.69, the mean total static excyclotorsion and incyclotorsion were 3.81±2.65 (48.5% and - 2.99±2.13 (27.8%, respectively and 23.8% had no static cyclotorsion. The mean dynamic excyclotorsion and incyclotorsion were 3.66±2.65 (65.8% and -2.62±2.13 (27.5%, respectively, and 23% had no dynamic cyclotorsion. There was no significant relationship between static or dynamic cyclotorsion and age and no significant relationship between static cyclotorsion and sex, but women showed higher degrees of dynamic cyclotorsion (P=0.04. Also, sphere and cylinder degree had no significant relationship with cyclotorsion, however, there was a linear significant correlation between static and dynamic cyclotorsion (p=0.05. The amount of dynamic cyclotorsions during photorefractive keratectomy is higher in female and correlate straight with static cyclotorsions.

  5. On the relation between quasi-static and dynamic stress induced reversible structural relaxation of amorphous alloys

    International Nuclear Information System (INIS)

    Krueger, P.; Stucky, T.; Boewe, M.; Neuhaeuser, H.

    1993-01-01

    Quasi-static stress relaxation and dynamic internal friction measurements of stress induced reversible structural relaxation were performed on the amorphous alloy Fe 40 Ni 40 B 20 . The kinetics can be well described by a stretched exponential Kohlrausch-Williams-Watts quasi-static relaxation. The thermally activated part of the internal friction shows an Arrhenius temperature behaviour for a fixed vibration frequency and an inverse power frequency behaviour for a fixed temperature. The activation energies calculated from the Arrhenius equation and from the frequency shift method are significantly different. In order to explain this discrepancy the relation between the quasi-static and the dynamic descriptions of the reversible relaxation is reexamined. In particular it is shown that these two activation energies are connected by the Kohlrausch exponent of the quasi-static relaxation. (orig.)

  6. Numerical relativity and asymptotic flatness

    International Nuclear Information System (INIS)

    Deadman, E; Stewart, J M

    2009-01-01

    It is highly plausible that the region of spacetime far from an isolated gravitating body is, in some sense, asymptotically Minkowskian. However theoretical studies of the full nonlinear theory, initiated by Bondi et al (1962 Proc. R. Soc. A 269 21-51), Sachs (1962 Proc. R. Soc. A 270 103-26) and Newman and Unti (1962 J. Math. Phys. 3 891-901), rely on careful, clever, a priori choices of a chart (and tetrad) and so are not readily accessible to the numerical relativist, who chooses her/his chart on the basis of quite different grounds. This paper seeks to close this gap. Starting from data available in a typical numerical evolution, we construct a chart and tetrad which are, asymptotically, sufficiently close to the theoretical ones, so that the key concepts of the Bondi news function, Bondi mass and its rate of decrease can be estimated. In particular, these estimates can be expressed in the numerical relativist's chart as numerical relativity recipes.

  7. Static and dynamic light scattering by red blood cells: A numerical study.

    Science.gov (United States)

    Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard; Fedosov, Dmitry A

    2017-01-01

    Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods-multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring.

  8. Time-symmetric initial data for binary black holes in numerical relativity

    International Nuclear Information System (INIS)

    Blanchet, Luc

    2003-01-01

    We look for physically realistic initial data in numerical relativity which are in agreement with post-Newtonian approximations. We propose a particular solution of the time-symmetric constraint equation, appropriate to two momentarily static black holes, in the form of a conformal decomposition of the spatial metric. This solution is isometric to the post-Newtonian (PN) metric up to the 2PN order. It represents a nonlinear deformation of the solution of Brill and Lindquist, i.e. an asymptotically flat region is connected to two asymptotically flat (in a certain weak sense) sheets that are the images of the two singularities through appropriate inversion transformations. The total Arnowitt-Deser-Misner mass M as well as the individual masses m 1 and m 2 (when they exist) are computed by surface integrals performed at infinity. Using second order perturbation theory on the Brill-Lindquist background, we prove that the binary's interacting mass-energy M-m 1 -m 2 is well defined at the 2PN order and in agreement with the known post-Newtonian result

  9. New Sufficient LMI Conditions for Static Output Stabilization

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher

    2014-01-01

    This paper presents new linear matrix inequality conditions to the static output feedback stabilization problem. Although the conditions are only sufficient, numerical experiments show excellent success rates in finding a stabilizing controller....

  10. Technical study on semi-object emulation of structural statics problem

    International Nuclear Information System (INIS)

    Mo Jun; Shi Pingan; Liu Xingfu; Liu Zhiyong; Fu Chunyu

    2002-01-01

    Structural strength analysis depends mainly on finite element method and experiments. For complex structural system, a rather large error can be caused by some uncertain factors, such as load distributions, boundary conditions and constitutive relations in numerical analysis. At the same time, owing to the limitation of measuring and testing techniques, the strength and stiffness of key components can not be estimated by using the limited test data. To simulate stresses accurately under complex static environment, improve man-machine interactive system, and make the best use of fore- and post-processing function in graphic data processing, the authors combine numerical analysis with experimental technique and have developed the semi-object emulation technique to analyze the nonlinear problem of structure statics. The modern optical measuring techniques and image processing techniques are firstly used for the method to acquire displacement data of the vessel surface, and the data are used for the boundary condition to determine the geometrical size of disfigurement in the wall of vessel and the stress level. The experimental verification of a given test model show that these adverse problem can be solved by using semi-object emulation technology

  11. On the static loop modes in the marching-on-in-time solution of the time-domain electric field integral equation

    KAUST Repository

    Shi, Yifei; Bagci, Hakan; Lu, Mingyu

    2014-01-01

    When marching-on-in-time (MOT) method is applied to solve the time-domain electric field integral equation, spurious internal resonant and static loop modes are always observed in the solution. The internal resonant modes have recently been studied by the authors; this letter investigates the static loop modes. Like internal resonant modes, static loop modes, in theory, should not be observed in the MOT solution since they do not satisfy the zero initial conditions; their appearance is attributed to numerical errors. It is discussed in this letter that the dependence of spurious static loop modes on numerical errors is substantially different from that of spurious internal resonant modes. More specifically, when Rao-Wilton-Glisson functions and Lagrange interpolation functions are used as spatial and temporal basis functions, respectively, errors due to space-time discretization have no discernible impact on spurious static loop modes. Numerical experiments indeed support this discussion and demonstrate that the numerical errors due to the approximate solution of the MOT matrix system have dominant impact on spurious static loop modes in the MOT solution. © 2014 IEEE.

  12. Numerical Predictions of Static-Pressure-Error Corrections for a Modified T-38C Aircraft

    Science.gov (United States)

    2014-12-15

    but the more modern work of Latif et al . [11] demonstrated that compensated Pitot-static probes can be simulated accurately for subsonic and...what was originally estimated from CFD simulations in Bhamidipati et al . [3] by extracting the static-pressure error in front of the production probe...Aerodynamically Compensating Pitot Tube,” Journal of Aircraft, Vol. 25, No. 6, 1988, pp. 544–547. doi:10.2514/3.45620 [11] Latif , A., Masud, J., Sheikh, S. R., and

  13. Analysis of the Nonlinear Static and Dynamic Behavior of Offshore Structures

    KAUST Repository

    Alfosail, Feras

    2015-07-01

    Understanding static and dynamic nonlinear behavior of pipes and risers is crucial for the design aspects in offshore engineering fields. In this work, we examine two nonlinear problems in offshore engineering field: vortex Induced vibration of straight horizontal pipes, and boundary layer static solution of inclined risers. In the first study, we analyze the effect of the internal velocity of straight horizontal pipe and obtain the vortex induced vibration forces via coupling the pipe equation of motion with the recently modified Van Der Pol oscillator governing the lift coefficient. Our numerical results are obtained for two different pipe configurations: hinged-hinged, and clamped- clamped. The results show that the internal velocity reduces the vibration and the oscillation amplitudes. Also, it is shown that the clamped-clamped pipe configuration offers a wider range of internal velocities before buckling instability occurs. The results also demonstrate the effect of the end condition on the amplitudes of vibration. In the second study, we develop a boundary layer perturbation static solution to govern and simulate the static behavior of inclined risers. In the boundary layer analysis, we take in consideration the effects of the axial stretch, applied tension, and internal velocity. Our numerical simulation results show good agreement with the exact solutions for special cases. In addition, our developed method overcomes the mathematical and numerical limitations of the previous methods used before.

  14. Granular flow in static mixers by coupled DEM/CFD approach

    Directory of Open Access Journals (Sweden)

    Pezo Lato

    2016-01-01

    Full Text Available The mixing process greatly influence the mixing efficiency, as well as the quality and the price of the intermediate and/or the final product. Static mixer is used for premixing action before the main mixing process, for significant reduction of mixing time and energy consumption. This type of premixing action is not investigated in detail in the open literature. In this article, the novel numerical approach called Discrete Element Method is used for modelling of granular flow in multiple static mixer applications (1 - 3 Komax or Ross mixing elements were utilized, while the Computational Fluid Dynamic method was chosen for fluid flow modelling, using the Eulerian multiphase model. The main aim of this article is to predict the behaviour of granules being gravitationally transported in different mixer configuration and to choose the best configuration of the mixer taking into account the total particle path, the number of mixing elements and the quality of the obtained mixture. The results of the numerical simulations in the static mixers were compared to experimental results, the mixing quality is examined by RSD (relative standard deviation criterion, and the effects on the mixer type and the number of mixing elements on mixing process were studied. The effects of the mixer type and the number of mixing elements on mixing process were studied using analysis of variance (ANOVA. Mathematical modelling is used for optimization of number of Ross and Komax segments in mixer in order to gain desirable mixing results. [Projekat Ministarstva nauke Republike Srbije, br. TR31055

  15. Gravitational radiation and 3D numerical relativity

    International Nuclear Information System (INIS)

    Nakamura, T.

    1986-01-01

    Study of Numerical Relativity in Kyoto is reviewed. Main topics discussed are 2D rotating collapse, phase cancellation effects and perturbation calculation of the gravitational radiation from a particle falling into a black hole. New numerical results on 3D time evolution of pure gravitational waves are also presented

  16. Black-Hole Binaries, Gravitational Waves, and Numerical Relativity

    Science.gov (United States)

    Kelly, Bernard J.; Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events ' releasing tremendous amounts of energy in the form of gravitational radiation ' and are key sources for both ground- and spacebased gravitational wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only he calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit cnuld be simulated. Recently ' however, a series of dramatic advances in numerical relativity has ' for the first time, allowed stable / robust black hole merger simulations. We chronicle this remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging. We also discuss important applications of these fundamental physics results to astrophysics, to gravitationalwave astronomy, and in other areas.

  17. NUMERICAL SIMULATION OF YIELDING SUPPORTS IN THE SHAPE OF ANNULAR TUBES UNDER STATIC AND SHORT-TERM DYNAMIC LOADING

    Directory of Open Access Journals (Sweden)

    Oleg G. Kumpyak

    2017-12-01

    Full Text Available Occurrence of extreme man-made impacts on buildings and structures has become frequent lately as a consequence of condensed explosives or explosive combustion of gas- vapor or air-fuel mixtures. Such accidents involve large human and economic losses, and their prevention methods are not always effective and reasonable. The given research aims at studying the way of enhancing explosion safety of building structures by means of yielding supports. The paper presents results of numerical studies (finite element, 3D nonlinear of strength and deformability of yielding supports in the shape of annular tubes under static and short-term dynamic loading. The degree of influence of yielding supports was assessed taking into account three peculiar stages of deformation: elastic; elasto-plastic; elasto-plastic with hardening. The methodology for numerical studies performance was described. It was established that rigidity of yielding supports influences significantly their stress-strain state. The research determined that with increase of deformable elements rigidity dependency between load and deformation of yielding supports in elastic and plastic stages have linear character. Significant reduction of dynamic response and increase of deformation time of yielding supports was observed by increasing the plastic component. Therefore it allows assuming on possibility of their application as supporting units in reinforced concrete constructions

  18. Static Equilibrium Configurations of Charged Metallic Bodies ...

    African Journals Online (AJOL)

    In this paper we developed a simple numerical scheme to determine the static equilibrium configuration of charged metallic bodies by minimizing the potential energy function. The method developed has some advantages; it combines the general theory and the physical meanings nested in the mathematical model and this ...

  19. Extraction of gravitational waves in numerical relativity.

    Science.gov (United States)

    Bishop, Nigel T; Rezzolla, Luciano

    2016-01-01

    A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infinity and in an appropriate coordinate system, the accurate estimation of the emitted gravitational waves represents an old and non-trivial problem in numerical relativity. A number of methods have been developed over the years to "extract" the radiative part of the solution from a numerical simulation and these include: quadrupole formulas, gauge-invariant metric perturbations, Weyl scalars, and characteristic extraction. We review and discuss each method, in terms of both its theoretical background as well as its implementation. Finally, we provide a brief comparison of the various methods in terms of their inherent advantages and disadvantages.

  20. Static Tensile and Transient Dynamic Response of Cracked Aluminum Plate Repaired with Composite Patch - Numerical Study

    Science.gov (United States)

    Khalili, S. M. R.; Shariyat, M.; Mokhtari, M.

    2014-06-01

    In this study, the central cracked aluminum plates repaired with two sided composite patches are investigated numerically for their response to static tensile and transient dynamic loadings. Contour integral method is used to define and evaluate the stress intensity factors at the crack tips. The reinforcement for the composite patches is carbon fibers. The effect of adhesive thickness and patch thickness and configuration in tensile loading case and pre-tension, pre-compression and crack length effect on the evolution of the mode I stress intensity factor (SIF) (KI) of the repaired structure under transient dynamic loading case are examined. The results indicated that KI of the central cracked plate is reduced by 1/10 to 1/2 as a result of the bonded composite patch repair in tensile loading case. The crack length and the pre-loads are more effective in repaired structure in transient dynamic loading case in which, the 100 N pre-compression reduces the maximum KI for about 40 %, and the 100 N pre-tension reduces the maximum KI after loading period, by about 196 %.

  1. Active design method for the static characteristics of a piezoelectric six-axis force/torque sensor.

    Science.gov (United States)

    Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng

    2014-01-02

    To address the bottleneck issues of an elastic-style six-axis force/torque sensor (six-axis force sensor), this work proposes a no-elastic piezoelectric six-axis force sensor. The operating principle of the piezoelectric six-axis force sensor is analyzed, and a structural model is constructed. The static-active design theory of the piezoelectric six-axis force sensor is established, including a static analytical/mathematical model and numerical simulation model (finite element model). A piezoelectric six-axis force sensor experimental prototype is developed according to the analytical mathematical model and numerical simulation model, and selected static characteristic parameters (including sensitivity, isotropic degree and cross-coupling) are tested using this model with three approaches. The measured results are in agreement with the analytical results from the static-active design method. Therefore, this study has successfully established a foundation for further research into the piezoelectric multi-axis force sensor and an overall design approach based on static characteristics.

  2. Static Load Distribution in Ball Bearings

    Science.gov (United States)

    Ricci, Mario

    2010-01-01

    A numerical procedure for computing the internal loading distribution in statically loaded, single-row, angular-contact ball bearings when subjected to a known combined radial and thrust load is presented. The combined radial and thrust load must be applied in order to avoid tilting between inner and outer rings. The numerical procedure requires the iterative solution of Z + 2 simultaneous nonlinear equations - where Z is the number of the balls - to yield an exact solution for axial and radial deflections, and contact angles. Numerical results for a 218 angular-contact ball bearing have been compared with those from the literature and show significant differences in the magnitudes of the ball loads, contact angles, and the extent of the loading zone.

  3. Statics and rotational dynamics of composite beams

    CERN Document Server

    Ghorashi, Mehrdaad

    2016-01-01

    This book presents a comprehensive study of the nonlinear statics and dynamics of composite beams and consists of solutions with and without active elements embedded in the beams. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Two independent numerical solutions for the steady state and the transient responses are presented. The author illustrates that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. Other key areas considered include calculation of the effect of perturbing the steady state solution, coupled nonlinear flap-lag dynamics of a rotating articulated beam with hinge offset and aerodynamic damping, and static and dynamic responses of nonlinear composite beams with embedded anisotropic piezo-composite actuators. The book is intended as a t...

  4. The special theory of Brownian relativity: equivalence principle for dynamic and static random paths and uncertainty relation for diffusion.

    Science.gov (United States)

    Mezzasalma, Stefano A

    2007-03-15

    The theoretical basis of a recent theory of Brownian relativity for polymer solutions is deepened and reexamined. After the problem of relative diffusion in polymer solutions is addressed, its two postulates are formulated in all generality. The former builds a statistical equivalence between (uncorrelated) timelike and shapelike reference frames, that is, among dynamical trajectories of liquid molecules and static configurations of polymer chains. The latter defines the "diffusive horizon" as the invariant quantity to work with in the special version of the theory. Particularly, the concept of universality in polymer physics corresponds in Brownian relativity to that of covariance in the Einstein formulation. Here, a "universal" law consists of a privileged observation, performed from the laboratory rest frame and agreeing with any diffusive reference system. From the joint lack of covariance and simultaneity implied by the Brownian Lorentz-Poincaré transforms, a relative uncertainty arises, in a certain analogy with quantum mechanics. It is driven by the difference between local diffusion coefficients in the liquid solution. The same transformation class can be used to infer Fick's second law of diffusion, playing here the role of a gauge invariance preserving covariance of the spacetime increments. An overall, noteworthy conclusion emerging from this view concerns the statistics of (i) static macromolecular configurations and (ii) the motion of liquid molecules, which would be much more related than expected.

  5. On the stability of Einstein static universe in doubly general relativity scenario

    Energy Technology Data Exchange (ETDEWEB)

    Khodadi, M.; Nozari, K. [University of Mazandaran, Department of Physics, Faculty of Basic Sciences, Babolsar (Iran, Islamic Republic of); Heydarzade, Y. [Azarbaijan Shahid Madani University, Department of Physics, Tabriz (Iran, Islamic Republic of); Darabi, F. [Azarbaijan Shahid Madani University, Department of Physics, Tabriz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)

    2015-12-15

    By presenting a relation between the average energy of the ensemble of probe photons and the energy density of the universe, in the context of gravity's rainbow or the doubly general relativity scenario, we introduce a rainbow FRW universe model. By analyzing the fixed points in the flat FRW model modified by two well-known rainbow functions, we find that the finite time singularity avoidance (i.e. Big Bang) may still remain as a problem. Then we follow the ''emergent universe'' scenario in which there is no beginning of time and consequently there is no Big-Bang singularity. Moreover, we study the impact of high energy quantum gravity modifications related to the gravity's rainbow on the stability conditions of an ''Einstein static universe'' (ESU). We find that independent of the particular rainbow function, the positive energy condition dictates a positive spatial curvature for the universe. In fact, without raising a nonphysical energy condition in the quantum gravity regimes, we can observe agreement between gravity's rainbow scenario and the basic assumption of the modern version of the ''emergent universe''. We show that in the absence and presence of an energy-dependent cosmological constant Λ(ε), a stable Einstein static solution is available versus the homogeneous and linear scalar perturbations under the variety of the obtained conditions. Also, we explore the stability of ESU against the vector and tensor perturbations. (orig.)

  6. On the stability of Einstein static universe in doubly general relativity scenario

    Energy Technology Data Exchange (ETDEWEB)

    Khodadi, M., E-mail: m.khodadi@stu.umz.ac.ir [Department of Physics, Faculty of Basic Sciences, University of Mazandaran, P. O. Box 47416-95447, Babolsar (Iran, Islamic Republic of); Heydarzade, Y., E-mail: heydarzade@azaruniv.edu [Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz (Iran, Islamic Republic of); Nozari, K., E-mail: knozari@umz.ac.ir [Department of Physics, Faculty of Basic Sciences, University of Mazandaran, P. O. Box 47416-95447, Babolsar (Iran, Islamic Republic of); Darabi, F., E-mail: f.darabi@azaruniv.edu [Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), 55134-441, Maragha (Iran, Islamic Republic of)

    2015-12-12

    By presenting a relation between the average energy of the ensemble of probe photons and the energy density of the universe, in the context of gravity’s rainbow or the doubly general relativity scenario, we introduce a rainbow FRW universe model. By analyzing the fixed points in the flat FRW model modified by two well-known rainbow functions, we find that the finite time singularity avoidance (i.e. Big Bang) may still remain as a problem. Then we follow the “emergent universe” scenario in which there is no beginning of time and consequently there is no Big-Bang singularity. Moreover, we study the impact of high energy quantum gravity modifications related to the gravity’s rainbow on the stability conditions of an “Einstein static universe” (ESU). We find that independent of the particular rainbow function, the positive energy condition dictates a positive spatial curvature for the universe. In fact, without raising a nonphysical energy condition in the quantum gravity regimes, we can observe agreement between gravity’s rainbow scenario and the basic assumption of the modern version of the “emergent universe”. We show that in the absence and presence of an energy-dependent cosmological constant Λ(ϵ), a stable Einstein static solution is available versus the homogeneous and linear scalar perturbations under the variety of the obtained conditions. Also, we explore the stability of ESU against the vector and tensor perturbations.

  7. Investigation on the static and dynamic structural behaviors of a regional aircraft main landing gear by a new numerical methodology

    Directory of Open Access Journals (Sweden)

    Francesco Caputo

    2018-01-01

    Full Text Available In this paper, a new methodology supporting the design of landing gears is proposed. Generally, a preliminary step is performed with simplified FE model, usually one-dimensional, to achieve the reaction forces involving each component during all aforementioned aircraft operations. Though this approach gives a valid support to the designer, it is characterized by several problems, such as the related approximations. So, it is important, by a numerical point of view, to develop an isostatic FE model equivalent to the real one. In fact, if the landing gear is modelled as hyperstatic, the static equilibrium equations are insufficient for determining the internal forces and reactions on each sub-component; so, the modelled material properties and geometries assume an increasing importance, which gets the model too approximating. The proposed methodology consists of achieving the reaction forces by means of multibody simulations, by overcoming such problems, since each component is modelled as rigid. In this paper, also a FE model for the investigation of the structural response is proposed. Aimed to Certification by Analysis purposes, the developed multibody and the FE models have been assessed against an experimental landing gear drop test carried out by Magnaghi Aeronautica S.p.A., according to the EASA CS 25 regulations

  8. Results from Numerical General Relativity

    Science.gov (United States)

    Baker, John G.

    2011-01-01

    For several years numerical simulations have been revealing the details of general relativity's predictions for the dynamical interactions of merging black holes. I will review what has been learned of the rich phenomenology of these mergers and the resulting gravitational wave signatures. These wave forms provide a potentially observable record of the powerful astronomical events, a central target of gravitational wave astronomy. Asymmetric radiation can produce a thrust on the system which may accelerate the single black hole resulting from the merger to high relative velocity.

  9. Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project

    International Nuclear Information System (INIS)

    Aylott, Benjamin; Baker, John G; Camp, Jordan; Centrella, Joan; Boggs, William D; Buonanno, Alessandra; Boyle, Michael; Buchman, Luisa T; Chu, Tony; Brady, Patrick R; Brown, Duncan A; Bruegmann, Bernd; Cadonati, Laura; Campanelli, Manuela; Faber, Joshua; Chatterji, Shourov; Christensen, Nelson; Diener, Peter; Dorband, Nils; Etienne, Zachariah B

    2009-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.

  10. Numerical and experimental investigation on static electric charge model at stable cone-jet region

    Science.gov (United States)

    Hashemi, Ali Reza; Pishevar, Ahmad Reza; Valipouri, Afsaneh; Pǎrǎu, Emilian I.

    2018-03-01

    In a typical electro-spinning process, the steady stretching process of the jet beyond the Taylor cone has a significant effect on the dimensions of resulting nanofibers. Also, it sets up the conditions for the onset of the bending instability. The focus of this work is the modeling and simulation of the initial stable jet phase seen during the electro-spinning process. The perturbation method was applied to solve hydrodynamic equations, and the electrostatic equation was solved by a boundary integral method. These equations were coupled with the stress boundary conditions derived appropriate at the fluid-fluid interface. Perturbation equations were discretized by the second-order finite difference method, and the Newton method was implemented to solve the discretized nonlinear system. Also, the boundary element method was utilized to solve the electrostatic equation. In the theoretical study, the fluid is described as a leaky dielectric with charges only on the jet surface in dielectric air. In this study, electric charges were modeled as static. Comparison of numerical and experimental results shows that at low flow rates and high electric field, good agreement was achieved because of the superior importance of the charge transport by conduction rather than convection and charge concentration. In addition, the effect of unevenness of the electric field around the nozzle tip was experimentally studied through plate-plate geometry as well as point-plate geometry.

  11. Four-level time decomposition quasi-static power flow and successive disturbances analysis. [Power system disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, S M [Nikola Tesla Inst., Belgrade (YU)

    1990-01-01

    This paper presents a model and an appropriate numerical procedure for a four-level time decomposition quasi-static power flow and successive disturbances analysis of power systems. The analysis consists of the sequential computation of the zero, primary, secondary and tertiary quasi-static states and of the estimation of successive structural disturbances during the 1200 s dynamics after a structural disturbance. The model is developed by detailed inspection of the time decomposition characteristics of automatic protection and control devices. Adequate speed of the numerical procedure is attained by a specific application of the inversion matrix lemma and the decoupled model constant coefficient matrices. The four-level time decomposition quasi-static method is intended for security and emergency analysis. (author).

  12. Numerical relativity beyond astrophysics

    Science.gov (United States)

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  13. Numerical relativity beyond astrophysics.

    Science.gov (United States)

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  14. Static charged spheres with anisotropic pressure in general relativity

    Indian Academy of Sciences (India)

    Department of Mathematics, Vasavi Engineering College, Hyderabad 500 031, India. £ ... In both cases the field equations are integrated completely. ... 1. Introduction. Spherically symmetric static charged dust/perfect fluid distributions of null ...

  15. Numerical relativity in spherical coordinates with the Einstein Toolkit

    Science.gov (United States)

    Mewes, Vassilios; Zlochower, Yosef; Campanelli, Manuela; Ruchlin, Ian; Etienne, Zachariah B.; Baumgarte, Thomas W.

    2018-04-01

    Numerical relativity codes that do not make assumptions on spatial symmetries most commonly adopt Cartesian coordinates. While these coordinates have many attractive features, spherical coordinates are much better suited to take advantage of approximate symmetries in a number of astrophysical objects, including single stars, black holes, and accretion disks. While the appearance of coordinate singularities often spoils numerical relativity simulations in spherical coordinates, especially in the absence of any symmetry assumptions, it has recently been demonstrated that these problems can be avoided if the coordinate singularities are handled analytically. This is possible with the help of a reference-metric version of the Baumgarte-Shapiro-Shibata-Nakamura formulation together with a proper rescaling of tensorial quantities. In this paper we report on an implementation of this formalism in the Einstein Toolkit. We adapt the Einstein Toolkit infrastructure, originally designed for Cartesian coordinates, to handle spherical coordinates, by providing appropriate boundary conditions at both inner and outer boundaries. We perform numerical simulations for a disturbed Kerr black hole, extract the gravitational wave signal, and demonstrate that the noise in these signals is orders of magnitude smaller when computed on spherical grids rather than Cartesian grids. With the public release of our new Einstein Toolkit thorns, our methods for numerical relativity in spherical coordinates will become available to the entire numerical relativity community.

  16. Robust Admissibilization of Descriptor Systems by Static Output-Feedback: An LMI Approach

    Directory of Open Access Journals (Sweden)

    M. Chaabane

    2011-01-01

    static output-feedback is studied in this paper and an approach to solve it is proposed. For this, sufficient conditions are derived for the closed-loop system to be admissible (i.e., stable, regular, and impulse-free. These conditions are expressed in terms of a strict Linear Matrix Inequality (LMI; so they are tractable using numerical computations. The proposed controller design methodology is based on two steps: the first is dedicated to synthesizing a classical state-feedback controller, which is used as the initial value for the second step, which uses an LMI problem to obtain static output-feedback controllers that give admissibility. Finally, a numerical example is given to illustrate the results.

  17. Experimental and FE Analysis of Exterior Plastic Components of Cars under Static and Dynamic Loading Conditions

    OpenAIRE

    Faghihi, Hassan

    2011-01-01

    This thesis is composed by an experimental part and numerical part, aimed at contributing to a better knowledge of the behavior of plastic parts under different loading conditions. The study is intended to validate a FE model for simulating exterior plastic components of car especially the A-decor and plastic clips in the context of thermal and static load analysis. From the comparison of numerical and experimental results in the terms of thermal and static deformation of the A-decor, it is c...

  18. Determination of adsorption parameters in numerical simulation for polymer flooding

    Science.gov (United States)

    Bao, Pengyu; Li, Aifen; Luo, Shuai; Dang, Xu

    2018-02-01

    A study on the determination of adsorption parameters for polymer flooding simulation was carried out. The study mainly includes polymer static adsorption and dynamic adsorption. The law of adsorption amount changing with polymer concentration and core permeability was presented, and the one-dimensional numerical model of CMG was established under the support of a large number of experimental data. The adsorption laws of adsorption experiments were applied to the one-dimensional numerical model to compare the influence of two adsorption laws on the historical matching results. The results show that the static adsorption and dynamic adsorption abide by different rules, and differ greatly in adsorption. If the static adsorption results were directly applied to the numerical model, the difficulty of the historical matching will increase. Therefore, dynamic adsorption tests in the porous medium are necessary before the process of parameter adjustment in order to achieve the ideal history matching result.

  19. Quark structure of static correlators in high temperature QCD

    Science.gov (United States)

    Bernard, Claude; DeGrand, Thomas A.; DeTar, Carleton; Gottlieb, Steven; Krasnitz, A.; Ogilvie, Michael C.; Sugar, R. L.; Toussaint, D.

    1992-07-01

    We present results of numerical simulations of quantum chromodynamics at finite temperature with two flavors of Kogut-Susskind quarks on the Intel iPSC/860 parallel processor. We investigate the properties of the objects whose exchange gives static screening lengths by reconstructing their correlated quark-antiquark structure.

  20. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review

    Directory of Open Access Journals (Sweden)

    Xibing Li

    2017-08-01

    Full Text Available Rock failure phenomena, such as rockburst, slabbing (or spalling and zonal disintegration, related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining. Currently, the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward. In this study, new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced. Two types of coupled loading modes, i.e. “critical static stress + slight disturbance” and “elastic static stress + impact disturbance”, are proposed, and associated test devices are developed. Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory, and the rockburst mechanism and related criteria are demonstrated. The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold, and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion. Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density. In addition, we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass, which can efficiently and accurately locate the rock failure in hard rock mines. Also, a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.

  1. Quasi-Static Indentation Analysis of Carbon-Fiber Laminates.

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Timothy [Sandia National Lab. (SNL-CA), Livermore, CA (United States); English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nelson, Stacy Michelle [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-12-01

    A series of quasi - static indentation experiments are conducted on carbon fiber reinforced polymer laminates with a systematic variation of thicknesses and fixture boundary conditions. Different deformation mechanisms and their resulting damage mechanisms are activated b y changing the thickn ess and boundary conditions. The quasi - static indentation experiments have been shown to achieve damage mechanisms similar to impact and penetration, however without strain rate effects. The low rate allows for the detailed analysis on the load response. Moreover, interrupted tests allow for the incremental analysis of various damage mechanisms and pr ogressions. The experimentally tested specimens are non - destructively evaluated (NDE) with optical imaging, ultrasonics and computed tomography. The load displacement responses and the NDE are then utilized in numerical simulations for the purpose of model validation and vetting. The accompanying numerical simulation work serves two purposes. First, the results further reveal the time sequence of events and the meaning behind load dro ps not clear from NDE . Second, the simulations demonstrate insufficiencies in the code and can then direct future efforts for development.

  2. Static and dynamic properties of three-dimensional dot-type magnonic crystals

    International Nuclear Information System (INIS)

    Maksymov, Artur; Spinu, Leonard

    2016-01-01

    The static and dynamic magnetization of three-dimensional magnonic metamaterials has been investigated. By numerical means it was analyzed the impact of space dimensionality on the properties of magnonic crystal with unit cell consisting of four dots. It is find out the possibility of multi-vortex core formation which is related to the increasing of the crystal height by three-dimensional periodicity of single crystal layer. Additionally is provided the analysis of ferromagnetic resonance phenomenon for two-dimensional and three-dimensional structures. For the unsaturated magnetization of three-dimensional crystal the several pronounced resonance frequencies were detected.

  3. Static and dynamic properties of three-dimensional dot-type magnonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maksymov, Artur, E-mail: maxyartur@gmail.com [Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Spinu, Leonard [Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)

    2016-04-01

    The static and dynamic magnetization of three-dimensional magnonic metamaterials has been investigated. By numerical means it was analyzed the impact of space dimensionality on the properties of magnonic crystal with unit cell consisting of four dots. It is find out the possibility of multi-vortex core formation which is related to the increasing of the crystal height by three-dimensional periodicity of single crystal layer. Additionally is provided the analysis of ferromagnetic resonance phenomenon for two-dimensional and three-dimensional structures. For the unsaturated magnetization of three-dimensional crystal the several pronounced resonance frequencies were detected.

  4. Quark structure of static correlators in high temperature QCD

    International Nuclear Information System (INIS)

    Bernard, C.; Ogilvie, M.C.; DeGrand, T.A.; DeTar, C.; Gottlieb, S.; Krasnitz, A.; Sugar, R.L.; Toussaint, D.

    1992-01-01

    We present results of numerical simulations of quantum chromodynamics at finite temperature with two flavors of Kogut-Susskind quarks on the Intel iPSC/860 parellel processor. We investigate the properties of the objects whose exhange gives static screening lengths by reconstructing their correlated quark-antiquark structure. (orig.)

  5. Quark structure of static correlators in high temperature QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C.; Ogilvie, M.C. (Washington Univ., St. Louis, MO (United States). Dept. of Physics); DeGrand, T.A. (Colorado Univ., Boulder, CO (United States). Physics Dept.); DeTar, C. (Utah Univ., Salt Lake City, UT (United States). Physics Dept.); Gottlieb, S.; Krasnitz, A. (Indiana Univ., Bloomington, IN (United States). Dept. of Physics); Sugar, R.L. (California Univ., Santa Barbara, CA (United States). Dept. of Physics); Toussaint, D. (Arizona Univ., Tucson, AZ (United States). Dept. of Physics)

    1992-07-20

    We present results of numerical simulations of quantum chromodynamics at finite temperature with two flavors of Kogut-Susskind quarks on the Intel iPSC/860 parellel processor. We investigate the properties of the objects whose exhange gives static screening lengths by reconstructing their correlated quark-antiquark structure. (orig.).

  6. Circular Raft Footings Strengthened by Stone Columns under Static Loads

    OpenAIRE

    R. Ziaie Moayed; B. Mohammadi-Haji

    2016-01-01

    Stone columns have been widely employed to improve the load-settlement characteristics of soft soils. The results of two small scale displacement control loading tests on stone columns were used in order to validate numerical finite element simulations. Additionally, a series of numerical calculations of static loading have been performed on strengthened raft footing to investigate the effects of using stone columns on bearing capacity of footings. The bearing capacity of single and group of ...

  7. Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part III

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this third and final lecture, we present applications of the results of numerical relativity simulations to gravitational wave detection and astrophysics.

  8. Extract the Relational Information of Static Features and Motion Features for Human Activities Recognition in Videos

    Directory of Open Access Journals (Sweden)

    Li Yao

    2016-01-01

    Full Text Available Both static features and motion features have shown promising performance in human activities recognition task. However, the information included in these features is insufficient for complex human activities. In this paper, we propose extracting relational information of static features and motion features for human activities recognition. The videos are represented by a classical Bag-of-Word (BoW model which is useful in many works. To get a compact and discriminative codebook with small dimension, we employ the divisive algorithm based on KL-divergence to reconstruct the codebook. After that, to further capture strong relational information, we construct a bipartite graph to model the relationship between words of different feature set. Then we use a k-way partition to create a new codebook in which similar words are getting together. With this new codebook, videos can be represented by a new BoW vector with strong relational information. Moreover, we propose a method to compute new clusters from the divisive algorithm’s projective function. We test our work on the several datasets and obtain very promising results.

  9. An experimental and numerical study on the improvement of the performance of Savonius wind rotor

    International Nuclear Information System (INIS)

    Altan, Burcin Deda; Atilgan, Mehmet

    2008-01-01

    In the present study, a curtain has been designed to increase the low performance of the Savonius wind rotor, a type of vertical-axis wind rotor, and the effect of this curtain on the static rotor performance has been analyzed both experimentally and numerically. Designed to prevent the torque that occurs on the convex blade of the rotor in the negative direction, this curtain has been placed in front of the rotor. Experimental measurements and numerical analysis have been conducted when the Savonius wind rotor is with and without curtain. The static torque values of the rotor have been measured by experiments and calculated by numerical analysis, and finally they have been compared. The best results have been obtained by means of the rotor with curtain. Low static torque values have been obtained with the short curtain dimensions, while a considerable increase has been acquired in the static torque values with the long curtain dimensions. Fluent 6.0 trade software has been used as the numerical method

  10. Determination of the static potential with dynamical fermions

    Energy Technology Data Exchange (ETDEWEB)

    Donnellan, Michael; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knechtli, Francesco [Bergische Univ. Wuppertal (Germany). Dept. of Physics; Leder, Bjoern [Bergische Univ. Wuppertal (Germany). Dept. of Mathematics

    2010-12-15

    We present in detail a technique to extract the potential between a static quark and anti-quark pair from Wilson loops measured on dynamical configurations. This technique is based on HYP smearing and leads to an exponential improvement of the noise-to-signal ratio of Wilson loops. We explain why the correct continuum potential is obtained and show numerical evidence that the cut-off effects are small. We present precise results for the non-perturbative potential. As applications, we determine the scale r{sub 0}/a and study the shape of the static potential in the range of distances around r{sub 0}, where it can be compared with phenomenological potential models. (orig.)

  11. Numerical optimization of piezolaminated beams under static and dynamic excitations

    Directory of Open Access Journals (Sweden)

    Rajan L. Wankhade

    2017-06-01

    Full Text Available Shape and vibration controls of smart structures in structural applications have gained much attraction due to their ability of actuation and sensing. The response of structure to bending, vibration, and buckling can be controlled by the use of this ability of a piezoelectric material. In the present work, the static and dynamic control of smart piezolaminated beams is presented. The optimal locations of piezoelectric patches are found out and then a detailed analysis is performed using finite element modeling considering the higher order shear deformation theory. In the first part, for an extension mode, the piezolaminated beam with stacking sequence PZT5/Al/PZT5 is considered. The length of the beam is 100 mm, whereas the thickness of an aluminum core is 16 mm and that of the piezo layer is of 1 mm. The PZT actuators are positioned with an identical poling direction along the thickness and are excited by a direct current voltage of 10 V. For the shear mode, the stacking sequence Al/PZT5/Al is adopted. The length of the beam is kept the same as the extension mechanism i.e. 100 mm, whereas the thickness of the aluminum core is 8 mm and that of the piezo layer is of 2 mm. The actuator is excited by a direct current voltage of 20 V. In the second part, the control of the piezolaminated beam with an optimal location of the actuator is investigated under a dynamic excitation. Electromechanical loading is considered in the finite element formulation for the analysis purpose. Results are provided for beams with different boundary conditions and loading for future references. Both the extension and shear actuation mechanisms are employed for the piezolaminated beam. These results may be used to identify the response of a beam under static and dynamic excitations. From the present work, the optimal location of a piezoelectric patch can be easily identified for the corresponding boundary condition of the beam.

  12. Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part I

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this first lecture, we introduce the basic ideas of numerical relativity, highlighting the challenges that arise in simulating gravitational wave sources on a computer.

  13. Exact solutions, numerical relativity and gravitational radiation

    International Nuclear Information System (INIS)

    Winicour, J.

    1986-01-01

    In recent years, there has emerged a new use for exact solutions to Einstein's equation as checks on the accuracy of numerical relativity codes. Much has already been written about codes based upon the space-like Cauchy problem. In the case of two Killing vectors, a numerical characteristic initial value formulation based upon two intersecting families of null hypersurfaces has successfully evolved the Schwarzschild and the colliding plane wave vacuum solutions. Here the author discusses, in the context of exact solutions, numerical studies of gravitational radiation based upon the null cone initial value problem. Every stage of progress in the null cone approach has been associated with exact solutions in some sense. He begins by briefly recapping this history. Then he presents two new examples illustrating how exact solutions can be useful

  14. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2008-09-01

    Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable

  15. Hard thermal loops, static response, and the composite effective action

    International Nuclear Information System (INIS)

    Jackiw, R.; Liu, Q.; Lucchesi, C.

    1994-01-01

    First, we investigate the static non-Abelian Kubo equation. We prove that it does not possess finite energy solutions; thereby we establish that gauge theories do not support hard thermal solitons. This general result is verified by a numerical solution of the equations. A similar argument shows that ''static'' instantons are absent. In addition, we note that the static equations reproduce the expected screening of the non-Abelian electric field by a gauge-invariant Debye mass m=gT √(N+N F /2)/3 . Second, we derive the non-Abelian Kubo equation from the composite effective action. This is achieved by showing that the requirement of stationarity of the composite effective action is equivalent, within a kinematical approximation scheme, to the condition of gauge invariance for the generating functional of hard thermal loops

  16. Finite element analysis of relative shaft vibrations of two-pole induction motors with static rotor eccentricity

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Ulrich [Siemens AG, Nuernberg (Germany). Industry, Drive Technologies, Large Drives, Industry Development

    2010-03-15

    The paper shows a computational methodology for calculating the relative shaft vibrations in the sleeve bearings of two-pole induction machines regarding excitation due to an electromagnetic force, which is caused by static rotor eccentricity. For a worst case calculation concerning the height of exciting magnetic force electromagnetic field damping effects and magnetic resistance concerning the homopolar flux are neglected. The calculated magnetic force, acting on the rotor core with double supply frequency in direction of the smallest air gap, is implemented into a finite element rotor dynamic model. With this model the influence of the rotor speed as well as influence of the direction of the magnetic force on the relative shaft displacements can be analyzed. Therefore the paper shows a computational methodology to check, whether the rotor-bearing design is sensitive for electromagnetic excitations due to static rotor eccentricity and prepares therefore the possibility to introduce improvements during the design phase of the induction motor. (orig.)

  17. Lamé Parameter Estimation from Static Displacement Field Measurements in the Framework of Nonlinear Inverse Problems

    DEFF Research Database (Denmark)

    Hubmer, Simon; Sherina, Ekaterina; Neubauer, Andreas

    2018-01-01

    . The main result of this paper is the verification of a nonlinearity condition in an infinite dimensional Hilbert space context. This condition guarantees convergence of iterative regularization methods. Furthermore, numerical examples for recovery of the Lam´e parameters from displacement data simulating......We consider a problem of quantitative static elastography, the estimation of the Lam´e parameters from internal displacement field data. This problem is formulated as a nonlinear operator equation. To solve this equation, we investigate the Landweber iteration both analytically and numerically...... a static elastography experiment are presented....

  18. Observing the Forces Involved in Static Friction under Static Situations

    Science.gov (United States)

    Kaplan, Daniel

    2013-01-01

    Static friction is an important concept in introductory physics. Later in the year students apply their understanding of static friction under more complex conditions of static equilibrium. Traditional lab demonstrations in this case involve exceeding of the maximum level of static friction, resulting in the "onset of motion." (Contains…

  19. Assessment of Calculation Procedures for Piles in Clay Based on Static Loading Tests

    DEFF Research Database (Denmark)

    Augustesen, Anders; Andersen, Lars

    2008-01-01

    College in London. The calculation procedures are assessed based on an established database of static loading tests. To make a consistent evaluation of the design methods, corrections related to undrained shear strength and time between pile driving and testing have been employed. The study indicates...... that the interpretation of the field tests is of paramount importance, both with regard to the soil profile and the loading conditions. Based on analyses of 253 static pile loading tests distributed on 111 sites, API-RP2A provides the better description of the data. However, it should be emphasised that some input......Numerous methods are available for the prediction of the axial capacity of piles in clay. In this paper, two well-known models are considered, namely the current API-RP2A (1987 to present) and the recently developed ICP method. The latter is developed by Jardine and his co-workers at Imperial...

  20. Transformation magneto-statics and illusions for magnets

    Science.gov (United States)

    Sun, Fei; He, Sailing

    2014-10-01

    Based on the form-invariant of Maxwell's equations under coordinate transformations, we extend the theory of transformation optics to transformation magneto-statics, which can design magnets through coordinate transformations. Some novel DC magnetic field illusions created by magnets (e.g. rescaling magnets, cancelling magnets and overlapping magnets) are designed and verified by numerical simulations. Our research will open a new door to designing magnets and controlling DC magnetic fields.

  1. Additive-manufactured sandwich lattice structures: A numerical and experimental investigation

    Science.gov (United States)

    Fergani, Omar; Tronvoll, Sigmund; Brøtan, Vegard; Welo, Torgeir; Sørby, Knut

    2017-10-01

    The utilization of additive-manufactured lattice structures in engineered products is becoming more and more common as the competitiveness of AM as a production technology has increased during the past several years. Lattice structures may enable important weight reductions as well as open opportunities to build products with customized functional properties, thanks to the flexibility of AM for producing complex geometrical configurations. One of the most critical aspects related to taking AM into new application areas—such as safety critical products—is currently the limited understanding of the mechanical behavior of sandwich-based lattice structure mechanical under static and dynamic loading. In this study, we evaluate manufacturability of lattice structures and the impact of AM processing parameters on the structural behavior of this type of sandwich structures. For this purpose, we conducted static compression testing for a variety of geometry and manufacturing parameters. Further, the study discusses a numerical model capable of predicting the behavior of different lattice structure. A reasonably good correlation between the experimental and numerical results was observed.

  2. Lattice Boltzmann model for numerical relativity.

    Science.gov (United States)

    Ilseven, E; Mendoza, M

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  3. Generalized transformations and coordinates for static spherically symmetric general relativity

    Science.gov (United States)

    Hill, James M.; O'Leary, Joseph

    2018-04-01

    We examine a static, spherically symmetric solution of the empty space field equations of general relativity with a non-orthogonal line element which gives rise to an opportunity that does not occur in the standard derivations of the Schwarzschild solution. In these derivations, convenient coordinate transformations and dynamical assumptions inevitably lead to the Schwarzschild solution. By relaxing these conditions, a new solution possibility arises and the resulting formalism embraces the Schwarzschild solution as a special case. The new solution avoids the coordinate singularity associated with the Schwarzschild solution and is achieved by obtaining a more suitable coordinate chart. The solution embodies two arbitrary constants, one of which can be identified as the Newtonian gravitational potential using the weak field limit. The additional arbitrary constant gives rise to a situation that allows for generalizations of the Eddington-Finkelstein transformation and the Kruskal-Szekeres coordinates.

  4. Generalized transformations and coordinates for static spherically symmetric general relativity.

    Science.gov (United States)

    Hill, James M; O'Leary, Joseph

    2018-04-01

    We examine a static, spherically symmetric solution of the empty space field equations of general relativity with a non-orthogonal line element which gives rise to an opportunity that does not occur in the standard derivations of the Schwarzschild solution. In these derivations, convenient coordinate transformations and dynamical assumptions inevitably lead to the Schwarzschild solution. By relaxing these conditions, a new solution possibility arises and the resulting formalism embraces the Schwarzschild solution as a special case. The new solution avoids the coordinate singularity associated with the Schwarzschild solution and is achieved by obtaining a more suitable coordinate chart. The solution embodies two arbitrary constants, one of which can be identified as the Newtonian gravitational potential using the weak field limit. The additional arbitrary constant gives rise to a situation that allows for generalizations of the Eddington-Finkelstein transformation and the Kruskal-Szekeres coordinates.

  5. PEBBLES Simulation of Static Friction and New Static Friction Benchmark

    International Nuclear Information System (INIS)

    Cogliati, Joshua J.; Ougouag, Abderrafi M.

    2010-01-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.

  6. Statics and mechanics of structures

    CERN Document Server

    Krenk, Steen

    2013-01-01

    The statics and mechanics of structures form a core aspect of civil engineering. This book provides an introduction to the subject, starting from classic hand-calculation types of analysis and gradually advancing to a systematic form suitable for computer implementation. It starts with statically determinate structures in the form of trusses, beams and frames. Instability is discussed in the form of the column problem - both the ideal column and the imperfect column used in actual column design. The theory of statically indeterminate structures is then introduced, and the force and deformation methods are explained and illustrated. An important aspect of the book’s approach is the systematic development of the theory in a form suitable for computer implementation using finite elements. This development is supported by two small computer programs, MiniTruss and MiniFrame, which permit static analysis of trusses and frames, as well as linearized stability analysis. The book’s final section presents related ...

  7. Alexithymia Is Related to the Need for More Emotional Intensity to Identify Static Fearful Facial Expressions

    Directory of Open Access Journals (Sweden)

    Francesca Starita

    2018-06-01

    Full Text Available Individuals with high levels of alexithymia, a personality trait marked by difficulties in identifying and describing feelings and an externally oriented style of thinking, appear to require more time to accurately recognize intense emotional facial expressions (EFEs. However, in everyday life, EFEs are displayed at different levels of intensity and individuals with high alexithymia may also need more emotional intensity to identify EFEs. Nevertheless, the impact of alexithymia on the identification of EFEs, which vary in emotional intensity, has largely been neglected. To address this, two experiments were conducted in which participants with low (LA and high (HA levels of alexithymia were assessed in their ability to identify static (Experiment 1 and dynamic (Experiment 2 morphed faces ranging from neutral to intense EFEs. Results showed that HA needed more emotional intensity than LA to identify static fearful – but not happy or disgusted – faces. On the contrary, no evidence was found that alexithymia affected the identification of dynamic EFEs. These results extend current literature suggesting that alexithymia is related to the need for more perceptual information to identify static fearful EFEs.

  8. Effects of a static electric field on two-color photoassociation between different atoms

    International Nuclear Information System (INIS)

    Chakraborty, Debashree; Deb, Bimalendu

    2014-01-01

    We study non-perturbative effects of a static electric field on two-color photoassociation of different atoms. A static electric field induces anisotropy in scattering between two different atoms and hybridizes field-free rotational states of heteronuclear dimers or polar molecules. In a previous paper [D. Chakraborty et al., J. Phys. B 44, 095201 (2011)], the effects of a static electric field on one-color photoassociation between different atoms has been described through field-modified ground-state scattering states, neglecting electric field effects on heteronuclear diatomic bound states. To study the effects of a static electric field on heteronuclear bound states, and the resulting influence on Raman-type two-color photoassociation between different atoms in the presence of a static electric field, we develop a non-perturbative numerical method to calculate static electric field-dressed heteronuclear bound states. We show that the static electric field induced scattering anisotropy as well as hybridization of rotational states strongly influence two-color photoassociation spectra, leading to significant enhancement in PA rate and large shift. In particular, for static electric field strengths of a few hundred kV/cm, two-color PA rate involving high-lying bound states in electronic ground-state increases by several orders of magnitude even in the weak photoassociative coupling regime

  9. Contagion processes on the static and activity-driven coupling networks

    Science.gov (United States)

    Lei, Yanjun; Jiang, Xin; Guo, Quantong; Ma, Yifang; Li, Meng; Zheng, Zhiming

    2016-03-01

    The evolution of network structure and the spreading of epidemic are common coexistent dynamical processes. In most cases, network structure is treated as either static or time-varying, supposing the whole network is observed in the same time window. In this paper, we consider the epidemics spreading on a network which has both static and time-varying structures. Meanwhile, the time-varying part and the epidemic spreading are supposed to be of the same time scale. We introduce a static and activity-driven coupling (SADC) network model to characterize the coupling between the static ("strong") structure and the dynamic ("weak") structure. Epidemic thresholds of the SIS and SIR models are studied using the SADC model both analytically and numerically under various coupling strategies, where the strong structure is of homogeneous or heterogeneous degree distribution. Theoretical thresholds obtained from the SADC model can both recover and generalize the classical results in static and time-varying networks. It is demonstrated that a weak structure might make the epidemic threshold low in homogeneous networks but high in heterogeneous cases. Furthermore, we show that the weak structure has a substantive effect on the outbreak of the epidemics. This result might be useful in designing some efficient control strategies for epidemics spreading in networks.

  10. Numerical Relativity Simulations for Black Hole Merger Astrophysics

    Science.gov (United States)

    Baker, John G.

    2010-01-01

    Massive black hole mergers are perhaps the most energetic astronomical events, establishing their importance as gravitational wave sources for LISA, and also possibly leading to observable influences on their local environments. Advances in numerical relativity over the last five years have fueled the development of a rich physical understanding of general relativity's predictions for these events. Z will overview the understanding of these event emerging from numerical simulation studies. These simulations elucidate the pre-merger dynamics of the black hole binaries, the consequent gravitational waveform signatures ' and the resulting state, including its kick velocity, for the final black hole produced by the merger. Scenarios are now being considered for observing each of these aspects of the merger, involving both gravitational-wave and electromagnetic astronomy.

  11. Numerically satisfactory solutions of Kummer recurrence relations

    NARCIS (Netherlands)

    J. Segura (Javier); N.M. Temme (Nico)

    2008-01-01

    textabstractPairs of numerically satisfactory solutions as $n\\rightarrow \\infty$ for the three-term recurrence relations satisfied by the families of functions $_1\\mbox{F}_1(a+\\epsilon_1 n; b +\\epsilon_2 n;z)$, $\\epsilon_i \\in {\\mathbb Z}$, are given. It is proved that minimal solutions always

  12. Nonspinning numerical relativity waveform surrogates: assessing the model

    Science.gov (United States)

    Field, Scott; Blackman, Jonathan; Galley, Chad; Scheel, Mark; Szilagyi, Bela; Tiglio, Manuel

    2015-04-01

    Recently, multi-modal gravitational waveform surrogate models have been built directly from data numerically generated by the Spectral Einstein Code (SpEC). I will describe ways in which the surrogate model error can be quantified. This task, in turn, requires (i) characterizing differences between waveforms computed by SpEC with those predicted by the surrogate model and (ii) estimating errors associated with the SpEC waveforms from which the surrogate is built. Both pieces can have numerous sources of numerical and systematic errors. We make an attempt to study the most dominant error sources and, ultimately, the surrogate model's fidelity. These investigations yield information about the surrogate model's uncertainty as a function of time (or frequency) and parameter, and could be useful in parameter estimation studies which seek to incorporate model error. Finally, I will conclude by comparing the numerical relativity surrogate model to other inspiral-merger-ringdown models. A companion talk will cover the building of multi-modal surrogate models.

  13. SENR /NRPy + : Numerical relativity in singular curvilinear coordinate systems

    Science.gov (United States)

    Ruchlin, Ian; Etienne, Zachariah B.; Baumgarte, Thomas W.

    2018-03-01

    We report on a new open-source, user-friendly numerical relativity code package called SENR /NRPy + . Our code extends previous implementations of the BSSN reference-metric formulation to a much broader class of curvilinear coordinate systems, making it ideally suited to modeling physical configurations with approximate or exact symmetries. In the context of modeling black hole dynamics, it is orders of magnitude more efficient than other widely used open-source numerical relativity codes. NRPy + provides a Python-based interface in which equations are written in natural tensorial form and output at arbitrary finite difference order as highly efficient C code, putting complex tensorial equations at the scientist's fingertips without the need for an expensive software license. SENR provides the algorithmic framework that combines the C codes generated by NRPy + into a functioning numerical relativity code. We validate against two other established, state-of-the-art codes, and achieve excellent agreement. For the first time—in the context of moving puncture black hole evolutions—we demonstrate nearly exponential convergence of constraint violation and gravitational waveform errors to zero as the order of spatial finite difference derivatives is increased, while fixing the numerical grids at moderate resolution in a singular coordinate system. Such behavior outside the horizons is remarkable, as numerical errors do not converge to zero near punctures, and all points along the polar axis are coordinate singularities. The formulation addresses such coordinate singularities via cell-centered grids and a simple change of basis that analytically regularizes tensor components with respect to the coordinates. Future plans include extending this formulation to allow dynamical coordinate grids and bispherical-like distribution of points to efficiently capture orbiting compact binary dynamics.

  14. Muscle Fatigue Analysis of the Deltoid during Three Head-Related Static Isometric Contraction Tasks

    Directory of Open Access Journals (Sweden)

    Wenxiang Cui

    2017-05-01

    Full Text Available This study aimed to investigate the fatiguing characteristics of muscle-tendon units (MTUs within skeletal muscles during static isometric contraction tasks. The deltoid was selected as the target muscle and three head-related static isometric contraction tasks were designed to activate three heads of the deltoid in different modes. Nine male subjects participated in this study. Surface electromyography (SEMG signals were collected synchronously from the three heads of the deltoid. The performances of five SEMG parameters, including root mean square (RMS, mean power frequency (MPF, the first coefficient of autoregressive model (ARC1, sample entropy (SE and Higuchi’s fractal dimension (HFD, in quantification of fatigue, were evaluated in terms of sensitivity to variability ratio (SVR and consistency firstly. Then, the HFD parameter was selected as the fatigue index for further muscle fatigue analysis. The experimental results demonstrated that the three deltoid heads presented different activation modes during three head-related fatiguing contractions. The fatiguing characteristics of the three heads were found to be task-dependent, and the heads kept in a relatively high activation level were more prone to fatigue. In addition, the differences in fatiguing rate between heads increased with the increase in load. The findings of this study can be helpful in better understanding the underlying neuromuscular control strategies of the central nervous system (CNS. Based on the results of this study, the CNS was thought to control the contraction of the deltoid by taking the three heads as functional units, but a certain synergy among heads might also exist to accomplish a contraction task.

  15. Characteristic evolutions in numerical relativity using six angular patches

    International Nuclear Information System (INIS)

    Reisswig, Christian; Bishop, Nigel T; Lai, Chi Wai; Thornburg, Jonathan; Szilagyi, Bela

    2007-01-01

    The characteristic approach to numerical relativity is a useful tool in evolving gravitational systems. In the past this has been implemented using two patches of stereographic angular coordinates. In other applications, a six-patch angular coordinate system has proved effective. Here we investigate the use of a six-patch system in characteristic numerical relativity, by comparing an existing two-patch implementation (using second-order finite differencing throughout) with a new six-patch implementation (using either second- or fourth-order finite differencing for the angular derivatives). We compare these different codes by monitoring the Einstein constraint equations, numerically evaluated independently from the evolution. We find that, compared to the (second-order) two-patch code at equivalent resolutions, the errors of the second-order six-patch code are smaller by a factor of about 2, and the errors of the fourth-order six-patch code are smaller by a factor of nearly 50

  16. Characteristic evolutions in numerical relativity using six angular patches

    Energy Technology Data Exchange (ETDEWEB)

    Reisswig, Christian [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany); Bishop, Nigel T [Department of Mathematical Sciences, University of South Africa, PO Box 392, Unisa 0003, South Africa (South Africa); Lai, Chi Wai [Department of Mathematical Sciences, University of South Africa, PO Box 392, Unisa 0003, South Africa (South Africa); Thornburg, Jonathan [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany); Szilagyi, Bela [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany)

    2007-06-21

    The characteristic approach to numerical relativity is a useful tool in evolving gravitational systems. In the past this has been implemented using two patches of stereographic angular coordinates. In other applications, a six-patch angular coordinate system has proved effective. Here we investigate the use of a six-patch system in characteristic numerical relativity, by comparing an existing two-patch implementation (using second-order finite differencing throughout) with a new six-patch implementation (using either second- or fourth-order finite differencing for the angular derivatives). We compare these different codes by monitoring the Einstein constraint equations, numerically evaluated independently from the evolution. We find that, compared to the (second-order) two-patch code at equivalent resolutions, the errors of the second-order six-patch code are smaller by a factor of about 2, and the errors of the fourth-order six-patch code are smaller by a factor of nearly 50.

  17. Bethe-Salpeter amplitudes and static properties of the deuteron

    International Nuclear Information System (INIS)

    Kaptari, L.P.; Bondarenko, S.G.; Khanna, F.C.; Kaempfer, B.; Technische Univ. Dresden

    1996-04-01

    Extended calculations of the deuteron's static properties, based on the numerical solution of the Bethe-Salpeter equation, are presented. A formalism is developed, which provides a comparative analysis of the covariant amplitudes in various representations and nonrelativistic wave functions. The magnetic and quadrupole moments of the deuteron are calculated in the Bethe-Salpeter formalism and the role of relativistic corrections is discussed. (orig.)

  18. Numerical Hydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2003-01-01

    Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.

  19. Coupled Static and Dynamic Buckling Modelling of Thin-Walled Structures in Elastic Range Review of Selected Problems

    Directory of Open Access Journals (Sweden)

    Kołakowski Zbigniew

    2016-06-01

    Full Text Available A review of papers that investigate the static and dynamic coupled buckling and post-buckling behaviour of thin-walled structures is carried out. The problem of static coupled buckling is sufficiently well-recognized. The analysis of dynamic interactive buckling is limited in practice to columns, single plates and shells. The applications of finite element method (FEM or/and analytical-numerical method (ANM to solve interaction buckling problems are on-going. In Poland, the team of scientists from the Department of Strength of Materials, Lodz University of Technology and co-workers developed the analytical-numerical method. This method allows to determine static buckling stresses, natural frequencies, coefficients of the equation describing the post-buckling equilibrium path and dynamic response of the plate structure subjected to compression load and/or bending moment. Using the dynamic buckling criteria, it is possible to determine the dynamic critical load. They presented a lot of interesting results for problems of the static and dynamic coupled buckling of thin-walled plate structures with complex shapes of cross-sections, including an interaction of component plates. The most important advantage of presented analytical-numerical method is that it enables to describe all buckling modes and the post-buckling behaviours of thin-walled columns made of different materials. Thin isotropic, orthotropic or laminate structures were considered.

  20. Static deformation of two welded monoclinic elastic half-spaces due ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    Static deformation of two monoclinic elastic half-spaces in welded contact due to a long inclined strike-slip fault situated in one of the half-spaces is studied analytically and numerically. Closed- form algebraic expressions for the displacement at any point of the medium are obtained. The variation of the displacement at the ...

  1. Static analysis: from theory to practice; Static analysis of large-scale embedded code, generation of abstract domains

    International Nuclear Information System (INIS)

    Monniaux, D.

    2009-06-01

    Software operating critical systems (aircraft, nuclear power plants) should not fail - whereas most computerised systems of daily life (personal computer, ticket vending machines, cell phone) fail from time to time. This is not a simple engineering problem: it is known, since the works of Turing and Cook, that proving that programs work correctly is intrinsically hard. In order to solve this problem, one needs methods that are, at the same time, efficient (moderate costs in time and memory), safe (all possible failures should be found), and precise (few warnings about nonexistent failures). In order to reach a satisfactory compromise between these goals, one can research fields as diverse as formal logic, numerical analysis or 'classical' algorithmics. From 2002 to 2007 I participated in the development of the Astree static analyser. This suggested to me a number of side projects, both theoretical and practical (use of formal proof techniques, analysis of numerical filters...). More recently, I became interested in modular analysis of numerical property and in the applications to program analysis of constraint solving techniques (semi-definite programming, SAT and SAT modulo theory). (author)

  2. Interplay of static and dynamic features in biomimetic smart ears.

    Science.gov (United States)

    Pannala, Mittu; Meymand, Sajjad Zeinoddini; Müller, Rolf

    2013-06-01

    Horseshoe bats (family Rhinolophidae) have sophisticated biosonar systems with outer ears (pinnae) that are characterized by static local shape features as well as dynamic non-rigid changes to their overall shapes. Here, biomimetic prototypes fabricated from elastic rubber sheets have been used to study the impact of these static and dynamic features on the acoustic device characteristics. The basic shape of the prototypes was an obliquely truncated horn augmented with three static local shape features: vertical ridge, pinna-rim incision and frontal flap (antitragus). The prototype shape was deformed dynamically using a one-point actuation mechanism to produce a biomimetic bending of the prototype's tip. In isolation, the local shape features had little impact on the device beampattern. However, strong interactions were observed between these features and the overall deformation. The further the prototype tip was bent down, the stronger the beampatterns associated with combinations of multiple features differed from the upright configuration in the prominence of sidelobes. This behavior was qualitatively similar to numerical predictions for horseshoe bats. Hence, the interplay between static and dynamic features could be a bioinspired principle for affecting large changes through the dynamic manipulations of interactions that are sensitive to small geometrical changes.

  3. On the relationship between ontogenetic and static allometry.

    Science.gov (United States)

    Pélabon, Christophe; Bolstad, Geir H; Egset, Camilla K; Cheverud, James M; Pavlicev, Mihaela; Rosenqvist, Gunilla

    2013-02-01

    Ontogenetic and static allometries describe how a character changes in size when the size of the organism changes during ontogeny and among individuals measured at the same developmental stage, respectively. Understanding the relationship between these two types of allometry is crucial to understanding the evolution of allometry and, more generally, the evolution of shape. However, the effects of ontogenetic allometry on static allometry remain largely unexplored. Here, we first show analytically how individual variation in ontogenetic allometry and body size affect static allometry. Using two longitudinal data sets on ontogenetic and static allometry, we then estimate variances and covariances for the different parameters of the ontogenetic allometry defined in our model and assess their relative contribution to the static allometric slope. The mean ontogenetic allometry is the main parameter that determines the static allometric slope, while the covariance between the ontogenetic allometric slope and body size generates most of the discrepancies between ontogenetic and static allometry. These results suggest that the apparent evolutionary stasis of the static allometric slope is not generated by internal (developmental) constraints but more likely results from external constraints imposed by selection.

  4. Android Application Protection against Static Reverse Engineering based on Multidexing

    Directory of Open Access Journals (Sweden)

    Nak Young Kim

    2016-11-01

    Full Text Available DEX files are executable files of Android applications. Since DEX files are in the format of Java bytecodes, their Java source codes can be easily obtained using static reverse engineering tools. This results in numerous Android application thefts. There are some tools (e.g. bangcle, ijiami, liapp that protect Android applications against static reverse engineering utilizing dynamic code loading. These tools usually encrypt classes.dex in an APK file. When the application is launched, the encrypted classes.dex file is decrypted and dynamically loaded. However, these tools fail to protect multidex APKs, which include more than one DEX files (classes2.dex, classes3.dex, ... to accommodate large-sized execution codes. In this paper, we propose a technique that protects multidex Android applications against static reverse engineering. The technique can encrypt/decrypt multiple DEX files in APK files and dynamically load them. The experimental results show that the proposed technique can effiectively protect multidex APKs.

  5. Stylized facts in social networks: Community-based static modeling

    Science.gov (United States)

    Jo, Hang-Hyun; Murase, Yohsuke; Török, János; Kertész, János; Kaski, Kimmo

    2018-06-01

    The past analyses of datasets of social networks have enabled us to make empirical findings of a number of aspects of human society, which are commonly featured as stylized facts of social networks, such as broad distributions of network quantities, existence of communities, assortative mixing, and intensity-topology correlations. Since the understanding of the structure of these complex social networks is far from complete, for deeper insight into human society more comprehensive datasets and modeling of the stylized facts are needed. Although the existing dynamical and static models can generate some stylized facts, here we take an alternative approach by devising a community-based static model with heterogeneous community sizes and larger communities having smaller link density and weight. With these few assumptions we are able to generate realistic social networks that show most stylized facts for a wide range of parameters, as demonstrated numerically and analytically. Since our community-based static model is simple to implement and easily scalable, it can be used as a reference system, benchmark, or testbed for further applications.

  6. Static and quasi-static analysis of lobed-pumpkin balloon

    Science.gov (United States)

    Nakashino, Kyoichi; Sasaki, Makoto; Hashimoto, Satoshi; Saito, Yoshitaka; Izutsu, Naoki

    The present study is motivated by the need to improve design methodology for super pressure balloon with 3D gore design concept, currently being developed at the Scientific Balloon Center of ISAS/JAXA. The distinctive feature of the 3-D gore design is that the balloon film has excess materials not only in the circumferential direction but also in the meridional direction; the meridional excess is gained by attaching the film boundaries to the corresponding tendons of a shorter length with a controlled shortening rate. The resulting balloon shape is a pumpkin-like shape with large bulges formed between adjacent tendons. The balloon film, when fully inflated, develops wrinkles in the circumferential direction over its entire region, so that the stresses in the film are limited to a small amount of uniaxial tension in the circumferential direction while the high meridional loads are carried by re-enforced tendons. Naturally, the amount of wrinkling in the film is dominated by the shortening rate between the film boundaries and the tendon curve. In the 3-D gore design, as a consequence, the shortening rate becomes a fundamental design parameter along with the geometric parameters of the gore. In view of this, we have carried out a series of numerical study of the lobed-pumpkin balloon with varying gore geometry as well as with varying shortening rate. The numerical simula-tions were carried out with a nonlinear finite element code incorporating the wrinkling effect. Numerical results show that there is a threshold value for the shortening rate beyond which the stresses in the balloon film increases disproportionately. We have also carried out quasi-static simulations of the inflation process of the lobed-pumpkin balloon, and have obtained asymmetric deformations when the balloon films are in uniaxial tension state.

  7. Static reliability of concrete structures under extreme temperature, radiation, moisture and force loading

    International Nuclear Information System (INIS)

    Stepanek, P.; Stastnik, S.; Salajka, V.; Hradil, P.; Skolar, J.; Chlanda, V.

    2003-01-01

    The contribution presents some aspects of the static reliability of concrete structures under temperature effects and under mechanical loading. The mathematical model of a load-bearing concrete structure was performed using the FEM method. The temperature field and static stress that generated states of stress were taken into account. A brief description of some aspects of evaluation of the reliability within the primary circuit concrete structures is stated. The knowledge of actual physical and mechanical characteristics and chemical composition of concrete were necessary for obtaining correct results of numerical analysis. (author)

  8. Comparison of Static Picture and Video Prompting on the Performance of Cooking-Related Tasks by Students with Autism

    Science.gov (United States)

    Mechling, Linda C.; Gustafson, Melissa R.

    2009-01-01

    This study compared the effectiveness of static photographs and video prompts on the independent task performance of six young men with a diagnosis of autism. An adapted alternating-treatment design with baseline, comparison, withdrawal, and final treatment conditions was used to measure the percentage of cooking-related tasks completed…

  9. Static Q anti Q force from instanton gas and numerical lattice calculations

    International Nuclear Information System (INIS)

    Ilgenfrits, E.M.; Mueller-Preussker, M.

    1982-01-01

    Lattice Monte Carlo calculation predictions for the static strength between quarks are compared with the results obtained in the framework of instanton gas model and a typical instanton size is determined. Yang-Mills theory data for different ratios of Wilson loops in case of SU(3) for the string tension are presented. The instanton corrections to perturbation strength turn to be essential to reach an agreement with obtained by lattice calculations data inside the small-distance region up to approximately 0.3 fm. Arguments in favour of the statement that data difference in this region from the phenomenologically known value is connected with the notion of infinitely heavy quarks but not with neglect of virtual quark loops are presented

  10. Uncertainty relation and probability. Numerical illustration

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo; Umetsu, Koichiro

    2011-01-01

    The uncertainty relation and the probability interpretation of quantum mechanics are intrinsically connected, as is evidenced by the evaluation of standard deviations. It is thus natural to ask if one can associate a very small uncertainty product of suitably sampled events with a very small probability. We have shown elsewhere that some examples of the evasion of the uncertainty relation noted in the past are in fact understood in this way. We here numerically illustrate that a very small uncertainty product is realized if one performs a suitable sampling of measured data that occur with a very small probability. We introduce a notion of cyclic measurements. It is also shown that our analysis is consistent with the Landau-Pollak-type uncertainty relation. It is suggested that the present analysis may help reconcile the contradicting views about the 'standard quantum limit' in the detection of gravitational waves. (author)

  11. Active Design Method for the Static Characteristics of a Piezoelectric Six-Axis Force/Torque Sensor

    OpenAIRE

    Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng

    2014-01-01

    To address the bottleneck issues of an elastic-style six-axis force/torque sensor (six-axis force sensor), this work proposes a no-elastic piezoelectric six-axis force sensor. The operating principle of the piezoelectric six-axis force sensor is analyzed, and a structural model is constructed. The static-active design theory of the piezoelectric six-axis force sensor is established, including a static analytical/mathematical model and numerical simulation model (finite element model). A piezo...

  12. Modeling of static characteristics of switched reluctance motor

    International Nuclear Information System (INIS)

    Asgharmemon, A.; Hussain, I.; Daudpoto, J.

    2013-01-01

    To investigate the running characteristics of a switched reluctance motor, the static characteristics and related input data tables are required. The static characteristics comprise of flux linkage, co-energy and static torque characteristics. The co-energy and static torque are calculated once data of magnetization characteristics is available. The data of co-energy is required for the calculation of static torque characteristics. The simulation model includes the data of static characteristics for prediction of the instantaneous and steady state performance of the motor. In this research a computer based procedure of experiments is carried out for measurement of the magnetization characteristics. For every set of measurements, the removal of eddy current is carefully addressed. The experiments are carried out on an existing 8/6 pole rotary switched reluctance motor. Additionally, the instantaneous phase current, instantaneous torque and flux waveforms are produced by using linear, which is by default and spline data interpolation separately. The information obtained from theses simulation results will help in an improved simulation model for predicting the performance of the machine. (author)

  13. Numerical relativity and the early Universe

    Directory of Open Access Journals (Sweden)

    Mironov Sergey

    2016-01-01

    Full Text Available We consider numerical simulations in general relativity in ADM formalism with cosmological ansatz for the metric. This ansatz is convenient for investigations of the Universe creation in laboratory with Galileons. Here we consider toy model for the software: spherically symmetric scalar field minimally coupled to the gravity with asymmetric double well potential. We studied the dependence of radius of critical bubble on the parameters of the theory. It demonstrates the wide applicability of thin-wall approximation. We did not find any kind of stable bubble solution.

  14. Temperature shifts in the Sinai model: static and dynamical effects

    International Nuclear Information System (INIS)

    Sales, Marta; Bouchaud, Jean-Philippe; Ritort, Felix

    2003-01-01

    We study analytically and numerically the role of temperature shifts in the simplest model where the energy landscape is explicitly hierarchical, namely the Sinai model. This model has both attractive features (there are valleys within valleys in a strict self-similar sense), but also one important drawback: there is no phase transition so that the model is, in the large-size limit, effectively at zero temperature. We compute various static chaos indicators, that are found to be trivial in the large-size limit, but exhibit interesting features for finite sizes. Correspondingly, for finite times, some interesting rejuvenation effects, related to the self-similar nature of the potential, are observed. Still, the separation of time scales/length scales with temperature in this model is much weaker than in experimental spin glasses

  15. Generalized Bondi-Sachs equations for characteristic formalism of numerical relativity

    Science.gov (United States)

    Cao, Zhoujian; He, Xiaokai

    2013-11-01

    The Cauchy formalism of numerical relativity has been successfully applied to simulate various dynamical spacetimes without any symmetry assumption. But discovering how to set a mathematically consistent and physically realistic boundary condition is still an open problem for Cauchy formalism. In addition, the numerical truncation error and finite region ambiguity affect the accuracy of gravitational wave form calculation. As to the finite region ambiguity issue, the characteristic extraction method helps much. But it does not solve all of the above issues. Besides the above problems for Cauchy formalism, the computational efficiency is another problem. Although characteristic formalism of numerical relativity suffers the difficulty from caustics in the inner near zone, it has advantages in relation to all of the issues listed above. Cauchy-characteristic matching (CCM) is a possible way to take advantage of characteristic formalism regarding these issues and treat the inner caustics at the same time. CCM has difficulty treating the gauge difference between the Cauchy part and the characteristic part. We propose generalized Bondi-Sachs equations for characteristic formalism for the Cauchy-characteristic matching end. Our proposal gives out a possible same numerical evolution scheme for both the Cauchy part and the characteristic part. And our generalized Bondi-Sachs equations have one adjustable gauge freedom which can be used to relate the gauge used in the Cauchy part. Then these equations can make the Cauchy part and the characteristic part share a consistent gauge condition. So our proposal gives a possible new starting point for Cauchy-characteristic matching.

  16. Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations

    International Nuclear Information System (INIS)

    Kao, C.Y.; Osher, Stanley; Qian Jianliang

    2004-01-01

    We propose a simple, fast sweeping method based on the Lax-Friedrichs monotone numerical Hamiltonian to approximate viscosity solutions of arbitrary static Hamilton-Jacobi equations in any number of spatial dimensions. By using the Lax-Friedrichs numerical Hamiltonian, we can easily obtain the solution at a specific grid point in terms of its neighbors, so that a Gauss-Seidel type nonlinear iterative method can be utilized. Furthermore, by incorporating a group-wise causality principle into the Gauss-Seidel iteration by following a finite group of characteristics, we have an easy-to-implement, sweeping-type, and fast convergent numerical method. However, unlike other methods based on the Godunov numerical Hamiltonian, some computational boundary conditions are needed in the implementation. We give a simple recipe which enforces a version of discrete min-max principle. Some convergence analysis is done for the one-dimensional eikonal equation. Extensive 2-D and 3-D numerical examples illustrate the efficiency and accuracy of the new approach. To our knowledge, this is the first fast numerical method based on discretizing the Hamilton-Jacobi equation directly without assuming convexity and/or homogeneity of the Hamiltonian

  17. Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations

    Science.gov (United States)

    Kao, Chiu Yen; Osher, Stanley; Qian, Jianliang

    2004-05-01

    We propose a simple, fast sweeping method based on the Lax-Friedrichs monotone numerical Hamiltonian to approximate viscosity solutions of arbitrary static Hamilton-Jacobi equations in any number of spatial dimensions. By using the Lax-Friedrichs numerical Hamiltonian, we can easily obtain the solution at a specific grid point in terms of its neighbors, so that a Gauss-Seidel type nonlinear iterative method can be utilized. Furthermore, by incorporating a group-wise causality principle into the Gauss-Seidel iteration by following a finite group of characteristics, we have an easy-to-implement, sweeping-type, and fast convergent numerical method. However, unlike other methods based on the Godunov numerical Hamiltonian, some computational boundary conditions are needed in the implementation. We give a simple recipe which enforces a version of discrete min-max principle. Some convergence analysis is done for the one-dimensional eikonal equation. Extensive 2-D and 3-D numerical examples illustrate the efficiency and accuracy of the new approach. To our knowledge, this is the first fast numerical method based on discretizing the Hamilton-Jacobi equation directly without assuming convexity and/or homogeneity of the Hamiltonian.

  18. Black hole radiation with modified dispersion relation in tunneling paradigm: Static frame

    Directory of Open Access Journals (Sweden)

    Jun Tao

    2017-09-01

    Full Text Available To study possible deviations from the Hawking's prediction, we assume that the dispersion relations of matter fields are modified at high energies and use the Hamilton–Jacobi method to investigate the corresponding effects on the Hawking radiation in this paper. The preferred frame is the static frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energies but is modified near the Planck mass mp. We calculate the corrections to the Hawking temperature for massive and charged particles to O(mp−2 and massless and neutral particles to all orders. Our results suggest that the thermal spectrum of radiations near horizon is robust, e.g. corrections to the Hawking temperature are suppressed by mp. After the spectrum of radiations near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole. We find that the subleading logarithmic term of the entropy does not depend on how the dispersion relations of matter fields are modified. Finally, the luminosities of black holes are computed by using the geometric optics approximation.

  19. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    Science.gov (United States)

    Centrella, Joan

    2009-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  20. [Assessment of the macula function by static perimetry, microperimetry and rarebit perimetry in patients suffering from dry age related macular degeneration].

    Science.gov (United States)

    Nowomiejska, Katarzyna; Oleszczuk, Agnieszka; Zubilewicz, Anna; Krukowski, Jacek; Mańkowska, Anna; Rejdak, Robert; Zagórski, Zbigniew

    2007-01-01

    To compare the visual field results obtained by static perimetry, microperimetry and rabbit perimetry in patients suffering from dry age related macular degeneration (AMD). Fifteen eyes with dry AMD (hard or soft macula drusen and RPE disorders) were enrolled into the study. Static perimetry was performed using M2 macula program included in Octopus 101 instrument. Microperimetry was performed using macula program (14-2 threshold, 10dB) within 10 degrees of the central visual field. The fovea program within 4 degrees was used while performing rarebit perimetry. The mean sensitivity was significantly lower (p<0.001) during microperimetry (13.5 dB) comparing to static perimetry (26.7 dB). The mean deviation was significantly higher (p<0.001) during microperimetry (-6.32 dB) comparing to static perimetry (-3.11 dB). The fixation was unstable in 47% and eccentric in 40% while performing microperimetry. The median of the "mean hit rate" in rarebit perimetry was 90% (range 40-100%). The mean examination duration was 6.5 min. in static perimetry, 10.6 min. in microperimetry and 5,5 min. in rarebit perimetry (p<0.001). Sensitivity was 30%, 53% and 93% respectively. The visual field defects obtained by microperimetry were more pronounced than those obtained by static perimetry. Microperimetry was the most sensitive procedure although the most time-consuming. Microperimetry enables the control of the fixation position and stability, that is not possible using the remaining methods. Rarebit perimetry revealed slight reduction of the integrity of neural architecture of the retina. Microperimetry and rarebit perimetry provide more information in regard to the visual function than static perimetry, thus are the valuable method in the diagnosis of dry AMD.

  1. Vacuum energy density near static distorted black holes

    International Nuclear Information System (INIS)

    Frolov, V.P.; Sanchez, N.

    1986-01-01

    We investigate the contribution of massless fields of spins 0, 1/2, and 1 to the vacuum polarization near the event horizon of static Ricci-flat space-times. We do not assume any particular spatial symmetry. Within the Page-Brown ''ansatz'' we calculate 2 >/sup ren/ and /sup ren/ near static distorted black holes, for both the Hartle-Hawking (Vertical Bar>/sub H/) and Boulware (Vertical Bar>/sub B/) vacua. Using Israel's description of static space-times, we express these quantities in an invariant geometric way. We obtain that 2 >/sub H//sup ren/ and /sub H//sup ren/ near the horizon depend only on the two-dimensional geometry of the horizon surface. We find 2 >/sub H//sup ren/ = (1/48π 2 )K 0 , 0 0 >/sub H//sup ren/ = (7α+12β )K 0 2 -α/sup( 2 )ΔK 0 . $K sub 0: is the Gaussian curvature of the horizon, and α and β are numerical coefficients depending on the spin of a field. The term in /sup( 2 )ΔK 0 is characteristic of the distortion of the black hole. When the event horizon is not distorted, K 0 is a constant and this term disappears

  2. Analysis by numerical simulations of non-linear phenomenons in vertical pump rotor dynamic

    International Nuclear Information System (INIS)

    Bediou, J.; Pasqualini, G.

    1992-01-01

    Controlling dynamical behavior of main coolant pumps shaftlines is an interesting subject for the user and the constructor. The first is mainly concerned by the interpretation of on field observed behavior, monitoring, reliability and preventive maintenance of his machines. The second must in addition manage with sometimes contradictory requirements related to mechanical design and performances optimization (shaft diameter reduction, clearance,...). The use of numerical modeling is now a classical technique for simple analysis (rough prediction of critical speeds for instance) but is still limited, in particular for vertical shaftline especially when equipped with hydrodynamic bearings, due to the complexity of encountered phenomenons in that type of machine. The vertical position of the shaftline seems to be the origin of non linear dynamical behavior, the analysis of which, as presented in the following discussion, requires specific modelization of fluid film, particularly for hydrodynamic bearings. The low static load generally no longer allows use of stiffness and damping coefficients classically calculated by linearizing fluid film equations near a stable static equilibrium position. For the analysis of such machines, specific numerical models have been developed at Electricite de France in a package for general rotordynamics analysis. Numerical models are briefly described. Then an example is precisely presented and discussed to illustrate some considered phenomenons and their consequences on machine behavior. In this example, the authors interpret the observed behavior by using numerical models, and demonstrate the advantage of such analysis for better understanding of vertical pumps rotordynamic

  3. Getting a Kick Out of Numerical Relativity

    Science.gov (United States)

    2006-01-01

    Operating ground-based gravitational wave detectors and a planned instrument in space are bringing about the new field of gravitational wave astronomy. A prime source for any of these observatories is the merger of a system of two black holes. Brought together by copious losses of gravitational-wave energy, these systems merge in a burst of energy with a peak power exceeding any electromagnetic source. Observations of these sources will generate a wealth of astrophysical information, and may provide an unparalleled probe of strong-field gravitational physics, but a full interpretation of the observations will require detailed predictions from General Relativity. I will discuss recent advances in numerical simulations of binary black hole systems which are generating dramatic progress in understanding binary black hole mergers. Recent achievements include the first simulations of binary black hole systems through several orbits and merger, leading to detailed predictions for the final portion of the gravitational radiation waveforms from equal-mass mergers. For unequal-mass mergers, it has recently become possible to measure the impulsive kick imparted to the final black hole, by the asymmetry of the merger radiation. These first results announce an accelerating wave of progress soon to come from the energetic field of numerical relativity.

  4. Static resistance function for steel-plate composite (SC) walls subject to impactive loading

    International Nuclear Information System (INIS)

    Bruhl, Jakob C.; Varma, Amit H.; Kim, Joo Min

    2015-01-01

    Highlights: • An idealized static resistance function for SC walls is proposed. • The influence of design parameters on static resistance is explained. • SDOF models can accurately estimate global response of SC walls to missile impact. - Abstract: Steel-plate composite (SC) walls consist of a plain concrete core reinforced with two steel faceplates on the surfaces. Modules (consisting of steel faceplates, shear connectors and tie-bars) can be shop-fabricated and shipped to the site for erection and concrete casting, which expedites construction schedule and thus economy. SC structures have recently been used in nuclear power plant designs and are being considered for the next generation of small modular reactors. Design for impactive and impulsive loading is an important consideration for SC walls in safety-related nuclear facilities. The authors have previously developed design methods to prevent local failure (perforation) of SC walls due to missile impact. This paper presents the development of static resistance functions for use in single-degree-of-freedom (SDOF) analyses to predict the maximum displacement response of SC walls subjected to missile impact and designed to resist local failure (perforation). The static resistance function for SC walls is developed using results of numerical analyses and parametric studies conducted using benchmarked 3D finite element (FE) models. The influence of various design parameters are discussed and used to develop idealized bilinear resistance functions for SC walls with fixed edges and simply supported edges. Results from dynamic non-linear FE analysis of SC panels subjected to rigid missile impact are compared with the maximum displacements predicted by SDOF analyses using the bilinear resistance function.

  5. Static resistance function for steel-plate composite (SC) walls subject to impactive loading

    Energy Technology Data Exchange (ETDEWEB)

    Bruhl, Jakob C., E-mail: jbruhl@purdue.edu; Varma, Amit H., E-mail: ahvarma@purdue.edu; Kim, Joo Min, E-mail: kim1493@purdue.edu

    2015-12-15

    Highlights: • An idealized static resistance function for SC walls is proposed. • The influence of design parameters on static resistance is explained. • SDOF models can accurately estimate global response of SC walls to missile impact. - Abstract: Steel-plate composite (SC) walls consist of a plain concrete core reinforced with two steel faceplates on the surfaces. Modules (consisting of steel faceplates, shear connectors and tie-bars) can be shop-fabricated and shipped to the site for erection and concrete casting, which expedites construction schedule and thus economy. SC structures have recently been used in nuclear power plant designs and are being considered for the next generation of small modular reactors. Design for impactive and impulsive loading is an important consideration for SC walls in safety-related nuclear facilities. The authors have previously developed design methods to prevent local failure (perforation) of SC walls due to missile impact. This paper presents the development of static resistance functions for use in single-degree-of-freedom (SDOF) analyses to predict the maximum displacement response of SC walls subjected to missile impact and designed to resist local failure (perforation). The static resistance function for SC walls is developed using results of numerical analyses and parametric studies conducted using benchmarked 3D finite element (FE) models. The influence of various design parameters are discussed and used to develop idealized bilinear resistance functions for SC walls with fixed edges and simply supported edges. Results from dynamic non-linear FE analysis of SC panels subjected to rigid missile impact are compared with the maximum displacements predicted by SDOF analyses using the bilinear resistance function.

  6. Decentralized guaranteed cost static output feedback vibration control for piezoelectric smart structures

    International Nuclear Information System (INIS)

    Jiang, Jian-ping; Li, Dong-xu

    2010-01-01

    This paper is devoted to the study of the decentralized guaranteed cost static output feedback vibration control for piezoelectric smart structures. A smart panel with collocated piezoelectric actuators and velocity sensors is modeled using a finite element method, and then the size of the model is reduced in the state space using the modal Hankel singular value. The necessary and sufficient conditions of decentralized guaranteed cost static output feedback control for the reduced system have been presented. The decentralized and centralized static output feedback matrices can be obtained from solving two linear matrix inequalities. A comparison between centralized control and decentralized control is performed in order to investigate their effectiveness in suppressing vibration of a smart panel. Numerical results show that when the system is subjected to initial displacement or white noise disturbance, the decentralized and centralized controls are both very effective and the control results are very close

  7. Implementation of standard testbeds for numerical relativity

    Energy Technology Data Exchange (ETDEWEB)

    Babiuc, M C [Department of Physics and Physical Science, Marshall University, Huntington, WV 25755 (United States); Husa, S [Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Alic, D [Department of Physics, University of the Balearic Islands, Cra Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Hinder, I [Center for Gravitational Wave Physics, Pennsylvania State University, University Park, PA 16802 (United States); Lechner, C [Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Mohrenstrasse 39, 10117 Berlin (Germany); Schnetter, E [Center for Computation and Technology, 216 Johnston Hall, Louisiana State University, Baton Rouge, LA 70803 (United States); Szilagyi, B; Dorband, N; Pollney, D; Winicour, J [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Am Muehlenberg 1, 14076 Golm (Germany); Zlochower, Y [Center for Computational Relativity and Gravitation, School of Mathematical Sciences, Rochester Institute of Technology, 78 Lomb Memorial Drive, Rochester, New York 14623 (United States)

    2008-06-21

    We discuss results that have been obtained from the implementation of the initial round of testbeds for numerical relativity which was proposed in the first paper of the Apples with Apples Alliance. We present benchmark results for various codes which provide templates for analyzing the testbeds and to draw conclusions about various features of the codes. This allows us to sharpen the initial test specifications, design a new test and add theoretical insight.

  8. Matched filtering of numerical relativity templates of spinning binary black holes

    International Nuclear Information System (INIS)

    Vaishnav, Birjoo; Hinder, Ian; Herrmann, Frank; Shoemaker, Deirdre

    2007-01-01

    Tremendous progress has been made towards the solution of the binary-black-hole problem in numerical relativity. The waveforms produced by numerical relativity will play a role in gravitational wave detection as either test beds for analytic template banks or as template banks themselves. As the parameter space explored by numerical relativity expands, the importance of quantifying the effect that each parameter has on first the detection of gravitational waves and then the parameter estimation of their sources increases. In light of this, we present a study of equal-mass, spinning binary-black-hole evolutions through matched filtering techniques commonly used in data analysis. We study how the match between two numerical waveforms varies with numerical resolution, initial angular momentum of the black holes, and the inclination angle between the source and the detector. This study is limited by the fact that the spinning black-hole binaries are oriented axially and the waveforms only contain approximately two and a half orbits before merger. We find that for detection purposes, spinning black holes require the inclusion of the higher harmonics in addition to the dominant mode, a condition that becomes more important as the black-hole spins increase. In addition, we conduct a preliminary investigation of how well a template of fixed spin and inclination angle can detect target templates of arbitrary but nonprecessing spin and inclination for the axial case considered here

  9. Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Xiao-Hui Sun

    2018-04-01

    Full Text Available It has been shown that using nanofluids as heat carrier fluids enhances the conductive and convective heat transfer of geothermal heat exchangers. In this paper, we study the stability of nanofluids in a geothermal exchanger by numerically simulating nanoparticle sedimentation during a shut-down process. The nanofluid suspension is modeled as a non-linear complex fluid; the nanoparticle migration is modeled by a particle flux model, which includes the effects of Brownian motion, gravity, turbulent eddy diffusivity, etc. The numerical results indicate that when the fluid is static, the nanoparticle accumulation appears to be near the bottom borehole after many hours of sedimentation. The accumulated particles can be removed by the fluid flow at a relatively high velocity. These observations indicate good suspension stability of the nanofluids, ensuring the operational reliability of the heat exchanger. The numerical results also indicate that a pulsed flow and optimized geometry of the bottom borehole can potentially improve the suspension stability of the nanofluids further.

  10. Comparing Post-Newtonian and Numerical-Relativity Precession Dynamics

    Science.gov (United States)

    Kidder, Lawrence; Ossokine, Sergei; Boyle, Michael; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela

    2015-04-01

    Binary black-hole systems are expected to be important sources of gravitational waves for upcoming gravitational-wave detectors. If the spins are not colinear with each other or with the orbital angular momentum, these systems exhibit complicated precession dynamics that are imprinted on the gravitational waveform. We develop a new procedure to match the precession dynamics computed by post-Newtonian (PN) theory to those of numerical binary black-hole simulations in full general relativity. For numerical relativity (NR) simulations lasting approximately two precession cycles, we find that the PN and NR predictions for the directions of the orbital angular momentum and the spins agree to better than ~1° with NR during the inspiral, increasing to 5° near merger. Nutation of the orbital plane on the orbital time-scale agrees well between NR and PN, whereas nutation of the spin direction shows qualitatively different behavior in PN and NR. We also examine how the PN equations for precession and orbital-phase evolution converge with PN order, and we quantify the impact of various choices for handling partially known PN terms.

  11. On the stability of Einstein static universe at background level in massive bigravity

    Directory of Open Access Journals (Sweden)

    M. Mousavi

    2017-06-01

    Full Text Available We study the static cosmological solutions and their stability at background level in the framework of massive bigravity theory with Friedmann–Robertson–Walker (FRW metrics. By the modification proposed in the cosmological equations subject to a perfect fluid we obtain new solutions interpreted as the Einstein static universe. It turns out that the non-vanishing size of initial scale factor of Einstein static universe depends on the non-vanishing three-dimensional spatial curvature of FRW metrics and also the graviton's mass. By dynamical system approach and numerical analysis, we find that the extracted solutions for closed and open universes can be stable for some viable ranges of equation of state parameter, viable values of fraction of two scale factors, and viable values of graviton's mass obeying the hierarchy m<

  12. Effects of Geofoam Panels on Static Behavior of Cantilever Retaining Wall

    Directory of Open Access Journals (Sweden)

    Navid Hasanpouri Notash

    2018-01-01

    Full Text Available Geofoam is one of the geosynthetic products that can be used in geotechnical applications. According to researches, expanded polystyrene (EPS geofoam placed directly against a rigid retaining wall has been proposed as a strategy to reduce static loads on the wall. This study employed a finite difference analysis using a 2-D FLAC computer program by considering yielding and nonyielding states for retaining walls to explore the effectiveness of geofoam panels in improving the static performance of cantilever retaining walls. Retaining walls at heights of 3, 6, and 9 meters and geofoam panels with densities of 15, 20, and 25 (kg/m3 at three relative thicknesses of t/H = 0.05, 0.2, and 0.4 were modelled in this numerical study. In addition, the performance of the double EPS buffer system, which involves two vertical geofoam panels, in retaining walls’ stability with four panel spacing (50, 100, 150, and 200 cm was also evaluated in this research. The results showed that use of EPS15 with density equal to 15 (kg/m3 which has the lowest density among other geofoam panels has a significant role in reduction of lateral stresses, although the performance of geofoam in nonyielding retaining walls is better than yielding retaining walls.

  13. Developmental model of static allometry in holometabolous insects.

    Science.gov (United States)

    Shingleton, Alexander W; Mirth, Christen K; Bates, Peter W

    2008-08-22

    The regulation of static allometry is a fundamental developmental process, yet little is understood of the mechanisms that ensure organs scale correctly across a range of body sizes. Recent studies have revealed the physiological and genetic mechanisms that control nutritional variation in the final body and organ size in holometabolous insects. The implications these mechanisms have for the regulation of static allometry is, however, unknown. Here, we formulate a mathematical description of the nutritional control of body and organ size in Drosophila melanogaster and use it to explore how the developmental regulators of size influence static allometry. The model suggests that the slope of nutritional static allometries, the 'allometric coefficient', is controlled by the relative sensitivity of an organ's growth rate to changes in nutrition, and the relative duration of development when nutrition affects an organ's final size. The model also predicts that, in order to maintain correct scaling, sensitivity to changes in nutrition varies among organs, and within organs through time. We present experimental data that support these predictions. By revealing how specific physiological and genetic regulators of size influence allometry, the model serves to identify developmental processes upon which evolution may act to alter scaling relationships.

  14. Static and dynamic properties of frictional phenomena in a one-dimensional system with randomness

    International Nuclear Information System (INIS)

    Kawaguchi, T.; Matsukawa, H.

    1997-01-01

    Static and dynamic frictional phenomena at the interface with random impurities are investigated in a two-chain model with incommensurate structure. Static frictional force is caused by the impurity pinning and/or by the pinning due to the regular potential, which is responsible for the breaking of analyticity transition for impurity-free cases. It is confirmed that the static frictional force is always finite in the presence of impurities, in contrast to the impurity-free system. The nature of impurity pinning is discussed in connection with that in density waves. The kinetic frictional force of a steady sliding state is also investigated numerically. The relationship between the sliding velocity dependence of the kinetic frictional force and the strength of impurity potential is discussed. copyright 1997 The American Physical Society

  15. Quasi-Static Single-Component Hybrid Simulation of a Composite Structure with Multi-Axis Control

    DEFF Research Database (Denmark)

    Høgh, J.; Waldbjørn, J.; Wittrup-Schmidt, J.

    2015-01-01

    This paper presents a quasi-static hybrid simulation performed on a single component structure. Hybrid simulation is a substructural technique, where a structure is divided into two sections: a numerical section of the main structure and a physical experiment of the remainder. In previous cases...

  16. Masonry constructions mechanical models and numerical applications

    CERN Document Server

    Lucchesi, Massimiliano; Padovani, Cristina

    2008-01-01

    Numerical methods for the structural analysis of masonry constructions can be of great value in assessing the safety of artistically important masonry buildings and optimizing potential operations of maintenance and strengthening in terms of their cost-effectiveness, architectural impact and static effectiveness. This monograph firstly provides a detailed description of the constitutive equation of masonry-like materials, clearly setting out its most important features. It then goes on to provide a numerical procedure to solve the equilibrium problem of masonry solids. A large portion of the w

  17. Static measurements at PUSPATI TRIGA Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syed Nahar Bin Syed Hussin Shabuddin; Sharifuldin Bin Salleh, Mohd Amin; Harasawa, Susumu

    1985-06-01

    Static measurements at the PUSPATI TRIGA Reactor (RTP) were made to study the variation of its fuel temperature with reactor power. Some constants that relate power to fuel temperature behaviour were also determined. These constants are reflective of the coolling characteristics in the reactor core. Comparison was also made between the negative temperature coefficient of reactivity obtained from these measurements to those published in the Safety Analysis Report, SAR. The differences between these values are attributable to a delayed effect found in static measurements but not included in the SAR calculation which consider the prompt effect only.

  18. Einstein's conversion from his static to an expanding universe

    Science.gov (United States)

    Nussbaumer, Harry

    2014-02-01

    In 1917 Einstein initiated modern cosmology by postulating, based on general relativity, a homogenous, static, spatially curved universe. To counteract gravitational contraction he introduced the cosmological constant. In 1922 Alexander Friedman showed that Albert Einstein's fundamental equations also allow dynamical worlds, and in 1927 Georges Lemaître, backed by observational evidence, concluded that our universe was expanding. Einstein impetuously rejected Friedman's as well as Lemaître's findings. However, in 1931 he retracted his former static model in favour of a dynamic solution. This investigation follows Einstein on his hesitating path from a static to the expanding universe. Contrary to an often advocated belief the primary motive for his switch was not observational evidence, but the realisation that his static model was unstable.

  19. Kindergartners' Spontaneous Focusing on Numerosity in Relation to Their Number-Related Utterances during Numerical Picture Book Reading

    Science.gov (United States)

    Rathé, Sanne; Torbeyns, Joke; Hannula-Sormunen, Minna M.; Verschaffel, Lieven

    2016-01-01

    This study investigated the relationship between kindergartners' Spontaneous Focusing on Numerosity (SFON) and their number-related utterances during numerical picture book reading. Forty-eight 4- to 5-year-olds were individually interviewed via a SFON Imitation Task and a numerical picture book reading activity. We expected differences in the…

  20. From Static Output Feedback to Structured Robust Static Output Feedback: A Survey

    OpenAIRE

    Sadabadi , Mahdieh ,; Peaucelle , Dimitri

    2016-01-01

    This paper reviews the vast literature on static output feedback design for linear time-invariant systems including classical results and recent developments. In particular, we focus on static output feedback synthesis with performance specifications, structured static output feedback, and robustness. The paper provides a comprehensive review on existing design approaches including iterative linear matrix inequalities heuristics, linear matrix inequalities with rank constraints, methods with ...

  1. Granular flow in static mixers by coupled DEM/CFD approach

    OpenAIRE

    Pezo Lato; Pezo Milada; Jovanović Aca; Kosanić Nenad; Petrović Aleksandar; Lević Ljubinko

    2016-01-01

    The mixing process greatly influence the mixing efficiency, as well as the quality and the price of the intermediate and/or the final product. Static mixer is used for premixing action before the main mixing process, for significant reduction of mixing time and energy consumption. This type of premixing action is not investigated in detail in the open literature. In this article, the novel numerical approach called Discrete Element Method is used for modell...

  2. Numerical performance of the parabolized ADM formulation of general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios; Hansen, Jakob; Khokhlov, Alexei

    2008-01-01

    In a recent paper [Vasileios Paschalidis, Phys. Rev. D 78, 024002 (2008).], the first coauthor presented a new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner (ADM) formulation of the equations of general relativity. By parabolizing first-order ADM in a certain way, the PADM formulation turns it into a well-posed system which resembles the structure of mixed hyperbolic-second-order parabolic partial differential equations. The surface of constraints of PADM becomes a local attractor for all solutions and all possible well-posed gauge conditions. This paper describes a numerical implementation of PADM and studies its accuracy and stability in a series of standard numerical tests. Numerical properties of PADM are compared with those of standard ADM and its hyperbolic Kidder, Scheel, Teukolsky (KST) extension. The PADM scheme is numerically stable, convergent, and second-order accurate. The new formulation has better control of the constraint-violating modes than ADM and KST.

  3. Counterterms for static Lovelock solutions

    International Nuclear Information System (INIS)

    Mehdizadeh, M.R.; Dehghani, M.H.; Zangeneh, M.K.

    2015-01-01

    In this paper, we introduce the counterterms that remove the non-logarithmic divergences of the action in third order Lovelock gravity for static spacetimes. We do this by defining the cosmological constant in such a way that the asymptotic form of the metric have the same form in Lovelock and Einstein gravities. Thus, we employ the counterterms of Einstein gravity and show that the power law divergences of the action of Lovelock gravity for static spacetimes can be removed by suitable choice of coefficients. We find that the dependence of these coefficients on the dimension in Lovelock gravity is the same as in Einstein gravity. We also introduce the finite energy-momentum tensor and employ these counterterms to calculate the finite action and mass of static black hole solutions of third order Lovelock gravity. Next, we calculate the thermodynamic quantities and show that the entropy calculated through the use of Gibbs-Duhem relation is consistent with the obtained entropy by Wald's formula. Furthermore, we find that in contrast to Einstein gravity in which there exists no uncharged extreme black hole, third order Lovelock gravity can have these kind of black holes. Finally, we investigate the stability of static charged black holes of Lovelock gravity in canonical ensemble and find that small black holes show a phase transition between very small and small black holes, while the large ones are stable. (orig.)

  4. Counterterms for static Lovelock solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mehdizadeh, M.R. [Shahid Bahonar University, Department of Physics, PO Box 76175, Kerman (Iran, Islamic Republic of); Dehghani, M.H. [Research Institute for Astrophysics and Astronomy of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Zangeneh, M.K. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)

    2015-06-15

    In this paper, we introduce the counterterms that remove the non-logarithmic divergences of the action in third order Lovelock gravity for static spacetimes. We do this by defining the cosmological constant in such a way that the asymptotic form of the metric have the same form in Lovelock and Einstein gravities. Thus, we employ the counterterms of Einstein gravity and show that the power law divergences of the action of Lovelock gravity for static spacetimes can be removed by suitable choice of coefficients. We find that the dependence of these coefficients on the dimension in Lovelock gravity is the same as in Einstein gravity. We also introduce the finite energy-momentum tensor and employ these counterterms to calculate the finite action and mass of static black hole solutions of third order Lovelock gravity. Next, we calculate the thermodynamic quantities and show that the entropy calculated through the use of Gibbs-Duhem relation is consistent with the obtained entropy by Wald's formula. Furthermore, we find that in contrast to Einstein gravity in which there exists no uncharged extreme black hole, third order Lovelock gravity can have these kind of black holes. Finally, we investigate the stability of static charged black holes of Lovelock gravity in canonical ensemble and find that small black holes show a phase transition between very small and small black holes, while the large ones are stable. (orig.)

  5. The plasma focus - numerical experiments leading technology

    International Nuclear Information System (INIS)

    Saw, S.H.; Lee, S.

    2013-01-01

    Numerical experiments on the plasma focus are now used routinely to assist design and provide reference points for diagnostics. More importantly guidance has been given regarding the implementation of technology for new generations of plasma focus devices. For example intensive series of experiments have shown that it is of no use to reduce static bank inductance L0 below certain values because of the consistent loading effects of the plasma focus dynamics on the capacitor bank. Thus whilst it was thought that the PF1000 could receive major benefits by reducing its bank inductance L 0 , numerical experiments have shown to the contrary that its present L 0 of 30 nH is already optimum and that reducing L 0 would be a very expensive fruitless exercise. This knowledge gained from numerical experiments now acts as a general valuable guideline to all high performance (ie low inductance) plasma focus devices not to unnecessarily attempt to further lower the static inductance L 0 . The numerical experiments also show that the deterioration of the yield scaling law (e.g. the fusion neutron yield scaling with storage energy) is inevitable again due to the consistent loading effect of the plasma focus, which becomes more and more dominant as capacitor bank impedance reduces with increasing capacitance C 0 as storage energy is increased. This line of thinking has led to the suggestion of using higher voltages (as an alternative to increasing C 0 ) and to seeding of Deuterium with noble gases in order to enhance compression through thermodynamic mechanisms and through radiation cooling effects of strong line radiation. Circuit manipulation e.g. to enhance focus pinch compression by current-stepping is also being numerically experimented upon. Ultimately however systems have to be built, guided by numerical experiments, so that the predicted technology may be proven and realized. (author)

  6. Estimation of static parameters based on dynamical and physical properties in limestone rocks

    Science.gov (United States)

    Ghafoori, Mohammad; Rastegarnia, Ahmad; Lashkaripour, Gholam Reza

    2018-01-01

    Due to the importance of uniaxial compressive strength (UCS), static Young's modulus (ES) and shear wave velocity, it is always worth to predict these parameters from empirical relations that suggested for other formations with same lithology. This paper studies the physical, mechanical and dynamical properties of limestone rocks using the results of laboratory tests which carried out on 60 the Jahrum and the Asmari formations core specimens. The core specimens were obtained from the Bazoft dam site, hydroelectric supply and double-curvature arch dam in Iran. The Dynamic Young's modulus (Ed) and dynamic Poisson ratio were calculated using the existing relations. Some empirical relations were presented to estimate uniaxial compressive strength, as well as static Young's modulus and shear wave velocity (Vs). Results showed the static parameters such as uniaxial compressive strength and static Young's modulus represented low correlation with water absorption. It is also found that the uniaxial compressive strength and static Young's modulus had high correlation with compressional wave velocity and dynamic Young's modulus, respectively. Dynamic Young's modulus was 5 times larger than static Young's modulus. Further, the dynamic Poisson ratio was 1.3 times larger than static Poisson ratio. The relationship between shear wave velocity (Vs) and compressional wave velocity (Vp) was power and positive with high correlation coefficient. Prediction of uniaxial compressive strength based on Vp was better than that based on Vs . Generally, both UCS and static Young's modulus (ES) had good correlation with Ed.

  7. Theoretical and applied aerodynamics and related numerical methods

    CERN Document Server

    Chattot, J J

    2015-01-01

    This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and h...

  8. Static electricity: A literature review

    Science.gov (United States)

    Crow, Rita M.

    1991-11-01

    The major concern with static electricity is its discharging in a flammable atmosphere which can explode and cause a fire. Textile materials can have their electrical resistivity decreased by the addition of antistatic finishes, imbedding conductive particles into the fibres or by adding metal fibers to the yarns. The test methods used in the studies of static electricity include measuring the static properties of materials, of clothed persons, and of the ignition energy of flammable gases. Surveys have shown that there is sparse evidence for fires definitively being caused by static electricity. However, the 'worst-case' philosophy has been adopted and a static electricity safety code is described, including correct grounding procedures and the wearing of anti-static clothing and footwear.

  9. Age-related increase in brain activity during task-related and -negative networks and numerical inductive reasoning.

    Science.gov (United States)

    Sun, Li; Liang, Peipeng; Jia, Xiuqin; Qi, Zhigang; Li, Kuncheng

    2014-01-01

    Recent neuroimaging studies have shown that elderly adults exhibit increased and decreased activation on various cognitive tasks, yet little is known about age-related changes in inductive reasoning. To investigate the neural basis for the aging effect on inductive reasoning, 15 young and 15 elderly subjects performed numerical inductive reasoning while in a magnetic resonance (MR) scanner. Functional magnetic resonance imaging (fMRI) analysis revealed that numerical inductive reasoning, relative to rest, yielded multiple frontal, temporal, parietal, and some subcortical area activations for both age groups. In addition, the younger participants showed significant regions of task-induced deactivation, while no deactivation occurred in the elderly adults. Direct group comparisons showed that elderly adults exhibited greater activity in regions of task-related activation and areas showing task-induced deactivation (TID) in the younger group. Our findings suggest an age-related deficiency in neural function and resource allocation during inductive reasoning.

  10. Investigation of the Dynamic Contact Angle Using a Direct Numerical Simulation Method.

    Science.gov (United States)

    Zhu, Guangpu; Yao, Jun; Zhang, Lei; Sun, Hai; Li, Aifen; Shams, Bilal

    2016-11-15

    A large amount of residual oil, which exists as isolated oil slugs, remains trapped in reservoirs after water flooding. Numerous numerical studies are performed to investigate the fundamental flow mechanism of oil slugs to improve flooding efficiency. Dynamic contact angle models are usually introduced to simulate an accurate contact angle and meniscus displacement of oil slugs under a high capillary number. Nevertheless, in the oil slug flow simulation process, it is unnecessary to introduce the dynamic contact angle model because of a negligible change in the meniscus displacement after using the dynamic contact angle model when the capillary number is small. Therefore, a critical capillary number should be introduced to judge whether the dynamic contact model should be incorporated into simulations. In this study, a direct numerical simulation method is employed to simulate the oil slug flow in a capillary tube at the pore scale. The position of the interface between water and the oil slug is determined using the phase-field method. The capacity and accuracy of the model are validated using a classical benchmark: a dynamic capillary filling process. Then, different dynamic contact angle models and the factors that affect the dynamic contact angle are analyzed. The meniscus displacements of oil slugs with a dynamic contact angle and a static contact angle (SCA) are obtained during simulations, and the relative error between them is calculated automatically. The relative error limit has been defined to be 5%, beyond which the dynamic contact angle model needs to be incorporated into the simulation to approach the realistic displacement. Thus, the desired critical capillary number can be determined. A three-dimensional universal chart of critical capillary number, which functions as static contact angle and viscosity ratio, is given to provide a guideline for oil slug simulation. Also, a fitting formula is presented for ease of use.

  11. Process design of a new injection method of liquid CO2 at the intermediate depths in the ocean using a static mixer

    International Nuclear Information System (INIS)

    Tajima, Hideo; Yamasaki, Akihiro; Kiyono, Fumio

    2005-01-01

    Process design for a new injection method of liquid CO 2 using a static mixer was conducted based on laboratory experimental results on the formation process of liquid CO 2 drops covered with hydrate film by a Kenics-type static mixer, and numerical simulation of the liquid CO 2 drops at 500 and 1500 m. The Sauter Mean Diameter (SMD) of the liquid CO 2 drops covered with hydrate film was dramatically decreased with the use of the static mixer; empirical equations were obtained for the SMD, and also the maximum and minimum diameters of the liquid CO 2 drops for a given flow velocity (Weber number, We). The ascending and dissolving behavior of a liquid CO 2 drop with hydrate released in the ocean at an intermediate depth was numerically simulated, and the maximum drop diameter to avoid evaporation of the drop before complete dissolution was estimated. Based on these results, scaling up of the static mixer was conducted by assuming a disposal process of CO 2 emitted from a 100-MW thermal power plant, and the mixer diameter was determined as a function of the given SMD. Moreover, the power consumption of the static mixer was evaluated and found to be almost negligible. (author)

  12. Robust non-fragile finite-frequency H∞ static output-feedback control for active suspension systems

    Science.gov (United States)

    Wang, Gang; Chen, Changzheng; Yu, Shenbo

    2017-07-01

    This paper deals with the problem of non-fragile H∞ static output-feedback control of vehicle active suspension systems with finite-frequency constraint. The control objective is to improve ride comfort within the given frequency range and ensure the hard constraints in the time-domain. Moreover, in order to enhance the robustness of the controller, the control gain perturbation is also considered in controller synthesis. Firstly, a new non-fragile H∞ finite-frequency control condition is established by using generalized Kalman-Yakubovich-Popov (GKYP) lemma. Secondly, the static output-feedback control gain is directly derived by using a non-iteration algorithm. Different from the existing iteration LMI results, the static output-feedback design is simple and less conservative. Finally, the proposed control algorithm is applied to a quarter-car active suspension model with actuator dynamics, numerical results are made to show the effectiveness and merits of the proposed method.

  13. On the propagation of a quasi-static disturbance in a heterogeneous, deformable, and porous medium with pressure-dependent properties

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.

    2011-10-01

    Using an asymptotic technique, valid when the medium properties are smoothly-varying, I derive a semi-analytic expression for the propagation velocity of a quasi-static disturbance traveling within a nonlinear-elastic porous medium. The phase, a function related to the propagation time, depends upon the properties of the medium, including the pressure-sensitivities of the medium parameters, and on pressure and displacement amplitude changes. Thus, the propagation velocity of a disturbance depends upon its amplitude, as might be expected for a nonlinear process. As a check, the expression for the phase function is evaluated for a poroelastic medium, when the material properties do not depend upon the fluid pressure. In that case, the travel time estimates agree with conventional analytic estimates, and with values calculated using a numerical simulator. For a medium with pressure-dependent permeability I find general agreement between the semi-analytic estimates and estimates from a numerical simulation. In this case the pressure amplitude changes are obtained from the numerical simulator.

  14. Relationship Between Elderly Body Composition Indices and Static and Dynamic Balance in Relation to Their Rate of Falling

    Directory of Open Access Journals (Sweden)

    Elham Azimzadeh

    2013-01-01

    Full Text Available Objectives: The purpose of this study was to investigate relationship between body composition indices with static and dynamic balance and rate of falling in active elderly people. Methods & Materials: This research was a correlation study. Active elderly women volunteered for participation in this research (n=45. Body composition indices (body fat mass, fat free mass, body mass index, waist to hip ratio measured with the body composition analyzer. Static and dynamic balance measured by Biodex, with postural stability and fall risk tests, respectively. Also, the rate of falling in the previous 1- year asked for subjects. Statically analyses performed with the Pearson correlation test, significant level was set at P≤0.05. SPSS software was used. Results: The results of this study showed all of body composition indices have significant correlation with static and dynamic balance and rate of falling (P≤0.05. Conclusion: The finding of this research showed that all of body composition indices have significant correlation with static and dynamic balance and rate of falling in active elderly people. Therefore, it seems physical activity through improvement of body composition indices in active elderly people, causes improvement of static and dynamic balance and lowering the rate of falling.

  15. Numerical methods in multibody dynamics

    CERN Document Server

    Eich-Soellner, Edda

    1998-01-01

    Today computers play an important role in the development of complex mechanical systems, such as cars, railway vehicles or machines. Efficient simulation of these systems is only possible when based on methods that explore the strong link between numerics and computational mechanics. This book gives insight into modern techniques of numerical mathematics in the light of an interesting field of applications: multibody dynamics. The important interaction between modeling and solution techniques is demonstrated by using a simplified multibody model of a truck. Different versions of this mechanical model illustrate all key concepts in static and dynamic analysis as well as in parameter identification. The book focuses in particular on constrained mechanical systems. Their formulation in terms of differential-algebraic equations is the backbone of nearly all chapters. The book is written for students and teachers in numerical analysis and mechanical engineering as well as for engineers in industrial research labor...

  16. Static electromagnetic properties of giant resonances

    International Nuclear Information System (INIS)

    Koo, W.K.

    1986-03-01

    Static electric monopole and quadrupole matrix elements, which are related to the mean square radius and quadrupole moment respectively, are derived for giant resonances of arbitrary multipolarity. The results furnish information on the size and shape of the nucleus in the excited giant states. (author)

  17. Prediction of plastic deformation under contact condition by quasi-static and dynamic simulations using explicit finite element analysis

    International Nuclear Information System (INIS)

    Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd; Tamin, M. N.

    2016-01-01

    We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step

  18. Prediction of plastic deformation under contact condition by quasi-static and dynamic simulations using explicit finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat (Malaysia); Tamin, M. N. [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru (Malaysia)

    2016-11-15

    We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step.

  19. Numerical and experimental characterization of a batch bread baking oven

    International Nuclear Information System (INIS)

    Ploteau, J.P.; Nicolas, V.; Glouannec, P.

    2012-01-01

    This study deals with the thermal characterization of an electrical static oven used for bread baking. The heating is provided by natural convection, infrared radiation and conduction with a cement slab. The paper describes a methodology to apprehend the heat flux which is applied to the products during baking. The oven was experimentally investigated and a finite element numerical model is established. The monitoring of temperatures at various points in the installation and of electrical power is carried out. Then, to characterize thermal exchanges around the bread during curing, thermal responses of a cylindrical sample is also measured. The numerical model made it possible to calculate the heat flux exchanges with the product, while separating the contributions of convection and radiation. The comparison of simulated responses with experimental data shows the relevance of the model. - Highlights: ► This study concerns the thermal characterization of an electric static oven used for bread baking. ► An original, experimental and numerical approach of thermal problem is proposed. ► Contributions by radiation and convection are separated. ► The goal is to provide boundary conditions for numerical models of bread baking. ► Results are encouraging to optimize energy consumption in industrial oven.

  20. Utility of the Static-99 and Static-99R With Latino Sex Offenders.

    Science.gov (United States)

    Leguízamo, Alejandro; Lee, Seung C; Jeglic, Elizabeth L; Calkins, Cynthia

    2017-12-01

    The predictive validity of the Static-99 measures with ethnic minorities in the United States has only recently been assessed with mixed results. We assessed the predictive validity of the Static-99 and Static-99R with a sample of Latino sex offenders ( N = 483) as well as with two subsamples (U.S.-born, including Puerto Rico, and non-U.S.-born). The overall sexual recidivism rate was very low (1.9%). Both the Static-99 measures were able to predict sexual recidivism for offenders born in the United States and Puerto Rico, but neither was effective in doing so for other Latino immigrants. Calibration analyses ( N = 303) of the Static-99R were consistent with the literature and provided support for the potential use of the measure with Latinos born in the United States and Puerto Rico. These findings and their implications are discussed as they pertain to the assessment of Latino sex offenders.

  1. Device measures static friction of magnetic tape

    Science.gov (United States)

    Cole, P. T.

    1967-01-01

    Device measures the coefficient of static friction of magnetic tape over a range of temperatures and relative humidities. It uses a strain gage to measure the force of friction between a reference surface and the tape drawn at a constant velocity of approximately 0.0001 inch per second relative to the reference surface.

  2. Numerical studies of static aeroelastic effects on grid fin aerodynamic performances

    Directory of Open Access Journals (Sweden)

    Chengde HUANG

    2017-08-01

    Full Text Available The grid fin is an unconventional control surface used on missiles and rockets. Although aerodynamics of grid fin has been studied by many researchers, few considers the aeroelastic effects. In this paper, the static aeroelastic simulations are performed by the coupled viscous computational fluid dynamics with structural flexibility method in transonic and supersonic regimes. The developed coupling strategy including fluid–structure interpolation and volume mesh motion schemes is based on radial basis functions. Results are presented for a vertical and a horizontal grid fin mounted on a body. Horizontal fin results show that the deformed fin is swept backward and the axial force is increased. The deformations also induce the movement of center of pressure, causing the reduction and reversal in hinge moment for the transonic flow and the supersonic flow, respectively. For the vertical fin, the local effective incidences are increased due to the deformations so that the deformed normal force is greater than the original one. At high angles of attack, both the deformed and original normal forces experience a sudden reduction due to the interference of leeward separated vortices on the fin. Additionally, the increment in axial force is shown to correlate strongly with the increment in the square of normal force.

  3. Proceeding of 1998-workshop on MHD computations. Study on numerical methods related to plasma confinement

    International Nuclear Information System (INIS)

    Kako, T.; Watanabe, T.

    1999-04-01

    This is the proceeding of 'Study on Numerical Methods Related to Plasma Confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. These are also various talks on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. The 14 papers are indexed individually. (J.P.N.)

  4. Proceeding of 1998-workshop on MHD computations. Study on numerical methods related to plasma confinement

    Energy Technology Data Exchange (ETDEWEB)

    Kako, T.; Watanabe, T. [eds.

    1999-04-01

    This is the proceeding of 'Study on Numerical Methods Related to Plasma Confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. These are also various talks on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. The 14 papers are indexed individually. (J.P.N.)

  5. Numerical Relativity for Space-Based Gravitational Wave Astronomy

    Science.gov (United States)

    Baker, John G.

    2011-01-01

    In the next decade, gravitational wave instruments in space may provide high-precision measurements of gravitational-wave signals from strong sources, such as black holes. Currently variations on the original Laser Interferometer Space Antenna mission concepts are under study in the hope of reducing costs. Even the observations of a reduced instrument may place strong demands on numerical relativity capabilities. Possible advances in the coming years may fuel a new generation of codes ready to confront these challenges.

  6. Analysis of static characteristic roots and propagation of disturbance of adjustable centrifuge cascade

    International Nuclear Information System (INIS)

    Li Weijie; Wu Zhongdi; Nong Guowei; Zeng Shi

    2014-01-01

    The hydraulic characteristic roots of a centrifuge cascade represent an important property of the cascade performance. Regulators and centrifuges are the key components that have a significant influence on the cascade hydraulic performance. The method used in diffusion cascades was adopted to obtain the static characteristic roots by solving the small disturbance equation for an adjustable centrifuge cascade in which all stages have the same fluid parameters. As the light stream flowrate of a centrifuge is irrelevant to the pressure at the outlet of the light flow, and the heavy stream flows at the speed of sound, there are only 2 static characteristic roots in the centrifuge cascade: the first root Z_1 is the main characteristic root and the second one Z_2 comes into play only when there exists a feed. The value of the main characteristic root is influenced by the amplification factor of the regulators, the fluid resistance in the main feed pipe and other factors. When Z_1 is smaller than 1, it increases with the fluid resistance. A large enough amplification factor has little impact on Z_1. The same distribution of the relative changes of the light fraction along the cascade is obtained by an analytical and a numerical method. (authors)

  7. Static Behaviour of Bucket Foundations

    DEFF Research Database (Denmark)

    Larsen, Kim André

    One new foundation concept in relation to offshore wind turbines is bucket foundations. The concept is known from the oil and gas industry, though the load conditions here are significantly different. The bucket foundation can be used as monopod or e.g. tripod foundations for offshore wind turbines....... The monopod concept is investigated in this thesis, regarding the static behaviour from loads relevant to offshore wind turbines. The main issue in this concept is the rotational stiffness of the foundation and the combined capacity dominated by moments. The vertical bearing capacity of bucket foundations...... theory is proposed. The proposed expression applies to plane strain as well as axis-symmetric stress conditions for foundations with smooth or rough bases. A thorough experimental investigation of the static behaviour of bucket foundations subjected to combined loading is carried out. Laboratory tests...

  8. On nitrogen condensation in hypersonic nozzle flows: Numerical method and parametric study

    KAUST Repository

    Lin, Longyuan

    2013-12-17

    A numerical method for calculating two-dimensional planar and axisymmetric hypersonic nozzle flows with nitrogen condensation is developed. The classical nucleation theory with an empirical correction function and the modified Gyarmathy model are used to describe the nucleation rate and the droplet growth, respectively. The conservation of the liquid phase is described by a finite number of moments of the size distribution function. The moment equations are then combined with the Euler equations and are solved by the finite-volume method. The numerical method is first validated by comparing its prediction with experimental results from the literature. The effects of nitrogen condensation on hypersonic nozzle flows are then numerically examined. The parameters at the nozzle exit under the conditions of condensation and no-condensation are evaluated. For the condensation case, the static pressure, the static temperature, and the amount of condensed fluid at the nozzle exit decrease with the increase of the total temperature. Compared with the no-condensation case, both the static pressure and temperature at the nozzle exit increase, and the Mach number decreases due to the nitrogen condensation. It is also indicated that preheating the nitrogen gas is necessary to avoid the nitrogen condensation even for a hypersonic nozzle with a Mach number of 5 operating at room temperatures. © 2013 Springer-Verlag Berlin Heidelberg.

  9. Towards a formal definition of static and dynamic electronic correlations.

    Science.gov (United States)

    Benavides-Riveros, Carlos L; Lathiotakis, Nektarios N; Marques, Miguel A L

    2017-05-24

    Some of the most spectacular failures of density-functional and Hartree-Fock theories are related to an incorrect description of the so-called static electron correlation. Motivated by recent progress in the N-representability problem of the one-body density matrix for pure states, we propose a method to quantify the static contribution to the electronic correlation. By studying several molecular systems we show that our proposal correlates well with our intuition of static and dynamic electron correlation. Our results bring out the paramount importance of the occupancy of the highest occupied natural spin-orbital in such quantification.

  10. Stability of the Einstein static universe in open cosmological models

    International Nuclear Information System (INIS)

    Canonico, Rosangela; Parisi, Luca

    2010-01-01

    The stability properties of the Einstein static solution of general relativity are altered when corrective terms arising from modification of the underlying gravitational theory appear in the cosmological equations. In this paper the existence and stability of static solutions are considered in the framework of two recently proposed quantum gravity models. The previously known analysis of the Einstein static solutions in the semiclassical regime of loop quantum cosmology with modifications to the gravitational sector is extended to open cosmological models where a static neutrally stable solution is found. A similar analysis is also performed in the framework of Horava-Lifshitz gravity under detailed balance and projectability conditions. In the case of open cosmological models the two solutions found can be either unstable or neutrally stable according to the admitted values of the parameters.

  11. Static analysis of an office desk construction

    Directory of Open Access Journals (Sweden)

    Milan Novotný

    2011-01-01

    Full Text Available The objective of the paper is a static analysis of a desk construction and the determination of its probable mechanical behaviour using Finite Element Method. The construction was modelled and numerically analysed in Autocad Inventor 2011 and the stability of the entire desk was calculated with the size and placement of the loading force based on the standards and cited literature. Possible locations and directions of the deformation were analysed and a solution for its prevention was proposed and the stability of the desk as well as the extreme position of the stand were calculated. The verification of the obtained results in an accredited furniture testing lab is planned using a prototype of the office desk.

  12. Static electromagnetic frequency changers

    CERN Document Server

    Rozhanskii, L L

    1963-01-01

    Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work

  13. Geothermal-Related Thermo-Elastic Fracture Analysis by Numerical Manifold Method

    Directory of Open Access Journals (Sweden)

    Jun He

    2018-05-01

    Full Text Available One significant factor influencing geothermal energy exploitation is the variation of the mechanical properties of rock in high temperature environments. Since rock is typically a heterogeneous granular material, thermal fracturing frequently occurs in the rock when the ambient temperature changes, which can greatly influence the geothermal energy exploitation. A numerical method based on the numerical manifold method (NMM is developed in this study to simulate the thermo-elastic fracturing of rocklike granular materials. The Voronoi tessellation is incorporated into the pre-processor of NMM to represent the grain structure. A contact-based heat transfer model is developed to reflect heat interaction among grains. Based on the model, the transient thermal conduction algorithm for granular materials is established. To simulate the cohesion effects among grains and the fracturing process between grains, a damage-based contact fracture model is developed to improve the contact algorithm of NMM. In the developed numerical method, the heat interaction among grains as well as the heat transfer inside each solid grain are both simulated. Additionally, as damage evolution and fracturing at grain interfaces are also considered, the developed numerical method is applicable to simulate the geothermal-related thermal fracturing process.

  14. Nonexistence of Skyrmion-Skyrmion and Skyrmion-anti-Skyrmion static equilibria

    International Nuclear Information System (INIS)

    Gibbons, G. W.; Warnick, C. M.; Wong, W. W.

    2011-01-01

    We consider classical static Skyrmion-anti-Skyrmion and Skyrmion-Skyrmion configurations, symmetric with respect to a reflection plane, or symmetric up to a G-parity transformation, respectively. We show that the stress tensor component completely normal to the reflection plane, and hence its integral over the plane, is negative definite or positive definite, respectively. Classical Skyrmions always repel classical Skyrmions and classical Skyrmions always attract classical anti-Skyrmions and thus no static equilibrium, whether stable or unstable, is possible in either case. No other symmetry assumption is made and so our results also apply to multi-Skyrmion configurations. Our results are consistent with existing analyses of Skyrmion forces at large separation, and with numerical results on Skymion-anti-Skyrmion configurations in the literature which admit a different reflection symmetry. They also hold for the massive Skyrme model. We also point out that reflection symmetric self-gravitating Skyrmions or black holes with Skyrmion hair cannot rest in symmetric equilibrium with self-gravitating anti-Skyrmions.

  15. Static Load Balancing Algorithms In Cloud Computing Challenges amp Solutions

    Directory of Open Access Journals (Sweden)

    Nadeem Shah

    2015-08-01

    Full Text Available Abstract Cloud computing provides on-demand hosted computing resources and services over the Internet on a pay-per-use basis. It is currently becoming the favored method of communication and computation over scalable networks due to numerous attractive attributes such as high availability scalability fault tolerance simplicity of management and low cost of ownership. Due to the huge demand of cloud computing efficient load balancing becomes critical to ensure that computational tasks are evenly distributed across servers to prevent bottlenecks. The aim of this review paper is to understand the current challenges in cloud computing primarily in cloud load balancing using static algorithms and finding gaps to bridge for more efficient static cloud load balancing in the future. We believe the ideas suggested as new solution will allow researchers to redesign better algorithms for better functionalities and improved user experiences in simple cloud systems. This could assist small businesses that cannot afford infrastructure that supports complex amp dynamic load balancing algorithms.

  16. Geometric properties of static Einstein-Maxwell dilaton horizons with a Liouville potential

    International Nuclear Information System (INIS)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2011-01-01

    We study nondegenerate and degenerate (extremal) Killing horizons of arbitrary geometry and topology within the Einstein-Maxwell-dilaton model with a Liouville potential (the EMdL model) in d-dimensional (d≥4) static space-times. Using Israel's description of a static space-time, we construct the EMdL equations and the space-time curvature invariants: the Ricci scalar, the square of the Ricci tensor, and the Kretschmann scalar. Assuming that space-time metric functions and the model fields are real analytic functions in the vicinity of a space-time horizon, we study the behavior of the space-time metric and the fields near the horizon and derive relations between the space-time curvature invariants calculated on the horizon and geometric invariants of the horizon surface. The derived relations generalize similar relations known for horizons of static four- and five-dimensional vacuum and four-dimensional electrovacuum space-times. Our analysis shows that all the extremal horizon surfaces are Einstein spaces. We present the necessary conditions for the existence of static extremal horizons within the EMdL model.

  17. Relational complexity modulates activity in the prefrontal cortex during numerical inductive reasoning: an fMRI study.

    Science.gov (United States)

    Feng, Xiao; Peng, Li; Chang-Quan, Long; Yi, Lei; Hong, Li

    2014-09-01

    Most previous studies investigating relational reasoning have used visuo-spatial materials. This fMRI study aimed to determine how relational complexity affects brain activity during inductive reasoning, using numerical materials. Three numerical relational levels of the number series completion task were adopted for use: 0-relational (e.g., "23 23 23"), 1-relational ("32 30 28") and 2-relational ("12 13 15") problems. The fMRI results revealed that the bilateral dorsolateral prefrontal cortex (DLPFC) showed enhanced activity associated with relational complexity. Bilateral inferior parietal lobule (IPL) activity was greater during the 1- and 2-relational level problems than during the 0-relational level problems. In addition, the left fronto-polar cortex (FPC) showed selective activity during the 2-relational level problems. The bilateral DLPFC may be involved in the process of hypothesis generation, whereas the bilateral IPL may be sensitive to calculation demands. Moreover, the sensitivity of the left FPC to the multiple relational problems may be related to the integration of numerical relations. The present study extends our knowledge of the prefrontal activity pattern underlying numerical relational processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Comparison of results of experimental research with numerical calculations of a model one-sided seal

    Directory of Open Access Journals (Sweden)

    Joachimiak Damian

    2015-06-01

    Full Text Available Paper presents the results of experimental and numerical research of a model segment of a labyrinth seal for a different wear level. The analysis covers the extent of leakage and distribution of static pressure in the seal chambers and the planes upstream and downstream of the segment. The measurement data have been compared with the results of numerical calculations obtained using commercial software. Based on the flow conditions occurring in the area subjected to calculations, the size of the mesh defined by parameter y+ has been analyzed and the selection of the turbulence model has been described. The numerical calculations were based on the measurable thermodynamic parameters in the seal segments of steam turbines. The work contains a comparison of the mass flow and distribution of static pressure in the seal chambers obtained during the measurement and calculated numerically in a model segment of the seal of different level of wear.

  19. Relations between Biomechanical Parameters and Static Power of Arms in Children with Disturbed Posture

    Directory of Open Access Journals (Sweden)

    Slobodan Andrašić

    2017-02-01

    Full Text Available This study is aimed at determining the parameters and biomechanical analysis of their impact on the static arm strength in children with impaired posture as poor kyphotic posture, lordotic poor posture and children with flat feet. A transversal study included a sample of 67 children on the territory of the municipality of Subotica. The structure of the sample is as follows: 22 subjects with impaired kyphotic posture, 18 patients with impaired lordotic posture, and 27 subjects with flat feet. Measuring the level of static arm strength was done by the standardized "folding endurance" test. Observing the morphological development of children with kyphotic, lordotic poor posture and flat feet determined statistically significant differences in biomechanical variables.

  20. Order parameters in the Landau–de Gennes theory – the static and dynamic scenarios

    KAUST Repository

    Majumdar, Apala

    2011-02-17

    We obtain quantitative estimates for the scalar order parameters of liquid crystal configurations in three-dimensional geometries, within the Landau-de Gennes framework. We consider both static equilibria and non-equilibrium dynamics and we include external fields and surface anchoring energies in our formulation. Using maximum principle-type arguments, we obtain explicit bounds for the corresponding scalar order parameters in both static and dynamic situations; these bounds are given in terms of the material-dependent thermotropic coefficients, electric field strength and surface anchoring coefficients. These bounds provide estimates for the degree of orientational ordering, quantify the competing effects of the different energetic contributions and can be used to test the accuracy of numerical simulations. © 2011 Taylor & Francis.

  1. Order parameters in the Landau–de Gennes theory – the static and dynamic scenarios

    KAUST Repository

    Majumdar, Apala

    2011-01-01

    We obtain quantitative estimates for the scalar order parameters of liquid crystal configurations in three-dimensional geometries, within the Landau-de Gennes framework. We consider both static equilibria and non-equilibrium dynamics and we include external fields and surface anchoring energies in our formulation. Using maximum principle-type arguments, we obtain explicit bounds for the corresponding scalar order parameters in both static and dynamic situations; these bounds are given in terms of the material-dependent thermotropic coefficients, electric field strength and surface anchoring coefficients. These bounds provide estimates for the degree of orientational ordering, quantify the competing effects of the different energetic contributions and can be used to test the accuracy of numerical simulations. © 2011 Taylor & Francis.

  2. Direct Numerical Simulations of Dynamic Drainage and Imbibition to Investigate Capillary Pressure-Saturation-Interfacial Area Relation

    Science.gov (United States)

    Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.

    2017-12-01

    We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness

  3. The numerical multiconfiguration self-consistent field approach for atoms

    International Nuclear Information System (INIS)

    Stiehler, Johannes

    1995-12-01

    The dissertation uses the Multiconfiguration Self-Consistent Field Approach to specify the electronic wave function of N electron atoms in a static electrical field. It presents numerical approaches to describe the wave functions and introduces new methods to compute the numerical Fock equations. Based on results computed with an implemented computer program the universal application, flexibility and high numerical precision of the presented approach is shown. RHF results and for the first time MCSCF results for polarizabilities and hyperpolarizabilities of various states of the atoms He to Kr are discussed. In addition, an application to interpret a plasma spectrum of gallium is presented. (orig.)

  4. Static multiresolution grids with inline hierarchy information for cosmic ray propagation

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Gero, E-mail: gero.mueller@physik.rwth-aachen.de [III. Physikalisches Institut A, RWTH Aachen University, D-52056 Aachen (Germany)

    2016-08-01

    For numerical simulations of cosmic-ray propagation fast access to static magnetic field data is required. We present a data structure for multiresolution vector grids which is optimized for fast access, low overhead and shared memory use. The hierarchy information is encoded into the grid itself, reducing the memory overhead. Benchmarks show that in certain scenarios the differences in deflections introduced by sampling the magnetic field model can be significantly reduced when using the multiresolution approach.

  5. Static Behaviour of Natural Gas and its Flow in Pipes

    OpenAIRE

    Ohirhian, Peter

    2010-01-01

    1. 2. A general differential equation that governs static behavior of any fluid and its flow in horizontal, uphill and downhill pipes has been developed. classical fourth order Runge-Kutta numerical method is programmed in Fortran 77, to test the equation and results are accurate. The program shows that a length ncrement as large as 10,000 ft can be used in the Runge-Kutta method of solution to differential equation during uphill gas flow and up to 5700ft for downhill gas flow The Runge-Kutta...

  6. Effects of structure parameters on the static electromagnetic characteristics of solenoid valve for an electronic unit pump

    International Nuclear Information System (INIS)

    Sun, Zuo-Yu; Li, Guo-Xiu; Wang, Lan; Wang, Wei-Hong; Gao, Qing-Xiu; Wang, Jie

    2016-01-01

    Highlights: • The static electromagnetic characteristics of solenoid valve were numerically studied. • The effects of driving current were considered. • The effects of solenoid valve’s eight essential structure parameters were considered. - Abstract: In the present paper, the effects of driving current and solenoid valve’s structure parameters (including iron-core’s length, magnetic pole’s cross-sectional area, coil turn, coil’s position, armature’s thickness, damping hole’s position, damping hole’s size, and width of working air–gap) on the static electromagnetic characteristics have been numerically investigated. From the results, it can be known that the electromagnetic energy conversion will be seriously influenced by driving current for its effects on magnetic field strength and magnetic saturation phenomenon, an excessive increase of current will weak electromagnetic energy conversion for the accelerating power losses. The capacity of electromagnetic energy conversion is also relative to each solenoid valve’s parameter albeit it is not very sensitive to each parameters. The generated electromagnetic force will be enhanced by rising iron-core’s length, equalizing the cross-sectional areas of major and vice poles, increasing coil turn within a moderate range, closing the coil’s position towards armature’s centre, enlarging armature’s thickness, pushing the damping holes’ positions away from armature’s centre, reducing the sizes of damping holes, and reducing the width of working air–gap; but such enhancements won’t be realized once the driving current is excessively higher.

  7. Euler-Lagrangian Model of Particle Motion and Deposition Effects in Electro-Static Fields based on OpenFoam

    Directory of Open Access Journals (Sweden)

    G Boiger

    2016-06-01

    Full Text Available In order to study the powder coating process of metal substrates, a comprehensive, numerical 3D Eulerian-LaGrangian model, featuring two particle sub-models, has been developed. The model considers the effects of electro-static, fluid-dynamic and gravity forces. The code has been implemented in C++ within the open source CFD platform OpenFoam®, is transient in nature with respect to the applied LaGrangian particle implementation and the electro-static field calculation and is stationary regarding fluid-dynamic phenomena. Qualitative validation of the developed solver has already been achieved by comparison to simple coating experiments and will hereby be presented alongside a thorough description of the model itself. Upon combining knowledge of the relevant dimensionless groups and the numerical model, a dimensionless chart, representing all possible states of coating, was populated with comprehensive, exemplary cases, which are shown here as well.

  8. Statics of deformable solids

    CERN Document Server

    Bisplinghoff, Raymond L; Pian, Theodore HH

    2014-01-01

    Profusely illustrated exposition of fundamentals of solid mechanics and principles of mechanics, statics, and simple statically indeterminate systems. Covers strain and stress in three-dimensional solids, elementary elasticity, energy principles in solid continuum, and more. 1965 edition.

  9. Numerical investigation of drag and heat flux reduction mechanism of the pulsed counterflowing jet on a blunt body in supersonic flows

    Science.gov (United States)

    Zhang, Rui-rui; Huang, Wei; Yan, Li; Li, Lang-quan; Li, Shi-bin; Moradi, R.

    2018-05-01

    To design a kind of aerospace vehicle, the drag and heat flux reduction are the most important factors. In the current study, the counterflowing jet, one of the effective drag and heat flux reduction concepts, is investigated numerically by the two-dimensional axisymmetric Reynolds-averaged Navier-Stokes equations coupled with the SST k-ω turbulence model. An axisymmetric numerical simulation mode of the counterflowing jet on the supersonic vehicle nose-tip is established, and the numerical method employed is validated by the experimental schlieren images and experimental data in the open literature. A pulsed counterflowing jet scheme is proposed, and it uses a sinusoidal function to control the total and static pressures of the counterflowing jet. The obtained results show that the long penetration mode does not exist in the whole turnaround, even in a relatively small range of the jet total and static pressures, and this is different from the phenomenon obtained under the steady condition in the open literature. At the same time, it is observed that the variation of the physical parameters, such as the Stanton number induced by the pulsed jet, has an obvious periodicity and hysteresis phenomenon.

  10. Research on the fracture behavior of PBX under static tension

    Directory of Open Access Journals (Sweden)

    Hu Guo

    2014-06-01

    Full Text Available The fracture behavior of polymer-bonded explosive (PBX seriously affects the safety and reliability of weapon system. The effects of interface debonding and initial meso-damage on the fracture behavior of PBX under quasi-static tension are studied using numerical method. A two-dimensional representative volume element (RVE is established based on Voronoi model in which the component contents could be regulated and the particles are randomly distributed. A nonlinear damage model of polymer matrix relative to matrix depth between particles is constructed. The results show that the simulated strain-stress relation is coincident with experiment data. It is found that interface debonding leads to the nucleation and propagation of meso-cracks, and a main crack approximately perpendicular to the loading direction is generated finally. The interface debonding tends to occur in the interface perpendicular to the loading direction. There seems to be a phenomenon that strain softening and hardening alternatively appear around peak stress of stress and strain curve. It is shown that the initial damages of intragranular and interfacial cracks both decrease the modulus and failure stress, and the main crack tends to propagate toward the initial meso-cracks.

  11. On the equivalent static loads approach for dynamic response structural optimization

    DEFF Research Database (Denmark)

    Stolpe, Mathias

    2014-01-01

    The equivalent static loads algorithm is an increasingly popular approach to solve dynamic response structural optimization problems. The algorithm is based on solving a sequence of related static response structural optimization problems with the same objective and constraint functions...... as the original problem. The optimization theoretical foundation of the algorithm is mainly developed in Park and Kang (J Optim Theory Appl 118(1):191–200, 2003). In that article it is shown, for a certain class of problems, that if the equivalent static loads algorithm terminates then the KKT conditions...

  12. In-Flight Pitot-Static Calibration

    Science.gov (United States)

    Foster, John V. (Inventor); Cunningham, Kevin (Inventor)

    2016-01-01

    A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.

  13. Numerical Investigation of the Performance of Kenics Static Mixers for the Agitation of Shear Thinning Fluids

    OpenAIRE

    A. Mahammedi; H. Ameur; A. Ariss

    2017-01-01

    The laminar flow of non-Newtonian fluids through a Kenics static mixer is investigated by using the CFD (Computational Fluid Dynamics) tool. The working fluids have a shear thinning behavior modeled by the Ostwald De Waele law. We focus on the effect of Reynolds number, fluid properties, twist angle and blade pitch on the flow characteristics and energy cost. The pressure drop information obtained from the simulations was compared to several experimental correlations and data available in the...

  14. Assessing Static Performance of the Dashengguan Yangtze Bridge by Monitoring the Correlation between Temperature Field and Its Static Strains

    Directory of Open Access Journals (Sweden)

    Gao-Xin Wang

    2015-01-01

    Full Text Available Taking advantage of the structural health monitoring system installed on the steel truss arch girder of Dashengguan Yangtze Bridge, the temperature field data and static strain data are collected and analyzed for the static performance assessment of the bridge. Through analysis, it is found that the static strain changes are mainly caused by temperature field (temperature and temperature difference and train. After the train-induced static strains are removed, the correlation between the remaining static strains and the temperature field shows apparent linear characteristics, which can be mathematically modeled for the description of static performance. Therefore, multivariate linear regression function combined with principal component analysis is introduced to mathematically model the correlation. Furthermore, the residual static strains of mathematical model are adopted as assessment indicator and three kinds of degradation regulations of static performance are obtained after simulation of the residual static strains. Finally, it is concluded that the static performance of Dashengguan Yangtze Bridge was in a good condition during that period.

  15. Black-hole kicks from numerical-relativity surrogate models

    Science.gov (United States)

    Gerosa, Davide; Hébert, François; Stein, Leo C.

    2018-05-01

    Binary black holes radiate linear momentum in gravitational waves as they merge. Recoils imparted to the black-hole remnant can reach thousands of km /s , thus ejecting black holes from their host galaxies. We exploit recent advances in gravitational waveform modeling to quickly and reliably extract recoils imparted to generic, precessing, black-hole binaries. Our procedure uses a numerical-relativity surrogate model to obtain the gravitational waveform given a set of binary parameters; then, from this waveform we directly integrate the gravitational-wave linear momentum flux. This entirely bypasses the need for fitting formulas which are typically used to model black-hole recoils in astrophysical contexts. We provide a thorough exploration of the black-hole kick phenomenology in the parameter space, summarizing and extending previous numerical results on the topic. Our extraction procedure is made publicly available as a module for the Python programming language named surrkick. Kick evaluations take ˜0.1 s on a standard off-the-shelf machine, thus making our code ideal to be ported to large-scale astrophysical studies.

  16. BOOK REVIEW: Introduction to 3+1 Numerical Relativity

    Science.gov (United States)

    Gundlach, Carsten

    2008-11-01

    This is the first major textbook on the methods of numerical relativity. The selection of material is based on what is known to work reliably in astrophysical applications and would therefore be considered by many as the 'mainstream' of the field. This means spacelike slices, the BSSNOK or harmonic formulation of the Einstein equations, finite differencing for the spacetime variables, and high-resolution shock capturing methods for perfect fluid matter. (Arguably, pseudo-spectral methods also belong in this category, at least for elliptic equations, but are not covered in this book.) The account is self-contained, and comprehensive within its chosen scope. It could serve as a primer for the growing number of review papers on aspects of numerical relativity published in Living Reviews in Relativity (LRR). I will now discuss the contents by chapter. Chapter 1, an introduction to general relativity, is clearly written, but may be a little too concise to be used as a first text on this subject at postgraduate level, compared to the textbook by Schutz or the first half of Wald's book. Chapter 2 contains a good introduction to the 3+1 split of the field equations in the form mainly given by York. York's pedagogical presentation (in a 1979 conference volume) is still up to date, but Alcubierre makes a clearer distinction between the geometric split and its form in adapted coordinates, as well as filling in some derivations. Chapter 3 on initial data is close to Cook's 2001 LRR, but is beautifully unified by an emphasis on how different choices of conformal weights suit different purposes. Chapter 4 on gauge conditions covers a topic on which no review paper exists, and which is spread thinly over many papers. The presentation is both detailed and unified, making this an excellent resource also for experts. The chapter reflects the author's research interests while remaining canonical. Chapter 5 covers hyperbolic reductions of the field equations. Alcubierre's excellent

  17. Can static regular black holes form from gravitational collapse?

    International Nuclear Information System (INIS)

    Zhang, Yiyang; Zhu, Yiwei; Modesto, Leonardo; Bambi, Cosimo

    2015-01-01

    Starting from the Oppenheimer-Snyder model, we know how in classical general relativity the gravitational collapse of matter forms a black hole with a central spacetime singularity. It is widely believed that the singularity must be removed by quantum-gravity effects. Some static quantum-inspired singularity-free black hole solutions have been proposed in the literature, but when one considers simple examples of gravitational collapse the classical singularity is replaced by a bounce, after which the collapsing matter expands for ever. We may expect three possible explanations: (i) the static regular black hole solutions are not physical, in the sense that they cannot be realized in Nature, (ii) the final product of the collapse is not unique, but it depends on the initial conditions, or (iii) boundary effects play an important role and our simple models miss important physics. In the latter case, after proper adjustment, the bouncing solution would approach the static one. We argue that the ''correct answer'' may be related to the appearance of a ghost state in de Sitter spacetimes with super Planckian mass. Our black holes have indeed a de Sitter core and the ghost would make these configurations unstable. Therefore we believe that these black hole static solutions represent the transient phase of a gravitational collapse but never survive as asymptotic states. (orig.)

  18. Kubo formula for frequency dispersion of dielectric permittivity and static conductivity of the Coulomb system

    International Nuclear Information System (INIS)

    Bobrov, V.B.; Trigger, S.A.; Zagorodny, A.G.

    2010-01-01

    It is proved that the Kubo formula for the conductivity σ(ω) is valid at real frequencies ω. On this basis, an exact relation is derived for the static conductivity σ st of the Coulomb system. It is shown that the static conductivity is determined by the time correlation function in the limit t→∞. It is proved that the permittivity ε(ω) satisfies the Kramers-Kronig relations which take into account a singularity associated with static conductivity.

  19. Proceeding of 1999-workshop on MHD computations 'study on numerical methods related to plasma confinement'

    International Nuclear Information System (INIS)

    Kako, T.; Watanabe, T.

    2000-06-01

    This is the proceeding of 'study on numerical methods related to plasma confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. There are also various lectures on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. Separate abstracts were presented for 13 of the papers in this report. The remaining 6 were considered outside the subject scope of INIS. (J.P.N.)

  20. MRI-related static magnetic stray fields and postural body sway: a double-blind randomized crossover study.

    Science.gov (United States)

    van Nierop, Lotte E; Slottje, Pauline; Kingma, Herman; Kromhout, Hans

    2013-07-01

    We assessed postural body sway performance after exposure to movement induced time-varying magnetic fields in the static magnetic stray field in front of a 7 Tesla (T) magnetic resonance imaging scanner. Using a double blind randomized crossover design, 30 healthy volunteers performed two balance tasks (i.e., standing with eyes closed and feet in parallel and then in tandem position) after standardized head movements in a sham, low exposure (on average 0.24 T static magnetic stray field and 0.49 T·s(-1) time-varying magnetic field) and high exposure condition (0.37 T and 0.70 T·s(-1)). Personal exposure to static magnetic stray fields and time-varying magnetic fields was measured with a personal dosimeter. Postural body sway was expressed in sway path, area, and velocity. Mixed-effects model regression analysis showed that postural body sway in the parallel task was negatively affected (P < 0.05) by exposure on all three measures. The tandem task revealed the same trend, but did not reach statistical significance. Further studies are needed to investigate the possibility of independent or synergetic effects of static magnetic stray field and time-varying magnetic field exposure. In addition, practical safety implications of these findings, e.g., for surgeons and others working near magnetic resonance imaging scanners need to be investigated. Copyright © 2012 Wiley Periodicals, Inc.

  1. Rectifier cabinet static breaker

    International Nuclear Information System (INIS)

    Costantino, R.A. Jr; Gliebe, R.J.

    1992-01-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload. 7 figs

  2. Rectifier cabinet static breaker

    Science.gov (United States)

    Costantino, Jr, Roger A.; Gliebe, Ronald J.

    1992-09-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.

  3. Accuracy requirements for the calculation of gravitational waveforms from coalescing compact binaries in numerical relativity

    International Nuclear Information System (INIS)

    Miller, Mark

    2005-01-01

    I discuss the accuracy requirements on numerical relativity calculations of inspiraling compact object binaries whose extracted gravitational waveforms are to be used as templates for matched filtering signal extraction and physical parameter estimation in modern interferometric gravitational wave detectors. Using a post-Newtonian point particle model for the premerger phase of the binary inspiral, I calculate the maximum allowable errors for the mass and relative velocity and positions of the binary during numerical simulations of the binary inspiral. These maximum allowable errors are compared to the errors of state-of-the-art numerical simulations of multiple-orbit binary neutron star calculations in full general relativity, and are found to be smaller by several orders of magnitude. A post-Newtonian model for the error of these numerical simulations suggests that adaptive mesh refinement coupled with second-order accurate finite difference codes will not be able to robustly obtain the accuracy required for reliable gravitational wave extraction on Terabyte-scale computers. I conclude that higher-order methods (higher-order finite difference methods and/or spectral methods) combined with adaptive mesh refinement and/or multipatch technology will be needed for robustly accurate gravitational wave extraction from numerical relativity calculations of binary coalescence scenarios

  4. Comparison of relative renal function measured with either 99m Tc-DTPA or 99m Tc-EC dynamic scintigraphies with that measured with 99m Tc-DMSA static scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Domingues, F.C.; Fujikawa, G.Y.; Decker, H.; Alonso, G.; Pereira, J.C.; Duarte, P.S. [Centro de Diagnostico Fleury, Sao Paulo, SP (Brazil). Secao de Medicina Nuclear; Sao Paulo Univ. (USP), SP (Brazil). Escola de Saude Publica. Dept. de Epidemiologia]. E-mail: paulo.duarte@fleury.com.br

    2006-07-15

    Objective: The aim of this study was to compare the renal function measured with either {sup 99m}Tc-DTPA or {sup 99m}Tc-EC dynamic scintigraphies with that measured using {sup 99m}Tc-DMSA static scintigraphy. Methods: the values of relative renal function measured in 111 renal dynamic scintigraphies performed either with {sup 99m}Tc-DTPA (55 studies) or with {sup 99m}Tc-EC (56 studies) were compared with the relative function measured using {sup 99m}Tc-DMSA static scintigraphy performed within a 1-month period. The comparisons were performed using Wilcoxon signed rank test. The number of {sup 99m}Tc-DTPA and {sup 99m}Tc-EC studies that presented relative renal function different by more than 5% from that measured with {sup 99m}Tc-DMSA, using chi square test were also compared. Results: the relative renal function measured with {sup 99m}Tc-EC is not statistically different from that measured with {sup 99m}Tc-DMSA (p = 0.97). The relative renal function measured with {sup 99m}Tc-DTPA was statistically different from that measured using {sup 99m}Tc-DMSA, but with a borderline statistical significance (p = 0.05). The number of studies with relative renal function different by more than 5% from that measured with {sup 99m}Tc-DMSA is higher for the {sup 99m}Tc-DTPA scintigraphy (p 0.04) than for {sup 99m}Tc-EC. Conclusion: the relative renal function measured with {sup 99m}Tc-EC dynamic scintigraphy is comparable with that measured with {sup 99m}Tc-DMSA static scintigraphy, while the relative renal function measured with {sup 99m}Tc-DTPA dynamic scintigraphy presents a significant statistical difference from that measured with {sup 99m}Tc-DMSA static scintigraphy. (author)

  5. Comparison of relative renal function measured with either 99m Tc-DTPA or 99m Tc-EC dynamic scintigraphies with that measured with 99m Tc-DMSA static scintigraphy

    International Nuclear Information System (INIS)

    Domingues, F.C.; Fujikawa, G.Y.; Decker, H.; Alonso, G.; Pereira, J.C.; Duarte, P.S.; Sao Paulo Univ.

    2006-01-01

    Objective: The aim of this study was to compare the renal function measured with either 99m Tc-DTPA or 99m Tc-EC dynamic scintigraphies with that measured using 99m Tc-DMSA static scintigraphy. Methods: the values of relative renal function measured in 111 renal dynamic scintigraphies performed either with 99m Tc-DTPA (55 studies) or with 99m Tc-EC (56 studies) were compared with the relative function measured using 99m Tc-DMSA static scintigraphy performed within a 1-month period. The comparisons were performed using Wilcoxon signed rank test. The number of 99m Tc-DTPA and 99m Tc-EC studies that presented relative renal function different by more than 5% from that measured with 99m Tc-DMSA, using chi square test were also compared. Results: the relative renal function measured with 99m Tc-EC is not statistically different from that measured with 99m Tc-DMSA (p = 0.97). The relative renal function measured with 99m Tc-DTPA was statistically different from that measured using 99m Tc-DMSA, but with a borderline statistical significance (p = 0.05). The number of studies with relative renal function different by more than 5% from that measured with 99m Tc-DMSA is higher for the 99m Tc-DTPA scintigraphy (p 0.04) than for 99m Tc-EC. Conclusion: the relative renal function measured with 99m Tc-EC dynamic scintigraphy is comparable with that measured with 99m Tc-DMSA static scintigraphy, while the relative renal function measured with 99m Tc-DTPA dynamic scintigraphy presents a significant statistical difference from that measured with 99m Tc-DMSA static scintigraphy. (author)

  6. Hubble expansion in static spacetime

    International Nuclear Information System (INIS)

    Rossler, Otto E.; Froehlich, Dieter; Movassagh, Ramis; Moore, Anthony

    2007-01-01

    A recently proposed mechanism for light-path expansion in a static spacetime is based on the moving-lenses paradigm. Since the latter is valid independently of whether space expands or not, a static universe can be used to better see the implications. The moving-lenses paradigm is related to the paradigm of dynamical friction. If this is correct, a Hubble-like law is implicit. It is described quantitatively. A bent in the Hubble-like line is predictably implied. The main underlying assumption is Price's Principle (PI 3 ). If the theory is sound, the greatest remaining problem in cosmology becomes the origin of hydrogen. Since Blandford's jet production mechanism for quasars is too weak, a generalized Hawking radiation hidden in the walls of cosmic voids is invoked. A second prediction is empirical: slow pattern changes in the cosmic microwave background. A third is ultra-high redshifts for Giacconi quasars. Bruno's eternal universe in the spirit of Augustine becomes a bit less outlandish

  7. Effect of fractal disorder on static friction in the Tomlinson model.

    Science.gov (United States)

    Eriksen, Jon Alm; Biswas, Soumyajyoti; Chakrabarti, Bikas K

    2010-10-01

    We propose a modified version of the Tomlinson model for static friction between two chains of beads. We introduce disorder in terms of vacancies in the chain, and distribute the remaining beads in a scale invariant way. For this we utilize a generalized random Cantor set. We relate the static friction force to the overlap distribution of the chains, and discuss how the distribution of the static friction force depends on the distribution of the remaining beads. For the random Cantor set we find a scaled distribution which is independent on the generation of the set.

  8. Experimental and Numerical Investigation of Thermoacoustic Sources Related to High-Frequency Instabilities

    Directory of Open Access Journals (Sweden)

    Mathieu Zellhuber

    2014-03-01

    Full Text Available Flame dynamics related to high-frequency instabilities in gas turbine combustors are investigated using experimental observations and numerical simulations. Two different combustor types are studied, a premix swirl combustor (experiment and a generic reheat combustor (simulation. In both cases, a very similar dynamic behaviour of the reaction zone is observed, with the appearance of transverse displacement and coherent flame wrinkling. From these observations, a model for the thermoacoustic feedback linked to transverse modes is proposed. The model splits heat release rate fluctuations into distinct contributions that are related to flame displacement and variations of the mass burning rate. The decomposition procedure is applied on the numerical data and successfully verified by comparing a reconstructed Rayleigh index with the directly computed value. It thus allows to quantify the relative importance of various feedback mechanisms for a given setup.

  9. Comparison of the quasi-static method and the dynamic method for simulating fracture processes in concrete

    Science.gov (United States)

    Liu, J. X.; Deng, S. C.; Liang, N. G.

    2008-02-01

    Concrete is heterogeneous and usually described as a three-phase material, where matrix, aggregate and interface are distinguished. To take this heterogeneity into consideration, the Generalized Beam (GB) lattice model is adopted. The GB lattice model is much more computationally efficient than the beam lattice model. Numerical procedures of both quasi-static method and dynamic method are developed to simulate fracture processes in uniaxial tensile tests conducted on a concrete panel. Cases of different loading rates are compared with the quasi-static case. It is found that the inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, an unrealistic result will be obtained if a fracture process including unstable cracking is simulated by the quasi-static procedure.

  10. On the spherical symmetry of static perfect fluids in general relativity

    International Nuclear Information System (INIS)

    Beig, R.; Simon, W.

    1990-01-01

    We present a theorem which establishes uniqueness, in particular spherical symmetry, of a wide class of general relativistic, static perfect-fluid models provided there exists a spherically symmetric model with the same equation of state and surface potential. The method of proof, which is inspired by recent work of Masood-ul-Alam, is illustrated by demonstrating uniqueness of a class of solutions due to Buchdahl which correspond to an extreme case of the inequality on the equation of state required by our theorem. 16 refs. (Authors)

  11. On the uniqueness of static perfect-fluid solutions in general relativity

    International Nuclear Information System (INIS)

    Beig, R.; Simon, W.

    1990-01-01

    Following earlier work of Masood-ul-Alam, we consider a uniqueness problem for nonrotating stellar models. Given a static, asymptotically flat perfect-fluid spacetime with barotropic equation of state ρ(p), and given another such spacetime which is spherically symmetric and has the same ρ(p) and the same surface potential: we prove that both are identical provided ρ(p) satisfies a certain differential inequality. This inequality is more natural and less restrictive that the conditions required by Masood-ul-Alam. 30 refs. (Authors)

  12. Supersonic flow over a pitching delta wing using surface pressure measurements and numerical simulations

    Directory of Open Access Journals (Sweden)

    Mostafa HADIDOOLABI

    2018-01-01

    Full Text Available Experimental and numerical methods were applied to investigating high subsonic and supersonic flows over a 60° swept delta wing in fixed state and pitching oscillation. Static pressure coefficient distributions over the wing leeward surface and the hysteresis loops of pressure coefficient versus angle of attack at the sensor locations were obtained by wind tunnel tests. Similar results were obtained by numerical simulations which agreed well with the experiments. Flow structure around the wing was also demonstrated by the numerical simulation. Effects of Mach number and angle of attack on pressure distribution curves in static tests were investigated. Effects of various oscillation parameters including Mach number, mean angle of attack, pitching amplitude and frequency on hysteresis loops were investigated in dynamic tests and the associated physical mechanisms were discussed. Vortex breakdown phenomenon over the wing was identified at high angles of attack using the pressure coefficient curves and hysteresis loops, and its effects on the flow features were discussed.

  13. Power system static state estimation using Kalman filter algorithm

    Directory of Open Access Journals (Sweden)

    Saikia Anupam

    2016-01-01

    Full Text Available State estimation of power system is an important tool for operation, analysis and forecasting of electric power system. In this paper, a Kalman filter algorithm is presented for static estimation of power system state variables. IEEE 14 bus system is employed to check the accuracy of this method. Newton Raphson load flow study is first carried out on our test system and a set of data from the output of load flow program is taken as measurement input. Measurement inputs are simulated by adding Gaussian noise of zero mean. The results of Kalman estimation are compared with traditional Weight Least Square (WLS method and it is observed that Kalman filter algorithm is numerically more efficient than traditional WLS method. Estimation accuracy is also tested for presence of parametric error in the system. In addition, numerical stability of Kalman filter algorithm is tested by considering inclusion of zero mean errors in the initial estimates.

  14. Testing the accuracy and stability of spectral methods in numerical relativity

    International Nuclear Information System (INIS)

    Boyle, Michael; Lindblom, Lee; Pfeiffer, Harald P.; Scheel, Mark A.; Kidder, Lawrence E.

    2007-01-01

    The accuracy and stability of the Caltech-Cornell pseudospectral code is evaluated using the Kidder, Scheel, and Teukolsky (KST) representation of the Einstein evolution equations. The basic 'Mexico City tests' widely adopted by the numerical relativity community are adapted here for codes based on spectral methods. Exponential convergence of the spectral code is established, apparently limited only by numerical roundoff error or by truncation error in the time integration. A general expression for the growth of errors due to finite machine precision is derived, and it is shown that this limit is achieved here for the linear plane-wave test

  15. Static contribution of the higher modes in the dynamic response of structures

    International Nuclear Information System (INIS)

    Barbosa, H.J.C.

    1982-03-01

    In the dynamic response of structures by the modal superposition method usually only the lower modes are taken into account and a procedure that could estimate the contribution due to the higher modes without calculating them would be useful. The technique which consists of assuming that the higher modes respond statically is discussed here. Structures subjected to support motion which are analysed by response spectra techniques are considered and some numerical results are presented. (Author) [pt

  16. Numerical modelling of the pump-to-signal relative intensity noise ...

    Indian Academy of Sciences (India)

    An accurate numerical model to investigate the pump-to-signal relative intensity noise (RIN) transfer in two-pump fibre optical parametric amplifiers (2-P FOPAs) for low modulation frequencies is presented. Compared to other models in the field, this model takes into account the fibre loss, pump depletion as well as the gain ...

  17. Prediction of static friction coefficient in rough contacts based on the junction growth theory

    Science.gov (United States)

    Spinu, S.; Cerlinca, D.

    2017-08-01

    The classic approach to the slip-stick contact is based on the framework advanced by Mindlin, in which localized slip occurs on the contact area when the local shear traction exceeds the product between the local pressure and the static friction coefficient. This assumption may be too conservative in the case of high tractions arising at the asperities tips in the contact of rough surfaces, because the shear traction may be allowed to exceed the shear strength of the softer material. Consequently, the classic frictional contact model is modified in this paper so that gross sliding occurs when the junctions formed between all contacting asperities are independently sheared. In this framework, when the contact tractions, normal and shear, exceed the hardness of the softer material on the entire contact area, the material of the asperities yields and the junction growth process ends in all contact regions, leading to gross sliding inception. This friction mechanism is implemented in a previously proposed numerical model for the Cattaneo-Mindlin slip-stick contact problem, which is modified to accommodate the junction growth theory. The frictionless normal contact problem is solved first, then the tangential force is gradually increased, until gross sliding inception. The contact problems in the normal and in the tangential direction are successively solved, until one is stabilized in relation to the other. The maximum tangential force leading to a non-vanishing stick area is the static friction force that can be sustained by the rough contact. The static friction coefficient is eventually derived as the ratio between the latter friction force and the normal force.

  18. Static, Dynamic, and Thermal Properties of Compressible Fluid Film Journal Bearings

    DEFF Research Database (Denmark)

    Paulsen, Bo Terp; Morosi, Stefano; Santos, Ilmar

    2011-01-01

    fluid film journal bearing, in order to identify when this type of analysis should be of concern. Load capacity, stiffness, and damping coefficients are determined by the solution of the standard Reynolds equation coupled to the energy equation. Numerical investigations show how bearing geometry......, and work great efficiency. A great deal of literature has concentrated on the analysis and prediction of the static and dynamic performance of gas bearings, assuming isothermal conditions. The present contribution presents a detailed mathematical modeling for nonisothermal lubrication of a compressible...

  19. Three-way flexible cantilever probes for static contact

    International Nuclear Information System (INIS)

    Wang, Fei; Petersen, Dirch H; Hansen, Christian; Mortensen, Dennis; Friis, Lars; Hansen, Ole; Jensen, Helle V

    2011-01-01

    In micro four-point probe measurements, three-way flexible L-shaped cantilever probes show significant advantages over conventional straight cantilever probes. The L-shaped cantilever allows static contact to the sample surface which reduces the frictional wear of the cantilever tips. We analyze the geometrical design space that must be fulfilled for the cantilevers to obtain static contact with the test sample. The design space relates the spring constant tensor of the cantilevers to the minimal value of the static tip-to-sample friction coefficient. Using an approximate model, we provide the analytical calculation of the compliance matrix of the L-shaped cantilever. Compared to results derived from finite element model simulations, the theoretical model provides a good qualitative analysis while deviations for the absolute values are seen. From a statistical analysis, the deviation is small for cantilevers with low effective spring constants, while the deviation is significant for large spring constants where the quasi one-dimensional approximation is no longer valid

  20. FEM simulation of static loading test of the Omega beam

    Science.gov (United States)

    Bílý, Petr; Kohoutková, Alena; Jedlinský, Petr

    2017-09-01

    The paper deals with a FEM simulation of static loading test of the Omega beam. Omega beam is a precast prestressed high-performance concrete element with the shape of Greek letter omega. Omega beam was designed as a self-supporting permanent formwork member for construction of girder bridges. FEM program ATENA Science was exploited for simulation of load-bearing test of the beam. The numerical model was calibrated using the data from both static loading test and tests of material properties. Comparison of load-displacement diagrams obtained from the experiment and the model was conducted. Development of cracks and crack patterns were compared. Very good agreement of experimental data and the FEM model was reached. The calibrated model can be used for design of optimized Omega beams in the future without the need of expensive loading tests. The calibrated material model can be also exploited in other types of FEM analyses of bridges constructed with the use of Omega beams, such as limit state analysis, optimization of shear connectors, prediction of long-term deflections or prediction of crack development.

  1. Numerical simulation of Higgs models

    International Nuclear Information System (INIS)

    Jaster, A.

    1995-10-01

    The SU(2) Higgs and the Schwinger model on the lattice were analysed. Numerical simulations of the SU(2) Higgs model were performed to study the finite temperature electroweak phase transition. With the help of the multicanonical method the distribution of an order parameter at the phase transition point was measured. This was used to obtain the order of the phase transition and the value of the interface tension with the histogram method. Numerical simulations were also performed at zero temperature to perform renormalization. The measured values for the Wilson loops were used to determine the static potential and from this the renormalized gauge coupling. The Schwinger model was simulated at different gauge couplings to analyse the properties of the Kaplan-Shamir fermions. The prediction that the mass parameter gets only multiplicative renormalization was tested and verified. (orig.)

  2. Static devices with new permanent magnets

    International Nuclear Information System (INIS)

    Chavanne, J.; Laforest, J.; Pauthenet, R.

    1987-01-01

    The high remanence and coercivity of the new permanent magnet materials are of special interest in the static applications. High ordering temperature and are uniaxial anisotropy at the origin of their good permanent magnet properties are obtained in rare earth-transition metal compounds. Binary SmCo/sub 5/ and Sm/sub 2/Co/sub 17/ and ternary Nd/sub 2/Fe/sub 14/B compounds are the basis materials of the best permanent magnets. new concepts of calculations of static devices with these magnets can be applied: the magnetization can be considered as ridig, the density of the surface Amperian current is constant, the relative permeability is approximately 1 and the induction calculations are linear. Examples of hexapoles with Sm-Co and NdFeB magnets are described and the performances are compared. The problems of temperature behavior and corrosion resistance are underlined

  3. Comparison of Numerical Analyses with a Static Load Test of a Continuous Flight Auger Pile

    Directory of Open Access Journals (Sweden)

    Hoľko Michal

    2014-12-01

    Full Text Available The article deals with numerical analyses of a Continuous Flight Auger (CFA pile. The analyses include a comparison of calculated and measured load-settlement curves as well as a comparison of the load distribution over a pile's length. The numerical analyses were executed using two types of software, i.e., Ansys and Plaxis, which are based on FEM calculations. Both types of software are different from each other in the way they create numerical models, model the interface between the pile and soil, and use constitutive material models. The analyses have been prepared in the form of a parametric study, where the method of modelling the interface and the material models of the soil are compared and analysed.

  4. Static and dynamic stability of pneumatic vibration isolators and systems of isolators

    Science.gov (United States)

    Ryaboy, Vyacheslav M.

    2014-01-01

    Pneumatic vibration isolation is the most widespread effective method for creating vibration-free environments that are vital for precise experiments and manufacturing operations in optoelectronics, life sciences, microelectronics, nanotechnology and other areas. The modeling and design principles of a dual-chamber pneumatic vibration isolator, basically established a few decades ago, continue to attract attention of researchers. On the other hand, behavior of systems of such isolators was never explained in the literature in sufficient detail. This paper covers a range of questions essential for understanding the mechanics of pneumatic isolation systems from both design and application perspectives. The theory and a model of a single standalone isolator are presented in concise form necessary for subsequent analysis. Then the dynamics of a system of isolators supporting a payload is considered with main attention directed to two aspects of their behavior: first, the static stability of payloads with high positions of the center of gravity; second, dynamic stability of the feedback system formed by mechanical leveling valves. The direct method of calculating the maximum stable position of the center of gravity is presented and illustrated by three-dimensional stability domains; analytic formulas are given that delineate these domains. A numerical method for feedback stability analysis of self-leveling valve systems is given, and the results are compared with the analytical estimates for a single isolator. The relation between the static and dynamic phenomena is discussed.

  5. The Impact of One Heat Treated Contact Element on the Coefficient of Static Friction

    Directory of Open Access Journals (Sweden)

    P. Todorović, , , , , ,

    2013-12-01

    Full Text Available The subject of the paper includes theoretical considerations, the conducting of experimental tests, and the analysis of exposed test results related to determination of the coefficient of static friction of previously heat-treated contact pairs. One contact element is previously, before the procedure of determining the coefficient of static friction, heated at temperatures in the range of ambient temperature to 280°C and then cooled down to ambient temperature. The results of experimental tests of five different materials show that depending on the heat treatment of one contact element, there is a significant decrease in the coefficient of static friction. The authors of the paper consider that the reasons for the decreasing coefficient of static friction are related to oxide formation and changes in the surface layer of the contact element which is previously heat-treated.

  6. Static telescope aberration measurement using lucky imaging techniques

    Science.gov (United States)

    López-Marrero, Marcos; Rodríguez-Ramos, Luis Fernando; Marichal-Hernández, José Gil; Rodríguez-Ramos, José Manuel

    2012-07-01

    A procedure has been developed to compute static aberrations once the telescope PSF has been measured with the lucky imaging technique, using a nearby star close to the object of interest as the point source to probe the optical system. This PSF is iteratively turned into a phase map at the pupil using the Gerchberg-Saxton algorithm and then converted to the appropriate actuation information for a deformable mirror having low actuator number but large stroke capability. The main advantage of this procedure is related with the capability of correcting static aberration at the specific pointing direction and without the need of a wavefront sensor.

  7. Merging Black Holes, Gravitational Waves, and Numerical Relativity

    Science.gov (United States)

    Centrella, Joan M.

    2009-01-01

    The final merger of two black holes will emit more energy than all the stars in the observable universe combined. This energy will come in the form of gravitational waves, which are a key prediction of Einstein's general relativity and a new tool for exploring the universe. Observing these mergers with gravitational wave detectors, such as the ground-based LIGO and the space-based LISA, requires knowledge of the radiation waveforms. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes were long plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and w aefo rms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  8. Numerical Hydrodynamics in Special Relativity.

    Science.gov (United States)

    Martí, José Maria; Müller, Ewald

    2003-01-01

    This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction. Supplementary material is available for this article at 10.12942/lrr-2003-7 and is accessible for authorized users.

  9. New Systematic CFD Methods to Calculate Static and Single Dynamic Stability Derivatives of Aircraft

    Directory of Open Access Journals (Sweden)

    Bai-gang Mi

    2017-01-01

    Full Text Available Several new systematic methods for high fidelity and reliability calculation of static and single dynamic derivatives are proposed in this paper. Angle of attack step response is used to obtain static derivative directly; then translation acceleration dynamic derivative and rotary dynamic derivative can be calculated by employing the step response motion of rate of the angle of attack and unsteady motion of pitching angular velocity step response, respectively. Longitudinal stability derivative calculations of SACCON UCAV are taken as test cases for validation. Numerical results of all cases achieve good agreement with reference values or experiments data from wind tunnel, which indicate that the proposed methods can be considered as new tools in the process of design and production of advanced aircrafts for their high efficiency and precision.

  10. STUDY TO COMPARE THE EFFECTIVENESS OF STATIC STRETCH AND HOLD RELAX TECHNIQUE OVER HAMSTRING FLEXIBILITY

    Directory of Open Access Journals (Sweden)

    Shanthi C

    2014-10-01

    Full Text Available Background: Numerous studies have documented on flexibility of muscles. Flexibility is defined as the ability of the muscles to lengthen allowing one joint or more than one joint in a series to move through a range of motion .Flexibility allows tissue to accommodate more easily to stress thus minimizing or preventing muscle injury. But this study sought to identify the study to compare the effectiveness of Static stretch and Hold relax technique over the hamstring flexibility. Methods: 30 healthy male adults with Hamstring tightness aged 21 to 35 years selected from general population through simple randomized technique. Samples are divided into two groups, static stretch Group-I(no.15 and Group-II Hold relax (no.=15.The outcome was measured with help of sit & reach test to see the Hamstring flexibility. Results: Comparison of the post test values of the group I and group II shows a significant difference between the outcomes of two groups with a “t” calculated value of 0.738 (unpaired “t” test. Conclusion: Both static stretch and hold relax Technique can cause very highly significant result in Hamstring Flexibility, further comparison shows very high significant difference between two groups and concludes that hold relax is better than static stretch in Hamstring Flexibility.

  11. Mathematic study and numerical implantation of the Vlasov-Darwin model

    International Nuclear Information System (INIS)

    Sonnendrucker, E.

    1994-12-01

    Numerical simulation of some phenomena in plasma physics, or more generally in electromagnetism, can be more easily done using approximate models of Maxwell equations such as the Darwin model in which the transverse part of the displacement current in the Ampere equation is neglected, or such as the static model in which the time derivatives are neglected. In this note, the Darwin model is presented first, and then an asymptotic analysis of Maxwell equations is given with limit conditions of perfect conductor on one part of the side, and Silver-Muller absorbing conditions on the other part. This allows to obtain a variational formulation for the Darwin model which is a good approximation of Maxwell equations. A variational formulation for the quasi-static model is also obtained. In a second part this implantation is described using a 2-D finite element method coupled with a particulate method for the Vlasov equations which leads to numerical results allowing a determination of the different models application. (J.S.). 2 refs

  12. Energy conversion statics

    CERN Document Server

    Messerle, H K; Declaris, Nicholas

    2013-01-01

    Energy Conversion Statics deals with equilibrium situations and processes linking equilibrium states. A development of the basic theory of energy conversion statics and its applications is presented. In the applications the emphasis is on processes involving electrical energy. The text commences by introducing the general concept of energy with a survey of primary and secondary energy forms, their availability, and use. The second chapter presents the basic laws of energy conversion. Four postulates defining the overall range of applicability of the general theory are set out, demonstrating th

  13. Exploring the use of numerical relativity waveforms in burst analysis of precessing black hole mergers

    International Nuclear Information System (INIS)

    Fischetti, Sebastian; Cadonati, Laura; Mohapatra, Satyanarayan R. P.; Healy, James; London, Lionel; Shoemaker, Deirdre

    2011-01-01

    Recent years have witnessed tremendous progress in numerical relativity and an ever improving performance of ground-based interferometric gravitational wave detectors. In preparation for the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO) and a new era in gravitational wave astronomy, the numerical relativity and gravitational wave data analysis communities are collaborating to ascertain the most useful role for numerical relativity waveforms in the detection and characterization of binary black hole coalescences. In this paper, we explore the detectability of equal mass, merging black hole binaries with precessing spins and total mass M T (set-membership sign)[80,350]M · , using numerical relativity waveforms and templateless search algorithms designed for gravitational wave bursts. In particular, we present a systematic study using waveforms produced by the MayaKranc code that are added to colored, Gaussian noise and analyzed with the Omega burst search algorithm. Detection efficiency is weighed against the orientation of one of the black-hole's spin axes. We find a strong correlation between the detection efficiency and the radiated energy and angular momentum, and that the inclusion of the l=2, m=±1, 0 modes, at a minimum, is necessary to account for the full dynamics of precessing systems.

  14. Robot-Crawler: Statically Balanced Gaits

    Directory of Open Access Journals (Sweden)

    S. Parasuraman

    2012-12-01

    Full Text Available This paper presents a new statically balanced walking technique for a robot-crawler. The gait design and the control of the robot crawler aim to achieve stability while walking. This statically balanced gait has to be designed in a different fashion to a wheeled robot, as there are discrete changes in the support of the robot when its legs are lifted or placed on the ground. The stability of the robot depends on how the legs are positioned relative to the body and also on the sequence and timing with which the legs are lifted and placed. In order to reduce the risk of stability loss while walking, a measure for the robot stability (so-called stability margin is typically used in the gait and motion planning. In this paper different biological behaviours of four-legged animals are studied and mapped on a quad-legrobot-crawler. Experiments were carried out on the forward walking gaits of lizards and horses. Based on these results, the stability margins of different gaits are discussed and compared.

  15. Influence of steam parameters on static and dynamic characteristics of labyrinth seal

    Directory of Open Access Journals (Sweden)

    HE Wenqiang

    2017-10-01

    Full Text Available [Objectives] In order to study the influence of working medium parameters on the static and dynamic characteristics of seals in turbomachinery,[Methods] a three-dimensional model of a labyrinth seal was created, and air and steam were applied in the numerical simulation. The Computational Fluid Dynamics (CFD method and a rotating frame were applied to analyze the influence of different steam parameters on the leakage characteristics and dynamic characteristic coefficients.[Results] The results show that great differences in leakage flow rate are apparent under different air and steam conditions, and the fluid-induced force shows linear and nonlinear variation with the increasing whirl speed. When the steam temperature increases, the system stability decreases as the dynamic characteristic coefficients change.[Conclusions] In consequence, working medium parameters are of great significance for turbine stability, and the influence of working medium parameters on the static and dynamic characteristics of seals should be given great attention in practical application.

  16. A Pedagogical Model of Static Friction

    OpenAIRE

    Pickett, Galen T.

    2015-01-01

    While dry Coulombic friction is an elementary topic in any standard introductory course in mechanics, the critical distinction between the kinetic and static friction forces is something that is both hard to teach and to learn. In this paper, I describe a geometric model of static friction that may help introductory students to both understand and apply the Coulomb static friction approximation.

  17. On the screening of static electromagnetic fields in hot QED plasmas

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1995-01-01

    The screening of static magnetic and electric fields was studied in massless quantum electrodynamics (QED) and massless scalar electrodynamics (SQED) at temperature T. Various exact relations for the static polarization tensor are first reviewed, and then verified perturbatively to fifth order (in the coupling) in QED and fourth order in SQED, using different resummation techniques. The magnetic and electric screening masses squared, as defined through the pole of the static propagators, are also calculated to fifth order in QED and fourth order in SQED, and their gauge-independence and renormalisation-group invariance is checked. Finally, arguments are provided for the vanishing of the magnetic mass to all orders in perturbation theory. (author) 26 refs

  18. Relations of Different Types of Numerical Magnitude Representations to Each Other and to Mathematics Achievement

    Science.gov (United States)

    Fazio, Lisa K.; Bailey, Drew H.; Thompson, Clarissa A.; Siegler, Robert S.

    2014-01-01

    We examined relations between symbolic and non-symbolic numerical magnitude representations, between whole number and fraction representations, and between these representations and overall mathematics achievement in fifth graders. Fraction and whole number symbolic and non-symbolic numerical magnitude understandings were measured using both…

  19. Development of the static analyzer ANALYSIS/EX for FORTRAN programs

    International Nuclear Information System (INIS)

    Osanai, Seiji; Yokokawa, Mitsuo

    1993-08-01

    The static analyzer 'ANALYSIS' is the software tool for analyzing tree structure and COMMON regions of a FORTRAN program statically. With the installation of the new FORTRAN compiler, FORTRAN77EX(V12), to the computer system at JAERI, a new version of ANALYSIS, 'ANALYSIS/EX', has been developed to enhance its analyzing functions. In addition to the conventional functions of ANALYSIS, the ANALYSIS/EX is capable of analyzing of FORTRAN programs written in the FORTRAN77EX(V12) language grammar such as large-scale nuclear codes. The analyzing function of COMMON regions are also improved so as to obtain the relation between variables in COMMON regions in more detail. In this report, results of improvement and enhanced functions of the static analyzer ANALYSIS/EX are presented. (author)

  20. Uncertainties related to numerical methods for neutron spectra unfolding

    International Nuclear Information System (INIS)

    Glodic, S.; Ninkovic, M.; Adarougi, N.A.

    1987-10-01

    One of the often used techniques for neutron detection in radiation protection utilities is the Bonner multisphere spectrometer. Besides its advantages and universal applicability for evaluating integral parameters of neutron fields in health physics practices, the outstanding problems of the method are data analysis and the accuracy of the results. This paper briefly discusses some numerical problems related to neutron spectra unfolding, such as uncertainty of the response matrix as a source of error, and the possibility of real time data reduction using spectrometers. (author)

  1. A study of the static to kinetic friction transition of polymers

    OpenAIRE

    Lee, Edward Chungjen

    1995-01-01

    This study investigates the transition from static to kinetic friction for structural polymers and continues previous research conducted by Dr. N. S. Eiss, B. McCann, and R. Molique. A new test apparatus which simultaneously measures friction, normal load, and relative velocity was developed to study this transition. The polymers used in this study were nylon, ABS, polycarbonate, and fiberglass filled and unfilled polypropylene. Creep effects of polymers on the static coefficie...

  2. Identification of the numerical model of FEM in reference to measurements in situ

    Science.gov (United States)

    Jukowski, Michał; Bec, Jarosław; Błazik-Borowa, Ewa

    2018-01-01

    The paper deals with the verification of various numerical models in relation to the pilot-phase measurements of a rail bridge subjected to dynamic loading. Three types of FEM models were elaborated for this purpose. Static, modal and dynamic analyses were performed. The study consisted of measuring the acceleration values of the structural components of the object at the moment of the train passing. Based on this, FFT analysis was performed, the main natural frequencies of the bridge were determined, the structural damping ratio and the dynamic amplification factor (DAF) were calculated and compared with the standard values. Calculations were made using Autodesk Simulation Multiphysics (Algor).

  3. Static properties of small Josephson tunnel junctions in a transverse magnetic field

    DEFF Research Database (Denmark)

    Monaco, R.; Aarøe, Morten; Mygind, Jesper

    2008-01-01

    The magnetic field distribution in the barrier of small planar Josephson tunnel junctions is numerically simulated in the case when an external magnetic field is applied perpendicular to the barrier plane. The simulations allow for heuristic analytical solutions for the Josephson static phase...... profile from which the dependence of the maximum Josephson current on the applied field amplitude is derived. The most common geometrical configurations are considered and, when possible, the theoretical findings are compared with the experimental data. ©2008 American Institute of Physics...

  4. Statics of Historic Masonry Constructions

    CERN Document Server

    Como, Mario

    2013-01-01

    Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments in its architectural heritage. Given the age of much of these constructions, the demand for safety assessments and restoration projects is pressing and constant. This book aims to help fill this demand presenting a comprehensive new statics of masonry constructions. The book, result of thirty years of research and professional experience, gives the fundamentals of statics of the masonry solid, then applied to the study of statics of arches, piers and vaults. Further, combining engineering and architecture and through an interdisciplinary approach, the book investigates the statical behaviour of many historic monuments, as the Pantheon, the Colosseum,  the domes of S. Maria del Fiore in Florence and of St. Peter in Rome, the Tower of Pisa, the Gothic Cathedrals and the Masonry Buildings under seismic actions.

  5. Static Analysis Numerical Algorithms

    Science.gov (United States)

    2016-04-01

    an Abstract Interpretation framework, written in Ocaml , that is meant to be specialized to particular programming languages and program properties...of interest. A specific analyzer tool is built for a specific combination of language /properties by specializing the Ocaml source and compiling to...breaking the monolithic Ocaml compilation and resulting in a mixed language system that (currently) runs only on MacOS (see 3.3.4 below). Approved for

  6. Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part II

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this second lecture, we focus on simulations of black hole binary mergers. We hig hlight the instabilities that plagued the codes for many years, the r ecent breakthroughs that led to the first accurate simulations, and the current state of the art.

  7. Static Transition Compression

    DEFF Research Database (Denmark)

    Danvy, Olivier; Damian, Daniel

    2001-01-01

    Starting from an operational specification of a translation from a structured to an unstructured imperative language, we point out how a compositional and context-insensitive translation gives rise to static chains of jumps. Taking an inspiration from the notion of continuation, we state a new...... compositional and context-sensitive specification that provably gives rise to no static chains of jumps, no redundant labels, and no unused labels. It is defined with one inference rule per syntactic construct and operates in linear time and space on the size of the source program (indeed it operates in one...

  8. Statics and Mechanics of Structures

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    The statics and mechanics of structures form a core aspect of civil engineering. This book provides an introduction to the subject, starting from classic hand-calculation types of analysis and gradually advancing to a systematic form suitable for computer implementation. It starts with statically...

  9. Nonlinear Slewing Spacecraft Control Based on Exergy, Power Flow, and Static and Dynamic Stability

    Science.gov (United States)

    Robinett, Rush D.; Wilson, David G.

    2009-10-01

    This paper presents a new nonlinear control methodology for slewing spacecraft, which provides both necessary and sufficient conditions for stability by identifying the stability boundaries, rigid body modes, and limit cycles. Conservative Hamiltonian system concepts, which are equivalent to static stability of airplanes, are used to find and deal with the static stability boundaries: rigid body modes. The application of exergy and entropy thermodynamic concepts to the work-rate principle provides a natural partitioning through the second law of thermodynamics of power flows into exergy generator, dissipator, and storage for Hamiltonian systems that is employed to find the dynamic stability boundaries: limit cycles. This partitioning process enables the control system designer to directly evaluate and enhance the stability and performance of the system by balancing the power flowing into versus the power dissipated within the system subject to the Hamiltonian surface (power storage). Relationships are developed between exergy, power flow, static and dynamic stability, and Lyapunov analysis. The methodology is demonstrated with two illustrative examples: (1) a nonlinear oscillator with sinusoidal damping and (2) a multi-input-multi-output three-axis slewing spacecraft that employs proportional-integral-derivative tracking control with numerical simulation results.

  10. Hyperfine-mediated static polarizabilities of monovalent atoms and ions

    International Nuclear Information System (INIS)

    Dzuba, V. A.; Flambaum, V. V.; Beloy, K.; Derevianko, A.

    2010-01-01

    We apply relativistic many-body methods to compute static differential polarizabilities for transitions inside the ground-state hyperfine manifolds of monovalent atoms and ions. Knowledge of this transition polarizability is required in a number of high-precision experiments, such as microwave atomic clocks and searches for CP-violating permanent electric dipole moments. While the traditional polarizability arises in the second order of interaction with the externally applied electric field, the differential polarizability involves an additional contribution from the hyperfine interaction of atomic electrons with nuclear moments. We derive formulas for the scalar and tensor polarizabilities including contributions from magnetic dipole and electric quadrupole hyperfine interactions. Numerical results are presented for Al, Rb, Cs, Yb + , Hg + , and Fr.

  11. Optimization of Finite-Differencing Kernels for Numerical Relativity Applications

    Directory of Open Access Journals (Sweden)

    Roberto Alfieri

    2018-05-01

    Full Text Available A simple optimization strategy for the computation of 3D finite-differencing kernels on many-cores architectures is proposed. The 3D finite-differencing computation is split direction-by-direction and exploits two level of parallelism: in-core vectorization and multi-threads shared-memory parallelization. The main application of this method is to accelerate the high-order stencil computations in numerical relativity codes. Our proposed method provides substantial speedup in computations involving tensor contractions and 3D stencil calculations on different processor microarchitectures, including Intel Knight Landing.

  12. Static polarizabilities of dielectric nanoclusters

    International Nuclear Information System (INIS)

    Kim, Hye-Young; Sofo, Jorge O.; Cole, Milton W.; Velegol, Darrell; Mukhopadhyay, Gautam

    2005-01-01

    A cluster consisting of many atoms or molecules may be considered, in some circumstances, to be a single large molecule with a well-defined polarizability. Once the polarizability of such a cluster is known, one can evaluate certain properties--e.g. the cluster's van der Waals interactions, using expressions derived for atoms or molecules. In the present work, we evaluate the static polarizability of a cluster using a microscopic method that is exact within the linear and dipolar approximations. Numerical examples are presented for various shapes and sizes of clusters composed of identical atoms, where the term 'atom' actually refers to a generic constituent, which could be any polarizable entity. The results for the clusters' polarizabilities are compared with those obtained by assuming simple additivity of the constituents' atomic polarizabilities; in many cases, the difference is large, demonstrating the inadequacy of the additivity approximation. Comparison is made (for symmetrical geometries) with results obtained from continuum models of the polarizability. Also, the surface effects due to the nonuniform local field near a surface or edge are shown to be significant

  13. STATIC{sub T}EMP: a useful computer code for calculating static formation temperatures in geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Santoyo, E. [Universidad Nacional Autonoma de Mexico, Centro de Investigacion en Energia, Temixco (Mexico); Garcia, A.; Santoyo, S. [Unidad Geotermia, Inst. de Investigaciones Electricas, Temixco (Mexico); Espinosa, G. [Universidad Autonoma Metropolitana, Co. Vicentina (Mexico); Hernandez, I. [ITESM, Centro de Sistemas de Manufactura, Monterrey (Mexico)

    2000-07-01

    The development and application of the computer code STATIC{sub T}EMP, a useful tool for calculating static formation temperatures from actual bottomhole temperature data logged in geothermal wells is described. STATIC{sub T}EMP is based on five analytical methods which are the most frequently used in the geothermal industry. Conductive and convective heat flow models (radial, spherical/radial and cylindrical/radial) were selected. The computer code is a useful tool that can be reliably used in situ to determine static formation temperatures before or during the completion stages of geothermal wells (drilling and cementing). Shut-in time and bottomhole temperature measurements logged during well completion activities are required as input data. Output results can include up to seven computations of the static formation temperature by each wellbore temperature data set analysed. STATIC{sub T}EMP was written in Fortran-77 Microsoft language for MS-DOS environment using structured programming techniques. It runs on most IBM compatible personal computers. The source code and its computational architecture as well as the input and output files are described in detail. Validation and application examples on the use of this computer code with wellbore temperature data (obtained from specialised literature) and with actual bottomhole temperature data (taken from completion operations of some geothermal wells) are also presented. (Author)

  14. Numerical solution of recirculating flow by a simple finite element recursion relation

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W; Cooper, R E

    1980-01-01

    A time-split finite element recursion relation, based on linear basis functions, is used to solve the two-dimensional equations of motion. Recirculating flow in a rectangular cavity and free convective flow in an enclosed container are analyzed. The relation has the advantage of finite element accuracy and finite difference speed and simplicity. Incorporating dissipation parameters in the functionals decreases numerical dispersion and improves phase lag.

  15. Survey of risks related to static magnetic fields in ultra high field MRI; Bestandsaufnahme zu Risiken durch statische Magnetfelder im Zusammenhang mit der Ultrahochfeld-MRT

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.E. [Max-Planck-Inst. fuer Kognitions- und Neurowissenschaften, Leipzig (Germany); Cramon, D.Y. von [Max-Planck-Inst. fuer Kognitions- und Neurowissenschaften, Leipzig (Germany); Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany)

    2008-04-15

    In magnetic resonance imaging (MRI), substantial improvements with respect to sensitivity are expected due to the development of so-called ultra high field scanners, i.e., whole-body scanners with a magnetic field strength of 7 T or above. Users of this technology need to evaluate this benefit for potential risks since commercially available systems are not certified as a medical device for human use. This review provides a detailed survey of static field bioeffects related to the exposure of subjects being scanned, to occupational exposure, and to exposure of the general public under consideration of current standards and directives. According to present knowledge, it is not expected that exposure of human subjects to static magnetic fields of 7 T implies a specific risk of damage or disease provided that known contraindications are observed. The available database does not permit definition of exact thresholds for harmful effects. However, experience from previous application of ultra high field MRI indicates that transient phenomena, such as vertigo, nausea, metallic taste, or magnetophosphenes, are more frequently observed. In particular, movements in the field or the gradient of the fringe field seem to lead to detectable effects. Besides such observations, there is a strong demand for systematic investigation of potential interaction mechanisms related to static field exposure during MRI examinations. (orig.)

  16. Iterated Crank-Nicolson method for hyperbolic and parabolic equations in numerical relativity

    International Nuclear Information System (INIS)

    Leiler, Gregor; Rezzolla, Luciano

    2006-01-01

    The iterated Crank-Nicolson is a predictor-corrector algorithm commonly used in numerical relativity for the solution of both hyperbolic and parabolic partial differential equations. We here extend the recent work on the stability of this scheme for hyperbolic equations by investigating the properties when the average between the predicted and corrected values is made with unequal weights and when the scheme is applied to a parabolic equation. We also propose a variant of the scheme in which the coefficients in the averages are swapped between two corrections leading to systematically larger amplification factors and to a smaller numerical dispersion

  17. PATTERN ELECTRORETINOGRAPHY IN RELATION TO KINETIC AND STATIC PERIMETRY AND VISUAL ACUITY IN RETINITIS PIGMENTOSA

    Directory of Open Access Journals (Sweden)

    Petra Popović

    2002-12-01

    Full Text Available Background. This study was conducted to assess whether pattern ERG is a sensitive test in evaluating the retinal function in patients with retinitis pigmentosa. We wanted to determine how pattern ERG, reflecting the activity of inner retinal layers, is related to other psychophysical tests such as perimetry and visual acuity.Methods. An analysis was performed on 50 eyes of 25 patients with typical rod-cone retinitis pigmentosa. The standard Snellen visual acuity was tested. Visual field sensitivity was measured with automated static perimetry (Octopus G2 program where mean defect was taken as an index of visual field loss. In kinetic perimetry (Goldmann the average radius of the visual field measured with target II/4 and V/4 was calculated. Transient pattern ERG and all five flash ERG responses were also measured according to ISCEV standards. Amplitudes of pattern ERG P50 and N95 waves were compared to results of visual acuity and visual field testing.Results. In our group of 25 RP patients with visual acuity ranging from 0.16 to 1.0, PERG responses were preserved much better than full field ERGs. 72% of them had still recordable PERG responses, while 48% had cone and only 32% maximal responses. Scotopic rod responses were extinguished in all eyes. The normalized amplitudes of the PERG responses were also much higher (43.5% than cone (22.5% or maximal responses (4.5%. A strong correlation of both P50 and N95 amplitudes with Octopus mean defect index was found. In kinetic perimetry the correlation with PERG amplitudes was also high, but it was better with II/4 than with V/4 target. Patients with high preserved ERG responses had good visual acuity. In all patients with visual acuity less than 0.4 both flash and pattern ERG responses were already absent.Conclusions. This study shows that pattern ERG is an objective and sensitive test in evaluating the functional visual loss in retinitis pigmentosa. Amplitudes of P50 and N95 responses are linearly

  18. Numerical simulation of 900 MW control rods impact friction vibration and wear

    International Nuclear Information System (INIS)

    Jacquart, G.

    1993-12-01

    Impact-friction vibrations and wear have motivated a great research and development program aiming at understanding the impact and vibration behaviour of these components through experimental and numerical works. This report presents a numerical simulation of the vibrations of a single control rod and of a whole control cluster. Excitation sources for this component are due to hydraulic forces and are situated in the lower part of the rods and in the part of the cluster. Some parametric computations have been carried out on a single rod, to evaluate the effect of the lower excitation source. Different excitation levels, different eccentricities or static forces have been computed and compared to measurements on the MAGALY mock-up representing a complete rod cluster. A numerical model for the complete cluster allowed the evaluation of the upper excitation source effects. This source appears to be less powerful than the lower one. These results have been validated by comparison with MAGALY measurements. At last, some computations were performed with a model of the complete cluster, taking into account the both excitation sources. A parametric study on eccentricity and static forces has been carried out. A comparison with MAGALY measurements seems to be fairly fitting, showing that the numerical results are of the right order of magnitude. Through this numerical study, we have shown that numerical simulation of a complete control rod cluster could be lead, and we have obtained some new informations about impact forces and wear rates that need to be confirmed by more computational or experimental works or in-situ measurements. (author). 10 annexes, 11 refs

  19. Static Members of Classes in C#

    Directory of Open Access Journals (Sweden)

    Adrian LUPASC

    2017-12-01

    Full Text Available The C# language is object-oriented, which is why the declared member data must be part of a class. Thus, there is no possibility to declare certain variables that can be accessed from anywhere within the application, as it happens, for example, with global variables at the C language level. Making this work in C# is possible through static members of the class. Declaring a class implies defining some of its member data that later receive values when creating each object. A static member of the class can be interpreted as belonging only to the class, not to the objects subsequently created, which means that for the non-static data, there are as many children as there were objects created, while for the static ones there is only one copy, regardless of the number of created objects. In this regard, this paper presents the main aspects that characterize these abstract concepts of object oriented programming in general and C# language in particular, detailing how to develop an application that includes both static and non-static members. At the same time, particularities in the mirror for the two types of data, restrictions on use and potential limitations are presented.

  20. Effects of quadriceps strength after static and dynamic whole-body vibration exercise.

    Science.gov (United States)

    Bush, Jill A; Blog, Gabriel L; Kang, Jie; Faigenbaum, Avery D; Ratamess, Nicholas A

    2015-05-01

    Numerous studies have shown performance benefits including whole-body vibration (WBV) as a training modality or an acute exercise protocol when used as a component of the resistance training program. Some studies have indicated that performing dynamic exercises as compared with static position exercises while exposed to WBV might be beneficial; however, evidence is lacking. Thus, the purpose of this study was to determine if an acute bout of dynamic versus static squats performed during WBV results in increase in quadriceps force production by means of dynamic isokinetic knee extension and flexion exercise. Nonresistance-trained healthy young men and women (N = 21) of 18-25 years participated in 4 protocols with 2-week rest in-between. Protocol 1 consisted of 5 sets of 10 dynamic squats without vibration; Protocol 2: 5 sets of 30-second static squats without vibration; Protocol 3: 5 sets of 10 dynamic squats with 30-Hz WBV for a total of 2.5 minutes; and Protocol 4: 5 sets of 30-second static squats with 30-Hz WBV for a total of 2.5 minutes. Prestrength tests (1 set of 4 repetitions at 100° · s(-1) for the knee extension exercise) was performed within 5 minutes of starting each protocol, and poststrength testing was performed within 1 minute of completing each protocol. Strength outcomes were analyzed by repeated measures analysis of variance with a significance level set at p ≤ 0.05. A significant decrease in strength was observed after dynamic and static squats without WBV (p = 0.002); an increase in strength after dynamic squats with WBV (p = 0.003); and a decrease in strength after static squats with WBV (p = 0.003). The inclusion of WBV to dynamic resistance exercise can be an added modality to increase strength. Whole-body vibration can have varied effects in altering muscle strength in untrained individuals according to the type of resistance training performed. As a dynamic squat with WBV seems to immediately potentiate neuromuscular functioning, the

  1. Nonlinear quasi-static finite element simulations predict in vitro strength of human proximal femora assessed in a dynamic sideways fall setup.

    Science.gov (United States)

    Varga, Peter; Schwiedrzik, Jakob; Zysset, Philippe K; Fliri-Hofmann, Ladina; Widmer, Daniel; Gueorguiev, Boyko; Blauth, Michael; Windolf, Markus

    2016-04-01

    Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone׳s material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of 13 femora predicted the strength (R(2)=0.84, SEE=540N, 16.2%), stiffness (R(2)=0.82, SEE=233N/mm, 18.0%) and fracture energy (R(2)=0.72, SEE=3.85J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Numerical approximations for speeding up mcmc inference in the infinite relational model

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Albers, Kristoffer Jon

    2015-01-01

    The infinite relational model (IRM) is a powerful model for discovering clusters in complex networks; however, the computational speed of Markov chain Monte Carlo inference in the model can be a limiting factor when analyzing large networks. We investigate how using numerical approximations...

  3. Engineering a static verification tool for GPU kernels

    OpenAIRE

    Bardsley, E; Betts, A; Chong, N; Collingbourne, P; Deligiannis, P; Donaldson, AF; Ketema, J; Liew, D; Qadeer, S

    2014-01-01

    We report on practical experiences over the last 2.5 years related to the engineering of GPUVerify, a static verification tool for OpenCL and CUDA GPU kernels, plotting the progress of GPUVerify from a prototype to a fully functional and relatively efficient analysis tool. Our hope is that this experience report will serve the verification community by helping to inform future tooling efforts. ? 2014 Springer International Publishing.

  4. Curvature contributions to the static electrical properties of push-pull molecules

    International Nuclear Information System (INIS)

    Squitieri, Emilio

    2005-01-01

    Calculations of the curvature contribution to the diagonals components of the static dipole moment (μ), polarizability (α), first (β) and second (γ) hyperpolarizability of push-pull molecules are presented. This contribution was obtained from the analytical evaluation of electrical properties method using the harmonic zero-point energy. The valence-bond charge-transfer model was employed to obtain the field-dependent force constant and their derivates with respect to electric field. Our results show a relationship between the curvature and electronic contributions. We have also found that the curvature contribution is important in a numerical estimation of β and γ

  5. Is the molecular statics method suitable for the study of nanomaterials? A study case of nanowires

    International Nuclear Information System (INIS)

    Chang, I-L; Chen, Y-C

    2007-01-01

    Both molecular statics and molecular dynamics methods were employed to study the mechanical properties of copper nanowires. The size effect on both elastic and plastic properties of square cross-sectional nanowire was examined and compared systematically using two molecular approaches. It was found consistently from both molecular methods that the elastic and plastic properties of nanowires depend on the lateral size of nanowires. As the lateral size of nanowires decreases, the values of Young's modulus decrease and dislocation nucleation stresses increase. However, it was shown that the dislocation nucleation stress would be significantly influenced by the axial periodic length of the nanowire model using the molecular statics method while molecular dynamics simulations at two distinct temperatures (0.01 and 300 K) did not show the same dependence. It was concluded that molecular statics as an energy minimization numerical scheme is quite insensitive to the instability of atomic structure especially without thermal fluctuation and might not be a suitable tool for studying the behaviour of nanomaterials beyond the elastic limit

  6. Predicting vertebral bone strength by vertebral static histomorphometry

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Ebbesen, Ebbe Nils; Mosekilde, Lis

    2002-01-01

    of the entire vertebral bodies (L-2) were used for histomorphometry. The other iliac crest biopsies and the L-3 were destructively tested by compression. High correlation was found between BV/TV or Tb.Sp and vertebral bone strength (absolute value of r = 0.86 in both cases). Addition of Tb.Th significantly....... No gender-related differences were found in any of the relationships. Neither static histomorphometry nor biomechanical testing of iliac crest bone biopsies is a good predictor of vertebral bone strength.......The study investigates the relationship between static histomorphometry and bone strength of human lumbar vertebral bone. The ability of vertebral histomorphometry to predict vertebral bone strength was compared with that of vertebral densitometry, and also with histomorphometry and bone strength...

  7. Earth tide effects on kinematic/static GPS positioning in Denmark and Greenland

    DEFF Research Database (Denmark)

    Xu, G.C.; Knudsen, Per

    2000-01-01

    A detailed Study of the Earth tide effects on the GPS kinematic/static positioning is presented in this paper by using theoretical Earth tide computation and practical GPS data processing. Tidal effects could reach up to 30 cm in Denmark and Greenland depending on the measuring time...... and the position of reference station. With a baseline less than 80 km, the difference of the Earth tide effects could reach more than 5 mm. So, in precise applications of GPS positioning, the Earth tide effect has to be taken into account even for a relative small local GPS network. Several examples are given...... for demonstrating that the Earth tide effects can be viewed by GPS surveying. They are given through static GPS data static processing, static GPS data kinematic processing, and airborne kinematic GPS data processing. In these cases, the Earth tide effects can be subtracted from the GPS results. The determination...

  8. Numerical simulation of pseudoelastic shape memory alloys using the large time increment method

    Science.gov (United States)

    Gu, Xiaojun; Zhang, Weihong; Zaki, Wael; Moumni, Ziad

    2017-04-01

    The paper presents a numerical implementation of the large time increment (LATIN) method for the simulation of shape memory alloys (SMAs) in the pseudoelastic range. The method was initially proposed as an alternative to the conventional incremental approach for the integration of nonlinear constitutive models. It is adapted here for the simulation of pseudoelastic SMA behavior using the Zaki-Moumni model and is shown to be especially useful in situations where the phase transformation process presents little or lack of hardening. In these situations, a slight stress variation in a load increment can result in large variations of strain and local state variables, which may lead to difficulties in numerical convergence. In contrast to the conventional incremental method, the LATIN method solve the global equilibrium and local consistency conditions sequentially for the entire loading path. The achieved solution must satisfy the conditions of static and kinematic admissibility and consistency simultaneously after several iterations. 3D numerical implementation is accomplished using an implicit algorithm and is then used for finite element simulation using the software Abaqus. Computational tests demonstrate the ability of this approach to simulate SMAs presenting flat phase transformation plateaus and subjected to complex loading cases, such as the quasi-static behavior of a stent structure. Some numerical results are contrasted to those obtained using step-by-step incremental integration.

  9. A PSP-based small-signal MOSFET model for both quasi-static and nonquasi-static operations

    NARCIS (Netherlands)

    Aarts, A.C.T.; Smit, G.D.J.; Scholten, A.J.; Klaassen, D.B.M.

    2008-01-01

    In this paper, a small-signal MOSFET model is described, which takes the local effects of both velocity saturation and transverse mobility reduction into account. The model is based on the PSP model and is valid for both quasi-static and nonquasi-static (NQS) operations. Recently, it has been found

  10. Proceeding of 1999-workshop on MHD computations 'study on numerical methods related to plasma confinement'

    Energy Technology Data Exchange (ETDEWEB)

    Kako, T.; Watanabe, T. [eds.

    2000-06-01

    This is the proceeding of 'study on numerical methods related to plasma confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. There are also various lectures on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. Separate abstracts were presented for 13 of the papers in this report. The remaining 6 were considered outside the subject scope of INIS. (J.P.N.)

  11. The numerical evaluation on non-radiative multiphonon transition rate from different electronic bases

    International Nuclear Information System (INIS)

    Zhu Bangfen.

    1985-10-01

    A numerical calculation on the non-radiative multiphonon transition probability based on the adiabatic approximation (AA) and the static approximation (SA) has been accomplished in a model of two electronic levels coupled to one phonon mode. The numerical results indicate that the spectra based on different approximations are generally different apart from those vibrational levels which are far below the classical crossing point. For large electron-phonon coupling constant, the calculated transition rates based on AA are more reliable; on the other hand, for small transition coupling the transition rates near or beyond the cross region are quite different for two approximations. In addition to the diagonal non-adiabatic potential, the mixing and splitting of the original static potential sheets are responsible for the deviation of the transition rates based on different approximations. The relationship between the transition matrix element and the vibrational level shift, the Huang-Rhys factor, the separation of the electronic levels and the electron-phonon coupling is analysed and discussed. (author)

  12. Martian Atmospheric Pressure Static Charge Elimination Tool

    Science.gov (United States)

    Johansen, Michael R.

    2014-01-01

    A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

  13. Statics and kinematics of discrete Cosserat-type granular materials

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.

    2003-01-01

    A theoretical framework is presented for the statics and kinematics of discrete Cosserat-type granular materials. In analogy to the force and moment equilibrium equations for particles, compatibility equations for closed loops are formulated in the two-dimensional case for relative displacements and

  14. Numerical Modeling Describing the Effects of Heterogeneous Distributions of Asperities on the Quasi-static Evolution of Frictional Slip

    Science.gov (United States)

    Selvadurai, P. A.; Parker, J. M.; Glaser, S. D.

    2017-12-01

    A better understanding of how slip accumulates along faults and its relation to the breakdown of shear stress is beneficial to many engineering disciplines, such as, hydraulic fracture and understanding induced seismicity (among others). Asperities forming along a preexisting fault resist the relative motion of the two sides of the interface and occur due to the interaction of the surface topographies. Here, we employ a finite element model to simulate circular partial slip asperities along a nominally flat frictional interface. Shear behavior of our partial slip asperity model closely matched the theory described by Cattaneo. The asperity model was employed to simulate a small section of an experimental fault formed between two bodies of polymethyl methacrylate, which consisted of multiple asperities whose location and sizes were directly measured using a pressure sensitive film. The quasi-static shear behavior of the interface was modeled for cyclical loading conditions, and the frictional dissipation (hysteresis) was normal stress dependent. We further our understanding by synthetically modeling lognormal size distributions of asperities that were randomly distributed in space. Synthetic distributions conserved the real contact area and aspects of the size distributions from the experimental case, allowing us to compare the constitutive behaviors based solely on spacing effects. Traction-slip behavior of the experimental interface appears to be considerably affected by spatial clustering of asperities that was not present in the randomly spaced, synthetic asperity distributions. Estimates of bulk interfacial shear stiffness were determined from the constitutive traction-slip behavior and were comparable to the theoretical estimates of multi-contact interfaces with non-interacting asperities.

  15. Prediction of flyover jet noise spectra from static tests

    Science.gov (United States)

    Michel, U.; Michalke, A.

    A scaling law for predicting the overall flyover noise of a single stream shock-free circular jet from static experiments is outlined. It is valid for isothermal and hot jets. It assumes that the jet flow and turbulence field are axially stretched in flight. Effects of the boundary layer within the nozzle and along the engine nacelle are neglected. The scaling laws for the power spectral density and spectra with constant relative bandwidth can be derived. In order to compare static and inflight directivities, the far field point relative to the source position must be denoted by the emission angle and the wave normal distance. From the solution of the convective Lighthill equation in a coordinate system fixed to the jet nozzle (wind tunnel case), the power spectral density of sound pressure at a given frequency is found. Predictions for Aerotrain compare well with measured values.

  16. Biological interactions and human health effects of static magnetic fields

    International Nuclear Information System (INIS)

    Tenforde, T.S.

    1994-09-01

    Mechanisms through which static magnetic fields interact with living systems will be described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecular structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary will also be presented of the biological effects of static magnetic fields studied in the laboratory and in natural settings. One aspect of magnetic field effects that merits special concern is their influence on implanted medical electronic devices such as cardiac pacemakers. Several extensive studies have demonstrated closure of the reed switch in pacemakers exposed to relatively weak static magnetic fields, thereby causing them to revert to an asynchronous mode of operation that is potentially hazardous. Recommendations for human exposure limits are provided

  17. Static and dynamic friction of hierarchical surfaces.

    Science.gov (United States)

    Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M

    2016-12-01

    Hierarchical structures are very common in nature, but only recently have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Structural hierarchy provides a way to tune and optimize macroscopic mechanical properties starting from simple base constituents and new materials are nowadays designed exploiting this possibility. This can be true also in the field of tribology. In this paper we study the effect of hierarchical patterned surfaces on the static and dynamic friction coefficients of an elastic material. Our results are obtained by means of numerical simulations using a one-dimensional spring-block model, which has previously been used to investigate various aspects of friction. Despite the simplicity of the model, we highlight some possible mechanisms that explain how hierarchical structures can significantly modify the friction coefficients of a material, providing a means to achieve tunability.

  18. Acceleration of a Static Observer Near the Event Horizon of a Static Isolated Black Hole.

    Science.gov (United States)

    Doughty, Noel A.

    1981-01-01

    Compares the magnitude of the proper acceleration of a static observer in a static, isolated, spherically symmetric space-time region with the Newtonian result including the situation in the interior of a perfect-fluid star. This provides a simple physical interpretation of surface gravity and illustrates the global nature of the event horizon.…

  19. Homotheties of cylindrically symmetric static spacetimes

    International Nuclear Information System (INIS)

    Qadir, A.; Ziad, M.; Sharif, M.

    1998-08-01

    In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)

  20. Static inelastic analysis of steel frames with flexible connections

    Directory of Open Access Journals (Sweden)

    Nefovska-Danilović M.

    2004-01-01

    Full Text Available The effects of connection flexibility and material yielding on the behavior of plane steel frames subjected to static (monotonic loads are presented in this paper. Two types of material nonlinearities are considered: flexible nodal connections and material yielding, as well as geometric nonlinearity of the structure. To account for material yielding, a plastic hinge concept is adopted. A flexible connection is idealized by nonlinear rotational spring. Plastic hinge is also idealized by nonlinear rotational spring attached in series with the rotational spring that accounts for connection flexibility. The stiffness matrix for the beam with flexible connections and plastic hinges at its ends is obtained. To illustrate the validity and accuracy of the proposed numerical model, several examples have been conducted.

  1. Event and Apparent Horizon Finders for 3 + 1 Numerical Relativity.

    Science.gov (United States)

    Thornburg, Jonathan

    2007-01-01

    Event and apparent horizons are key diagnostics for the presence and properties of black holes. In this article I review numerical algorithms and codes for finding event and apparent horizons in numerically-computed spacetimes, focusing on calculations done using the 3 + 1 ADM formalism. The event horizon of an asymptotically-flat spacetime is the boundary between those events from which a future-pointing null geodesic can reach future null infinity and those events from which no such geodesic exists. The event horizon is a (continuous) null surface in spacetime. The event horizon is defined nonlocally in time : it is a global property of the entire spacetime and must be found in a separate post-processing phase after all (or at least the nonstationary part) of spacetime has been numerically computed. There are three basic algorithms for finding event horizons, based on integrating null geodesics forwards in time, integrating null geodesics backwards in time, and integrating null surfaces backwards in time. The last of these is generally the most efficient and accurate. In contrast to an event horizon, an apparent horizon is defined locally in time in a spacelike slice and depends only on data in that slice, so it can be (and usually is) found during the numerical computation of a spacetime. A marginally outer trapped surface (MOTS) in a slice is a smooth closed 2-surface whose future-pointing outgoing null geodesics have zero expansion Θ. An apparent horizon is then defined as a MOTS not contained in any other MOTS. The MOTS condition is a nonlinear elliptic partial differential equation (PDE) for the surface shape, containing the ADM 3-metric, its spatial derivatives, and the extrinsic curvature as coefficients. Most "apparent horizon" finders actually find MOTSs. There are a large number of apparent horizon finding algorithms, with differing trade-offs between speed, robustness, accuracy, and ease of programming. In axisymmetry, shooting algorithms work well

  2. The Relative Effectiveness of the Use of Static and Dynamic Mechanical Models in Teaching Elementary School Children the Theoretical Concept--The Particle Nature of Matter.

    Science.gov (United States)

    Ziegler, Robert Edward

    This study is concerned with determining the relative effectiveness of a static and dynamic theoretical model in teaching elementary school students to use the particle idea of matter when explaining certain physical phenomena. A clinical method of personal individual interview-testing, teaching, and retesting of a random sample population from…

  3. A combined static-dynamic single-dose imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT.

    Science.gov (United States)

    Sciammarella, Maria; Shrestha, Uttam M; Seo, Youngho; Gullberg, Grant T; Botvinick, Elias H

    2017-08-03

    SPECT myocardial perfusion imaging (MPI) is a clinical mainstay that is typically performed with static imaging protocols and visually or semi-quantitatively assessed for perfusion defects based upon the relative intensity of myocardial regions. Dynamic cardiac SPECT presents a new imaging technique based on time-varying information of radiotracer distribution, which permits the evaluation of regional myocardial blood flow (MBF) and coronary flow reserve (CFR). In this work, a preliminary feasibility study was conducted in a small patient sample designed to implement a unique combined static-dynamic single-dose one-day visit imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT for improving the diagnosis of coronary artery disease (CAD). Fifteen patients (11 males, four females, mean age 71 ± 9 years) were enrolled for a combined dynamic and static SPECT (Infinia Hawkeye 4, GE Healthcare) imaging protocol with a single dose of 99m Tc-tetrofosmin administered at rest and a single dose administered at stress in a one-day visit. Out of 15 patients, eleven had selective coronary angiography (SCA), 8 within 6 months and the rest within 24 months of SPECT imaging, without intervening symptoms or interventions. The extent and severity of perfusion defects in each myocardial region was graded visually. Dynamically acquired data were also used to estimate the MBF and CFR. Both visually graded images and estimated CFR were tested against SCA as a reference to evaluate the validity of the methods. Overall, conventional static SPECT was normal in ten patients and abnormal in five patients, dynamic SPECT was normal in 12 patients and abnormal in three patients, and CFR from dynamic SPECT was normal in nine patients and abnormal in six patients. Among those 11 patients with SCA, conventional SPECT was normal in 5, 3 with documented CAD on SCA with an overall accuracy of 64%, sensitivity of 40% and specificity of 83%. Dynamic SPECT image

  4. Effects of Long-Term Static Bending Deformation on a Barrier Thin Film for Flexible Organic Optoelectronic Devices

    Directory of Open Access Journals (Sweden)

    Hung-I Lu

    2018-03-01

    Full Text Available The objective of this study is to investigate the effect of long-term static bending on the encapsulation properties of a commercial barrier thin film for flexible optoelectronic devices. Encapsulation properties of the barrier film are evaluated under long-term static bending at various radii of curvature. Experimental results reveal that no significantly detrimental effect on the water vapor transmission rate (WVTR at 40 °C and 90% RH is found for compressive bending up to 1000 h and for tensile bending up to 100 h with a radius of curvature of 5 mm or larger. However, WVTR of the barrier thin film is significantly increased and cracks are found in the barrier film when subjected to tensile bending of a radius of 10 mm or 5 mm for 1000 h. The expected WVTR of the given barrier thin film is numerically computed using a three-dimensional (3D finite element model. Numerical results indicate that, with the presence of cracks in the barrier thin film, the WVTR increases for an apparent increase in moisture entrances. The WVTR calculated by the 3D cracking model concurs with the experimental results.

  5. Python Open source Waveform ExtractoR (POWER): an open source, Python package to monitor and post-process numerical relativity simulations

    Science.gov (United States)

    Johnson, Daniel; Huerta, E. A.; Haas, Roland

    2018-01-01

    Numerical simulations of Einstein’s field equations provide unique insights into the physics of compact objects moving at relativistic speeds, and which are driven by strong gravitational interactions. Numerical relativity has played a key role to firmly establish gravitational wave astrophysics as a new field of research, and it is now paving the way to establish whether gravitational wave radiation emitted from compact binary mergers is accompanied by electromagnetic and astro-particle counterparts. As numerical relativity continues to blend in with routine gravitational wave data analyses to validate the discovery of gravitational wave events, it is essential to develop open source tools to streamline these studies. Motivated by our own experience as users and developers of the open source, community software, the Einstein Toolkit, we present an open source, Python package that is ideally suited to monitor and post-process the data products of numerical relativity simulations, and compute the gravitational wave strain at future null infinity in high performance environments. We showcase the application of this new package to post-process a large numerical relativity catalog and extract higher-order waveform modes from numerical relativity simulations of eccentric binary black hole mergers and neutron star mergers. This new software fills a critical void in the arsenal of tools provided by the Einstein Toolkit consortium to the numerical relativity community.

  6. Static and Dynamic Mechanical Properties of Long-Span Cable-Stayed Bridges Using CFRP Cables

    Directory of Open Access Journals (Sweden)

    Mei Kuihua

    2017-01-01

    Full Text Available The elastic modulus and deadweight of carbon fiber-reinforced polymer (CFRP cables are different from those of steel cables. Thus, the static and dynamic behaviors of cable-stayed bridges using CFRP cables are different from those of cable-stayed bridges using steel cables. The static and dynamic performances of the two kinds of bridges with a span of 1000 m were studied using the numerical method. The effects of geometric nonlinear factors on static performance of the two kinds of cable-stayed bridges were analyzed. The live load effects and temperature effects of the two cable-stayed bridges were also analyzed. The influences of design parameters, including different structural systems, the numbers of auxiliary piers, and the space arrangement types of cable, on the dynamic performance of the cable-stayed bridge using CFRP cables were also studied. Results demonstrate that sag effect of the CFRP cable is much smaller than that of steel cable. The temperature effects of CFRP cable-stayed bridge are less than those of steel cable-stayed bridge. The vertical bending natural vibration frequency of the CFRP cable-stayed bridge is generally lower than that of steel cable-stayed bridge, whereas the torsional natural vibration frequency of the former is higher than that of the latter.

  7. Numerical Experiments Providing New Insights into Plasma Focus Fusion Devices

    Directory of Open Access Journals (Sweden)

    Sing Lee

    2010-04-01

    Full Text Available Recent extensive and systematic numerical experiments have uncovered new insights into plasma focus fusion devices including the following: (1 a plasma current limitation effect, as device static inductance is reduced towards very small values; (2 scaling laws of neutron yield and soft x-ray yield as functions of storage energies and currents; (3 a global scaling law for neutron yield as a function of storage energy combining experimental and numerical data showing that scaling deterioration has probably been interpreted as neutron ‘saturation’; and (4 a fundamental cause of neutron ‘saturation’. The ground-breaking insights thus gained may completely change the directions of plasma focus fusion research.

  8. NUMERICAL MODELLING AND EXPERIMENTAL INFLATION VALIDATION OF A BIAS TWO-WHEEL TIRE

    Directory of Open Access Journals (Sweden)

    CHUNG KET THEIN

    2016-02-01

    Full Text Available This paper presents a parametric study on the development of a computational model for bias two-wheel tire through finite element analysis (FEA. An 80/90- 17 bias two-wheel tire was adopted which made up of four major layers of rubber compound with different material properties to strengthen the structure. Mooney-Rivlin hyperelastic model was applied to represent the behaviour of incompressible rubber compound. A 3D tire model was built for structural static finite element analysis. The result was validated from the inflation analysis. Structural static finite element analysis method is suitable for evaluation of the tire design and improvement of the tire behaviour to desired performance. Experimental tire was inflated at various pressures and the geometry between numerical and experimental tire were compared. There are good agreements between numerical simulation model and the experiment results. This indicates that the simulation model can be applied to the bias two-wheel tire design in order to predict the tire behaviour and improve its mechanical characteristics.

  9. A stochastic model for the simulation of wind turbine blades in static stall

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Rasmussen, Flemming; Sørensen, Niels N.

    2010-01-01

    The aim of this work is to improve aeroelastic simulation codes by accounting for the unsteady aerodynamic forces that a blade experiences in static stall. A model based on a spectral representation of the aerodynamic lift force is defined. The drag and pitching moment are derived using...... a conditional simulation technique for stochastic processes. The input data for the model can be collected either from measurements or from numerical results from a Computational Fluid Dynamics code for airfoil sections at constant angles of attack. An analysis of such data is provided, which helps to determine...

  10. Numerical Non-Equilibrium and Smoothing of Solutions in The Difference Method for Plane 2-Dimensional Adhesive Joints / Nierównowaga Numeryczna i Wygładzanie Rozwiazań w Metodzie Różnicowej Dla Dwuwymiarowych Połączeń Klejowych

    Directory of Open Access Journals (Sweden)

    Rapp Piotr

    2016-03-01

    Full Text Available The subject of the paper is related to problems with numerical errors in the finite difference method used to solve equations of the theory of elasticity describing 2- dimensional adhesive joints in the plane stress state. Adhesive joints are described in terms of displacements by four elliptic partial differential equations of the second order with static and kinematic boundary conditions. If adhesive joint is constrained as a statically determinate body and is loaded by a self-equilibrated loading, the finite difference solution is sensitive to kinematic boundary conditions. Displacements computed at the constraints are not exactly zero. Thus, the solution features a numerical error as if the adhesive joint was not in equilibrium. Herein this phenomenon is called numerical non-equilibrium. The disturbances in displacements and stress distributions can be decreased or eliminated by a correction of loading acting on the adhesive joint or by smoothing of solutions based on Dirichlet boundary value problem.

  11. Development of Graphical User Interface for Finite Element Analysis of Static Loading of a Column using MATLAB

    Directory of Open Access Journals (Sweden)

    Moses Omolayo PETINRIN

    2010-12-01

    Full Text Available In this work, the capability of MATLAB software package to develop graphical user interface (GUI package was demonstrated. A GUI was successfully developed using MATLAB programming language to study the behaviour of a suspended column under uniaxial static loading by solving the numerical model created based on the finite element method (FEM. The comparison between the exact solution from previous researches and the numerical analysis showed good agreement. The column average strain, average stress and average load are equivalent but more accurate to the ones obtained when the whole column is taken as one element (two nodes for one dimensional linear finite element problem. It was established in this work that MATLAB is not only a software package for numerical computation but also for application development.

  12. Effect of dynamic and static friction on an asymmetric granular piston.

    Science.gov (United States)

    Talbot, Julian; Viot, Pascal

    2012-02-01

    We investigate the influence of dry friction on an asymmetric, granular piston of mass M, composed of two materials, undergoing inelastic collisions with bath particles of mass m. Numerical simulations of the Boltzmann-Lorentz equation reveal the existence of two scaling regimes depending on the friction strength. In the large friction limit, we introduce an exact model giving the asymptotic behavior of the Boltzmann-Lorentz equation. For small friction and for large mass ratio M/m, we derive a Fokker-Planck equation for which the exact solution is also obtained. Static friction attenuates the motor effect and results in a discontinuous velocity distribution. © 2012 American Physical Society

  13. Optimal Allocation of Static Var Compensator via Mixed Integer Conic Programming

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaohu [ORNL; Shi, Di [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Wang, Zhiwei [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Huang, Junhui [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Wang, Xu [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Liu, Guodong [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

    2017-01-01

    Shunt FACTS devices, such as, a Static Var Compensator (SVC), are capable of providing local reactive power compensation. They are widely used in the network to reduce the real power loss and improve the voltage profile. This paper proposes a planning model based on mixed integer conic programming (MICP) to optimally allocate SVCs in the transmission network considering load uncertainty. The load uncertainties are represented by a number of scenarios. Reformulation and linearization techniques are utilized to transform the original non-convex model into a convex second order cone programming (SOCP) model. Numerical case studies based on the IEEE 30-bus system demonstrate the effectiveness of the proposed planning model.

  14. Small-Scale Quasi-Static Tests on Non-Slender Piles Situated in Sand

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal; Ibsen, Lars Bo

    In the period from February 2009 till March 2011 a series of small-scale tests on pile foundations has been conducted at Aalborg University. In all the tests the piles have been exposed to quasi-static loading and all the tests have been conducted in a pressure tank. The objective of the tests has...... been to investigate the effect of pile diameter and length to diameter ratio on the soil response in sand for non-slender piles. Further, the tests have been conducted to calibrate a three-dimensional numerical model in the commercial program FLAC3D....

  15. A comparative evaluation of static and functional methods for recording centric relation and condylar guidance: a clinical study.

    Science.gov (United States)

    Thakur, Mridul; Jain, Veena; Parkash, Hari; Kumar, Pravesh

    2012-09-01

    To evaluate and compare the centric relation and horizontal condylar guidance using interocclusal wax and extra oral Gothic arch methods and subjective evaluation of dentures thus fabricated. Centric relation and horizontal condylar guidance was recorded by using interocclusal wax and gothic arch tracing in 28 completely edentulous patients. These records were transferred to the articulator and difference in both values was recorded. After that patients were divided in two groups according to the centric relation and horizontal condylar guidance recording method used to achieve balanced occlusion. Response of the dentures was subjectively evaluated using "Woelfel subjective evaluation criteria". Centric relation recorded by both the methods did coincide in 7.14 % of patients. Centric relation recorded by interocclusal wax was posterior to Gothic centric relation in 21.43 % of patients, and anterior to Gothic centric relation in 71.42 % patients. Gothic arch tracings gave higher mean guidance values on both the sides as compared to protrusive wax record in all the subjects, although the difference was statistically insignificant (P > 0.05). Subjective evaluation showed statistical insignificance for all the parameters in both groups. Gothic arch method records the centric relation at a more posterior position than the Static method, but it does not make any difference in clinical performance of the complete denture. Horizontal condylar guidance angle was approximately similar by both the methods.

  16. Static Einstein--Maxwell field equations

    International Nuclear Information System (INIS)

    Das, A.

    1979-01-01

    The static Einstein--Maxwell field equations are investigated in the presence of both electric and magnetic fields. The sources or bodies are assumed to be of finite size and to not affect the connectivity of the associated space. Furthermore, electromagnetic and metric fields are assumed to have reasonable differentiabilities. It is then proved that the electric and magnetic field vectors are constant multiples of one another. Moreover, the static Einstein--Maxwell equations reduce to the static magnetovac case. If, furthermore, the variational derivation of the Einstein--Maxwell equations is assumed, then both the total electric and magnetic charge of each body must vanish. As a physical consequence it is pointed out that if a suspended magnet be electrically charged then it must experience a purely general relativistic torque

  17. 'Static' octupole deformation

    International Nuclear Information System (INIS)

    Leander, G.A.

    1985-01-01

    Certain nuclei can be described as having intrinsic shapes with parity breaking static moments. The rationale for this description is discussed, spectroscopic models are outlined and their consequences are compared with experiment. (orig.)

  18. Static Analysis of Mobile Programs

    Science.gov (United States)

    2017-02-01

    and not allowed, to do. The second issue was that a fully static analysis was never a realistic possibility, because Java , the programming langauge...scale to large programs it had to handle essentially all of the features of Java and could also be used as a general-purpose analysis engine. The...static analysis of imperative languages. • A framework for adding specifications about the behavior of methods, including methods that were

  19. Static Decoupling in fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    1998-01-01

    An algebraic approach is given for a design of a static residual weighting factor in connection with fault detection. A complete parameterization is given of the weighting factor which will minimize a given performance index......An algebraic approach is given for a design of a static residual weighting factor in connection with fault detection. A complete parameterization is given of the weighting factor which will minimize a given performance index...

  20. Theory of multisource crosstalk reduction by phase-encoded statics

    KAUST Repository

    Schuster, Gerard T.

    2011-03-01

    Formulas are derived that relate the strength of the crosstalk noise in supergather migration images to the variance of time, amplitude and polarity shifts in encoding functions. A supergather migration image is computed by migrating an encoded supergather, where the supergather is formed by stacking a large number of encoded shot gathers. Analysis reveals that for temporal source static shifts in each shot gather, the crosstalk noise is exponentially reduced with increasing variance of the static shift and the square of source frequency. This is not too surprising because larger time shifts lead to less correlation between traces in different shot gathers, and so should tend to reduce the crosstalk noise. Analysis also reveals that combining both polarity and time statics is a superior encoding strategy compared to using either polarity statics or time statics alone. Signal-to-noise (SNR) estimates show that for a standard migration image and for an image computed by migrating a phase-encoded supergather; here, G is the number of traces in a shot gather, I is the number of stacking iterations in the supergather and S is the number of encoded/blended shot gathers that comprise the supergather. If the supergather can be uniformly divided up into Q unique sub-supergathers, then the resulting SNR of the final image is, which means that we can enhance image quality but at the expense of Q times more cost. The importance of these formulas is that they provide a precise understanding between different phase encoding strategies and image quality. Finally, we show that iterative migration of phase-encoded supergathers is a special case of passive seismic interferometry. We suggest that the crosstalk noise formulas can be helpful in designing optimal strategies for passive seismic interferometry and efficient extraction of Green\\'s functions from simulated supergathers. © 2011 The Authors Geophysical Journal International © 2011 RAS.

  1. Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism

    Science.gov (United States)

    Cao, Zhoujian; Han, Wen-Biao

    2017-08-01

    Binary black hole systems are among the most important sources for gravitational wave detection. They are also good objects for theoretical research for general relativity. A gravitational waveform template is important to data analysis. An effective-one-body-numerical-relativity (EOBNR) model has played an essential role in the LIGO data analysis. For future space-based gravitational wave detection, many binary systems will admit a somewhat orbit eccentricity. At the same time, the eccentric binary is also an interesting topic for theoretical study in general relativity. In this paper, we construct the first eccentric binary waveform model based on an effective-one-body-numerical-relativity framework. Our basic assumption in the model construction is that the involved eccentricity is small. We have compared our eccentric EOBNR model to the circular one used in the LIGO data analysis. We have also tested our eccentric EOBNR model against another recently proposed eccentric binary waveform model; against numerical relativity simulation results; and against perturbation approximation results for extreme mass ratio binary systems. Compared to numerical relativity simulations with an eccentricity as large as about 0.2, the overlap factor for our eccentric EOBNR model is better than 0.98 for all tested cases, including spinless binary and spinning binary, equal mass binary, and unequal mass binary. Hopefully, our eccentric model can be the starting point to develop a faithful template for future space-based gravitational wave detectors.

  2. Experimental and Numerical Study of Twin Underexpanded Impinging Jets

    Institute of Scientific and Technical Information of China (English)

    Minoru Yaga; Minoru Okano; Masumi Tamashiro; Kenyu Oyakawa

    2003-01-01

    In this paper, the dual underexpanded impinging jets are experimentally and numerically studied. The experiments were performed by measuring the unsteady and averaged wall static pressures and by visualizing density fields using schlieren method. Numerical calculations were also conducted by solving unsteady three dimensional compressible Navier-Stokes equations with Baldwin-Lomax turbulence model. The main parameters for the dual jets are the non-dimensional distance between the two nozzle centers H/D covering 1.5, 2.0, the nozzle to plate separation L/D 2.0, 3.0,4.0 and 5.0 and the pressure ratio defined by Po/Pb 1.0~6.0, where D is the diameter of each nozzle exit, Po the stagnation pressure and Pb the back pressure. It is found that the agreement between the experiments and the calculations is good. The fountain flow at the middle of the two jets is observed both in the experiments and the calculation. According to FFT analysis of the experiments for the twin jets,relatively low frequency (up to 5 kHz) is dominant for H/D =1.5, L/D =2.0 and pressure ratio Po/Pb =3.0 and 5.0,which is confirmed by the experiments.

  3. Event and Apparent Horizon Finders for 3+1 Numerical Relativity

    Directory of Open Access Journals (Sweden)

    Thornburg Jonathan

    2007-06-01

    Full Text Available Event and apparent horizons are key diagnostics for the presence and properties of black holes. In this article I review numerical algorithms and codes for finding event and apparent horizons in numerically-computed spacetimes, focusing on calculations done using the 3+1 ADM formalism. The event horizon of an asymptotically-flat spacetime is the boundary between those events from which a future-pointing null geodesic can reach future null infinity and those events from which no such geodesic exists. The event horizon is a (continuous null surface in spacetime. The event horizon is defined nonlocally in time: it is a global property of the entire spacetime and must be found in a separate post-processing phase after all (or at least the nonstationary part of spacetime has been numerically computed.There are three basic algorithms for finding event horizons, based on integrating null geodesics forwards in time, integrating null geodesics backwards in time, and integrating null surfaces backwards in time. The last of these is generally the most efficient and accurate.In contrast to an event horizon, an apparent horizon is defined locally in time in a spacelike slice and depends only on data in that slice, so it can be (and usually is found during the numerical computation of a spacetime. A marginally outer trapped surface (MOTS in a slice is a smooth closed 2-surface whose future-pointing outgoing null geodesics have zero expansion Theta. An apparent horizon is then defined as a MOTS not contained in any other MOTS. The MOTS condition is a nonlinear elliptic partial differential equation (PDE for the surface shape, containing the ADM 3-metric, its spatial derivatives, and the extrinsic curvature as coefficients. Most “apparent horizon” finders actually find MOTSs.There are a large number of apparent horizon finding algorithms, with differing trade-offs between speed, robustness, accuracy, and ease of programming. In axisymmetry, shooting

  4. Thermal effects in static friction: thermolubricity.

    Science.gov (United States)

    Franchini, A; Bortolani, V; Santoro, G; Brigazzi, M

    2008-10-01

    We present a molecular dynamics analysis of the static friction between two thick slabs. The upper block is formed by N2 molecules and the lower block by Pb atoms. We study the effects of the temperature as well as the effects produced by the structure of the surface of the lower block on the static friction. To put in evidence the temperature effects we will compare the results obtained with the lower block formed by still atoms with those obtained when the atoms are allowed to vibrate (e.g., with phonons). To investigate the importance of the geometry of the surface of the lower block we apply the external force in different directions, with respect to a chosen crystallographic direction of the substrate. We show that the interaction between the lattice dynamics of the two blocks is responsible for the strong dependence of the static friction on the temperature. The lattice dynamics interaction between the two blocks strongly reduces the static friction, with respect to the case of the rigid substrate. This is due to the large momentum transfer between atoms and the N2 molecules which disorders the molecules of the interface layer. A further disorder is introduced by the temperature. We perform calculations at T = 20K which is a temperature below the melting, which for our slab is at 50K . We found that because of the disorder the static friction becomes independent of the direction of the external applied force. The very low value of the static friction seems to indicate that we are in a regime of thermolubricity similar to that observed in dynamical friction.

  5. Literature review Quasi-static and Dynamic pile load tests : Primarily report on non-static pile load tests

    NARCIS (Netherlands)

    Huy, N.Q.

    2010-01-01

    Pile testing, which plays an importance role in the field of deep foundation design, is performed by static and non-static methods to provide information about the following issues: (Poulos, 1998) - The ultimate capacity of a single pile. - The load-displacement behavior of a pile. - The performance

  6. Static Analysis for JavaScript

    DEFF Research Database (Denmark)

    Jensen, Simon Holm

    . This dissertation describes the design and implementation of a static analysis for JavaScript that can assist programmers in finding bugs in code during development. We describe the design of a static analysis tool for JavaScript, built using the monotone framework. This analysis infers detailed type information......Web applications present unique challenges to designers of static analysis tools. One of these challenges is the language JavaScript used for client side scripting in the browser. JavaScript is a complex language with many pitfalls and poor tool support compared to other languages...... about programs. This information can be used to detect bugs such as null pointer dereferences and unintended type coercions. The analysis is sound, enabling it to prove the absence of certain program errors. JavaScript is usually run within the context of the browser and the DOM API. The major...

  7. Numerical study of the glass-glass transition in short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Zaccarelli, Emanuela; Sciortino, Francesco; Tartaglia, Piero

    2004-01-01

    We report extensive numerical simulations in the glass region for a simple model of short-ranged attractive colloids, the square well model. We investigate the behaviour of the density autocorrelation function and of the static structure factor in the region of temperatures and packing fractions where a glass-glass transition is expected according to theoretical predictions. We strengthen our observations by studying both waiting time and history dependence of the numerical results. We provide evidence supporting the possibility that activated bond-breaking processes destabilize the attractive glass, preventing the full observation of a sharp glass-glass kinetic transition

  8. Is rotating between static and dynamic work beneficial for our fatigue state?

    NARCIS (Netherlands)

    Luger, T.; Bosch, T.; Hoozemans, M.J.M.; Veeger,D.H.E.J.; Looze, M.P. de

    2016-01-01

    Shoulder disorders comprise a large part of work-related musculoskeletal disorders. Risk factors, such as repetitiveness and monotony, may cause muscle fatigue and be attenuated by task rotation. We investigated rotation between a dynamic box-lifting task and a relatively static pick-and-place task

  9. Experimental and Numerical Analysis of Notched Composites Under Tension Loading

    Science.gov (United States)

    Aidi, Bilel; Case, Scott W.

    2015-12-01

    Experimental quasi-static tests were performed on center notched carbon fiber reinforced polymer (CFRP) composites having different stacking sequences made of G40-600/5245C prepreg. The three-dimensional Digital Image Correlation (DIC) technique was used during quasi-static tests conducted on quasi-isotropic notched samples to obtain the distribution of strains as a function of applied stress. A finite element model was built within Abaqus to predict the notched strength and the strain profiles for comparison with measured results. A user-material subroutine using the multi-continuum theory (MCT) as a failure initiation criterion and an energy-based damage evolution law as implemented by Autodesk Simulation Composite Analysis (ASCA) was used to conduct a quantitative comparison of strain components predicted by the analysis and obtained in the experiments. Good agreement between experimental data and numerical analyses results are observed. Modal analysis was carried out to investigate the effect of static damage on the dominant frequencies of the notched structure using the resulted degraded material elements. The first in-plane mode was found to be a good candidate for tracking the level of damage.

  10. Free and constrained symplectic integrators for numerical general relativity

    International Nuclear Information System (INIS)

    Richter, Ronny; Lubich, Christian

    2008-01-01

    We consider symplectic time integrators in numerical general relativity and discuss both free and constrained evolution schemes. For free evolution of ADM-like equations we propose the use of the Stoermer-Verlet method, a standard symplectic integrator which here is explicit in the computationally expensive curvature terms. For the constrained evolution we give a formulation of the evolution equations that enforces the momentum constraints in a holonomically constrained Hamiltonian system and turns the Hamilton constraint function from a weak to a strong invariant of the system. This formulation permits the use of the constraint-preserving symplectic RATTLE integrator, a constrained version of the Stoermer-Verlet method. The behavior of the methods is illustrated on two effectively (1+1)-dimensional versions of Einstein's equations, which allow us to investigate a perturbed Minkowski problem and the Schwarzschild spacetime. We compare symplectic and non-symplectic integrators for free evolution, showing very different numerical behavior for nearly-conserved quantities in the perturbed Minkowski problem. Further we compare free and constrained evolution, demonstrating in our examples that enforcing the momentum constraints can turn an unstable free evolution into a stable constrained evolution. This is demonstrated in the stabilization of a perturbed Minkowski problem with Dirac gauge, and in the suppression of the propagation of boundary instabilities into the interior of the domain in Schwarzschild spacetime

  11. Natural Frequencies and Mode Shapes of Statically Deformed Inclined Risers

    KAUST Repository

    Alfosail, Feras

    2016-10-15

    We investigate numerically the linear vibrations of inclined risers using the Galerkin approach. The riser is modeled as an Euler-Bernoulli beam accounting for the nonlinear mid-plane stretching and self-weight. After solving for the initial deflection of the riser due to self-weight, we use a Galerkin expansion employing 15 axially loaded beam mode shapes to solve the eigenvalue problem of the riser around the static equilibrium configuration. This yields the riser natural frequencies and corresponding exact mode shapes for various values of inclination angles and tension. The obtained results are validated against a boundary-layer analytical solution and are found to be in good agreement. This constitutes a basis to study the nonlinear forced vibrations of inclined risers.

  12. Numerical Simulation of Flood Levels for Tropical Rivers

    International Nuclear Information System (INIS)

    Mohammed, Thamer Ahmed; Said, Salim; Bardaie, Mohd Zohadie; Basri, Shah Nor

    2011-01-01

    Flood forecasting is important for flood damage reduction. As a result of advances in the numerical methods and computer technologies, many mathematical models have been developed and used for hydraulic simulation of the flood. These simulations usually include the prediction of the flood width and depth along a watercourse. Results obtained from the application of hydraulic models will help engineers to take precautionary measures to minimize flood damage. Hydraulic models were used to simulate the flood can be classified into dynamic hydraulic models and static hydraulic models. The HEC-2 static hydraulic model was used to predict water surface profiles for Linggi river and Langat river in Malaysia. The model is based on the numerical solution of the one dimensional energy equation of the steady gradually varied flow using the iteration technique. Calibration and verification of the HEC-2 model were conducted using the recorded data for both rivers. After calibration, the model was applied to predict the water surface profiles for Q10, Q30, and Q100 along the watercourse of the Linggi river. The water surface profile for Q200 for Langat river was predicted. The predicted water surface profiles were found in agreement with the recorded water surface profiles. The value of the maximum computed absolute error in the predicted water surface profile was found to be 500 mm while the minimum absolute error was 20 mm only.

  13. Static and dynamic strain energy release rates in toughened thermosetting composite laminates

    Science.gov (United States)

    Cairns, Douglas S.

    1992-01-01

    In this work, the static and dynamic fracture properties of several thermosetting resin based composite laminates are presented. Two classes of materials are explored. These are homogeneous, thermosetting resins and toughened, multi-phase, thermosetting resin systems. Multi-phase resin materials have shown enhancement over homogenous materials with respect to damage resistance. The development of new dynamic tests are presented for composite laminates based on Width Tapered Double Cantilevered Beam (WTDCB) for Mode 1 fracture and the End Notched Flexure (ENF) specimen. The WTDCB sample was loaded via a low inertia, pneumatic cylinder to produce rapid cross-head displacements. A high rate, piezo-electric load cell and an accelerometer were mounted on the specimen. A digital oscilloscope was used for data acquisition. Typical static and dynamic load versus displacement plots are presented. The ENF specimen was impacted in three point bending with an instrumented impact tower. Fracture initiation and propagation energies under static and dynamic conditions were determined analytically and experimentally. The test results for Mode 1 fracture are relatively insensitive to strain rate effects for the laminates tested in this study. The test results from Mode 2 fracture indicate that the toughened systems provide superior fracture initiation and higher resistance to propagation under dynamic conditions. While the static fracture properties of the homogeneous systems may be relatively high, the apparent Mode 2 dynamic critical strain energy release rate drops significantly. The results indicate that static Mode 2 fracture testing is inadequate for determining the fracture performance of composite structures subjected to conditions such as low velocity impact. A good correlation between the basic Mode 2 dynamic fracture properties and the performance is a combined material/structural Compression After Impact (CAI) test is found. These results underscore the importance of

  14. Stability of plasma in static equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Krusiial, M D; Oberman, N R [Project Matterhorn, Princeton University, Princeton, NJ (United States)

    1958-07-01

    Our purpose is to derive from the Boltzmann equation in the small m/e limit, criteria useful in the discussion of stability of plasmas in static equilibrium. At first we ignore collisions but later show their effects may be taken into account. Our approach yields a generalization of the usual energy principles for investigating the stability of hydromagnetic systems to situations where the effect of heat flow along magnetic lines is not negligible, and hence to situations where the strictly hydrodynamic approach is inapplicable. In the first two sections we characterize our general method of approach and delineate the properties of the small m/e limit which we use to determine the constants of the motion and the condition for static equilibrium. In the next two sections we calculate the first and second variations of the energy and conclude with a statement of the general stability criterion. In the final three sections we state several theorems which relate our stability criterion to those of ordinary hydromagnetic theory, we show how to take into account the effect of collisions, and briefly discuss the remaining problem of incorporating the charge neutrality condition into the present stability theory. (author)

  15. Experimental verification of numerical calculations of railway passenger seats

    Science.gov (United States)

    Ligaj, B.; Wirwicki, M.; Karolewska, K.; Jasińska, A.

    2018-04-01

    The construction of railway seats is based on industry regulations and the requirements of end users, i.e. passengers. The two main documents in this context are the UIC 566 (3rd Edition, dated 7 January 1994) and the EN 12663-1: 2010+A1:2014. The study was to carry out static load tests of passenger seat frames. The paper presents the construction of the test bench and the results of experimental and numerical studies of passenger seat rail frames. The test bench consists of a frame, a transverse beam, two electric cylinders with a force value of 6 kN, and a strain gauge amplifier. It has a modular structure that allows for its expansion depending on the structure of the seats. Comparing experimental results with numerical results for points A and B allowed to determine the existing differences. It follows from it that higher stress values are obtained by numerical calculations in the range of 0.2 MPa to 35.9 MPa.

  16. Numerical performance of the parabolized ADM (PADM) formulation of General Relativity

    OpenAIRE

    Paschalidis, Vasileios; Hansen, Jakob; Khokhlov, Alexei

    2007-01-01

    In a recent paper the first coauthor presented a new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner formulation of the equations of general relativity. By parabolizing first-order ADM in a certain way, the PADM formulation turns it into a mixed hyperbolic - second-order parabolic, well-posed system. The surface of constraints of PADM becomes a local attractor for all solutions and all possible well-posed gauge conditions. This paper describes a numerical implementation...

  17. Eye-movement patterns during nonsymbolic and symbolic numerical magnitude comparison and their relation to math calculation skills.

    Science.gov (United States)

    Price, Gavin R; Wilkey, Eric D; Yeo, Darren J

    2017-05-01

    A growing body of research suggests that the processing of nonsymbolic (e.g. sets of dots) and symbolic (e.g. Arabic digits) numerical magnitudes serves as a foundation for the development of math competence. Performance on magnitude comparison tasks is thought to reflect the precision of a shared cognitive representation, as evidence by the presence of a numerical ratio effect for both formats. However, little is known regarding how visuo-perceptual processes are related to the numerical ratio effect, whether they are shared across numerical formats, and whether they relate to math competence independently of performance outcomes. The present study investigates these questions in a sample of typically developing adults. Our results reveal a pattern of associations between eye-movement measures, but not their ratio effects, across formats. This suggests that ratio-specific visuo-perceptual processing during magnitude processing is different across nonsymbolic and symbolic formats. Furthermore, eye movements are related to math performance only during symbolic comparison, supporting a growing body of literature suggesting symbolic number processing is more strongly related to math outcomes than nonsymbolic magnitude processing. Finally, eye-movement patterns, specifically fixation dwell time, continue to be negatively related to math performance after controlling for task performance (i.e. error rate and reaction time) and domain general cognitive abilities (IQ), suggesting that fluent visual processing of Arabic digits plays a unique and important role in linking symbolic number processing to formal math abilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Mechanics of quasi-static crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J R

    1978-10-01

    Results on the mechanics of quasi-static crack growth are reviewed. These include recent studies on the geometry and stability of crack paths in elastic-brittle solids, and on the thermodynamics of Griffith cracking, including environmental effects. The relation of crack growth criteria to non-elastic rheological models is considered and paradoxes with energy balance approaches, based on singular crack models, are discussed for visco-elastic, diffuso-elastic, and elastic-plastic materials. Also, recent approaches to prediction of stable crack growth in ductile, elastic-plastic solids are discussed.

  19. Dynamic versus static allocation policies in multipurpose multireservoir systems

    Science.gov (United States)

    Tilmant, A.; Goor, Q.; Pinte, D.; van der Zaag, P.

    2007-12-01

    As the competition for water is likely to increase in the near future due to socioeconomic development and population growth, water resources managers will face hard choices when allocating water between competing users. Because water is a vital resource used in multiple sectors, including the environment, the allocation is inherently a political and social process, which is likely to become increasingly scrutinized as the competition grows between the different sectors. Since markets are usually absent or ineffective, the allocation of water between competing demands is achieved administratively taking into account key objectives such as economic efficiency, equity and maintaining the ecological integrity. When crop irrigation is involved, water is usually allocated by a system of annual rights to use a fixed, static, volume of water. In a fully-allocated basin, moving from a static to a dynamic allocation process, whereby the policies are regularly updated according to the hydrologic status of the river basin, is the first step towards the development of river basin management strategies that increase the productivity of water. More specifically, in a multipurpose multireservoir system, continuously adjusting release and withdrawal decisions based on the latest hydrologic information will increase the benefits derived from the system. However, the extent to which such an adjustment can be achieved results from complex spatial and temporal interactions between the physical characteristics of the water resources system (storage, natural flows), the economic and social consequences of rationing and the impacts on natural ecosystems. The complexity of the decision-making process, which requires the continuous evaluation of numerous trade-offs, calls for the use of integrated hydrologic-economic models. This paper compares static and dynamic management approaches for a cascade of hydropower-irrigation reservoirs using stochastic dual dynamic programming (SDDP

  20. Numerical solution of electromagnetic field problems in two and three dimensions

    International Nuclear Information System (INIS)

    Trowbridge, C.W.

    1981-01-01

    Recent developments in algorithms for solving electromagnetic field problems carried out at Rutherford Appleton Laboratory (RAL) are reviewed. The interaction of electric and magnetic fields provides many examples of coupled problems which have been solved by the Finite Element method. This paper concentrates on static and low frequency problems using the differential operator approach. The status of computation for 2D fields is discussed. The use of scalar potentials for 3D static fields for economy is emphasised and the importance of selecting potential types carefully to minimise numerical cancellation errors is also discussed. Some formulations for the vector 3D field problem for eddy current fields are derived with analytic and experimental field measurement comparisons. Results using software packages built at RAL are presented to illustrate the methods. (author)

  1. Numerical relativity for D dimensional axially symmetric space-times: Formalism and code tests

    International Nuclear Information System (INIS)

    Zilhao, Miguel; Herdeiro, Carlos; Witek, Helvi; Nerozzi, Andrea; Sperhake, Ulrich; Cardoso, Vitor; Gualtieri, Leonardo

    2010-01-01

    The numerical evolution of Einstein's field equations in a generic background has the potential to answer a variety of important questions in physics: from applications to the gauge-gravity duality, to modeling black hole production in TeV gravity scenarios, to analysis of the stability of exact solutions, and to tests of cosmic censorship. In order to investigate these questions, we extend numerical relativity to more general space-times than those investigated hitherto, by developing a framework to study the numerical evolution of D dimensional vacuum space-times with an SO(D-2) isometry group for D≥5, or SO(D-3) for D≥6. Performing a dimensional reduction on a (D-4) sphere, the D dimensional vacuum Einstein equations are rewritten as a 3+1 dimensional system with source terms, and presented in the Baumgarte, Shapiro, Shibata, and Nakamura formulation. This allows the use of existing 3+1 dimensional numerical codes with small adaptations. Brill-Lindquist initial data are constructed in D dimensions and a procedure to match them to our 3+1 dimensional evolution equations is given. We have implemented our framework by adapting the Lean code and perform a variety of simulations of nonspinning black hole space-times. Specifically, we present a modified moving puncture gauge, which facilitates long-term stable simulations in D=5. We further demonstrate the internal consistency of the code by studying convergence and comparing numerical versus analytic results in the case of geodesic slicing for D=5, 6.

  2. Static axially symmetric gravitational fields with shell sources

    International Nuclear Information System (INIS)

    McCrea, J.D.

    1976-01-01

    Israel's (Israel, W., 1966, Nuovo Cim., vol.44, 1-14) method for treating surface layers in general relativity is applied to construct shell sources for exterior static axially symmetric gravitational fields. Consideration is restricted to cases in which the 3-cylinder representing the history of the shell is an equipotential surface of the exterior field and consequently the space-time inside this 3-cylinder is flat. (author)

  3. Static muscle strength trained and untrained of female students

    Directory of Open Access Journals (Sweden)

    Kopanski R.

    2012-12-01

    Full Text Available Static muscle strength is one of the defining characteristics of human motor potential. Standard terms and exclude the impact of short-term measurement techniques for motion and strain measurements, hence the widespread use of Mm measurements in the assessment of fitness of both trained and untrained, healthy subjects and patients undergoing a variety of reasons the process of rehabilitation. The paper deals with static muscle strength (dynamometry back of the hand of female students trained (n = 38 and untrained (n = 213. Examined relationships between individual measurements and body weight in both groups, the degree of asymmetry of the palmar and the differences in the level of power (at the level of the absolute and relative terms between the groups. Disclosed according to form the basis of their conclusions.

  4. Quasi-static electric field in a cylindrical volume conductor induced by external coils.

    Science.gov (United States)

    Esselle, K P; Stuchly, M A

    1994-02-01

    An expansion technique based on modified Bessel functions is used to obtain an analytical solution for the electric field induced in a homogeneous cylindrical volume conductor by an external coil. The current in the coil is assumed to be changing slowly so that quasi-static conditions can be justified. Valid for any coil type, this solution is ideal for fast computation of the induced electric field at a large number of points. Efficient implementation of this method in a computer code is described and numerical results are presented for a perpendicular circular coil and a tangential double-square coil.

  5. Evidential Equilibria: Heuristics and Biases in Static Games of Complete Information

    Directory of Open Access Journals (Sweden)

    Ali al-Nowaihi

    2015-11-01

    Full Text Available Standard equilibrium concepts in game theory find it difficult to explain the empirical evidence from a large number of static games, including the prisoners’ dilemma game, the hawk-dove game, voting games, public goods games and oligopoly games. Under uncertainty about what others will do in one-shot games, evidence suggests that people often use evidential reasoning (ER, i.e., they assign diagnostic significance to their own actions in forming beliefs about the actions of other like-minded players. This is best viewed as a heuristic or bias relative to the standard approach. We provide a formal theoretical framework that incorporates ER into static games by proposing evidential games and the relevant solution concept: evidential equilibrium (EE. We derive the relation between a Nash equilibrium and an EE. We illustrate these concepts in the context of the prisoners’ dilemma game.

  6. Holistic simulation of geotechnical installation processes numerical and physical modelling

    CERN Document Server

    2015-01-01

    The book provides suitable methods for the simulations of boundary value problems of geotechnical installation processes with reliable prediction for the deformation behavior of structures in static or dynamic interaction with the soil. It summarizes the basic research of a research group from scientists dealing with constitutive relations of soils and their implementations as well as contact element formulations in FE-codes. Numerical and physical experiments are presented providing benchmarks for future developments in this field. Boundary value problems have been formulated and solved with the developed tools in order to show the effectivity of the methods. Parametric studies of geotechnical installation processes in order to identify the governing parameters for the optimization of the process are given in such a way that the findings can be recommended to practice for further use. For many design engineers in practice the assessment of the serviceability of nearby structures due to geotechnical installat...

  7. Statics of historic masonry constructions

    CERN Document Server

    Como, Mario

    2017-01-01

    Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments of its architectural heritage. Given the age of these constructions, the demand for safety assessments and restoration projects is pressing and constant; still within the broad studies in the subject it is not yet recognised, in particular within the seismic area, a unitary approach to deal with Masonry structures. This successful book contributes to clarify the issues with a rigorous approach offering a comprehensive new Statics of Masonry Constructions. This third edition has been driven by some recent developments of the research in the field, and it gives the fundamentals of Statics with an original and rigorous mathematical formulation, further in-depth inquired in this new version. With many refinements and improvements, the book investigates the static behaviour of many historic monuments, such as the Gothic Cathedrals, the Mycenaean Tholoi, the Pantheon, the Colosseum, the dome...

  8. Non-local means filter for trim statics

    KAUST Repository

    Huang, Yunsong; Wang, Xin; Schuster, Gerard T.

    2014-01-01

    this problem, we propose a trim statics inspired by the non-local means algorithm originally developed for image denoising. This method differs from the conventional one in two fundamental respects. First, the trim statics are computed by comparing image

  9. Effect of rate on adhesion and static friction of a film-terminated fibrillar interface.

    Science.gov (United States)

    Vajpayee, Shilpi; Long, Rong; Shen, Lulin; Jagota, Anand; Hui, Chung-Yuen

    2009-03-03

    A film-terminated fibrillar interface has been shown to result in significant enhancement of adhesion and static friction compared to a flat control. This enhancement increases with interfibril spacing. In this, the first of a two-part study, by studying the effect of rate on adhesion and static friction, we show that both adhesion and static friction enhancement are due to a crack-trapping mechanism. For adhesion, as measured by an indentation experiment, an analytical model is used to relate the applied indenter displacement rate and measured forces to contact line velocity and energy release rate, respectively. The two mechanisms for adhesion enhancement--varying rate and crack-trapping--are found to be coupled multiplicatively.

  10. Static friction of porous bioceramic beta-TCP on intestinal mucus films.

    Science.gov (United States)

    Wang, Xin-Yu; Han, Ying-Chao; Jiang, Xin; Dai, Hong-Lian; Li, Shi-Pu

    2006-09-01

    The static friction behavior between a porous bioceramic material and an intestinal mucus film was investigated in order to develop a new intestine robotic endoscope. Here, the friction couple is porous beta-tricalcium phosphate (beta-TCP) and an artificial intestine mucus film. The effect of pore size of the beta-TCP material on the friction behavior is investigated. The results illustrated that in this friction system there is a relatively small normal force upon the intestinal mucus film of the intestine wall during locomotion. The maximum static friction force in this friction couple varies with the pore size of the porous beta-TCP material.

  11. Static friction of porous bioceramic β-TCP on intestinal mucus films

    International Nuclear Information System (INIS)

    Wang Xinyu; Han Yingchao; Jiang Xin; Dai Honglian; Li Shipu

    2006-01-01

    The static friction behavior between a porous bioceramic material and an intestinal mucus film was investigated in order to develop a new intestine robotic endoscope. Here, the friction couple is porous β-tricalcium phosphate (β-TCP) and an artificial intestine mucus film. The effect of pore size of the β-TCP material on the friction behavior is investigated. The results illustrated that in this friction system there is a relatively small normal force upon the intestinal mucus film of the intestine wall during locomotion. The maximum static friction force in this friction couple varies with the pore size of the porous β-TCP material

  12. Numerical Calculation of Secondary Flow in Pump Volute and Circular Casings using 3D Viscous Flow Techniques

    Directory of Open Access Journals (Sweden)

    K. Majidi

    2000-01-01

    Full Text Available The flow field in volute and circular casings interacting with a centrifugal impeller is obtained by numerical analysis. In the present study, effects of the volute and circular casings on the flow pattern have been investigated by successively combining a volute casing and a circular casing with a single centrifugal impeller. The numerical calculations are carried out with a multiple frame of reference to predict the flow field inside the entire impeller and casings. The impeller flow field is solved in a rotating frame and the flow field in the casings in a stationary frame. The static pressure and velocity in the casing and impeller, and the static pressures and secondary velocity vectors at several cross-sectional planes of the casings are calculated. The calculations show that the curvature of the casings creates pressure gradients that cause vortices at cross-sectional planes of the casings.

  13. Results of application of automatic computation of static corrections on data from the South Banat Terrain

    Science.gov (United States)

    Milojević, Slavka; Stojanovic, Vojislav

    2017-04-01

    Due to the continuous development of the seismic acquisition and processing method, the increase of the signal/fault ratio always represents a current target. The correct application of the latest software solutions improves the processing results and justifies their development. A correct computation and application of static corrections represents one of the most important tasks in pre-processing. This phase is of great importance for further processing steps. Static corrections are applied to seismic data in order to compensate the effects of irregular topography, the difference between the levels of source points and receipt in relation to the level of reduction, of close to the low-velocity surface layer (weathering correction), or any reasons that influence the spatial and temporal position of seismic routes. The refraction statics method is the most common method for computation of static corrections. It is successful in resolving of both the long-period statics problems and determining of the difference in the statics caused by abrupt lateral changes in velocity in close to the surface layer. XtremeGeo FlatironsTM is a program whose main purpose is computation of static correction through a refraction statics method and allows the application of the following procedures: picking of first arrivals, checking of geometry, multiple methods for analysis and modelling of statics, analysis of the refractor anisotropy and tomography (Eikonal Tomography). The exploration area is located on the southern edge of the Pannonian Plain, in the plain area with altitudes of 50 to 195 meters. The largest part of the exploration area covers Deliblato Sands, where the geological structure of the terrain and high difference in altitudes significantly affects the calculation of static correction. Software XtremeGeo FlatironsTM has powerful visualization and tools for statistical analysis which contributes to significantly more accurate assessment of geometry close to the surface

  14. Comparison of stochastic resonance in static and dynamical nonlinearities

    International Nuclear Information System (INIS)

    Ma, Yumei; Duan, Fabing

    2014-01-01

    We compare the stochastic resonance (SR) effects in parallel arrays of static and dynamical nonlinearities via the measure of output signal-to-noise ratio (SNR). For a received noisy periodic signal, parallel arrays of both static and dynamical nonlinearities can enhance the output SNR by optimizing the internal noise level. The static nonlinearity is easily implementable, while the dynamical nonlinearity has more parameters to be tuned, at the risk of not exploiting the beneficial role of internal noise components. It is of interest to note that, for an input signal buried in the external Laplacian noise, we show that the dynamical nonlinearity is superior to the static nonlinearity in obtaining a better output SNR. This characteristic is assumed to be closely associated with the kurtosis of noise distribution. - Highlights: • Comparison of SR effects in arrays of both static and dynamical nonlinearities. • Static nonlinearity is easily implementable for the SNR enhancement. • Dynamical nonlinearity yields a better output SNR for external Laplacian noise

  15. Schwarzschild tests of the Wahlquist-Estabrook-Buchman-Bardeen tetrad formulation for numerical relativity

    International Nuclear Information System (INIS)

    Buchman, L.T.; Bardeen, J.M.

    2005-01-01

    A first order symmetric hyperbolic tetrad formulation of the Einstein equations developed by Estabrook and Wahlquist and put into a form suitable for numerical relativity by Buchman and Bardeen (the WEBB formulation) is adapted to explicit spherical symmetry and tested for accuracy and stability in the evolution of spherically symmetric black holes (the Schwarzschild geometry). The lapse and shift, which specify the evolution of the coordinates relative to the tetrad congruence, are reset at frequent time intervals to keep the constant-time hypersurfaces nearly orthogonal to the tetrad congruence and the spatial coordinate satisfying a kind of minimal rate of strain condition. By arranging through initial conditions that the constant-time hypersurfaces are asymptotically hyperbolic, we simplify the boundary value problem and improve stability of the evolution. Results are obtained for both tetrad gauges ('Nester' and 'Lorentz') of the WEBB formalism using finite difference numerical methods. We are able to obtain stable unconstrained evolution with the Nester gauge for certain initial conditions, but not with the Lorentz gauge

  16. A quasi-static treatment of multiple phase jumps

    International Nuclear Information System (INIS)

    Englman, R; Vertesi, T

    2005-01-01

    A quasi-static, WKB-type treatment accounts well for the surprising phase jumps that are odd multiples of π (1 + 2n)π, found as a molecular system journeys adiabatically in a configuration coordinate plane that contains several points of degeneracies. We show that the number n in the phase jump is an integer close to |n'| that appears in the expression for the complex wavefunction amplitude valid (approximately) for times close to when the phase jump occurs: -δT + 2πθ+πn'sinδT -i[1-πn'cosδT](δT is a shifted and rescaled trajectory-time parameter and θ is a numerical fraction (<1) which depends on the adiabaticity of the motion.) The central quantity n' is local, i.e., depends on the values of the parameters in the Hamiltonian only at the beginning of the trajectory and at the instant of the phase jump

  17. Static Transition Compression

    DEFF Research Database (Denmark)

    Danvy, Olivier; Damian, Daniel

    2001-01-01

    Starting from an operational specification of a translation from a structured to an unstructured imperative language, we point out how a compositional and context-insensitive translation gives rise to static chains of jumps. Taking an inspiration from the notion of continuation, we state a new co...

  18. Pore network modeling of drainage process in patterned porous media: a quasi-static study

    KAUST Repository

    Zhang, Tao

    2015-04-17

    This work represents a preliminary investigation on the role of wettability conditions on the flow of a two-phase system in porous media. Since such effects have been lumped implicitly in relative permeability-saturation and capillary pressure-saturation relationships, it is quite challenging to isolate its effects explicitly in real porous media applications. However, within the framework of pore network models, it is easy to highlight the effects of wettability conditions on the transport of two-phase systems. We employ quasi-static investigation in which the system undergo slow movement based on slight increment of the imposed pressure. Several numerical experiments of the drainage process are conducted to displace a wetting fluid with a non-wetting one. In all these experiments the network is assigned different scenarios of various wettability patterns. The aim is to show that the drainage process is very much affected by the imposed pattern of wettability. The wettability conditions are imposed by assigning the value of contact angle to each pore throat according to predefined patterns.

  19. 14 CFR 25.173 - Static longitudinal stability.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static longitudinal stability. 25.173... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stability § 25.173 Static... forces (including friction) must be as follows: (a) A pull must be required to obtain and maintain speeds...

  20. A Minimum Leakage Quasi-Static RAM Bitcell

    Directory of Open Access Journals (Sweden)

    Adam Teman

    2011-05-01

    Full Text Available As SRAMs continue to grow and comprise larger percentages of the area and power consumption in advanced systems, the need to minimize static currents becomes essential. This brief presents a novel 9T Quasi-Static RAM Bitcell that provides aggressive leakage reduction and high write margins. The quasi-static operation method of this cell, based on internal feedback and leakage ratios, minimizes static power while maintaining sufficient, albeit depleted, noise margins. This paper presents the concept of the novel cell, and discusses the stability of the cell under hold, read and write operations. The cell was implemented in a low-power 40 nm TSMC process, showing as much as a 12× reduction in leakage current at typical conditions, as compared to a standard 6T or 8T bitcell at the same supply voltage. The implemented cell showed full functionality under global and local process variations at nominal and low voltages, as low as 300 mV.

  1. Effects of Static Magnetic Fields on the Physical, Mechanical, and Microstructural Properties of Cement Pastes

    OpenAIRE

    Soto-Bernal, Juan J.; Gonzalez-Mota, Rosario; Rosales-Candelas, Iliana; Ortiz-Lozano, Jose A.

    2015-01-01

    This paper presents the results of an experimental study carried out to comprehend the physical, mechanical, and microstructural behavior of cement pastes subjected to static magnetic fields while hydrating and setting. The experimental methodology consisted in exposing fresh cement pastes to static magnetic fields at three different magnetic induction strengths: 19.07, 22.22, and 25.37 Gauss. The microstructural characterization makes evident that there are differences in relation to amount ...

  2. Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model

    International Nuclear Information System (INIS)

    Baladi, G.Y.

    1977-01-01

    This paper documents the numerical implementation of a model, specifically a transverse-isotropic, inelastic, work-hardening constitutive model. A brief overview of the mathematical formulation of the model is presented to facilitate the understanding of its numerical implementation. The model is based on incremental flow theories for materials which have time- and temperature-independent properties and which are capable of undergoing small plastic as well as small elastic strain at each loading increment. In addition, the model is written in terms of 'pseudo' stress invariants so that the incremental anisotropic stress-strain relationship can be readily incorporated into existing finite-difference or finite-element computer codes. The isotropic version of the model is retrieved without any changes in the mathematical formulation or in the numerical implementation (algorithm) of the model. Various methods exist for incorporating inelastic constitutive models into computer programs. The method presented in this paper is appropriate for both finite-difference and finite-element codes, and is applicable for solving static as wall as dynamic problems. This method expresses the material constitutive properties as a matrix of coefficients, C (generalized tangent moduli), which relates incremental stresses to incremental strains. It possesses desirable convergence properties. In either finite-difference or finite-element applications the input quantities are the initial stress components, obtained at the end of the previous strain increment, and the new strain increments. The output quantities are the new values of the stress components

  3. Solving the quasi-static field model of the pulse-line accelerator; relationship to a circuit model

    International Nuclear Information System (INIS)

    Friedman, Alex

    2005-01-01

    The Pulse-Line Ion Accelerator (PLIA) is a promising approach to high-gradient acceleration of an ion beam at high line charge density. A recent note by R. J. Briggs suggests that a 'sheath helix' model of such a system can be solved numerically in the quasi-static limit. Such a model captures the correct macroscopic behavior from first principles without the need to time-advance the full Maxwell equations on a grid. This note describes numerical methods that may be used to effect such a solution, and their connection to the circuit model that was described in an earlier note by the author. Fine detail of the fields in the vicinity of the helix wires is not obtained by this approach, but for purposes of beam dynamics simulation such detail is not generally needed

  4. Meshless Solution of the Problem on the Static Behavior of Thin and Thick Laminated Composite Beams

    Science.gov (United States)

    Xiang, S.; Kang, G. W.

    2018-03-01

    For the first time, the static behavior of laminated composite beams is analyzed using the meshless collocation method based on a thin-plate-spline radial basis function. In the approximation of a partial differential equation by using a radial basis function, the shape parameter has an important role in ensuring the numerical accuracy. The choice of a shape parameter in the thin plate spline radial basis function is easier than in other radial basis functions. The governing differential equations are derived based on Reddy's third-order shear deformation theory. Numerical results are obtained for symmetric cross-ply laminated composite beams with simple-simple and cantilever boundary conditions under a uniform load. The results found are compared with available published ones and demonstrate the accuracy of the present method.

  5. MUSIC-type imaging of a thin penetrable inclusion from its multi-static response matrix

    International Nuclear Information System (INIS)

    Park, Won-Kwang; Lesselier, Dominique

    2009-01-01

    The imaging of a thin inclusion, with dielectric and/or magnetic contrasts with respect to the embedding homogeneous medium, is investigated. A MUSIC-type algorithm operating at a single time-harmonic frequency is developed in order to map the inclusion (that is, to retrieve its supporting curve) from scattered field data collected within the multi-static response matrix. Numerical experiments carried out for several types of inclusions (dielectric and/or magnetic ones, straight or curved ones), mostly single inclusions and also two of them close by as a straightforward extension, illustrate the pros and cons of the proposed imaging method

  6. Power flow control for transmission networks with implicit modeling of static synchronous series compensator

    DEFF Research Database (Denmark)

    Kamel, S.; Jurado, F.; Chen, Zhe

    2015-01-01

    This paper presents an implicit modeling of Static Synchronous Series Compensator (SSSC) in Newton–Raphson load flow method. The algorithm of load flow is based on the revised current injection formulation. The developed model of SSSC is depended on the current injection approach. In this model...... will be in the mismatches vector. Finally, this modeling solves the problem that happens when the SSSC is only connected between two areas. Numerical examples on the WSCC 9-bus, IEEE 30-bus system, and IEEE 118-bus system are used to illustrate the feasibility of the developed SSSC model and performance of the Newton–Raphson...

  7. MUSIC-type imaging of a thin penetrable inclusion from its multi-static response matrix

    Science.gov (United States)

    Park, Won-Kwang; Lesselier, Dominique

    2009-07-01

    The imaging of a thin inclusion, with dielectric and/or magnetic contrasts with respect to the embedding homogeneous medium, is investigated. A MUSIC-type algorithm operating at a single time-harmonic frequency is developed in order to map the inclusion (that is, to retrieve its supporting curve) from scattered field data collected within the multi-static response matrix. Numerical experiments carried out for several types of inclusions (dielectric and/or magnetic ones, straight or curved ones), mostly single inclusions and also two of them close by as a straightforward extension, illustrate the pros and cons of the proposed imaging method.

  8. Hindi Numerals.

    Science.gov (United States)

    Bright, William

    In most languages encountered by linguists, the numerals, considered as a paradigmatic set, constitute a morpho-syntactic problem of only moderate complexity. The Indo-Aryan language family of North India, however, presents a curious contrast. The relatively regular numeral system of Sanskrit, as it has developed historically into the modern…

  9. Numerical relativity simulations of precessing binary neutron star mergers

    Science.gov (United States)

    Dietrich, Tim; Bernuzzi, Sebastiano; Brügmann, Bernd; Ujevic, Maximiliano; Tichy, Wolfgang

    2018-03-01

    We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different spin configurations and dimensionless spin magnitudes ˜0.1 . They start at a gravitational-wave frequency of ˜392 Hz and cover more than 1 precession period and about 15 orbits up to merger. We discuss the spin precession dynamics by analyzing coordinate trajectories, quasilocal spin measurements, and energetics, by comparing spin aligned, antialigned, and irrotational configurations. Gravitational waveforms from different spin configuration are compared by calculating the mismatch between pairs of waveforms in the late inspiral. We find that precession effects are not distinguishable from nonprecessing configurations with aligned spins for approximately face-on binaries, while the latter are distinguishable from nonspinning configurations. Spin precession effects are instead clearly visible for approximately edge-on binaries. For the parameters considered here, precession does not significantly affect the characteristic postmerger gravitational-wave frequencies nor the mass ejection. Our results pave the way for the modeling of spin precession effects in the gravitational waveform from binary neutron star events.

  10. The Static Ladder Problem with Two Sources of Friction

    Science.gov (United States)

    Bennett, Jonathan; Mauney, Alex

    2011-01-01

    The problem of a ladder leaning against a wall in static equilibrium is a classic example encountered in introductory mechanics texts. Most discussions of this problem assume that the static frictional force between the ladder and wall can be ignored. A few authors consider the case where the static friction coefficients between ladder/wall…

  11. The usefulness of cardiofocal collimator in static renal imaging

    International Nuclear Information System (INIS)

    Evren, I.; Durak, H.; Degirmenci, B.; Derebek, E.; Oezbilek, E.; Capa, G.

    2001-01-01

    Static renal imaging is best performed using pinhole collimator. But this technique takes too much time and generally parallel hole collimators are preferred for static renal imaging in nuclear medicine departments. The purpose of this study was to investigate the usefulness of the cardio-focal collimator used for myocardial perfusion imaging in static renal scintigraphy

  12. Oscillatory corticospinal activity during static contraction of ankle muscles is reduced in healthy old versus young adults

    DEFF Research Database (Denmark)

    Spedden, Meaghan Elizabeth; Nielsen, Jens Bo; Geertsen, Svend Sparre

    2018-01-01

    Aging is accompanied by impaired motor function, but age-related changes in neural networks responsible for generating movement are not well understood. We aimed to investigate the functional oscillatory coupling between activity in the sensorimotor cortex and ankle muscles during static contract......Aging is accompanied by impaired motor function, but age-related changes in neural networks responsible for generating movement are not well understood. We aimed to investigate the functional oscillatory coupling between activity in the sensorimotor cortex and ankle muscles during static...... contraction. Fifteen young (20–26 yr) and fifteen older (65–73 yr) subjects were instructed to match a target force by performing static ankle dorsi- or plantar flexion, while electroencephalographic (EEG) activity was recorded from the cortex and electromyographic (EMG) activity was recorded from dorsi...

  13. 14 CFR 23.173 - Static longitudinal stability.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static longitudinal stability. 23.173... Stability § 23.173 Static longitudinal stability. Under the conditions specified in § 23.175 and with the airplane trimmed as indicated, the characteristics of the elevator control forces and the friction within...

  14. 14 CFR 25.1325 - Static pressure systems.

    Science.gov (United States)

    2010-01-01

    ... installation of the static pressure system must be such that— (1) Positive drainage of moisture is provided..., the other is blocked off; and (2) Both sources cannot be blocked off simultaneously. (h) For... other static pressure source being open or blocked. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as...

  15. The Gaussian formula and spherical aberrations of static and relativistic curved mirrors from Fermat's principle

    International Nuclear Information System (INIS)

    Sutanto, Sylvia H; Tjiang, Paulus C

    2011-01-01

    The Gaussian formula and spherical aberrations of static and relativistic curved mirrors are analyzed using the optical path length (OPL) and Fermat's principle. The geometrical figures generated by the rotation of conic sections about their symmetry axes are considered for the shapes of the mirrors. By comparing the results in static and relativistic cases, it is shown that the focal lengths and the spherical aberration relations of the relativistic mirrors obey the Lorentz contraction. Further analysis of the spherical aberrations for both static and relativistic cases have resulted in information about the limits for the paraxial approximation, as well as for the minimum speed of the systems to reduce the spherical aberrations

  16. Static potential for a string with a topological term

    International Nuclear Information System (INIS)

    Zaikov, R.P.; Zlatev, S.I.

    1991-01-01

    We study the static potential for a string in (2+1)-dimensional space-time with action including a topological term. An appropriate static solution is found and the corresponding potential is obtained. Such a solution does not exist beyond a critical distance between the ends of the string. The one-loop corrections to the static potential are calculated. (orig.)

  17. Isometric embeddings of 2-spheres by embedding flow for applications in numerical relativity

    International Nuclear Information System (INIS)

    Jasiulek, Michael; Korzyński, Mikołaj

    2012-01-01

    We present a numerical method for solving Weyl's embedding problem which consists in finding a global isometric embedding of a positively curved and positive-definite spherical 2-metric into the Euclidean 3-space. The method is based on a construction introduced by Weingarten and was used in Nirenberg's proof of Weyl's conjecture. The target embedding results as the endpoint of an embedding flow in R 3 beginning at the unit sphere's embedding. We employ spectral methods to handle functions on the surface and to solve various (non)linear elliptic PDEs. The code requires no additional input or steering from the operator and its convergence is guaranteed by the Nirenberg arguments. Possible applications in 3 + 1 numerical relativity range from quasi-local mass and momentum measures to coarse-graining in inhomogeneous cosmological models. (paper)

  18. Secure communication of static information by electronic means

    Science.gov (United States)

    Gritton, Dale G.

    1994-01-01

    A method and apparatus (10) for the secure transmission of static data (16) from a tag (11) to a remote reader (12). Each time the static data (16) is to be transmitted to the reader (12), the 10 bits of static data (16) are combined with 54 bits of binary data (21), which constantly change from one transmission to the next, into a 64-bit number (22). This number is then encrypted and transmitted to the remote reader (12) where it is decrypted (26) to produce the same 64 bit number that was encrypted in the tag (11). With a continual change in the value of the 64 bit number (22) in the tag, the encrypted numbers transmitted to the reader (12) will appear to be dynamic in character rather than being static.

  19. Additional Effect of Static Ultrasound and Diadynamic Currents on Myofascial Trigger Points in a Manual Therapy Program for Patients With Chronic Neck Pain: A Randomized Clinical Trial.

    Science.gov (United States)

    Dibai-Filho, Almir Vieira; de Oliveira, Alessandra Kelly; Girasol, Carlos Eduardo; Dias, Fabiana Rodrigues Cancio; Guirro, Rinaldo Roberto de Jesus

    2017-04-01

    To assess the additional effect of static ultrasound and diadynamic currents on myofascial trigger points in a manual therapy program to treat individuals with chronic neck pain. A single-blind randomized trial was conducted. Both men and women, between ages 18 and 45, with chronic neck pain and active myofascial trigger points in the upper trapezius were included in the study. Subjects were assigned to 3 different groups: group 1 (n = 20) was treated with manual therapy; group 2 (n = 20) was treated with manual therapy and static ultrasound; group 3 (n = 20) was treated with manual therapy and diadynamic currents. Individuals were assessed before the first treatment session, 48 hours after the first treatment session, 48 hours after the tenth treatment session, and 4 weeks after the last session. There was no group-versus-time interaction for Numeric Rating Scale, Neck Disability Index, Pain-Related Self-Statement Scale, pressure pain threshold, cervical range of motion, and skin temperature (F-value range, 0.089-1.961; P-value range, 0.106-0.977). Moreover, we found no differences between groups regarding electromyographic activity (P > 0.05). The use of static ultrasound or diadynamic currents on myofascial trigger points in upper trapezius associated with a manual therapy program did not generate greater benefits than manual therapy alone.

  20. THE EXPERIENCE OF COMPARISON OF STATIC SECURITY CODE ANALYZERS

    Directory of Open Access Journals (Sweden)

    Alexey Markov

    2015-09-01

    Full Text Available This work presents a methodological approach to comparison of static security code analyzers. It substantiates the comparison of the static analyzers as to efficiency and functionality indicators, which are stipulated in the international regulatory documents. The test data for assessment of static analyzers efficiency is represented by synthetic sets of open-source software, which contain vulnerabilities. We substantiated certain criteria for quality assessment of the static security code analyzers subject to standards NIST SP 500-268 and SATEC. We carried out experiments that allowed us to assess a number of the Russian proprietary software tools and open-source tools. We came to the conclusion that it is of paramount importance to develop Russian regulatory framework for testing software security (firstly, for controlling undocumented features and evaluating the quality of static security code analyzers.

  1. New aspects in the implementation of the quasi-static method for the solution of neutron diffusion problems in the framework of a nodal method

    International Nuclear Information System (INIS)

    Caron, D.; Dulla, S.; Ravetto, P.

    2016-01-01

    Highlights: • The implementation of the quasi-static method in 3D nodal diffusion theory model in hexagonal-z geometry is described. • Different formulations of the quasi-static technique are discussed. • The results presented illustrate the features of the various formulations, highlighting advantages and drawbacks. • A novel adaptive procedure for the selection of the time interval between shape recalculations is presented. - Abstract: The ability to accurately model the dynamic behaviour of the neutron distribution in a nuclear system is a fundamental aspect of reactor design and safety assessment. Due to the heavy computational burden associated to the direct time inversion of the full model, the quasi-static method has become a standard approach to the numerical solution of the nuclear reactor dynamic equations on the full phase space. The present paper is opened by an introductory critical review of the basics of the quasi-static scheme for the general neutron kinetic problem. Afterwards, the implementation of the quasi-static method in the context of a three-dimensional nodal diffusion theory model in hexagonal-z geometry is described, including some peculiar aspects of the adjoint nodal equations and the explicit formulation of the quasi-static nodal equations. The presentation includes the discussion of different formulations of the quasi-static technique. The results presented illustrate the features of the various formulations, highlighting the corresponding advantages and drawbacks. An adaptive procedure for the selection of the time interval between shape recalculations is also presented, showing its usefulness in practical applications.

  2. Numerical Simulation of Unsteady Large Scale Separated Flow around Oscillating Airfoil

    OpenAIRE

    Isogai, Koji; 磯貝, 紘二

    1991-01-01

    Numerical simulations of dynamic stall phenomenon of NACA0012 airfoil oscillating in pitch near static stalling angle are performed by using the compressible Navier-Stokes equations. In the present computations, a TVD scheme and an algebraic turbulence model are employed for the simulations of the unsteady separated flows at Reynolds number of 1.1x105. The hysteresis loops of the unsteady pitching moment during dynamic stall are compared with the existing experimental data. The flow pattern a...

  3. EDITORIAL: Invited papers from the international meeting on 'New Frontiers in Numerical Relativity' (Albert Einstein Institute, Potsdam, Germany, 17 21 July 2006)

    Science.gov (United States)

    Campanelli, M.; Rezzolla, L.

    2007-06-01

    Traditionally, frontiers represent a treacherous terrain to venture into, where hidden obstacles are present and uncharted territories lie ahead. At the same time, frontiers are also a place where new perspectives can be appreciated and have often been the cradle of new and thriving developments. With this in mind and inspired by this spirit, the Numerical Relativity Group at the Albert Einstein Institute (AEI) organized a `New Frontiers in Numerical Relativity' meeting on 17 21 July 2006 at the AEI campus in Potsdam, Germany. It is an interesting historical remark that the suggestion of the meeting was first made in the late summer of 2005 and thus at a time that for many reasons has been a turning point in the recent history of numerical relativity. A few months earlier (April 2005) in fact, F Pretorius had announced the first multi-orbit simulations of binary black holes and computed the waveforms from the inspiral, merger and ring-down (`Numerical Relativity', Banff International Research Station, Banff, Canada, 16 21 April 2005). At that time, the work of Pretorius served as an important boost to the research in this field and although no other group has yet adopted the techniques he employed, his results provided the numerical relativity community with clear evidence that the binary black hole problem could be solved. A few months later (November 2005), equally striking results were presented by the NASA Goddard and Texas/Brownsville groups, who also reported, independently, multi-orbit evolutions of binary black holes using numerical techniques and formulations of the Einstein equations which were markedly distinct from those suggested by Pretorius (`Numerical Relativity 2005', Goddard Space Flight Centre, Greenbelt, MD, USA, 2 4 November 2005). A few months later other groups were able to repeat the same simulations and obtain equivalent results, testifying that the community as a whole had reached comparable levels of maturity in both the numerical

  4. Pre-exposure to moving form enhances static form sensitivity.

    Directory of Open Access Journals (Sweden)

    Thomas S A Wallis

    Full Text Available BACKGROUND: Motion-defined form can seem to persist briefly after motion ceases, before seeming to gradually disappear into the background. Here we investigate if this subjective persistence reflects a signal capable of improving objective measures of sensitivity to static form. METHODOLOGY/PRINCIPAL FINDINGS: We presented a sinusoidal modulation of luminance, masked by a background noise pattern. The sinusoidal luminance modulation was usually subjectively invisible when static, but visible when moving. We found that drifting then stopping the waveform resulted in a transient subjective persistence of the waveform in the static display. Observers' objective sensitivity to the position of the static waveform was also improved after viewing moving waveforms, compared to viewing static waveforms for a matched duration. This facilitation did not occur simply because movement provided more perspectives of the waveform, since performance following pre-exposure to scrambled animations did not match that following pre-exposure to smooth motion. Observers did not simply remember waveform positions at motion offset, since removing the waveform before testing reduced performance. CONCLUSIONS/SIGNIFICANCE: Motion processing therefore interacts with subsequent static visual inputs in a way that can improve performance in objective sensitivity measures. We suggest that the brief subjective persistence of motion-defined forms that can occur after motion offsets is a consequence of the decay of a static form signal that has been transiently enhanced by motion processing.

  5. STUDYING DEFORMATIONS OF AN FLAT TRUSS STRUCTURE STATICALLY INDETERMINATED EXTERNALLY

    Directory of Open Access Journals (Sweden)

    Kirsanov Mikhail Nikolaevich

    2017-08-01

    Full Text Available A flat statically determinate parallel-chord truss structure has a cross-shaped grid and rests upon two rigid pin-bearing supports. Loads in bars are determined in a symbol form using the method of joint isolation by the computer mathematics Maple system. The peculiarity of the considered truss structure is its external static indeterminacy. In fact, all efforts and reactions of supports can be determined from the equilibrium conditions. But the inconvenience is necessary to consider the equilibrium of all the nodes of the truss. The Ritter cross-section method is not applicable to this truss structure. The sections that cut the truss into two parts and pass through the three rods, here exist only for several rods of the extreme panels. The purpose of this paper is to calculate a truss structure with a different number of panels in analytical and numerical form. Finite element calculation method with the use of software LISA 8.0 is applied. It’s noted that a truss structure is kinetically changeable when the number of spans is odd. The corresponding plan of probable velocities is given. In order to receive analytic dependence of deflection on the span number, the induction method and Maxwell-Moor formula has been applied. The operators of the compilation and solution of recurrence equations are involved in determining the general terms of the coefficient sequences. The formulas for calculation of loads in the most compressed bars of a truss structure were received.

  6. The comparison of numerical models of a sandwich panel in the context of the core deformations at the supports

    Science.gov (United States)

    Pozorska, Jolanta; Pozorski, Zbigniew

    2018-01-01

    The paper presents the problem of static structural behavior of sandwich panels at the supports. The panels have a soft core and correspond to typical structures applied in civil engineering. To analyze the problem, five different 3-D numerical models were created. The results were compared in the context of core compression and stress redistribution. The numerical solutions verify methods of evaluating the capacity of the sandwich panel that are known from the literature.

  7. On the geometric phenomenology of static friction.

    Science.gov (United States)

    Ghosh, Shankar; Merin, A P; Nitsure, Nitin

    2017-09-06

    In this note we introduce a hierarchy of phase spaces for static friction, which give a graphical way to systematically quantify the directional dependence in static friction via subregions of the phase spaces. We experimentally plot these subregions to obtain phenomenological descriptions for static friction in various examples where the macroscopic shape of the object affects the frictional response. The phase spaces have the universal property that for any experiment in which a given object is put on a substrate fashioned from a chosen material with a specified nature of contact, the frictional behaviour can be read off from a uniquely determined classifying map on the control space of the experiment which takes values in the appropriate phase space.

  8. Pheromone Static Routing Strategy for Complex Networks

    Science.gov (United States)

    Hu, Mao-Bin; Henry, Y. K. Lau; Ling, Xiang; Jiang, Rui

    2012-12-01

    We adopt the concept of using pheromones to generate a set of static paths that can reach the performance of global dynamic routing strategy [Phys. Rev. E 81 (2010) 016113]. The path generation method consists of two stages. In the first stage, a pheromone is dropped to the nodes by packets forwarded according to the global dynamic routing strategy. In the second stage, pheromone static paths are generated according to the pheromone density. The output paths can greatly improve traffic systems' overall capacity on different network structures, including scale-free networks, small-world networks and random graphs. Because the paths are static, the system needs much less computational resources than the global dynamic routing strategy.

  9. Sawja: Static Analysis Workshop for Java

    Science.gov (United States)

    Hubert, Laurent; Barré, Nicolas; Besson, Frédéric; Demange, Delphine; Jensen, Thomas; Monfort, Vincent; Pichardie, David; Turpin, Tiphaine

    Static analysis is a powerful technique for automatic verification of programs but raises major engineering challenges when developing a full-fledged analyzer for a realistic language such as Java. Efficiency and precision of such a tool rely partly on low level components which only depend on the syntactic structure of the language and therefore should not be redesigned for each implementation of a new static analysis. This paper describes the Sawja library: a static analysis workshop fully compliant with Java 6 which provides OCaml modules for efficiently manipulating Java bytecode programs. We present the main features of the library, including i) efficient functional data-structures for representing a program with implicit sharing and lazy parsing, ii) an intermediate stack-less representation, and iii) fast computation and manipulation of complete programs. We provide experimental evaluations of the different features with respect to time, memory and precision.

  10. Experimental and numerical analysis of the static and dynamic crack growth resistance behaviour of structural steels in the temperature range from 20 C to 350 C

    International Nuclear Information System (INIS)

    Aurich, D.; Gerwien, P.; Huenecke, J.; Klingbeil, D.; Krafka, H.; Kuenecke, G.; Ohm, K.; Veith, H.; Wossidlo, P.; Haecker, R.

    1998-01-01

    The crack growth resistance behaviour of the steels StE 460 and 22NiMoCr3-7 was determined in the temperature range from 23 C to 350 C by means of C(T), M(T), and ISO-V specimens tested under quasistatic and dynamic loads. The Russian steel 15Ch2NMFA-A was tested at room temperature and 50 C. In the steels StE 460 and 22 NiMoCr3-7, the minimum crack growth resistance is observed at about 250 C, with measured values always being higher for the latter steel type. The crack growth resistance behaviour of the tested materials correlates with the behaviour of flow curve, yield strength, and notch impact toughness as a function of temperature. Impact tests of ISO-V specimens give higher crack resistance values than quasistatic load tests, and the temperature dependence is significantly lower than those of specimens tested under static loads. A metallurgical analysis of the materials shows the causes of the dissimilar behaviour. The stretching zones determined for the C(T) specimen correspond to the toughness of the steels examined, and they are not much influenced by the temperature. The numerical analysis using damaging models for simulation of ductile crack growth is reported for all specimen types and two different temperatures each. (orig./CB) [de

  11. Matching tomographic IMRT fields with static photon fields

    International Nuclear Information System (INIS)

    Sethi, A.; Leybovich, L.; Dogan, N.; Emami, B.

    2001-01-01

    The matching of abutting radiation fields presents a challenging problem in radiation therapy. Due to sharp penumbra of linear accelerator beams, small (1-2 mm) errors in field positioning can lead to large (>30%) hot or cold spots in the abutment region. With head and neck immobilization devices (thermoplastic mask/aquaplast) an average setup error of 3 mm has been reported. Therefore hot or cold spots approaching 50% of the prescription dose may occur along the matchline. Although abutting radiation fields have been investigated for static fields, there is no reported study regarding matching of tomographic IMRT and static fields. Compared to static fields, the matching of tomographic IMRT fields with static fields is more complicated. Since IMRT and static fields are planned on separate treatment planning computers, the dose in the abutment region is not specified. In addition, commonly used techniques for matching fields, such as feathering of junctions, are not practical. We have developed a method that substantially reduces dose inhomogeneity in the abutment region. In this method, a 'buffer zone' around the matchline was created and was included as part of the target for both IMRT and static field plans. In both fields, a small dose gradient (≤3%/mm) in the buffer zone was created. In the IMRT plan, the buffer zone was divided into three sections with dose varying from 83% to 25% of prescription dose. The static field dose profile was modified using either a specially designed physical (hard) or a dynamic (soft) wedge. When these modified fields were matched, the combined dose in the abutment region varied by ≤10% in the presence of setup errors spanning 4 mm (±2 mm) when the hard wedge was used and 10 mm (±5 mm) with the soft wedge

  12. Static friction between silicon nanowires and elastomeric substrates.

    Science.gov (United States)

    Qin, Qingquan; Zhu, Yong

    2011-09-27

    This paper reports the first direct measurements of static friction force and interfacial shear strength between silicon (Si) nanowires (NWs) and poly(dimethylsiloxane) (PDMS). A micromanipulator is used to manipulate and deform the NWs under a high-magnification optical microscope in real time. The static friction force is measured based on "the most-bent state" of the NWs. The static friction and interface shear strength are found to depend on the ultraviolet/ozone (UVO) treatment of PDMS. The shear strength starts at 0.30 MPa without UVO treatment, increases rapidly up to 10.57 MPa at 60 min of treatment and decreases for longer treatment. Water contact angle measurements suggest that the UVO-induced hydrophobic-to-hydrophilic conversion of PDMS surface is responsible for the increase in the static friction, while the hydrophobic recovery effect contributes to the decrease. The static friction between NWs and PDMS is of critical relevance to many device applications of NWs including NW-based flexible/stretchable electronics, NW assembly and nanocomposites (e.g., supercapacitors). Our results will enable quantitative interface design and control for such applications. © 2011 American Chemical Society

  13. Investigation of two pitot-static tubes at supersonic speeds

    Science.gov (United States)

    Hasel, Lowell E; Coletti, Donald E

    1948-01-01

    The results of tests at a Mach number of 1.94 of an ogives-nose cylindrical pitot-static tube and similar tests at Mach numbers of 1.93 and 1.62 of a service pitot-static tube to determine body static pressures and indicated Mach numbers are presented and discussed. The radial pressure distribution on the cylindrical bodies is compared with that calculated by an approximate theory.

  14. Quasi-static Design of Electrically Small Ultra-Wideband Antennas

    Science.gov (United States)

    2017-02-01

    Equations. The ACD uses a constant line charge distribution and image line charge distribution (both on the -axis) to generate equipotential surfaces ...Each equipotential surface represents an ACD antenna design with a different height. In the Quasi-static Antenna Design Algorithm [2, 3, 4, 5, 6...quasi- static approximation used in the algorithm. A static charge distribution is used to generate equipotential surfaces . The equipotential surfaces

  15. Numerical modeling of AA2024-T3 friction stir welding process for residual stress evaluation, including softening effects

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Carlone, Pierpaolo; Palazzo, Gaetano S.

    2014-01-01

    In the present paper, a numerical finite element model of the precipitation hardenable AA2024-T3 aluminum alloy, consisting of a heat transfer analysis based on the Thermal Pseudo Mechanical model for heat generation, and a sequentially coupled quasi-static stress analysis is proposed. Metallurgi...

  16. The research on static bifurcation characteristics and parametric effect of two-phase natural circulation and passive system

    International Nuclear Information System (INIS)

    Xu Jijun; Yang Yanhua; Kuang Bo; Yao Wei; Zhang Ronghua; Tong Lili

    2001-01-01

    The formation of dissipative structures has long been known to occur in hydrodynamics. The two-phase natural circulation and passive system (TPNCPS) instability is a dissipative structure problem in multiphase hydrodynamics. The spectrum of the static bifurcation solutions (SBS) of TPNCPS through the variation of a parameter (one or more) has been derived in terms of Bifurcation Theory and DERPAR Numerical Method. Based on the appearance of Thermal-Siphon Hysteresis, the transport heat capability, static excursion criterion, stationary margin, transport heat capability of specific mass flow-rate and the disappear of bifurcation-the transition of single-valued region with the change of parameter have been defined. Such phenomena are the problems of describing self-organization, i.e. detailed study of stationary and/or time dependent status evolving with changes of characteristic parameter. A comparison between computational curves and low-pressure experimental data shows the tendency of evolutionary processes compatibly. The further tests are needed

  17. Comparison of quasi-static and dynamic squats: a three-dimensional kinematic, kinetic and electromyographic study of the lower limbs.

    Science.gov (United States)

    Clément, Julien; Hagemeister, Nicola; Aissaoui, Rachid; de Guise, Jacques A

    2014-01-01

    Numerous studies have described 3D kinematics, 3D kinetics and electromyography (EMG) of the lower limbs during quasi-static or dynamic squatting activities. One study compared these two squatting conditions but only at low speed on healthy subjects, and provided no information on kinetics and EMG of the lower limbs. The purpose of the present study was to contrast simultaneous recordings of 3D kinematics, 3D kinetics and EMG of the lower limbs during quasi-stat ic and fast-dynamic squats in healthy and pathological subjects. Ten subjects were recruited: five healthy and five osteoarthritis subjects. A motion-capture system, force plate, and surface electrodes respectively recorded 3D kinematics, 3D kinetics and EMG of the lower limbs. Each subject performed a quasi-static squat and several fast-dynamic squats from 0° to 70° of knee flexion. The two squatting conditions were compared for positions where quasi-static and fast-dynamic knee flexion-extension angles were similar. Mean differences between quasi-static and fast-dynamic squats were 1.5° for rotations, 1.9 mm for translations, 2.1% of subjects' body weight for ground reaction forces, 6.6 Nm for torques, 11.2 mm for center of pressure, and 6.3% of maximum fast-dynamic electromyographic activities for EMG. Some significant differences (psquats were small. 69.5% of compared data were equivalent. In conclusion, this study showed that quasi-static and fast-dynamic squatting activities are comparable in terms of 3D kinematics, 3D kinetics and EMG, although some reservations still remain. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Static loading and vertical displacement at southern Siberia

    Directory of Open Access Journals (Sweden)

    Anton V. Timofeev

    2017-05-01

    Full Text Available Seismic method is usually used for elastic parametric estimation. This is why this method presents dynamic parameters of Earth. Frequency seismic range changes greatly from geodynamic modelling time. Now we have opportunity to use geodesy result for some years for elastic parameters estimation. Static solution from elastic theory may be used for the interpretation of long term results. It presents static elastic parameter. The inverse problem for different types of vertical surface loading on one year period is calculated. Two cases of loading with maximal and minimal area are presented. Results are determined by space geodesy and leveling methods. Current relation between atmospheric pressure and vertical displacements was estimated at the center of Siberian Anti Cyclone with size varied from 2000 km to 3000 km. Pressure-displacement coefficients (PDC can be achieved by three years observation (0.997 mm/mbar for NVSK GPS station. It is used for elastic module study of geology medium with maximum thickness up to 600 km. In the context of elastic model, the modulus of rigidity is estimated to be 113 GPa. Vast expanse of anti-cyclone may relate with rheology of crust and upper mantle. Smaller size of surface loading – local loading is seasonal variation of water reservoir. Annual vertical changes were obtained by leveling near the dam of the reservoir. PDC ratio was 1.15 mm/bar for these places. In elastic theory, the Young modulus E = 80 GPa (Poisson ratio = 0.25, the modulus of rigidity = 32 GPa was calculated by sixteen years of leveling measurements. This result can effectively be represented for upper crust. Our results were checked by solution for coseismic displacement of Chyia-Altai earthquake (Sep. 27, 2003, M = 7.3. Coseismic results calculated by static modules agree with experimental coseismic GPS data at 10% level.

  19. Intramuscular pressure and EMG relate during static contractions but dissociate with movement and fatigue

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Jensen, Bente R.; Hargens, Allan R.

    2004-01-01

    Intramuscular pressure (IMP) and electromyography (EMG) mirror muscle force in the nonfatigued muscle during static contractions. The present study explores whether the constant IMP-EMG relationship with increased force may be extended to dynamic contractions and to fatigued muscle. IMP and EMG...... with speed of abduction. In the nonfatigued supraspinatus muscle, a linear relationship was found between IMP and EMG; in contrast, during fatigue and recovery, significant timewise changes of the IMP-to-EMG ratio occurred. The results indicate that IMP should be included along with EMG when mechanical load...... sharing between muscles is evaluated during dynamic and fatiguing contractions....

  20. A static analysis tool set for assembler code verification

    International Nuclear Information System (INIS)

    Dhodapkar, S.D.; Bhattacharjee, A.K.; Sen, Gopa

    1991-01-01

    Software Verification and Validation (V and V) is an important step in assuring reliability and quality of the software. The verification of program source code forms an important part of the overall V and V activity. The static analysis tools described here are useful in verification of assembler code. The tool set consists of static analysers for Intel 8086 and Motorola 68000 assembly language programs. The analysers examine the program source code and generate information about control flow within the program modules, unreachable code, well-formation of modules, call dependency between modules etc. The analysis of loops detects unstructured loops and syntactically infinite loops. Software metrics relating to size and structural complexity are also computed. This report describes the salient features of the design, implementation and the user interface of the tool set. The outputs generated by the analyser are explained using examples taken from some projects analysed by this tool set. (author). 7 refs., 17 figs

  1. Modeling the static fringe field of superconducting magnets.

    Science.gov (United States)

    Jeglic, P; Lebar, A; Apih, T; Dolinsek, J

    2001-05-01

    The resonance frequency-space and the frequency gradient-space relations are evaluated analytically for the static fringe magnetic field of superconducting magnets used in the NMR diffusion measurements. The model takes into account the actual design of the high-homogeneity magnet coil system that consists of the main coil and the cryoshim coils and enables a precise calibration of the on-axis magnetic field gradient and the resonance frequency inside and outside of the superconducting coil. Copyright 2001 Academic Press.

  2. Opaque Selling: Static or Inter-Temporal Price Discrimination?

    OpenAIRE

    Courty, Pascal; Liu, Wenyu

    2013-01-01

    We study opaque selling in the hotel industry using data from Hotwire.com. An opaque room discloses only the star level and general location of the hotel at the time of booking. The exact identity of the hotel is disclosed after the booking is completed. Opaque rooms sell at a discount of 40 percent relative to regular rooms. The discount increases when hotels are more differentiated. This finding is consistent with static models of price discrimination. No support was found for predictions s...

  3. Tools and Workflows for Collaborating on Static Website Projects

    Directory of Open Access Journals (Sweden)

    Kaitlin Newson

    2017-10-01

    Full Text Available Static website generators have seen a significant increase in popularity in recent years, offering many advantages over their dynamic counterparts. While these generators were typically used for blogs, they have grown in usage for other web-based projects, including documentation, conference websites, and image collections. However, because of their technical complexity, these tools can be inaccessible to content creators depending on their level of technical skill and comfort with web development technologies. Drawing from experience with a collaborative static website project, this article will provide an overview of static website generators, review different tools available for managing content, and explore workflows and best practices for collaborating with teams on static website projects.

  4. An easily implemented static condensation method for structural sensitivity analysis

    Science.gov (United States)

    Gangadharan, S. N.; Haftka, R. T.; Nikolaidis, E.

    1990-01-01

    A black-box approach to static condensation for sensitivity analysis is presented with illustrative examples of a cube and a car structure. The sensitivity of the structural response with respect to joint stiffness parameter is calculated using the direct method, forward-difference, and central-difference schemes. The efficiency of the various methods for identifying joint stiffness parameters from measured static deflections of these structures is compared. The results indicate that the use of static condensation can reduce computation times significantly and the black-box approach is only slightly less efficient than the standard implementation of static condensation. The ease of implementation of the black-box approach recommends it for use with general-purpose finite element codes that do not have a built-in facility for static condensation.

  5. Mechanical Modelling of Pultrusion Process: 2D and 3D Numerical Approaches

    DEFF Research Database (Denmark)

    Baran, Ismet; Hattel, Jesper Henri; Akkerman, Remko

    2015-01-01

    The process induced variations such as residual stresses and distortions are a critical issue in pultrusion, since they affect the structural behavior as well as the mechanical properties and geometrical precision of the final product. In order to capture and investigate these variations......, a mechanical analysis should be performed. In the present work, the two dimensional (2D) quasi-static plane strain mechanical model for the pultrusion of a thick square profile developed by the authors is further improved using generalized plane strain elements. In addition to that, a more advanced 3D thermo......-chemical-mechanical analysis is carried out using 3D quadratic elements which is a novel application for the numerical modelling of the pultrusion process. It is found that the 2D mechanical models give relatively reasonable and accurate stress and displacement evolutions in the transverse direction as compared to the 3D...

  6. numerical and numerical and experimental modeling of the static

    African Journals Online (AJOL)

    eobe

    than that of the beam theory solution respectively. Verification of the software with published solutions is also conducted. The results from the developed ..... span L = 40 m is subjected to self-weight and eight point forces, which are symmetrical ...

  7. Numerical investigations on contactless methods for measuring critical current density in HTS: application of modified constitutive-relation method

    International Nuclear Information System (INIS)

    Kamitani, A.; Takayama, T.; Itoh, T.; Ikuno, S.

    2011-01-01

    A fast method is proposed for calculating the shielding current density in an HTS. The J-E constitutive relation is modified so as not to change the solution. A numerical code is developed on the basis of the proposed method. The permanent magnet method is successfully simulated by means of the code. A fast method has been proposed for calculating the shielding current density in a high-temperature superconducting thin film. An initial-boundary-value problem of the shielding current density cannot be always solved by means of the Runge-Kutta method even when an adaptive step-size control algorithm is incorporated to the method. In order to suppress an overflow in the algorithm, the J-E constitutive relation is modified so that its solution may satisfy the original constitutive relation. A numerical code for analyzing the shielding current density has been developed on the basis of this method and, as an application of the code, the permanent magnet method for measuring the critical current density has been investigated numerically.

  8. Survey of approaches for handling static analysis alarms

    NARCIS (Netherlands)

    Muske, T.; Serebrenik, A.

    2016-01-01

    Static analysis tools have showcased their importance and usefulness in automated detection of code anomalies and defects. However, the large number of alarms reported and cost incurred in their manual inspections have been the major concerns with the usage of static analysis tools. Existing studies

  9. Multiple histogram method and static Monte Carlo sampling

    NARCIS (Netherlands)

    Inda, M.A.; Frenkel, D.

    2004-01-01

    We describe an approach to use multiple-histogram methods in combination with static, biased Monte Carlo simulations. To illustrate this, we computed the force-extension curve of an athermal polymer from multiple histograms constructed in a series of static Rosenbluth Monte Carlo simulations. From

  10. Fast static field CIPT mapping of unpatterned MRAM film stacks

    DEFF Research Database (Denmark)

    Kjær, Daniel; Hansen, Ole; Henrichsen, Henrik Hartmann

    2015-01-01

    Current In-Plane Tunneling (CIPT) method measures both RA and TMR, but the usefulness for uniformity mapping, e.g. for tool optimization, is limited by excessive measurement time. Thus, we develop and demonstrate a fast complementary static magnetic field method focused only on measurement of RA. We...... compare the static field method to the standard CIPT method and find perfect agreement between the extracted RA values and measurement repeatability while the static field method is several times faster. The static field CIPT method is demonstrated for 200 mm wafer mapping showing radial as well...

  11. From Flow Logic to static type systems for coordination languages

    DEFF Research Database (Denmark)

    De Nicola, Rocco; Gorla, Daniele; Hansen, Rene Rydhof

    2010-01-01

    checks; therefore, the correctness properties cannot be statically enforced. By contrast, static analysis approaches based on Flow Logic usually guarantee properties statically. In this paper, we show how the insights from the Flow Logic approach can be used to construct a type system for statically......Coordination languages are often used to describe open-ended systems. This makes it challenging to develop tools for guaranteeing the security of the coordinated systems and the correctness of their interaction. Successful approaches to this problem have been based on type systems with dynamic...

  12. From Flow Logic to Static Type Systems in Coordination Languages

    DEFF Research Database (Denmark)

    De Nicola, Rocco; Gorla, Daniele; Hansen, René Rydhof

    2008-01-01

    ; therefore, the correctness properties cannot be statically enforced. By contrast, static analysis approaches based on Flow Logic usually guarantee properties statically. In this paper we show how to combine these two approaches to obtain a static type system for describing secure access to tuple spaces......Coordination languages are often used to describe open ended systems. This makes it challenging to develop tools for guaranteeing security of the coordinated systems and correctness of their interaction. Successful approaches to this problem have been based on type systems with dynamic checks...

  13. Miniature Flow-Direction/Pitot-Static Pressure Probes

    Science.gov (United States)

    Ashby, George C., Jr.; Coombs, David S.; Eves, John W.; Price, Howard E.; Vasquez, Peter

    1989-01-01

    Precision flow-direction/pitot-static pressure probes, ranging from 0.035 to 0.090 inch (0.89 to 2.29 mm) in outside diameter, successfully fabricated and calibrated for use in Langley 20-inch Mach 6 Tunnel. Probes simultaneously measure flow direction and static and pitot pressures in flow fields about configurations in hypersonic flow at temperatures up to 500 degree F (260 degree C).

  14. Pythran: enabling static optimization of scientific Python programs

    Science.gov (United States)

    Guelton, Serge; Brunet, Pierrick; Amini, Mehdi; Merlini, Adrien; Corbillon, Xavier; Raynaud, Alan

    2015-01-01

    Pythran is an open source static compiler that turns modules written in a subset of Python language into native ones. Assuming that scientific modules do not rely much on the dynamic features of the language, it trades them for powerful, possibly inter-procedural, optimizations. These optimizations include detection of pure functions, temporary allocation removal, constant folding, Numpy ufunc fusion and parallelization, explicit thread-level parallelism through OpenMP annotations, false variable polymorphism pruning, and automatic vector instruction generation such as AVX or SSE. In addition to these compilation steps, Pythran provides a C++ runtime library that leverages the C++ STL to provide generic containers, and the Numeric Template Toolbox for Numpy support. It takes advantage of modern C++11 features such as variadic templates, type inference, move semantics and perfect forwarding, as well as classical idioms such as expression templates. Unlike the Cython approach, Pythran input code remains compatible with the Python interpreter. Output code is generally as efficient as the annotated Cython equivalent, if not more, but without the backward compatibility loss.

  15. Water cooled static pressure probe

    Science.gov (United States)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  16. An extended diffraction tomography method for quantifying structural damage using numerical Green's functions.

    Science.gov (United States)

    Chan, Eugene; Rose, L R Francis; Wang, Chun H

    2015-05-01

    Existing damage imaging algorithms for detecting and quantifying structural defects, particularly those based on diffraction tomography, assume far-field conditions for the scattered field data. This paper presents a major extension of diffraction tomography that can overcome this limitation and utilises a near-field multi-static data matrix as the input data. This new algorithm, which employs numerical solutions of the dynamic Green's functions, makes it possible to quantitatively image laminar damage even in complex structures for which the dynamic Green's functions are not available analytically. To validate this new method, the numerical Green's functions and the multi-static data matrix for laminar damage in flat and stiffened isotropic plates are first determined using finite element models. Next, these results are time-gated to remove boundary reflections, followed by discrete Fourier transform to obtain the amplitude and phase information for both the baseline (damage-free) and the scattered wave fields. Using these computationally generated results and experimental verification, it is shown that the new imaging algorithm is capable of accurately determining the damage geometry, size and severity for a variety of damage sizes and shapes, including multi-site damage. Some aspects of minimal sensors requirement pertinent to image quality and practical implementation are also briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Non-static vacuum strings: exterior and interior solutions

    International Nuclear Information System (INIS)

    Stein-Schabes, J.A.

    1986-01-01

    New non-static cylindrically symmetric solutions of Einsteins's equations are presented. Some of these solutions represent string-like objects. An exterior vacuum solution is matched to a non-vacuum interior solution for different forms of the energy-momentum tensor. They generalize the standard static string. 12 refs

  18. Passive elimination of static electricity in oil industry

    Directory of Open Access Journals (Sweden)

    Gaćanović Mićo

    2014-01-01

    Full Text Available This study explains the existing and real conditions of a possible passive elimination of static electricity when loading oil and oil derivatives. We are considering the formation and survival of gas bubbles both in the volume of oil in its depth, but also at the surface of oil and oil derivatives of the partly filled reservoir, and formation of both volume and surface electric charge in oil and oil derivatives. The study presents the research of formation and survival of static electricity in both reservoirs and tank trucks of different geometric shapes partly filled with oil and oil derivatives. We are proposing a new original possibility of passive elimination of static electricity when loading oil and oil derivatives in reservoirs and tank trucks. The proposed passive device for elimination of static electricity is protected at the international level in the domain of intellectual property (with a patent, model and distinctive mark.

  19. A Static Burst Test for Composite Flywheel Rotors

    Science.gov (United States)

    Hartl, Stefan; Schulz, Alexander; Sima, Harald; Koch, Thomas; Kaltenbacher, Manfred

    2016-06-01

    High efficient and safe flywheels are an interesting technology for decentralized energy storage. To ensure all safety aspects, a static test method for a controlled initiation of a burst event for composite flywheel rotors is presented with nearly the same stress distribution as in the dynamic case, rotating with maximum speed. In addition to failure prediction using different maximum stress criteria and a safety factor, a set of tensile and compressive tests is carried out to identify the parameters of the used carbon fiber reinforced plastics (CFRP) material. The static finite element (FE) simulation results of the flywheel static burst test (FSBT) compare well to the quasistatic FE-simulation results of the flywheel rotor using inertia loads. Furthermore, it is demonstrated that the presented method is a very good controllable and observable possibility to test a high speed flywheel energy storage system (FESS) rotor in a static way. Thereby, a much more expensive and dangerous dynamic spin up test with possible uncertainties can be substituted.

  20. Extending and Enhancing SAS (Static Analysis Suite)

    CERN Document Server

    Ho, David

    2016-01-01

    The Static Analysis Suite (SAS) is an open-source software package used to perform static analysis on C and C++ code, helping to ensure safety, readability and maintainability. In this Summer Student project, SAS was enhanced to improve ease of use and user customisation. A straightforward method of integrating static analysis into a project at compilation time was provided using the automated build tool CMake. The process of adding checkers to the suite was streamlined and simplied by developing an automatic code generator. To make SAS more suitable for continuous integration, a reporting mechanism summarising results was added. This suitability has been demonstrated by inclusion of SAS in the Future Circular Collider Software nightly build system. Scalability of the improved package was demonstrated by using the tool to analyse the ROOT code base.

  1. Effect of static scatterers in laser speckle contrast imaging: an experimental study on correlation and contrast

    Science.gov (United States)

    Vaz, Pedro G.; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, João

    2018-01-01

    Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.

  2. Static compensators (STATCOMs) in power systems

    CERN Document Server

    Shahnia, Farhad; Ghosh, Arindam

    2014-01-01

    A static compensator (STATCOM), also known as static synchronous compensator, is a member of the flexible alternating current transmission system (FACTS) devices. It is a power-electronics based regulating device which is composed of a voltage source converter (VSC) and is shunt-connected to alternating current electricity transmission and distribution networks. The voltage source is created from a DC capacitor and the STATCOM can exchange reactive power with the network. It can also supply some active power to the network, if a DC source of power is connected across the capacitor. A STATCOM

  3. The numerical multiconfiguration self-consistent field approach for atoms; Der numerische Multiconfiguration Self-Consistent Field-Ansatz fuer Atome

    Energy Technology Data Exchange (ETDEWEB)

    Stiehler, Johannes

    1995-12-15

    The dissertation uses the Multiconfiguration Self-Consistent Field Approach to specify the electronic wave function of N electron atoms in a static electrical field. It presents numerical approaches to describe the wave functions and introduces new methods to compute the numerical Fock equations. Based on results computed with an implemented computer program the universal application, flexibility and high numerical precision of the presented approach is shown. RHF results and for the first time MCSCF results for polarizabilities and hyperpolarizabilities of various states of the atoms He to Kr are discussed. In addition, an application to interpret a plasma spectrum of gallium is presented. (orig.)

  4. Comparison of pressure perception of static and dynamic two point ...

    African Journals Online (AJOL)

    ... the right and left index finger (p<0.05). Conclusion: Age and gender did not affect the perception of static and dynamic two point discrimination while the limb side (left or right) affected the perception of static and dynamic two point discrimination. The index finger is also more sensitive to moving rather static sensations.

  5. Static analysis of large-scale multibody system using joint coordinates and spatial algebra operator.

    Science.gov (United States)

    Omar, Mohamed A

    2014-01-01

    Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations.

  6. Enhancement of sedimentation and coagulation with static magnetic field

    Science.gov (United States)

    Zieliński, Marcin; Dębowski, Marcin; Hajduk, Anna; Rusanowska, Paulina

    2017-11-01

    The static magnetic field can be an alternative method for wastewater treatment. It has been proved that this physical factor, accelerates the biochemical processes, catalyzes advanced oxidation, intensifies anaerobic and aerobic processes or reduces swelling of activated sludge. There are also reports proving the positive impact of the static magnetic field on the coagulation and sedimentation, as well as the conditioning and dewatering of sludge. In order to be applied in larger scale the published results should be verified and confirmed. In the studies, the enhancement of sedimentation by the static magnetic field was observed. The best sedimentation was noted in the experiment, where magnetizers were placed on activated sludge bioreactor and secondary settling tank. No effect of the static magnetic field on coagulation with the utilization of PIX 113 was observed. However, the static magnetic field enhanced coagulation with the utilization of PAX-XL9. The results suggest that increased sedimentation of colloids and activated sludge, can in practice mean a reduction in the size of the necessary equipment for sedimentation with an unchanged efficiency of the process.

  7. Linear and nonlinear intersubband optical absorption in a disk-shaped quantum dot with a parabolic potential plus an inverse squared potential in a static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guanghui [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Guo Kangxian, E-mail: axguo@sohu.com [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Wang Chao [Institute of Public Administration, Guangzhou University, Guangzhou 510006 (China)

    2012-06-15

    The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.

  8. Linear and nonlinear intersubband optical absorption in a disk-shaped quantum dot with a parabolic potential plus an inverse squared potential in a static magnetic field

    International Nuclear Information System (INIS)

    Liu Guanghui; Guo Kangxian; Wang Chao

    2012-01-01

    The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.

  9. Hydrogen generation through static-feed water electrolysis

    Science.gov (United States)

    Jensen, F. C.; Schubert, F. H.

    1975-01-01

    A static-feed water electrolysis system (SFWES), developed under NASA sponsorship, is presented for potential applicability to terrestrial hydrogen production. The SFWES concept uses (1) an alkaline electrolyte to minimize power requirements and materials-compatibility problems, (2) a method where the electrolyte is retained in a thin porous matrix eliminating bulk electrolyte, and (3) a static water-feed mechanism to prevent electrode and electrolyte contamination and to promote system simplicity.

  10. Static characteristics of a pilot relief valve; Baransupisuton gata ririfu ben no sei tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Washio, S.; Yonguang YU; Nakamura, Y. [Okayama Univ. (Japan). School of Engineering

    1997-09-25

    Among a lot of hydraulic valves, relief valve is the most fundamental and important valve which takes change of pressure control. It is essential to know the working characteristics accurately, in order to predict the performance of . system. So far, the numerical simulation of relief valve has been tried and the mathematical models of individual component characteristics based on the knowledge of hydraulics are proposed. In this report, it was revealed that the static relation among the pressure drop, flow rate and opening area for a constriction can be represented, not by the traditional hydraulic orifice equation which has always been used for the purpose but by a new one including an additional pressure loss proportional to the flow rate and the fluid viscosity and inversely proportional to the square of the opening area. The new characteristic equation has proved to consistently forecast the experimental findings in which the rise in oil temperature results in an increase in the piston displacement, but causes little changes as regards regulated pressure. It has also turned out that contrary to conventional preconception, the fluid force exerted on a poppet is negligible. 6 refs., 14 figs., 1 tab.

  11. Computer simulation of yielding supports under static and short-term dynamic load

    Directory of Open Access Journals (Sweden)

    Kumpyak Oleg

    2018-01-01

    Full Text Available Dynamic impacts that became frequent lately cause large human and economic losses, and their prevention methods are not always effective and reasonable. The given research aims at studying the way of enhancing explosion safety of building structures by means of yielding supports. The paper presents results of numerical studies of strength and deformation property of yielding supports in the shape of annular tubes under static and short-term dynamic loading. The degree of influence of yielding supports was assessed taking into account three peculiar stages of deformation: elastic; elasto-plastic; and elasto-plastic with hardening. The methodology for numerical studies performance was described using finite element analysis with program software Ansys Mechanical v17.2. It was established that rigidity of yielding supports influences significantly their stress-strain state. The research determined that with the increase in deformable elements rigidity dependence between load and deformation of the support in elastic and plastic stages have linear character. Significant reduction of the dynamic response and increase in deformation time of yielding supports were observed due to increasing the plastic component. Therefore, it allows assuming on possibility of their application as supporting units in RC beams.

  12. EFFECTIVENESS OF INSTUMENTAL ASSISTED SOFT TISSUE MOBILIZATION TECHNIQUE WITH STATIC STRETCHING IN SUBJECTS WITH PLANTAR FASCIITIS

    Directory of Open Access Journals (Sweden)

    Vinod Babu. K

    2014-08-01

    Full Text Available Background: Instrumental assisted soft tissue mobilization and static stretching found to be effective in plantar fasciitis, however the combined effectiveness of these techniques were unknown. The purpose of this study is to find the effect of Instrumental assisted soft tissue mobilization technique for plantar fascia combined with static stretching of triceps surae for subjects with chronic stage of Plantar Fasciitis on pain intensity, ankle dorsiflexion range of motion and functional disability. Methods: An experimental study design, selected subjects with chronic Plantar Fasciitis randomized subjects into each Study and Control group. Total of 40 subject’s data who completed study, 20 in each group, was used for analysis. Control group received conventional exercise while Study group received conventional exercises with Instrumental assisted soft tissue mobilization combined with static stretching of triceps surae muscle. Outcome measurements such as Intensity of pain using Numerical Pain Rating Scale-101 (NPRS-101, function disability using Foot Function Index Pain Subscale (FFI and ankle dorsiflexion active range of motion using Goniometer was measured before and after 2 weeks of intervention. Results: There is statistically significant improvement in means of NRS-101, ankle dorsiflexion active range of motion and Foot Function Index Pain Subscale after intervention in both groups. When the post-intervention means were compared between Study and Control group after 2 weeks of treatment there is statistically significant difference in means between the groups whereas study group showed greater percentage of improvement than control group. Conclusion: It is concluded that Instrumental assisted soft tissue mobilization technique combined with static stretching of triceps surae muscle is significantly effective than conventional exercises on reducing pain, improving ankle dorsiflexion range of motion and functional disability for subjects

  13. Static and Dynamic Handgrip Strength Endurance: Test-Retest Reproducibility.

    Science.gov (United States)

    Gerodimos, Vassilis; Karatrantou, Konstantina; Psychou, Dimitra; Vasilopoulou, Theodora; Zafeiridis, Andreas

    2017-03-01

    This study investigated the reliability of static and dynamic handgrip strength endurance using different protocols and indicators for the assessment of strength endurance. Forty young, healthy men and women (age, 18-22 years) performed 2 handgrip strength endurance protocols: a static protocol (sustained submaximal contraction at 50% of maximal voluntary contraction) and a dynamic one (8, 10, and 12 maximal repetitions). The participants executed each protocol twice to assess the test-retest reproducibility. Total work and total time were used as indicators of strength endurance in the static protocol; the strength recorded at each maximal repetition, the percentage change, and fatigue index were used as indicators of strength endurance in the dynamic protocol. The static protocol showed high reliability irrespective of sex and hand for total time and work. The 12-repetition dynamic protocol exhibited moderate-high reliability for repeated maximal repetitions and percentage change; the 8- and 10-repetition protocols demonstrated lower reliability irrespective of sex and hand. The fatigue index was not a reliable indicator for the assessment of dynamic handgrip endurance. Static handgrip endurance can be measured reliably using the total time and total work as indicators of strength endurance. For the evaluation of dynamic handgrip endurance, the 12-repetition protocol is recommended, using the repeated maximal repetitions and percentage change as indicators of strength endurance. Practitioners should consider the static (50% maximal voluntary contraction) and dynamic (12 repeated maximal repetitions) protocols as reliable for the assessment of handgrip strength endurance. The evaluation of static endurance in conjunction with dynamic endurance would provide more complete information about hand function. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  14. Manipulating the Shape of Electronic Non-Dispersive Wave-Packets in the Hydrogen Atom: Numerical Tests in Realistic Experimental Conditions

    International Nuclear Information System (INIS)

    Delande, D.; Sacha, K.; Zakrzewski, J.

    2002-01-01

    We show that combination of a linearly polarized resonant microwave field and a parallel static electric field may be used to create a non-dispersive electronic wave packet in Rydberg atoms. The static electric field allows for manipulation of the shape of the elliptical trajectory the wave packet is propagating on. Exact quantum numerical calculations for realistic experimental parameters show that the wave packet evolving on a linear orbit can be very easily prepared in a laboratory either by a direct optical excitation or by preparing an atom in an extremal Stark state and then slowly switching on the micro wave field. The latter scheme seems to be very resistant to experimental imperfections. Once the wave packet on the linear orbit is excited, the static field may be used to manipulate the shape of the orbit. (author)

  15. Static and Dynamic Path Planning Using Incremental Heuristic Search

    OpenAIRE

    Khattab, Asem

    2018-01-01

    Path planning is an important component in any highly automated vehicle system. In this report, the general problem of path planning is considered first in partially known static environments where only static obstacles are present but the layout of the environment is changing as the agent acquires new information. Attention is then given to the problem of path planning in dynamic environments where there are moving obstacles in addition to the static ones. Specifically, a 2D car-like agent t...

  16. Cardiovascular responses to static exercise in distance runners and weight lifters

    Science.gov (United States)

    Longhurst, J. C.; Kelly, A. R.; Gonyea, W. J.; Mitchell, J. H.

    1980-01-01

    Three groups of athletes including long-distance runners, competitive and amateur weight lifters, and age- and sex-matched control subjects have been studied by hemodynamic and echocardiographic methods in order to determine the effect of the training programs on the cardiovascular response to static exercise. Blood pressure, heart rate, and double product data at rest and at fatigue suggest that competitive endurance (dynamic exercise) training alters the cardiovascular response to static exercise. In contrast to endurance exercise, weight lifting (static exercise) training does not alter the cardiovascular response to static exercise: weight lifters responded to static exercise in a manner very similar to that of the control subjects.

  17. Static Friction Phenomena in Granular Materials: Coulomb Law vs. Particle Geometry

    OpenAIRE

    Poeschel, T.; Buchholtz, V.

    1993-01-01

    The static as well as the dynamic behaviour of granular material are determined by dynamic {\\it and} static friction. There are well known methods to include static friction in molecular dynamics simulations using scarcely understood forces. We propose an Ansatz based on the geometrical shape of nonspherical particles which does not involve an explicit expression for static friction. It is shown that the simulations based on this model are close to experimental results.

  18. Explosions and static electricity

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1995-01-01

    The paper deals with the problem of electrostatic discharges as causes of ignition of vapor/gas and dust/gas mixtures. A series of examples of static-caused explosions will be discussed. The concepts of explosion limits, the incendiveness of various discharge types and safe voltages are explained...

  19. Interpreting Aerodynamics of a Transonic Impeller from Static Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Fangyuan Lou

    2018-01-01

    Full Text Available This paper investigates the aerodynamics of a transonic impeller using static pressure measurements. The impeller is a high-speed, high-pressure-ratio wheel used in small gas turbine engines. The experiment was conducted on the single stage centrifugal compressor facility in the compressor research laboratory at Purdue University. Data were acquired from choke to near-surge at four different corrected speeds (Nc from 80% to 100% design speed, which covers both subsonic and supersonic inlet conditions. Details of the impeller flow field are discussed using data acquired from both steady and time-resolved static pressure measurements along the impeller shroud. The flow field is compared at different loading conditions, from subsonic to supersonic inlet conditions. The impeller performance was strongly dependent on the inducer, where the majority of relative diffusion occurs. The inducer diffuses flow more efficiently for inlet tip relative Mach numbers close to unity, and the performance diminishes at other Mach numbers. Shock waves emerging upstream of the impeller leading edge were observed from 90% to 100% corrected speed, and they move towards the impeller trailing edge as the inlet tip relative Mach number increases. There is no shock wave present in the inducer at 80% corrected speed. However, a high-loss region near the inducer throat was observed at 80% corrected speed resulting in a lower impeller efficiency at subsonic inlet conditions.

  20. Determinacy in Static Analysis of jQuery

    DEFF Research Database (Denmark)

    Andreasen, Esben; Møller, Anders

    2014-01-01

    Static analysis for JavaScript can potentially help programmers find errors early during development. Although much progress has been made on analysis techniques, a major obstacle is the prevalence of libraries, in particular jQuery, which apply programming patterns that have detrimental conseque......Static analysis for JavaScript can potentially help programmers find errors early during development. Although much progress has been made on analysis techniques, a major obstacle is the prevalence of libraries, in particular jQuery, which apply programming patterns that have detrimental...... present a static dataflow analysis for JavaScript that infers and exploits determinacy information on-the-fly, to enable analysis of some of the most complex parts of jQuery. The techniques are implemented in the TAJS analysis tool and evaluated on a collection of small programs that use jQuery. Our...

  1. Non-local means filter for trim statics

    KAUST Repository

    Huang, Yunsong

    2014-08-05

    Structures will be mispositioned across prestack migration gathers in the presence of inaccuracies in the velocity model. Stacking these misaligned gathers runs the risk of destroying important structures in the stacked migration image. To mitigate this problem, we propose a trim statics inspired by the non-local means algorithm originally developed for image denoising. This method differs from the conventional one in two fundamental respects. First, the trim statics are computed by comparing image patches instead of individual image traces. Second, no global pilot trace is needed because only two migration images at a time participate in trim statics and are stacked into one image. A multitude of migration images are stacked recursively in this two-to-one fashion. Tests with a Gulf of Mexico dataset show a noticeable improvement in the feature coherency of the stacked migration image.

  2. Quasi-Static Electric Field Generator

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2017-01-01

    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  3. Static friction in rubber-metal contacts with application to rubber pad forming processes

    NARCIS (Netherlands)

    Deladi, E.L.

    2006-01-01

    A static friction model suitable for rubber-metal contact is presented in this dissertation. In introduction, the motivation and the aims of the research are introduced together with the background regarding the related industrial application, which is the rubber pad forming process.

  4. PREFACE: Proceedings of the 2008 Numerical Relativity Data Analysis Meeting, Syracuse University, Syracuse, NY, USA, 11-14 August 2008 Proceedings of the 2008 Numerical Relativity Data Analysis Meeting, Syracuse University, Syracuse, NY, USA, 11-14 August 2008

    Science.gov (United States)

    Sutton, Patrick; Shoemaker, Deirdre

    2009-06-01

    The 2008 Numerical Relativity Data Analysis (NRDA) Meeting, the second in the series, was hosted by the Department of Physics at Syracuse University, 11-14 August 2008 with 60 participants. The purpose of the NRDA meetings is to bring together two communities with a vested interest in gravitational-wave observations: the data analysis and numerical relativity communities. The first NRDA meeting was held in November 2006 at MIT. A quote of Peter Saulson's from the Matters of Gravity Newsletter puts the importance of the NRDA meetings in perspective. He wrote: `As I sat in the back row of Rm NW14-1112 at MIT on Tuesday 7 November 2006, it suddenly struck me that we were participating in a watershed moment in the history of gravitational physics. Here, in the same room, were two communities who decades earlier had promised to help each other in a grand adventure: the detection of gravitational waves and the use of those waves to explore the frontiers of strong field gravity.' That meeting marked the first time when the two communities began to speak each other's language. By the time of the second NRDA meeting, much progress had been made. Numerical relativists were starting to explore the binary-black-hole parameter space and were making advances in evolutions of neutron-star and neutron-star/black-hole binaries. Data analysts were investigating better algorithms for the detection of both inspiral and burst sources. Most importantly, on 14 August 2008, someone sitting in the back row of the Stolkin Auditorium in Syracuse University might have noted the beginning of real collaborations between the two communities. The meeting included presentations based on joint work by numerical relativists and data analysts. Also the participants at NRDA2008 asked tough questions about how to best use numerical relativity in gravitational wave detection, as well as showcasing some of the science that will allow us to formulate the answers to these questions. This issue presents

  5. Equilibrium statistical mechanics of strongly coupled plasmas by numerical simulation

    International Nuclear Information System (INIS)

    DeWitt, H.E.

    1977-01-01

    Numerical experiments using the Monte Carlo method have led to systematic and accurate results for the thermodynamic properties of strongly coupled one-component plasmas and mixtures of two nuclear components. These talks are intended to summarize the results of Monte Carlo simulations from Paris and from Livermore. Simple analytic expressions for the equation of state and other thermodynamic functions have been obtained in which there is a clear distinction between a lattice-like static portion and a thermal portion. The thermal energy for the one-component plasma has a simple power dependence on temperature, (kT)/sup 3 / 4 /, that is identical to Monte Carlo results obtained for strongly coupled fluids governed by repulsive l/r/sup n/ potentials. For two-component plasmas the ion-sphere model is shown to accurately represent the static portion of the energy. Electron screening is included in the Monte Carlo simulations using linear response theory and the Lindhard dielectric function. Free energy expressions have been constructed for one and two component plasmas that allow easy computation of all thermodynamic functions

  6. Effects of a static electric field on nonsequential double ionization

    International Nuclear Information System (INIS)

    Li Hongyun; Wang Bingbing; Li Xiaofeng; Fu Panming; Chen Jing; Liu Jie; Jiang Hongbing; Gong Qihuang; Yan Zongchao

    2007-01-01

    Using a three-dimensional semiclassical method, we perform a systematic analysis of the effects of an additional static electric field on nonsequential double ionization (NSDI) of a helium atom in an intense, linearly polarized laser field. It is found that the static electric field influences not only the ionization rate, but also the kinetic energy of the ionized electron returning to the parent ion, in such a way that, if the rate is increased, then the kinetic energy of the first returning electron is decreased, and vice versa. These two effects compete in NSDI. Since the effect of the static electric field on the ionization of the first electron plays a more crucial role in the competition, the symmetric double-peak structure of the He 2+ momentum distribution parallel to the polarization of the laser field is destroyed. Furthermore, the contribution of the trajectories with multiple recollisions to the NSDI is also changed dramatically by the static electric field. As the static electric field increases, the trajectories with two recollisions, which start at the time when the laser and the static electric field are in the same direction, become increasingly important for the NSDI

  7. Numerical relativity reaching into post-Newtonian territory: a compact-object binary simulation spanning 350 gravitational-wave cycles

    Science.gov (United States)

    Scheel, Mark; Szilagyi, Bela; Blackman, Jonathan; Chu, Tony; Kidder, Lawrence; Pfeiffer, Harald; Buonanno, Alessandra; Pan, Yi; Taracchini, Andrea; SXS Collaboration

    2015-04-01

    We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors such as LIGO, Virgo and KAGRA, for mass ratio 7 and total mass as low as 45 . 5M⊙ . We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a loss in detection rate due to modeling error smaller than 0 . 3 % . In contrast, post-Newtonian inspiral waveforms and existing phenomenological inspiral-merger-ringdown waveforms display much greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used.

  8. Combined Differential and Static Pressure Sensor based on a Double-Bridged Structure

    DEFF Research Database (Denmark)

    Pedersen, Casper; Jespersen, S.T.; Krog, J.P.

    2005-01-01

    A combined differential and static silicon microelectromechanical system pressure sensor based on a double piezoresistive Wheatstone bridge structure is presented. The developed sensor has a conventional (inner) bridge on a micromachined diaphragm and a secondary (outer) bridge on the chip...... substrate. A novel approach is demonstrated with a combined measurement of outputs from the two bridges, which results in a combined deduction of both differential and static media pressure. Also following this new approach, a significant improvement in differential pressure sensor accuracy is achieved....... Output from the two bridges depends linearly on both differential and absolute (relative to atmospheric pressure) media pressure. Furthermore, the sensor stress distributions involved are studied by three-dimensional finite-element (FE) stress analysis. Furthermore, the FE analysis evaluates current...

  9. Numerical analysis oriented biaxial stress-strain relation and failure criterion of plain concrete

    International Nuclear Information System (INIS)

    Link, J.

    1975-01-01

    A biaxial stress-strain relation and failure criterion is proposed, which is applicable to structural analysis methods. The formulation of material behavior of plain concrete in biaxial stress-state was developed. A nonlinear elastic, anisotropic stress-strain relation was derived with two moduli of elasticity, E 1 , E 2 and Poisson's ratios, ν 1 , ν 2 , which depend on the prevailing biaxial stress state. The stress-strain relation is valid in the whole biaxial stress field, that means with a smooth transition between the domains of tension/tension, tension/compression and compression/compression. The stress-dependent moduli E 1 , E 2 and the Poisson's ratios ν 1 , ν 2 are approximated by polynomials, trigonometrical and exponential functions. A failure criterion was defined by approximating the test results of the biaxial ultimate concrete strength with a 7th degree polynomial, which is also valid in the whole biaxial stress domain. The definition of the state of failure is given as a function of stresses as well as strains. Initial parameters of the formulation of the biaxial material behavior are the uniaxial cylindrical strength of concrete and the initial values of Young's modulus and Poisson's ratio. A simple expansion of this formulation makes it applicable not only to normal but also to light-weight concrete. Comparison of numerically calculated stress-strain curves up to the ultimate biaxial stresses which indicate the failure criteria with those obtained from tests show a very good agreement. It is shown, that the biaxial stress-strain relation can be extended for use in cases of triaxial tension/tension/compression stress state. Numerical examples of analysis of concrete slabs show the importance of incorporation of a realistic material behavior for better safety estimations

  10. Mixed Finite Element Method for Static and Dynamic Contact Problems with Friction and Initial Gaps

    Directory of Open Access Journals (Sweden)

    Lanhao Zhao

    2014-01-01

    Full Text Available A novel mixed finite element method is proposed for static and dynamic contact problems with friction and initial gaps. Based on the characteristic of local nonlinearity for the problem, the system of forces acting on the contactor is divided into two parts: external forces and contact forces. The displacement of structure is chosen as the basic variable and the nodal contact force in contact region under local coordinate system is selected as the iteration variable to confine the nonlinear iteration process in the potential contact surface which is more numerically efficient. In this way, the sophisticated contact nonlinearity is revealed by the variety of the contact forces which are determined by the external load and the contact state stick, slip, or separation. Moreover, in the case of multibody contact problem, the flexibility matrix is symmetric and sparse; thus, the iterative procedure becomes easily carried out and much more economical. In the paper, both the finite element formulations and the iteration process are given in detail for static and dynamic contact problems. Four examples are included to demonstrate the accuracy and applicability of the presented method.

  11. Numerical method for the dispersion relation of a hot and inhomogeneous plasma with an electron beam

    International Nuclear Information System (INIS)

    Devia, A.; Orrego, C.E.; Buitrago, G.

    1990-01-01

    A numerical method that is based in kinetic theory (Vlasov-Poison equations) was developed in order to calculate the dispersion relation for the interaction between a hot cylindrical and electron beam in any temperature and density. The plasma-beam system is located in a strong magnetic field. Many examples showing the effect of the temperatures and densities on the dispersion relation are given. (Author)

  12. Multiaxial pedicle screw designs: static and dynamic mechanical testing.

    Science.gov (United States)

    Stanford, Ralph Edward; Loefler, Andreas Herman; Stanford, Philip Mark; Walsh, William R

    2004-02-15

    Randomized investigation of multiaxial pedicle screw mechanical properties. Measure static yield and ultimate strengths, yield stiffness, and fatigue resistance according to an established model. Compare these measured properties with expected loads in vivo. Multiaxial pedicle screws provide surgical versatility, but the complexity of their design may reduce their strength and fatigue resistance. There is no published data on the mechanical properties of such screws. Screws were assembled according to a vertebrectomy model for destructive mechanical testing. Groups of five assemblies were tested in static tension and compression and subject to three cyclical loads. Modes of failure, yield, and ultimate strength, yield stiffness, and cycles to failure were determined for six designs of screw. Static compression yield loads ranged from 217.1 to 388.0 N and yield stiffness from 23.7 to 38.0 N/mm. Cycles to failure ranged from 42 x 10(3) to 4,719 x 10(3) at 75% of static ultimate load. There were significant differences between designs in all modes of testing. Failure occurred at the multiaxial link in static and cyclical compression. Bending yield strengths just exceeded loads expected in vivo. Multiaxial designs had lower static bending yield strength than fixed screw designs. Five out of six multiaxial screw designs achieved one million cycles at 200 N in compression bending. "Ball-in-cup" multiaxial locking mechanisms were vulnerable to fatigue failure. Smooth surfaces and thicker material appeared to be protective against fatigue failure.

  13. Static structure of chameleon dark matter as an explanation of dwarf spheroidal galaxy cores

    Science.gov (United States)

    Chanda, Prolay Krishna; Das, Subinoy

    2017-04-01

    We propose a novel mechanism that explains the cored dark matter density profile in recently observed dark matter rich dwarf spheroidal galaxies. In our scenario, dark matter particle mass decreases gradually as a function of distance towards the center of a dwarf galaxy due to its interaction with a chameleon scalar. At closer distance towards the Galactic center the strength of attractive scalar fifth force becomes much stronger than gravity and is balanced by the Fermi pressure of the dark matter cloud; thus, an equilibrium static configuration of the dark matter halo is obtained. Like the case of soliton star or fermion Q-star, the stability of the dark matter halo is obtained as the scalar achieves a static profile and reaches an asymptotic value away from the Galactic center. For simple scalar-dark matter interaction and quadratic scalar self-interaction potential, we show that dark matter behaves exactly like cold dark matter (CDM) beyond a few kpc away from the Galactic center but at closer distance it becomes lighter and Fermi pressure cannot be ignored anymore. Using Thomas-Fermi approximation, we numerically solve the radial static profile of the scalar field, fermion mass and dark matter energy density as a function of distance. We find that for fifth force mediated by an ultralight scalar, it is possible to obtain a flattened dark matter density profile towards the Galactic center. In our scenario, the fifth force can be neglected at distance r ≥1 kpc from the Galactic center and dark matter can be simply treated as heavy nonrelativistic particles beyond this distance, thus reproducing the success of CDM at large scales.

  14. Parameter estimation method that directly compares gravitational wave observations to numerical relativity

    Science.gov (United States)

    Lange, J.; O'Shaughnessy, R.; Boyle, M.; Calderón Bustillo, J.; Campanelli, M.; Chu, T.; Clark, J. A.; Demos, N.; Fong, H.; Healy, J.; Hemberger, D. A.; Hinder, I.; Jani, K.; Khamesra, B.; Kidder, L. E.; Kumar, P.; Laguna, P.; Lousto, C. O.; Lovelace, G.; Ossokine, S.; Pfeiffer, H.; Scheel, M. A.; Shoemaker, D. M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.

    2017-11-01

    We present and assess a Bayesian method to interpret gravitational wave signals from binary black holes. Our method directly compares gravitational wave data to numerical relativity (NR) simulations. In this study, we present a detailed investigation of the systematic and statistical parameter estimation errors of this method. This procedure bypasses approximations used in semianalytical models for compact binary coalescence. In this work, we use the full posterior parameter distribution for only generic nonprecessing binaries, drawing inferences away from the set of NR simulations used, via interpolation of a single scalar quantity (the marginalized log likelihood, ln L ) evaluated by comparing data to nonprecessing binary black hole simulations. We also compare the data to generic simulations, and discuss the effectiveness of this procedure for generic sources. We specifically assess the impact of higher order modes, repeating our interpretation with both l ≤2 as well as l ≤3 harmonic modes. Using the l ≤3 higher modes, we gain more information from the signal and can better constrain the parameters of the gravitational wave signal. We assess and quantify several sources of systematic error that our procedure could introduce, including simulation resolution and duration; most are negligible. We show through examples that our method can recover the parameters for equal mass, zero spin, GW150914-like, and unequal mass, precessing spin sources. Our study of this new parameter estimation method demonstrates that we can quantify and understand the systematic and statistical error. This method allows us to use higher order modes from numerical relativity simulations to better constrain the black hole binary parameters.

  15. Statics formulas and problems : engineering mechanics 1

    CERN Document Server

    Gross, Dietmar; Wriggers, Peter; Schröder, Jörg; Müller, Ralf

    2017-01-01

    This book contains the most important formulas and more than 160 completely solved problems from Statics. It provides engineering students material to improve their skills and helps to gain experience in solving engineering problems. Particular emphasis is placed on finding the solution path and formulating the basic equations. Topics include: - Equilibrium - Center of Gravity, Center of Mass, Centroids - Support Reactions - Trusses - Beams, Frames, Arches - Cables - Work and Potential Energy - Static and Kinetic Friction - Moments of Inertia.

  16. Geothermal-Related Thermo-Elastic Fracture Analysis by Numerical Manifold Method

    OpenAIRE

    Jun He; Quansheng Liu; Zhijun Wu; Yalong Jiang

    2018-01-01

    One significant factor influencing geothermal energy exploitation is the variation of the mechanical properties of rock in high temperature environments. Since rock is typically a heterogeneous granular material, thermal fracturing frequently occurs in the rock when the ambient temperature changes, which can greatly influence the geothermal energy exploitation. A numerical method based on the numerical manifold method (NMM) is developed in this study to simulate the thermo-elastic fracturing ...

  17. Theoretical and experimental investigations concerning the problem of quasi-static crack propagation in two-component materials subject to residual stresses

    International Nuclear Information System (INIS)

    Braun, H.P.

    1979-01-01

    With the aim of obtaining microstructural information of multi-component materials fracture-mechanical calculations on continuum-mechanical models of fiber composites were performed. There were ideal sections of material permitting the formulation of suitable mixed boundary value problems of static thermoelasticity whose solutions could be obtained by means of appropriate numerical methods from continuum mechanics. As model loads exclusively thermally induced residual stresses were assumed, being of special interest because of the thermomechanically inhomogeneous structure of composite materials on one hand and having got decisive significance for a number of important areas of application as e.g. aero-space industry, reactor technology and chemical apparatus engineering on the other. The results evaluated numerically are exemplarily examined by means of photoelasticity. (orig./IHOE) [de

  18. Exploring New Physics Frontiers Through Numerical Relativity.

    Science.gov (United States)

    Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Sperhake, Ulrich

    2015-01-01

    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology.

  19. Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system.

    Science.gov (United States)

    Hirata, Akimasa; Ito, Fumihiro; Laakso, Ilkka

    2013-09-07

    The present study discusses the applicability of the magneto-quasi-static approximation to the calculation of the specific absorption rate (SAR) in a cylindrical model for a wireless power transfer system. Resonant coils with different parameters were considered in the 10 MHz band. A two-step quasi-static method that is comprised of the method of moments and the scalar-potential finite-difference methods is applied, which can consider the effects of electric and magnetic fields on the induced SAR separately. From our computational results, the SARs obtained from our quasi-static method are found to be in good agreement with full-wave analysis for different positions of the cylindrical model relative to the wireless power transfer system, confirming the applicability of the quasi-static approximation in the 10 MHz band. The SAR induced by the external electric field is found to be marginal as compared to that induced by the magnetic field. Thus, the dosimetry for the external magnetic field, which may be marginally perturbed by the presence of biological tissue, is confirmed to be essential for SAR compliance in the 10 MHz band or lower. This confirmation also suggests that the current in the coil rather than the transferred power is essential for SAR compliance.

  20. Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Ito, Fumihiro; Laakso, Ilkka

    2013-01-01

    The present study discusses the applicability of the magneto-quasi-static approximation to the calculation of the specific absorption rate (SAR) in a cylindrical model for a wireless power transfer system. Resonant coils with different parameters were considered in the 10 MHz band. A two-step quasi-static method that is comprised of the method of moments and the scalar-potential finite-difference methods is applied, which can consider the effects of electric and magnetic fields on the induced SAR separately. From our computational results, the SARs obtained from our quasi-static method are found to be in good agreement with full-wave analysis for different positions of the cylindrical model relative to the wireless power transfer system, confirming the applicability of the quasi-static approximation in the 10 MHz band. The SAR induced by the external electric field is found to be marginal as compared to that induced by the magnetic field. Thus, the dosimetry for the external magnetic field, which may be marginally perturbed by the presence of biological tissue, is confirmed to be essential for SAR compliance in the 10 MHz band or lower. This confirmation also suggests that the current in the coil rather than the transferred power is essential for SAR compliance. (note)

  1. Static analysis: from theory to practice; Static analysis of large-scale embedded code, generation of abstract domains; Analyse statique: de la theorie a la pratique; analyse statique de code embarque de grande taille, generation de domaines abstraits

    Energy Technology Data Exchange (ETDEWEB)

    Monniaux, D.

    2009-06-15

    Software operating critical systems (aircraft, nuclear power plants) should not fail - whereas most computerised systems of daily life (personal computer, ticket vending machines, cell phone) fail from time to time. This is not a simple engineering problem: it is known, since the works of Turing and Cook, that proving that programs work correctly is intrinsically hard. In order to solve this problem, one needs methods that are, at the same time, efficient (moderate costs in time and memory), safe (all possible failures should be found), and precise (few warnings about nonexistent failures). In order to reach a satisfactory compromise between these goals, one can research fields as diverse as formal logic, numerical analysis or 'classical' algorithmics. From 2002 to 2007 I participated in the development of the Astree static analyser. This suggested to me a number of side projects, both theoretical and practical (use of formal proof techniques, analysis of numerical filters...). More recently, I became interested in modular analysis of numerical property and in the applications to program analysis of constraint solving techniques (semi-definite programming, SAT and SAT modulo theory). (author)

  2. Navigating on handheld displays: Dynamic versus Static Keyhole Navigation

    NARCIS (Netherlands)

    Mehra, S.; Werkhoven, P.; Worring, M.

    2006-01-01

    Handheld displays leave little space for the visualization and navigation of spatial layouts representing rich information spaces. The most common navigation method for handheld displays is static peephole navigation: The peephole is static and we move the spatial layout behind it (scrolling). A

  3. Relative contributions of plantar fascia and ligaments on the arch static stability: a finite element study.

    Science.gov (United States)

    Tao, Kai; Ji, Wen-Ting; Wang, Dong-Mei; Wang, Cheng-Tao; Wang, Xu

    2010-10-01

    The plantar fascia (PF) and major ligaments play important roles in keeping the static foot arch structure. Their functions and relative contributions to the arch stability have not been well studied. A three-dimensional finite element foot model was created based on the reconstruction of magnetic resonance images. During balanced standing, four cases after individual releases of the PF, spring ligament (SL), and long and short plantar ligaments (LPL and SPL) were simulated, to compare their biomechanical consequences with the normal predictions under the intact structure. Although the predictions showed the arch did not collapse obviously after each structure sectioning, the internal mechanical behaviors changed considerably. The PF release resulted in the maximal increases of approximately 91%, 65% and 47% in the tensions of the LPF, SPL and SL, produced the largest changes in all bone rotations, and brought an obvious shift of high stress from the medial metatarsals to the lateral metatarsals. The SL release mainly enhanced bone rotation angles and weakened the joint stability of the arch structure. The LPL and the SPL performed the roles of mutual compensation as either one was released. The influence of the LPL on the load distribution among metatarsals was greater than for the SPL and the SL.

  4. A Transformational Approach to Parametric Accumulated-Cost Static Profiling

    DEFF Research Database (Denmark)

    Haemmerlé, Rémy; López García, Pedro; Liqat, Umer

    2016-01-01

    Traditional static resource analyses estimate the total resource usage of a program, without executing it. In this paper we present a novel resource analysis whose aim is instead the static profiling of accumulated cost, i.e., to discover, for selected parts of the program, an estimate or bound...... of the resource usage accumulated in each of those parts. Traditional resource analyses are parametric in the sense that the results can be functions on input data sizes. Our static profiling is also parametric, i.e., our accumulated cost estimates are also parameterized by input data sizes. Our proposal is based...... on the concept of cost centers and a program transformation that allows the static inference of functions that return bounds on these accumulated costs depending on input data sizes, for each cost center of interest. Such information is much more useful to the software developer than the traditional resource...

  5. Static Deadlock Detection in MPI Synchronization Communication

    OpenAIRE

    Ming-Xue, Liao; Xiao-Xin, He; Zhi-Hua, Fan

    2007-01-01

    It is very common to use dynamic methods to detect deadlocks in MPI programs for the reason that static methods have some restrictions. To guarantee high reliability of some important MPI-based application software, a model of MPI synchronization communication is abstracted and a type of static method is devised to examine deadlocks in such modes. The model has three forms with different complexity: sequential model, single-loop model and nested-loop model. Sequential model is a base for all ...

  6. Interactive or static reports to guide clinical interpretation of cancer genomics.

    Science.gov (United States)

    Gray, Stacy W; Gagan, Jeffrey; Cerami, Ethan; Cronin, Angel M; Uno, Hajime; Oliver, Nelly; Lowenstein, Carol; Lederman, Ruth; Revette, Anna; Suarez, Aaron; Lee, Charlotte; Bryan, Jordan; Sholl, Lynette; Van Allen, Eliezer M

    2018-05-01

    Misinterpretation of complex genomic data presents a major challenge in the implementation of precision oncology. We sought to determine whether interactive genomic reports with embedded clinician education and optimized data visualization improved genomic data interpretation. We conducted a randomized, vignette-based survey study to determine whether exposure to interactive reports for a somatic gene panel, as compared to static reports, improves physicians' genomic comprehension and report-related satisfaction (overall scores calculated across 3 vignettes, range 0-18 and 1-4, respectively, higher score corresponding with improved endpoints). One hundred and five physicians at a tertiary cancer center participated (29% participation rate): 67% medical, 20% pediatric, 7% radiation, and 7% surgical oncology; 37% female. Prior to viewing the case-based vignettes, 34% of the physicians reported difficulty making treatment recommendations based on the standard static report. After vignette/report exposure, physicians' overall comprehension scores did not differ by report type (mean score: interactive 11.6 vs static 10.5, difference = 1.1, 95% CI, -0.3, 2.5, P = .13). However, physicians exposed to the interactive report were more likely to correctly assess sequencing quality (P < .001) and understand when reports needed to be interpreted with caution (eg, low tumor purity; P = .02). Overall satisfaction scores were higher in the interactive group (mean score 2.5 vs 2.1, difference = 0.4, 95% CI, 0.2-0.7, P = .001). Interactive genomic reports may improve physicians' ability to accurately assess genomic data and increase report-related satisfaction. Additional research in users' genomic needs and efforts to integrate interactive reports into electronic health records may facilitate the implementation of precision oncology.

  7. Modeling the HTML DOM and Browser API in Static Analysis of JavaScript Web Applications

    DEFF Research Database (Denmark)

    Jensen, Simon Holm; Madsen, Magnus; Møller, Anders

    2011-01-01

    of reasoning about the flow of control and data in modern JavaScript applications that interact with the HTML DOM and browser API. One application of such a static analysis is to detect type-related and dataflow-related programming errors. We report on experiments with a range of modern web applications...

  8. Stable numerical method in computation of stellar evolution

    International Nuclear Information System (INIS)

    Sugimoto, Daiichiro; Eriguchi, Yoshiharu; Nomoto, Ken-ichi.

    1982-01-01

    To compute the stellar structure and evolution in different stages, such as (1) red-giant stars in which the density and density gradient change over quite wide ranges, (2) rapid evolution with neutrino loss or unstable nuclear flashes, (3) hydrodynamical stages of star formation or supernova explosion, (4) transition phases from quasi-static to dynamical evolutions, (5) mass-accreting or losing stars in binary-star systems, and (6) evolution of stellar core whose mass is increasing by shell burning or decreasing by penetration of convective envelope into the core, we face ''multi-timescale problems'' which can neither be treated by simple-minded explicit scheme nor implicit one. This problem has been resolved by three prescriptions; one by introducing the hybrid scheme suitable for the multi-timescale problems of quasi-static evolution with heat transport, another by introducing also the hybrid scheme suitable for the multi-timescale problems of hydrodynamic evolution, and the other by introducing the Eulerian or, in other words, the mass fraction coordinate for evolution with changing mass. When all of them are combined in a single computer code, we can compute numerically stably any phase of stellar evolution including transition phases, as far as the star is spherically symmetric. (author)

  9. 14 CFR 27.610 - Lightning and static electricity protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning and static electricity protection....610 Lightning and static electricity protection. (a) The rotorcraft must be protected against catastrophic effects from lightning. (b) For metallic components, compliance with paragraph (a) of this section...

  10. Static friction of stainless steel wire rope–rubber contacts.

    NARCIS (Netherlands)

    Loeve, A.J.; Krijger, T.; Mugge, W.; Breedveld, P.; Dodou, D.; Dankelman, J.

    2014-01-01

    Little is known about static friction of stainless-steel wire ropes ('cables') in contact with soft rubbers, an interface of potential importance for rigidifiable medical instruments. Although friction theories imply that the size and profile of the cables affect static friction, there are no

  11. Relationship between Static Stiffness and Modal Stiffness of Structures

    Directory of Open Access Journals (Sweden)

    Tianjian Ji Tianjian Ji

    2010-02-01

    Full Text Available This paper derives the relationship between the static stiffness and modal stiffness of a structure. The static stiffness and modal stiffness are two important concepts in both structural statics and dynamics. Although both stiffnesses indicate the capacity of the structure to resist deformation, they are obtained using different methods. The former is calculated by solving the equations of equilibrium and the latter can be obtained by solving an eigenvalue problem. A mathematical relationship between the two stiffnesses was derived based on the definitions of two stiffnesses. This relationship was applicable to a linear system and the derivation of relationships does not reveal any other limitations. Verification of the relationship was given by using several examples. The relationship between the two stiffnesses demonstrated that the modal stiffness of the fundamental mode was always larger than the static stiffness of a structure if the critical point and the maximum mode value are at the same node, i.e. for simply supported beam and seven storeys building are 1.5% and 15% respectively. The relationship could be applied into real structures, where the greater the number of modes being considered, the smaller the difference between the modal stiffness and the static stiffness of a structure.

  12. Differences of Streptococcus mutans adhesion between artificial mouth systems: a dinamic and static methods

    Directory of Open Access Journals (Sweden)

    Aryan Morita

    2016-06-01

    surface image using Scanning Electron Microscope (SEM. Result: The results showed that S. mutans biofilm mass in the group using static method was 0.34, while in the group using AMS method was 0.09. The results of the statistical analysis then showed that there was a significant difference (p=0.02 in the formation of bacterial biofilm mass between those groups. SEM image in the group using static method also showed that the attachment of S. mutans was more numerous and had a longer chain than in the group using AMS method. Conclusion: There is a difference in the profile of S. mutans bacterial adhesion between using AMS method and static method.

  13. Quasi-static structural optimization under the seismic loads

    International Nuclear Information System (INIS)

    Choi, W. S.; Lee, K. M.; Kim, T. W.

    2001-01-01

    For preliminaries to optimization of SMART under the seismic loads, a quasi-static structural optimization for elastic structures under dynamic loads is presented. An equivalent static load (ESL) set is defined as a static load set, which generates the same displacement field as that from a dynamic load at a certain time. Multiple ESL sets calculated at all the time intervals are employed to represent the various states of the structure under the dynamic load. They can cover all the critical states that might happen at arbitrary times. The continuous characteristics of a dynamic load are considered by multiple static load sets. The calculated sets of ESLs are utilized as a multiple loading condition in the optimization process. A design cycle is defined as a circulated process between an analysis domain and a design domain. The analysis domain gives the loading condition needed in the design domain. The design domain gives a new updated design to be verified by the analysis domain in the next design cycle. The design cycles are iterated until the design converges. Structural optimization with dynamic loads is tangible by the proposed method. Standard example problems are solved to verify the validity of the method

  14. Relationship between static foot posture and foot mobility

    Directory of Open Access Journals (Sweden)

    McPoil Thomas G

    2011-01-01

    Full Text Available Abstract Background It is not uncommon for a person's foot posture and/or mobility to be assessed during a clinical examination. The exact relationship, however, between static posture and mobility is not known. Objective The purpose of this study was to determine the degree of association between static foot posture and mobility. Method The static foot posture and foot mobility of 203 healthy individuals was assessed and then analyzed to determine if low arched or "pronated" feet are more mobile than high arched or "supinated" feet. Results The study demonstrated that those individuals with a lower standing dorsal arch height and/or a wider standing midfoot width had greater mobility in their foot. In addition, those individuals with higher Foot Posture Index (FPI values demonstrated greater mobility and those with lower FPI values demonstrated less mobility. Finally, the amount of foot mobility that an individual has can be predicted reasonably well using either a 3 or 4 variable linear regression model. Conclusions Because of the relationship between static foot posture and mobility, it is recommended that both be assessed as part of a comprehensive evaluation of a individual with foot problems.

  15. Coupled electron/photon transport in static external magnetic fields

    International Nuclear Information System (INIS)

    Halbleib, J.A. Sr.; Vandevender, W.H.

    A model is presented which describes coupled electron/photon transport in the presence of static magnetic fields of arbitrary spatial dependence. The method combines state-of-the-art condensed-history electron collisional Monte Carlo and single-scattering photon Monte Carlo, including electron energy-loss straggling and the production and transport of all generations of secondaries, with numerical field integration via the best available variable-step-size Runge-Kutta-Fehlberg or variable-order/variable-step-size Adams PECE differential equation solvers. A three-dimensional cartesian system is employed in the description of particle trajectories. Although the present model is limited to multilayer material configurations, extension to more complex material geometries should not be difficult. Among the more important options are (1) a feature which permits the neglect of field effects in regions where transport is collision dominated and (2) a method for describing the transport in variable-density media where electron energies and material densities are sufficiently low that the density effect on electronic stopping powers may be neglected. (U.S.)

  16. Numerical investigation on effect of blade shape for stream water wheel performance.

    Science.gov (United States)

    Yah, N. F.; Oumer, A. N.; Aziz, A. A.; Sahat, I. M.

    2018-04-01

    Stream water wheels are one of the oldest and commonly used types of wheels for the production of energy. Moreover, they are economical, efficient and sustainable. However, few amounts of research works are available in the open literature. This paper aims to develop numerical model for investigation of the effect of blade shape on the performance of stream water wheel. The numerical model was simulated using Computational Fluid Dynamics (CFD) method and the developed model was validated by comparing the simulation results with experimental data obtained from literature. The performance of straight, curved type 1 and curved type 2 was observed and the power generated by each blade design was identified. The inlet velocity was set to 0.3 m/s static pressure outlet. The obtained results indicate that the highest power was generated by the Curved type 2 compared to straight blade and curved type 1. From the CFD result, Curved type 1 was able to generate 0.073 Watt while Curved type 2 generate 0.064 Watt. The result obtained were consistent with the experiment result hence can be used the numerical model as a guide to numerically predict the water wheel performance

  17. 14 CFR 29.610 - Lightning and static electricity protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning and static electricity protection... § 29.610 Lightning and static electricity protection. (a) The rotorcraft structure must be protected against catastrophic effects from lightning. (b) For metallic components, compliance with paragraph (a) of...

  18. 40 CFR 53.64 - Test procedure: Static fractionator test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Test procedure: Static fractionator test. 53.64 Section 53.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Performance Characteristics of Class II Equivalent Methods for PM2.5 § 53.64 Test procedure: Static...

  19. Static multiplicities in heterogeneous azeotropic distillation sequences

    DEFF Research Database (Denmark)

    Esbjerg, Klavs; Andersen, Torben Ravn; Jørgensen, Sten Bay

    1998-01-01

    In this paper the results of a bifurcation analysis on heterogeneous azeotropic distillation sequences are given. Two sequences suitable for ethanol dehydration are compared: The 'direct' and the 'indirect' sequence. It is shown, that the two sequences, despite their similarities, exhibit very...... different static behavior. The method of Petlyuk and Avet'yan (1971), Bekiaris et al. (1993), which assumes infinite reflux and infinite number of stages, is extended to and applied on heterogeneous azeotropic distillation sequences. The predictions are substantiated through simulations. The static sequence...

  20. Numerical simulation and analysis for low-frequency rock physics measurements

    Science.gov (United States)

    Dong, Chunhui; Tang, Genyang; Wang, Shangxu; He, Yanxiao

    2017-10-01

    In recent years, several experimental methods have been introduced to measure the elastic parameters of rocks in the relatively low-frequency range, such as differential acoustic resonance spectroscopy (DARS) and stress-strain measurement. It is necessary to verify the validity and feasibility of the applied measurement method and to quantify the sources and levels of measurement error. Relying solely on the laboratory measurements, however, we cannot evaluate the complete wavefield variation in the apparatus. Numerical simulations of elastic wave propagation, on the other hand, are used to model the wavefield distribution and physical processes in the measurement systems, and to verify the measurement theory and analyze the measurement results. In this paper we provide a numerical simulation method to investigate the acoustic waveform response of the DARS system and the quasi-static responses of the stress-strain system, both of which use axisymmetric apparatus. We applied this method to parameterize the properties of the rock samples, the sample locations and the sensor (hydrophone and strain gauges) locations and simulate the measurement results, i.e. resonance frequencies and axial and radial strains on the sample surface, from the modeled wavefield following the physical experiments. Rock physical parameters were estimated by inversion or direct processing of these data, and showed a perfect match with the true values, thus verifying the validity of the experimental measurements. Error analysis was also conducted for the DARS system with 18 numerical samples, and the sources and levels of error are discussed. In particular, we propose an inversion method for estimating both density and compressibility of these samples. The modeled results also showed fairly good agreement with the real experiment results, justifying the effectiveness and feasibility of our modeling method.

  1. Interaction mechanisms and biological effects of static magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.

  2. Static and kinematic formulation of planar reciprocal assemblies

    DEFF Research Database (Denmark)

    Parigi, Dario; Sassone, Mario; Kirkegaard, Poul Henning

    2014-01-01

    Planar reciprocal frames are two dimensional structures formed by elements joined together according to the principle of structural reciprocity. In this paper a rigorous formulation of the static and kinematic problem is proposed and developed extending the theory of pin-jointed assemblies....... This formulation is used to evaluate the static and kinematic determinacy of reciprocal assemblies from the properties of their equilibrium and kinematic matrices...

  3. Stability of the Einstein static universe in f(R, T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Shabani, Hamid [University of Sistan and Baluchestan, Physics Department, Faculty of Sciences, Zahedan (Iran, Islamic Republic of); Ziaie, Amir Hadi [Kahnooj Branch, Islamic Azad University, Department of Physics, Kerman (Iran, Islamic Republic of)

    2017-01-15

    The Einstein static (ES) universe has played a major role in various emergent scenarios recently proposed in order to cure the problem of the initial singularity of the standard model of cosmology. In the model we address, we study the existence and stability of an ES universe in the context of f(R, T) modified theories of gravity. Considering specific forms of the f(R, T) function, we seek for the existence of solutions representing ES state. Using dynamical system techniques along with numerical analysis, we find two classes of solutions: the first one is always unstable of the saddle type, while the second is always stable so that its dynamical behavior corresponds to a center equilibrium point. The importance of the second class of solutions is due to the significant role they play in constructing non-singular emergent models in which the universe could have experienced past-eternally a series of infinite oscillations about such an initial static state after which it enters, through a suitable physical mechanism, to an inflationary era. Considering specific forms for the functionality of f(R, T), we show that this theory is capable of providing cosmological solutions which admit emergent universe (EU) scenarios. We also investigate homogeneous scalar perturbations for the mentioned models. The stability regions of the solutions are parametrized by a linear equation of state (EoS) parameter and other free parameters that will be introduced for the models. Our results suggest that modifications in f(R, T) gravity would lead to stable solutions which are unstable in f(R) gravity model. (orig.)

  4. Stability of the Einstein static universe in f(R, T) gravity

    International Nuclear Information System (INIS)

    Shabani, Hamid; Ziaie, Amir Hadi

    2017-01-01

    The Einstein static (ES) universe has played a major role in various emergent scenarios recently proposed in order to cure the problem of the initial singularity of the standard model of cosmology. In the model we address, we study the existence and stability of an ES universe in the context of f(R, T) modified theories of gravity. Considering specific forms of the f(R, T) function, we seek for the existence of solutions representing ES state. Using dynamical system techniques along with numerical analysis, we find two classes of solutions: the first one is always unstable of the saddle type, while the second is always stable so that its dynamical behavior corresponds to a center equilibrium point. The importance of the second class of solutions is due to the significant role they play in constructing non-singular emergent models in which the universe could have experienced past-eternally a series of infinite oscillations about such an initial static state after which it enters, through a suitable physical mechanism, to an inflationary era. Considering specific forms for the functionality of f(R, T), we show that this theory is capable of providing cosmological solutions which admit emergent universe (EU) scenarios. We also investigate homogeneous scalar perturbations for the mentioned models. The stability regions of the solutions are parametrized by a linear equation of state (EoS) parameter and other free parameters that will be introduced for the models. Our results suggest that modifications in f(R, T) gravity would lead to stable solutions which are unstable in f(R) gravity model. (orig.)

  5. Analytical general solutions for static wormholes in f(R,T) gravity

    Science.gov (United States)

    Moraes, P. H. R. S.; Correa, R. A. C.; Lobato, R. V.

    2017-07-01

    Originally proposed as a tool for teaching the general theory of relativity, wormholes are today approached in many different ways and are seeing as an efficient alternative for interstellar and time travel. Attempts to achieve observational signatures of wormholes have been growing as the subject has become more and more popular. In this article we investigate some f(R,T) theoretical predictions for static wormholes, i.e., wormholes whose throat radius can be considered a constant. Since the T-dependence in f(R,T) gravity is due to the consideration of quantum effects, a further investigation of wormholes in such a theory is well motivated. We obtain the energy conditions of static wormholes in f(R,T) gravity and apply an analytical approach to find their physical and geometrical solutions. We highlight that our results are in agreement with previous solutions and assumptions presented in the literature.

  6. Analytical general solutions for static wormholes in f ( R , T ) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, P.H.R.S.; Correa, R.A.C.; Lobato, R.V., E-mail: moraes.phrs@gmail.com, E-mail: fis04132@gmail.com, E-mail: ronaldo.lobato@icranet.org [ITA-Instituto Tecnológico de Aeronáutica, 12228-900, São José dos Campos, SP (Brazil)

    2017-07-01

    Originally proposed as a tool for teaching the general theory of relativity, wormholes are today approached in many different ways and are seeing as an efficient alternative for interstellar and time travel. Attempts to achieve observational signatures of wormholes have been growing as the subject has become more and more popular. In this article we investigate some f ( R , T ) theoretical predictions for static wormholes, i.e., wormholes whose throat radius can be considered a constant. Since the T -dependence in f ( R , T ) gravity is due to the consideration of quantum effects, a further investigation of wormholes in such a theory is well motivated. We obtain the energy conditions of static wormholes in f ( R , T ) gravity and apply an analytical approach to find their physical and geometrical solutions. We highlight that our results are in agreement with previous solutions and assumptions presented in the literature.

  7. Static and dynamic optimization of CAPE problems using a Model Testbed

    DEFF Research Database (Denmark)

    This paper presents a new computer aided tool for setting up and solving CAPE related static and dynamic optimisation problems. The Model Testbed (MOT) offers an integrated environment for setting up and solving a very large range of CAPE problems, including complex optimisation problems...... and dynamic optimisation, and how interfacing of solvers and seamless information flow can lead to more efficient solution of process design problems....

  8. Conceptual clustering and its relation to numerical taxonomy

    International Nuclear Information System (INIS)

    Fisher, D.; Langley, P.

    1986-01-01

    Artificial Intelligence (AI) methods for machine learning can be viewed as forms of exploratory data analysis, even though they differ markedly from the statistical methods generally connoted by the term. The distinction between methods of machine learning and statistical data analysis is primarily due to differences in the way techniques of each type represent data and structure within data. That is, methods of machine learning are strongly biased toward symbolic (as opposed to numeric) data representations. The authors explore this difference within a limited context, devoting the bulk of our chapter to the explication of conceptual clustering, an extension to the statistically based methods of numerical taxonomy. In conceptual clustering the formation of object cluster is dependent on the quality of 'higher level' characterization, termed concepts, of the clusters. The form of concepts used by existing conceptual clustering systems (sets of necessary and sufficient conditions) is described in some detail. This is followed by descriptions of several conceptual clustering techniques, along with sample output. They conclude with a discussion of how alternative concept representations might enhance the effectiveness of future conceptual clustering systems

  9. Rigidity of generalized Bach-flat vacuum static spaces

    Science.gov (United States)

    Yun, Gabjin; Hwang, Seungsu

    2017-11-01

    In this paper, we study the structure of generalized Bach-flat vacuum static spaces. Generalized Bach-flat metrics are considered as extensions of both Einstein and Bach-flat metrics. First, we prove that a compact Riemannian n-manifold with n ≥ 4 which is a generalized Bach-flat vacuum static space is Einstein. A generalized Bach-flat vacuum static space with the potential function f having compact level sets is either Ricci-flat or a warped product with zero scalar curvature when n ≥ 5, and when n = 4, it is Einstein if f has its minimum. Secondly, we consider critical metrics for another quadratic curvature functional involving the Ricci tensor, and prove similar results. Lastly, by applying the technique developed above, we prove Besse conjecture when the manifold is generalized Bach-flat.

  10. A quasi-static polynomial nodal method for nuclear reactor analysis

    International Nuclear Information System (INIS)

    Gehin, J.C.

    1992-09-01

    Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation

  11. A quasi-static polynomial nodal method for nuclear reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1992-09-01

    Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation.

  12. Static dielectric constant of water within a bilayer using recent water models: a molecular dynamics study

    Science.gov (United States)

    Meneses-Juárez, Efrain; Rivas-Silva, Juan Francisco; González-Melchor, Minerva

    2018-05-01

    The water confined within a surfactant bilayer is studied using different water models via molecular dynamics simulations. We considered four representative rigid models of water: the SPC/E and the TIP4P/2005, which are commonly used in numerical calculations and the more recent TIP4Q and SPC/ε models, developed to reproduce the dielectric behaviour of pure water. The static dielectric constant of the confined water was analyzed as a function of the temperature for the four models. In all cases it decreases as the temperature increases. Additionally, the static dielectric constant of the bilayer-water system was estimated through its expression in terms of the fluctuations in the total dipole moment, usually applied for isotropic systems. The estimated dielectric was compared with the available experimental data. We found that the TIP4Q and the SPC/ε produce closer values to the experimental data than the other models, particularly at room temperature. It was found that the probability of finding the sodium ion close to the head of the surfactant decreases as the temperature increases, thus the head of the surfactant is more exposed to the interaction with water when the temperature is higher.

  13. Simulation of quasi-static hydraulic fracture propagation in porous media with XFEM

    Science.gov (United States)

    Juan-Lien Ramirez, Alina; Neuweiler, Insa; Löhnert, Stefan

    2015-04-01

    Hydraulic fracturing is the injection of a fracking fluid at high pressures into the underground. Its goal is to create and expand fracture networks to increase the rock permeability. It is a technique used, for example, for oil and gas recovery and for geothermal energy extraction, since higher rock permeability improves production. Many physical processes take place when it comes to fracking; rock deformation, fluid flow within the fractures, as well as into and through the porous rock. All these processes are strongly coupled, what makes its numerical simulation rather challenging. We present a 2D numerical model that simulates the hydraulic propagation of an embedded fracture quasi-statically in a poroelastic, fully saturated material. Fluid flow within the porous rock is described by Darcy's law and the flow within the fracture is approximated by a parallel plate model. Additionally, the effect of leak-off is taken into consideration. The solid component of the porous medium is assumed to be linear elastic and the propagation criteria are given by the energy release rate and the stress intensity factors [1]. The used numerical method for the spatial discretization is the eXtended Finite Element Method (XFEM) [2]. It is based on the standard Finite Element Method, but introduces additional degrees of freedom and enrichment functions to describe discontinuities locally in a system. Through them the geometry of the discontinuity (e.g. a fracture) becomes independent of the mesh allowing it to move freely through the domain without a mesh-adapting step. With this numerical model we are able to simulate hydraulic fracture propagation with different initial fracture geometries and material parameters. Results from these simulations will also be presented. References [1] D. Gross and T. Seelig. Fracture Mechanics with an Introduction to Micromechanics. Springer, 2nd edition, (2011) [2] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal

  14. NUMERICAL SIMULATION OF CAVITY FLOW AND FLOW OVER AIRCRAFT COMPARTMENT USING SEMI-EMPIRICAL TURBULENCE MODELS

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The article is devoted to the validation and application of CFD code for turbulent flows. Two-dimensional un- steady flows in the cavities and compartments and three-dimensional flow in the compartment of complex geometry have been considered. Two turbulence parameter oriented models are used.Numerical simulation of unsteady transonic flow (Mоо=0.74 in a narrow channel with a cavity inside has been conducted. The dependence of the static pressure on time at fixed points in space has been obtained. The fast Fourier trans- form has been applied for processing data of static pressure. The difference of 6-10% between the numerical and experi-mental data has been obtained.The computations of unsteady transonic cavity flow with Mach number Mоо=0.85 have been performed. Low fre- quency oscillations of the static pressure in several fixed points in space have been obtained. Power spectrum of oscilla- tions at the center of the cavity is compared with experimental data and Rossiter modes. An acceptable agreement between experimental and computed data has been achieved. The influence of geometrical factors on the frequency characteristics of the flow has been investigated. For this purpose two round flaps have been added to the cavity. The most low-frequency oscillation modes changed by the presence of the flaps. The first mode was gone, the second mode amplitude decreased and the third mode amplitude significantly decreased. The changes in height of protruding part of the geometry to the external flow have led to changes in pressure pulsation amplitude without changing the frequency. The spectral functions obtained while using the two considered models of turbulence have been compared for this case. It is found that the frequency values are only slightly different; the main difference is present at the amplitude of pulsations.The effect of deflection of flat flap on the non-stationary subsonic flow parameters in a cylindrical body with an inner

  15. Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth.

    Science.gov (United States)

    Ausiello, Pietro; Franciosa, Pasquale; Martorelli, Massimo; Watts, David C

    2011-05-01

    In restored teeth, stresses at the tooth-restoration interface during masticatory processes may fracture the teeth or the restoration and cracks may grow and propagate. The aim was to apply numerical methodologies to simulate the behavior of a restored tooth and to evaluate fatigue lifetimes before crack failure. Using a CAD-FEM procedure and fatigue mechanic laws, the fatigue damage of a restored molar was numerically estimated. Tessellated surfaces of enamel and dentin were extracted by applying segmentation and classification algorithms, to sets of 2D image data. A user-friendly GUI, which enables selection and visualization of 3D tessellated surfaces, was developed in a MatLab(®) environment. The tooth-boundary surfaces of enamel and dentin were then created by sweeping operations through cross-sections. A class II MOD cavity preparation was then added into the 3D model and tetrahedral mesh elements were generated. Fatigue simulation was performed by combining a preliminary static FEA simulation with classical fatigue mechanical laws. Regions with the shortest fatigue-life were located around the fillets of the class II MOD cavity, where the static stress was highest. The described method can be successfully adopted to generate detailed 3D-FE models of molar teeth, with different cavities and restorative materials. This method could be quickly implemented for other dental or biomechanical applications. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Static stretching does not alter pre and post-landing muscle activation

    Directory of Open Access Journals (Sweden)

    Moss Wesley R

    2011-05-01

    Full Text Available Abstract Background Static stretching may result in various strength and power deficiencies. Prior research has not determined, however, if static stretching causes a change in muscle activation during a functional task requiring dynamic stability. The purpose of this study was to determine if static stretching has an effect on mean pre and postlanding muscle (vastus medialis VM, vastus lateralis VL, medial hamstring MH, and biceps femoris BF activity. Methods 26 healthy, physically active subjects were recruited, from which 13 completed a 14-day static stretching regimen for the quadriceps and hamstrings. Using the data from the force plate and EMG readings, a mean of EMG amplitude was calculated for 150 msec before and after landing. Each trial was normalized to an isometric reference position. Means were calculated for the VM, VL, MH, and BF from 5 trials in each session. Measures were collected pre, immediately following the 1st stretching session, and following 2 weeks of stretching. Results A 14-day static stretching regimen resulted in no significant differences in pre or postlanding mean EMG amplitude during a drop landing either acutely or over a 14-day period. Conclusions Static stretching, done acutely or over a 14-day period does not result in measurable differences of mean EMG amplitude during a drop landing. Static stretching may not impede dynamic stability of joints about which stretched muscles cross.

  17. Experimental and Numerical Simulation of Unbalance Response in Vertical Test Rig with Tilting-Pad Bearings

    Directory of Open Access Journals (Sweden)

    Mattias Nässelqvist

    2014-01-01

    Full Text Available In vertically oriented machines with journal bearing, there are no predefined static radial loads, such as dead weight for horizontal rotor. Most of the commercial software is designed to calculate rotordynamic and bearing properties based on machines with a horizontally oriented rotor; that is, the bearing properties are calculated at a static eccentricity. For tilting-pad bearings, there are no existing analytical expressions for bearing parameters and the bearing parameters are dependent on eccentricity and load angle. The objective of this paper is to present a simplified method to perform numerical simulations on vertical rotors including bearing parameters. Instead of recalculating the bearing parameters in each time step polynomials are used to represent the bearing parameters for present eccentricities and load angles. Numerical results are compared with results from tests performed in a test rig. The test rig consists of two guide bearings and a midspan rotor. The guide bearings are 4-pad tilting-pad bearings. Shaft displacement and strains in the bearing bracket are measured to determine the test rig’s properties. The comparison between measurements and simulated results shows small deviations in absolute displacement and load levels, which can be expected due to difficulties in calculating exact bearing parameters.

  18. Closed-form solution for static pull-in voltage of electrostatically actuated clamped-clamped micro/nano beams under the effect of fringing field and van der Waals force

    Science.gov (United States)

    Bhojawala, V. M.; Vakharia, D. P.

    2017-12-01

    This investigation provides an accurate prediction of static pull-in voltage for clamped-clamped micro/nano beams based on distributed model. The Euler-Bernoulli beam theory is used adapting geometric non-linearity of beam, internal (residual) stress, van der Waals force, distributed electrostatic force and fringing field effects for deriving governing differential equation. The Galerkin discretisation method is used to make reduced-order model of the governing differential equation. A regime plot is presented in the current work for determining the number of modes required in reduced-order model to obtain completely converged pull-in voltage for micro/nano beams. A closed-form relation is developed based on the relationship obtained from curve fitting of pull-in instability plots and subsequent non-linear regression for the proposed relation. The output of regression analysis provides Chi-square (χ 2) tolerance value equals to 1  ×  10-9, adjusted R-square value equals to 0.999 29 and P-value equals to zero, these statistical parameters indicate the convergence of non-linear fit, accuracy of fitted data and significance of the proposed model respectively. The closed-form equation is validated using available data of experimental and numerical results. The relative maximum error of 4.08% in comparison to several available experimental and numerical data proves the reliability of the proposed closed-form equation.

  19. MAPPING OF RESERVOIR PROPERTIES AND FACIES THROUGH INTEGRATION OF STATIC AND DYNAMIC DATA

    Energy Technology Data Exchange (ETDEWEB)

    Albert C. Reynolds; Dean S. Oliver; Yannong Dong; Ning Liu; Guohua Gao; Fengjun Zhang; Ruijian Li

    2004-12-01

    Knowledge of the distribution of permeability and porosity in a reservoir is necessary for the prediction of future oil production, estimation of the location of bypassed oil, and optimization of reservoir management. The volume of data that can potentially provide information on reservoir architecture and fluid distributions has increased enormously in the past decade. The techniques developed in this research will make it easier to use all the available data in an integrated fashion. While it is relatively easy to generate plausible reservoir models that honor static data such as core, log, and seismic data, it is far more difficult to generate plausible reservoir models that honor dynamic data such as transient pressures, saturations, and flow rates. As a result, the uncertainty in reservoir properties is higher than it could be and reservoir management can not be optimized. In this project, we have developed computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Specifically, we have developed methods for adjusting porosity and permeability fields to match both production and time-lapse seismic data and have also developed a procedure to adjust the locations of boundaries between facies to match production data. In all cases, the history matched rock property fields are consistent with a prior model based on static data and geologic information. Our work also indicates that it is possible to adjust relative permeability curves when history matching production data.

  20. Contagion processes on the static and activity driven coupling networks

    OpenAIRE

    Lei, Yanjun; Jiang, Xin; Guo, Quantong; Ma, Yifang; Li, Meng; Zheng, Zhiming

    2015-01-01

    The evolution of network structure and the spreading of epidemic are common coexistent dynamical processes. In most cases, network structure is treated either static or time-varying, supposing the whole network is observed in a same time window. In this paper, we consider the epidemic spreading on a network consisting of both static and time-varying structures. At meanwhile, the time-varying part and the epidemic spreading are supposed to be of the same time scale. We introduce a static and a...