WorldWideScience

Sample records for static confining potential

  1. Sufficient condition for confinement of static quarks by a vortex condensation mechanism

    International Nuclear Information System (INIS)

    Mack, G.; Petkova, V.B.

    1978-11-01

    We derive a sufficient condition for confinement of static quarks by a vortex condensation mechanism. It admits vortices that are thick at all times at the cost of constraining them to a finite volume Λi whose complement is not simply connected. The confining potential V(L) is estimated in terms of the change of free energy of a system enclosed in Λi which is induced by a change in vorticity (= singular gauge transformation applied to boundary conditions on deltaΛi). For Abelian gauge theories in 3 dimensions the confining Coulomb potential is reproduced as a lower bound. (orig.) [de

  2. Static potentials from an extended gauge symmetry

    International Nuclear Information System (INIS)

    Doria, R.M.; Helayel Neto, J.A.

    1985-01-01

    Static potentials derived from the inclusion of more than one vector field in a single simple group are calculated. A confinement mechanism including colourful unphysical particle is discussed. (Author) [pt

  3. Available states and available space: Static properties that predict dynamics of confined fluids

    OpenAIRE

    Goel, Gaurav; Krekelberg, William P.; Pond, Mark J.; Mittal, Jeetain; Shen, Vincent K.; Errington, Jeffrey R.; Truskett, Thomas M.

    2009-01-01

    Although density functional theory provides reliable predictions for the static properties of simple fluids under confinement, a theory of comparative accuracy for the transport coefficients has yet to emerge. Nonetheless, there is evidence that knowledge of how confinement modifies static behavior can aid in forecasting dynamics. Specifically, molecular simulation studies have shown that the relationship between excess entropy and self diffusivity of a bulk equilibrium fluid changes only mod...

  4. Available states and available space: static properties that predict self-diffusivity of confined fluids

    International Nuclear Information System (INIS)

    Goel, Gaurav; Krekelberg, William P; Pond, Mark J; Truskett, Thomas M; Mittal, Jeetain; Shen, Vincent K; Errington, Jeffrey R

    2009-01-01

    Although classical density functional theory provides reliable predictions for the static properties of simple equilibrium fluids under confinement, a theory of comparative accuracy for the transport coefficients has yet to emerge. Nonetheless, there is evidence that knowledge of how confinement modifies static behavior can aid in forecasting dynamics. Specifically, recent molecular simulation studies have shown that the relationship between excess entropy and self-diffusivity of a bulk equilibrium fluid changes only modestly when the fluid is isothermally confined, indicating that knowledge of the former might allow semi-quantitative predictions of the latter. Do other static measures, such as those that characterize free or available volume, also strongly correlate with single-particle dynamics of confined fluids? Here, we investigate this question for both the single-component hard-sphere fluid and hard-sphere mixtures. Specifically, we use molecular simulations and fundamental measure theory to study these systems at approximately 10 3 equilibrium state points. We examine three different confining geometries (slit pore, square channel, and cylindrical pore) and the effects of particle packing fraction and particle–boundary interactions. Although average density fails to predict some key qualitative trends for the self-diffusivity of confined fluids, we provide strong empirical evidence that a new generalized measure of available volume for inhomogeneous fluids correlates excellently with self-diffusivity across a wide parameter space in these systems, approximately independently of the degree of confinement. An important consequence, which we demonstrate here, is that density functional theory predictions of this static property can be used together with knowledge of bulk fluid behavior to semi-quantitatively estimate the self-diffusion coefficient of confined fluids under equilibrium conditions

  5. Gauge invariance and the quark-antiquark static potential

    International Nuclear Information System (INIS)

    Cahill, K.; Stump, D.R.

    1979-01-01

    We calculate the quark-antiquark static potential to order g 4 in temporal-gauge quantum chromodynamics by constructing a suitably general family of gauge-invariant qq-bar states and then selecting the one whose energy is minimal for a given qq-bar separation r. Our results agree with those of conventional perturbation theory. We study various ways in which quark confinement might arise from nonperturbative effects related to the Gribov ambiguity. We find that the presence of long-range gauge fields can change the asymptotic behavior of the Coulomb Green's function from r -1 to r/sup -1/2/. We illustrate this possibility by a simple example. After making some simplifying assumptions, we obtain a minimally confining potential V (r) that rises logarithmically for large r

  6. A quark-antiquark potential from a superconducting model of confinement

    Directory of Open Access Journals (Sweden)

    J.W. Alcock

    1983-10-01

    Full Text Available The Landau-Ginzburg phenomenological theory of superconductivity is used as a model of flux confinement. A monopole pair of sources is included to simulate a quark-antiquark system. The interaction energy is found in the static approximation appropriate for heavy quark systems, and equated with the interquark potential. This potential is compared with other suggested phenomenological potentials and succeeds in reproducing heavy quark spectra.

  7. The universality of the confining potential and the running of the quasi-Coulombic potential constant in the independent-quark model

    International Nuclear Information System (INIS)

    Khruschev, V.V.; Savrin, V.I.; Semenov, S.V.

    1999-01-01

    Parameters of the QCD-motivated static potential and the quark masses are calculated on the basis of the 1 -- meson mass spectra in the framework of the relativistic independent-quark model based on the Dirac equation. The value of the confining potential parameter is found to be (0.20 ± 0.01) GeV 2 for interactions between quarks and antiquarks independently on their flavors. The flavor independence of the confining potential is justified on the 5 x 10 -2 accuracy level both for the heavy quarks and for the light ones. The values of parameter α s , which is a strength of the quasi-Coulombic potential are consistent with the QCD-motivated decrease of α s at small interaction range [ru

  8. Confinement of a neutral plasma using nested electric potential wells

    International Nuclear Information System (INIS)

    Ordonez, C.A.

    1997-01-01

    A self-consistent, two-dimensional analysis is presented on confining a region of neutral plasma with a Penning/Malmberg type plasma trap using a nested well configuration. It is found that a neutral plasma region having disparate electron and ion temperatures or having high charge state ions can be confined with static fields. For confining a neutral region comprised of electrons and equal temperature low charge state ions, a quasistatic approach appears promising. copyright 1997 American Institute of Physics

  9. Structural orderings of anisotropically confined colloids interacting via a quasi-square-well potential.

    Science.gov (United States)

    Campos, L Q Costa; Apolinario, S W S

    2015-01-01

    We implement Brownian dynamics to investigate the static properties of colloidal particles confined anisotropically and interacting via a potential which can be tailored in a repulsive-attractive-respulsive fashion as the interparticle distance increases. A diverse number of structural phases are self-assembled, which were classified according to two aspects, that is, their macroscopic and microscopic patterns. Concerning the microscopic phases we found the quasicrystalline, triangular, square, and mixed orderings, where this latter is a combination of square and triangular cells in a 3×2 proportion, i.e., the so-called (3(3),4(2)) Archimedian lattice. On the macroscopic level the system could self-organize in a compact or perforated single cluster surrounded or not by fringes. All the structural phases are summarized in detailed phases diagrams, which clearly show that the different phases are extended as the confinement potential becomes more anisotropic.

  10. Quarkonium fine-hyperfine splittings and the Lorentz structure of the confining potential with vacuum-polarization corrections

    International Nuclear Information System (INIS)

    Barik, N.; Jena, S.N.

    1980-01-01

    Within the framework of the Poggio-Schnitzer flavor-independent static-potential model with long-distance vacuum-polarization correction, we analyze the Lorentz-Dirac structure of the confinement potential with reference to the charmonium hyperfine splittings. In view of the questionable existence and/or doubtful identity of the X(2830) and chi(3455) states, we give preference to the Lorentz-Dirac character of the confinement potential in the form of an approximately equal admixture of scalar and vector components with no anomalous moment. This in turn predicts the 1 S 0 partners of psi and psi' to be near the 3.0- and 3.6-GeV mass regions, respectively. This also suggests the 1 P 1 state of charmonium is to be found above the 3 P 0 state near the mass region of 3.48 GeV

  11. Linear and nonlinear intersubband optical absorption in a disk-shaped quantum dot with a parabolic potential plus an inverse squared potential in a static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guanghui [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Guo Kangxian, E-mail: axguo@sohu.com [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Wang Chao [Institute of Public Administration, Guangzhou University, Guangzhou 510006 (China)

    2012-06-15

    The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.

  12. Linear and nonlinear intersubband optical absorption in a disk-shaped quantum dot with a parabolic potential plus an inverse squared potential in a static magnetic field

    International Nuclear Information System (INIS)

    Liu Guanghui; Guo Kangxian; Wang Chao

    2012-01-01

    The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.

  13. Static quark-antiquark potential

    International Nuclear Information System (INIS)

    Deo, B.B.; Barik, B.K.

    1983-01-01

    A heavy-quark--antiquark potential is suggested which connects asymptotic freedom and quark confinement in a unified manner by formal methods of field theory using some plausible assumptions. The potential has only one additional adjustable parameter B which is proportional to (M/sub q//m/sub q/), where M/sub q/ and m/sub q/ are the constituent and current quark masses, respectively

  14. A model of confinement in 2+1 dimensional QCD

    International Nuclear Information System (INIS)

    Frenkel, J.; Silva Filho, A.C. da.

    1985-01-01

    A dielectric model of QCD in 2-space dimensions which yields confinement of two opposite color charges via a static linear potential is discussed. The non-leading contributions to the asymptotic potential as well as the structure of the confinement domain are studied analytically and numerically. For large separations of the color charges, a behavior which contrasts with the usual string-like picture is found. (Author) [pt

  15. Dimensional crossover in fluids under nanometer-scale confinement.

    Science.gov (United States)

    Das, Amit; Chakrabarti, J

    2012-05-01

    Several earlier studies have shown signatures of crossover in various static and dynamics properties of a confined fluid when the confining dimension decreases to about a nanometer. The density fluctuations govern the majority of such properties of a fluid. Here, we illustrate the crossover in density fluctuation in a confined fluid, to provide a generic understanding of confinement-induced crossover of fluid properties, using computer simulations. The crossover can be understood as a manifestation of changes in the long-wavelength behavior of fluctuation in density due to geometrical constraints. We further show that the confining potential significantly affects the crossover behavior.

  16. Static potential for a string with a topological term

    International Nuclear Information System (INIS)

    Zaikov, R.P.; Zlatev, S.I.

    1991-01-01

    We study the static potential for a string in (2+1)-dimensional space-time with action including a topological term. An appropriate static solution is found and the corresponding potential is obtained. Such a solution does not exist beyond a critical distance between the ends of the string. The one-loop corrections to the static potential are calculated. (orig.)

  17. Quark confinement potential and color Van der Waals force

    International Nuclear Information System (INIS)

    Zheng Yuming; Hua Daping; Liu Zuhua

    1985-01-01

    The color-analog Van der Waals force between two hadrons is studied by use of the coupling channel resonating group method in the framework of the Gaussian-type quark confinement potential. The problem of the boundary values for the two channel coupling differential equations is changed to the problem of the initial values. The equations are solved numerically by use of the Gear mehtod. The calculated results show that there is no color Van der Waals force between hadrons in the confinement potential model. This indicates that the confinement potential model not only can describe the internal structure of hadrons but also can be used to calculate the hadron-hadron interactions if the quark confinement potential is chosen properly

  18. Deep processes in non-relativistic confining potentials

    International Nuclear Information System (INIS)

    Fishbane, P.M.; Grisaru, M.T.

    1978-01-01

    The authors study deep inelastic and hard scattering processes for non-relativistic particles confined in deep potentials. The mechanisms by which the effects of confinement disappear and the particles scatter as if free are useful in understanding the analogous results for a relativistic field theory. (Auth.)

  19. Surface motion and confinement potential for a microwave confined corona

    International Nuclear Information System (INIS)

    Ensley, D.L.

    1979-07-01

    Approximate time dependent solutions for surface velocities and potentials are given for a plane polarized microwave field confining a hot, over-dense plasma corona. Steady state solutions to Poissons' equation can be applied to the time dependent case, provided transit time effects are included. The product of ion pressure and potential wave (surface) velocity gives an average heating rate approx. 7/32 NKT 0 V/sub theta/ directly to the ions

  20. Determination of the static potential with dynamical fermions

    Energy Technology Data Exchange (ETDEWEB)

    Donnellan, Michael; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knechtli, Francesco [Bergische Univ. Wuppertal (Germany). Dept. of Physics; Leder, Bjoern [Bergische Univ. Wuppertal (Germany). Dept. of Mathematics

    2010-12-15

    We present in detail a technique to extract the potential between a static quark and anti-quark pair from Wilson loops measured on dynamical configurations. This technique is based on HYP smearing and leads to an exponential improvement of the noise-to-signal ratio of Wilson loops. We explain why the correct continuum potential is obtained and show numerical evidence that the cut-off effects are small. We present precise results for the non-perturbative potential. As applications, we determine the scale r{sub 0}/a and study the shape of the static potential in the range of distances around r{sub 0}, where it can be compared with phenomenological potential models. (orig.)

  1. Potential Role of Inorganic Confined Environments in Prebiotic Phosphorylation.

    Science.gov (United States)

    Dass, Avinash Vicholous; Jaber, Maguy; Brack, André; Foucher, Frédéric; Kee, Terence P; Georgelin, Thomas; Westall, Frances

    2018-03-05

    A concise outlook on the potential role of confinement in phosphorylation and phosphate condensation pertaining to prebiotic chemistry is presented. Inorganic confinement is a relatively uncharted domain in studies concerning prebiotic chemistry, and even more so in terms of experimentation. However, molecular crowding within confined dimensions is central to the functioning of contemporary biology. There are numerous advantages to confined environments and an attempt to highlight this fact, within this article, has been undertaken, keeping in context the limitations of aqueous phase chemistry in phosphorylation and, to a certain extent, traditional approaches in prebiotic chemistry.

  2. A potential model for quark confinement

    International Nuclear Information System (INIS)

    Thaler, J.; Iqbal, M.J.

    1985-02-01

    A static quark potential model obtained from a relativistic wave-equation is considered. The long-part of the quadratic terms is suppressed by a glueball exchange mechanism and compatibility with the meson spectra is shown

  3. Static and Dynamic Properties of DNA Confined in Nanochannels

    Science.gov (United States)

    Gupta, Damini

    Next-generation sequencing (NGS) techniques have considerably reduced the cost of high-throughput DNA sequencing. However, it is challenging to detect large-scale genomic variations by NGS due to short read lengths. Genome mapping can easily detect large-scale structural variations because it operates on extremely large intact molecules of DNA with adequate resolution. One of the promising methods of genome mapping is based on confining large DNA molecules inside a nanochannel whose cross-sectional dimensions are approximately 50 nm. Even though this genome mapping technology has been commercialized, the current understanding of the polymer physics of DNA in nanochannel confinement is based on theories and lacks much needed experimental support. The results of this dissertation are aimed at providing a detailed experimental understanding of equilibrium properties of nanochannel-confined DNA molecules. The results are divided into three parts. In first part, we evaluate the role of channel shape on thermodynamic properties of channel confined DNA molecules using a combination of fluorescence microscopy and simulations. Specifically, we show that high aspect ratio of rectangular channels significantly alters the chain statistics as compared to an equivalent square channel with same cross-sectional area. In the second part, we present experimental evidence that weak excluded volume effects arise in DNA nanochannel confinement, which form the physical basis for the extended de Gennes regime. We also show how confinement spectroscopy and simulations can be combined to reduce molecular weight dispersity effects arising from shearing, photo-cleavage, and nonuniform staining of DNA. Finally, the third part of the thesis concerns the dynamic properties of nanochannel confined DNA. We directly measure the center-of-mass diffusivity of single DNA molecules in confinement and show that that it is necessary to modify the classical results of de Gennes to account for local chain

  4. Modification of the perturbative QCD towards confinement

    International Nuclear Information System (INIS)

    Arodz, H.

    1981-01-01

    Modification of the low momentum behaviour of the perturbative SU(2) gauge theory is proposed. The modification is closely related (although not equivalent) to a nonstandard choice of boundary condition for the Euclidean 2-point gluonic Green function. In the resulting theory already single graphs lead to the confining potential between heavy, static quarks, V(r) = ar 2 for r → infinity. (author)

  5. Roles of electric field on toroidal magnetic confinement

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae; Sanuki, Heiji; Fukuyama, Atsushi.

    1992-11-01

    Theoretical research on the influence of the electric field on the toroidal magnetic confinement is surveyed. The static electric field is first described. Physics pictures on the generation of the radial electric field and the influence on the confinement are shown. Neoclassical effects as well as the nonclassical processes are discussed. Emphasis is made on the connection with the improved confinement. Convective cell, i.e. the nonuniform potential on the magnetic surface is also discussed. The roles of the fluctuating electric field are then reviewed. The progress in the recent theories on the anomalous transport is addressed. Through these surveys, the impact of the experiments using the heavy ion beam probes on the modern plasma physics is illustrated. (author) 66 refs

  6. Effects of an electric field on the confined hydrogen atom in a parabolic potential well

    International Nuclear Information System (INIS)

    Xie Wenfang

    2009-01-01

    Using the perturbation method, the confined hydrogen atom by a parabolic potential well is investigated. The binding energy of the confined hydrogen atom in a parabolic potential well is calculated as a function of the confined potential radius and as a function of the intensity of an applied electric field. It is shown that the binding energy of the confined hydrogen atom is highly dependent on the confined potential radius and the intensity of an applied electric field.

  7. Echo in a semibounded plasma confined by an inhomogeneous electrostatic potential

    International Nuclear Information System (INIS)

    Revenchuk, S.M.

    1997-01-01

    The effect of the shape of a confining potential (potential barrier) on linear and nonlinear echoes arising due to the reflection of charged particles by this potential is studied. The model of a plasma confined by a potential that is a monotonous power-law function of the space coordinate is used to study the problem. It is shown that a linear echo (the effect of a nonlocal reflection of waves) arises only for a square-law confining potential. The second-order nonlinear echo caused by two external perturbations with different frequencies can occur for potentials with both square-law and inverse power-law coordinate dependences: the frequency of this echo equals the difference of the frequencies of the externally applied perturbations. In the model considered, an echo at the frequency that is the sum of the frequencies of the external perturbations, which was predicted in the previous papers, does not occur

  8. Dynamics of harmonically-confined systems: Some rigorous results

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhigang, E-mail: zwu@physics.queensu.ca; Zaremba, Eugene, E-mail: zaremba@sparky.phy.queensu.ca

    2014-03-15

    In this paper we consider the dynamics of harmonically-confined atomic gases. We present various general results which are independent of particle statistics, interatomic interactions and dimensionality. Of particular interest is the response of the system to external perturbations which can be either static or dynamic in nature. We prove an extended Harmonic Potential Theorem which is useful in determining the damping of the centre of mass motion when the system is prepared initially in a highly nonequilibrium state. We also study the response of the gas to a dynamic external potential whose position is made to oscillate sinusoidally in a given direction. We show in this case that either the energy absorption rate or the centre of mass dynamics can serve as a probe of the optical conductivity of the system. -- Highlights: •We derive various rigorous results on the dynamics of harmonically-confined atomic gases. •We derive an extension of the Harmonic Potential Theorem. •We demonstrate the link between the energy absorption rate in a harmonically-confined system and the optical conductivity.

  9. Rovibrational states of Wigner molecules in spherically symmetric confining potentials

    Energy Technology Data Exchange (ETDEWEB)

    Cioslowski, Jerzy [Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland and Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, D-01187 Dresden (Germany)

    2016-08-07

    The strong-localization limit of three-dimensional Wigner molecules, in which repulsively interacting particles are confined by a weak spherically symmetric potential, is investigated. An explicit prescription for computation of rovibrational wavefunctions and energies that are asymptotically exact at this limit is presented. The prescription is valid for systems with arbitrary angularly-independent interparticle and confining potentials, including those involving Coulombic and screened (i.e., Yukawa/Debye) interactions. The necessary derivations are greatly simplified by explicit constructions of the Eckart frame and the parity-adapted primitive wavefunctions. The performance of the new formalism is illustrated with the three- and four-electron harmonium atoms at their strong-correlation limits. In particular, the involvement of vibrational modes with the E symmetry is readily pinpointed as the origin of the “anomalous” weak-confinement behavior of the {sup 1}S{sub +} state of the four-electron species that is absent in its {sup 1}D{sub +} companion of the strong-confinement regime.

  10. Progress in long sustainment and high density experiments with potential confinement on GAMMA 10

    International Nuclear Information System (INIS)

    Yatsu, K.; Cho, T.; Hirata, M.

    2001-01-01

    The improvement of potential confinement reported in the last IAEA meeting was attained by axisymmetrization of heating pattern of electron cyclotron resonance heating (ECRH). It was experimentally shown that the axisymmetrization of ECRH really produced axisymmetric potential profile. GAMMA 10 experiments have advanced in longer sustainment and high density operation of potential confinement. Experiments for long sustainment of potential confinement were carried out in order to study problems of steady state operation of a tandem mirror reactor. A confining potential was sustained for 150 ms by sequentially injecting two (ECRH) powers in the plug region. It was difficult before to increase the central cell density higher than about 2.5x10 12 cm -3 with and/or without potential confinement due to some density limiting mechanism. In order to overcome this problem, a new higher frequency ion cyclotron range of frequency (ICRF) system (RF3: 36-76 MHz) has been installed. A higher density plasma has been produced with RF3. In addition to RF3, neutral beam injection (NBI) in the anchor cell became effective by reducing neutral gas from beam injectors. Potential confinement experiments have advanced to higher central cell densities up to 4x10 12 cm -3 with RF3 and NBI. A 20% density increase due to the potential confinement was obtained in the high density experiments. (author)

  11. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    International Nuclear Information System (INIS)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-01-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10 −4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains

  12. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kausik, S. S.; Kakati, B.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)

    2013-05-15

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup −4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  13. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Science.gov (United States)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  14. A double-layer based model of ion confinement in electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, D., E-mail: davidmascali@lns.infn.it; Neri, L.; Celona, L.; Castro, G.; Gammino, S.; Ciavola, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Via Graziella, I-89100 Reggio Calabria (Italy); Sorbello, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica, Viale Andrea Doria 6, 95125 Catania (Italy)

    2014-02-15

    The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this “barrier” confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.

  15. A survey of static and dynamic potential games

    Institute of Scientific and Technical Information of China (English)

    GONZLEZ-SNCHEZ David; HERNNDEZ-LERMA Onsimo

    2016-01-01

    Potential games are noncooperative games for which there exist auxiliary functions, called potentials,such that the maximizers of the potential are also Nash equilibria of the corresponding game. Some properties of Nash equilibria, such as existence or stability, can be derived from the potential, whenever it exists. We survey different classes of potential games in the static and dynamic cases, with a finite number of players, as well as in population games where a continuum of players is allowed. Likewise, theoretical concepts and applications are discussed by means of illustrative examples.

  16. Van der Waals-like forces between hadrons induced by color confining potentials

    International Nuclear Information System (INIS)

    Gavela, M.B.; Yaouanc, A. le; Oliver, L.; Pene, O.; Raynal, J.C.; Sood, S.

    1979-01-01

    The London treatment of van der Waals forces is generalized to long-range forces induced by instantaneous confining potentials. Special attention is given to the problem of accounting for the intermediate colour-octet states. The result is in contradiciton with data on nucleon-nucleon phase shifts for any confining potential V(r) = -a(Σsub(A)lambdasup(A)lambda sup(A))rsup(α) for α > 0.1. (Auth.)

  17. Testing static quark-antiquark potentials with bottomonium

    International Nuclear Information System (INIS)

    Lichtenberg, D.B.; Predazzi, E.; Roncaglia, R.; Rosso, M.; Wills, J.G.

    1989-01-01

    We investigate the question of whether experimental data on the energy levels of bottomonium can discriminate between quark-antiquark potentials which are motivated by what we know about QCD and potentials which are purely phenomenological. We restrict ourselves to bottomonium because, of all the quarkonia observed thus far, bottomonium is the least relativistic and therefore the best testing ground for the static quarkonium potential. We consider two potentials whose functional form is motivated from perturbative QCD at short quark-antiquark separations and from nonperturbative lattice QCD at large separations. We also consider three strictly phenomenological potentials. We find that the best of the three phenomenological potentials, which has never been previously used, fits the spin-averaged data at least as well as the best of the QCD-motivated potentials. We propose further measurements on bottomium energy levels to provide additional tests. (orig.)

  18. Static and kinetic friction of strongly confined polymer films under shear

    NARCIS (Netherlands)

    Hirz, S; Subbotin, A; Frank, C; Hadziioannou, G

    1996-01-01

    In the present work, we investigate the dependence of relaxational processes in strongly confined polymer liquids as a function of the molecular mass and of the confining film thickness, both theoretically and experimentally. A qualitative agreement is observed between the theoretical predictions

  19. Quarks degrees of freedom and deuteron static moments

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.; Narodetskij, I.M.; Veselov, A.I.

    1985-01-01

    The probability of the six-quark bag part of the deuteron is defined within recently formulated quark compound bag (QCB) model.An upper limit of about 1% for admixture of the confined bag in the deuteron is found for the QCB potential supplied by the long range Paris interaction. The six-quark bag corrections to the static multipole moments of the deuteron are estimated to be < or approximately 1% for μsub(α) and < or approximately 6% for Qsub(d)

  20. Potential formation and confinement in high density plasma on the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Yatsu, K.

    2002-01-01

    After the attainment of doubling of the density due to the potential confinement, GAMMA 10 experiments have been directed to realization of a high density plasma and also to study dependence of the confining potential and confinement time on the plasma density. These problems are important to understand the physics of potential formation in tandem mirrors and also for the development of a tandem mirror reactor. We reported high density plasma production by using an ion cyclotron range of frequency heating at a high harmonic frequency in the last IAEA Conference. However, the diamagnetic signal of the high density plasma decreased when electron cyclotron resonance heating (ECRH) was applied due to some instabilities. Recently, the high density plasma production was much improved by adjusting the spacing of the conducting plates installed in the anchor transition regions, which enabled us to produce a high density plasma without degradation of the diamagnetic signal with ECRH and also to study the density dependence. In this paper we report production of a high density plasma and dependence of the confining potential and the confinement time on the density. (author)

  1. The confining trailing string

    CERN Document Server

    Kiritsis, E; Nitti, F

    2014-01-01

    We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.

  2. Static and dynamic properties of two-dimensional Coulomb clusters.

    Science.gov (United States)

    Ash, Biswarup; Chakrabarti, J; Ghosal, Amit

    2017-10-01

    We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.

  3. CCSD(T) calculations of stabilities and properties of confined systems

    Energy Technology Data Exchange (ETDEWEB)

    Holka, F.; Urban, M. [Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava, Institute of Materials Science, Bottova 25, SK-917 24 Trnava (Slovakia); Melicherčík, M.; Neogrády, P. [Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava (Slovakia); Paldus, J. [Department of Applied Mathematics, University of Waterloo, N2L 3G1, Ontario (Canada)

    2015-01-22

    We analyze energies, electron affinities and polarizabilities of small anions exposed to an external confinement. The second electron in free O{sup 2−} and S{sup 2−} anions is unbound. We investigate the stabilizing effect of the spherical harmonic-oscillator confining potential ω. on these anions employing the Hartree-Fock stability analysis as introduced by Čížek and Paldus. With increasing strength of the external harmonic-oscillator confinement potential ω the broken symmetry (BS) solutions are systematically eliminated. For ω larger than 0.1 all BS solutions for O{sup 2−} disappear. For ω larger than 0.13 the CCSD(T) energy of O{sup 2−} becomes more negative than the energy of the singly charged O{sup −} anion. We relate the harmonic-oscillator confining potential to a crystalline environment in which the O{sup 2−} and S{sup 2−} anions are stable. We also present a model allowing calculations of the in-crystal polarizabilities of anions. The model is based on CCSD(T) calculations of static polarizabilities of selected anions exposed to the spherical harmonic-oscillator confining potential ω This artificial confinement potential ω is then related to the ionic radii of the cation in representative crystal lattices. We investigate the polarizability of O{sup 2−} and S{sup 2−} anions in MgO, MgS, CaO, CaS, SrO, SrS, BaO and BaS crystals. We compare our results with alternative models for in-crystal polarizabilities. External confinement also stabilizes the uracil anion U{sup −}, as is shown by calculations with a stepwise micro-hydration of U{sup −}. Upon hydration is the CCSD(T) adiabatic electron affinity (AEA) of uracil enhanced by about 250 up to 570 meV in comparison with AEA of the isolated molecule, depending on the geometry of the hydrated uracil anion complex. We tried to find an analogy of the stabilization effect of the external confinement on the otherwise unstable anions. In uracil and its anion is the external

  4. A lattice QCD determination of potentials between pairs of static-light mesons

    International Nuclear Information System (INIS)

    Hetzenegger, Martin

    2011-01-01

    Potentials between pairs of static-light mesons are interesting in a sense that they give insights in the nature of strong interactions from first principles for multiquark systems. For large heavy quark masses, e.g., the spectra of heavy-light mesons are determined by excitations of the light quark and gluonic degrees of freedom. In particular, the vector-pseudoscalar splitting vanishes and a static-light meson can be interpreted as either a B, a B * , a D or a D * heavy-light meson. Calculating potentials between two static-light mesons also enables investigations of possible bound tetraquark states or for particles that are close to the meson-antimeson threshold, such as the X(3872) or the Z + (4430).

  5. A lattice QCD determination of potentials between pairs of static-light mesons

    Energy Technology Data Exchange (ETDEWEB)

    Hetzenegger, Martin

    2011-07-04

    Potentials between pairs of static-light mesons are interesting in a sense that they give insights in the nature of strong interactions from first principles for multiquark systems. For large heavy quark masses, e.g., the spectra of heavy-light mesons are determined by excitations of the light quark and gluonic degrees of freedom. In particular, the vector-pseudoscalar splitting vanishes and a static-light meson can be interpreted as either a B, a B{sup *}, a D or a D{sup *} heavy-light meson. Calculating potentials between two static-light mesons also enables investigations of possible bound tetraquark states or for particles that are close to the meson-antimeson threshold, such as the X(3872) or the Z{sup +}(4430).

  6. The cranking moment of inertia in a static potential

    International Nuclear Information System (INIS)

    Bengtsson, R.; Hamamoto, I.; Ibarra, R.H.

    1978-01-01

    Taking into account the self-consistency condition for the deformation, the authors estimate the cranking moment of inertia in the absence of pair-correlations for the Woods-Saxon potential and various versions of the modified oscillator potential. The authors investigate the expectation that in a static potential the moment of inertia is almost equal to the rigid-body moment of inertia at the self-consistent deformation. They examine especially the consequence of the presence of the l 2 term in the conventional modified oscillator potential. (Auth.)

  7. Binary mixtures of condensates in generic confining potentials

    Energy Technology Data Exchange (ETDEWEB)

    Facchi, P [Dipartimento di Matematica and MECENAS, Universita di Bari, I-70125 Bari (Italy); Florio, G; Pascazio, S; Pepe, F V, E-mail: Francesco.Pepe@ba.infn.it [INFN, Sezione di Bari, I-70126 Bari (Italy)

    2011-12-16

    We study a binary mixture of Bose-Einstein condensates, confined in a generic potential, in the Thomas-Fermi approximation. We search for the zero-temperature ground state of the system, both in the case of fixed numbers of particles and fixed chemical potentials. For generic potentials, we analyze the transition from mixed to separated ground-state configurations as the inter-species interaction increases. We derive a simple formula that enables one to determine the location of the domain walls. Finally, we find criteria for the energetic stability of separated configurations, depending on the number and the position of the domain walls separating the two species. (paper)

  8. Binary mixtures of condensates in generic confining potentials

    Science.gov (United States)

    Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F. V.

    2011-12-01

    We study a binary mixture of Bose-Einstein condensates, confined in a generic potential, in the Thomas-Fermi approximation. We search for the zero-temperature ground state of the system, both in the case of fixed numbers of particles and fixed chemical potentials. For generic potentials, we analyze the transition from mixed to separated ground-state configurations as the inter-species interaction increases. We derive a simple formula that enables one to determine the location of the domain walls. Finally, we find criteria for the energetic stability of separated configurations, depending on the number and the position of the domain walls separating the two species.

  9. Binary mixtures of condensates in generic confining potentials

    International Nuclear Information System (INIS)

    Facchi, P; Florio, G; Pascazio, S; Pepe, F V

    2011-01-01

    We study a binary mixture of Bose–Einstein condensates, confined in a generic potential, in the Thomas–Fermi approximation. We search for the zero-temperature ground state of the system, both in the case of fixed numbers of particles and fixed chemical potentials. For generic potentials, we analyze the transition from mixed to separated ground-state configurations as the inter-species interaction increases. We derive a simple formula that enables one to determine the location of the domain walls. Finally, we find criteria for the energetic stability of separated configurations, depending on the number and the position of the domain walls separating the two species. (paper)

  10. Inequalities for magnetic-flux free energies and confinement in lattice gauge theories

    International Nuclear Information System (INIS)

    Yoneya, T.

    1982-01-01

    Rigorous inequalities among magnetic-flux free energies of tori with varying diameters are derived in lattice gauge theories. From the inequalities, it follows that if the magnetic-flux free energy vanishes in the limit of large uniform dilatation of a torus, the free energy must always decrease exponentially with the area of the cross section of the torus. The latter property is known to be sufficient for permanent confinement of static quarks. As a consequence of this property, a lower bound V(R) >= const x R for the static quark-antiquark potential is obtained in three-dimensional U(n) lattice gauge theory for sufficiently large R. (orig.)

  11. Potential formation in the plasma confinement region of a radio-frequency plugged linear device

    International Nuclear Information System (INIS)

    Fujita, Hideki; Kumazawa, Ryuhei; Howald, A.M.; Okamura, Shoichi; Sato, Teruyuki; Adati, Keizo; Garner, H.R.; Nishimura, Kiyohiko.

    1987-08-01

    Plasma potential formation in an open-ended plasma confinement system with RF plugging (the RFC-XX-M device) is investigated. The plasma potential in the central confinement region is measured with a heavy ion beam probe system and potentials at the RF plug section are measured with multi-grid energy analyzers. The measured plasma potential is compared with that deduced from the generalized Pastukhov formula. Results show that the plasma potential develops as an ambipolar potential to equate ion and electron end losses. During RF plugging, electrons are heated by Landau damping, while ions are not heated since adiabatic conditions apply during ion plugging in this experiment. (author)

  12. Probing the properties of confined liquids

    NARCIS (Netherlands)

    de Beer, Sissi Jacoba Adrianus

    2011-01-01

    In this thesis we describe Atomic Force Microscopy (AFM) measurements and Molecular Dynamics (MD) simulation of the static and dynamic properties of layered liquids confined between two solid surfaces. Liquid molecules in the proximity of a solid surface assemble into layers. When a fluid is

  13. Inertial confinement fusion: present status and future potential

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1984-01-01

    Power from inertial confinement fusion holds much promise for society. This paper points out many of the benefits relative to combustion of hydrocarbon fuels and fission power. Potential problems are also identified and put in perspective. The progress toward achieving inertial fusion power is described and results of recent work at the Lawrence Livermore National Laboratory are presented. Key phenomenological uncertainties are described and experimental goals for the Nova laser system are given. Several ICF reactor designs are discussed

  14. NLL resummation for the static potential in N=4 SYM theory

    International Nuclear Information System (INIS)

    Stahlhofen, Maximilian

    2012-09-01

    We determine the complete NLL running of the static potential associated with the locally 1/2 BPS Wilson loop in N=4 supersymmetric Yang-Mills theory. We present results for the SU(N c ) singlet as well as for the adjoint configuration and arbitrary N c at weak coupling. In order to derive the respective anomalous dimensions we perform a two-loop calculation in the N=4 supersymmetric version of the effective field theory pNRQCD. In addition we confirm the recently obtained fixed-order result for the singlet static potential generated exclusively by ladder diagrams to the third order in the t'Hooft coupling. We also give an explicit expression for the logarithmic contribution of all non-ladder diagrams at this order.

  15. NLL resummation for the static potential in N=4 SYM theory

    Energy Technology Data Exchange (ETDEWEB)

    Stahlhofen, Maximilian [Wien Univ. (Austria). Fakultaet fuer Physik

    2012-09-15

    We determine the complete NLL running of the static potential associated with the locally 1/2 BPS Wilson loop in N=4 supersymmetric Yang-Mills theory. We present results for the SU(N{sub c}) singlet as well as for the adjoint configuration and arbitrary N{sub c} at weak coupling. In order to derive the respective anomalous dimensions we perform a two-loop calculation in the N=4 supersymmetric version of the effective field theory pNRQCD. In addition we confirm the recently obtained fixed-order result for the singlet static potential generated exclusively by ladder diagrams to the third order in the t'Hooft coupling. We also give an explicit expression for the logarithmic contribution of all non-ladder diagrams at this order.

  16. Potential well formation in electrostatic confinement devices. Technical progress report

    International Nuclear Information System (INIS)

    Cherrington, B.E.; Verdeyen, J.T.

    1975-01-01

    A large (2' diameter) spherical electrostatic confinement device has been constructed to test the feasibility of using inertial electrostatic forces to confine energetic plasmas capable of sustaining fusion reactions. Electron injection under high vacuum has produced negative wells that completely depress the potential in the center and approach the classical Langmuir virtual cathode. Electron injection into low pressure deuterium reproduces our previous results of an ion rich region within the negative well. Additional theoretical studies incorporating electrons with very narrow angular momentum (corresponding to trapped electrons in the center) has shown that an additional electron rich region (or ion rich if the polarities are reversed) can be produced within the ion rich region for presumably realistic ranges of parameters

  17. On the solution of an inverse problem for confining potentials in quantum mechanics

    International Nuclear Information System (INIS)

    Gostev, V.B.; Mineev, V.S.; Frenkin, A.R.

    1982-01-01

    The problem of plotting confining (unlimitedly increasing on the infinity) potentials of the central field by the given energy spectrum is discussed. The radial Schroedinger equation has pure discrete spectrum with infinite number of levels for these potentials. The problem is solved using the Helfand-Levitan equation with a certain reference potential V(r) for which spectral characteristics differ from the given ones only in the finite number of elements. The regular solutions PHIsub(l)(E, r) of the Schroedinger equation for the reference potential V(r) are supposed to be known. The initial potential and regular solutions of the Schroedinger equation are restored by the reference potential V(r) and regular PHIsub(l)(E, r) functions by means of the known formulas. It is observed from the paper data that confining potentials with any type of spectrum can be restored. Choice of the corresponding reference potential providing Fredholm nature of the Helfand-Levitan equation is the basic problem in this case

  18. Possible retardation effects of quark confinement on the meson spectrum

    International Nuclear Information System (INIS)

    Qiao, C.; Huang, H.; Chao, K.

    1996-01-01

    The reduced Bethe-Salpeter equation with scalar confinement and vector gluon exchange is applied to quark-antiquark bound states. The so-called intrinsic flaw of the Salpeter equation with static scalar confinement is investigated. The notorious problem of narrow level spacings is found to be remedied by taking into consideration the retardation effect of scalar confinement. A good fit for the mass spectrum of both heavy and light quarkonium states is then obtained. copyright 1996 The American Physical Society

  19. A variational approach to bag formation and the quark-antiquark potential

    International Nuclear Information System (INIS)

    Akiba, T.; Takagi, F.

    1983-01-01

    A variational approach is used to the Adler problem which is to obtain the color confinement region and the q-anti q static potential from approxiamte effective potentials of quantum chromodynamics. It yields fairly good fits to the Adler-Piran numerical results. (orig.)

  20. Spatial profile measurements of ion-confining potentials using novel position-sensitive ion-energy spectrometer arrays

    International Nuclear Information System (INIS)

    Yoshida, M.; Cho, T.; Hirata, M.; Ito, H.; Kohagura, J.; Yatsu, K.; Miyoshi, S.

    2003-01-01

    The first experimental demonstration of simultaneous measurements of temporally and spatially resolved ion-confining potentials phi c and end-loss-ion fluxes I ELA has been carried out during a single plasma discharge alone by the use of newly designed ion-energy-spectrometer arrays installed in both end regions of the GAMMA 10 tandem mirror. This position-sensitive ion-detector structure is proposed to obtain precise ion-energy spectra without any perturbations from simultaneously incident energetic electrons into the arrays. The relation between phi c and I ELA is physically interpreted in terms of Pastukhov's potential confinement theory. In particular, the importance of axisymmetric phi c formation is found for the plasma confinement

  1. Fermionic contributions to the three-loop static potential

    International Nuclear Information System (INIS)

    Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias

    2008-01-01

    We consider the three-loop corrections to the static potential which are induced by a closed fermion loop. For the reduction of the occurring integrals a combination of the Groebner and Laporta algorithm has been used and the evaluation of the master integrals has been performed with the help of the Mellin-Barnes technique. The fermionic three-loop corrections amount to 2% of the tree-level result for top quarks, 8% for bottom quarks and 27% for the charm quark system

  2. Fermionic contributions to the three-loop static potential

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Alexander V. [Scientific Research Computing Center, Moscow State University, 119992 Moscow (Russian Federation); Institut fuer Theoretische Teilchenphysik, Universitaet Karlsruhe (Thailand), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Smirnov, Vladimir A. [Nuclear Physics Institute, Moscow State University, 119992 Moscow (Russian Federation); Institut fuer Theoretische Teilchenphysik, Universitaet Karlsruhe (Thailand), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Steinhauser, Matthias [Institut fuer Theoretische Teilchenphysik, Universitaet Karlsruhe (Thailand), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany)], E-mail: matthias.steinhauser@uka.de

    2008-10-16

    We consider the three-loop corrections to the static potential which are induced by a closed fermion loop. For the reduction of the occurring integrals a combination of the Groebner and Laporta algorithm has been used and the evaluation of the master integrals has been performed with the help of the Mellin-Barnes technique. The fermionic three-loop corrections amount to 2% of the tree-level result for top quarks, 8% for bottom quarks and 27% for the charm quark system.

  3. Interacting supernovae from photoionization-confined shells around red supergiant stars

    Science.gov (United States)

    Mackey, Jonathan; Mohamed, Shazrene; Gvaramadze, Vasilii V.; Kotak, Rubina; Langer, Norbert; Meyer, Dominique M.-A.; Moriya, Takashi J.; Neilson, Hilding R.

    2014-08-01

    Betelgeuse, a nearby red supergiant, is a fast-moving star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse's wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have much more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova light curve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.

  4. Mott glass from localization and confinement

    Science.gov (United States)

    Chou, Yang-Zhi; Nandkishore, Rahul M.; Radzihovsky, Leo

    2018-05-01

    We study a system of fermions in one spatial dimension with linearly confining interactions and short-range disorder. We focus on the zero-temperature properties of this system, which we characterize using bosonization and the Gaussian variational method. We compute the static compressibility and ac conductivity, and thereby demonstrate that the system is incompressible, but exhibits gapless optical conductivity. This corresponds to a "Mott glass" state, distinct from an Anderson and a fully gapped Mott insulator, arising due to the interplay of disorder and charge confinement. We argue that this Mott glass phenomenology should persist to nonzero temperatures.

  5. Recoiling black holes in static and evolving dark matter halo potential

    Directory of Open Access Journals (Sweden)

    Smole M.

    2015-01-01

    Full Text Available We follow trajectories of kicked black holes in static and evolving dark matter halo potential. We explore both NFW and Einasto dark matter density distributions. Considered dark matter halos represent hosts of massive spiral and elliptical field galaxies. We study critical amplitude of kick velocity necessary for complete black hole ejection at various redshifts and find that ~40% lower kick velocities can remove black holes from their host haloes at z = 7 compared to z = 1. The greatest difference between static and evolving potential occurs near the critical velocity for black hole ejection and at high redshifts. When NFW and Einasto density distributions are compared ~30% higher kick velocities are needed for complete removal of BHs from dark matter halo described by NFW profile. [Projekat Ministarstva nauke Republike Srbije, br. 176021: Visible and invisible matter in nearby galaxies: Theory and observations

  6. Geometric properties of static Einstein-Maxwell dilaton horizons with a Liouville potential

    International Nuclear Information System (INIS)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2011-01-01

    We study nondegenerate and degenerate (extremal) Killing horizons of arbitrary geometry and topology within the Einstein-Maxwell-dilaton model with a Liouville potential (the EMdL model) in d-dimensional (d≥4) static space-times. Using Israel's description of a static space-time, we construct the EMdL equations and the space-time curvature invariants: the Ricci scalar, the square of the Ricci tensor, and the Kretschmann scalar. Assuming that space-time metric functions and the model fields are real analytic functions in the vicinity of a space-time horizon, we study the behavior of the space-time metric and the fields near the horizon and derive relations between the space-time curvature invariants calculated on the horizon and geometric invariants of the horizon surface. The derived relations generalize similar relations known for horizons of static four- and five-dimensional vacuum and four-dimensional electrovacuum space-times. Our analysis shows that all the extremal horizon surfaces are Einstein spaces. We present the necessary conditions for the existence of static extremal horizons within the EMdL model.

  7. Experimental Investigation of the Influence of Confining Stress on Hard Rock Fragmentation Using a Conical Pick

    Science.gov (United States)

    Li, Xibing; Wang, Shaofeng; Wang, Shanyong

    2018-01-01

    High geostress is a prominent condition in deep excavations and affects the cuttability of deep hard rock. This study aims to determine the influence of confining stress on hard rock fragmentation as applied by a conical pick. Using a true triaxial test apparatus, static and coupled static and dynamic loadings from pick forces were applied to end faces of cubic rock specimens to break them under biaxial, uniaxial and stress-free confining stress conditions. The cuttability indices (peak pick force, insertion depth and disturbance duration), failure patterns and fragment sizes were measured and compared to estimate the effects of confining stress. The results show that the rock cuttabilities decreased in order from rock breakages under stress-free conditions to uniaxial confining stress and then to biaxial confining stress. Under biaxial confining stress, only flake-shaped fragments were stripped from the rock surfaces under the requirements of large pick forces or disturbance durations. As the level of uniaxial confining stress increased, the peak pick force and the insertion depth initially increased and then decreased, and the failure patterns varied from splitting to partial splitting and then to rock bursts with decreasing average fragment sizes. Rock bursts will occur under elastic compression via ultra-high uniaxial confining stresses. There are two critical uniaxial confining stress levels, namely stress values at which peak pick forces begin to decrease and improve rock cuttability, and those at which rock bursts initially occur and cutting safety decreases. In particular, hard rock is easiest to split safely and efficiently under stress-free conditions. Moreover, coupled static preloading and dynamic disturbance can increase the efficiency of rock fragmentation with increasing preloading levels and disturbance amplitudes. The concluding remarks confirm hard rock cuttability using conical pick, which can improve the applicability of mechanical excavation in

  8. A simple method for estimating potential source term bypass fractions from confinement structures

    International Nuclear Information System (INIS)

    Kalinich, D.A.; Paddleford, D.F.

    1997-01-01

    Confinement structures house many of the operating processes at the Savannah River Site (SRS). Under normal operating conditions, a confinement structure in conjunction with its associated ventilation systems prevents the release of radiological material to the environment. However, under potential accident conditions, the performance of the ventilation systems and integrity of the structure may be challenged. In order to calculate the radiological consequences associated with a potential accident (e.g. fires, explosion, spills, etc.), it is necessary to determine the fraction of the source term initially generated by the accident that escapes from the confinement structure to the environment. While it would be desirable to estimate the potential bypass fraction using sophisticated control-volume/flow path computer codes (e.g. CONTAIN, MELCOR, etc.) in order to take as much credit as possible for the mitigative effects of the confinement structure, there are many instances where using such codes is not tractable due to limits on the level-of-effort allotted to perform the analysis. Moreover, the current review environment, with its emphasis on deterministic/bounding-versus probabilistic/best-estimate-analysis discourages using analytical techniques that require the consideration of a large number of parameters. Discussed herein is a simplified control-volume/flow path approach for calculating source term bypass fraction that is amenable to solution in a spreadsheet or with a commercial mathematical solver (e.g. MathCad or Mathematica). It considers the effects of wind and fire pressure gradients on the structure, ventilation system operation, and Halon discharges. Simple models are used to characterize the engineered and non-engineered flow paths. By making judicious choices for the limited set of problem parameters, the results from this approach can be defended as bounding and conservative

  9. Transverse gluon contributions to the thermal static potential of heavy quarkonium

    International Nuclear Information System (INIS)

    Zhu, Jia-Qing; Li, Yun-De

    2015-01-01

    The transverse gluon contributions to the thermal static potentials of heavy quarkonia in isotropic medium are studied. Using the resummation of the damping rates method developed by Hou and Li, the infrared divergence that appeared in the effective potential calculations of transverse gluon is avoided. The comparisons between the transverse and the longitudinal contributions for heavy quarkonia are discussed. The results show that the dissociation scales of quarkonia in thermal medium are decreased by the transverse gluon contributions

  10. High-momentum tail in the Tonks-Girardeau gas under general confining potentials

    International Nuclear Information System (INIS)

    Moreno, Gustavo A.

    2009-01-01

    We prove that the ground state momentum distribution of a one-dimensional system of impenetrable bosons exhibits a k -4 tail for any confining potential. We also derive an expression for easily computing the asymptotic occupation numbers and verify our results with an exact numerical approach.

  11. Center-of-mass corrections in the S+V potential model

    International Nuclear Information System (INIS)

    Palladino, B.E.

    1987-02-01

    Center-of-mass corrections to the mass spectrum and static properties of low-lying S-wave baryons and mesons are discussed in the context of a relativistic, independent quark model, based on a Dirac equation, with equally mixed scalar (S) and vector (V) confining potential. (author) [pt

  12. Long-distance behavior of the quark-antiquark static potential. Application to light-quark mesons and heavy quarkonia

    International Nuclear Information System (INIS)

    Gonzalez, P.

    2009-01-01

    Screening effects from sea pairs on the quark-antiquark static potential are analyzed phenomenologically from the light-quark to the heavy-quark meson spectra. From the high excited light-quark meson spectrum, a universal form for the screened static potential is proposed. This potential is then successfully applied to heavy quarkonia. Our results suggest the assignment of X(4260) to the 4s state of charmonium and the possible existence of a 5s bottomonium resonance around 10748 MeV.

  13. Potential well formation in electrostatic confinement devices. Technical summary report

    International Nuclear Information System (INIS)

    Cherrington, B.E.; Verdeyen, J.T.

    1978-01-01

    The experimental and theoretical studies on Inertial Electrostatic Plasma Confinement that have been performed in the Gaseous Electronics Laboratory of the University of Illinois are reviewed. There has been experimental confirmation of the production of a multiple potential structure in both small and large spherical devices and the theoretical analysis has indicated the parameter range that is necessary in order to explain such results. Further experimental and theoretical approaches to testing the IEPC concept are suggested

  14. Exceptional confinement in G(2) gauge theory

    International Nuclear Information System (INIS)

    Holland, K.; Minkowski, P.; Pepe, M.; Wiese, U.-J.

    2003-01-01

    We study theories with the exceptional gauge group G(2). The 14 adjoint 'gluons' of a G(2) gauge theory transform as {3}, {3-bar} and {8} under the subgroup SU(3), and hence have the color quantum numbers of ordinary quarks, anti-quarks and gluons in QCD. Since G(2) has a trivial center, a 'quark' in the {7} representation of G(2) can be screened by 'gluons'. As a result, in G(2) Yang-Mills theory the string between a pair of static 'quarks' can break. In G(2) QCD there is a hybrid consisting of one 'quark' and three 'gluons'. In supersymmetric G(2) Yang-Mills theory with a {14} Majorana 'gluino' the chiral symmetry is Z(4) χ . Chiral symmetry breaking gives rise to distinct confined phases separated by confined-confined domain walls. A scalar Higgs field in the {7} representation breaks G(2) to SU(3) and allows us to interpolate between theories with exceptional and ordinary confinement. We also present strong coupling lattice calculations that reveal basic features of G(2) confinement. Just as in QCD, where dynamical quarks break the Z(3) symmetry explicitly, G(2) gauge theories confine even without a center. However, there is not necessarily a deconfinement phase transition at finite temperature

  15. Gluon confinement

    International Nuclear Information System (INIS)

    Novello, M.; Lorenci, V.A. de; Elbaz, E.

    1997-02-01

    In this paper we present a new model for a gauge field theory such that self-interacting spin-one particles can be confined in a compact domain. The necessary conditions to produce the confining potential appear already in the properties of the eikonal structure generated by the particular choice of the dynamics. (author)

  16. Computation of hybrid static potentials in SU(3 lattice gauge theory

    Directory of Open Access Journals (Sweden)

    Reisinger Christian

    2018-01-01

    Full Text Available We compute hybrid static potentials in SU(3 lattice gauge theory. We present a method to automatically generate a large set of suitable creation operators with defined quantum numbers from elementary building blocks. We show preliminary results for several channels and discuss, which structures of the gluonic flux tube seem to be realized by the ground states in these channels.

  17. Quantum-Carnot engine for particle confined to 2D symmetric potential well

    International Nuclear Information System (INIS)

    Belfaqih, Idrus Husin; Sutantyo, Trengginas Eka Putra; Prayitno, T. B.; Sulaksono, Anto

    2015-01-01

    Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well

  18. Quantum-Carnot engine for particle confined to 2D symmetric potential well

    Energy Technology Data Exchange (ETDEWEB)

    Belfaqih, Idrus Husin, E-mail: idrushusin21@gmail.com; Sutantyo, Trengginas Eka Putra, E-mail: trengginas.eka@gmail.com; Prayitno, T. B., E-mail: teguh-budi@unj.ac.id [Department of Physics, Universitas Negeri Jakarta, Jl. Pemuda Rawamangun, Jakarta Timur, 13220 (Indonesia); Sulaksono, Anto, E-mail: anto.sulaksono@sci.ui.ac.id [Department of Physics, Universitas Indonesia, Depok, Jawa Barat, 164242 (Indonesia)

    2015-09-30

    Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well.

  19. The static quark potential from the gauge independent Abelian decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Cundy, Nigel, E-mail: ndcundy@gmail.com [Lattice Gauge Theory Research Center, FPRD, and CTP, Department of Physics & Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Cho, Y.M. [Administration Building 310-4, Konkuk University, Seoul 143-701 (Korea, Republic of); Department of Physics & Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Lee, Weonjong; Leem, Jaehoon [Lattice Gauge Theory Research Center, FPRD, and CTP, Department of Physics & Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2015-06-15

    We investigate the relationship between colour confinement and the gauge independent Cho–Duan–Ge Abelian decomposition. The decomposition is defined in terms of a colour field n; the principle novelty of our study is that we have used a unique definition of this field in terms of the eigenvectors of the Wilson Loop. This allows us to establish an equivalence between the path-ordered integral of the non-Abelian gauge fields and an integral over an Abelian restricted gauge field which is tractable both theoretically and numerically in lattice QCD. We circumvent path ordering without requiring an additional path integral. By using Stokes' theorem, we can compute the Wilson Loop in terms of a surface integral over a restricted field strength, and show that the restricted field strength may be dominated by certain structures, which occur when one of the quantities parametrising the colour field n winds itself around a non-analyticity in the colour field. If they exist, these structures will lead to an area law scaling for the Wilson Loop and provide a mechanism for quark confinement. Unlike most studies of confinement using the Abelian decomposition, we do not rely on a dual-Meissner effect to create the inter-quark potential. We search for these structures in quenched lattice QCD. We perform the Abelian decomposition, and compare the electric and magnetic fields with the patterns expected theoretically. We find that the restricted field strength is dominated by objects which may be peaks of a single lattice spacing in size or extended string-like lines of electromagnetic flux. The objects are not isolated monopoles, as they generate electric fields in addition to magnetic fields, and the fields are not spherically symmetric, but may be either caused by a monopole/anti-monopole condensate, some other types of topological objects, or a combination of these. Removing these peaks removes the area law scaling of the string tension, suggesting that they are

  20. The static quark potential from the gauge independent Abelian decomposition

    Directory of Open Access Journals (Sweden)

    Nigel Cundy

    2015-06-01

    Full Text Available We investigate the relationship between colour confinement and the gauge independent Cho–Duan–Ge Abelian decomposition. The decomposition is defined in terms of a colour field n; the principle novelty of our study is that we have used a unique definition of this field in terms of the eigenvectors of the Wilson Loop. This allows us to establish an equivalence between the path-ordered integral of the non-Abelian gauge fields and an integral over an Abelian restricted gauge field which is tractable both theoretically and numerically in lattice QCD. We circumvent path ordering without requiring an additional path integral. By using Stokes' theorem, we can compute the Wilson Loop in terms of a surface integral over a restricted field strength, and show that the restricted field strength may be dominated by certain structures, which occur when one of the quantities parametrising the colour field n winds itself around a non-analyticity in the colour field. If they exist, these structures will lead to an area law scaling for the Wilson Loop and provide a mechanism for quark confinement. Unlike most studies of confinement using the Abelian decomposition, we do not rely on a dual-Meissner effect to create the inter-quark potential.We search for these structures in quenched lattice QCD. We perform the Abelian decomposition, and compare the electric and magnetic fields with the patterns expected theoretically. We find that the restricted field strength is dominated by objects which may be peaks of a single lattice spacing in size or extended string-like lines of electromagnetic flux. The objects are not isolated monopoles, as they generate electric fields in addition to magnetic fields, and the fields are not spherically symmetric, but may be either caused by a monopole/anti-monopole condensate, some other types of topological objects, or a combination of these. Removing these peaks removes the area law scaling of the string tension, suggesting that

  1. The static quark potential from the gauge independent Abelian decomposition

    Science.gov (United States)

    Cundy, Nigel; Cho, Y. M.; Lee, Weonjong; Leem, Jaehoon

    2015-06-01

    We investigate the relationship between colour confinement and the gauge independent Cho-Duan-Ge Abelian decomposition. The decomposition is defined in terms of a colour field n; the principle novelty of our study is that we have used a unique definition of this field in terms of the eigenvectors of the Wilson Loop. This allows us to establish an equivalence between the path-ordered integral of the non-Abelian gauge fields and an integral over an Abelian restricted gauge field which is tractable both theoretically and numerically in lattice QCD. We circumvent path ordering without requiring an additional path integral. By using Stokes' theorem, we can compute the Wilson Loop in terms of a surface integral over a restricted field strength, and show that the restricted field strength may be dominated by certain structures, which occur when one of the quantities parametrising the colour field n winds itself around a non-analyticity in the colour field. If they exist, these structures will lead to an area law scaling for the Wilson Loop and provide a mechanism for quark confinement. Unlike most studies of confinement using the Abelian decomposition, we do not rely on a dual-Meissner effect to create the inter-quark potential. We search for these structures in quenched lattice QCD. We perform the Abelian decomposition, and compare the electric and magnetic fields with the patterns expected theoretically. We find that the restricted field strength is dominated by objects which may be peaks of a single lattice spacing in size or extended string-like lines of electromagnetic flux. The objects are not isolated monopoles, as they generate electric fields in addition to magnetic fields, and the fields are not spherically symmetric, but may be either caused by a monopole/anti-monopole condensate, some other types of topological objects, or a combination of these. Removing these peaks removes the area law scaling of the string tension, suggesting that they are responsible for

  2. A Study of Confined Helium Atom

    International Nuclear Information System (INIS)

    Xie Wenfang

    2007-01-01

    The helium atom confined by a spherical parabolic potential well is studied employing the adiabatic hyperspherical approach method. Total energies of the ground and three low-excited states are obtained as a function of the confined potential radii. We find that the energies of a spherical parabolic potential well are in good agreement with those of an impenetrable spherical box for the larger confined potential radius. We find also that the confinement may cause accidental degeneracies between levels with different low-excited states and the inversion of the energy values. The results for the three-dimensional spherical potential well and the two-dimensional disc-like potential well are compared with each other. We find that the energy difference between states in a two-dimensional parabolic potential is also obviously larger than the corresponding levels for a spherical parabolic potential.

  3. Observation of scaling laws of ion confining potential versus thermal barrier depth and of axial particle confinement time in the tandem mirror GAMMA 10

    International Nuclear Information System (INIS)

    Cho, T.; Inutake, M.; Ishii, K.

    1988-01-01

    In the thermal barrier tandem mirror GAMMA 10, the scaling law governing the enhancement of the ion confining potential, φ c , resulting from thermal barrier formation, is obtained experimentally, and is consistently interpreted in terms of the weak and strong ECH theories set up by Cohen and co-workers. The scaling law on the axial particle confinement time, τ pparallel , related to this φ c formation, is also demonstrated in detail; it is in good agreement with the Pastukhov theory as modified by Cohen and co-workers. This scaling is verified at any radial position in the core plasma region and at any time through the various stages of a discharge; this indicates a scaling with drastic improvement of τ pparallel , due to the potential formation in the tandem mirror plasma. (author). 41 refs, 12 figs

  4. Photoionization cross section in a spherical quantum dot: Effects of some parabolic confining electric potentials

    Directory of Open Access Journals (Sweden)

    M. Tshipa

    2017-12-01

    Full Text Available A theoretical investigation of the effects of spatial variation of confining electric potential on photoionization cross section (PCS in a spherical quantum dot is presented. The potential profiles considered here are the shifted parabolic potential and the inverse lateral shifted parabolic potential compared with the well-studied parabolic potential. The primary findings are that parabolic potential and the inverse lateral shifted parabolic potential blue shift the peaks of the PCS while the shifted parabolic potential causes a red shift.

  5. Experimental Investigation on Shock Mechanical Properties of Red Sandstone under Preloaded 3D Static Stresses

    Directory of Open Access Journals (Sweden)

    Niu Yong

    2015-11-01

    Full Text Available Triaxial impact mechanical performance experiment was performed to study the mechanical properties of red sandstone subjected to three-dimensional (3D coupled static and dynamic loads, i.e., three confining pressures (0, 5, and 10 MPa and three axial pressures (11, 27, and 43 MPa. A modified 3D split Hopkinson pressure bar testing system was used. The change trend in the deformation of red sandstone and the strength and failure modes under axial pressures and confining pressures were analyzed. Results show that, when the confining pressure is constant, the compressive strength, secant modulus, and energy absorbed per unit volume of red sandstone initially increases and subsequently decreases, whereas the average strain rate exhibits an opposite trend. When the axial pressure is constant, both the compressive strength and secant modulus of red sandstone are enhanced, but the average strain rate is decreased with increasing confining pressure. The energy absorbed per unit volume is initially increased and subsequently decreased as the confining pressure increases. Red sandstone exhibits a cone-shaped compression–shear failure mode under the 3D coupled static and dynamic loads. The conclusions serve as theoretical basis on the mechanical properties of deep medium-strength rock under a high ground stress and external load disturbance condition

  6. Gauge invariance of color confinement due to the dual Meissner effect caused by Abelian monopoles

    International Nuclear Information System (INIS)

    Suzuki, Tsuneo; Hasegawa, Masayasu; Ishiguro, Katsuya; Koma, Yoshiaki; Sekido, Toru

    2009-01-01

    The mechanism of non-Abelian color confinement is studied in SU(2) lattice gauge theory in terms of the Abelian fields and monopoles extracted from non-Abelian link variables without adopting gauge fixing. First, the static quark-antiquark potential and force are computed with the Abelian and monopole Polyakov loop correlators, and the resulting string tensions are found to be identical to the non-Abelian string tension. These potentials also show the scaling behavior with respect to the change of lattice spacing. Second, the profile of the color-electric field between a quark and an antiquark is investigated with the Abelian and monopole Wilson loops. The color-electric field is squeezed into a flux tube due to monopole supercurrent with the same Abelian color direction. The parameters corresponding to the penetration and coherence lengths show the scaling behavior, and the ratio of these lengths, i.e., the Ginzburg-Landau parameter, indicates that the vacuum type is near the border of the type 1 and type 2 (dual) superconductors. These results are summarized in which the Abelian fundamental charge defined in an arbitrary color direction is confined inside a hadronic state by the dual Meissner effect. As the color-neutral state in any Abelian color direction corresponds to the physical color-singlet state, this effect explains non-Abelian color confinement and supports the existence of a gauge-invariant mechanism of color confinement due to the dual Meissner effect caused by Abelian monopoles.

  7. A model for color screening in a QCD plasma: the roles of thermal gluons and of confinement

    International Nuclear Information System (INIS)

    Calucci, G.; Cattaruzza, E.

    2006-01-01

    The study of the screening in the q anti q plasma, in a model which takes into account only static interactions, is continued with the introduction of two new dynamical elements: the presence of thermal gluons and a phenomenological description of the confinement. In the first case the qq correlation and the q anti q correlation are similar to each other and also similar to the correlation in the absence of gluons: the decay with the distance deviates slightly from a standard exponential decay. In the second case the two-body confining potential gives rise to correlation functions oscillating with the distance, so that only the total correlation, i.e. the space integral, has a more transparent interpretation; moreover, the qq correlations and the q anti q correlations show very definite differences. (orig.)

  8. The cooling of confined ions driven by laser beams

    International Nuclear Information System (INIS)

    Reyna, L.G.

    1993-01-01

    We finalize the dynamics of confined ions driven by a quantized radiation field. The ions can absorb photons from an incident laser beam and relax back to the ground state by either induced emissions or spontaneous emissions. Here we assume that the absorption of photons is immediately followed by spontaneous emissions, resulting in single-level ions perturbed by the exchange of momentum with the radiation field. The probability distribution of the ions is calculated using singular expansions in the low noise asymptotic limit. The present calculations reproduce the quantum results in the limit of heavy particles in static traps, and the classical results of ions in radio-frequency confining wells

  9. Static magnetotherapy for the treatment of insomnia.

    Science.gov (United States)

    Shieh, Yao Y; Tsai, Fong Y

    2008-01-01

    Magnets have been used for centuries to treat a number of physical disorders. The vast majority of research, however, on static magnet therapy for insomnia has been confined to the auricular type of therapy, with publications limited to Chinese journals. Most of these studies have depended on the subjective self-assessment of participants rather than objective scientific measurements. In this study, the authors report the positive preliminary results of insomnia treatment using pillows with embedded magnets, magnetic insoles and TriPhase bracelets. The analysis is based on objective actigraphic and polysomnographic data. A theory of accelerated transition from wakefulness to sleep is proposed to explain the process of insomnia relief through low-strength static magnetic fields. Analysis by functional Magnetic Resonance Imaging (fMRI) is used to further investigate the theory.

  10. Atom-atom scattering under cylindrical harmonic confinement: Numerical and analytic studies of the confinement induced resonance

    International Nuclear Information System (INIS)

    Bergeman, T.; Moore, M.G.; Olshanii, M.

    2003-01-01

    It was recently predicted [Phys. Rev. Lett. 81, 938 (1998)10.1103/PhysRevLett.81.938] that atom-atom scattering under transverse harmonic confinement is subject to a 'confinement-induced resonance' where the effective one-dimensional coupling strength diverges at a particular ratio of the confinement and scattering lengths. As the initial prediction made use of the zero-range pseudopotential approximation, we now report numerical results for finite-range interaction potentials that corroborate this resonance. In addition, we now present a physical interpretation of this effect as a novel type of Feshbach resonance in which the transverse modes of the confining potential assume the roles of 'open' and 'closed' scattering channels

  11. Fusion dynamics of 2020Ne + 20882Pb reaction using static and energy dependent Woods-Saxon potential

    International Nuclear Information System (INIS)

    Gautam, Manjeet Singh; Kaur, Amandeep; Sharma, Manoj K.

    2015-01-01

    The present work compares the theoretical predictions based on static Woods-Saxon potential and the EDWSP model along with one dimensional Wong formula. For 20 20 Ne + 208 82 Pb reaction, the theoretical calculations obtained by using static Woods-Saxon potential are substantially smaller than that of experimental data at below barrier energies and explain the fusion data at above barrier energies only. On the other hand, the EDWSP model based calculations adequately describe the observed fusion enhancement of 20 20 Ne + 208 82 Pb reaction in whole range of energy spread across the Coulomb barrier. Furthermore, a wide range of the diffuseness parameter ranging from 0.96 fm to 0.85 fm is required to address the sub-barrier fusion data

  12. Potential role of advanced fuels in inertial confinement fusion

    International Nuclear Information System (INIS)

    Miley, G.

    1981-01-01

    The potential importance of developing advanced (non D-T) fuel pellets for inertial confinement is discussed. Reduced radioactivity due to low tritium involvement and less neutron activation, improved blanket flexibility with the removal of tritium breeding requirements, and improved mating of the output energy spectrum with non-electrical applications such as synthetic fuel production could lead to technical advantages and earlier public acceptance. As a possible first step to advanced-fuel pellets, the A-FLINT concept of a D-T core ignited, deuterium pellet is proposed which would offer tritium self-sufficiency. A design is described that uses 0.1-MJ internal energy in a rhoR1--7 gm/cm2'' compressed pellet, giving a tritium breeding ratio of 1--1.0 and an internal pellet gain of 1--700

  13. Influence of the potential well and the potential barrier on the density distribution of confined-model fluids

    CERN Document Server

    Lee, B H; Lee, C H; Seong Baek Seok

    2000-01-01

    A density functional perturbative approximation, which is based on the density functional expansion of the one-particle direct correlation function of model fluids with respect to the bulk density, has been employed to investigate the influence of the potential well and the potential barrier on the density behavior of confined-model fluids. The mean spherical approximation has been used to calculate the two-particle direct correlation function of the model fluids. At lower densities, the density distributions are strongly affected by the barrier height and the well depth of the model potential, the contribution from the short-range repulsive part being especially important. However, the effects of the barrier height and the well depth of the model potential decrease with increasing bulk density. The calculated results also show that in the region where the effect of the wall-fluid interaction is relatively weak, the square-barrier part of the model potential leads to a nonuniformity in the density distributio...

  14. Triaxial quasi-static compression and creep behavior of bedded salt from southeastern New Mexico

    International Nuclear Information System (INIS)

    Hansen, F.D.

    1979-11-01

    This report summarizes the results obtained from a series of triaxial quasi-static compression and creep tests on specimens of bedded salt recovered at depth intervals of 1953 to 1954 and 2711 to 2722 feet in AEC Hole No. 7 in southeastern New Mexico. The primary objective was the determination of the deformational characteristics of the salt for prescribed stress and temperature states under quasi-static and time-dependent conditions. The test conditions encompassed confining pressures of 500 and 2000 psi, differential axial stresses of 1500, 3000 and 4500 psi, temperatures of 23 and 100 0 C, and time durations of several hours to ten days. The data analysis was confined primarily to power law fits to the creep strain-time measurements and to an evaluation of the principal strain ratio behavior for the various test conditions and axial strain magnitudes

  15. Structure and spectra of a confined HeH molecule

    International Nuclear Information System (INIS)

    Lo, J M H; Klobukowski, M; Bielinska-Wacz, D; Schreiner, E W S; Diercksen, G H F

    2006-01-01

    The influence of spatial confinement on the structure and spectra of the Rydberg HeH molecule is analysed at the level of the variational full configuration interaction approach. The confining potential is assumed to have cylindrical symmetry, with the symmetry axis of the potential overlapping with the molecular bond. In the direction perpendicular to the axis quadratic dependence of the potential on the electron coordinates is assumed. The influence of the confining potential on the form of the potential energy curves (in particular on the bond lengths), on the electronic spectra and on the ionization due to the confinement is studied in detail

  16. Static and kinetic friction of granite at high normal stress

    Science.gov (United States)

    Byerlee, J.D.

    1970-01-01

    Frictional sliding on ground surfaces of granite, angle of sliding planes 30?? and 45??, was investigated as a function of confining pressure. Over the normal stress range of 2-12 kb, the static frictional shear stress ??s follows the relationship ??s = 0??5 + 0?? ??n and the kinetic frictional shear stress ??k was calculated to be ??k = 0??25 + 0??47 ??n. ?? 1970.

  17. Critical quench dynamics in confined systems.

    Science.gov (United States)

    Collura, Mario; Karevski, Dragi

    2010-05-21

    We analyze the coherent quantum evolution of a many-particle system after slowly sweeping a power-law confining potential. The amplitude of the confining potential is varied in time along a power-law ramp such that the many-particle system finally reaches or crosses a critical point. Under this protocol we derive general scaling laws for the density of excitations created during the nonadiabatic sweep of the confining potential. It is found that the mean excitation density follows an algebraic law as a function of the sweeping rate with an exponent that depends on the space-time properties of the potential. We confirm our scaling laws by first order adiabatic calculation and exact results on the Ising quantum chain with a varying transverse field.

  18. Phenomenology and theory of confinement

    International Nuclear Information System (INIS)

    Pervushin, V.N.

    1987-01-01

    Phenomenological and theoretical arguments of the separation of the hadronization dynamics from confinement and the idea of the ''kinematic'' confinement are discussed. The recent theory contains results which point out that the Wilson criterion and the confinement potentials are not sufficient for explaining the phenomenological confinement in the sense of zero color amplitudes or Green functions. However, these potentials well explain the hadron spectrum and spontaneous breaking of chiral symmetry, i.e., the hadronization dynamics. The ''kinematic'' confinement can be explained by the topological degeneration of all color-particle physical states in QCD. This degeneration arises if the theory is quantized by explicitly solving the gauge and dynamic constraints: all color states are defined up to gauge(phase) factors describing the map of the three-dimensional space onto SU(3) c -group (π 3 (SU(3) c =Z). The total probability of the color particle generation is equal to zero due to the destructive interference of these phase factors. As a result, in QCD there remains only a hadron sector used in the phenomenology

  19. Aspects of thermodynamics and confinement in the lattice formulation of QCD

    International Nuclear Information System (INIS)

    Liptak, L.

    2009-01-01

    various implementations of the factorization formula to evaluate fermion determinants efficiently both in the grand canonical approach and in the canonical one. First, using the factorization we were able to study finite-temperature systems of larger size than it was possible before. Second, we looked at some properties of the canonical partition functions and grand canonical functions for ensembles of quenched SU(3) configurations. - Confinement of color is believed to be a common feature of non-Abelian gauge theories, related to the complicated structure of the vacuum and independent of the particular choice of the gauge group. Therefore it should exist both in real QCD as well as e.g. in a theory with the exceptional Lie group G 2 as a gauge group. On the other hand, SU(N) and G 2 gauge theories differ in many important aspects. For example, the center of the gauge group - which was shown to be important for both confinement and at finite temperatures - is nontrivial for an SU(N) group, while it is trivial in the case of G 2 . This apparent contradiction is a reason why the G 2 gauge theory has recently attracted attention as a laboratory for studying various questions about the nature of the phenomenon of color confinement. In particular, Greensite et al. presented a simple model of the vacuum structure, common for SU(N) and G 2 , in which the center plays a role, irrespective whether it is trivial or nontrivial. The essential ingredient of the model is that the vacuum possesses a domain structure and color magnetic fields fluctuate almost independently in each domain, only fulfilling a constraint that the total flux corresponds to an element of the center. A specific prediction of the model is a linear rise of static potentials between color charges from all representations of the gauge group at intermediate distances. Proportionality constants of the linear terms in static potentials, the string tensions, should obey Casimir scaling, i.e. should be proportional to

  20. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Directory of Open Access Journals (Sweden)

    Manvir S. Kushwaha

    2014-12-01

    Full Text Available Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding the size of the quantum dots: resulting into a blue (red shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower magneto-optical transitions survive even in the extreme instances. However, the intra

  1. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Manvir S. [Department of Physics and Astronomy, Rice University, P.O. Box 1892, Houston, TX 77251 (United States)

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level

  2. Static electromagnetic frequency changers

    CERN Document Server

    Rozhanskii, L L

    1963-01-01

    Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work

  3. Performance of Geosynthetic-Reinforced Soils Under Static and Cyclic Loading

    Directory of Open Access Journals (Sweden)

    M. Touahmia

    2017-04-01

    Full Text Available This paper investigates and discusses the composite behavior of geosynthetic reinforced soil mass. It presents the results of a series of large-scale laboratory tests supported by analytical methods to examine the performance of geogrid reinforcement subjected to static and cyclic pullout loading. The testing equipment and procedures used for this investigation are outlined. The results show that geosynthetic reinforcement can mobilize great resistance to static pulling load under high confining pressures. The reinforcement exhibits gradual deformation under cyclic loading showing no sign of imminent pullout failure for all levels of applied loads. In general, the results demonstrate that geosynthetic can be used in situations where loads are non-static, although care will be required in ensuring that appropriate factors of safety are applied to control the resulting deformation. A simplified analytical model for calculating the pulling capacity of geosynthetic reinforcement is proposed.

  4. Centre-of-mass corrections for the harmonic S+V potential model

    International Nuclear Information System (INIS)

    Palladino, B.E.; Ferreira, P.L.

    1986-01-01

    Center-of-Mass corrections to the mass spectrum and static properties of low-lying S-wave baryoins are discussed in the context of a relativistic, independent quark model, based on a Dirac equation, with equally mixed scalar and vector confining potential of harmomic type. A more stisfactory fitting of the parameters involved is obtained, as compared with previous treatments which CM corrections were neglected. (Author) [pt

  5. Radiative decay of mesons in an independent-quark potential model

    International Nuclear Information System (INIS)

    Barik, N.; Dash, P.C.; Panda, A.R.

    1992-01-01

    We investigate in a potential model of independent quarks the M1 transitions among the low-lying vector (V) and pseudoscalar (P) mesons. We perform a ''static'' calculation of the partial decay widths of twelve possible M1 transitions such as V→Pγ and P→Vγ within the traditional picture of photon emission by a confined quark and/or antiquark. The model accounts well for the observed decay widths

  6. Influence of the void ratio and the confining on the static liquefaction in slopes in shangi sand

    Directory of Open Access Journals (Sweden)

    Alfonso Mariano Ramos Cañón

    2015-01-01

    Full Text Available A numerical study on the onset of static liquefaction in slopes under undrained conditions of loading was developed based on a general liquefaction flow instability criterion for elastoplastic soils based on the concept of loss of controllability. The criterion is applied to the case of axisymmetric loading to detect the onset of static liquefaction. The criterion is used in conjunction with an elastoplastic model for sands and is tested by means of numerical simulations of element tests. The numerical results are compared with experimental evidence obtaining good agreement. A quantitative study of the influence of the mean pressure, void ratio and the anisotropy of stress on the onset of static liquefaction is presented for the Changi sand. From the analysis of the numerical results, it can be concluded that: a. the mobilized friction angle at the onset of liquefaction is not an intrinsic property of the material, but is a state variable b. Despite of the multiple variables involved in the process of generation of undrained instability, the state of stresses at the onset of static liquefaction can be conveniently represented by a linear relation between Dq/po and no . This graphical representation can be used in the practice of geotechnical engineering to quantify the margin of security against the static liquefaction of a sandy slope.

  7. Quark propagators and correlators in a confining vacuum

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1987-01-01

    Quark propagators, quark-antiquark Green functions and photon selfenergy operator Π (2) (k) are considered in the background (anti)selfdual field. The cases of a homogeneous selfdual field in d=4 and magnetic field in d=2 are studied in detail. Isolated quarks and quark-antiquark pairs are shown to be confined in those cases with the quadratic form of confining potential. In the space filled with domains of the homogeneous field with random directions the confining potential is of linear form, and the colorless qq-bar pair is not confined

  8. AERODYNAMIC STUDIES IN THE STATIC COMPONENTS OF A CENTRIFUGAL COMPRESSOR STAGE

    Directory of Open Access Journals (Sweden)

    K. Srinivasa Reddy

    2011-12-01

    Full Text Available Aerodynamic studies in the static components of a centrifugal compressor stage were conducted using the computational fluid dynamics solver FLUENT. For the simulation study, a typical centrifugal compressor stage geometry with a flow coefficient of 0.053 was chosen, The study is confined to the static components of the centrifugal compressor stage, i.e., the crossover bend (180° U-bend, a radial cascade of return channel vanes, and the exit ducting (90° L-turn. The aerodynamic performance is reported in terms of total pressure loss coefficient, static pressure recovery coefficient, return channel vane surface static pressure distribution, and stage exit swirl angle distribution. The simulated flow through the static components covered five different operating conditions of the actual centrifugal compressor stage: the design point with 100% flow rate, and the off-design operating conditions with 70%, 80%, 110%, and 120% flow rates. The standard k-ε model was used with standard wall functions to predict the turbulence. A minimum total pressure loss coefficient was observed near 80% flow rate when the average flow angle at the U-bend inlet was 24°. Better static pressure recovery was observed with 70%, 80%, and 100% flow rates. The swirl angle distribution at the stage exit was recognized as satisfactory.

  9. {lambda}{sub MS} from the static potential for QCD with n{sub f}=2 dynamical quark flavors

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Roma Univ. ' ' Tor Vergata' ' (Italy). Dipt. di Fisica; INFN, Roma (Italy); Karbstein, Felix [Helmholtz-Institut Jena (Germany); Jena Univ. (Germany). Theoretisch-Physikalisches Inst.; Nagy, Attila [Humboldt Univ. Berlin (Germany); Wagner, Marc [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik

    2011-12-15

    We determine {lambda}{sub MS} for QCD with n{sub f}=2 dynamical quark flavors by fitting the Q anti Q static potential known analytically in the perturbative regime up to terms of O({alpha}{sub s}{sup 4}) and {proportional_to}{alpha}{sub s}{sup 4} ln{alpha}{sub s} to corresponding results obtained from lattice simulations. This has become possible, due to recent advances in both perturbative calculations, namely the determination and publication of the last missing contribution to the Q anti Q static potential at O({alpha}{sub s}{sup 4}), and lattice simulations with n{sub f}=2 dynamical quark flavors performed at the rather fine lattice spacing of a{approx}0.042 fm. Imposing conservative error estimates we obtain {lambda}{sub MS}=315(30) MeV. (orig.)

  10. General approach to polymer chains confined by interacting boundaries.

    Science.gov (United States)

    Freed, Karl F; Dudowicz, Jacek; Stukalin, Evgeny B; Douglas, Jack F

    2010-09-07

    Polymer chains, confined to cavities or polymer layers with dimensions less than the chain radius of gyration, appear in many phenomena, such as gel chromatography, rubber elasticity, viscolelasticity of high molar mass polymer melts, the translocation of polymers through nanopores and nanotubes, polymer adsorption, etc. Thus, the description of how the constraints alter polymer thermodynamic properties is a recurrent theoretical problem. A realistic treatment requires the incorporation of impenetrable interacting (attractive or repulsive) boundaries, a process that introduces significant mathematical complications. The standard approach involves developing the generalized diffusion equation description of the interaction of flexible polymers with impenetrable confining surfaces into a discrete eigenfunction expansion, where the solutions are normally truncated at the first mode (the "ground state dominance" approximation). This approximation is mathematically well justified under conditions of strong confinement, i.e., a confinement length scale much smaller than the chain radius of gyration, but becomes unreliable when the polymers are confined to dimensions comparable to their typically nanoscale size. We extend a general approach to describe polymers under conditions of weak to moderate confinement and apply this semianalytic method specifically to determine the thermodynamics and static structure factor for a flexible polymer confined between impenetrable interacting parallel plate boundaries. The method is first illustrated by analyzing chain partitioning between a pore and a large external reservoir, a model system with application to chromatography. Improved agreement is found for the partition coefficients of a polymer chain in the pore geometry. An expression is derived for the structure factor S(k) in a slit geometry to assist in more accurately estimating chain dimensions from scattering measurements for thin polymer films.

  11. The effects of confining pressure and stress difference on static fatigue of granite

    Science.gov (United States)

    Kranz, R. L.

    1980-01-01

    Samples of Barre granite have been creep tested at room temperature at confining pressures up to 2 kbar. Experimental procedures are described and the results of observations and analysis are presented. It is noted that the effect of pressure is to increase the amount of inelastic deformation the rock can sustain before becoming unstable. It is also shown that this increased deformation is due to longer and more numerous microcracks.

  12. Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.

    Science.gov (United States)

    Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.

  13. Mechanism for confinement in massive quark QCD

    International Nuclear Information System (INIS)

    Adler, S.L.

    1981-01-01

    The first part of this talk reviews the mean field approach to quark statics and the leading log model for bag formation was given in a recent paper. The second part treats two new topics. First, a flux function reformulation of the leading log model which leads to a stable iterative numerical method is given. Second, it is shown that when the running coupling constant is defined so that the β-function terminates at 1- or 2-loop order, QCD has two perturbative regions: the standard asymptotically free region F 2 much greater than kappa 2 (with kappa/sup 1/2/ the scale mass), and a second asymptotically free region where vertical bar F 2 vertical bar much less than kappa 2 . The existence of this second region gives a perturbative QCD justification for the weak-field behavior of the leading log model which is responsible for confinement. A possible starting point is suggested for an attempt at a general confinement proof

  14. Accurate collision integrals for the attractive static screened Coulomb potential with application to electrical conductivity

    International Nuclear Information System (INIS)

    Macdonald, J.

    1991-01-01

    The results of accurate calculations of collision integrals for the attractive static screened Coulomb potential are presented. To obtain high accuracy with minimal computational cost, the integrals are evaluated by a quadrature method based on the Whittaker cardinal function. The collision integrals for the attractive potential are needed for calculation of the electrical conductivity of a dense fully or partially ionized plasma, and the results presented here are appropriate for the conditions in the nondegenerate envelopes of white dwarf stars. 25 refs

  15. Terapascal static pressure generation with ultrahigh yield strength nanodiamond.

    Science.gov (United States)

    Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly

    2016-07-01

    Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.

  16. Impurity with two electrons in the spherical quantum dot with Unite confinement potential

    International Nuclear Information System (INIS)

    Baghdasaryan, D A; Ghaltaghchyan, H Ts; Kazaryan, E M; Sarkisyan, H A

    2016-01-01

    Two-electron states in a spherical QD with the hydrogenic impurity located in the center and with a finite height confinement potential barrier are investigated. The effective mass mismatch have been taken into account. The dependence of ground state energy and Coulomb electron-electron interaction energy correction on the QD size is studied. The problem of the state exchange time control in QD is discussed, taking into account the spins of the electrons in the Russell-Saunders approximation. The effect of quantum emission has been shown. (paper)

  17. Thermal characterization of static and dynamical properties of the confined molecular systems interacting through dispersion force.

    Science.gov (United States)

    Ramos, Sergio Luis L M; Ogino, Michihiko; Oguni, Masaharu

    2015-01-28

    We investigated the thermal properties of liquid methylcyclohexane and racemic sec-butylcyclohexane, as representatives of a molecular system with only dispersion-force intermolecular interactions, confined in the pores (thickness/diameter d = 12, 6, 1.1 nm) of silica gels by adiabatic calorimetry. The results imply a heterogeneous picture for molecular aggregate under confinement consisting of an interfacial region and an inner pore one. In the vicinity of a glass-transition temperature T(g,bulk) of bulk liquid, two distinguishable relaxation phenomena were observed for the confined systems and their origins were attributed to the devitrification, namely glass transition, processes of (1) a layer of interfacial molecules adjacent to the pore walls and (2) the molecules located in the middle of the pore. A third glass-transition phenomenon was observed at lower temperatures and ascribed to a secondary relaxation process. The glass transition of the interfacial-layer molecules was found to proceed at temperatures rather above T(g,bulk), whereas that of the molecules located in the inner pore region occurred at temperatures below T(g,bulk). We discuss the reason why the molecules located in different places in the pores reveal the respectively different dynamical properties.

  18. Thermodynamics of partially confined Fermi gases at low temperature

    International Nuclear Information System (INIS)

    Toms, David J

    2004-01-01

    We examine the behaviour of non-interacting Fermi gases at low temperature. If there is a confining potential present the thermodynamic behaviour is altered from the familiar results for the unconfined gas. The role of de Haas-van Alphen type oscillations that are a consequence of the confining potential is considered. Attention is concentrated on the behaviour of the chemical potential and the specific heat. Results are compared and contrasted with those for an unconfined and a totally confined gas

  19. Utility of the Static-99 and Static-99R With Latino Sex Offenders.

    Science.gov (United States)

    Leguízamo, Alejandro; Lee, Seung C; Jeglic, Elizabeth L; Calkins, Cynthia

    2017-12-01

    The predictive validity of the Static-99 measures with ethnic minorities in the United States has only recently been assessed with mixed results. We assessed the predictive validity of the Static-99 and Static-99R with a sample of Latino sex offenders ( N = 483) as well as with two subsamples (U.S.-born, including Puerto Rico, and non-U.S.-born). The overall sexual recidivism rate was very low (1.9%). Both the Static-99 measures were able to predict sexual recidivism for offenders born in the United States and Puerto Rico, but neither was effective in doing so for other Latino immigrants. Calibration analyses ( N = 303) of the Static-99R were consistent with the literature and provided support for the potential use of the measure with Latinos born in the United States and Puerto Rico. These findings and their implications are discussed as they pertain to the assessment of Latino sex offenders.

  20. Tetraquark resonances computed with static lattice QCD potentials and scattering theory

    Directory of Open Access Journals (Sweden)

    Bicudo Pedro

    2018-01-01

    Full Text Available We study tetraquark resonances with lattice QCD potentials computed for two static quarks and two dynamical quarks, the Born-Oppenheimer approximation and the emergent wave method of scattering theory. As a proof of concept we focus on systems with isospin I = 0, but consider different relative angular momenta l of the heavy b quarks. We compute the phase shifts and search for S and T matrix poles in the second Riemann sheet. We predict a new tetraquark resonance for l = 1, decaying into two B mesons, with quantum numbers I(JP = 0(1−, mass m=10576−4+4 MeV and decay width Γ=112−103+90 MeV.

  1. Proposal for an Experimental Test of the Role of Confining Potentials in the Integral Quantum Hall Effect

    OpenAIRE

    Brueckner, Reinhold

    2000-01-01

    We propose an experiment using a three-gate quantum Hall device to probe the dependence of the integral quantum Hall effect (IQHE) on the shape of the lateral confining potential in edge regions. This shape can, in a certain configuration determine whether or not the IQHE occurs.

  2. Studies on the quark confinement in a non-relativistic quark model

    International Nuclear Information System (INIS)

    Pfenninger, T.

    1988-01-01

    In the framework of the non-relativistic quark model we have studied several aspects of the description of the confinement by a confinement potential. A first consideration applied to the effects of the long-range color van-der-Waals forces on the nucleon-nucleon scattering. Regarding color dipole states as an additional closed channel in a dynamical and nonlocal resonating-group calculation we found a strong attraction. Additionally it was possible by means of the RGM kernels to derive an against earlier calculations improved color van-der-Waals potential in adiabatic approximation which regards correctly the internal kinetic and the confinement energy of the color octet states. This potential is not confined to large NN distances and shows asymptotically a 1/R 2 behaviour if it is based on a harmonic confinement. A further study applied to the question how far a possible vector character of the confinement, which is suggested by the elementary quark-gluon vertex, has effects on baryon properties and the NN interaction. Here it resulted that the vector confinement reacts in view of the model parameters very sensitively in the baryon properties whereas the scalar confinement did not show this dependence. In the NN scattering this vector confinement however plays a more secondary role. Because of the difficulties of the usual confinement potential with long-range color van-der-Waals forces we proposed in the last part a new potential and additional orthogonality relations for the quark wave functions in order to accomodate in the potential model to the string degrees of freedom. In scattering calculations we again studied the effects of the modification on the NN interaction. (orig./HSI) [de

  3. Enhanced ordering reduces electric susceptibility of liquids confined to graphene slit pores

    Science.gov (United States)

    Terrones, Jeronimo; Kiley, Patrick J.; Elliott, James A.

    2016-01-01

    The behaviours of a range of polar and non-polar organic liquids (acetone, ethanol, methanol, N-methyl-2-pyrrolidone (NMP), carbon tetrachloride and water) confined to 2D graphene nanochannels with thicknesses in the range of 4.5 Å to 40 Å were studied using classical molecular dynamics and hybrid density functional theory. All liquids were found to organise spontaneously into ordered layers parallel to the confining surfaces, with those containing polar molecules having their electric dipoles aligned parallel to such surfaces. In particular, monolayers of NMP showed remarkable in-plane ordering and low molecular mobility, suggesting the existence of a previously unknown 2D solid-like phase. Calculations for polar liquids showed dramatically reduced static permittivities normal to the confining surfaces; these changes are expected to improve electron tunnelling across the liquid films, modifying the DC electrical properties of immersed assemblies of carbon nanomaterials. PMID:27265098

  4. Translation of an FRC plasma into a quasi-spherical confinement region

    International Nuclear Information System (INIS)

    Sekiguchi, Jun'ichi; Asai, Tomohiko; Takahashi, Tsutomu; Takahashi, Toshiki

    2014-01-01

    Translation of a Field-Reversed Configuration (FRC) into a quasi-spherical confinement region with super-alfvenic translation speed has been successfully conducted. Translation speed can be controlled in the range from 80 to 150 km/s by changing statically filled gas pressure. The translated FRC experiences radial decompression process rapidly when it enters into the confinement chamber. The separatrix shape of translated FRC is controlled through the translation process. Especially, in the case of FRC translation into deuterium gas atmosphere, elongation of the FRC is roughly unity. It indicates possible application of center solenoid onto the high-beta compact torus of FRC. Also, as a new finding, a rotational instability with an n=2 deformation has been observed in the translated FRC. (author)

  5. Role of Lie algebra for confinement in non-abelian gauge field scheme

    International Nuclear Information System (INIS)

    Fukushima, K.; Sato, H.

    2014-01-01

    This article reports an explicit function form for confining classical Yang-Mills vector potentials and quantum fluctuations around the classical field. The classical vector potential, which is composed of a confining localized function and an unlocalized function, satisfies the classical Yang-Mills equation. The confining localized function contributes to the Wilson loop, while the unlocalized function makes no contribution to this loop. The confining linear potential between a heavy fermion and antifermion is due to (1) the Lie algebra and (2) the form of the confining localized function which has opposite signs at the positions of the particle and antiparticle along the Wilson loop in the time direction. Some classical confining parts of vector potentials also change sign on inversion of the coordinates of the axis perpendicular to the axis joining the two particles. The localized parts of the vector potentials are squeezed around the axis connecting the two particles, and the string tension of the confining linear potential is derived. Quantum fluctuations are formulated using a field expression in terms of local basis functions in real spacetime. The quantum path integral gives the Coulomb potential between the two particles in addition to the linear potential due to the classical fields

  6. Monte Carlo study of one-dimensional confined fluids with Gay-Berne intermolecular potential

    Science.gov (United States)

    Moradi, M.; Hashemi, S.

    2011-11-01

    The thermodynamic quantities of a one dimensional system of particles with Gay-Berne model potential confined between walls have been obtained by means of Monte Carlo computer simulations. For a number of temperatures, the systems were considered and their density profiles, order parameter, pressure, configurational temperature and average potential energy per particle are reported. The results show that by decreasing the temperature, the soft particles become more ordered and they align to the walls and also they don't show any tendency to be near the walls at very low temperatures. We have also changed the structure of the walls by embedding soft ellipses in them, this change increases the total density near the wall whereas, increasing or decreasing the order parameter depend on the angle of embedded ellipses.

  7. Simulations of water nano-confined between corrugated planes

    Science.gov (United States)

    Zubeltzu, Jon; Artacho, Emilio

    2017-11-01

    Water confined to nanoscale widths in two dimensions between ideal planar walls has been the subject of ample study, aiming at understanding the intrinsic response of water to confinement, avoiding the consideration of the chemistry of actual confining materials. In this work, we study the response of such nanoconfined water to the imposition of a periodicity in the confinement by means of computer simulations, both using empirical potentials and from first-principles. For that we propose a periodic confining potential emulating the atomistic oscillation of the confining walls, which allows varying the lattice parameter and amplitude of the oscillation. We do it for a triangular lattice, with several values of the lattice parameter: one which is ideal for commensuration with layers of Ih ice and other values that would correspond to more realistic substrates. For the former, the phase diagram shows an overall rise of the melting temperature. The liquid maintains a bi-layer triangular structure, however, despite the fact that it is not favoured by the external periodicity. The first-principles liquid is significantly affected by the modulation in its layering and stacking even at relatively small amplitudes of the confinement modulation. Beyond some critical modulation amplitude, the hexatic phase present in flat confinement is replaced by a trilayer crystalline phase unlike any of the phases encountered for flat confinement. For more realistic lattice parameters, the liquid does not display higher tendency to freeze, but it clearly shows inhomogeneous behaviour as the strength of the rugosity increases. In spite of this expected inhomogeneity, the structural and dynamical response of the liquid is surprisingly insensitive to the external modulation. Although the first-principles calculations give a more triangular liquid than the one observed with empirical potentials (TIP4P/2005), both agree remarkably well for the main conclusions of the study.

  8. An optical potential for the statically deformed actinide nuclei derived from a global spherical potential

    Science.gov (United States)

    Al-Rawashdeh, S. M.; Jaghoub, M. I.

    2018-04-01

    In this work we test the hypothesis that a properly deformed spherical optical potential, used within a channel-coupling scheme, provides a good description for the scattering data corresponding to neutron induced reactions on the heavy, statically deformed actinides and other lighter deformed nuclei. To accomplish our goal, we have deformed the Koning-Delaroche spherical global potential and then used it in a channel-coupling scheme. The ground-state is coupled to a sufficient number of inelastic rotational channels belonging to the ground-state band to ensure convergence. The predicted total cross sections, elastic and inelastic angular distributions are in good agreement with the experimental data. As a further test, we compare our results to those obtained by a global channel-coupled optical model whose parameters were obtained by fitting elastic and inelastic angular distributions in addition to total cross sections. Our results compare quite well with those obtained by the fitted, channel-coupled optical model. Below neutron incident energies of about 1MeV, our results show that scattering into the rotational excited states of the ground-state band plays a significant role in the scattering process and must be explicitly accounted for using a channel-coupling scheme.

  9. Performance analysis and optimization for generalized quantum Stirling refrigeration cycle with working substance of a particle confined in a general 1D potential

    Science.gov (United States)

    Yin, Yong; Chen, Lingen; Wu, Feng

    2018-03-01

    A generalized irreversible quantum Stirling refrigeration cycle (GIQSRC) is proposed. The working substance of the GIQSRC is a particle confined in a general 1D potential which energy spectrum can be expressed as εn = ℏωnσ . Heat leakage and non-ideal regeneration loss are taken into account. The expressions of coefficient of performance (COP) and dimensionless cooling load are obtained. The different practical cases of the energy spectrum are analyzed. The results of this paper are meaningful to understand the quantum thermodynamics cycles with a particle confined in different potential as working substance.

  10. Confined Space Evaluation Student Manual, #19613

    Energy Technology Data Exchange (ETDEWEB)

    Wilmot, David Ezekiel [Los Alamos National Laboratory

    2016-08-29

    Many workplaces contain spaces that are considered to be “confined” because their configuration hinders the activities of employees who must enter into, work in, and exit from them. In general, the permit-required confined spaces (PRCSs) Occupational Safety and Health Administration (OSHA) standard requires that Los Alamos National Laboratory (LANL) evaluate the workplace to determine if any spaces are PRCSs. The standard specifies strict procedures for the evaluation and atmospheric testing of a space before and during an entry by workers. The OSHA PRCS standard provides for alternative (less stringent than full-permit) entry procedures in cases where the only hazard in a space is atmospheric and the hazard can be controlled by forced air. At LANL, all confined spaces or potential confined spaces on LANL-owned or -operated property must be identified and evaluated by a confined space evaluator accompanied by a knowledgeable person. This course provides the information needed by confined space evaluators to make judgements about whether a space is a confined space, and if so, whether the space will require a permit for entry.

  11. Mixed Finite Element Method for Static and Dynamic Contact Problems with Friction and Initial Gaps

    Directory of Open Access Journals (Sweden)

    Lanhao Zhao

    2014-01-01

    Full Text Available A novel mixed finite element method is proposed for static and dynamic contact problems with friction and initial gaps. Based on the characteristic of local nonlinearity for the problem, the system of forces acting on the contactor is divided into two parts: external forces and contact forces. The displacement of structure is chosen as the basic variable and the nodal contact force in contact region under local coordinate system is selected as the iteration variable to confine the nonlinear iteration process in the potential contact surface which is more numerically efficient. In this way, the sophisticated contact nonlinearity is revealed by the variety of the contact forces which are determined by the external load and the contact state stick, slip, or separation. Moreover, in the case of multibody contact problem, the flexibility matrix is symmetric and sparse; thus, the iterative procedure becomes easily carried out and much more economical. In the paper, both the finite element formulations and the iteration process are given in detail for static and dynamic contact problems. Four examples are included to demonstrate the accuracy and applicability of the presented method.

  12. Structure and dynamics of a silica melt in neutral confinement

    Science.gov (United States)

    Geske, Julian; Drossel, Barbara; Vogel, Michael

    2017-04-01

    We analyze the effects of spatial confinement on viscous silica using molecular dynamics simulations. For this purpose, we prepare a silica melt in a cylindrical pore, which is produced by pinning appropriate fractions of silicon and oxygen atoms in a bulk system after an equilibration period. In this way, the structure of the confined silica melt remains unaffected, while the confinement has a strong impact on the dynamics. We find that the structural relaxation of viscous silica is slowed down according to a double exponential law when approaching the pore wall. Moreover, we observe that static density correlations exist in the vicinity of the pore wall. Based on these effects, we determine dynamical and structural length scales of the silica melt. Both length scales show a similar increase upon cooling, with values on the order of the next-neighbor distances in the studied temperature range. Interestingly, we find no evidence that the growth of the length scales is affected by a fragile-to-strong transition of the silica melt. This observation casts serious doubts on the relevance of these length scales for the structural relaxation, at least for the studied glass former.

  13. Model based investigation of the potential lactate recovery using Electro-Enhanced Dialysis - Static analysis

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil

    2011-01-01

    The competitive ion transport through anion exchange membranes under current load conditions, referred to as the electro-enhanced dialysis process, is modeled and investigated through simulations. A dynamic model has been developed for simultaneous transport of multiple ions based on the Nernst......–Plank equation. This model accounts for the convective transport of the dissociated and undissociated species in the module channels, and the diffusion and migration across the boundary layers and membranes. The potential static flux enhancement is evaluated and compared to Donnan dialysis operation for lactate...

  14. Atoms confined in a penetrable potential: effect of the atom position on the electric and magnetic responses

    International Nuclear Information System (INIS)

    Acosta Coden, Diego S; Gomez, Sergio S; Romero, Rodolfo H

    2011-01-01

    We report results of the calculation of polarizability and the nuclear magnetic shielding tensors of two-electron atoms confined within an attractive Gaussian potential well. The electric and magnetic responses are obtained within the random phase approximation (RPA) of the polarization propagator. The influence of the depth and range of the potential on the electronic structure is also studied. The dependence of the parallel (along the displacement) and perpendicular components of the polarizability and shielding tensors on the distance of the atom to the centre of the well is calculated and rationalized as a dissociation-type process of the artificial diatomic molecule formed between the Coulomb and the well potentials.

  15. Atoms confined in a penetrable potential: effect of the atom position on the electric and magnetic responses

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Coden, Diego S; Gomez, Sergio S; Romero, Rodolfo H, E-mail: rhromero@exa.unne.edu.ar [Instituto de Modelado e Innovacion Tecnologica, CONICET and Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400) Corrientes (Argentina)

    2011-02-14

    We report results of the calculation of polarizability and the nuclear magnetic shielding tensors of two-electron atoms confined within an attractive Gaussian potential well. The electric and magnetic responses are obtained within the random phase approximation (RPA) of the polarization propagator. The influence of the depth and range of the potential on the electronic structure is also studied. The dependence of the parallel (along the displacement) and perpendicular components of the polarizability and shielding tensors on the distance of the atom to the centre of the well is calculated and rationalized as a dissociation-type process of the artificial diatomic molecule formed between the Coulomb and the well potentials.

  16. Static properties of the nucleon octet in a relativistic potential model with center-of-mass correction

    International Nuclear Information System (INIS)

    Barik, N.; Dash, B.K.; Das, M.

    1985-01-01

    The static properties, such as magnetic moment, charge radius, and axial-vector coupling constants, of the quark core of baryons in the nucleon octet have been studied in an independent-quark model based on the Dirac equation with equally mixed scalar-vector potential in harmonic form in the current quark mass limit. The results obtained with the corrections due to center-of-mass motion are in reasonable agreement with experimental values

  17. Observation of ion confining potential enhancement due to thermal barrier potential formation and its scaling law in the tandem mirror GAMMA 10

    International Nuclear Information System (INIS)

    Cho, Teruji; Nakashima, Yousuke; Foote, J.H.

    1987-01-01

    In the tandem mirror GAMMA 10, (i) the enhancement of the ion confining potential, φ c , only during the period of the thermal barrier potential φ b -formation, has been observed first by using not only end-loss-analysers (ELA's) of GAMMA 10 but an end-loss-ion-spectrometer (ELIS) installed from TMX-U. This results in strong end-loss-ion plugging with increased central cell density. (ii) The first experimental observation of the φ c vs φ b -scaling law is obtained, where φ c increases with φ b . This scaling law is consistently interpreted by Cohen's theories of the weak-ECH and the strong-ECH in the plug region. (iii) Good agreement of the plug potential measured with the ELA's and the ELIS is achieved. (author)

  18. Plasma confinement in the TMX tandem mirror

    International Nuclear Information System (INIS)

    Hooper, E.B. Jr.; Allen, S.L.; Casper, T.A.

    1981-01-01

    Plasma confinement in the Tandem Mirror Experiment (TMX) is described. Axially confining potentials are shown to exist throughout the central 20-cm core of TMX. Axial electron-confinement time is up to 100 times that of single-cell mirror machines. Radial transport of ions is smaller than axial transport near the axis. It has two parts at large radii: nonambipolar, in rough agreement with predictions from resonant-neoclassical transport theory, and ambipolar, observed near the plasma edge under certain conditions, accompanied by a low-frequency, m = 1 instability or strong turbulence

  19. Confinement Can Violate Momentum Sum Rule in QCD at High Energy Colliders

    OpenAIRE

    Nayak, Gouranga C

    2018-01-01

    Momentum sum rule in QCD is widely used at high energy colliders. Although the exact form of the confinement potential energy is not known but the confinement potential energy at large distance $r$ can not rise slower than ${\\rm ln}(r)$. In this paper we find that if the confinement potential energy at large distance $r$ rises linearly with $r$ (or faster) then the momentum sum rule in QCD is violated at the high energy colliders.

  20. Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements.

    Science.gov (United States)

    Das, Siddhartha; Chakraborty, Suman

    2010-07-06

    In this article, we investigate the implications of ionic conductivity variations within the electrical double layer (EDL) on the streaming potential estimation in pressure-driven fluidic transport through narrow confinements. Unlike the traditional considerations, we do not affix the ionic conductivities apriori by employing preset values of dimensionless parameters (such as the Dukhin number) to estimate the streaming potential. Rather, utilizing the Gouy-Chapman-Grahame model for estimating the electric potential and charge density distribution within the Stern layer, we first quantify the Stern layer electrical conductivity as a function of the zeta potential and other pertinent parameters quantifying the interaction of the ionic species with the charged surface. Next, by invoking the Boltzmann model for cationic and anionic distribution within the diffuse layer, we obtain the diffuse layer electrical conductivity. On the basis of these two different conductivities pertaining to the two different portions of the EDL as well as the bulk conductivity, we define two separate Dukhin numbers that turn out to be functions of the dimensionless zeta potential and the channel height to Debye length ratio. We derive analytical expressions for the streaming potential as a function of the fundamental governing parameters, considering the above. The results reveal interesting and significant deviations between the streaming potential predictions from the present considerations against the corresponding predictions from the classical considerations in which electrochemically consistent estimates of variable EDL conductivity are not traditionally accounted for. In particular, it is revealed that the variations of streaming potential with zeta potential are primarily determined by the competing effects of EDL electromigration and ionic advection. Over low and high zeta potential regimes, the Stern layer and diffuse layer conductivities predominantly dictate the streaming

  1. Entropic stochastic resonance without external force in oscillatory confined space

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Huai; Jiang, Huijun; Hou, Zhonghuai, E-mail: hzhlj@ustc.edu.cn [Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-05-21

    We have studied the dynamics of Brownian particles in a confined geometry of dumbbell-shape with periodically oscillating walls. Entropic stochastic resonance (ESR) behavior, characterizing by a maximum value of the coherent factor Q at some optimal level of noise, is observed even without external periodic force in the horizontal direction, which is necessary for conventional ESR where the wall is static and the particle is subjected to the force. Interestingly, the ESR can be remarkably enhanced by the particle gravity G, in contrast to the conventional case. In addition, Q decreases (increases) with G in the small (large) noise limit, respectively, while it non-monotonically changes with G for moderate noise levels. We have applied an effective 1D coarsening description to illustrate such a nontrivial dependence on G, by investigating the property of the 1D effective potential of entropic nature and paying special attention to the excess part resulting from the boundary oscillation. Dependences of the ESR strength with other related parameters are also discussed.

  2. Hermitian relativity, chromodynamics and confinement

    International Nuclear Information System (INIS)

    Treder, H.J.

    1983-01-01

    The extension of the Riemann metrics of General Relativity to the complex domain (substitution of the symmetry conditions for the fundamental tensor, the affinity and the Ricci curvature by the conditions of hermicity) leads to a 'Generalized Theory of Gravity' (Einstein) describing the Newton-Einstein gravodynamics combined with the chromodynamics of quarks. The interaction of gravodynamics and chromodynamics implied by the Einstein-Schroedinger field equations of the hermitian relativity theory enforces the 'confinement'. The 'confinement' prevents the gravitational potential from divergence which would result in the lack of a Riemann space-time metric

  3. Analytical results for the time-dependent current density distribution of expanding ultracold gases after a sudden change of the confining potential

    Science.gov (United States)

    Boumaza, R.; Bencheikh, K.

    2017-12-01

    Using the so-called operator product expansion to lowest order, we extend the work in Campbell et al (2015 Phys. Rev. Lett 114 125302) by deriving a simple analytical expression for the long-time asymptotic one-body reduced density matrix during free expansion for a one-dimensional system of bosons with large atom number interacting through a repulsive delta potential initially confined by a potential well. This density matrix allows direct access to the momentum distribution and also to the mass current density. For initially confining power-law potentials we give explicit expressions, in the limits of very weak and very strong interaction, for the current density distributions during the free expansion. In the second part of the work we consider the expansion of ultracold gas from a confining harmonic trap to another harmonic trap with a different frequency. For the case of a quantum impenetrable gas of bosons (a Tonks-Girardeau gas) with a given atom number, we present an exact analytical expression for the mass current distribution (mass transport) after release from one harmonic trap to another harmonic trap. It is shown that, for a harmonically quenched Tonks-Girardeau gas, the current distribution is a suitable collective observable and under the weak quench regime, it exhibits oscillations at the same frequencies as those recently predicted for the peak momentum distribution in the breathing mode. The analysis is extended to other possible quenched systems.

  4. Diffusion of Finite-Size Particles in Confined Geometries

    KAUST Repository

    Bruna, Maria; Chapman, S. Jonathan

    2013-01-01

    The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle's dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.

  5. Quark cluster model and confinement

    International Nuclear Information System (INIS)

    Koike, Yuji; Yazaki, Koichi

    2000-01-01

    How confinement of quarks is implemented for multi-hadron systems in the quark cluster model is reviewed. In order to learn the nature of the confining interaction for fermions we first study 1+1 dimensional QED and QCD, in which the gauge field can be eliminated exactly and generates linear interaction of fermions. Then, we compare the two-body potential model, the flip-flop model and the Born-Oppenheimer approach in the strong coupling lattice QCD for the meson-meson system. Having shown how the long-range attraction between hadrons, van der Waals interaction, shows up in the two-body potential model, we discuss two distinct attempts beyond the two-body potential model: one is a many-body potential model, the flip-flop model, and the other is the Born-Oppenheimer approach in the strong coupling lattice QCD. We explain how the emergence of the long-range attraction is avoided in these attempts. Finally, we present the results of the application of the flip-flop model to the baryon-baryon scattering in the quark cluster model. (author)

  6. Confinement of nonneutral spheroidal plasmas in multi-ring electrode traps

    International Nuclear Information System (INIS)

    Mohri, Akihiro; Yuyama, Tetsumori; Michishita, Toshinori; Higaki, Hiroyuki; Tanaka, Hitoshi; Yamazawa, Yohei; Aoyagi, Masayuki

    1998-01-01

    A nonneutral spheroidal plasma can be settled in a rigid rotor equilibrium inside a closed conducting cell independently of induced image charges on the cell wall if the electrostatic potential distribution on the wall surface is set equal to the sum of the external hyperbolic potential (r 2 -2z 2 ) and the self-potential produced by the plasma. A confinement system equipped with a train of properly biased ring electrodes can approximately generate any axisymmetric potential, including the above field. Experiments on confinement of electron spheroids in such a system showed that the confinement time became the longest when the condition to diminish the image charge effects was satisfied. The observed frequency of the centre-of-mass harmonic oscillation of the plasma in this configuration was in good agreement with the estimated one. (author)

  7. Improved GAMMA 10 tandem mirror confinement in high density plasma

    International Nuclear Information System (INIS)

    Yatsu, K.; Cho, T.; Higaki, H.; Hirata, M.; Hojo, H.; Ichimura, M.; Ishii, K.; Ishimoto, Y.; Itakura, A.; Katanuma, I.; Kohagura, J.; Minami, R.; Nakashima, Y.; Numakura, T.; Saito, T.; Saosaki, S.; Takemura, Y.; Tatematsu, Y.; Yoshida, M.; Yoshikawa, M.

    2003-01-01

    GAMMA 10 experiments have advanced in high density experiments after the last IAEA fusion energy conference in 2000 where we reported the production of the high density plasma through use of ion cyclotron range of frequency heating at a high harmonic frequency and neutral beam injection in the anchor cells. However, the diamagnetic signal of the plasma decreased when electron cyclotron resonance heating was applied for the potential formation. Recently a high density plasma has been obtained without degradation of the diamagnetic signal and with much improved reproducibility than before. The high density plasma was attained through adjustment of the spacing of the conducting plates installed in the anchor transition regions. The potential confinement of the plasma has been extensively studied. Dependences of the ion confinement time, ion-energy confinement time and plasma confining potential on plasma density were obtained for the first time in the high density region up to a density of 4x10 18 m -3 . (author)

  8. Positron confinement in embedded lithium nanoclusters

    Science.gov (United States)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  9. Interfaces and helium thin films : static properties and collective modes

    International Nuclear Information System (INIS)

    Pricaupenko, L.

    1994-12-01

    In the first part of this thesis are described the collective modes in thin films and at the free surface of helium 4. The second part deals with the spreading out of a model to describe the inhomogeneous helium 3. The influence of the quantum statistics on damping properties has also been given. In the third part is tackled some static properties of mixtures at interfaces. The instability growth rates in mixed films has been studied. At last is described the de-mixture study of two isotopes in a confined medium. (O.L.). 86 refs., 86 figs., 2 tabs

  10. Determinacy in Static Analysis of jQuery

    DEFF Research Database (Denmark)

    Andreasen, Esben; Møller, Anders

    2014-01-01

    Static analysis for JavaScript can potentially help programmers find errors early during development. Although much progress has been made on analysis techniques, a major obstacle is the prevalence of libraries, in particular jQuery, which apply programming patterns that have detrimental conseque......Static analysis for JavaScript can potentially help programmers find errors early during development. Although much progress has been made on analysis techniques, a major obstacle is the prevalence of libraries, in particular jQuery, which apply programming patterns that have detrimental...... present a static dataflow analysis for JavaScript that infers and exploits determinacy information on-the-fly, to enable analysis of some of the most complex parts of jQuery. The techniques are implemented in the TAJS analysis tool and evaluated on a collection of small programs that use jQuery. Our...

  11. Some applications of mirror-generated electric potentials to alternative fusion concepts

    International Nuclear Information System (INIS)

    Post, R.F.

    1990-01-01

    Transient electrical potentials can be generated in plasmas by utilizing impulsive mirror-generated forces acting on the plasma electrons together with ion inertia to cause momentary charge imbalance. In the Mirrortron such potentials are generated by applying a rapidly rising (tens of nanoseconds) localized mirror field to the central region of a hot-electron plasma confined between static mirrors. Because of the loss-cone nature of the electron distribution the sudden appearance of the pulsed mirror tends to expel electrons, whereas the ion density remains nearly constant. The quasi-neutrality condition then operates to create an electrical potential the equipotential surfaces of which can be shown theoretically to be congruent with surfaces of constant B. An alternative way of generating transient potentials is to apply a pulse of high-power microwaves to a plasma residing on a magnetic field with a longitudinal gradient. This technique resembles one employed in the Pleiade experiments. At gigawatt power levels, such as those produced by a Free Electron Laser, the production of very high transient potentials is predicted. Fusion-relevant applications of these ideas include heavy-ion drivers for inertial fusion, and the possibility of employing these techniques to enhance the longitudinal confinement of fusion plasmas in multiple-mirror systems. 23 refs., 3 figs

  12. Static dielectric constant of water within a bilayer using recent water models: a molecular dynamics study

    Science.gov (United States)

    Meneses-Juárez, Efrain; Rivas-Silva, Juan Francisco; González-Melchor, Minerva

    2018-05-01

    The water confined within a surfactant bilayer is studied using different water models via molecular dynamics simulations. We considered four representative rigid models of water: the SPC/E and the TIP4P/2005, which are commonly used in numerical calculations and the more recent TIP4Q and SPC/ε models, developed to reproduce the dielectric behaviour of pure water. The static dielectric constant of the confined water was analyzed as a function of the temperature for the four models. In all cases it decreases as the temperature increases. Additionally, the static dielectric constant of the bilayer-water system was estimated through its expression in terms of the fluctuations in the total dipole moment, usually applied for isotropic systems. The estimated dielectric was compared with the available experimental data. We found that the TIP4Q and the SPC/ε produce closer values to the experimental data than the other models, particularly at room temperature. It was found that the probability of finding the sodium ion close to the head of the surfactant decreases as the temperature increases, thus the head of the surfactant is more exposed to the interaction with water when the temperature is higher.

  13. Diffusion of Finite-Size Particles in Confined Geometries

    KAUST Repository

    Bruna, Maria

    2013-05-10

    The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle\\'s dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.

  14. Inertial Electrostatic Confinement (IEC) devices

    International Nuclear Information System (INIS)

    Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.

    1994-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2 * 10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented

  15. Fusion radioactivity confinement and application to postulated ITER accidents

    International Nuclear Information System (INIS)

    Piet, S.J.; Brereton, S.J.

    1991-01-01

    An assessment of the ITER radioactivity confinement shows reduction of potential accidental releases to the environment by two orders of magnitude. Important credits are the 1% volume/day confinement leakage rate, radioactivity decay for short-lived isotopes, resumption of detritiation/negative pressure within seven days of the accident, and wind meander during the slow confinement leakage. Achieving this two order of magnitude credit in practice requires appropriate design details, especially the leakage rate and detritiation/negative pressure equipment, and research to validate some key assumptions. The confinement maximizes dependence on passive safety features, thereby working toward using fusion's potential safety advantages. The confinement includes several confinement zones with varying human access allowances. Some confinement areas are normally isolated from the environment, the closed ventilation zone. Some areas have an inert cover gas to inhibit combustion. If future assessments of accidental overpressure show the need, we propose a filter/vent system. This report documents our work for the ITER Conceptual Design Activity (CDA). The report is consistent with the final CDA design reports and descriptions, except that our analysis includes a filter/vent. For gaseous or vapor tritium and for most activated aerosols, the reference release fraction is about 2%. For short-lived tungsten-rhenium aerosols, the reference release fraction is somewhat lower, as low as 0.5% for some accident scenarios. Even without resumption of detritiation/decontamination or negative pressure within seven days of the accident, the release fraction for stays below 4%

  16. Confinement in dually transformed U(1) lattice gauge theory

    International Nuclear Information System (INIS)

    Zach, M.

    1997-10-01

    The aim of this work is a detailed investigation of the confinement mechanism in U(1) lattice gauge theory. In the first chapters we give a review on the definition of compact Abelian gauge theory on space-time lattices, the numerical calculation of physical observables for exploring confinement, and the interpretation of the results in terms of the dual superconductor picture, which is introduced at two levels of description. We work out that the electric field strength and the magnetic currents around a charge pair can be described very well by a classical effective model of Maxwell and London equations, if fluctuations of the occurring fluxoid string are considered. In order to obtain a deeper understanding of confinement in U(1), we extend the duality transformation of the path integral to the correlation functions which are used to calculate expectation values of fields and currents. This not only helps to interpret U(1) lattice gauge theory as a limit of the dual Higgs model, but also opens the possibility for efficient calculations of expectation values in the presence of static charges by simulating the dual model. Using this technique we are able to consider large flux tube lengths, low temperatures, and multiply charged systems without loss of numerical precision. The dual simulation is applied to flux tubes between static charges, to periodically closed flux tubes (torelons), and to doubly charged systems. We find that the behavior of flux tubes for large charge distances cannot be explained by the picture of a classical dual type-II superconductor; the observed roughening of the flux tube agrees very well with the prediction from the effective string description. We also analyze the different contributions to the total energy of the electromagnetic field. For torelons we calculate both the free energy and the total field energy, split the free energy into a string tension and a string fluctuation part, and apply lattice sum rules modified for finite

  17. Reduction of emissions from Brazilian cattle raising and the generation of energy: Intensification and confinement potentials

    International Nuclear Information System (INIS)

    Palermo, Giuseppe Cernicchiaro; D'Avignon, Alexandre Louis de Almeida; Freitas, Marcos Aurélio Vasconcelos

    2014-01-01

    The identification of the main sources of anthropic greenhouse gas emissions (GHG) associated with the mitigation and removal of these emissions has become an important instrument in the attenuation of the climatic changes predicted by the IPCC. The largest emission source in Brazil is forest conversion. This land use change has always had a strong relationship with the expansion of agriculture, an activity of great importance in the country, which has the largest commercial cattle herd in the planet. Following the considerable reduction in emissions from deforestation, agriculture has been since 2010 the most important source (MCTI (Ministério da Ciência, Tecnologia e Inovação), 2013. Brasília: Ministério daCiência, Tecnologia e Inovação, Brasil). Seeking to discover the possibilities of altering the emissions profile in the agricultural sector, four scenarios were developed related to how this is dealt with in the beef cattle sector, calculating the potential removal of carbon from the atmosphere through natural regeneration of biomes. The results suggest that picketing and rotation scenario has the greatest potential, with a carbon reduction of 17.7 Gt CO 2 eq, while the shared raising with grain legumes scenario has the lowest calculated reduction potential of 7.1 Gt CO 2 eq was calculated. The animal confinement scenario had an intermediary reduction potential of 8.3 Gt CO 2 eq. The mosaic of methods scenario, in which it is attempted to simulate the parallel adoption of the measures proposed in all other scenarios, had a reduction potential of 13.1 Gt CO 2 eq. In the scenarios where animal confinement occurs, the treatment of waste with biodigestion allows the generation of biogas and biofertilizers, contributing to an increase in the potential carbon reduction. - Highlights: • We identify one main source of anthropic GHG in Brazil after forest conversion (deforestation), the beef cattle raising. • Four scenarios to mitigate emissions from cattle

  18. Static Members of Classes in C#

    Directory of Open Access Journals (Sweden)

    Adrian LUPASC

    2017-12-01

    Full Text Available The C# language is object-oriented, which is why the declared member data must be part of a class. Thus, there is no possibility to declare certain variables that can be accessed from anywhere within the application, as it happens, for example, with global variables at the C language level. Making this work in C# is possible through static members of the class. Declaring a class implies defining some of its member data that later receive values when creating each object. A static member of the class can be interpreted as belonging only to the class, not to the objects subsequently created, which means that for the non-static data, there are as many children as there were objects created, while for the static ones there is only one copy, regardless of the number of created objects. In this regard, this paper presents the main aspects that characterize these abstract concepts of object oriented programming in general and C# language in particular, detailing how to develop an application that includes both static and non-static members. At the same time, particularities in the mirror for the two types of data, restrictions on use and potential limitations are presented.

  19. Exponential dependence of potential barrier height on biased voltages of inorganic/organic static induction transistor

    International Nuclear Information System (INIS)

    Zhang Yong; Yang Jianhong; Cai Xueyuan; Wang Zaixing

    2010-01-01

    The exponential dependence of the potential barrier height φ c on the biased voltages of the inorganic/organic static induction transistor (SIT/OSIT) through a normalized approach in the low-current regime is presented. It shows a more accurate description than the linear expression of the potential barrier height. Through the verification of the numerical calculated and experimental results, the exponential dependence of φ c on the applied biases can be used to derive the I-V characteristics. For both SIT and OSIT, the calculated results, using the presented relationship, are agreeable with the experimental results. Compared to the previous linear relationship, the exponential description of φ c can contribute effectively to reduce the error between the theoretical and experimental results of the I-V characteristics. (semiconductor devices)

  20. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass

    International Nuclear Information System (INIS)

    Lai Meng-Yun; Xiao Duan-Liang; Pan Xiao-Yin

    2015-01-01

    We investigate the many-body wave function of a quantum system with time-dependent effective mass, confined by a harmonic potential with time-dependent frequency, and perturbed by a time-dependent spatially homogeneous electric field. It is found that the wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the harmonic potential theorem wave function when both the effective mass and frequency are static. An example of application is also given. (paper)

  1. Reactor potential of the Magnetically Insulated Inertial Confinement Fusion (MICF) system

    International Nuclear Information System (INIS)

    Kammash, T.; Galbraith, D.L.

    1987-01-01

    In this paper a quasi one dimensional, time dependent set of particle and energy balance equations for the thermal species, namely, electrons, ions and thermal alphas which also allows for an appropriate set of fast alpha groups is utilized to assess the reactor prospects of a DT-burning Magnetically Insulated Inertial Confinement Fusion (MICF) system. A reference reactor consisting of an initial plasma with density of 10 21 cm -3 , temperature of keV, a radius of 0.25 cm is shown to ignite and yield an energy multiplication factor ''Q'' of about 60 when the plasma is allowed to burn for 2 microseconds. When the burntime is extended to 9 microseconds for the same initial conditions our calculations show that Q almost doubles just before the final radius becomes equal to the inner radius of the shell. These preliminary results seem to indicate that MICF does indeed have the potential for a reactor although some relevant physics issues need to be addressed first. 42 refs., 6 figs

  2. Accurate collision integrals for the attractive static screened Coulomb potential with application to electrical conductivity. [For white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, J. (Delaware, University, Newark (USA))

    1991-05-01

    The results of accurate calculations of collision integrals for the attractive static screened Coulomb potential are presented. To obtain high accuracy with minimal computational cost, the integrals are evaluated by a quadrature method based on the Whittaker cardinal function. The collision integrals for the attractive potential are needed for calculation of the electrical conductivity of a dense fully or partially ionized plasma, and the results presented here are appropriate for the conditions in the nondegenerate envelopes of white dwarf stars. 25 refs.

  3. Plasma confinement in the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Yatsu, K.; Bruskin, L.G.; Cho, T.

    1999-01-01

    The central-cell density and the diamagnetic signal were doubled due to plug potential formation by ECRH in the hot ion mode experiments on the GAMMA 10 tandem mirror. In order to obtain these remarkable results, the axisymmetrized heating patterns of ECRH and ICRF were optimized. Furthermore, conducting plates were installed adjacent to the surface of the plasma along the flat shaped magnetic flux tube located at the anchor transition regions; the plates may contribute to reduce some irregular electric fields produced possibly with ECRH in these thin flux tube regions. The conducting plates contributed to the reduction of the radial loss rate to be less than 3% of the total particle losses along with the improvements in the reproducibility of the experiments and the controllability of the potential confinement. The increases in the central-cell density and the diamagnetism in association with the increase in the plug potentials scaled well with increasing the ECRH powers. A plug potential of 0.6 kV and a density increase of 100% were achieved using an ECRH power of 140 kW injected into both plug regions. The plasma confinement was improved by an order of magnitude over a simple mirror confinement due to the tandem mirror potential formation. (author)

  4. A remote monitoring system of environmental electromagnetic field in magnetic confinement fusion test facilities

    International Nuclear Information System (INIS)

    Tanaka, Masahiro; Uda, Tatsuhiko; Takami, Shigeyuki; Wang, Jianqing; Fujiwara, Osamu

    2010-01-01

    A remote, continuous environmental electromagnetic field monitoring system for use in magnetic confinement fusion test facilities is developed. Using this system, both the static magnetic field and the high frequency electromagnetic field could be measured. The required frequency range of the measurement system is from 25 to 100 MHz for the ICRF (Ion Cyclotron Range of Frequencies) heating system. The outputs from the measurement instruments are measured simultaneously by custom-built software using a laptop-type personal computer connected to a local area network. In this way, the electromagnetic field strength could be monitored from a control room located about 200 m from the fusion device building. Examples of measurement data from the vicinity of a high-frequency generator and amplifier and the leakage static magnetic field from a fusion test device are presented. (author)

  5. Observing the Forces Involved in Static Friction under Static Situations

    Science.gov (United States)

    Kaplan, Daniel

    2013-01-01

    Static friction is an important concept in introductory physics. Later in the year students apply their understanding of static friction under more complex conditions of static equilibrium. Traditional lab demonstrations in this case involve exceeding of the maximum level of static friction, resulting in the "onset of motion." (Contains…

  6. Holographic repulsion and confinement in gauge theory

    Science.gov (United States)

    Husain, Viqar; Kothawala, Dawood

    2013-02-01

    We show that for asymptotically anti-de Sitter (AdS) backgrounds with negative energy, such as the AdS soliton and regulated negative-mass AdS-Schwarzshild metrics, the Wilson loop expectation value in the AdS/CFT conjecture exhibits a Coulomb to confinement transition. We also show that the quark-antiquark (q \\bar{q}) potential can be interpreted as affine time along null geodesics on the minimal string worldsheet and that its intrinsic curvature provides a signature of transition to confinement phase. Our results suggest a generic (holographic) relationship between confinement in gauge theory and repulsive gravity, which in turn is connected with singularity avoidance in quantum gravity. Communicated by P R L V Moniz

  7. Magnetic properties of confined electron gas

    International Nuclear Information System (INIS)

    Felicio, J.R.D. de.

    1977-04-01

    The effects of confinement by a two or three-dimensional harmonic potential on the magnetic properties of a free electron gas are investigated using the grand-canonical ensemble framework. At high temperatures an extension of Darwin's, Felderhof and Raval's works is made taking into account spin effects at low temperature. A comprehensive description of the magnetic properties of a free electron gas is given. The system is regarded as finite, but the boundary condition psi=0 is not introduced. The limits of weak and strong confinement are also analysed [pt

  8. Static friction of stainless steel wire rope–rubber contacts.

    NARCIS (Netherlands)

    Loeve, A.J.; Krijger, T.; Mugge, W.; Breedveld, P.; Dodou, D.; Dankelman, J.

    2014-01-01

    Little is known about static friction of stainless-steel wire ropes ('cables') in contact with soft rubbers, an interface of potential importance for rigidifiable medical instruments. Although friction theories imply that the size and profile of the cables affect static friction, there are no

  9. Hydrogen generation through static-feed water electrolysis

    Science.gov (United States)

    Jensen, F. C.; Schubert, F. H.

    1975-01-01

    A static-feed water electrolysis system (SFWES), developed under NASA sponsorship, is presented for potential applicability to terrestrial hydrogen production. The SFWES concept uses (1) an alkaline electrolyte to minimize power requirements and materials-compatibility problems, (2) a method where the electrolyte is retained in a thin porous matrix eliminating bulk electrolyte, and (3) a static water-feed mechanism to prevent electrode and electrolyte contamination and to promote system simplicity.

  10. Generating end plug potentials in tandem mirror plasma confinement by heating thermal particles so as to escape low density end stoppering plasmas

    Science.gov (United States)

    Baldwin, D.E.; Logan, B.G.

    The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequence of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technical state of the art required, and the capital cost are all greatly lowered.

  11. Third version of a program for calculating the static interaction potential between an electron and a diatomic molecule

    International Nuclear Information System (INIS)

    Raseev, G.

    1980-01-01

    This program calculates the one-centre expansion of a two-centre wave function of a diatomic molecule and also the multipole expansion of its static interaction with a point charge. It is an extension to some classes of open-shell targets of the previous versions and it provides both the wave function and the potential in a form suitable for use in an electron-molecule scattering program. (orig./HSI)

  12. INTRODUCTION AND STATIC ELECTRICITY, VOLUME 1.

    Science.gov (United States)

    KLAUS, DAVID J.; AND OTHERS

    THIS VOLUME, PART OF A TWO-VOLUME SET, PROVIDES AUTOINSTRUCTION IN PHYSICS. THE MATERIAL COVERS UNITS ON (1) STATIC ELECTRICITY AND ELECTRICAL CHARGES, (2) COULOMB'S LAW, (3) DISTRIBUTION OF CHARGE AND FLOW OF CURRENT, (4) DIFFERENCE OF POTENTIAL, (5) BATTERIES AND CIRCUITS, (6) RESISTANCE AND RESISTORS, (7) POTENTIAL DIVIDER AND WHEATSTONE…

  13. PEBBLES Simulation of Static Friction and New Static Friction Benchmark

    International Nuclear Information System (INIS)

    Cogliati, Joshua J.; Ougouag, Abderrafi M.

    2010-01-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.

  14. Chiral symmetry breaking and confinement - solutions of relativistic wave equations

    International Nuclear Information System (INIS)

    Murugesan, P.

    1983-01-01

    In this thesis, an attempt is made to explore the question whether confinement automatically leads to chiral symmetry breaking. While it should be accepted that chiral symmetry breaking manifests in nature in the absence of scalar partners of pseudoscalar mesons, it does not necessarily follow that confinement should lead to chiral symmetry breaking. If chiral conserving forces give rise to observed spectrum of hadrons, then the conjuncture that confinement is responsible for chiral symmetry breaking is not valid. The method employed to answer the question whether confinement leads to chiral symmetry breaking or not is to solve relativistic wave equations by introducing chiral conserving as well as chiral breaking confining potentials and compare the results with experimental observations. It is concluded that even though chiral symmetry is broken in nature, confinement of quarks need not be the cause of it

  15. Monitoring and modelling of pumping-induced self-potentials for transmissivity estimation within a heterogeneous confined aquifer

    Science.gov (United States)

    DesRoches, Aaron J.; Butler, Karl E.

    2016-12-01

    Variations in self-potentials (SP) measured at surface during pumping of a heterogeneous confined fractured rock aquifer have been monitored and modelled in order to investigate capabilities and limitations of SP methods in estimating aquifer hydraulic properties. SP variations were recorded around a pumping well using an irregular grid of 31 non-polarizing Pb-PbCl2 that were referenced to a remote electrode and connected to a commercial multiplexer and digitizer/data logger through a passive lowpass filter on each channel. The lowpass filter reduced noise by a factor of 10 compared to levels obtained using the data logger's integration-based sampling method for powerline noise suppression alone. SP signals showed a linear relationship with water levels observed in the pumping and monitoring wells over the pumping period, with an apparent electrokinetic coupling coefficient of -3.4 mV · m-1. Following recent developments in SP methodology, variability of the SP response between different electrodes is taken as a proxy for lateral variations in hydraulic head within the aquifer and used to infer lateral variations in the aquifer's apparent transmissivity. In order to demonstrate the viability of this approach, SP is modelled numerically to determine its sensitivity to (i) lateral variations in the hydraulic conductivity of the confined aquifer and (ii) the electrical conductivity of the confining layer and conductive well casing. In all cases, SP simulated on the surface still varies linearly with hydraulic head modelled at the base on the confining layer although the apparent coupling coefficient changes to varying degrees. Using the linear relationship observed in the field, drawdown curves were inferred for each electrode location using SP variations observed over the duration of the pumping period. Transmissivity estimates, obtained by fitting the Theis model to inferred drawdown curves at all 31 electrodes, fell within a narrow range of (2.0-4.2) × 10-3 m2

  16. Thermal barrier confinement experiments in TMX-U tandem mirror. Revision 1

    International Nuclear Information System (INIS)

    Simonen, T.C.; Allen, S.L.; Baldwin, D.E.

    1984-01-01

    In our recent experiments on the TMX-U thermal-barrier device, we achieved the end plugging of axial ion losses up to a central cell density of n/sub c/ = 6 x 10 12 cm -3 . During lower density experiments, we measured the axial potential profile characteristic of a thermal barrier and found an ion-confining potential greater than 1.5 kV and a potential depression of 0.45 kV in the barrier region. The average beta of hot end plug electrons has reached 15% and of hot central cell ions has reached 6%. In addition, we heated deuterium ions in the central cell with ICRF to an average perpendicular energy of 2 keV. During strong end plugging at low density (7 x 10 11 cm -3 ), the axial ion confinement time tau/sub parallel to/ reached 50 to 100 ms while the nonambiopolar radial ion confinement time tau/sub perpendicular to/ was 14 ms - independent of end plugging. Electrically floating end walls doubled the radial ion confinement time. At higher densities and lower potentials, tau/sub parallel to/ was 6 to 12 ms and tau/sub perpendicular to/ exceeded 100 ms

  17. Static magnetic fields: A summary of biological interactions, potential health effects, and exposure guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1992-05-01

    Interest in the mechanisms of interaction and the biological effects of static magnetic fields has increased significantly during the past two decades as a result of the growing number of applications of these fields in research, industry and medicine. A major stimulus for research on the bioeffects of static magnetic fields has been the effort to develop new technologies for energy production and storage that utilize intense magnetic fields (e.g., thermonuclear fusion reactors and superconducting magnet energy storage devices). Interest in the possible biological interactions and health effects of static magnetic fields has also been increased as a result of recent developments in magnetic levitation as a mode of public transportation. In addition, the rapid emergence of magnetic resonance imaging as a new clinical diagnostic procedure has, in recent years, provided a strong rationale for defining the possible biological effects of magnetic fields with high flux densities. In this review, the principal interaction mechanisms of static magnetic fields will be described, and a summary will be given of the present state of knowledge of the biological, environmental, and human health effects of these fields.

  18. Inertial Confinement Fusion R and D and Nuclear Proliferation

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2011-01-01

    In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R and D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

  19. A model of confinement for quantum chromodynamics in 2+1 dimensions

    International Nuclear Information System (INIS)

    Silva Filho, A.C. da.

    1986-01-01

    A dieletric mechanism of QCD in 2 + 1 dimensions is studied. This model yields confinement of two opposite color charges which are infinitely massive, via a linear potential. A functional expression for the dielectric parameter ε and studied analitical and numerical the resulting constitutive equations is obtained. A perturbative approach of these yields the non-leading contributions to the asymptotic potential as well for the boundary of the confinement domain. The results obtained for the transversal width of the confinement domain, considering large separations R of color charges, indicate that increases like R 2/3 , behavior which differs from the one suggested by the string models. (author) [pt

  20. Theory of plasma confinement in non-axisymmetric magnetic fields.

    Science.gov (United States)

    Helander, Per

    2014-08-01

    The theory of plasma confinement by non-axisymmetric magnetic fields is reviewed. Such fields are used to confine fusion plasmas in stellarators, where in contrast to tokamaks and reversed-field pinches the magnetic field generally does not possess any continuous symmetry. The discussion is focussed on magnetohydrodynamic equilibrium conditions, collisionless particle orbits, and the kinetic theory of equilbrium and transport. Each of these topics is fundamentally affected by the absence of symmetry in the magnetic field: the field lines need not trace out nested flux surfaces, the particle orbits may not be confined, and the cross-field transport can be very large. Nevertheless, by tailoring the magnetic field appropriately, well-behaved equilibria with good confinement can be constructed, potentially offering an attractive route to magnetic fusion. In this article, the mathematical apparatus to describe stellarator plasmas is developed from first principles and basic elements underlying confinement optimization are introduced.

  1. Near-surface, marine seismic-reflection data defines potential hydrogeologic confinement bypass in a tertiary carbonate aquifer, southeastern Florida

    Science.gov (United States)

    Cunningham, Kevin J.; Walker, Cameron; Westcott, Richard L.

    2012-01-01

    Approximately 210 km of near-surface, high-frequency, marine seismic-reflection data were acquired on the southeastern part of the Florida Platform between 2007 and 2011. Many high-resolution, seismic-reflection profiles, interpretable to a depth of about 730 m, were collected on the shallow-marine shelf of southeastern Florida in water as shallow as 1 m. Landward of the present-day shelf-margin slope, these data image middle Eocene to Pleistocene strata and Paleocene to Pleistocene strata on the Miami Terrace. This high-resolution data set provides an opportunity to evaluate geologic structures that cut across confining units of the Paleocene to Oligocene-age carbonate rocks that form the Floridan aquifer system.Seismic profiles image two structural systems, tectonic faults and karst collapse structures, which breach confining beds in the Floridan aquifer system. Both structural systems may serve as pathways for vertical groundwater flow across relatively low-permeability carbonate strata that separate zones of regionally extensive high-permeability rocks in the Floridan aquifer system. The tectonic faults occur as normal and reverse faults, and collapse-related faults have normal throw. The most common fault occurrence delineated on the reflection profiles is associated with karst collapse structures. These high-frequency seismic data are providing high quality structural analogs to unprecedented depths on the southeastern Florida Platform. The analogs can be used for assessment of confinement of other carbonate aquifers and the sealing potential of deeper carbonate rocks associated with reservoirs around the world.

  2. DEVELOPMENT OF A METHODOLOGY FOR REGIONAL EVALUATION OF CONFINING BED INTEGRITY

    Science.gov (United States)

    For safe underground injection of liquid waste, confining formations must be thick, extensive, and have low permeability. Recognition of faults that extend from the potential injection zone to underground sources of drinking water is critical for evaluation of confining-bed integ...

  3. Inertial electrostatic confinement I(IEC) neutron sources

    International Nuclear Information System (INIS)

    Nebel, R.A.; Barnes, D.C.; Caramana, E.J.; Janssen, R.D.; Nystrom, W.D.; Tiouririne, T.N.; Trent, B.C.; Miley, G.H.; Javedani, J.

    1995-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P.T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2*10 [10]. neutrons/sec in steady state. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. This paper discusses the IEC concept and how it can be adapted to a steady-state assaying source and an intense pulsed neutron source. Theoretical modeling and experimental results are presented

  4. Statics formulas and problems : engineering mechanics 1

    CERN Document Server

    Gross, Dietmar; Wriggers, Peter; Schröder, Jörg; Müller, Ralf

    2017-01-01

    This book contains the most important formulas and more than 160 completely solved problems from Statics. It provides engineering students material to improve their skills and helps to gain experience in solving engineering problems. Particular emphasis is placed on finding the solution path and formulating the basic equations. Topics include: - Equilibrium - Center of Gravity, Center of Mass, Centroids - Support Reactions - Trusses - Beams, Frames, Arches - Cables - Work and Potential Energy - Static and Kinetic Friction - Moments of Inertia.

  5. Is confinement the ultimate truth

    International Nuclear Information System (INIS)

    Thirrring, W.

    1980-01-01

    This seminar discusses a field theory which leads to a r-potential and therefore to a confinement. By comparison to the instability due to a resonance phenomenon, the author concentrates on the theory's ghost problem and concludes that for some couplings this does not occur and the theory behaves reasonably

  6. Potential scattering in the presence of a static magnetic field and a radiation field of arbitrary polarization

    Science.gov (United States)

    Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.

    1982-05-01

    Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.

  7. Static Equilibrium Configurations of Charged Metallic Bodies

    African Journals Online (AJOL)

    Key words: Static equilibrium, charged metallic body, potential energy, projected gradient method. ... television, radio, internet, microwave ovens, mobile telephones, satellite communication systems, radar systems, electrical motors, electrical.

  8. Fusion, magnetic confinement

    International Nuclear Information System (INIS)

    Berk, H.L.

    1992-01-01

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or 3 He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied

  9. Experimental characterization of the concrete behaviour under high confinement: influence of the saturation ratio and of the water/cement ratio

    International Nuclear Information System (INIS)

    Vu, X.H.

    2007-08-01

    The objective of this thesis is to experimentally characterize the influence of the saturation ratio and of the water/cement ratio of concrete on its behaviour under high confinement. This thesis lies within a more general scope of the understanding of concrete behaviour under severe loading situations (near field detonation or ballistic impacts). A near field detonation or an impact on a concrete structure generate very high levels of stress associated with complex loading paths in the concrete material. To validate concrete behaviour models, experimental results are required. The work presented in this thesis concerns tests conducted using a static triaxial press that allows to obtain stress levels of the order of the giga Pascal. The porous character of concrete and the high confinement required on the one hand, a development of a specimen protection device, and on the other hand, a development of an instrumentation with strain gauges, which is unprecedented for such high confinements. Hydrostatic and triaxial tests, conducted on the one hand on model materials and on the other hand on concrete, allowed to validate the developed experimental procedures as well as the technique of strain and stress measurements. The studies concerning the influence of the saturation ratio and of the water/cement ratio of concrete on its behaviour required the formulation of a plain baseline concrete and of two modified concretes with different water/cement ratios. The analysis of triaxial tests performed on the baseline concrete shows that the saturation ratio of concrete has a major influence on its static behaviour under high confinement. This influence is particularly marked for the concrete loading capacity and for the shape of limit state curves for saturation ratios greater than 50%. The concrete loading capacity increases with the confinement pressure for tests on dry concrete whereas beyond a given confinement pressure, it remains limited for wet or saturated concrete

  10. Helical Confinement Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C; Brakel, R; Burhenn, R; Dinklage, A; Erckmann, V; Feng, Y; Geiger, J; Hartmann, D; Hirsch, M; Jaenicke, R; Koenig, R; Laqua, H P; Maassberg, H; Wagner, F; Weller, A; Wobig, H [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, Greifswald (Germany)

    2012-09-15

    Stellarators, conceived 1951 by Lyman Spitzer in Princeton, are toroidal devices that confine a plasma in a magnetic field which originates from currents in coils outside the plasma. A plasma current driven by external means, for example by an ohmic transformer, is not required for confinement. Supplying the desired poloidal field component by external coils leads to a helically structured plasma topology. Thus stellarators - or helical confinement devices - are fully three-dimensional in contrast to the toroidal (rotational) symmetry of tokamaks. As stellarators can be free of an inductive current, whose radial distribution depends on the plasma parameters, their equilibrium must not be established via the evolving plasma itself, but to a first order already given by the vacuum magnetic field. They do not need an active control (like positional feedback) and therefore cannot suffer from its failure. The outstanding conceptual advantage of stellarators is the potential of steady state plasma operation without current drive. As there is no need for current drive, the recirculating power is expected to be smaller than in equivalent tokamaks. The lack of a net current avoids current driven instabilities; specifically, no disruptions, no resistive wall modes and no conventional or neoclassical tearing modes appear. Second order pressure-driven currents (Pfirsch-Schlueter, bootstrap) exist but they can be modified and even minimized by the magnetic design. The magnetic configuration of helical devices naturally possesses a separatrix, which allows the implementation of a helically structured divertor for exhaust and impurity control. (author)

  11. The effect of low static magnetic field on osteogenic and adipogenic differentiation potential of human adipose stromal/stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Marędziak, Monika, E-mail: monika.maredziak@gmail.com [Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wrocław (Poland); Wroclaw Research Centre EIT+, Wrocław (Poland); Śmieszek, Agnieszka, E-mail: smieszek.agnieszka@gmail.com [Wroclaw Research Centre EIT+, Wrocław (Poland); Faculty of Biology, University of Environmental and Life Sciences, Wrocław (Poland); Tomaszewski, Krzysztof A., E-mail: krtomaszewski@gmail.com [Department of Anatomy, Jagiellonian University Medical College, Krakow (Poland); Lewandowski, Daniel, E-mail: daniel.lewandowski@pwr.wroc.pl [Institute of Materials Science and Applied Mechanics, Wroclaw University of Technology, Wroclaw (Poland); Marycz, Krzysztof, E-mail: krzysztofmarycz@interia.pl [Wroclaw Research Centre EIT+, Wrocław (Poland); Faculty of Biology, University of Environmental and Life Sciences, Wrocław (Poland)

    2016-01-15

    The aim of this work was to investigate the effects of static magnetic field (SMF) on the osteogenic properties of human adipose derived mesenchymal stem cells (hASCs). In this study in seven days viability assay we examined the impact of SMF on cells proliferation rate, population doubling time, and ability to form single-cell derived colonies. We have also examined cells' morphology, ultrastructure and osteogenic properties on the protein as well as mRNA level. We established a complex approach, which enabled us to obtain information about SMF and hASCs potential in the context of differentiation into osteogenic and adipogenic lineages. We demonstrated that SMF enhances both viability and osteogenic properties of hASCs through higher proliferation factor and shorter population doubling time. We have also observed asymmetrically positioned nuclei and organelles after SMF exposition. With regards to osteogenic properties we observed increased levels of osteogenic markers i.e. osteopontin, osteocalcin and increased ability to form osteonodules with positive reaction to Alizarin Red dye. We have also shown that SMF besides enhancing osteogenic properties of hASCs, simultaneously decreases their ability to differentiate into adipogenic lineage. Our results clearly show a direct influence of SMF on the osteogenic potential of hASCs. These results provide key insights into the role of SMF on their cellular fate and properties. - Graphical abstract: Influence of static magnetic field on viability and differentiation properties of human adipose derived mesenchymal stem cells. Abbreviations: SMF – static magnetic field; hASCs – human adipose derived mesenchymal stem cells; PF – proliferation factor; PDT – population doubling time; CFU-E –> colony forming unit efficiency; OPN – osteopontin; OCL – osteocalcin; Col – collagen type I; BMP-2 – bone morphogenetic protein 2; Ca – calcium; P – phosphorus. - Highlights: • Effects of static

  12. The effect of low static magnetic field on osteogenic and adipogenic differentiation potential of human adipose stromal/stem cells

    International Nuclear Information System (INIS)

    Marędziak, Monika; Śmieszek, Agnieszka; Tomaszewski, Krzysztof A.; Lewandowski, Daniel; Marycz, Krzysztof

    2016-01-01

    The aim of this work was to investigate the effects of static magnetic field (SMF) on the osteogenic properties of human adipose derived mesenchymal stem cells (hASCs). In this study in seven days viability assay we examined the impact of SMF on cells proliferation rate, population doubling time, and ability to form single-cell derived colonies. We have also examined cells' morphology, ultrastructure and osteogenic properties on the protein as well as mRNA level. We established a complex approach, which enabled us to obtain information about SMF and hASCs potential in the context of differentiation into osteogenic and adipogenic lineages. We demonstrated that SMF enhances both viability and osteogenic properties of hASCs through higher proliferation factor and shorter population doubling time. We have also observed asymmetrically positioned nuclei and organelles after SMF exposition. With regards to osteogenic properties we observed increased levels of osteogenic markers i.e. osteopontin, osteocalcin and increased ability to form osteonodules with positive reaction to Alizarin Red dye. We have also shown that SMF besides enhancing osteogenic properties of hASCs, simultaneously decreases their ability to differentiate into adipogenic lineage. Our results clearly show a direct influence of SMF on the osteogenic potential of hASCs. These results provide key insights into the role of SMF on their cellular fate and properties. - Graphical abstract: Influence of static magnetic field on viability and differentiation properties of human adipose derived mesenchymal stem cells. Abbreviations: SMF – static magnetic field; hASCs – human adipose derived mesenchymal stem cells; PF – proliferation factor; PDT – population doubling time; CFU-E –> colony forming unit efficiency; OPN – osteopontin; OCL – osteocalcin; Col – collagen type I; BMP-2 – bone morphogenetic protein 2; Ca – calcium; P – phosphorus. - Highlights: • Effects of static

  13. Exploring the potential high energy locations and intensities in confined work spaces of waveguide dimensions

    International Nuclear Information System (INIS)

    Rodriguez, Ricardo; Lewis, Winston G

    2014-01-01

    review visits the likelihood for potential energy build-up due to RF propagation in confined spaces that are of waveguide design but with larger dimensions. Such confined spaces include silos, tanks, pipes, manholes, air-condition ducts, tunnels, wells, engine rooms and operator rooms on board vessels. In these confined spaces waves reflect off of the walls and combine constructively or destructively with incident waves producing reinforcement or cancellation respectively. Where there is reinforcement, the intensity of the wave for a particular distance in accordance with the standard, may exceed the exposure limit for this distance from the source thereby exposing the worker to larger intensities than the accepted limit and presenting a potential health and safety threat

  14. Exploring the potential high energy locations and intensities in confined work spaces of waveguide dimensions

    Science.gov (United States)

    Rodriguez, Ricardo; Lewis, Winston G.

    2014-07-01

    review visits the likelihood for potential energy build-up due to RF propagation in confined spaces that are of waveguide design but with larger dimensions. Such confined spaces include silos, tanks, pipes, manholes, air-condition ducts, tunnels, wells, engine rooms and operator rooms on board vessels. In these confined spaces waves reflect off of the walls and combine constructively or destructively with incident waves producing reinforcement or cancellation respectively. Where there is reinforcement, the intensity of the wave for a particular distance in accordance with the standard, may exceed the exposure limit for this distance from the source thereby exposing the worker to larger intensities than the accepted limit and presenting a potential health and safety threat.

  15. Static Analysis for Systems Biology

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Rosa, D. Schuch da

    2004-01-01

    This paper shows how static analysis techniques can help understanding biological systems. Based on a simple example we illustrate the outcome of performing three different analyses extracting information of increasing precision. We conclude by reporting on the potential impact and exploitation o...... of these techniques in systems biology....

  16. Self-confinement of finite dust clusters in isotropic plasmas.

    Science.gov (United States)

    Miloshevsky, G V; Hassanein, A

    2012-05-01

    Finite two-dimensional dust clusters are systems of a small number of charged grains. The self-confinement of dust clusters in isotropic plasmas is studied using the particle-in-cell method. The energetically favorable configurations of grains in plasma are found that are due to the kinetic effects of plasma ions and electrons. The self-confinement phenomenon is attributed to the change in the plasma composition within a dust cluster resulting in grain attraction mediated by plasma ions. This is a self-consistent state of a dust cluster in which grain's repulsion is compensated by the reduced charge and floating potential on grains, overlapped ion clouds, and depleted electrons within a cluster. The common potential well is formed trapping dust clusters in the confined state. These results provide both valuable insights and a different perspective to the classical view on the formation of boundary-free dust clusters in isotropic plasmas.

  17. On the axial charge gsub(A) and the quark confinement in nucleons

    International Nuclear Information System (INIS)

    Tegen, R.

    1986-01-01

    Calculations are presented of the axial charge gsub(A) in models where relativistic quarks are confined by arbitrary vector potentials, scalar potentials proportionalrsup(n) and scalar-vector potentials proportional1/2(1+γ 0 )rsup(n) for arbitrary n>=0. It is shown that gsub(A) vanishes for all vector potentials and is a monotonically decreasing function of the exponent n for scalar and scalar-vector potentials. The non-relativistic value 5/3 is reproduced (for n=0) as well as the MIT bag model value 1.09 (for n->infinite); they are upper and lower limits of gsub(A), respectively. This function gsub(A)(n) is shown not to depend on the quark confinement size (i.e. gsub(A) is scale invariant), but only depends on the type of confinement (scalar, vector). Acceptable values for gsub(A) are found with nsub(s) =2-3 (scalar) and nsub(s-v)=0.5-0.7 (scalar-vector). (orig.)

  18. Confinement, average forces, and the Ehrenfest theorem for a one ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 80; Issue 5. Confinement ... A free particle moving on the entire real line, which is then permanently confined to a line segment or `a box' (this situation is achieved by taking the limit V 0 → ∞ in a finite well potential). This case is .... Please take note of this change.

  19. Enhanced confinement with plasma biasing in the MST reversed field pinch

    International Nuclear Information System (INIS)

    Craig, D.; Almagri, A.F.; Anderson, J.K.

    1997-06-01

    We report an increase in particle confinement with plasma biasing in a reversed field pinch. Miniature plasma sources are used as electrodes to negatively bias the plasma at the edge (r/a ∼ 0.9). Particle content increases and H α radiation decreases upon application of bias and global particle confinement roughly doubles as a result. Measurements of plasma potential, impurity flow, and floating potential fluctuations indicate that strong flows are produced and that electrostatic fluctuations are reduced

  20. Enhancement of confinement in tokamaks

    International Nuclear Information System (INIS)

    Furth, H.P.

    1986-05-01

    A plausible interpretation of the experimental evidence is that energy confinement in tokamaks is governed by two separate considerations: (1) the need for resistive MHD kink-stability, which limits the permissible range of current profiles - and therefore normally also the range of temperature profiles; and (2) the presence of strongly anomalous microscopic energy transport near the plasma edge, which calibrates the amplitude of the global temperature profile, thus determining the energy confinement time tau/sub E/. Correspondingly, there are two main paths towards the enhancement of tokamak confinement: (1) Configurational optimization, to increase the MHD-stable energy content of the plasma core, can evidently be pursued by varying the cross-sectional shape of the plasma and/or finding stable radial profiles with central q-values substantially below unity - but crossing from ''first'' to ''second'' stability within the peak-pressure region would have the greatest ultimate potential. (2) Suppression of edge turbulence, so as to improve the heat insulation in the outer plasma shell, can be pursued by various local stabilizing techniques, such as use of a poloidal divertor. The present confinement model and initial TFTR pellet-injection results suggest that the introduction of a super-high-density region within the plasma core should be particularly valuable for enhancing ntau/subE/. In D-T operation, a centrally peaked plasma pressure profile could possibly lend itself to alpha-particle-driven entry into the second-stability regime

  1. Confinement models for gluons

    International Nuclear Information System (INIS)

    Khadkikar, S.B.; Vinodkumar, P.C.

    1987-04-01

    Confinement model for gluons using a 'colour super current' is formulated. An attempt has been made to derive a suitable dielectric function corresponding to the current confinement model. A simple inhomogeneous dielectric confinement model for gluons is studied for comparison. The model Hamiltonians are second quantized and the glueball states are constructed. The spurious motion of the centre of confinement is accounted for. The results of the current confinement scheme are found to be in good agreement with the experimental candidates for glueballs. (author). 16 refs, 3 tabs

  2. Boson-mediated interactions between static sources

    International Nuclear Information System (INIS)

    Bolsterli, M.

    1983-01-01

    The techniques are now available for doing accurate computations of static potentials arising from the exchange of virtual mesons. Such computations must take account of the fact that different approximation methods must be used in the regions where R is large and where R is small. In the asymptotic region, the distorted-field approximation provides an appropriate starting-point, but it must be improved before trustworthy results are obtained for all but the largest values of R. In the region of small R, accurate strong-coupling methods are based on the use of states with coherent meson pairs. For small R, it is also important to take account of the possibility of meson emission or near-emission. Current work is aimed at applying the techniques described to the case of static sources interacting via pion field. In particular, it will be interesting to see how sensitive the potential is to the value of the cutoff Λ. Other areas of application are the study of the effects of nonlinearity and models of quark-quark and quark-antiquark potentials. 17 references

  3. Comments on confinement criteria

    International Nuclear Information System (INIS)

    Kurak, V.; Schroer, B.; Swieca, J.A.

    1977-01-01

    For a QED 2 model with SU(n) flavour, the nature of the physical states space is more subtle than one expects on the basis of the loop criterion for confinement. One may have colour confinement without confinement of the fundamental flavour representation. Attempts to formulate confinement criteria in which the quark fields play a more fundamental role are discussed [pt

  4. Spatial confinement of ferromagnetic resonances in honeycomb antidot lattices

    International Nuclear Information System (INIS)

    Krivoruchko, V.N.; Marchenko, A.I.

    2012-01-01

    We report on a theoretical investigation of the magnetic static and dynamic properties of a thin ferromagnetic film with honeycomb lattice of circular antidots using micromagnetic simulations and analytical calculations. The theoretical model is based on the Landau–Lifshitz equations and directly accounts for the effects of the magnetic state nonuniformity. A direct calculation of local dynamic susceptibility tensor yields that the resonance spectra consist of four different quasi-uniform modes of the magnetization precession related to the confinement of magnetic domains by the hole mesh. Three of four resonant modes follow a two-fold variation with respect to the in-plane orientation of the applied magnetic field. The easy axes of these modes are mutually rotated by 60° and combine to yield the apparent six-fold configurational anisotropy. Additionally, a mode with intrinsic six-fold symmetry behavior exists, as well. Micromagnetic calculations of the local dynamic susceptibility tensor allow identifying the magnetic unit cell areas/domains responsible for each resonance mode. - Highlights: ► We study the magnetic static and dynamic properties of honeycomb antidot lattices. ► Micromagnetic simulation and analytical calculation were used. ► Four quasi-uniform precession modes exist in resonance spectra. ► The antidot unit cell areas responsible for each resonance mode were identified.

  5. Re-passivation Potential of Alloy 22 in Chloride plus Nitrate Solutions using the Potentiodynamic-Galvano-static-Potentiostatic Method

    International Nuclear Information System (INIS)

    Evans, Kenneth J.; Rebak, Raul B.

    2007-01-01

    In general, the susceptibility of Alloy 22 to suffer crevice corrosion is measured using the Cyclic Potentiodynamic Polarization (CPP) technique. This is a fast technique that gives rather accurate and reproducible values of re-passivation potential (ER1) in most cases. In the fringes of susceptibility, when the environment is not highly aggressive, the values of re-passivation potential using the CPP technique may not be highly reproducible, especially because the technique is fast. To circumvent this, the re-passivation potential of Alloy 22 was measured using a slower method that combines Potentiodynamic-Galvano-static-Potentiostatic steps (called here the Tsujikawa-Hisamatsu Electrochemical or THE method). The THE method applies the charge to the specimen in a more controlled way, which may give more reproducible re-passivation potential values, especially when the environment is not aggressive. The values of re-passivation potential of Alloy 22 in sodium chloride plus potassium nitrate solutions were measured using the THE and CPP methods. Results show that both methods yield similar values of re-passivation potential, especially under aggressive conditions. (authors)

  6. Topological superconductivity, topological confinement, and the vortex quantum Hall effect

    International Nuclear Information System (INIS)

    Diamantini, M. Cristina; Trugenberger, Carlo A.

    2011-01-01

    Topological matter is characterized by the presence of a topological BF term in its long-distance effective action. Topological defects due to the compactness of the U(1) gauge fields induce quantum phase transitions between topological insulators, topological superconductors, and topological confinement. In conventional superconductivity, because of spontaneous symmetry breaking, the photon acquires a mass due to the Anderson-Higgs mechanism. In this paper we derive the corresponding effective actions for the electromagnetic field in topological superconductors and topological confinement phases. In topological superconductors magnetic flux is confined and the photon acquires a topological mass through the BF mechanism: no symmetry breaking is involved, the ground state has topological order, and the transition is induced by quantum fluctuations. In topological confinement, instead, electric charge is linearly confined and the photon becomes a massive antisymmetric tensor via the Stueckelberg mechanism. Oblique confinement phases arise when the string condensate carries both magnetic and electric flux (dyonic strings). Such phases are characterized by a vortex quantum Hall effect potentially relevant for the dissipationless transport of information stored on vortices.

  7. Confined electron assemblies in intense electric and magnetic fields and a generalization of Emden's equation

    International Nuclear Information System (INIS)

    March, N.H.

    2003-09-01

    The Feynman propagator, and its parallel in statistical mechanics, namely the canonical density matrix, are first used to treat both homogeneous and confined electron assemblies in the presence of a static electric field of arbitrary strength. The models are relevant to plasmas having variable electron density and degeneracy. The second topic concerns atomic ions in intense magnetic fields. Semiclassical theory is here applied, non-relativistic and relativistic approximations being invoked. Both treatments are shown to be embraced by a generalization of Emden's equation. (author)

  8. A review on ab initio studies of static, transport, and optical properties of polystyrene under extreme conditions for inertial confinement fusion applications

    Science.gov (United States)

    Hu, S. X.; Collins, L. A.; Boehly, T. R.; Ding, Y. H.; Radha, P. B.; Goncharov, V. N.; Karasiev, V. V.; Collins, G. W.; Regan, S. P.; Campbell, E. M.

    2018-05-01

    Polystyrene (CH), commonly known as "plastic," has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation-hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ = 0.1 to 100 g/cm3 and T = 103 to 4 × 106 K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have built several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state, the QMD-based thermal conductivity (κQMD) and ionization, and the first-principles opacity table. This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles-based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation-hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility. Finally, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.

  9. Performance test of personal RF monitor for area monitoring at magnetic confinement fusion facility

    International Nuclear Information System (INIS)

    Tanaka, M.; Uda, T.; Wang, J.; Fujiwara, O.

    2012-01-01

    For safety management at a magnetic confinement fusion-test facility, protection from not only ionising radiation, but also non-ionising radiation such as the leakage of static magnetic and electromagnetic fields is an important issue. Accordingly, the use of a commercially available personal RF monitor for multipoint area monitoring is proposed. In this study, the performance of both fast- and slow-type personal RF monitors was investigated by using a transverse electromagnetic cell system. The range of target frequencies was between 10 and 300 MHz, corresponding to the ion cyclotron range of frequency in a fusion device. The personal RF monitor was found to have good linearity, frequency dependence and isotropic response. However, the time constant for the electric field sensor of the slow-type monitor was much longer than that for the fast-type monitor. Considering the time-varying field at the facility, it is found that the fast-type monitor is suitable for multipoint monitoring at magnetic confinement fusion test facilities. (authors)

  10. Ambipolar potential formation in TMX

    International Nuclear Information System (INIS)

    Correl, D.L.; Allen, S.L.; Casper, T.A.

    1981-01-01

    TMX experimental data on ambipolar potential control and on the accompanying electrostatic confinement are reported. New results on the radial dependence of the central-cell confining potential are given. Radial and axial particle losses as well as scaling of the central-cell axial confinement are discussed

  11. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review

    Directory of Open Access Journals (Sweden)

    Xibing Li

    2017-08-01

    Full Text Available Rock failure phenomena, such as rockburst, slabbing (or spalling and zonal disintegration, related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining. Currently, the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward. In this study, new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced. Two types of coupled loading modes, i.e. “critical static stress + slight disturbance” and “elastic static stress + impact disturbance”, are proposed, and associated test devices are developed. Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory, and the rockburst mechanism and related criteria are demonstrated. The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold, and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion. Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density. In addition, we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass, which can efficiently and accurately locate the rock failure in hard rock mines. Also, a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.

  12. A GPS-Based Pitot-Static Calibration Method Using Global Output-Error Optimization

    Science.gov (United States)

    Foster, John V.; Cunningham, Kevin

    2010-01-01

    Pressure-based airspeed and altitude measurements for aircraft typically require calibration of the installed system to account for pressure sensing errors such as those due to local flow field effects. In some cases, calibration is used to meet requirements such as those specified in Federal Aviation Regulation Part 25. Several methods are used for in-flight pitot-static calibration including tower fly-by, pacer aircraft, and trailing cone methods. In the 1990 s, the introduction of satellite-based positioning systems to the civilian market enabled new inflight calibration methods based on accurate ground speed measurements provided by Global Positioning Systems (GPS). Use of GPS for airspeed calibration has many advantages such as accuracy, ease of portability (e.g. hand-held) and the flexibility of operating in airspace without the limitations of test range boundaries or ground telemetry support. The current research was motivated by the need for a rapid and statistically accurate method for in-flight calibration of pitot-static systems for remotely piloted, dynamically-scaled research aircraft. Current calibration methods were deemed not practical for this application because of confined test range size and limited flight time available for each sortie. A method was developed that uses high data rate measurements of static and total pressure, and GPSbased ground speed measurements to compute the pressure errors over a range of airspeed. The novel application of this approach is the use of system identification methods that rapidly compute optimal pressure error models with defined confidence intervals in nearreal time. This method has been demonstrated in flight tests and has shown 2- bounds of approximately 0.2 kts with an order of magnitude reduction in test time over other methods. As part of this experiment, a unique database of wind measurements was acquired concurrently with the flight experiments, for the purpose of experimental validation of the

  13. Correlation between potential well structure and neutron production in inertial electrostatic confinement fusion

    International Nuclear Information System (INIS)

    Ohnishi, M.; Yamamoto, Y.; Yoshikawa, K.; Sato, K.H.

    1997-01-01

    The electrostatic potential well in inertial electrostatic confinement (IEC) is studied using two approaches. First, the equilibrium potential profile is obtained by solving the charge neutrality condition, i.e. n i n e , assuming the appropriate distribution functions for the ions and the electrons. The formation of a double well structure is demonstrated, with a depth depending upon the ratio between the focus radii of the electrons and the ions. The correlations between the well depth and the volume integrated neutron production due to deuterium-deuterium (DD) reactions are obtained. Second, in order to study the stability of the well, the dynamic behaviours of the potential well are calculated by performing time advancing numerical simulations on the basis of the particle in cell method. Single, double and triple wells, depending on the amount of injected ion current, are observed to be formed for ions with a monoenergetic distribution. The well in the centre of the multiwell structure is unstable and oscillates with a periods much longer than the inverse ion plasma frequency. A double well structure can be formed even for ions with a spread out energy distribution when the ion current is larger than the threshold value. The time averaged neutron production by DD fusion events is proportional to a power of the ion current involved in forming the double well structure. The results strongly suggest that the high neutron production rate should be attributed to not only the well depth but also the unstable behaviour of the potential, i.e. the intermittent peaking of the density in the centre region. A numerical simulation reveals that IEC possesses a favourable dependence of fusion reactions on the injected ion current for the application to a neutron source or a fusion reactor. (author). 9 refs, 9 figs

  14. Building solids inside nano-space: from confined amorphous through confined solvate to confined 'metastable' polymorph.

    Science.gov (United States)

    Nartowski, K P; Tedder, J; Braun, D E; Fábián, L; Khimyak, Y Z

    2015-10-14

    The nanocrystallisation of complex molecules inside mesoporous hosts and control over the resulting structure is a significant challenge. To date the largest organic molecule crystallised inside the nano-pores is a known pharmaceutical intermediate - ROY (259.3 g mol(-1)). In this work we demonstrate smart manipulation of the phase of a larger confined pharmaceutical - indomethacin (IMC, 357.8 g mol(-1)), a substance with known conformational flexibility and complex polymorphic behaviour. We show the detailed structural analysis and the control of solid state transformations of encapsulated molecules inside the pores of mesoscopic cellular foam (MCF, pore size ca. 29 nm) and controlled pore glass (CPG, pore size ca. 55 nm). Starting from confined amorphous IMC we drive crystallisation into a confined methanol solvate, which upon vacuum drying leads to the stabilised rare form V of IMC inside the MCF host. In contrast to the pure form, encapsulated form V does not transform into a more stable polymorph upon heating. The size of the constraining pores and the drug concentration within the pores determine whether the amorphous state of the drug is stabilised or it recrystallises into confined nanocrystals. The work presents, in a critical manner, an application of complementary techniques (DSC, PXRD, solid-state NMR, N2 adsorption) to confirm unambiguously the phase transitions under confinement and offers a comprehensive strategy towards the formation and control of nano-crystalline encapsulated organic solids.

  15. Progress toward magnetic confinement of a positron-electron plasma: nearly 100% positron injection efficiency into a dipole trap

    Science.gov (United States)

    Stoneking, Matthew

    2017-10-01

    The hydrogen atom provides the simplest system and in some cases the most precise one for comparing theory and experiment in atomics physics. The field of plasma physics lacks an experimental counterpart, but there are efforts underway to produce a magnetically confined positron-electron plasma that promises to represent the simplest plasma system. The mass symmetry of positron-electron plasma makes it particularly tractable from a theoretical standpoint and many theory papers have been published predicting modified wave and stability properties in these systems. Our approach is to utilize techniques from the non-neutral plasma community to trap and accumulate electrons and positrons prior to mixing in a magnetic trap with good confinement properties. Ultimately we aim to use a levitated superconducting dipole configuration fueled by positrons from a reactor-based positron source and buffer-gas trap. To date we have conducted experiments to characterize and optimize the positron beam and test strategies for injecting positrons into the field of a supported permanent magnet by use of ExB drifts and tailored static and dynamic potentials applied to boundary electrodes and to the magnet itself. Nearly 100% injection efficiency has been achieved under certain conditions and some fraction of the injected positrons are confined for as long as 400 ms. These results are promising for the next step in the project which is to use an inductively energized high Tc superconducting coil to produce the dipole field, initially in a supported configuration, but ultimately levitated using feedback stabilization. Work performed with the support of the German Research Foundation (DFG), JSPS KAKENHI, NIFS Collaboration Research Program, and the UCSD Foundation.

  16. Electrostatic-Dipole (ED) Fusion Confinement Studies

    Science.gov (United States)

    Miley, George H.; Shrestha, Prajakti J.; Yang, Yang; Thomas, Robert

    2004-11-01

    The Electrostatic-Dipole (ED) concept significantly differs from a "pure" dipole confinement device [1] in that the charged particles are preferentially confined to the high-pressure region interior of the dipole coil by the assistance of a surrounding spherical electrostatic grid. In present ED experiments, a current carrying coil is embedded inside the grid of an IEC such as to produce a magnetic dipole field. Charged particles are injected axisymmetrically from an ion gun (or duo-plasmatron) into the center of the ED confinement grid/dipole ring where they oscillate along the magnetic field lines and pass the peak field region at the center of the dipole region. As particles begin accelerating away from the center region towards the outer electrostatic grid region, they encounter a strong electrostatic potential (order of 10's of kilovolts) retarding force. The particles then decelerate, reverse direction and re-enter the dipole field region where again magnetic confinement dominates. This process continues, emulating a complex harmonic oscillator motion. The resulting pressure profile averaged over the field curvature offers good plasma stability in the ED configuration. The basic concept and results from preliminary experiments will be described. [1] M.E. Mauel, et al. "Dipole Equilibrium and Stability," 18th IAEA Conference of Plasma Phys. and Control. Nuclear Fusion, Varenna, Italy 2000, IAEA-F1-CN-70/TH

  17. Persistent current through a semiconductor quantum dot with Gaussian confinement

    International Nuclear Information System (INIS)

    Boyacioglu, Bahadir; Chatterjee, Ashok

    2012-01-01

    The persistent diamagnetic current in a GaAs quantum dot with Gaussian confinement is calculated. It is shown that except at very low temperature or at high temperature, the persistent current increases with decreasing temperature. It is also shown that as a function of the dot size, the diamagnetic current exhibits a maximum at a certain confinement length. It is furthermore shown that for a shallow potential, the persistent current shows an interesting maximum structure as a function of the depth of the potential. At low temperature, the peak structure is pretty sharp but becomes broader and broader with increasing temperature.

  18. Simulations of the Static Friction Due to Adsorbed Molecules

    OpenAIRE

    He, Gang; Robbins, Mark O.

    2001-01-01

    The static friction between crystalline surfaces separated by a molecularly thin layer of adsorbed molecules is calculated using molecular dynamics simulations. These molecules naturally lead to a finite static friction that is consistent with macroscopic friction laws. Crystalline alignment, sliding direction, and the number of adsorbed molecules are not controlled in most experiments and are shown to have little effect on the friction. Temperature, molecular geometry and interaction potenti...

  19. The impacts of the quantum-dot confining potential on the spin-orbit effect.

    Science.gov (United States)

    Li, Rui; Liu, Zhi-Hai; Wu, Yidong; Liu, C S

    2018-05-09

    For a nanowire quantum dot with the confining potential modeled by both the infinite and the finite square wells, we obtain exactly the energy spectrum and the wave functions in the strong spin-orbit coupling regime. We find that regardless of how small the well height is, there are at least two bound states in the finite square well: one has the σ x [Formula: see text] = -1 symmetry and the other has the σ x [Formula: see text] = 1 symmetry. When the well height is slowly tuned from large to small, the position of the maximal probability density of the first excited state moves from the center to x ≠ 0, while the position of the maximal probability density of the ground state is always at the center. A strong enhancement of the spin-orbit effect is demonstrated by tuning the well height. In particular, there exists a critical height [Formula: see text], at which the spin-orbit effect is enhanced to maximal.

  20. Confinement limit of a Dirac particle in two and three dimensions

    International Nuclear Information System (INIS)

    Toyama, F.M.; Nogami, Y.

    2010-01-01

    Consider a particle that is in a stationary state described by the Dirac equation with a finite-range potential. In two and three dimensions the particle can be confined to an arbitrarily small spatial region. This is in contrast to the one-dimensional case in which the confinement region cannot be much narrower than the Compton wavelength.

  1. Working Safety in Confined Spaces. Module SH-32. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on working safely in confined spaces in one of 50 modules concerned with job safety and health. This module explains how to recognize potential hazards in confined spaces, how to deal with these hazards, and how planning can prevent accidents. Following the introduction, 17 objectives (each keyed to a page in the text) the…

  2. Spectral analysis of viscous static compressible fluid equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)

    2001-05-25

    It is generally assumed that the study of the spectrum of the linearized Navier-Stokes equations around a static state will provide information about the stability of the equilibrium. This is obvious for inviscid barotropic compressible fluids by the self-adjoint character of the relevant operator, and rather easy for viscous incompressible fluids by the compact character of the resolvent. The viscous compressible linearized system, both for periodic and homogeneous Dirichlet boundary problems, satisfies neither condition, but it does turn out to be the generator of an immediately continuous, almost stable semigroup, which justifies the analysis of the spectrum as predictive of the initial behaviour of the flow. As for the spectrum itself, except for a unique negative finite accumulation point, it is formed by eigenvalues with negative real part, and nonreal eigenvalues are confined to a certain bounded subset of complex numbers. (author)

  3. Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell.

    Science.gov (United States)

    Zhdanova, Ekaterina; Kostyukevich, Yury; Nikolaev, Eugene

    2017-08-01

    Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.

  4. Confinement of Reinforced-Concrete Columns with Non-Code Compliant Confining Reinforcement plus Supplemental Pen-Binder

    Directory of Open Access Journals (Sweden)

    Anang Kristianto

    2012-11-01

    Full Text Available One of the important requirements for earthquake resistant building related to confinement is the use of seismic hooks in the hoop or confining reinforcement of reinforced-concrete column elements. However, installation of a confining reinforcement with a 135-degree hook is not easy. Therefore, in practice, many construction workers apply a confining reinforcement with a 90-degreehook (non-code compliant. Based on research and records of recent earthquakes in Indonesia, the use of a non-code compliant confining reinforcement for concrete columns produces structures with poor seismic performance. This paper presents a study that introduces an additional element that is expected to improve the effectiveness of concrete columns confined with a non-code compliant confining reinforcement. The additional element, named a pen-binder, is used to keep the non-code compliant confining reinforcement in place. The effectiveness of this element under pure axial concentric loading was investigatedcomprehensively.The specimens tested in this study were 18 concrete columns,with a cross-section of 170 mm x 170 mm and a height of 480 mm. The main test variables were the material type of the pen-binder, the angle of the hook, and the confining reinforcement configuration.The test results indicate that adding pen-binders can effectively improve the strength and ductility of the column specimens confined with a non-code compliant confining reinforcement

  5. How to Recharge a Confined Aquifer: An Exploration of Geologic Controls on Groundwater Storage.

    Science.gov (United States)

    Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.

    2017-12-01

    Decreased snowpack storage and groundwater overdraft in California has increased interest in managed aquifer recharge (MAR) of excess winter runoff to the Central Valley aquifer system, which has unused storage capacity that far exceeds the state's surface reservoirs. Recharge to the productive, confined aquifer system remains a challenge due to the presence of nearly-ubiquitous, multiple silt and clay confining units that limit recharge pathways. However, previous studies have identified interconnected networks of sand and gravel deposits that bypass the confining units and accommodate rapid, high-volume recharge to the confined aquifer system in select locations. We use the variably-saturated, fully-integrated groundwater/surface-water flow code, ParFlow, in combination with a high-resolution, transition probability Markov-chain geostatistical model of the subsurface geologic heterogeneity of the east side of the Sacramento Valley, CA, to characterize recharge potential across a landscape that includes these geologic features. Multiple 180-day MAR simulations show that recharge potential is highly dependent on subsurface geologic structure, with a several order-of-magnitude range of recharge rates and volumes across the landscape. Where there are recharge pathways to the productive confined-aquifer system, pressure propagation in the confined system is widespread and rapid, with multi-kilometer lateral pressure propagation. Although widespread pressure propagation occurs in the confined system, only a small fraction of recharge volume is accommodated there. Instead, the majority of recharge occurs by filling unsaturated pore spaces. Where they outcrop at land surface, high-K recharge pathways fill rapidly, accommodating the majority of recharge during early time. However, these features become saturated quickly, and somewhat counterintuitively, the low-K silt and clay facies accommodate the majority of recharge volume during most of the simulation. These findings

  6. Plasma confinement

    CERN Document Server

    Hazeltine, R D

    2003-01-01

    Detailed and authoritative, this volume examines the essential physics underlying international research in magnetic confinement fusion. It offers readable, thorough accounts of the fundamental concepts behind methods of confining plasma at or near thermonuclear conditions. Designed for a one- or two-semester graduate-level course in plasma physics, it also represents a valuable reference for professional physicists in controlled fusion and related disciplines.

  7. Nonlinear quenches of power-law confining traps in quantum critical systems

    International Nuclear Information System (INIS)

    Collura, Mario; Karevski, Dragi

    2011-01-01

    We describe the coherent quantum evolution of a quantum many-body system with a time-dependent power-law confining potential. The amplitude of the inhomogeneous potential is driven in time along a nonlinear ramp which crosses a critical point. Using Kibble-Zurek-like scaling arguments we derive general scaling laws for the density of excitations and energy excess generated during the nonlinear sweep of the confining potential. It is shown that, with respect to the sweeping rate, the densities follow algebraic laws with exponents that depend on the space-time properties of the potential and on the scaling dimensions of the densities. We support our scaling predictions with both analytical and numerical results on the Ising quantum chain with an inhomogeneous transverse field varying in time.

  8. Transverse confinement of an ion beam in a purely electrostatic configuration

    International Nuclear Information System (INIS)

    Correa, J.R.; Ordonez, C.A.; Weathers, D.L.

    2005-01-01

    The transverse confinement of an ion beam in a purely electrostatic configuration is studied. Analytical expressions for the electric potential of three different electrode configurations are found. Each configuration may be described as consisting of many closely spaced Einzel lenses, such that the focusing periodicity length is much smaller than the transverse size of the beam. Classical trajectory computer simulations are used to obtain a map of the phase space co-ordinates for which transverse electrostatic confinement occurs with one of the configurations. The results indicate that confinement should occur for a large range of conditions. It is speculated that the configurations studied can be used for transverse confinement of ion beams in either electrostatic ion traps or electrostatic ion storage rings

  9. Relevant energy scale of color confinement from lattice QCD

    International Nuclear Information System (INIS)

    Yamamoto, Arata; Suganuma, Hideo

    2009-01-01

    We propose a new lattice framework to extract the relevant gluonic energy scale of QCD phenomena which is based on a 'cut' on link variables in momentum space. This framework is expected to be broadly applicable to all lattice QCD calculations. Using this framework, we quantitatively determine the relevant energy scale of color confinement, through the analyses of the quark-antiquark potential and meson masses. The relevant energy scale of color confinement is found to be below 1.5 GeV in the Landau gauge. In fact, the string tension is almost unchanged even after cutting off the high-momentum gluon component above 1.5 GeV. When the relevant low-energy region is cut, the quark-antiquark potential is approximately reduced to a Coulomb-like potential, and each meson becomes a quasifree quark pair. As an analytical model calculation, we also investigate the dependence of the Richardson potential on the cut, and find the consistent behavior with the lattice result.

  10. Composite mesons in self-confining chiral solitons

    International Nuclear Information System (INIS)

    Tandy, P.C.; Frank, M.R.

    1991-01-01

    Most quark-meson models for formation of a baryon as a bag or soliton solution begin with elementary local meson fields including a classical scalar configuration that provides repulsion of valence quarks from the vacuum. This presentation explores aspects of the very different formation mechanism that operates in a model where chiral effective meson fields are composite objects generated from bilocal qq-bar fluctuation fields and the dynamical quark mass can be self-confining. The focus is on the dynamical self-energy for quarks and the related distributed vertex for quark meson coupling. Initial numerical work to explore the practical consequences of these features is presented in the context of a static mean-field soliton. The particular method employed to identify the energy functional at the mean field or Hartree level is to obtain the standard effective action from the Legendre transformation with the help of a chemical potential constraint for the baryon number. The purpose of this approach is two-fold. First, a possible future consideration of radiative corrections might be undertaken by systematically continuing with the loop expansion beyond the lowest level. A second, more practical reason, is that in the presence of a general space-time dependent dynamical self-energy for quarks there are wavefunction renormalisation effects and energy self-consistencies to be defined and maintained for the valence quark states and eigenvalues. Speculations are made on whether this point of view can motivate meson-nucleon relativistic field models containing intrinsic cutoffs for use in nuclear physics. 29 refs., 5 figs

  11. Prediction of acid mine drainage generation potential of various lithologies using static tests: Etili coal mine (NW Turkey) as a case study.

    Science.gov (United States)

    Yucel, Deniz Sanliyuksel; Baba, Alper

    2016-08-01

    The Etili neighborhood in Can County (northwestern Turkey) has large reserves of coal and has been the site of many small- to medium-scale mining operations since the 1980s. Some of these have ceased working while others continue to operate. Once activities cease, the mining facilities and fields are usually abandoned without rehabilitation. The most significant environmental problem is acid mine drainage (AMD). This study was carried out to determine the acid generation potential of various lithological units in the Etili coal mine using static test methods. Seventeen samples were selected from areas with high acidic water concentrations: from different alteration zones belonging to volcanic rocks, from sedimentary rocks, and from coals and mine wastes. Static tests (paste pH, standard acid-base accounting, and net acid generation tests) were performed on these samples. The consistency of the static test results showed that oxidation of sulfide minerals, especially pyrite-which is widely found not only in the alteration zones of volcanic rocks but also in the coals and mine wastes-is the main factor controlling the generation of AMD in this mine. Lack of carbonate minerals in the region also increases the occurrence of AMD.

  12. A GASFLOW analysis of a steam explosion accident in a typical light-water reactor confinement building

    International Nuclear Information System (INIS)

    Travis, J.R.; Wilson, T.L.; Spore, J.W.; Lam, K.L.; Rao, D.V.

    1994-01-01

    Steam over-pressurization resulting from ex-vessel steam explosion (fuel-coolant interaction) may pose a serious challenge to the integrity of a typical light-water reactor confinement building. If the steam generation rate exceeds the removal capacity of the Airborne Activity Confinement System, confinement overpressurization occurs. Thus, there is a large potential for an uncontrolled and unfiltered release of fission products from the confinement atmosphere to the environment at the time of the steam explosion. The GASFLOW computer code was used to analyze the effects of a hypothetical steam explosion and the transport of steam and hydrogen throughout a typical light-water reactor confinement building. The effects of rapid pressurization and the resulting forces on the internal structures and the heat exchanger service bay hatch covers were calculated. Pressurization of the ventilation system and the potential damage to the ventilation fans and high-efficiency particulate air filters were assessed. Because of buoyancy forces and the calculated confinement velocity field, the hydrogen diffuses and mixes in the confinement atmosphere but tends to be transported to its upper region. (author). 2 refs., 14 figs

  13. A GASFLOW analysis of a steam explosion accident in a typical light-water reactor confinement building

    International Nuclear Information System (INIS)

    Travis, J.R.; Wilson, T.L.; Spore, J.W.; Lam, K.L.; Rao, D.V.

    1994-01-01

    Steam over-pressurization resulting from ex-vessel steam explosion (fuel-coolant interaction) may pose a serious challenge to the integrity of a typical light-water reactor confinement building. If the steam generation rate exceeds the removal capacity of the Airborne Activity Confinement System, confinement over pressurization occurs. Thus, there is a large potential for an uncontrolled and unfiltered release of fission products from the confinement atmosphere to the environment at the time of the steam explosion. The GASFLOW computer code was used to analyze the effects of a hypothetical steam explosion and the transport of steam and hydrogen throughout a typical light-water reactor confinement building. The effects of rapid pressurization and the resulting forces on the internal structures and the heat exchanger service bay hatch covers were calculated. Pressurization of the ventilation system and the potential damage to the ventilation fans and high-efficiency particulate air filters were assessed. Because of buoyancy forces and the calculated confinement velocity field, the hydrogen diffuses and mixes in the confinement atmosphere but tends to be transported to its upper region

  14. On the scalar potential models from the isospectral potential class

    Energy Technology Data Exchange (ETDEWEB)

    Lima, V. Gomes [Universidade Federal Rural do Rio de Janeiro, Seropedica, RJ (Brazil). Dept. de Fisica; Santos, V. Silva [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Engenharia Civil; Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: rafaelr@cbpf.br

    2001-10-01

    The static field classical configuration in (1+1)-dimensions for new non-linear potential models is investigated from an isospectral potential class and the concept of bosonic zero mode solution. One of the models considered here has a static nontopological configuration with a single vacuum state, whose potential in the stability equation corresponds to broken a supersymmetry. (author)

  15. Rigidity of generalized Bach-flat vacuum static spaces

    Science.gov (United States)

    Yun, Gabjin; Hwang, Seungsu

    2017-11-01

    In this paper, we study the structure of generalized Bach-flat vacuum static spaces. Generalized Bach-flat metrics are considered as extensions of both Einstein and Bach-flat metrics. First, we prove that a compact Riemannian n-manifold with n ≥ 4 which is a generalized Bach-flat vacuum static space is Einstein. A generalized Bach-flat vacuum static space with the potential function f having compact level sets is either Ricci-flat or a warped product with zero scalar curvature when n ≥ 5, and when n = 4, it is Einstein if f has its minimum. Secondly, we consider critical metrics for another quadratic curvature functional involving the Ricci tensor, and prove similar results. Lastly, by applying the technique developed above, we prove Besse conjecture when the manifold is generalized Bach-flat.

  16. An EQT-based cDFT approach for a confined Lennard-Jones fluid mixture

    Energy Technology Data Exchange (ETDEWEB)

    Motevaselian, M. H.; Mashayak, S. Y.; Aluru, N. R., E-mail: aluru@illinois.edu [Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-09-28

    Empirical potential-based quasi-continuum theory (EQT) provides a route to incorporate atomistic detail into continuum framework such as the Nernst-Planck equation. EQT can also be used to construct a grand potential functional for classical density functional theory (cDFT). The combination of EQT and cDFT provides a simple and fast approach to predict the inhomogeneous density, potential profiles, and thermodynamic properties of confined fluids. We extend the EQT-cDFT approach to confined fluid mixtures and demonstrate it by simulating a mixture of methane and hydrogen inside slit-like channels of graphene. We show that the EQT-cDFT predictions for the structure of the confined fluid mixture compare well with the molecular dynamics simulation results. In addition, our results show that graphene slit nanopores exhibit a selective adsorption of methane over hydrogen.

  17. Quark confinement

    International Nuclear Information System (INIS)

    Joos, H.

    1976-07-01

    The main topics of these lectures are: phenomenological approach to quark confinement, standard Lagrangian of hadrondynamics, Lagrangian field theory and quark confinement, classical soliton solutions in a simple model, quantization of extended systems, colour charge screening and quantization on a lattice and remarks on applications. A survey of the scientific publications listed according to the topics until 26 March 1976 is supplemented. (BJ) [de

  18. Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study

    International Nuclear Information System (INIS)

    Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I.

    2014-01-01

    The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented

  19. Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac. (Mexico)

    2014-05-15

    The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented.

  20. Confinement of monopole field lines in a superconductor at T ≠ 0

    International Nuclear Information System (INIS)

    Cardoso, Marco; Bicudo, Pedro; Sacramento, Pedro D.

    2008-01-01

    We apply the Bogoliubov-de Gennes equations to the confinement of a monopole-antimonopole pair in a superconductor. This is related to the problem of a quark-antiquark pair bound by a confining string, consisting of a colour-electric flux tube, dual to the magnetic vortex of type-II superconductors. We study the confinement of the field lines due to the superconducting state and calculate the effective potential between the two monopoles. The monopoles can be simulated in a real experiment inserting two long and thin magnetic rods. At short distances the potential is Coulombic and at large distances the potential is linear, as previously determined solving the Ginzburg-Landau equations. The magnetic field lines and the string tension are also studied as a function of the temperature T. Because we take into account the explicit fermionic degrees of freedom, this work may open new perspectives to the breaking of chiral symmetry or to colour superconductivity

  1. An experiment to test centrifugal confinement for fusion

    International Nuclear Information System (INIS)

    Ellis, R.F.; Hassam, A.B.; Messer, S.; Osborn, B.R.

    2001-01-01

    The basic idea of centrifugal confinement is to use centrifugal forces from supersonic rotation to augment conventional magnetic confinement. Optimizing this 'knob' results in a fusion device that features four advantages: steady state, no disruptions, superior cross-field confinement, and a simpler coil configuration. The idea rests on two prongs: first, centrifugal forces can confine plasmas to desired regions of shaped magnetic fields; second, the accompanying large velocity shear can stabilize even magnetohydrodynamic (MHD) instabilities. A third feature is that the velocity shear also viscously heats the plasma; no auxiliary heating is necessary to reach fusion temperatures. Regarding transport, the velocity shear can also quell microturbulence, leading to fully classical confinement, as there are no neoclassical effects. Classical parallel electron transport then sets the confinement time. These losses are minimized by a large Pastukhov factor resulting from the deep centrifugal potential well: at Mach 4-5, the Lawson criterion is accessible. One key issue is whether velocity shear will be sufficient by itself to stabilize MHD interchanges. Numerical simulations indicate that laminar equilibria can be obtained at Mach numbers of 4-5 but that the progression toward laminarity with increasing Mach number is accompanied by residual convection from the interchanges. The central goal of the Maryland Centrifugal Torus (MCT) [R. F. Ellis et al., Bull. Am. Phys. Soc. 44, 48 (1998)] is to obtain MHD stability from velocity shear. As an assist to accessing laminarity, MCT will incorporate two unique features: plasma elongation and toroidal magnetic field. The former raises velocity shear efficiency, and modest magnetic shear should suppress residual convection

  2. High energy behaviour of the scattering amplitude in the presence of confined channels

    International Nuclear Information System (INIS)

    Gehlen, G.; Rittenberg, V.

    1977-09-01

    The two-channel potential scattering problem in three space-dimensions is considered in the case when one channel is permanently confined. Two examples of confining potentials are considered: the harmonic oscillator and the infinite well. The two cases give radically different results: for the infinite well there is no high energy limit; in the case of the harmonic oscillator the amplitude has properties similar to that of dual absorptive models. (orig.) [de

  3. Spectral properties of a confined nonlinear quantum oscillator in one and three dimensions

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel; Gordon, Christopher R.

    2013-01-01

    We analyze the spectral behaviour of a nonlinear quantum oscillator model under confinement. The underlying potential is given by a harmonic oscillator interaction plus a nonlinear term that can be weakened or strengthened through a parameter. Numerical eigenvalues of the model in one and three dimensions are presented. The asymptotic behaviour of the eigenvalues for confinement relaxation and for vanishing nonlinear term in the potential is investigated. Our findings are compared with existing results.

  4. X-ray sources by Z-pinch for inertial confinement fusion

    International Nuclear Information System (INIS)

    Akiyama, Hidenori; Katsuki, Sunao; Lisitsyn, Igor

    1999-01-01

    Inertial confinement nuclear fusion driven by X-ray from Z-pinch plasmas has been developed. Recently, extremely high X-ray power (290 TW) and energy (1.8 MJ) were produced in fast Z-pinch implosions on the Z accelerator (Sandia National Laboratories). Wire arrays are used to produce the initial plasma. The X-ray from Z-pinch plasmas produced by pulsed power has great potential as a driver of inertial confinement nuclear fusion. (author)

  5. Chernobyl new safe confinement

    International Nuclear Information System (INIS)

    Dodd, L.

    2011-01-01

    The author presents the new safe confinement that will be commissioned at Unit 4 of the Chernobyl NPP in 2015. The confinement will ensure that Chernobyl Unit 4 will be placed in an environmentally safe condition for at least next 100 years. The article highlights the current work status, future perspectives and the feasibility of confinement concept [ru

  6. Atomic processes in Inertial Electrostatic Confinement (IEC) devices

    International Nuclear Information System (INIS)

    Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.

    1993-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2*10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented

  7. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement.

    Science.gov (United States)

    Yang, Lei; Guo, Yanjie; Diao, Dongfeng

    2017-05-31

    Recently, water flow confined in nanochannels has become an interesting topic due to its unique properties and potential applications in nanofluidic devices. The trapped water is predicted to experience high pressure in the gigapascal regime. Theoretical and experimental studies have reported various novel structures of the confined water under high pressure. However, the role of this high pressure on the dynamic properties of water has not been elucidated to date. In the present study, the structure evolution and interfacial friction behavior of water constrained in a graphene nanochannel were investigated via molecular dynamics simulations. Transitions of the confined water to different ice phases at room temperature were observed in the presence of lateral pressure at the gigapascal level. The friction coefficient at the water/graphene interface was found to be dependent on the lateral pressure and nanochannel height. Further theoretical analyses indicate that the pressure dependence of friction is related to the pressure-induced change in the structure of water and the confinement dependence results from the variation in the water/graphene interaction energy barrier. These findings provide a basic understanding of the dynamics of the nanoconfined water, which is crucial in both fundamental and applied science.

  8. Dynamics in geometrical confinement

    CERN Document Server

    Kremer, Friedrich

    2014-01-01

    This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films (1-dimensional confinement) (ii) in pores or tubes with nanometric diameters (2-dimensional confinement) (iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore...

  9. Symmetries in confined classical Coulomb systems

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1991-01-01

    The properties of charged particles confined in a harmonic oscillator potential have become of increased interest lately in view of the development of techniques in ion traps and storage rings. The symmetries in such systems intrigued the imagination of Ted Hecht in connection with the storage ring at Heidelberg, and so perhaps it is an appropriate subject for this symposium

  10. Tokamak confinement scaling laws

    International Nuclear Information System (INIS)

    Connor, J.

    1998-01-01

    The scaling of energy confinement with engineering parameters, such as plasma current and major radius, is important for establishing the size of an ignited fusion device. Tokamaks exhibit a variety of modes of operation with different confinement properties. At present there is no adequate first principles theory to predict tokamak energy confinement and the empirical scaling method is the preferred approach to designing next step tokamaks. This paper reviews a number of robust theoretical concepts, such as dimensional analysis and stability boundaries, which provide a framework for characterising and understanding tokamak confinement and, therefore, generate more confidence in using empirical laws for extrapolation to future devices. (author)

  11. Topological superfluids confined in a nanoscale slab geometry

    Science.gov (United States)

    Saunders, John

    2013-03-01

    Nanofluidic samples of superfluid 3He provide a route to explore odd-parity topological superfluids and their surface, edge and defect-bound excitations under well controlled conditions. We have cooled superfluid 3He confined in a precisely defined nano-fabricated cavity to well below 1 mK for the first time. We fingerprint the order parameter by nuclear magnetic resonance, exploiting a SQUID NMR spectrometer of exquisite sensitivity. We demonstrate that dimensional confinement, at length scales comparable to the superfluid Cooper-pair diameter, has a profound influence on the superfluid order of 3He. The chiral A-phase is stabilized at low pressures, in a cavity of height 650 nm. At higher pressures we observe 3He-B with a surface induced planar distortion. 3He-B is a time-reversal invariant topological superfluid, supporting gapless Majorana surface states. In the presence of the small symmetry breaking NMR static magnetic field we observe two possible B-phase states of the order parameter manifold, which can coexist as domains. Non-linear NMR on these states enables a measurement of the surface induced planar distortion, which determines the spectral weight of the surface excitations. The expected structure of the domain walls is such that, at the cavity surface, the line separating the two domains is predicted to host fermion zero modes, protected by symmetry and topology. Increasing confinement should stabilize new p-wave superfluid states of matter, such as the quasi-2D gapped A phase, which breaks time reversal symmetry, has a protected chiral edge mode, and may host half-quantum vortices with a Majorana zero-mode at the core. We discuss experimental progress toward this phase, through measurements on a 100 nm cavity. On the other hand, a cavity height of 1000 nm may stabilize a novel ``striped'' superfluid with spatially modulated order parameter. Supported by EPSRC (UK) GR/J022004/1 and European Microkelvin Consortium, FP7 grant 228464

  12. Quantum mechanical solver for confined heterostructure tunnel field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Verreck, Devin, E-mail: devin.verreck@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium); Van de Put, Maarten; Sorée, Bart; Magnus, Wim [imec, Kapeldreef 75, 3001 Leuven (Belgium); Departement of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Verhulst, Anne S.; Collaert, Nadine; Thean, Aaron [imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandenberghe, William G. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2014-02-07

    Heterostructure tunnel field-effect transistors (HTFET) are promising candidates for low-power applications in future technology nodes, as they are predicted to offer high on-currents, combined with a sub-60 mV/dec subthreshold swing. However, the effects of important quantum mechanical phenomena like size confinement at the heterojunction are not well understood, due to the theoretical and computational difficulties in modeling realistic heterostructures. We therefore present a ballistic quantum transport formalism, combining a novel envelope function approach for semiconductor heterostructures with the multiband quantum transmitting boundary method, which we extend to 2D potentials. We demonstrate an implementation of a 2-band version of the formalism and apply it to study confinement in realistic heterostructure diodes and p-n-i-n HTFETs. For the diodes, both transmission probabilities and current densities are found to decrease with stronger confinement. For the p-n-i-n HTFETs, the improved gate control is found to counteract the deterioration due to confinement.

  13. Magnetic properties of confined holographic QCD

    Science.gov (United States)

    Bergman, Oren; Lifschytz, Gilad; Lippert, Matthew

    2013-12-01

    We investigate the Sakai-Sugimoto model at nonzero baryon chemical potential in a background magnetic field in the confined phase where chiral symmetry is broken. The D8-brane Chern-Simons term holographically encodes the axial anomaly and generates a gradient of the η' meson, which carries a non-vanishing baryon charge. Above a critical value of the chemical potential, there is a second-order phase transition to a mixed phase which includes also ordinary baryonic matter. However, at fixed baryon charge density, the matter is purely η'-gradient above a critical magnetic field.

  14. Static QCD potential at rQCD-1: Perturbative expansion and operator-product expansion

    International Nuclear Information System (INIS)

    Sumino, Y.

    2007-01-01

    We analyze the static QCD potential V QCD (r) in the distance region 0.1 fm QCD (r) analytically. Higher-order terms are estimated by large-β 0 approximation or by renormalization group, and the renormalization scale is varied around the minimal-sensitivity scale. A 'Coulomb'+linear potential can be identified with the scale-independent and renormalon-free part of the prediction and can be separated from the renormalon-dominating part. (II) In the frame of OPE, we define two types of renormalization schemes for the leading Wilson coefficient. One scheme belongs to the class of conventional factorization schemes. The other scheme belongs to a new class, which is independent of the factorization scale, derived from a generalization of the Coulomb+linear potential of (I). The Wilson coefficient is free from IR renormalons and IR divergences in both schemes. We study properties of the Wilson coefficient and of the corresponding nonperturbative contribution δE US (r) in each scheme. (III) We compare numerically perturbative predictions of the Wilson coefficient and lattice computations of V QCD (r) when n l =0. We confirm either correctness or consistency (within uncertainties) of the theoretical predictions made in (II). Then we perform fits to simultaneously determine δE US (r) and r 0 Λ MS 3-loop (relation between lattice scale and Λ MS ). As for the former quantity, we improve bounds as compared to the previous determination; as for the latter quantity, our analysis provides a new method for its determination. We find that (a) δE US (r)=0 is disfavored, and (b) r 0 Λ MS 3-loop =0.574±0.042. We elucidate the mechanism for the sensitivities and examine sources of errors in detail

  15. From Static Output Feedback to Structured Robust Static Output Feedback: A Survey

    OpenAIRE

    Sadabadi , Mahdieh ,; Peaucelle , Dimitri

    2016-01-01

    This paper reviews the vast literature on static output feedback design for linear time-invariant systems including classical results and recent developments. In particular, we focus on static output feedback synthesis with performance specifications, structured static output feedback, and robustness. The paper provides a comprehensive review on existing design approaches including iterative linear matrix inequalities heuristics, linear matrix inequalities with rank constraints, methods with ...

  16. The confinement problem

    International Nuclear Information System (INIS)

    Seiler, E.

    1985-01-01

    Confinement of quarks is sometimes taken as some kind of dogma in the contemporary theory of strong interactions - quantum chromo-dynamics (QCD). Scientists should not be content with that. What is meant by ''permanent confinement'' should be formulated more precisely to see whether the theory has this property or not. The author looks at some possible interpretations of ''confinement'' and their shortcomings and then turns to the most widely used rather pragmatic definition based on the somewhat unphysical notion of infinitely heavy external sources. He describes what is known about the problem and tries to bring into focus some aspects that are insufficiently understood in his opinion

  17. Static Equilibrium Configurations of Charged Metallic Bodies ...

    African Journals Online (AJOL)

    In this paper we developed a simple numerical scheme to determine the static equilibrium configuration of charged metallic bodies by minimizing the potential energy function. The method developed has some advantages; it combines the general theory and the physical meanings nested in the mathematical model and this ...

  18. Monitoring airborne biotic contaminants in the indoor environment of pig and poultry confinement buildings.

    Science.gov (United States)

    Hong, Pei-Ying; Li, Xiangzhen; Yang, Xufei; Shinkai, Takumi; Zhang, Yuanhui; Wang, Xinlei; Mackie, Roderick I

    2012-06-01

    Given the growing concerns over human and animal health issues related to confined animal feeding operations, an in-depth examination is required to monitor for airborne bacteria and associated antibiotic resistance genes. Our 16S rRNA-based pyrosequencing revealed that the airborne microbial community skewed towards a higher abundance of Firmicutes (> 59.2%) and Bacteroidetes (4.2-31.4%) within the confinement buildings, while the office environment was predominated by Proteobacteria (55.2%). Furthermore, bioaerosols in the confinement buildings were sporadically associated with genera of potential pathogens, and these genera were more frequently observed in the bioaerosols of pig and layer hen confinement than the turkey confinement buildings and office environment. High abundances of tetracycline resistance genes (9.55 × 10(2) to 1.69 × 10(6) copies ng(-1) DNA) were also detected in the bioaerosols sampled from confinement buildings. Bacterial lineages present in the poultry bioaerosols clustered apart from those present in the pig bioaerosols and among the different phases of pig production, suggesting that different livestock as well as production phase were associated with a distinct airborne microbial community. By understanding the diversity of biotic contaminants associated with the different confinement buildings, this study facilitates the implementation of better management strategies to minimize potential health impacts on both livestock and humans working in this environment. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  19. An unorthodox X-Class Long-Duration Confined Flare

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Gou, Tingyu; Wang, Yuming; Liu, Kai [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China); Titov, Viacheslav S. [Predictive Science, Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Wang, Haimin, E-mail: rliu@ustc.edu.cn [Space Weather Research Laboratory, Center for Solar-Terrestrial Research, NJIT, Newark, NJ 07102 (United States)

    2014-07-20

    We report the observation of an X-class long-duration flare which is clearly confined. It appears as a compact-loop flare in the traditional EUV passbands (171 and 195 Å), but in the passbands sensitive to flare plasmas (94 and 131 Å), it exhibits a cusp-shaped structure above an arcade of loops like other long-duration events. Inspecting images in a running difference approach, we find that the seemingly diffuse, quasi-static cusp-shaped structure consists of multiple nested loops that repeatedly rise upward and disappear approaching the cusp edge. Over the gradual phase, we detect numerous episodes of loop rising, each lasting minutes. A differential emission measure analysis reveals that the temperature is highest at the top of the arcade and becomes cooler at higher altitudes within the cusp-shaped structure, contrary to typical long-duration flares. With a nonlinear force-free model, our analysis shows that the event mainly involves two adjacent sheared arcades separated by a T-type hyperbolic flux tube (HFT). One of the arcades harbors a magnetic flux rope, which is identified with a filament that survives the flare owing to the strong confining field. We conclude that a new emergence of magnetic flux in the other arcade triggers the flare, while the preexisting HFT and flux rope dictate the structure and dynamics of the flare loops and ribbons during the long-lasting decay phase, and that a quasi-separatrix layer high above the HFT could account for the cusp-shaped structure.

  20. Computer simulations of supercooled polymer melts in the bulk and in confined geometry

    International Nuclear Information System (INIS)

    Baschnagel, J; Varnik, F

    2005-01-01

    We survey results of computer simulations for the structure and dynamics of supercooled polymer melts and films. Our survey is mainly concerned with features of a coarse grained polymer model-a bead-spring model-in the temperature regime above the critical glass temperature T c of the ideal mode-coupling theory (MCT). We divide our discussion into two parts: a part devoted to bulk properties and a part dealing with thin films. The discussion of the bulk properties focuses on two aspects: a comparison of the simulation results with MCT and an analysis of dynamic heterogeneities. We explain in detail how the analyses are performed and what results may be obtained, and we critically assess their strengths and weaknesses. In discussing the application of MCT we also present first results of a quantitative comparison which does not rely on fits, but exploits static input from the simulation to predict the relaxation dynamics. The second part of this review is devoted to extensions of the simulations from the bulk to thin films. We explore in detail the influence of the boundary condition, imposed by smooth or rough walls, on the structure and dynamics of the polymer melt. Geometric confinement is found to shift the glass transition temperature T g (or T c in our case) relative to the bulk. We compare our and other simulation results for the T g shift with experimental data, briefly survey some theoretical ideas for explaining these shifts and discuss related simulation work on the glass transition of confined liquids. Finally, we also present some technical details of how to perform fits to MCT and give a brief introduction to another approach to the glass transition based on the potential energy landscape of a liquid. (topical review)

  1. From Static to Interactive: Transforming Data Visualization to Improve Transparency.

    Directory of Open Access Journals (Sweden)

    Tracey L Weissgerber

    2016-06-01

    Full Text Available Data presentation for scientific publications in small sample size studies has not changed substantially in decades. It relies on static figures and tables that may not provide sufficient information for critical evaluation, particularly of the results from small sample size studies. Interactive graphics have the potential to transform scientific publications from static reports of experiments into interactive datasets. We designed an interactive line graph that demonstrates how dynamic alternatives to static graphics for small sample size studies allow for additional exploration of empirical datasets. This simple, free, web-based tool (http://statistika.mfub.bg.ac.rs/interactive-graph/ demonstrates the overall concept and may promote widespread use of interactive graphics.

  2. Pattern replication by confined dewetting

    NARCIS (Netherlands)

    Harkema, S.; Schäffer, E.; Morariu, M.D.; Steiner, U

    2003-01-01

    The dewetting of a polymer film in a confined geometry was employed in a pattern-replication process. The instability of dewetting films is pinned by a structured confining surface, thereby replicating its topographic pattern. Depending on the surface energy of the confining surface, two different

  3. Static electricity: A literature review

    Science.gov (United States)

    Crow, Rita M.

    1991-11-01

    The major concern with static electricity is its discharging in a flammable atmosphere which can explode and cause a fire. Textile materials can have their electrical resistivity decreased by the addition of antistatic finishes, imbedding conductive particles into the fibres or by adding metal fibers to the yarns. The test methods used in the studies of static electricity include measuring the static properties of materials, of clothed persons, and of the ignition energy of flammable gases. Surveys have shown that there is sparse evidence for fires definitively being caused by static electricity. However, the 'worst-case' philosophy has been adopted and a static electricity safety code is described, including correct grounding procedures and the wearing of anti-static clothing and footwear.

  4. Auditory hair cell centrioles undergo confined Brownian motion throughout the developmental migration of the kinocilium.

    Science.gov (United States)

    Lepelletier, Léa; de Monvel, Jacques Boutet; Buisson, Johanna; Desdouets, Chantal; Petit, Christine

    2013-07-02

    Planar polarization of the forming hair bundle, the mechanosensory antenna of auditory hair cells, depends on the poorly characterized center-to-edge displacement of a primary cilium, the kinocilium, at their apical surface. Taking advantage of the gradient of hair cell differentiation along the cochlea, we reconstituted a map of the kinocilia displacements in the mouse embryonic cochlea. We then developed a cochlear organotypic culture and video-microscopy approach to monitor the movements of the kinocilium basal body (mother centriole) and its daughter centriole, which we analyzed using particle tracking and modeling. We found that both hair cell centrioles undergo confined Brownian movements around their equilibrium positions, under the apparent constraint of a radial restoring force of ∼0.1 pN. This magnitude depended little on centriole position, suggesting nonlinear interactions with constraining, presumably cytoskeletal elements. The only dynamic change observed during the period of kinocilium migration was a doubling of the centrioles' confinement area taking place early in the process. It emerges from these static and dynamic observations that kinocilia migrate gradually in parallel with the organization of hair cells into rows during cochlear neuroepithelium extension. Analysis of the confined motion of hair cell centrioles under normal and pathological conditions should help determine which structures contribute to the restoring force exerting on them. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Emergency repair of severely damaged reinforced concrete columns using active confinement with shape memory alloys

    International Nuclear Information System (INIS)

    Shin, Moochul; Andrawes, Bassem

    2011-01-01

    This experimental study focuses on investigating the feasibility of utilizing spirals made of shape memory alloys (SMAs) to conduct emergency repair on severely damaged reinforced concrete (RC) columns. The thermally triggered shape memory feature of SMAs is sought in this study, to apply active confinement pressure on the column's damaged region. Two severely damaged 1/3-scale RC columns are repaired using the proposed technique and tested under a quasi-static lateral cyclic load. The repair of each column is conducted in less than 15 h, and the columns are tested 24 h after the starting of the repair process. The experimental results show that the new repair technique is successful in either fully restoring the as-built lateral strength, stiffness, and flexural ductility of the columns or making them even better. The efficacy of the proposed repair technique is mainly attributed to the ability of the SMA spirals to apply and maintain active confining pressure on the damaged region of the columns, which increases the strength of the already damaged concrete and delays its damage

  6. Study of quantum confinement effects in ZnO nanostructures

    Science.gov (United States)

    Movlarooy, Tayebeh

    2018-03-01

    Motivation to fact that zinc oxide nanowires and nanotubes with successful synthesis and the mechanism of formation, stability and electronic properties have been investigated; in this study the structural, electronic properties and quantum confinement effects of zinc oxide nanotubes and nanowires with different diameters are discussed. The calculations within density functional theory and the pseudo potential approximation are done. The electronic structure and energy gap for Armchair and zigzag ZnO nanotubes with a diameter of about 4 to 55 Angstrom and ZnO nanowires with a diameter range of 4 to 23 Å is calculated. The results revealed that due to the quantum confinement effects, by reducing the diameter of nanowires and nanotubes, the energy gap increases. Zinc oxide semiconductor nanostructures since having direct band gap with size-dependent and quantum confinement effect are recommended as an appropriate candidate for making nanoscale optoelectronic devices.

  7. Exploiting Confinement Effects to Tune Selectivity in Cyclooctane Metathesis

    KAUST Repository

    Pump, Eva

    2017-08-24

    The mechanism of cyclooctane metathesis using confinement effect strategies in mesoporous silica nanoparticles (MSNs) is discussed by catalytic experiments and density functional theory (DFT) calculations. WMe6 was immobilized inside the pores of a series of MSNs having the same structure but different pore diameters (60, 30 and 25 Å). Experiments in cyclooctane metathesis suggest that confinement effects observed in smaller pores (30 and 25 Å) improve selectivity towards the dimeric cyclohexadecane. In contrast, in larger pores (60 Å) a broad product distribution dominated by ring contracted cycloalkanes was found. The catalytic cycle and potential side reactions occurring at [(≡SiO-)WMe5] were examined with DFT calculations. Analysis of the geometries for the key reaction intermediates allowed to rationalize the impact of a confined environment on the enhanced selectivity towards the dimeric product in smaller pores, while in large pores the ring contracted products are favored.

  8. A transport model with color confinement

    International Nuclear Information System (INIS)

    Loh, S.

    1997-01-01

    First the mostly important properties of QCD are dealt with. It is made plausible, how the QCD vacuum generates a screening of color charges and is by this responsible for the quark confinement in color singlets. in the following the behaviour of classical color charges and color fields is studied and it is concluded that by this approximation, the neglection of quantum-mechanical fluctuation, the quark confinement cannot be explained, because the mean-field approximation leads to a screening of the color charges. Motivated by this result the Friedberg-Lee soliton model is presented, in which the the color confinement and all further nonperturbative QCD effects are phenomenologically modelled by means of a scalar field. Thereafter a derivation of the transport equations for quarks in the framework of the Wigner-function is presented. An extension of the equation to the Friedberg-Lee model is explained. As results the ground-state properties of the model are studied. Mesonic and baryonic ground-state solutions (soliton solutions) of the equations are constructed, whereby the constituents are both light quarks and heavy quarks. Furthermore the color coupling constant of QCD is fixed by means of the string tension by dynamical separation of the quarks of the meson. The flux tubes formed dynamically in this way are applied, in order to study the interaction of two strings and to calculate a string-string potential. Excited states of the meson (isovectorial modes) are presented as well as the influence of the color confinement on the quark motion. Finally the dynamical formation and the break-up of a string by the production of light and heavy quark pairs is described

  9. Impact of the duct static pressure reset control strategy on the energy consumption by the HVAC system

    Directory of Open Access Journals (Sweden)

    Walaszczyk Juliusz

    2017-01-01

    Full Text Available This article addresses different duct static pressure control strategies which could be implemented in variable air volume air-conditioning systems (VAV. Two pressure reset control strategies are compared to the commonly used control solution based on the “Constant static pressure” method. First pressure reset control strategy, known as PID Control, uses signals from VAV boxes controllers to reset duct static pressure in a way that one of the VAV dampers is maintained almost entirely open. Second strategy decreases static pressure setpoint until an adjustable number of pressure requests occur. As a response to the certain amount of requests, static pressure setpoint is increased. This strategy is called Trim & Respond. Both static pressure reset control strategies described in this paper are considered to have more significant potential for energy savings than the “Constant static pressure” method. In order to validate this potential, several simulations for different control strategies were carried out and the obtained results are compared and analysed. The theoretical limit of the energy savings - set of the optimal control actions, was estimated with Nelder-Mead algorithm and also presented in this article. General description of the static pressure control strategies "Constant static pressure", PID Control and Trim & Respond is given.

  10. Central cell confinement in MFTF-B

    International Nuclear Information System (INIS)

    Jong, R.A.

    1981-01-01

    The point code TANDEM has been used to survey the range of plasma parameters which can be attained in MFTF-B. The code solves for the electron and ion densities and temperatures in the central cell, yin-yang, barrier, and A-cell regions as well as the plasma potential in each region. In these studies, the A-cell sloshing ion beams were fixed while the neutral beams in the yin-yang and central cell, the gas feed in the central cell, and the applied ECRH power β, central cell ion density and temperature, and the confining potential are discussed

  11. Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.

    Science.gov (United States)

    Li, Yu-Qi; Pan, Xiao-Yin; Sahni, Viraht

    2013-09-21

    The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential.

  12. Upper Basalt-Confined Aquifer System in the Southern Hanford Site

    International Nuclear Information System (INIS)

    Thorne, P.

    1999-01-01

    The 1990 DOE Tiger Team Finding GW/CF-202 found that the hydrogeologic regime at the Hanford Site was inadequately characterized. This finding also identified the need for completing a study of the confined aquifer in the central and southern portions of the Hanford Site. The southern portion of the site is of particular interest because hydraulic-head patterns in the upper basalt-confined aquifer system indicate that groundwater from the Hanford central plateau area, where contaminants have been found in the aquifer, flows southeast toward the southern site boundary. This results in a potential for offsite migration of contaminants through the upper basalt-confined aquifer system. Based on the review presented in this report, available hydrogeologic characterization information for the upper basalt-confined aquifer system in this area is considered adequate to close the action item. Recently drilled offsite wells have provided additional information on the structure of the aquifer system in and near the southern part of the Hanford Site. Information on hydraulic properties, hydrochemistry, hydraulic heads and flow directions for the upper basalt-confined aquifer system has been re-examined and compiled in recent reports including Spane and Raymond (1993), Spane and Vermeul ( 1994), and Spane and Webber (1995)

  13. Dynamics and reactivity of confined water

    International Nuclear Information System (INIS)

    Musat, R.

    2008-01-01

    In the context of new sustainable energy sources quest, the nuclear energy remains a key solution. However, with the development of nuclear technology, problems relating to nuclear waste disposal arise; thus, the radiolysis of water in confined media is extremely important with respect to matters related to long time storage of nuclear waste. Studies in model porous media would allow the projection of a confined water radiolysis simulator. A first step in this direction was made by studying the radiolysis of water confined in Vycor and CPG glasses; this study continues the trend set and investigates the effects of confinement in metal materials upon the water radiolysis allowing the understanding of metal - water radiation induced corrosion. A further/complete understanding of the radiolytic process under confinement requires knowledge of the effect of confinement upon the dynamics of confined molecules and on the evolution of the species produced upon ionizing radiation. In this respect, we have used the OH vibrator as a probe of the hydrogen bond network properties and thus investigated the dynamics of confined water using IR time resolved spectroscopy. The evolution of the hydrated electron under confinement was studied on a nano and picosecond time scale using UV pump - visible probe technique and single shot spectroscopy. (author) [fr

  14. Conference summary: Experiments in confinement and plasma-wall interaction and innovative confinement concept

    International Nuclear Information System (INIS)

    Ninomiya, H.

    2005-01-01

    This paper summarizes the results presented at the 20th IAEA Fusion Energy Conference 2004 in the sessions of confinement, plasma-wall interaction and innovative confinement concept. The highlights of the presentations are as follows. Long pulse operation with high beta and high bootstrap fraction much longer than the current diffusion time has been achieved. The discharge scenario optimization and its extrapolation towards ITER have progressed remarkably. Significant progress has been made in understanding of global confinement and transport physics. (author)

  15. Elastic scattering of positronium: Application of the confined variational method

    KAUST Repository

    Zhang, Junyi

    2012-08-01

    We demonstrate for the first time that the phase shift in elastic positronium-atom scattering can be precisely determined by the confined variational method, in spite of the fact that the Hamiltonian includes an unphysical confining potential acting on the center of mass of the positron and one of the atomic electrons. As an example, we study the S-wave elastic scattering for the positronium-hydrogen scattering system, where the existing 4% discrepancy between the Kohn variational calculation and the R-matrix calculation is resolved. © Copyright EPLA, 2012.

  16. Elastic scattering of positronium: Application of the confined variational method

    KAUST Repository

    Zhang, Junyi; Yan, Zong-Chao; Schwingenschlö gl, Udo

    2012-01-01

    We demonstrate for the first time that the phase shift in elastic positronium-atom scattering can be precisely determined by the confined variational method, in spite of the fact that the Hamiltonian includes an unphysical confining potential acting on the center of mass of the positron and one of the atomic electrons. As an example, we study the S-wave elastic scattering for the positronium-hydrogen scattering system, where the existing 4% discrepancy between the Kohn variational calculation and the R-matrix calculation is resolved. © Copyright EPLA, 2012.

  17. Rapid Moment Magnitude Estimation Using Strong Motion Derived Static Displacements

    OpenAIRE

    Muzli, Muzli; Asch, Guenter; Saul, Joachim; Murjaya, Jaya

    2015-01-01

    The static surface deformation can be recovered from strong motion records. Compared to satellite-based measurements such as GPS or InSAR, the advantage of strong motion records is that they have the potential to provide real-time coseismic static displacements. The use of these valuable data was optimized for the moment magnitude estimation. A centroid grid search method was introduced to calculate the moment magnitude by using1 model. The method to data sets was applied of the 2011...

  18. Turbulent edge transport in the Princeton Beta Experiment-Modified high confinement mode

    Science.gov (United States)

    Tynan, G. R.; Schmitz, L.; Blush, L.; Boedo, J. A.; Conn, R. W.; Doerner, R.; Lehmer, R.; Moyer, R.; Kugel, H.; Bell, R.; Kaye, S.; Okabayashi, M.; Sesnic, S.; Sun, Y.

    1994-10-01

    The first probe measurements of edge turbulence and transport in a neutral beam induced high confinement mode (H-mode) are reported. A strong negative radial electric field is directly observed in H-mode. A transient suppression of normalized ion saturation and floating potential fluctuation levels occurs at the low confinement mode to high confinement mode (L-H) transition, followed by a recovery to near low mode (L-mode) levels. The average poloidal wave number and the poloidal wave-number spectral width are decreased, and the correlation between fluctuating density and potential is reduced. A large-amplitude coherent oscillation, localized to the strong radial electric field region, is observed in H-mode but does not cause transport. In H-mode the effective turbulent diffusion coefficient is reduced by an order of magnitude inside the last closed flux surface and in the scrape-off layer. The results are compared with a heuristic model of turbulence suppression by velocity-shear stabilization.

  19. Local elastic properties of nano-confined fluids: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zongli, E-mail: zongli_sun@163.com [Science and Technology College, North China Electric Power University, Baoding 071051 (China); Kang, Yanshuang [College of Science, Agriculture University of Hebei, Baoding 071001 (China)

    2014-05-01

    The understanding of mechanical properties of confined fluids is essential for modeling and manipulating of nano-scaled systems. Unlike the uniform phase, the confined fluids usually display different features in structure and related properties. Due to the presence of the confining geometry, the density profile and many physical and chemical properties may be position-dependent. The aim of our research is to derive an expression for the local elastic property by using the classical elastic theory. Both the bulk and shear moduli are expressed as functional of density of particle. The theoretical result derived is applied to the Lennard-Jones fluids confined in nano-cavity. Comparison of our numerical result and the simulation result is made and qualitative agreement is observed. Further, influence of bulk density, temperature and external potential on moduli is calculated and the physical mechanism is analyzed. Relationship between contact modulus and the interfacial tension is also calculated. Their opposite trend with temperature is observed.

  20. Local elastic properties of nano-confined fluids: A density functional study

    International Nuclear Information System (INIS)

    Sun, Zongli; Kang, Yanshuang

    2014-01-01

    The understanding of mechanical properties of confined fluids is essential for modeling and manipulating of nano-scaled systems. Unlike the uniform phase, the confined fluids usually display different features in structure and related properties. Due to the presence of the confining geometry, the density profile and many physical and chemical properties may be position-dependent. The aim of our research is to derive an expression for the local elastic property by using the classical elastic theory. Both the bulk and shear moduli are expressed as functional of density of particle. The theoretical result derived is applied to the Lennard-Jones fluids confined in nano-cavity. Comparison of our numerical result and the simulation result is made and qualitative agreement is observed. Further, influence of bulk density, temperature and external potential on moduli is calculated and the physical mechanism is analyzed. Relationship between contact modulus and the interfacial tension is also calculated. Their opposite trend with temperature is observed.

  1. Distribution of motor unit potential velocities in short static and prolongd dynamic contractions at low forces: Use of the within-subject's skewness and standard deviation variables

    NARCIS (Netherlands)

    Klaver-Krol, E.G.; Henriquez, N.R.; Oosterloo, Sebe J.; Klaver, P.; Bos, J.M.; Zwarts, M.J.

    2007-01-01

    Behaviour of motor unit potential (MUP) velocities in relation to (low) force and duration was investigated in biceps brachii muscle using a surface electrode array. Short static tests of 3.8 s (41 subjects) and prolonged dynamic tests (prolonged tests) of 4 min (30 subjects) were performed as

  2. Discrete nature of thermodynamics in confined ideal Fermi gases

    International Nuclear Information System (INIS)

    Aydin, Alhun; Sisman, Altug

    2014-01-01

    Intrinsic discrete nature in thermodynamic properties of Fermi gases appears under strongly confined and degenerate conditions. For a rectangular confinement domain, thermodynamic properties of an ideal Fermi gas are expressed in their exact summation forms. For 1D, 2D and 3D nano domains, variations of both number of particles and internal energy per particle with chemical potential are examined. It is shown that their relation with chemical potential exhibits a discrete nature which allows them to take only some definite values. Furthermore, quasi-irregular oscillatory-like sharp peaks are observed in heat capacity. New nano devices can be developed based on these behaviors. - Highlights: • “Discrete behaviors” appear in thermodynamic properties of ideal Fermi gases at nano scale. • Variations of particle number and internal energy with chemical potential have stepwise behavior. • There are oscillations and peaks in the variation of heat capacity with domain size and particle number. • Fermi line and Fermi surface at nano scale are not continuous but “discrete”. • Heat capacity oscillations can be used for excess thermal energy storage at nano scale

  3. Methane Hydrate in Confined Spaces: An Alternative Storage System.

    Science.gov (United States)

    Borchardt, Lars; Casco, Mirian Elizabeth; Silvestre-Albero, Joaquin

    2018-03-14

    Methane hydrate inheres the great potential to be a nature-inspired alternative for chemical energy storage, as it allows to store large amounts of methane in a dense solid phase. The embedment of methane hydrate in the confined environment of porous materials can be capitalized for potential applications as its physicochemical properties, such as the formation kinetics or pressure and temperature stability, are significantly changed compared to the bulk system. We review this topic from a materials scientific perspective by considering porous carbons, silica, clays, zeolites, and polymers as host structures for methane hydrate formation. We discuss the contribution of advanced characterization techniques and theoretical simulations towards the elucidation of the methane hydrate formation and dissociation process within the confined space. We outline the scientific challenges this system is currently facing and look on possible future applications for this technology. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dynamical contribution to the heat conductivity in stochastic energy exchanges of locally confined gases

    Science.gov (United States)

    Gaspard, Pierre; Gilbert, Thomas

    2017-04-01

    We present a systematic computation of the heat conductivity of the Markov jump process modeling the energy exchanges in an array of locally confined hard spheres at the conduction threshold. Based on a variational formula (Sasada 2016 (arXiv:1611.08866)), explicit upper bounds on the conductivity are derived, which exhibit a rapid power-law convergence towards an asymptotic value. We thereby conclude that the ratio of the heat conductivity to the energy exchange frequency deviates from its static contribution by a small negative correction, its dynamic contribution, evaluated to be -0.000 373 in dimensionless units. This prediction is corroborated by kinetic Monte Carlo simulations which were substantially improved compared to earlier results.

  5. The confinement effect in spherical inhomogeneous quantum dots and stability of excitons

    Directory of Open Access Journals (Sweden)

    F. Benhaddou

    2017-06-01

    Full Text Available We investigate in this work the quantum confinement effect of exciton in spherical inhomogeneous quantum dots IQDs. The spherical core is enveloped by two shells. The inner shell is a semiconductor characterized by a small band-gap. The core and the outer shell are the same semiconductor characterized by a large band-gap. So there is a significant gap-offset creating a deep potential well where the excitons are localized and strongly confined. We have adopted the Ritz variational method to calculate numerically the excitonic ground state energy and its binding energy in the strong, moderate and low confinement regimes. The results show that the Ritz variational method is in good agreement with the perturbation method in strong confinement. There is a double confinement effect and dual control. The calculation checks the effective Rydberg R* at the asymptotic limit of bulk semiconductor when the thickness takes very large values. The excitonic binding energy increases, Thus giving the excitons a high stability even at ambient temperature. These nanosystems are promising in several applications: lighting, detection, biological labeling and quantum computing.

  6. Confined quantum systems: spectral properties of two-electron quantum dots

    International Nuclear Information System (INIS)

    Sako, T; Diercksen, G H F

    2003-01-01

    The spectrum, electron-density distribution and ground-state correlation energy of two electrons confined by an anisotropic harmonic oscillator potential have been studied for different confinement strengths ω by using the quantum chemical configuration interaction (CI) method employing a large Cartesian anisotropic Gaussian basis set and a full CI wavefunction. Energy level diagrams and electron-density distributions are displayed for selected electronic states and confinement parameters. The total energy and spacing between energy levels increase in all cases with increasing ω. The energy level structure cannot be matched by scaling with respect to ω. The correlation energy of the ground state is comparable in magnitude to that of the helium atom. It increases for increasing ω. The percentage of the correlation energy with respect to the total energy of the ground state is considerably larger than that of the helium atom

  7. Technical concept for a greater-confinement-disposal test facility

    International Nuclear Information System (INIS)

    Hunter, P.H.

    1982-01-01

    Greater confinement disposal (GCO) has been defined by the National Low-Level Waste Program as the disposal of low-level waste in such a manner as to provide greater containment of radiation, reduce potential for migration or dispersion or radionuclides, and provide greater protection from inadvertent human and biological intrusions in order to protect the public health and safety. This paper discusses: the need for GCD; definition of GCD; advantages and disadvantages of GCD; relative dose impacts of GCD versus shallow land disposal; types of waste compatible with GCD; objectives of GCD borehole demonstration test; engineering and technical issues; and factors affecting performance of the greater confinement disposal facility

  8. A Review of Quantum Confinement

    Science.gov (United States)

    Connerade, Jean-Patrick

    2009-12-01

    A succinct history of the Confined Atom problem is presented. The hydrogen atom confined to the centre of an impenetrable sphere counts amongst the exactly soluble problems of physics, alongside much more noted exact solutions such as Black Body Radiation and the free Hydrogen atom in absence of any radiation field. It shares with them the disadvantage of being an idealisation, while at the same time encapsulating in a simple way particular aspects of physical reality. The problem was first formulated by Sommerfeld and Welker [1]—henceforth cited as SW—in connection with the behaviour of atoms at very high pressures, and the solution was published on the occasion of Pauli's 60th birthday celebration. At the time, it seemed that there was not much other connection with physical reality beyond a few simple aspects connected to the properties of atoms in solids, for which more appropriate models were soon developed. Thus, confined atoms attracted little attention until the advent of the metallofullerene, which provided the first example of a confined atom with properties quite closely related to those originally considered by SW. Since then, the problem has received much more attention, and many more new features of quantum confinement, quantum compression, the quantum Faraday cage, electronic reorganisation, cavity resonances, etc have been described, which are relevant to real systems. Also, a number of other situations have been uncovered experimentally to which quantum confinement is relevant. Thus, studies of the confined atom are now more numerous, and have been extended both in terms of the models used and the systems to which they can be applied. Connections to thermodynamics are explored through the properties of a confined two-level atom adapted from Einstein's celebrated model, and issues of dynamical screening of electromagnetic radiation by the confining shell are discussed in connection with the Faraday cage produced by a confining conducting shell

  9. A Review of Quantum Confinement

    International Nuclear Information System (INIS)

    Connerade, Jean-Patrick

    2009-01-01

    A succinct history of the Confined Atom problem is presented. The hydrogen atom confined to the centre of an impenetrable sphere counts amongst the exactly soluble problems of physics, alongside much more noted exact solutions such as Black Body Radiation and the free Hydrogen atom in absence of any radiation field. It shares with them the disadvantage of being an idealisation, while at the same time encapsulating in a simple way particular aspects of physical reality. The problem was first formulated by Sommerfeld and Welker - henceforth cited as SW - in connection with the behaviour of atoms at very high pressures, and the solution was published on the occasion of Pauli's 60th birthday celebration. At the time, it seemed that there was not much other connection with physical reality beyond a few simple aspects connected to the properties of atoms in solids, for which more appropriate models were soon developed. Thus, confined atoms attracted little attention until the advent of the metallofullerene, which provided the first example of a confined atom with properties quite closely related to those originally considered by SW. Since then, the problem has received much more attention, and many more new features of quantum confinement, quantum compression, the quantum Faraday cage, electronic reorganisation, cavity resonances, etc have been described, which are relevant to real systems. Also, a number of other situations have been uncovered experimentally to which quantum confinement is relevant. Thus, studies of the confined atom are now more numerous, and have been extended both in terms of the models used and the systems to which they can be applied. Connections to thermodynamics are explored through the properties of a confined two-level atom adapted from Einstein's celebrated model, and issues of dynamical screening of electromagnetic radiation by the confining shell are discussed in connection with the Faraday cage produced by a confining conducting shell. The

  10. Impact of vegetation variability on potential predictability and skill of EC-Earth simulations

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Martina; Hurk, Bart van den; Haarsma, Reindert; Hazeleger, Wilco [Royal Netherlands Meteorological Institute (KNMI), De Bilt (Netherlands)

    2012-12-15

    Climate models often use a simplified and static representation of vegetation characteristics to determine fluxes of energy, momentum and water vapour between surface and lower atmosphere. In order to analyse the impact of short term variability in vegetation phenology, we use remotely-sensed leaf area index and albedo products to examine the role of vegetation in the coupled land-atmosphere system. Perfect model experiments are carried out to determine the impact of realistic temporal variability of vegetation on potential predictability of evaporation and temperature, as well as model skill of EC-Earth simulations. The length of the simulation period is hereby limited by the availability of satellite products to 2000-2010. While a realistic representation of vegetation positively influences the simulation of evaporation and its potential predictability, a positive impact on 2 m temperature is of smaller magnitude, regionally confined and more pronounced in climatically extreme years. (orig.)

  11. Studies of free field and confined explosions of aluminium enriched RDX compositions

    Energy Technology Data Exchange (ETDEWEB)

    Trzcinski, Waldemar A.; Cudzilo, Stanislaw; Paszula, Jozef [Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland)

    2007-12-15

    Research on the effect of aluminium contents and its particle size on free field and confined explosions characteristics of RDX-based compositions containing 15-60% aluminium was carried out. Parameters of blast waves produced by charges of the investigated explosives detonating in an open space were measured by the use of piezoelectric gauges. Simultaneously, photodiode set-ups were used to measure light output of the detonating charges. Quasi-static pressure measurements were conducted in steel chambers of 0.15 and 7 m{sup 3} volume filled with air. Moreover, the heat of detonation was measured with a calorimetric set in a 5.6 dm{sup 3} bomb filled with argon. The results of QSP and detonation heat measurements were compared with those obtained from thermochemical calculations. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  12. Multiple patterns of diblock copolymer confined in irregular geometries with soft surface

    Science.gov (United States)

    Li, Ying; Sun, Min-Na; Zhang, Jin-Jun; Pan, Jun-Xing; Guo, Yu-Qi; Wang, Bao-Feng; Wu, Hai-Shun

    2015-12-01

    The different confinement shapes can induce the formation of various interesting and novel morphologies, which might inspire potential applications of materials. In this paper, we study the directed self-assembly of diblock copolymer confined in irregular geometries with a soft surface by using self-consistent field theory. Two types of confinement geometries are considered, namely, one is the concave pore with one groove and the other is the concave pore with two grooves. We obtain more novel and different structures which could not be produced in other two-dimensional (2D) confinements. Comparing these new structures with those obtained in regular square confinement, we find that the range of ordered lamellae is enlarged and the range of disordered structure is narrowed down under the concave pore confinement. We also compare the different structures obtained under the two types of confinement geometries, the results show that the effect of confinement would increase, which might induce the diblock copolymer to form novel structures. We construct the phase diagram as a function of the fraction of B block and the ratio of h/L of the groove. The simulation reveals that the wetting effect of brushes and the shape of confinement geometries play important roles in determining the morphologies of the system. Our results improve the applications in the directed self-assembly of diblock copolymer for fabricating the irregular structures. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121404110004), the Research Foundation for Excellent Talents of Shanxi Provincial Department of Human Resources and Social Security, China, and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China.

  13. Confinement at large-N

    International Nuclear Information System (INIS)

    Klinkhamer, F.R.

    1985-06-01

    Recent numerical results indicate that QCD in the limit of an infinite number (N) of colors also has confinement and moreover that it looks rather similar to normal QCD with N = 3 colors. This imposes severe restrictions on what the mechanism of confinement can be

  14. Quantum liquids in confinement the microscopic view

    CERN Document Server

    Krotscheck, Eckhard S; Rimnac, A; Zillich, R

    2003-01-01

    We discuss, on a microscopic level, the effects of confinement on structural as well as dynamic properties of quantum liquids. The most evident structural consequences of confinement are layer structures found in liquid films, and free surfaces appearing in liquid drops and slabs. These structural properties have immediate consequences: new types of excitation such as surface phonons, layer phonons, layer rotons, and standing waves can appear and are potentially observable in neutron scattering spectra as well as in thermodynamic properties. Atom scattering experiments provide further insights into structural properties. Methods have been developed to describe elastic and inelastic atom scattering as well as transport currents. The theory has been applied to examine scattering processes of sup 4 He and sup 3 He atoms impinging on sup 4 He clusters, as well as sup 4 He scattering off sup 4 He films and slabs.

  15. Duality of two-point functions for confined non-relativistic quark-antiquark systems

    International Nuclear Information System (INIS)

    Fishbane, P.M.; Gasiorowicz, S.G.; Kaus, P.

    1985-01-01

    An analog to the scattering matrix describes the spectrum and high-energy behavior of confined systems. We show that for non-relativistic systems this S-matrix is identical to a two-point function which transparently describes the bound states for all angular momenta. Confined systems can thus be described in a dual fashion. This result makes it possible to study the modification of linear trajectories (originating in a long-range confining potential) due to short range forces which are unknown except for the way in which they modify the asymptotic behavior of the two point function. A type of effective range expansion is one way to calculate the energy shifts. 9 refs

  16. Potential bags

    International Nuclear Information System (INIS)

    Ferreira, P.L.; Tomio, L.

    1992-01-01

    In this paper, relativistic confining potential models, endowed with bag constants associated to volume energy terms, are investigated. In contrast to the usual bag model, these potential bags are distinguished by having smeared bag surfaces. Based on the dynamical assumptions underlying the fuzzy bag model, these bag constants are derived from the corresponding energy-momentum tensor. Explicit expressions for the single-quark energies and for the nucleon bag constant are obtained by means of an improved analytical version of the saddle-point variational method for the Dirac equation with confining power-law potentials of the scalar plus vector (S + V) or pure scalar (S) type

  17. Block copolymer morphologies confined by square-shaped particle: Hard and soft confinement

    International Nuclear Information System (INIS)

    Zhang Qiyi; Yang Wenyan; Hu Kaiyan

    2016-01-01

    The self-assembly of diblock copolymers confined around one square-shaped particle is studied systematically within two-dimensional self-consistent field theory (SCFT). In this model, we assume that the thin block copolymer film is confined in the vicinity of a square-shaped particle by a homopolymer melt, which is equivalent to the poor solvents. Multiple sequences of square-shaped particle-induced copolymer aggregates with different shapes and self-assembled internal morphologies are predicted as functions of the particle size, the structural portion of the copolymer, and the volume fraction of the copolymer. A rich variety of aggregates are found with complex internal self-assembled morphologies including complex structures of the vesicle, with one or several inverted micelle surrounded by the outer monolayer with the particle confined in the core. These results demonstrate that the assemblies of diblock copolymers formed around the square-shaped particle in poor solvents are of immediate interest to the assembly of copolymer and the morphology of biomembrane in the confined environment, as well as to the transitions of vesicles to micelles. (paper)

  18. Confinement of multiply charged ions in an ECRH mirror plasma

    International Nuclear Information System (INIS)

    Petty, C.C.

    1989-06-01

    This thesis is an experimental study of multiply charged ions in the Constance B mirror experiment. By measuring the ion densities, end loss fluxes and ion temperatures, the parallel confinement times for the first five charge states of oxygen and neon plasmas are determined. The parallel ion confinement times increase with charge state and peak on axis, both indications of an ion-confining potential dip created by the hot electrons. The radial profile of ion end loss is usually hollow due to large ion radial transport (τ paralleli ∼ τ perpendiculari ), with the peak fluxes occurring at the edge of the electron cyclotron resonance zone. Several attempts are made to increase the end loss of selected ion species. Using minority ICRH, the end loss flux of resonant ions increases by 20% in cases when radial transport induced by ICRH is not too severe. A large antenna voltage can also extinguish the plasma. By adding helium to an oxygen plasma, the end loss of O 6+ increases by 80% due to decreased ion radial transport. An ion model is developed to predict the ion densities, end loss fluxes and confinement times in the plasma center using the ion particle balance equations, the quasineutrality condition and theoretical confinement time formulas. The model generally agrees with the experimental data for oxygen and neon plasmas to within experimental error. Under certain conditions spatial diffusion appears to determine the parallel ion confinement time of the highest charge states. For oxygen plasmas during ICRH, the measured parallel confinement time of the resonant ions is much shorter than their theoretical value, probably due to rf diffusion of the ions into the loss cone. 58 refs., 101 figs., 16 tabs

  19. Effects of confinement on the Rydberg molecule NeH

    International Nuclear Information System (INIS)

    Lo, J M H; Klobukowski, M; Bielinska-Waz, D; Diercksen, G H F; Schreiner, E W S

    2005-01-01

    Ab initio potential energy curves of the Rydberg NeH molecule in the presence of cylindrical spatial confinement were computed by the method of multi-reference configuration interaction with extended basis sets. The influence of the applied potential to the structures and spectra of the ground and excited states of NeH was analysed in terms of perturbation theory. In addition, the phenomenon of field-induced ionization was discussed

  20. Alternate fusion -- continuous inertial confinement

    International Nuclear Information System (INIS)

    Barnes, D.C.; Turner, L.; Nebel, R.A.

    1993-01-01

    The authors argue that alternate approaches to large tokamak confinement are appropriate for fusion applications if: (1) They do not require magnetic confinement of a much higher quality than demonstrated in tokamaks; (2) Their physics basis may be succinctly stated and experimentally tested; (3) They offer near-term applications to important technical problems; and (4) Their cost to proof-of-principle is low enough to be consistent with current budget realities. An approach satisfying all of these criteria is presented. Fusion systems based on continuous inertial confinement are described. In these approaches, the inertia of a nonequilibrium plasma is used to produce local concentrations of plasma density in space and/or time. One implementation (inertial electrostatic confinement) which has been investigated both experimentally and theoretically uses a system of electrostatic grids to accelerate plasma ions toward a spherical focus. This system produced a steady 2 x 10 10 D-T neutrons/second with an overall fusion gain of 10 -5 in a sphere of about 9 cm radius. Recent theoretical developments show how to raise the fusion gain to order unity or greater by replacing the internal grids by a combination of applied magnetic and electrostatic fields. In these approaches, useful thermonuclear conditions may be produced in a system as small as a few mm radius. Confinement is that of a nonneutralized plasma. A pure electron plasma with a radial beam velocity distribution is absolutely confined by an applied Penning trap field. Spherical convergence of the confined electrons forms a deep virtual cathode near r = 0, in which thermonuclear ions are absolutely confined at useful densities. The authors have examined the equilibrium, stability, and classical relaxation of such systems, and obtained many positive physics results. Equilibria exist for both pure electron and partially charge-neutralized systems with arbitrarily high core-plasma densities

  1. QuickChecking static analysis properties

    DEFF Research Database (Denmark)

    Midtgaard, Jan; Møller, Anders

    2017-01-01

    A static analysis can check programs for potential errors. A natural question that arises is therefore: who checks the checker? Researchers have given this question varying attention, ranging from basic testing techniques, informal monotonicity arguments, thorough pen-and-paper soundness proofs....... Moreover, we offer a number of generic, type-safe combinators to check transfer functions and operators on lattices, to help ensure that these are, eg, monotone, strict, or invariant. We substantiate our claims by quickchecking a type analysis for the Lua programming language....

  2. Statics of deformable solids

    CERN Document Server

    Bisplinghoff, Raymond L; Pian, Theodore HH

    2014-01-01

    Profusely illustrated exposition of fundamentals of solid mechanics and principles of mechanics, statics, and simple statically indeterminate systems. Covers strain and stress in three-dimensional solids, elementary elasticity, energy principles in solid continuum, and more. 1965 edition.

  3. Entropic noises-induced resonance in a geometrically confined system

    International Nuclear Information System (INIS)

    Zeng, Chunhua; Gong, Ailing; Wang, Hua

    2012-01-01

    We consider the motion of Brownian particles through a narrow tube of varying cross-section in a geometrically confined system subjected to a sinusoidal oscillating force. The varying cross-section of the confinement results in an effective purely entropic potential in reduced dimension. Besides an additive Langevin force, one external additive and another multiplicative noise are acting along the x-direction. We demonstrate that the presence of a periodic input may give rise to a maximum and a minimum of the spectral amplification at corresponding optimal values of the noise strength, and therefore to the appearance of the purely entropic stochastic resonance and reverse-resonance phenomena. Furthermore, we show that the cross-correlation between two noises leads to a decrease of the spectral amplification, i.e., we observe the cross-correlation between two noises weakening the resonance. Mechanisms for the cross-correlation weakening the resonance are explained from the point of view of the effective purely entropic potential. (paper)

  4. Static spherically symmetric solutions in mimetic gravity: rotation curves and wormholes

    International Nuclear Information System (INIS)

    Myrzakulov, Ratbay; Sebastiani, Lorenzo; Vagnozzi, Sunny; Zerbini, Sergio

    2016-01-01

    In this work, we analyse static spherically symmetric solutions in the framework of mimetic gravity, an extension of general relativity where the conformal degree of freedom of gravity is isolated in a covariant fashion. Here we extend previous works by considering, in addition, a potential for the mimetic field. An appropriate choice of such a potential allows for the reconstruction of a number of interesting cosmological and astrophysical scenarios. We explicitly show how to reconstruct such a potential for a general static spherically symmetric space-time. A number of applications and scenarios are then explored, among which are traversable wormholes. Finally, we analytically reconstruct potentials, which leads to solutions to the equations of motion featuring polynomial corrections to the Schwarzschild space-time. Accurate choices for such corrections could provide an explanation for the inferred flat rotation curves of spiral galaxies within the mimetic gravity framework, without the need for particle dark matter. (paper)

  5. In-Flight Pitot-Static Calibration

    Science.gov (United States)

    Foster, John V. (Inventor); Cunningham, Kevin (Inventor)

    2016-01-01

    A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.

  6. History of Solitary Confinement Is Associated with Post-Traumatic Stress Disorder Symptoms among Individuals Recently Released from Prison.

    Science.gov (United States)

    Hagan, Brian O; Wang, Emily A; Aminawung, Jenerius A; Albizu-Garcia, Carmen E; Zaller, Nickolas; Nyamu, Sylviah; Shavit, Shira; Deluca, Joseph; Fox, Aaron D

    2018-04-01

    This study assessed the relationship between solitary confinement and post-traumatic stress disorder (PTSD) symptoms in a cohort of recently released former prisoners. The cross-sectional design utilized baseline data from the Transitions Clinic Network, a multi-site prospective longitudinal cohort study of post-incarceration medical care. Our main independent variable was self-reported solitary confinement during the participants' most recent incarceration; the dependent variable was the presence of PTSD symptoms determined by primary care (PC)-PTSD screening when participants initiated primary care in the community. We used multivariable logistic regression to adjust for potential confounders, such as prior mental health conditions, age, and gender. Among 119 participants, 43% had a history of solitary confinement and 28% screened positive for PTSD symptoms. Those who reported a history of solitary confinement were more likely to report PTSD symptoms than those without solitary confinement (43 vs. 16%, p history of solitary confinement (OR = 3.93, 95% CI 1.57-9.83) and chronic mental health conditions (OR = 4.04, 95% CI 1.52-10.68) were significantly associated with a positive PTSD screen after adjustment for the potential confounders. Experiencing solitary confinement was significantly associated with PTSD symptoms among individuals accessing primary care following release from prison. Larger studies should confirm these findings.

  7. Elmo bumpy square plasma confinement device

    Science.gov (United States)

    Owen, L.W.

    1985-01-01

    The invention is an Elmo bumpy type plasma confinement device having a polygonal configuration of closed magnet field lines for improved plasma confinement. In the preferred embodiment, the device is of a square configuration which is referred to as an Elmo bumpy square (EBS). The EBS is formed by four linear magnetic mirror sections each comprising a plurality of axisymmetric assemblies connected in series and linked by 90/sup 0/ sections of a high magnetic field toroidal solenoid type field generating coils. These coils provide corner confinement with a minimum of radial dispersion of the confined plasma to minimize the detrimental effects of the toroidal curvature of the magnetic field. Each corner is formed by a plurality of circular or elliptical coils aligned about the corner radius to provide maximum continuity in the closing of the magnetic field lines about the square configuration confining the plasma within a vacuum vessel located within the various coils forming the square configuration confinement geometry.

  8. Studies of spherical inertial-electrostatic confinement

    International Nuclear Information System (INIS)

    Miley, G.H.

    1992-01-01

    Theoretical and experimental results from studies of Spherical Inertial-Electrostatic Confinement (SIEC) are presented. This principle of IEC involves the confinement by multiple potential wells created by ion injection into a spherical device containing biased grids. A semitransparent cathode accelerates ions, generating a spherical ion-beam flow which converges at the center of the spherical volume, creating a space charge (potential well) region. An electron flow is created by the core (virtual anode) region, forming in turn a virtual cathode. Ions trapped inside this well oscillate back and forth until they fuse or degrade in energy. Such multiple wells with virtual anodes and cathodes, have been called ''Poissors'' following the original work by Farnsworth and by Hirsch. Fusion within the core occurs by reactions between non-Maxwellian beam-beam type ions. This has the potential for achieving a high power density and also for burning both D-T and advanced fuels. If successful, such a device would be attractive for a variety of high power density applications, e.g., space power or as a neutron source based on D-D or D-T operation. Simulations of recent SIEC experiments have been carried out using the XL-code, to solve Poisson's equation, self-consistently with the collisionless Vlasov equation in spherical geometry for several current species and grid parameters. The potential profile predictions are reasonably consistent with experimental results. Potential well measurements used a collimated proton detector. Results indicate that an ∼ 15-kV virtual anode, at least one centimeter in radius, was formed in a spherical device with a cathode potential of 30 kV using an ion current of ∼ 30 mA. Analysis indicates D + densities on the order of 10 9 cm -3 , and D 2 + densities on the order of 10 10 cm -3 . Steady-state D-D neutron emission of about 10 6 n/sec is observed

  9. Effect of wetting on nucleation and growth of D2 in confinement

    Science.gov (United States)

    Zepeda-Ruiz, L. A.; Sadigh, B.; Shin, S. J.; Kozioziemski, B. J.; Chernov, A. A.

    2018-04-01

    We have performed a computational study to determine how the wetting of liquid deuterium to the walls of the material influences nucleation. We present the development of a pair-wise interatomic potential that includes zero-point motion of molecular deuterium. Deuterium is used in this study because of its importance to inertial confinement fusion and the potential to generate a superfluid state if the solidification can be suppressed. Our simulations show that wetting dominates undercooling compared to the pore geometries. We observe a transition from heterogeneous nucleation at the confining wall to homogeneous nucleation at the bulk of the liquid (and intermediate cases) as the interaction with the confining wall changes from perfect wetting to non-wetting. When nucleation is heterogeneous, the temperature needed for solidification changes by 4 K with decreasing deuterium-wall interaction, but it remains independent (and equal to the one from bulk samples) when homogeneous nucleation dominates. We find that growth and quality of the resulting microstructure also depends on the magnitude of liquid deuterium-wall interaction strength.

  10. Assessing Static Performance of the Dashengguan Yangtze Bridge by Monitoring the Correlation between Temperature Field and Its Static Strains

    Directory of Open Access Journals (Sweden)

    Gao-Xin Wang

    2015-01-01

    Full Text Available Taking advantage of the structural health monitoring system installed on the steel truss arch girder of Dashengguan Yangtze Bridge, the temperature field data and static strain data are collected and analyzed for the static performance assessment of the bridge. Through analysis, it is found that the static strain changes are mainly caused by temperature field (temperature and temperature difference and train. After the train-induced static strains are removed, the correlation between the remaining static strains and the temperature field shows apparent linear characteristics, which can be mathematically modeled for the description of static performance. Therefore, multivariate linear regression function combined with principal component analysis is introduced to mathematically model the correlation. Furthermore, the residual static strains of mathematical model are adopted as assessment indicator and three kinds of degradation regulations of static performance are obtained after simulation of the residual static strains. Finally, it is concluded that the static performance of Dashengguan Yangtze Bridge was in a good condition during that period.

  11. Plasmid profiling of bacterial isolates from confined environments

    Science.gov (United States)

    van Houdt, Rob; Provoost, Ann; Coninx, Ilse; Leys, Natalie; Mergeay, Max

    Plasmid profiling of bacterial isolates from confined environments R. Van Houdt, I. Coninx, A. Provoost, N. Leys, and M. Mergeay Expertise group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400 Mol, Belgium. Human exploration of extreme and isolated hostile environments such as space requires special confined small volume habitats to protect and house the crew. However, human confinement in such small volume habitats has restrictions on waste disposal and personal hygiene and inevitably generates a particular community of microorganisms within the habitat. These microorganisms are mainly originating from the crew (skin, mucous membranes, upper respiratory tract, mouth, and gastrointestinal tract) but also include the residing environmental microorganisms. Earth-based confined habitats such as the Antarctic Research Station Concordia are used as test beds for long-duration spaceflights to study the physiologic and psychological adaptation to isolated environments. The dynamics of the environmental microbial population in such a test bed could render additional insights in assessing the potential health risks in long-duration space missions. Not only total bacterial contamination levels are important, but it is essential to identify also the predominant microbial taxa and their mobile genetic elements (MGE). These MGEs could be exchanged between bacteria by horizontal gene transfer and may alter the pathogenic potential since they often carry antibiotic resistance or more in general adaptation-enhancing traits. In this study several bacterial strains isolated in the Concordia research station were examined for their plasmid content. An optimized protocol for extraction of large plasmids showed the present of at least one plasmid in 50% of the strains. For all strains the minimal inhibitory concentration of a range of antibiotics was determined indicating resistance to

  12. Static and dynamic properties of frictional phenomena in a one-dimensional system with randomness

    International Nuclear Information System (INIS)

    Kawaguchi, T.; Matsukawa, H.

    1997-01-01

    Static and dynamic frictional phenomena at the interface with random impurities are investigated in a two-chain model with incommensurate structure. Static frictional force is caused by the impurity pinning and/or by the pinning due to the regular potential, which is responsible for the breaking of analyticity transition for impurity-free cases. It is confirmed that the static frictional force is always finite in the presence of impurities, in contrast to the impurity-free system. The nature of impurity pinning is discussed in connection with that in density waves. The kinetic frictional force of a steady sliding state is also investigated numerically. The relationship between the sliding velocity dependence of the kinetic frictional force and the strength of impurity potential is discussed. copyright 1997 The American Physical Society

  13. Soft inclusion in a confined fluctuating active gel

    Science.gov (United States)

    Singh Vishen, Amit; Rupprecht, J.-F.; Shivashankar, G. V.; Prost, J.; Rao, Madan

    2018-03-01

    We study stochastic dynamics of a point and extended inclusion within a one-dimensional confined active viscoelastic gel. We show that the dynamics of a point inclusion can be described by a Langevin equation with a confining potential and multiplicative noise. Using a systematic adiabatic elimination over the fast variables, we arrive at an overdamped equation with a proper definition of the multiplicative noise. To highlight various features and to appeal to different biological contexts, we treat the inclusion in turn as a rigid extended element, an elastic element, and a viscoelastic (Kelvin-Voigt) element. The dynamics for the shape and position of the extended inclusion can be described by coupled Langevin equations. Deriving exact expressions for the corresponding steady-state probability distributions, we find that the active noise induces an attraction to the edges of the confining domain. In the presence of a competing centering force, we find that the shape of the probability distribution exhibits a sharp transition upon varying the amplitude of the active noise. Our results could help understanding the positioning and deformability of biological inclusions, e.g., organelles in cells, or nucleus and cells within tissues.

  14. Generating equilateral random polygons in confinement III

    International Nuclear Information System (INIS)

    Diao, Y; Ernst, C; Montemayor, A; Ziegler, U

    2012-01-01

    In this paper we continue our earlier studies (Diao et al 2011 J. Phys. A: Math. Theor. 44 405202, Diao et al J. Phys. A: Math. Theor. 45 275203) on the generation methods of random equilateral polygons confined in a sphere. The first half of this paper is concerned with the generation of confined equilateral random walks. We show that if the selection of a vertex is uniform subject to the position of its previous vertex and the confining condition, then the distributions of the vertices are not uniform, although there exists a distribution such that if the initial vertex is selected following this distribution, then all vertices of the random walk follow this same distribution. Thus in order to generate a confined equilateral random walk, the selection of a vertex cannot be uniform subject to the position of its previous vertex and the confining condition. We provide a simple algorithm capable of generating confined equilateral random walks whose vertex distribution is almost uniform in the confinement sphere. In the second half of this paper we show that any process generating confined equilateral random walks can be turned into a process generating confined equilateral random polygons with the property that the vertex distribution of the polygons approaches the vertex distribution of the walks as the polygons get longer and longer. In our earlier studies, the starting point of the confined polygon is fixed at the center of the sphere. The new approach here allows us to move the starting point of the confined polygon off the center of the sphere. (paper)

  15. Confinement and correlation effects in the Xe-C{sub 60} generalized oscillator strengths

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M. Ya. [Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); A. F. Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Chernysheva, L. V. [A. F. Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Dolmatov, V. K. [Department of Physics and Earth Science, University of North Alabama, Florence, Alabama 35632 (United States)

    2011-12-15

    The impact of both confinement and electron correlation on generalized oscillator strengths (GOS's) of endohedral atoms, A-C{sub 60}, is theoretically studied choosing the Xe-C{sub 60} 4d, 5s, and 5p fast electron impact ionization as the case study. Calculations are performed in the transferred to the atom energy region beyond the 4d threshold, {omega}=75-175 eV. The calculation methodology combines the plane-wave Born approximation, Hartree-Fock approximation, and random-phase approximation with exchange in the presence of the C{sub 60} confinement. The confinement is modeled by a spherical {delta}-function-like potential as well as by a square well potential to evaluate the effect of the finite thickness of the C{sub 60} cage on the Xe-C{sub 60} GOS's. Dramatic distortion of the 4d, 5p, and 5s GOS's by the confinement is demonstrated, compared to the free atom. Considerable contributions of multipolar transitions beyond dipole transitions in the calculated GOS's are revealed, in some instances. The vitality of accounting for electron correlation in calculation of the Xe-C{sub 60} 5s and 5p GOS's is shown.

  16. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    Energy Technology Data Exchange (ETDEWEB)

    Bandara, R.; Khachan, J. [Plasma Physics, School of Physics, University of Sydney, Camperdown, New South Wales 2006 (Australia)

    2013-07-15

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  17. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    Science.gov (United States)

    Bandara, R.; Khachan, J.

    2013-07-01

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  18. Effective non-Coulombic power-law potential for the study of light and heavy mesons

    International Nuclear Information System (INIS)

    Barik, N.; Jena, S.N.

    1982-01-01

    From purely phenomenological considerations we have shown that it is possible to describe successfully the heavy meson spectra of cc-bar and bb-bar systems in the framework of an effective non-Coulombic power-law potential in the form V(r) = V 0 +ar/sup ν/ (with a,ν>0). The nonsingular short-distance behavior of this potential, which is in apparent contradiction with the predictions of quantum- chromodynamics, does not pose any problem in explaining the fine-hyperfine splitting, if we prescribe the spin dependence to be generated through this static confining potential in the form of an approximately equal admixture of scalar and vector parts with no contributions from the anomalous quark magnetic moments. This nonrelativistic formalsm, when extended to a unified study of the entire meson spectra including the ordinary light and the heavy mesons, gives a very good account of the meson masses, fine-hyperfine splittings, electromagnetic transition rates, and leptonic decay widths without reflecting any inadequacy in the short- and long-range behavior of this simple effective power-law potential

  19. Dynamics of a confined dusty fluid in a sheared ion flow

    Energy Technology Data Exchange (ETDEWEB)

    Laishram, Modhuchandra; Sharma, Devendra; Kaw, Predhiman K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2014-07-15

    Dynamics of an isothermally driven dust fluid is analyzed which is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in equilibrium with an unconfined sheared flow of a streaming plasma. Cases are analyzed where the confining potential constitutes a barrier for the driven fluid, limiting its spatial extension and boundary velocity. The boundary effects entering the formulation are characterized by applying the appropriate boundary conditions and a range of solutions exhibiting single and multiple vortex are obtained. The equilibrium solutions considered in the cylindrical setup feature a transition from single to multiple vortex state of the driven flow. Effects of (i) the variation in dust viscosity, (ii) coupling between the driving and the driven fluid, and (iii) a friction determining the equilibrium dynamics of the driven system are characterized.

  20. QuickChecking Static Analysis Properties

    DEFF Research Database (Denmark)

    Midtgaard, Jan; Møller, Anders

    2015-01-01

    A static analysis can check programs for potential errors. A natural question that arises is therefore: who checks the checker? Researchers have given this question varying attention, ranging from basic testing techniques, informal monotonicity arguments, thorough pen-and-paper soundness proofs...... of a lattice. Moreover, we offer a number of generic, type-safe combinators to check transfer functions and operators on lattices, to help ensure that these are, e.g., monotone, strict, or invariant. We substantiate our claims by quickchecking a type analysis for the Lua programming language...

  1. Self-consistent static analysis of using nested-well plasma traps for achieving antihydrogen recombination

    International Nuclear Information System (INIS)

    Dolliver, D. D.; Ordonez, C. A.

    1999-01-01

    The use of a Malmberg-Penning type trap with nested electric potential wells to confine overlapping antiproton and positron plasmas for the purpose of producing low temperature antihydrogen is studied. Two approaches for confining antiproton and positron plasmas with a region of overlap are considered. In one approach the two components have a large temperature difference. In the other, one of the components is in a nonequilibrium 'antishielding' plasma state. A finite differences algorithm is used to solve Poisson's equation based on a simultaneous overrelaxation numerical approach. Self-consistent numerical results for required trap potentials and possible particle density profiles are presented

  2. On confinement and duality

    Energy Technology Data Exchange (ETDEWEB)

    Strassler, M J [University of Pennsylvania, Philadelphia, PA (United States)

    2002-05-15

    Confinement in four-dimensional gauge theories is considered from several points of view. General features are discussed, and the mechanism of confinement is investigated. Dualities between field theories, and duality between field theory and string theory, are both put to use. In these lectures I have given an overview of some of the key ideas underlying confinement as a property of field theory, and now, of string theory as well. This is a tiny fraction of what field theory (and now string theory) is capable of, and we are still uncovering new features on a monthly basis. In fact, most field theories do not have confinement, for reasons entirely different from those of QCD. Many become nontrivial conformal field theories at low energy. Others become composite, weakly-coupled gauge theories. Dualities of many stripes are found everywhere. Ordinary dimensional analysis in string theory is totally wrong in the regime where it looks like weakly-coupled field theory, and ordinary dimensional analysis in field theory is totally wrong in the regime where it looks like weakly-coupled supergravity.

  3. ATR confinement leakage determination

    International Nuclear Information System (INIS)

    Kuan, P.; Buescher, B.J.

    1998-01-01

    The air leakage rate from the Advanced Test Reactor (ATR) confinement is an important parameter in estimating hypothesized accidental releases of radiation to the environment. The leakage rate must be determined periodically to assure that the confinement has not degraded with time and such determination is one of the technical safety requirements of ATR operation. This paper reviews the methods of confinement leakage determination and presents an analysis of leakage determination under windy conditions, which can complicate the interpretation of the determined leakage rates. The paper also presents results of analyses of building air exchange under windy conditions. High wind can enhance air exchange and this could increase the release rates of radioisotopes following an accident

  4. Generating equilateral random polygons in confinement

    International Nuclear Information System (INIS)

    Diao, Y; Ernst, C; Montemayor, A; Ziegler, U

    2011-01-01

    One challenging problem in biology is to understand the mechanism of DNA packing in a confined volume such as a cell. It is known that confined circular DNA is often knotted and hence the topology of the extracted (and relaxed) circular DNA can be used as a probe of the DNA packing mechanism. However, in order to properly estimate the topological properties of the confined circular DNA structures using mathematical models, it is necessary to generate large ensembles of simulated closed chains (i.e. polygons) of equal edge lengths that are confined in a volume such as a sphere of certain fixed radius. Finding efficient algorithms that properly sample the space of such confined equilateral random polygons is a difficult problem. In this paper, we propose a method that generates confined equilateral random polygons based on their probability distribution. This method requires the creation of a large database initially. However, once the database has been created, a confined equilateral random polygon of length n can be generated in linear time in terms of n. The errors introduced by the method can be controlled and reduced by the refinement of the database. Furthermore, our numerical simulations indicate that these errors are unbiased and tend to cancel each other in a long polygon. (paper)

  5. Rectifier cabinet static breaker

    International Nuclear Information System (INIS)

    Costantino, R.A. Jr; Gliebe, R.J.

    1992-01-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload. 7 figs

  6. Rectifier cabinet static breaker

    Science.gov (United States)

    Costantino, Jr, Roger A.; Gliebe, Ronald J.

    1992-09-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.

  7. Global confinement characteristics of Jet limiter plasmas

    International Nuclear Information System (INIS)

    Campbell, D.J.; Christiansen, J.P.; Cordey, J.G.; Thomas, P.R.; Thomsen, K.

    1989-01-01

    Data from a wide variety of plasma pulses on JET (aux. heating, current, field, minority species, plasma shape, etc) are analysed in order to assess the characteristics of global confinement. The scaling of confinement in ohmically and auxiliary heated discharges is examined. The ohmic confinement in the present new JET configuration (Belt Limiter) is essentially the same as previously. Confinement in auxiliary heated discharges shows presently a slight improvement since 1986. Both ohmic and non-ohmic data is used in a set of confinement time regression analyses and certain constraints derived from theory are imposed

  8. Phase transitions and quark confinement

    International Nuclear Information System (INIS)

    Polyakov, A.M.; Gava, E.

    1978-02-01

    The publication collects six lectures on the following themes: quantum field theory and classical statistical mechanics, continuous symmetries, lattice gauge theories, the nature of confinement, a criterion for confinement and non-abelian Yang-Mills theories

  9. Structural testing for static failure, flutter and other scary things

    Science.gov (United States)

    Ricketts, R. H.

    1983-01-01

    Ground test and flight test methods are described that may be used to highlight potential structural problems that occur on aircraft. Primary interest is focused on light-weight general aviation airplanes. The structural problems described include static strength failure, aileron reversal, static divergence, and flutter. An example of each of the problems is discussed to illustrate how the data acquired during the tests may be used to predict the occurrence of the structural problem. While some rules of thumb for the prediction of structural problems are given the report is not intended to be used explicitly as a structural analysis handbook.

  10. Luttinger hydrodynamics of confined one-dimensional Bose gases with dipolar interactions

    International Nuclear Information System (INIS)

    Citro, R; Palo, S De; Orignac, E; Pedri, P; Chiofalo, M-L

    2008-01-01

    Ultracold bosonic and fermionic quantum gases confined to quasi-one-dimensional (1D) geometry are promising candidates for probing fundamental concepts of Luttinger liquid (LL) physics. They can also be exploited for devising applications in quantum information processing and precision measurements. Here, we focus on 1D dipolar Bose gases, where evidence of super-strong coupling behavior has been demonstrated by analyzing the low-energy static and dynamical structures of the fluid at zero temperature by a combined reptation quantum Monte Carlo (RQMC) and bosonization approach. Fingerprints of LL behavior emerge in the whole crossover from the already strongly interacting Tonks-Girardeau at low density to a dipolar density wave regime at high density. We have also shown that a LL framework can be effectively set up and utilized to describe this strongly correlated crossover physics in the case of confined 1D geometries after using the results for the homogeneous system in LL hydrodynamic equations within a local density approximation. This leads to the prediction of observable quantities such as the frequencies of the collective modes of the trapped dipolar gas under the more realistic conditions that could be found in ongoing experiments. The present paper provides a description of the theoretical framework in which the above results have been worked out, making available all the detailed derivations of the hydrodynamic Luttinger equations for the inhomogeneous trapped gas and of the correlation functions for the homogeneous system

  11. Confinement through tensor gauge fields

    International Nuclear Information System (INIS)

    Salam, A.; Strathdee, J.

    1977-12-01

    Using the 0(3,2)-symmetric de Sitter solution of Einstein's equation describing a strongly interacting tensor field it is shown that hadronic bags confining quarks can be represented as de Sitter ''micro-universes'' with radii given 1/R 2 =lambdak 2 /6. Here k 2 and lambda are the strong coupling and the ''cosmological'' constant which apear in the Einstein equation used. Surprisingly the energy spectrum for the two-body hadronic states is the same as that for a harmonic oscillator potential, though the wave functions are completely different. The Einstein equation can be extended to include colour for the tensor fields

  12. Compact inertial confinement multireactor concepts

    International Nuclear Information System (INIS)

    Pendergrass, J.H.

    1985-01-01

    Inertial confinement fusion (ICF) commercial-applications plant-optimum driver pulse repetition rates may exceed reactor pulse-repetition-rate capabilities. Thus, more than one reactor may be required for low-cost production of electric power, process heat, fissionable fuels, etc., in ICF plants. Substantial savings in expensive reactor containment cells and blankets can be realized by placing more than one reactor in a cell and by surrounding more than one reactor cavity with a single blanket system. There are also some potential disadvantages associated with close coupling in compact multicavity blankets and multireactor cells. Tradeoffs associated with several scenarios have been studied

  13. Engineered valley-orbit splittings in quantum-confined nanostructures in silicon

    NARCIS (Netherlands)

    Rahman, R.; Verduijn, J.; Kharche, N.; Lansbergen, G.P.; Klimeck, G.; Hollenberg, L.C.L.; Rogge, S.

    2011-01-01

    An important challenge in silicon quantum electronics in the few electron regime is the potentially small energy gap between the ground and excited orbital states in 3D quantum confined nanostructures due to the multiple valley degeneracies of the conduction band present in silicon. Understanding

  14. Biological interactions and human health effects of static magnetic fields

    International Nuclear Information System (INIS)

    Tenforde, T.S.

    1994-09-01

    Mechanisms through which static magnetic fields interact with living systems will be described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecular structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary will also be presented of the biological effects of static magnetic fields studied in the laboratory and in natural settings. One aspect of magnetic field effects that merits special concern is their influence on implanted medical electronic devices such as cardiac pacemakers. Several extensive studies have demonstrated closure of the reed switch in pacemakers exposed to relatively weak static magnetic fields, thereby causing them to revert to an asynchronous mode of operation that is potentially hazardous. Recommendations for human exposure limits are provided

  15. Isolation and confinement - Considerations for colonization

    Science.gov (United States)

    Akins, F. R.

    1978-01-01

    This paper discusses three types of isolation (sensory/perceptual, temporal, and social) that could adversely affect mankind in space. The literature dealing with laboratory and field experiments relevant to these areas is summarized and suggestions are given for dealing with these problems within the space colony community. Also, consideration is given to the potential effects of physical confinement and the need for usable space. Finally, a modification of Maslow's hierarchy of needs is proposed as a theoretical framework to understand and investigate mankind's psychological needs in space.

  16. Confinement effects and mechanistic aspects for montmorillonite nanopores.

    Science.gov (United States)

    Li, Xiong; Zhu, Chang; Jia, Zengqiang; Yang, Gang

    2018-08-01

    Owing to the ubiquity, critical importance and special properties, confined microenvironments have recently triggered overwhelming interest. In this work, all-atom molecular dynamics simulations have been conducted to address the confinement effects and ion-specific effects for electrolyte solutions within montmorillonite nanopores, where the pore widths vary with a wide range. The adsorption number, structure, dynamics and stability of inner- and outer-sphere metal ions are affected by the change of pore widths (confinement effects), while the extents are significantly dependent on the type of adsorbed species. The type of adsorbed species is, however, not altered by the magnitude of confinement effects, and confinement effects are similar for different electrolyte concentrations. Ion-specific effects are pronounced for all magnitudes of confinement effects (from non- to strong confined conditions), and Hofmeister sequences of outer-sphere species are closely associated with the magnitude of confinement effects while those of inner-sphere species remain consistent. In addition, mechanistic aspects of confinement have been posed using the electrical double layer theories, and the results can be generalized to other confined systems that are ubiquitous in biology, chemistry, geology and nanotechnology. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Pattern recognition in probability spaces for visualization and identification of plasma confinement regimes and confinement time scaling

    International Nuclear Information System (INIS)

    Verdoolaege, G; Karagounis, G; Oost, G Van; Tendler, M

    2012-01-01

    Pattern recognition is becoming an increasingly important tool for making inferences from the massive amounts of data produced in fusion experiments. The purpose is to contribute to physics studies and plasma control. In this work, we address the visualization of plasma confinement data, the (real-time) identification of confinement regimes and the establishment of a scaling law for the energy confinement time. We take an intrinsically probabilistic approach, modeling data from the International Global H-mode Confinement Database with Gaussian distributions. We show that pattern recognition operations working in the associated probability space are considerably more powerful than their counterparts in a Euclidean data space. This opens up new possibilities for analyzing confinement data and for fusion data processing in general. We hence advocate the essential role played by measurement uncertainty for data interpretation in fusion experiments. (paper)

  18. Ductility of reinforced concrete columns confined with stapled strips

    International Nuclear Information System (INIS)

    Tahir, M.F.; Khan, Q.U.Z.; Shabbir, F.; Sharif, M.B.; Ijaz, N.

    2015-01-01

    Response of three 150x150x450mm short reinforced concrete (RC) columns confined with different types of confining steel was investigated. Standard stirrups, strips and stapled strips, each having same cross-sectional area, were employed as confining steel around four comer column bars. Experimental work was aimed at probing into the affect of stapled strip confinement on post elastic behavior and ductility level under cyclic axial load. Ductility ratios, strength enhancement factor and core concrete strengths were compared to study the affect of confinement. Results indicate that strength enhancement in RC columns due to strip and stapled strip confinement was not remarkable as compared to stirrup confined column. It was found that as compared to stirrup confined column, stapled strip confinement enhanced the ductility of RC column by 183% and observed axial capacity of stapled strip confined columns was 41 % higher than the strip confined columns. (author)

  19. The effect of spatial confinement on the noble-gas HArF molecule: structure and electric properties

    International Nuclear Information System (INIS)

    Kozłowska, Justyna; Bartkowiak, Wojciech

    2014-01-01

    Highlights: • The structure and electrical properties of HArF in spatial confinement are analyzed. • Orbital compression leads to decrease of bond lengths in the HArF molecule. • Spatial restriction causes a drop of the molecular (hyper)polarizabilities. • Spatial confinement reduces the electron correlation contribution to μ, α and β. - Abstract: A systematic study on the dipole moment and (hyper)polarizabilities of argon fluorohydride under spatial restriction was performed. Detailed analysis of the confinement induced changes in the structure of HArF is also presented. In order to render the influence of chemical compression on the properties in question a two-dimensional harmonic oscillator potential, mimicking a cylindrical confinement, was applied. Through the comparison of the results obtained for HArF with those of HF the effect of Ar insertion on the above properties was discussed. A hierarchy of ab initio methods including HF, MP2, CCSD and CCSD(T), has been employed to investigate the effect of orbital compression on the electron correlation contribution to the studied electric properties. It was observed that the external confining potential modifies the electronic contributions to the dipole moment and (hyper)polarizabilities of HArF. In particular, the first hyperpolarizability of HArF is remarkably smaller than that of the unconfined HArF molecule

  20. The effect of spatial confinement on the noble-gas HArF molecule: structure and electric properties

    Energy Technology Data Exchange (ETDEWEB)

    Kozłowska, Justyna; Bartkowiak, Wojciech, E-mail: wojciech.bartkowiak@pwr.edu.pl

    2014-09-30

    Highlights: • The structure and electrical properties of HArF in spatial confinement are analyzed. • Orbital compression leads to decrease of bond lengths in the HArF molecule. • Spatial restriction causes a drop of the molecular (hyper)polarizabilities. • Spatial confinement reduces the electron correlation contribution to μ, α and β. - Abstract: A systematic study on the dipole moment and (hyper)polarizabilities of argon fluorohydride under spatial restriction was performed. Detailed analysis of the confinement induced changes in the structure of HArF is also presented. In order to render the influence of chemical compression on the properties in question a two-dimensional harmonic oscillator potential, mimicking a cylindrical confinement, was applied. Through the comparison of the results obtained for HArF with those of HF the effect of Ar insertion on the above properties was discussed. A hierarchy of ab initio methods including HF, MP2, CCSD and CCSD(T), has been employed to investigate the effect of orbital compression on the electron correlation contribution to the studied electric properties. It was observed that the external confining potential modifies the electronic contributions to the dipole moment and (hyper)polarizabilities of HArF. In particular, the first hyperpolarizability of HArF is remarkably smaller than that of the unconfined HArF molecule.

  1. Hole-doping of mechanically exfoliated graphene by confined hydration layers

    NARCIS (Netherlands)

    Bollmann, Tjeerd Rogier Johannes; Antipina, L.Y.; Temmen, M.; Reichling, M.; Sorokin, P.B.

    2015-01-01

    By the use of non-contact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM), we measure the local surface potential of mechanically exfoliated graphene on the prototypical insulating hydrophilic substrate of CaF2(111). Hydration layers confined between the graphene and the

  2. Relaxation processes and glass transition of confined polymer melts: A molecular dynamics simulation of 1,4-polybutadiene between graphite walls.

    Science.gov (United States)

    Solar, M; Binder, K; Paul, W

    2017-05-28

    Molecular dynamics simulations of a chemically realistic model for 1,4-polybutadiene in a thin film geometry confined by two graphite walls are presented. Previous work on melts in the bulk has shown that the model faithfully reproduces static and dynamic properties of the real material over a wide temperature range. The present work studies how these properties change due to nano-confinement. The focus is on orientational correlations observable in nuclear magnetic resonance experiments and on the local intermediate incoherent neutron scattering function, F s (q z , z, t), for distances z from the graphite walls in the range of a few nanometers. Temperatures from about 2T g down to about 1.15T g , where T g is the glass transition temperature in the bulk, are studied. It is shown that weakly attractive forces between the wall atoms and the monomers suffice to effectively bind a polymer coil that is near the wall. For a wide regime of temperatures, the Arrhenius-like adsorption/desorption kinetics of the monomers is the slowest process, while very close to T g the Vogel-Fulcher-Tammann-like α-relaxation takes over. The α-process is modified only for z≤1.2 nm due to the density changes near the walls, less than expected from studies of coarse-grained (bead-spring-type) models. The weakness of the surface effects on the glass transition in this case is attributed to the interplay of density changes near the wall with the torsional potential. A brief discussion of pertinent experiments is given.

  3. Global energy confinement in TORE SUPRA

    International Nuclear Information System (INIS)

    Hoang, G.T.; Bizarro, J.P.; Genile, B. de; Hutter, Th.; Laurent, L.; Litaudon, X.; Moreau, D.; Peysson, Y.; Tonon, G.; Houtte, D. van

    1992-01-01

    The global energy confinement behaviour of mixed Ohmic/Lower Hybrid driven Tore Supra plasmas has been analysed at various densities. In contradiction with L-mode ITER scaling law, this analysis indicates that the global energy confinement time depends strongly on the plasma density and the isotopic dependence seems not to be observed. The thermal electron energy content of steady-state discharges is in good agreement with the offset linear Rebut-Lallia scaling law. During current ramp experiments, the global energy confinement time was found to depend on the internal self-inductance (li). Improved confinement has been obtained for a steady-state 0.8 MA plasma where the plasma current profile is peaked by LH waves (li ∼1.8). In this case, the global confinement time is found to be about 40% higher than the value predicted by the Rebut-Lallia scaling law. (author) 3 refs., 6 figs

  4. An introduction to the confinement problem

    International Nuclear Information System (INIS)

    Greensite, Jeff

    2011-01-01

    This book addresses the confinement problem, which quite generally deals with the behavior of non-abelian gauge theories, and the force which is mediated by gauge fields, at large distances.The word ''confinement'' in the context of hadronic physics originally referred to the fact that quarks and gluons appear to be trapped inside mesons and baryons, from which they cannot escape. There are other, and possibly deeper meanings that can be attached to the term, and these will be explored in this book. Although the confinement problem is far from solved, much is now known about the general features of the confining force, and there are a number of very well motivated theories of confinement which are under active investigation. This volume gives a both pedagogical and concise introduction and overview of the main ideas in this field, their attractive features, and, as appropriate, their shortcomings. (orig.)

  5. Complex dynamics induced by strong confinement - From tracer diffusion in strongly heterogeneous media to glassy relaxation of dense fluids in narrow slits

    Science.gov (United States)

    Mandal, Suvendu; Spanner-Denzer, Markus; Leitmann, Sebastian; Franosch, Thomas

    2017-08-01

    We provide an overview of recent advances of the complex dynamics of particles in strong confinements. The first paradigm is the Lorentz model where tracers explore a quenched disordered host structure. Such systems naturally occur as limiting cases of binary glass-forming systems if the dynamics of one component is much faster than the other. For a certain critical density of the host structure the tracers undergo a localization transition which constitutes a critical phenomenon. A series of predictions in the vicinity of the transition have been elaborated and tested versus computer simulations. Analytical progress is achieved for small obstacle densities. The second paradigm is a dense strongly interacting liquid confined to a narrow slab. Then the glass transition depends nonmonotonically on the separation of the plates due to an interplay of local packing and layering. Very small slab widths allow to address certain features of the statics and dynamics analytically.

  6. Confinement dynamics in the reversed field pinch

    International Nuclear Information System (INIS)

    Schoenberg, K.F.

    1988-01-01

    The study of basic transport and confinement dynamics is central to the development of the reversed field pinch (RFP) as a confinement concept. Thus, the goal of RFP research is to understand the connection between processes that sustain the RFP configuration and related transport/confinement properties. Recently, new insights into confinement have emerged from a detailed investigation of RFP electron and ion physics. These insights derive from the recognition that both magnetohydrodynamic (MHD) and electron kinetic effects play an important and strongly coupled role in RFP sustainment and confinement dynamics. In this paper, we summarize the results of these studies on the ZT-40M experiment. 8 refs

  7. Spherical fusion plasma-confinement field of Surmac type

    Energy Technology Data Exchange (ETDEWEB)

    Wipf, S.L.

    1981-01-01

    The concept of a Surmac confinement field that can be completely closed is presented. The internal conductor is magnetically suspended inside large corrugations of a superconducting spherical shell structure that carries the return current. Presently available superconductor technology using superfluid helium cooling allows fields above 1.5T throughout the wall region. Such a Surmac has potential for the study of advanced fuel cycles.

  8. From Pauli's birthday to 'Confinement Resonances' – a potted history of Quantum Confinement

    International Nuclear Information System (INIS)

    Connerade, J P

    2013-01-01

    Quantum Confinement is in some sense a new subject. International meetings dedicated to Quantum Confinement have occurred only recently in Mexico City (the first in 2010 and the second, in September 2011). However, at least in principle, the subject has existed since a very long time. Surprisingly perhaps, it lay dormant for many years, for want of suitable experimental examples. However, when one looks carefully at its origin, it turns out to have a long and distinguished history. In fact, the problem of quantum confinement raises a number of very interesting issues concerning boundary conditions in elementary quantum mechanics and how they should be applied to real problems. Some of these issues were missed in the earliest papers, but are implicit in the structure of quantum mechanics, and lead to the notion of Confinement Resonances, the existence of which was predicted theoretically more than ten years ago. Although, for several reasons, these resonances remained elusive for a very long time, they have now been observed experimentally, which puts the whole subject in much better shape and, together with the advent of metallofullerenes, has contributed to its revival.

  9. Momentum confinement at low torque

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, W M [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); De Grassie, J S [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Budny, R [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Kinsey, J E [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Kramer, G J [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Luce, T C [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Mikkelsen, D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Nazikian, R [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Petty, C C [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Politzer, P A [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Scott, S D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Zeeland, M A Van [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Zarnstorff, M C [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)

    2007-12-15

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized beta {beta}{sub N}, by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q{sub min} show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. GLF23 modeling suggests that the role of E x B shearing is quite different between the two plasmas, which may help to explain the different dependence of the momentum confinement on torque.

  10. Experimental study of vertical stress profiles of a confined granular bed under static and dynamic conditions.

    Science.gov (United States)

    Mandato, S; Cuq, B; Ruiz, T

    2012-07-01

    In a wet agglomeration process inside a low shear mixer, the blade function is to induce i) homogenization of the liquid sprayed on the powder surface and ii) a stress field able to transfer the mechanical energy at the particle scale. In this work we study the mechanical state of a confined powder bed through the analysis of stress distributions (by force measurements) in a rectangular cell in two cases: for a classical model powder (i.e. glass beads) and a complex powder (i.e. wheat semolina). Two types of vertical stress profiles are obtained according to the type of measurements carried out in the powder bed, either locally (at different positions in the cell) or globally (at the entire base). The global vertical stress profile follows Janssen's model and the local vertical stress profile highlights a critical length, identified as the percolation threshold of the force network, and a shielding length near the bottom, which is similar to an influence length of the side walls. In the context of wet agglomeration, the results allow to consider the role of the characteristic lengths in the mixing bowl under vertical mechanical solicitation.

  11. Confinement-induced resonances in anharmonic waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Peng Shiguo [Department of Physics, Tsinghua University, Beijing 100084 (China); Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); Hu Hui; Liu Xiaji; Drummond, Peter D. [Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia)

    2011-10-15

    We develop the theory of anharmonic confinement-induced resonances (ACIRs). These are caused by anharmonic excitation of the transverse motion of the center of mass (c.m.) of two bound atoms in a waveguide. As the transverse confinement becomes anisotropic, we find that the c.m. resonant solutions split for a quasi-one-dimensional (1D) system, in agreement with recent experiments. This is not found in harmonic confinement theories. A new resonance appears for repulsive couplings (a{sub 3D}>0) for a quasi-two-dimensional (2D) system, which is also not seen with harmonic confinement. After inclusion of anharmonic energy corrections within perturbation theory, we find that these ACIRs agree extremely well with anomalous 1D and 2D confinement-induced resonance positions observed in recent experiments. Multiple even- and odd-order transverse ACIRs are identified in experimental data, including up to N=4 transverse c.m. quantum numbers.

  12. Confinement and String Breaking for QED_{2} in the Hamiltonian Picture

    Directory of Open Access Journals (Sweden)

    Boye Buyens

    2016-11-01

    Full Text Available The formalism of matrix product states is used to perform a numerical study of (1+1-dimensional QED—also known as the (massive Schwinger model—in the presence of an external static “quark” and “antiquark”. We obtain a detailed picture of the transition from the confining state at short interquark distances to the broken-string “hadronized” state at large distances, and this for a wide range of couplings, recovering the predicted behavior both in the weak- and strong-coupling limit of the continuum theory. In addition to the relevant local observables like charge and electric field, we compute the (bipartite entanglement entropy and show that subtraction of its vacuum value results in a UV-finite quantity. We find that both string formation and string breaking leave a clear imprint on the resulting entropy profile. Finally, we also study the case of fractional probe charges, simulating for the first time the phenomenon of partial string breaking.

  13. The Physics Basis of ITER Confinement

    International Nuclear Information System (INIS)

    Wagner, F.

    2009-01-01

    ITER will be the first fusion reactor and the 50 year old dream of fusion scientists will become reality. The quality of magnetic confinement will decide about the success of ITER, directly in the form of the confinement time and indirectly because it decides about the plasma parameters and the fluxes, which cross the separatrix and have to be handled externally by technical means. This lecture portrays some of the basic principles which govern plasma confinement, uses dimensionless scaling to set the limits for the predictions for ITER, an approach which also shows the limitations of the predictions, and describes briefly the major characteristics and physics behind the H-mode--the preferred confinement regime of ITER.

  14. On the implications of confinement

    International Nuclear Information System (INIS)

    Roberts, C.D.

    1992-01-01

    In this paper, the authors consider some implications of confinement starting from the basic observation that cross-sections for the production of colored asymptotic states, such as free quarks and gluons, from color singlet initial states must be zero if QCD is to be confining. The authors discuss two pictures of confinement: the failure of the cluster decomposition property and the absence of a pole at timelike momenta in the propagator of a confined particle. The authors use QCD-based models as a framework to relate the failure of the cluster decomposition property to other ideas, such as the role of a nonzero gluon condensate. The authors' primary interest is to address the question of the absence of a mass pole through a study of model Schwinger-Dyson equations. These equations contain some of the dynamical information that is present in the study of the cluster decomposition property. The authors discuss the problems within this idea and its study using the Schwinger-Dyson equations

  15. Mechanical collapse of confined fluid membrane vesicles.

    Science.gov (United States)

    Rim, Jee E; Purohit, Prashant K; Klug, William S

    2014-11-01

    Compact cylindrical and spherical invaginations are common structural motifs found in cellular and developmental biology. To understand the basic physical mechanisms that produce and maintain such structures, we present here a simple model of vesicles in confinement, in which mechanical equilibrium configurations are computed by energy minimization, balancing the effects of curvature elasticity, contact of the membrane with itself and the confining geometry, and adhesion. For cylindrical confinement, the shape equations are solved both analytically and numerically by finite element analysis. For spherical confinement, axisymmetric configurations are obtained numerically. We find that the geometry of invaginations is controlled by a dimensionless ratio of the adhesion strength to the bending energy of an equal area spherical vesicle. Larger adhesion produces more concentrated curvatures, which are mainly localized to the "neck" region where the invagination breaks away from its confining container. Under spherical confinement, axisymmetric invaginations are approximately spherical. For extreme confinement, multiple invaginations may form, bifurcating along multiple equilibrium branches. The results of the model are useful for understanding the physical mechanisms controlling the structure of lipid membranes of cells and their organelles, and developing tissue membranes.

  16. Magnetic moments of confined quarks and baryons in an independent-quark model based on Dirac equation with power-law potential

    International Nuclear Information System (INIS)

    Barik, N.; Das, M.

    1983-01-01

    The effect of confinement on the magnetic moment of a quark has been studied in a simple independent-quark model based on the Dirac equation with a power-law potential. The magnetic moments so obtained for the constituent quarks, which are found to be significantly different from their corresponding Dirac moments, are used in predicting the magnetic moments of baryons in the nucleon octet as well as those in the charmed and b-flavored sectors. We not only get an improved result for the proton magnetic moment, but the calculation for the rest of the nucleon octet also turns out to be in reasonable agreement with experiment. The overall predictions for the charmed and b-flavored baryons are also comparable with other model predictions

  17. Stable confinement of toroidal electron plasma in an internal conductor device Prototype-Ring Trap

    International Nuclear Information System (INIS)

    Saitoh, H.; Yoshida, Z.; Watanabe, S.

    2005-01-01

    A pure electron plasma has been produced in an internal conductor device Prototype-Ring Trap (Proto-RT). The temporal evolution of the electron plasma was investigated by the measurement of electrostatic fluctuations. Stable confinement was realized when the potential profile adjusted to match the magnetic surfaces. The confinement time varies as a function of the magnetic field strength and the neutral gas pressure, and is comparable to the diffusion time of electrons determined by the classical collisions with neutral gas. Although the addition of a toroidal magnetic field stabilized the electrostatic fluctuation of the plasma, the effects of the magnetic shear shortened the stable confinement time, possibly because of the obstacles of coil support structures

  18. Multi-configurational explicitly correlated wave functions for the study of confined many electron atoms

    International Nuclear Information System (INIS)

    Sarsa, A; Buendía, E; Gálvez, F J

    2016-01-01

    Explicitly correlated wave functions to study confined atoms under impenetrable spherical walls have been obtained. Configuration mixing and a correlation factor are included in the variational ansatz. The behaviors of the ground state and some low-lying excited states of He, Be, B and C atoms with the confinement size are analyzed. Level crossing with confinement is found for some cases. This effect is analyzed in terms of the single particle energy of the occupied orbitals. The multi-configuration parameterized optimized effective potential method is employed with a cut-off factor to account for Dirichlet boundary conditions. The variational Monte Carlo method is used to deal with explicitly correlated wave functions. (paper)

  19. Confinement and the Pomeron

    International Nuclear Information System (INIS)

    White, A.R.

    1989-01-01

    The importance of confinement for obtaining a unitary high-energy limit for QCD is discussed. ''Minijets'' are argued to build up non-unitary behavior endash when k T > Λ is imposed. For minijets to mix with low k T Pomeron Field Theory describing confinement, and give consistent asymptotic behavior, new ''quarks'' must enter the theory above the minijet transverse momentum scale. The Critical Pomeron is the resulting high-energy limit. 22 refs

  20. Energy conversion statics

    CERN Document Server

    Messerle, H K; Declaris, Nicholas

    2013-01-01

    Energy Conversion Statics deals with equilibrium situations and processes linking equilibrium states. A development of the basic theory of energy conversion statics and its applications is presented. In the applications the emphasis is on processes involving electrical energy. The text commences by introducing the general concept of energy with a survey of primary and secondary energy forms, their availability, and use. The second chapter presents the basic laws of energy conversion. Four postulates defining the overall range of applicability of the general theory are set out, demonstrating th

  1. Hadron-hadron potentials from lattice quantum chromodynamics

    International Nuclear Information System (INIS)

    Rabitsch, K.

    1997-10-01

    Problems in nuclear physics generally involve several nucleons due to the composite structure of the atomic nucleus. To study such systems one has to solve the Schroedinger equation and therefore has to know a nucleon-nucleon potential. Experimental data and theoretical considerations indicate that nucleons consist of constituent particles, called quarks. Today, Quantum Chromodynamics (QCD) is believed to be the fundamental theory of strong interactions. Consequently, one should try to understand the nucleon-nucleon interaction from first principles of QCD. At nucleonic distances the strong coupling constant is large. Thus, a perturbative treatment of QCD low energy phenomena is not adequate. However, the formulation of QCD on a four-dimensional Euclidean lattice (lattice QCD) makes it possible to address the nonperturbative aspects of the theory. This approach has already produced valuable results. For example, the confinement of quarks in a nucleon has been demonstrated, and hadron masses have been calculated In this thesis various methods to extract the hadron-hadron interactions from first principles of lattice QCD are presented. One possibility is to consider systems of two static hadrons. A comparison of results in pure gluonic vacuum and with sea quarks is given for both the confinement and the deconfinement phase of QCD. Numerical simulations yield attractive potentials in the overlap region of the hadrons for all considered systems. In the deconfinement phase the resulting potentials are shallower reflecting the dissolution of the hadrons. A big step towards the simulation of realistic two-hadron systems on the lattice is the consideration of mesons consisting of dynamic valence quarks. This is done for the two most important fermionic discretization schemes in the pure gluonic vacuum. A calculation in coordinate space utilizing Kogut-Susskind fermions for the valence quarks yields meson-meson potentials with a long ranged interaction, an intermediate

  2. Linear confinement of a scalar particle in a Goedel-type spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Vitoria, R.L.L.; Furtado, C.; Bakke, K. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa-PB (Brazil)

    2018-01-15

    Based on the studies of confinement of quarks, we introduce a linear scalar potential into the relativistic quantum dynamics of a scalar particle. Then we analyze the linear confinement of a relativistic scalar particle in a Goedel-type spacetime in the presence of a topological defect. We consider a Goedel-type spacetime associated with null curvature, i.e., the Som-Raychaudhuri spacetime, which is characterized by the presence of vorticity in the spacetime. Then we search for analytical solutions to the Klein-Gordon equation and analyze the influence of the topology of the cosmic string and the vorticity on the relativistic energy levels. (orig.)

  3. FRP confined smart concrete/mortar

    Science.gov (United States)

    Xiao, Y.; Zhu, P. S.; Choi, K. G.; Wu, Y. T.; Huang, Z. Y.; Shan, B.

    2006-03-01

    In this study, fiber reinforced polymer (FRP) confined smart concrete/mortar sensors were invented and validated for significantly improved measurement range. Several trial mixes were made using cement mortar and micron-phase graphite powders at different mix proportions. Compressive loading tests were conducted on smart mortar cylinder specimens with or without FRP confinement. Two-probe method was used to detect the electrical resistance of the smart cement mortar specimens. Strong correlation was recognized between the stress and electric resistance of the smart mortar. The test results indicated that the FRP wrapping could significantly enlarge the range of such self-sensing property as a consequence of confinement.

  4. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones.

    Science.gov (United States)

    Sugiyama, Toshihiro; Price, Joanna S; Lanyon, Lance E

    2010-02-01

    In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC+STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static "pre-load" of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static "pre-load" alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 mum) micro-computed tomography (microCT). In the DYNAMIC+STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC+STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These microCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them. (c) 2009 Elsevier Inc

  5. Photoionization of atoms encapsulated by cages using the power-exponential potential

    International Nuclear Information System (INIS)

    Lin, C Y; Ho, Y K

    2012-01-01

    The systems of confined atoms in cages have received considerable attention for decades due to interesting phenomena arising from the effect of cage environment on the atom. For early theoretical work based on empirical model potentials, the Dirac δ-potential, i.e. the so-called bubble potential, and the attractive short-range spherical shell potential are conventionally used for the description of interaction between the valence electron of confined atom and the cage. In this work, the power-exponential potential with a flexible confining shape is proposed to model the cages. The methods of complex scaling in the finite-element discrete variable representation are implemented to investigate the hydrogen, hydrogen-like ions and alkali metals encapsulated by the cages. The energy spectrum varying with the confining well depth exhibits avoided crossings. The influence of cage on atomic photoionization leading to the oscillation behaviour or the so-called confinement resonances in cross sections is demonstrated in a variety of confined atomic systems. In comparisons with existing predictions using the Dirac δ-potential and the attractive short-range spherical shell potentials, our results show the significant influence of cage thickness and smooth shell boundary on the photoionization. The drastic changes of cross sections due to the character of cage are presented and discussed for the encaged lithium and sodium atoms. The present model is useful for clarifying the boundary effect of confining shell on the endohedral atoms. (paper)

  6. Hot-electron plasma formation and confinement in the tandem mirror experiment-upgrade

    International Nuclear Information System (INIS)

    Ress, D.B.

    1988-06-01

    The tandem mirror experiment-upgrade (TMX-U) at the Lawrence Livermore National Laboratory (LLNL) is the first experiment to investigate the thermal-barrier tandem-mirror concept. One attractive feature of the tandem magnetic mirror as a commercial power reactor is that the fusion reactions occur in an easily accessible center-cell. On the other hand, complicated end-cells are necessary to provide magnetohydrodynamic (MHD) stability and improved particle confinement of the center-cell plasma. In these end-cells, enhanced confinement is achieved with a particular axial potential profile that is formed with electron-cyclotron range-of-frequency heating (ECRF heating, ECRH). By modifying the loss rates of electrons at spatially distinct locations within the end-cells, the ECRH can tailor the plasma potential profile in the desired fashion. Specifically, the thermal-barrier concept requires generation of a population of energetic electrons near the midplane of each end-cell. To be effective, the transverse (to the magnetic field) spatial structure of the hot-electron plasma must be fairly uniform. In this dissertation we characterize the spatial structure of the ECRH-generated plasma, and determine how the structure builds up in time. Furthermore, the plasma should efficiently absorb the ECRF power, and a large fraction of the electrons must be well confined near the end-cell midplane. Therefore, we also examine in detail the ECRH power balance, determining how the ECRF power is absorbed by the plasma, and the processes through which that power is confined and lost. 43 refs., 69 figs., 6 tabs

  7. Relativistic corrections to the static energy in terms of Wilson loops at weak coupling

    Energy Technology Data Exchange (ETDEWEB)

    Peset, Clara [Technische Universitaet Muenchen, Physik Department T31, Garching (Germany); Pineda, Antonio [Universitat Autonoma de Barcelona, Grup de Fisica Teorica, Dept. Fisica y IFAE-BIST, Barcelona (Spain); Stahlhofen, Maximilian [Johannes Gutenberg University, PRISMA Cluster of Excellence, Institute of Physics, Mainz (Germany)

    2017-10-15

    We consider the O(1/m) and the spin-independent momentum-dependent O(1/m{sup 2}) quasi-static energies of heavy quarkonium (with unequal masses). They are defined nonperturbatively in terms of Wilson loops. We determine their short-distance behavior through O(α{sup 3}) and O(α{sup 2}), respectively. In particular, we calculate the ultrasoft contributions to the quasi-static energies, which requires the resummation of potential interactions. Our results can be directly compared to lattice simulations. In addition, we also compare the available lattice data with the expectations from effective string models for the long-distance behavior of the quasi-static energies. (orig.)

  8. Many-body excitations and deexcitations in trapped ultracold bosonic clouds

    Science.gov (United States)

    Theisen, Marcus; Streltsov, Alexej I.

    2016-11-01

    We employ the multiconfigurational time-dependent Hartree for bosons (MCTDHB) method to study excited states of interacting Bose-Einstein condensates confined by harmonic and double-well trap potentials. Two approaches to access excitations, one static and the other dynamic, are investigated and contrasted. In static simulations the low-lying excitations are computed by utilizing a linear-response theory constructed on top of a static MCTDHB solution (LR-MCTDHB). Complimentarily, we propose two dynamic protocols that address excitations by propagating the MCTDHB wave function. In particular, we investigate dipolelike oscillations induced by shifting the origin of the confining potential and breathinglike excitations by quenching the frequency of a parabolic part of the trap. To contrast static predictions and dynamic results we compute the time evolution and regard the respective Fourier transform of several local and nonlocal observables. Namely, we study the expectation value of the position operator , its variance Var [x (t )] , and a local density computed at selected positions. We find that the variance is the most sensitive and informative quantity: Along with excitations it contains information about deexcitations even in a linear regime of the induced dynamics. The dynamic protocols are found to access the many-body excitations predicted by the static LR-MCTDHB approach.

  9. A Pedagogical Model of Static Friction

    OpenAIRE

    Pickett, Galen T.

    2015-01-01

    While dry Coulombic friction is an elementary topic in any standard introductory course in mechanics, the critical distinction between the kinetic and static friction forces is something that is both hard to teach and to learn. In this paper, I describe a geometric model of static friction that may help introductory students to both understand and apply the Coulomb static friction approximation.

  10. Confinement of quarks

    International Nuclear Information System (INIS)

    Nambu, J.

    1978-01-01

    Three quark models of hadron structure, which suggest an explanation of quarks confinement mechanism in hadrons are considered. Quark classifications, quark flawors and colours, symmetry model of hadron structure based on the colour theory of strong interaction are discussed. Diagrams of colour combinations of quarks and antiquarks, exchange of gluons, binding quarks in hadron. Quark confinement models based on the field theory, string model rotating and bag model are discussed. Diagrams of the colour charge distribution explaining the phenomena of infrared ''slavery'' and ultraviolet ''freedom'' are given. The models considered explain but some quark properties, creating prerequisites for the development of the consequent theory of hadron structure

  11. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.

    1977-01-01

    The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.

  12. Extended Møller-Plesset perturbation theory for dynamical and static correlations

    International Nuclear Information System (INIS)

    Tsuchimochi, Takashi; Van Voorhis, Troy

    2014-01-01

    We present a novel method that appropriately handles both dynamical and static electron correlations in a balanced manner, using a perturbation theory on a spin-extended Hartree-Fock (EHF) wave function reference. While EHF is a suitable candidate for degenerate systems where static correlation is ubiquitous, it is known that most of dynamical correlation is neglected in EHF. In this work, we derive a perturbative correction to a fully spin-projected self-consistent wave function based on second-order Møller-Plesset perturbation theory (MP2). The proposed method efficiently captures the ability of EHF to describe static correlation in degeneracy, combined with MP2's ability to treat dynamical correlation effects. We demonstrate drastic improvements on molecular ground state and excited state potential energy curves and singlet-triplet splitting energies over both EHF and MP2 with similar computational effort to the latter

  13. Effect of Short-Circuit Pathways on Water Quality in Selected Confined Aquifers (Invited)

    Science.gov (United States)

    McMahon, P. B.

    2010-12-01

    Confined aquifers in the United States generally contain fewer anthropogenic contaminants than unconfined aquifers because confined aquifers often contain water recharged prior to substantial human development and redox conditions are more reducing, which favors degradation of common contaminants like nitrate and chlorinated solvents. Groundwater in a confined part of the High Plains aquifer near York, Nebraska had an adjusted radiocarbon age of about 2,000 years, and groundwater in a confined part of the Floridan aquifer near Tampa, Florida had apparent ages greater than 60 years on the basis of tritium measurements. Yet compounds introduced more recently into the environment (anthropogenic nitrate and volatile organic compounds) were detected in selected public-supply wells completed in both aquifers. Depth-dependent measurements of flow and chemistry in the pumping supply wells, groundwater age dating, numerical modeling of groundwater flow, and other monitoring data indicated that the confined aquifers sampled by the supply wells were connected to contaminated unconfined aquifers by short-circuit pathways. In the High Plains aquifer, the primary pathways appeared to be inactive irrigation wells screened in both the unconfined and confined aquifers. In the Floridan aquifer, the primary pathways were karst sinkholes and conduits. Heavy pumping in both confined systems exacerbated the problem by reducing the potentiometric surface and increasing groundwater velocities, thus enhancing downward gradients and reducing reaction times for processes like denitrification. From a broader perspective, several confined aquifers in the U.S. have experienced large declines in their potentiometric surfaces because of groundwater pumping and this could increase the potential for contamination in those aquifers, particularly where short-circuit pathways connect them to shallower, contaminated sources of water, such as was observed in York and Tampa.

  14. Theory of static friction: temperature and corrugation effects

    International Nuclear Information System (INIS)

    Franchini, A; Brigazzi, M; Santoro, G; Bortolani, V

    2008-01-01

    We present a study of the static friction, as a function of temperature, between two thick solid slabs. The upper one is formed of light particles and the substrate of heavy particles. We focus our attention on the interaction between the phonon fields of the two blocks and on the interface corrugation, among the various mechanisms responsible for the friction. To give evidence of the role played by the dynamical interaction of the substrate with the upper block, we consider both a substrate formed by fixed atoms and a substrate formed by mobile atoms. To study the effect of the corrugation, we model it by changing the range parameter σ in the Lennard-Jones interaction potential. We found that in the case of the mobile substrate there is a large momentum transfer from the substrate to the upper block. This momentum transfer increases on increasing the temperature and produces a large disorder in the upper block favouring a decrease of the static friction with respect to the case for a rigid substrate. Reducing the corrugation, we found that with a rigid substrate the upper block becomes nearly commensurate, producing an enhancement of the static friction with respect to that with a mobile substrate

  15. Pollen Sterility—A Promising Approach to Gene Confinement and Breeding for Genetically Modified Bioenergy Crops

    Directory of Open Access Journals (Sweden)

    Albert P. Kausch

    2012-10-01

    Full Text Available Advanced genetic and biotechnology tools will be required to realize the full potential of food and bioenergy crops. Given current regulatory concerns, many transgenic traits might never be deregulated for commercial release without a robust gene confinement strategy in place. The potential for transgene flow from genetically modified (GM crops is widely known. Pollen-mediated transfer is a major component of gene flow in flowering plants and therefore a potential avenue for the escape of transgenes from GM crops. One approach for preventing and/or mitigating transgene flow is the production of trait linked pollen sterility. To evaluate the feasibility of generating pollen sterility lines for gene confinement and breeding purposes we tested the utility of a promoter (Zm13Pro from a maize pollen-specific gene (Zm13 for driving expression of the reporter gene GUS and the cytotoxic gene barnase in transgenic rice (Oryza sativa ssp. Japonica cv. Nipponbare as a monocot proxy for bioenergy grasses. This study demonstrates that the Zm13 promoter can drive pollen-specific expression in stably transformed rice and may be useful for gametophytic transgene confinement and breeding strategies by pollen sterility in food and bioenergy crops.

  16. Theoretical analysis of static properties of mixed ionic crystal ...

    Indian Academy of Sciences (India)

    In the present paper, we have investigated the static properties of the mixed ionic crystal NH4Cl1−Br using three-body potential model (TBPM) by the application of Vegard's law. The results for the mixed crystal counterparts are also in fair agreement with the pseudo-experimental data generated from the application of ...

  17. Smooth interface effects on the confinement properties of GaSb/Al xGa 1- xSb quantum wells

    Science.gov (United States)

    Adib, Artur B.; de Sousa, Jeanlex S.; Farias, Gil A.; Freire, Valder N.

    2000-10-01

    A theoretical investigation on the confinement properties of GaSb/Al xGa 1- xSb single quantum wells (QWs) with smooth interfaces is performed. Error function ( erf)-like interfacial aluminum molar fraction variations in the QWs, from which it is possible to obtain the carriers effective masses and confinement potential profiles, are assumed. It is shown that the existence of smooth interfaces blue shifts considerably the confined carriers and exciton energies, an effect which is stronger in thin QWs.

  18. Combined confinement system applied to tokamaks

    International Nuclear Information System (INIS)

    Ohkawa, Tihiro

    1986-01-01

    From particle orbit point of view, a tokamak is a combined confinement configuration where a closed toroidal volume is surrounded by an open confinement system like a magnetic mirror. By eliminating a cold halo plasma, the energy loss from the plasma becomes convective. The H-mode in diverted tokamaks is an example. Because of the favorable scaling of the energy confinement time with temperature, the performance of the tokamak may be significantly improved by taking advantage of this effect. (author)

  19. Statics of Historic Masonry Constructions

    CERN Document Server

    Como, Mario

    2013-01-01

    Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments in its architectural heritage. Given the age of much of these constructions, the demand for safety assessments and restoration projects is pressing and constant. This book aims to help fill this demand presenting a comprehensive new statics of masonry constructions. The book, result of thirty years of research and professional experience, gives the fundamentals of statics of the masonry solid, then applied to the study of statics of arches, piers and vaults. Further, combining engineering and architecture and through an interdisciplinary approach, the book investigates the statical behaviour of many historic monuments, as the Pantheon, the Colosseum,  the domes of S. Maria del Fiore in Florence and of St. Peter in Rome, the Tower of Pisa, the Gothic Cathedrals and the Masonry Buildings under seismic actions.

  20. Viscosity of confined two-dimensional Yukawa liquids: A nonequilibrium method

    International Nuclear Information System (INIS)

    Landmann, S.; Kählert, H.; Thomsen, H.; Bonitz, M.

    2015-01-01

    We present a nonequilibrium method that allows one to determine the viscosity of two-dimensional dust clusters in an isotropic confinement. By applying a tangential external force to the outer parts of the cluster (e.g., with lasers), a sheared velocity profile is created. The decay of the angular velocity towards the center of the confinement potential is determined by a balance between internal (viscosity) and external friction (neutral gas damping). The viscosity can then be calculated from a fit of the measured velocity profile to a solution of the Navier-Stokes equation. Langevin dynamics simulations are used to demonstrate the feasibility of the method. We find good agreement of the measured viscosity with previous results for macroscopic Yukawa plasmas

  1. Role of density modulation in the spatially resolved dynamics of strongly confined liquids.

    Science.gov (United States)

    Saw, Shibu; Dasgupta, Chandan

    2016-08-07

    Confinement by walls usually produces a strong modulation in the density of dense liquids near the walls. Using molecular dynamics simulations, we examine the effects of the density modulation on the spatially resolved dynamics of a liquid confined between two parallel walls, using a resolution of a fraction of the interparticle distance in the liquid. The local dynamics is quantified by the relaxation time associated with the temporal autocorrelation function of the local density. We find that this local relaxation time varies in phase with the density modulation. The amplitude of the spatial modulation of the relaxation time can be quite large, depending on the characteristics of the wall and thermodynamic parameters of the liquid. To disentangle the effects of confinement and density modulation on the spatially resolved dynamics, we compare the dynamics of a confined liquid with that of an unconfined one in which a similar density modulation is induced by an external potential. We find several differences indicating that density modulation alone cannot account for all the features seen in the spatially resolved dynamics of confined liquids. We also examine how the dynamics near a wall depends on the separation between the two walls and show that the features seen in our simulations persist in the limit of large wall separation.

  2. Order in very cold confined plasmas

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1995-01-01

    The study of the structure and dynamic properties of classical systems of charged particles confined by external forces, and cooled to very low internal energies, is the subject of this talk. An infinite system of identical charged particles has been known for some time to form a body-centered cubic lattice and is a simple classical prototype for condensed matter. Recent technical developments in storage rings, ion traps, and laser cooling of ions, have made it possible to produce such systems in the laboratory, though somewhat modified because of their finite size. I would like to discuss what one may expect in such systems and also show some examples of experiments. If we approximate the potential of an ion trap with an isotropic harmonic force F = -Kr then the Hamiltonian for this collection of ions is the same as that for J. J. Thomson's ''plum pudding'' model of the atom, where electrons were thought of as discrete negative charges imbedded in a larger, positive, uniformly charged sphere. The harmonic force macroscopically is canceled by the average space-charge forces of the plasma-, and this fixes the overall radius of the distribution. What remains, are the residual two-body Coulomb interactions that keep the particles within the volume as nearly equidistant as possible in order to minimize the potential energy. The configurations obtained for the minimum energy of small ionic systems [2] in isotropic confinement are shown in figure 1. Indeed this is an 'Exotic Atom' and fits well into the subject of this symposium honoring the 60th birthday of Professor Toshi Yamazaki

  3. Study of confined many electron atoms by means of the POEP method

    International Nuclear Information System (INIS)

    Sarsa, A; Buendía, E; Gálvez, F J

    2014-01-01

    The electronic structure of confined atoms under impenetrable spherical walls is studied by means of the parameterized optimized effective potential method. A cut-off factor is employed to account for Dirichlet boundary conditions. Two atomic basis sets commonly used for describing free atoms have been analyzed within this scheme. The accuracy of the method is similar to that achieved for the free atoms. The ground state electrostatic multiplet of the carbon atom as well as the ground state and both the [Ar]4s3d 7 5 F and [Ar]3d 8 3 F excited states of the iron atom are studied. The behaviour of the energy levels with the confinement has been analyzed in terms of the different contributions to the total energy of the atom. For the iron atom, the effect of confinement on the outermost orbitals is studied. (paper)

  4. The development of a laterally confined laboratory fan delta under sediment supply reduction

    Science.gov (United States)

    Zhang, Xiaofeng; Wang, Siqiang; Wu, Xi; Xu, Shun; Li, Zhangyong

    2016-03-01

    In previous fan delta experiments, the effect of lateral confinement was generally ignored as these fans were usually unconfined with semiconical geometries. However, in gorge areas, fan development is usually laterally confined by valley walls. This study investigates autogenic processes of fan deltas in a laterally confined experimental tank. The experiment is divided into three phases. The sediment supply is held constant within each phase, so the autogenic processes of the fan are separated from the allogenic forcings. Results indicate that laterally confined fan deltas have higher progradation and aggradation potential, more regular channel braiding, and more even transverse sedimentation than unconfined fans. Besides, responses of fan deltas to sediment supply reduction are investigated in this research. At the initiation of the second and third phases, sediment feed rates are instantaneously reduced so that the allogenic forcings are predominant. Observations show that under sediment supply reduction, channelization on fan deltas are more pronounced and durations of the fluvial cycles are longer. The adjustment of fan morphology becomes slower as the self-regulation capacity of the fan decreases with reduced sediment supply.

  5. Involvement of Na+/K+ pump in fine modulation of bursting activity of the snail Br neuron by 10 mT static magnetic field.

    Science.gov (United States)

    Nikolić, Ljiljana; Todorović, Nataša; Zakrzewska, Joanna; Stanić, Marina; Rauš, Snežana; Kalauzi, Aleksandar; Janać, Branka

    2012-07-01

    The spontaneously active Br neuron from the brain-subesophageal ganglion complex of the garden snail Helix pomatia rhythmically generates regular bursts of action potentials with quiescent intervals accompanied by slow oscillations of membrane potential. We examined the involvement of the Na(+)/K(+) pump in modulating its bursting activity by applying a static magnetic field. Whole snail brains and Br neuron were exposed to the 10-mT static magnetic field for 15 min. Biochemical data showed that Na(+)/K(+)-ATPase activity increased almost twofold after exposure of snail brains to the static magnetic field. Similarly, (31)P NMR data revealed a trend of increasing ATP consumption and increase in intracellular pH mediated by the Na(+)/H(+) exchanger in snail brains exposed to the static magnetic field. Importantly, current clamp recordings from the Br neuron confirmed the increase in activity of the Na(+)/K(+) pump after exposure to the static magnetic field, as the magnitude of ouabain's effect measured on the membrane resting potential, action potential, and interspike interval duration was higher in neurons exposed to the magnetic field. Metabolic pathways through which the magnetic field influenced the Na(+)/K(+) pump could involve phosphorylation and dephosphorylation, as blocking these processes abolished the effect of the static magnetic field.

  6. Behaviour of concrete under high confinement: study in triaxial compression and in triaxial extension at the mesoscopic scale

    International Nuclear Information System (INIS)

    Dupray, F.

    2008-12-01

    This Ph.D. thesis aims at characterising and modeling the mechanical behaviour of concrete under high confinement at the mesoscopic scale. This scale corresponds to that of the large aggregates and the cementitious matrix. The more general scope of this study is the understanding of concrete behaviour under dynamic loading. A dynamic impact can generate mean pressures around 1 GPa. But the characterisation of a material response, in an homogeneous state of stress, can only be achieved through quasi-static tests. The experimentations led in 3S-R Laboratory have underlined the importance of the aggregates in the triaxial response of concrete. Modeling concrete at the mesoscopic level, as a composite of an aggregates phase and a mortar phase, permits a representation of the aggregates effect. An experimental study of the behaviour of mortar phase is performed. Usual tests and hydrostatic and triaxial high confinement tests are realised. The parameters of a constitutive model that couples plasticity with a damage law are identified from these tests. This model is able to reproduce the nonlinear compaction of mortar, the damage behaviour under uniaxial tension or compression, and plasticity under high confinement. The biphasic model uses the finite element method with a cubic and regular mesh. A Monte-Carlo method is used to place quasi-spherical aggregates that respect the given particle size of a reference concrete. Each element is identified by belonging either to the mortar or to the aggregate phase. Numerical simulations are compared with the experimental tests on this concrete. The parameters for these simulations are only identified on the mortar. The simulations reproduce the different phases observed in hydrostatic compression. The evolution of axial moduli under growing confinement is shown, as is the good reproduction of the limit-states experimentally observed under high confinement. The fracture aspect of numerical simulations is comparable with that of

  7. Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.

    1979-01-01

    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.

  8. Static Transition Compression

    DEFF Research Database (Denmark)

    Danvy, Olivier; Damian, Daniel

    2001-01-01

    Starting from an operational specification of a translation from a structured to an unstructured imperative language, we point out how a compositional and context-insensitive translation gives rise to static chains of jumps. Taking an inspiration from the notion of continuation, we state a new...... compositional and context-sensitive specification that provably gives rise to no static chains of jumps, no redundant labels, and no unused labels. It is defined with one inference rule per syntactic construct and operates in linear time and space on the size of the source program (indeed it operates in one...

  9. Statics and Mechanics of Structures

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    The statics and mechanics of structures form a core aspect of civil engineering. This book provides an introduction to the subject, starting from classic hand-calculation types of analysis and gradually advancing to a systematic form suitable for computer implementation. It starts with statically...

  10. Relation between parameters of self-sustaining magnetically confined electron cloud and external conditions

    International Nuclear Information System (INIS)

    Yu Qingchang

    1991-01-01

    On the basis of the fluid theory of the axisymmetrical self-sustaining magnetically confined electron clouds an approximate analytical method is developed. By means of this method the relations between the parameters of this type of electron cloud and external conditions are studied. The parameters include electron density, electron temperature, drift angular frequency of electrons, radius of the electron cloud and electric potential at the centre of the electron cloud. They depend on the voltage, magnetic induction, pressure, electromagnetic field distribution in the confinement device and parameters of electron-atom collisions

  11. Decay of orientational grating of weakly confined excitons in GaAs thin films

    International Nuclear Information System (INIS)

    Kojima, O.; Isu, T.; Ishi-Hayase, J.; Kanno, A.; Katouf, R.; Sasaki, M.; Tsuchiya, M.

    2008-01-01

    We report the dynamical properties of the exciton orientation in GaAs thin films using the orientational grating (OG) technique. From the results of excitation-power dependence of OG signal, we confirmed that the OG signal comes from the optical nonlinearity of weakly confined excitons. In addition, the OG-decay time decreases with an increase of excitation power due to exciton-exciton interaction, and the shortest decay time is below 1 ps. Our results may imply the potential application of optical nonlinearity of weakly confined exciton to ultrafast switching devices operating at 1 Tbit/s

  12. Generation, insulated confinement, and heating of ultra-high temperature plasmas

    International Nuclear Information System (INIS)

    Bass, R.W.

    1986-01-01

    This invention relates to the production and maintenance in steady state of ultra-high temperature confined plasmas, particularly those created by full ionization of a volume of some hydrogenic gas such as deuterium. The target mass is surrounded with an ambient fluid medium at a predetermined pressure. Pulsed energy is projected upon the target mass to bring it to a predetermined temperature and to fully ionize it; this energy may be pulsed photon energy or pulsed particle-beam kinetic energy. An electrostatic double layer is formed spontaneously between the ionized mass and the ambient medium, providing thermal insulation and leaving the dominant energy loss to be bremmstrahlung losses. The bremmstrahlung losses are compensated for completely by supplying additional radiant energy to the ionized mass to maintain its temperature. The frequency range of the additional radiant energy is selected so as to be absorbable by the ionized mass, and its power level is adjusted to maintain the ionized mass in a substantially steady state. The static pressure of the ambient medium is increased, thereby equally increasing the static pressure of the ionized mass so as to enable the mass to absorb more of the radiant energy and increasing its temperature but also increasing its power losses. Simultaneously the radius and temperature of the mass are monitored and the power level of the radiant energy supply is increased to as to compensate for the power losses. The minimum feasible size of the plasma is less than a centimeter in diameter, while there is no constraint on maximum feasible size. This invention may be practiced with commercially-available lasers and microwave beam generators

  13. Quantum confinement-induced tunable exciton states in graphene oxide.

    Science.gov (United States)

    Lee, Dongwook; Seo, Jiwon; Zhu, Xi; Lee, Jiyoul; Shin, Hyeon-Jin; Cole, Jacqueline M; Shin, Taeho; Lee, Jaichan; Lee, Hangil; Su, Haibin

    2013-01-01

    Graphene oxide has recently been considered to be a potential replacement for cadmium-based quantum dots due to its expected high fluorescence. Although previously reported, the origin of the luminescence in graphene oxide is still controversial. Here, we report the presence of core/valence excitons in graphene-based materials, a basic ingredient for optical devices, induced by quantum confinement. Electron confinement in the unreacted graphitic regions of graphene oxide was probed by high resolution X-ray absorption near edge structure spectroscopy and first-principles calculations. Using experiments and simulations, we were able to tune the core/valence exciton energy by manipulating the size of graphitic regions through the degree of oxidation. The binding energy of an exciton in highly oxidized graphene oxide is similar to that in organic electroluminescent materials. These results open the possibility of graphene oxide-based optoelectronic device technology.

  14. Plasma confinement in a magnetic dipole

    International Nuclear Information System (INIS)

    Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.

    1999-01-01

    A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)

  15. Plasma confinement in a magnetic dipole

    International Nuclear Information System (INIS)

    Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.

    2001-01-01

    A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)

  16. Confined States and Tunnelling in Gated Graphene Nanoribbons

    Science.gov (United States)

    Guilleminot, E.,; Meza-Montes, L.

    Graphene Quantum Dots (GQDs) are promising candidates for the development of quantum information processors. We propose a scheme to determine electronic states of GQDs as defined by voltage gates applied to armchair graphene nanoribbons. Using transfer matrix method based on the set of solutions proposed by Burkard et al ., we study confined states of double wells and the transmission of electrons through double barrier systems. Comparison with previous results for systems on the graphene sheet shows good agreement. Confined states of a double well turn out to be very sensitive to deformation of the potential profile, showing strong localization of the electron for asymmetric systems, which also depends on the considered state. Spikes of high transmission appeared for periodic values of the incident angle of the electron travelling through a double barrier and disappear as the systems approaches to a single barrier as one barrier vanishes. We remark effects not shown in usual semiconductor heterostructures. Partially supported by VIEP-BUAP, Mexico,.

  17. STATIC{sub T}EMP: a useful computer code for calculating static formation temperatures in geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Santoyo, E. [Universidad Nacional Autonoma de Mexico, Centro de Investigacion en Energia, Temixco (Mexico); Garcia, A.; Santoyo, S. [Unidad Geotermia, Inst. de Investigaciones Electricas, Temixco (Mexico); Espinosa, G. [Universidad Autonoma Metropolitana, Co. Vicentina (Mexico); Hernandez, I. [ITESM, Centro de Sistemas de Manufactura, Monterrey (Mexico)

    2000-07-01

    The development and application of the computer code STATIC{sub T}EMP, a useful tool for calculating static formation temperatures from actual bottomhole temperature data logged in geothermal wells is described. STATIC{sub T}EMP is based on five analytical methods which are the most frequently used in the geothermal industry. Conductive and convective heat flow models (radial, spherical/radial and cylindrical/radial) were selected. The computer code is a useful tool that can be reliably used in situ to determine static formation temperatures before or during the completion stages of geothermal wells (drilling and cementing). Shut-in time and bottomhole temperature measurements logged during well completion activities are required as input data. Output results can include up to seven computations of the static formation temperature by each wellbore temperature data set analysed. STATIC{sub T}EMP was written in Fortran-77 Microsoft language for MS-DOS environment using structured programming techniques. It runs on most IBM compatible personal computers. The source code and its computational architecture as well as the input and output files are described in detail. Validation and application examples on the use of this computer code with wellbore temperature data (obtained from specialised literature) and with actual bottomhole temperature data (taken from completion operations of some geothermal wells) are also presented. (Author)

  18. Static muscle strength trained and untrained of female students

    Directory of Open Access Journals (Sweden)

    Kopanski R.

    2012-12-01

    Full Text Available Static muscle strength is one of the defining characteristics of human motor potential. Standard terms and exclude the impact of short-term measurement techniques for motion and strain measurements, hence the widespread use of Mm measurements in the assessment of fitness of both trained and untrained, healthy subjects and patients undergoing a variety of reasons the process of rehabilitation. The paper deals with static muscle strength (dynamometry back of the hand of female students trained (n = 38 and untrained (n = 213. Examined relationships between individual measurements and body weight in both groups, the degree of asymmetry of the palmar and the differences in the level of power (at the level of the absolute and relative terms between the groups. Disclosed according to form the basis of their conclusions.

  19. Thermodynamic Analysis of the Static Spherically Symmetric Field Equations in Rastall Theory

    International Nuclear Information System (INIS)

    Moradpour, Hooman; Salako, Ines G.

    2016-01-01

    The restrictions on the Rastall theory due to application of the Newtonian limit to the theory are derived. In addition, we use the zero-zero component of the Rastall field equations as well as the unified first law of thermodynamics to find the Misner-Sharp mass content confined to the event horizon of the spherically symmetric static spacetimes in the Rastall framework. The obtained relation is calculated for the Schwarzschild and de-Sitter back holes as two examples. Bearing the obtained relation for the Misner-Sharp mass in mind together with recasting the one-one component of the Rastall field equations into the form of the first law of thermodynamics, we obtain expressions for the horizon entropy and the work term. Finally, we also compare the thermodynamic quantities of system, including energy, entropy, and work, with their counterparts in the Einstein framework to have a better view about the role of the Rastall hypothesis on the thermodynamics of system.

  20. Statics and mechanics of structures

    CERN Document Server

    Krenk, Steen

    2013-01-01

    The statics and mechanics of structures form a core aspect of civil engineering. This book provides an introduction to the subject, starting from classic hand-calculation types of analysis and gradually advancing to a systematic form suitable for computer implementation. It starts with statically determinate structures in the form of trusses, beams and frames. Instability is discussed in the form of the column problem - both the ideal column and the imperfect column used in actual column design. The theory of statically indeterminate structures is then introduced, and the force and deformation methods are explained and illustrated. An important aspect of the book’s approach is the systematic development of the theory in a form suitable for computer implementation using finite elements. This development is supported by two small computer programs, MiniTruss and MiniFrame, which permit static analysis of trusses and frames, as well as linearized stability analysis. The book’s final section presents related ...

  1. Cosmological simulations using a static scalar-tensor theory

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez-Meza, M A [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico); Gonzalez-Morales, A X [Departamento Ingenierias, Universidad Iberoamericana, Prol. Paseo de la Reforma 880 Lomas de Santa Fe, Mexico D.F. Mexico (Mexico); Gabbasov, R F [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico); Cervantes-Cota, Jorge L [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico)

    2007-11-15

    We present {lambda}CDM N-body cosmological simulations in the framework of of a static general scalar-tensor theory of gravity. Due to the influence of the non-minimally coupled scalar field, the gravitational potential is modified by a Yukawa type term, yielding a new structure formation dynamics. We present some preliminary results and, in particular, we compute the density and velocity profiles of the most massive group.

  2. CacheCard : Caching static and dynamic content on the NIC

    NARCIS (Netherlands)

    Bos, Herbert; Huang, Kaiming

    2009-01-01

    CacheCard is a NIC-based cache for static and dynamic web content in a way that allows for implementation on simple devices like NICs. It requires neither understanding of the way dynamic data is generated, nor execution of scripts on the cache. By monitoring file system activity and potential

  3. Confinement and hadron-hadron interactions by general relativistic methods

    Science.gov (United States)

    Recami, Erasmo

    By postulating covariance of physical laws under global dilations, one can describe gravitational and strong interactions in a unified way. Namely, in terms of the new discrete dilational degree of freedom, our cosmos and hadrons can be regarded as finite, similar systems. And a discrete hierarchy of finite ``universes'' may be defined, which are governed by fields with strengths inversally proportional to their radii; in each universe an Equivalence Principle holds, so that the relevant field can be there geometrized. Scaled-down Einstein equations -with cosmological term- are assumed to hold inside hadrons (= strong micro-cosmoses); and they yield in a natural way classical confinement, as well as ``asymptotic freedom'', of the hadron constituents. In other words, the association of strong micro-universes of Friedmann type with hadrons (i.e., applying the methods of General Relativity to subnuclear particle physics) allows avoiding recourse to phenomenological models such as the Bag Model. Inside hadrons we have to deal with a tensorial field (= strong gravity), and hadron constituents are supposed to exchange spin-2 ``gluons''. Our approach allows us also to write down a tensorial, bi-scale field theory of hadron-hadron interactions, based on modified Einstein-type equations here proposed for strong interactions in our space. We obtain in particular: (i) the correct Yukawa behaviour of the strong scalar potential at the static limit and for r>~l fm; (ii) the value of hadron radii. As a byproduct, we derive a whole ``numerology'', connecting our gravitational cosmos with the strong micro-cosmoses (hadrons), such that it does imply no variation of G with the epoch. Finally, since a structute of the ``micro-universe'' type seems to be characteristic even of leptons, a hope for the future is including also weak interactions in our classical unification of the fundamental forces.

  4. Bifurcated equilibria in centrifugally confined plasma

    International Nuclear Information System (INIS)

    Shamim, I.; Teodorescu, C.; Guzdar, P. N.; Hassam, A. B.; Clary, R.; Ellis, R.; Lunsford, R.

    2008-01-01

    A bifurcation theory and associated computational model are developed to account for abrupt transitions observed recently on the Maryland Centrifugal eXperiment (MCX) [R. F. Ellis et al. Phys. Plasmas 8, 2057 (2001)], a supersonically rotating magnetized plasma that relies on centrifugal forces to prevent thermal expansion of plasma along the magnetic field. The observed transitions are from a well-confined, high-rotation state (HR-mode) to a lower-rotation, lesser-confined state (O-mode). A two-dimensional time-dependent magnetohydrodynamics code is used to simulate the dynamical equilibrium states of the MCX configuration. In addition to the expected viscous drag on the core plasma rotation, a momentum loss term is added that models the friction of plasma on the enhanced level of neutrals expected in the vicinity of the insulators at the throats of the magnetic mirror geometry. At small values of the external rotation drive, the plasma is not well-centrifugally confined and hence experiences the drag from near the insulators. Beyond a critical value of the external drive, the system makes an abrupt transition to a well-centrifugally confined state in which the plasma has pulled away from the end insulator plates; more effective centrifugal confinement lowers the plasma mass near the insulators allowing runaway increases in the rotation speed. The well-confined steady state is reached when the external drive is balanced by only the viscosity of the core plasma. A clear hysteresis phenomenon is shown.

  5. Enhancement of quasi-static strain energy harvesters using non-uniform cross-section post-buckled beams

    Science.gov (United States)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    Thanks to their efficiency enhancement systems based on post-buckled structural elements have been extensively used in many applications such as actuation, remote sensing and energy harvesting. The post-buckling snap-through behavior of bilaterally constrained beams has been exploited to create sensing or energy harvesting mechanisms for quasi-static applications. The conversion mechanism has been used to transform low-rate and low-frequency excitations into high-rate motions. Electric energy has been generated from such high-rate motions using piezoelectric transducers. However, lack of control over the post-buckling behavior severely limits the mechanism’s efficiency. This study aims to maximize the levels of harvestable power by controlling the location of snap-throughs along the beam at different buckling transitions. Since the snap-through location cannot be controlled by tuning the geometric properties of a uniform beam, non-uniform cross-sections are examined. An energy-based theoretical model is herein developed to predict the post-buckling response of non-prismatic beams. The total potential energy is minimized under constraints that represent the physical confinement of the beam between the lateral boundaries. The experimentally validated results show that changing the shape and geometric dimensions of non-uniform beams allows for the accurate controlling of the snap-through location at different buckling transitions. A 78.59% improvement in harvested energy levels has been achieved by optimization of beam shape.

  6. Topology of polymer chains under nanoscale confinement.

    Science.gov (United States)

    Satarifard, Vahid; Heidari, Maziar; Mashaghi, Samaneh; Tans, Sander J; Ejtehadi, Mohammad Reza; Mashaghi, Alireza

    2017-08-24

    Spatial confinement limits the conformational space accessible to biomolecules but the implications for bimolecular topology are not yet known. Folded linear biopolymers can be seen as molecular circuits formed by intramolecular contacts. The pairwise arrangement of intra-chain contacts can be categorized as parallel, series or cross, and has been identified as a topological property. Using molecular dynamics simulations, we determine the contact order distributions and topological circuits of short semi-flexible linear and ring polymer chains with a persistence length of l p under a spherical confinement of radius R c . At low values of l p /R c , the entropy of the linear chain leads to the formation of independent contacts along the chain and accordingly, increases the fraction of series topology with respect to other topologies. However, at high l p /R c , the fraction of cross and parallel topologies are enhanced in the chain topological circuits with cross becoming predominant. At an intermediate confining regime, we identify a critical value of l p /R c , at which all topological states have equal probability. Confinement thus equalizes the probability of more complex cross and parallel topologies to the level of the more simple, non-cooperative series topology. Moreover, our topology analysis reveals distinct behaviours for ring- and linear polymers under weak confinement; however, we find no difference between ring- and linear polymers under strong confinement. Under weak confinement, ring polymers adopt parallel and series topologies with equal likelihood, while linear polymers show a higher tendency for series arrangement. The radial distribution analysis of the topology reveals a non-uniform effect of confinement on the topology of polymer chains, thereby imposing more pronounced effects on the core region than on the confinement surface. Additionally, our results reveal that over a wide range of confining radii, loops arranged in parallel and cross

  7. Energy confinement scaling from the international stellarator database

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, U [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Murakami, M; Dory, R A; Yamada, H; Okamura, S; Sano, F; Obiki, T

    1995-09-01

    An international stellarator database on global energy confinement is presented comprising data from the ATF, CHS and Heliotron E heliotron/torsatrons and the W7-A and W7-AS shearless stellarators. Regression expressions for the energy confinement time are given for the individual devices and the combined dataset. A comparison with tokamak L mode confinement is discussed on the basis of various scaling expressions. In order to make this database available to interested colleagues, the structure of the database and the parameter list are explained in detail. More recent confinement results incorporating data from enhanced confinement regimes such as H mode are reported elsewhere. (author).

  8. Confined active Brownian particles: theoretical description of propulsion-induced accumulation

    Science.gov (United States)

    Das, Shibananda; Gompper, Gerhard; Winkler, Roland G.

    2018-01-01

    The stationary-state distribution function of confined active Brownian particles (ABPs) is analyzed by computer simulations and analytical calculations. We consider a radial harmonic as well as an anharmonic confinement potential. In the simulations, the ABP is propelled with a prescribed velocity along a body-fixed direction, which is changing in a diffusive manner. For the analytical approach, the Cartesian components of the propulsion velocity are assumed to change independently; active Ornstein-Uhlenbeck particle (AOUP). This results in very different velocity distribution functions. The analytical solution of the Fokker-Planck equation for an AOUP in a harmonic potential is presented and a conditional distribution function is provided for the radial particle distribution at a given magnitude of the propulsion velocity. This conditional probability distribution facilitates the description of the coupling of the spatial coordinate and propulsion, which yields activity-induced accumulation of particles. For the anharmonic potential, a probability distribution function is derived within the unified colored noise approximation. The comparison of the simulation results with theoretical predictions yields good agreement for large rotational diffusion coefficients, e.g. due to tumbling, even for large propulsion velocities (Péclet numbers). However, we find significant deviations already for moderate Péclet number, when the rotational diffusion coefficient is on the order of the thermal one.

  9. Properties of Confined Star-Branched and Linear Chains. A Monte Carlo Simulation Study

    International Nuclear Information System (INIS)

    Romiszowski, P.; Sikorski, A.

    2004-01-01

    A model of linear and star-branched polymer chains confined between two parallel and impenetrable surfaces was built. The polymer chains were restricted to a simple cubic lattice. Two macromolecular architectures of the chain: linear and star branched (consisted of f = 3 branches of equal length) were studied. The excluded volume was the only potential introduced into the model (the athermal system). Monte Carlo simulations were carried out using a sampling algorithm based on chain's local changes of conformation. The simulations were carried out at different confinement conditions: from light to high chain's compression. The scaling of chain's size with the chain length was studied and discussed. The influence of the confinement and the macromolecular architecture on the shape of a chain was studied. The differences in the shape of linear and star-branched chains were pointed out. (author)

  10. Confinement in F4 Exceptional Gauge Group Using Domain Structures

    Science.gov (United States)

    Rafibakhsh, Shahnoosh; Shahlaei, Amir

    2017-03-01

    We calculate the potential between static quarks in the fundamental representation of the F4 exceptional gauge group using domain structures of the thick center vortex model. As non-trivial center elements are absent, the asymptotic string tension is lost while an intermediate linear potential is observed. SU(2) is a subgroup of F4. Investigating the decomposition of the 26 dimensional representation of F4 to the SU(2) representations, might explain what accounts for the intermediate linear potential, in the exceptional groups with no center element.

  11. Formation and control of plasma potentials in TMX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T.C.; Orzechowski, T.J.; Porkolab, M.; Stallard, B.W.

    1981-05-06

    The methods to be employed to form and control plasma potentials in the TMX Upgrade tandem mirror with thermal barriers are described. ECRH-generated mirror -confined electron plasmas are used to establish a negative potential region to isolate the end-plug and central-cell celectrons. This thermal isolation will allow a higher end-plug electron temperature and an increased central-cell confining potential. Improved axial central-cell ion confinement results since higher temperature central-cell ions can be confined. This paper describes: (1) calculations of the sensitivity of barrier formation to vacuum conditions and to the presence of impurities in the neutral beams, (2) calculations of microwave penetration and absorption used to design the ECRH system, and (3) techniques to limit electron runaway to high energies by localized microwave beams and by relativistic detuning.

  12. Formation and control of plasma potentials in TMX upgrade

    International Nuclear Information System (INIS)

    Simonen, T.C.; Orzechowski, T.J.; Porkolab, M.; Stallard, B.W.

    1981-01-01

    The methods to be employed to form and control plasma potentials in the TMX Upgrade tandem mirror with thermal barriers are described. ECRH-generated mirror -confined electron plasmas are used to establish a negative potential region to isolate the end-plug and central-cell celectrons. This thermal isolation will allow a higher end-plug electron temperature and an increased central-cell confining potential. Improved axial central-cell ion confinement results since higher temperature central-cell ions can be confined. This paper describes: (1) calculations of the sensitivity of barrier formation to vacuum conditions and to the presence of impurities in the neutral beams, (2) calculations of microwave penetration and absorption used to design the ECRH system, and (3) techniques to limit electron runaway to high energies by localized microwave beams and by relativistic detuning

  13. Quark confinement in a constituent quark model

    International Nuclear Information System (INIS)

    Langfeld, K.; Rho, M.

    1995-01-01

    On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model's phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density

  14. One-dimensional Tamm plasmons: Spatial confinement, propagation, and polarization properties

    Science.gov (United States)

    Chestnov, I. Yu.; Sedov, E. S.; Kutrovskaya, S. V.; Kucherik, A. O.; Arakelian, S. M.; Kavokin, A. V.

    2017-12-01

    Tamm plasmons are confined optical states at the interface of a metal and a dielectric Bragg mirror. Unlike conventional surface plasmons, Tamm plasmons may be directly excited by an external light source in both TE and TM polarizations. Here we consider the one-dimensional propagation of Tamm plasmons under long and narrow metallic stripes deposited on top of a semiconductor Bragg mirror. The spatial confinement of the field imposed by the stripe and its impact on the structure and energy of Tamm modes are investigated. We show that the Tamm modes are coupled to surface plasmons arising at the stripe edges. These plasmons form an interference pattern close to the bottom surface of the stripe that involves modification of both the energy and loss rate for the Tamm mode. This phenomenon is pronounced only in the case of TE polarization of the Tamm mode. These findings pave the way to application of laterally confined Tamm plasmons in optical integrated circuits as well as to engineering potential traps for both Tamm modes and hybrid modes of Tamm plasmons and exciton polaritons with meV depth.

  15. Momentum Confinement at Low Torque

    International Nuclear Information System (INIS)

    Solomon, W.M.; Burrell, K.H.; deGrassie, J.S.; Budny, R.; Groebner, R.J.; Heidbrink, W.W.; Kinsey, J.E.; Kramer, G.J.; Makowski, M.A.; Mikkelsen, D.; Nazikian, R.; Petty, C.C.; Politzer, P.A.; Scott, S.D.; Van Zeeland, M.A.; Zarnstorff, M.C.

    2007-01-01

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized β N , by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co-neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q min show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. The relative importance of E x B shearing between the two is modeled using GLF23 and may suggest a possible explanation.

  16. High beta capture and mirror confinement of laser produced plasmas. Final report

    International Nuclear Information System (INIS)

    Haught, A.F.; Tomlinson, R.G.; Ard, W.B.; Boedeker, L.R.; Churchill, T.L.; Fader, W.J.; Jong, R.A.; Mensing, A.E.; Polk, D.H.; Stufflebeam, J.H.

    1977-12-01

    The LITE fusion plasma research program at UTRC has been investigating the stabilization and confinement physics of a mirror plasma created by energetic neutral beam heating of a confined target plasma. During the period covered by this report work has been concentrated on the investigation of hot ion losses in a warm target plasma, development of a cryocondensation pump for the LITE beam line neutralizer, theoretical studies of ECRH modification of the ambipolar potential in mirror plasmas, and analysis of the effects of localized cold plasma on DCLC stabilization. The results of these investigations are summarized below and detailed in four papers which comprise the body of this report. Measurements of the lifetime of hot ions in a mirror confined warm plasma have been carried out by observations of the hot ion buildup time obtained with energetic neutral beam injection. A cryocondensation pump of novel design has been constructed and incorporated in the neutralizer chamber of the LITE neutral beam line. Calculations have been carried out to evaluate the sizes and shapes of ambipolar potential modification produced by electron cyclotron resonance heated electrons and to determine the spatial distribution and densities of cold ions trapped in the potential wells. The effects of the spatial distribution of the cold ions on their effectiveness for stabilizing the drift cyclotron loss cone instability has been studied numerically using the formulation of Pearlstein in which the dispersion relation for the DCLC mode is solved for finite-size plasmas containing hot and cold components

  17. Infrared slavery and quark confinement

    CERN Document Server

    Alabiso, C

    1976-01-01

    The question is considered of whether the so-called infrared slavery mechanism as, e.g., being manifest in non-Abelian gauge theories, necessarily confines quarks. Making a specific ansatz for the long- range forces, the Schwinger-Dyson equation is solved for the quark Green function. Besides having a confining solution, it appears that quarks may by-pass the long-range forces and be produced. (20 refs).

  18. Infrared slavery and quark confinement

    International Nuclear Information System (INIS)

    Alabiso, C.; Schierholz, G.

    1976-01-01

    The question of whether the so-called infrared slavery mechanism as, e.g., being manifest in non-Abelian gauge theories, necessarily confines quarks is posed. Making a specific ansatz for the long-range forces, the Schwinger-Dyson equation is solved for the quark Green function. Besides having a confining solution, it appears that quarks may by-pass the long-range forces and be produced. (Auth.)

  19. Hydrochemistry and hydrogeologic conditions within the Hanford Site upper basalt confined aquifer system

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Webber, W.D.

    1995-09-01

    As part of the Hanford Site Ground-Water Surveillance Project, Flow System Characterization Task. Pacific Northwest Laboratory examines the potential for offsite migration of contamination within the upper basalt confined aquifer system for the US Department of Energy (DOE). As part of this activity, groundwater samples were collected over the past 2 years from selected wells completed in the upper Saddle Mountains Basalt. The hydrochemical and isotopic information obtained from these groundwater samples provides hydrologic information concerning the aquifer-flow system. Ideally, when combined with other hydrologic property information, hydrochemical and isotopic data can be used to evaluate the origin and source of groundwater, areal groundwater-flow patterns, residence and groundwater travel time, rock/groundwater reactions, and aquifer intercommunication for the upper basalt confined aquifer system. This report presents the first comprehensive Hanford Site-wide summary of hydrochemical properties for the upper basalt confined aquifer system. This report provides the hydrogeologic characteristics (Section 2.0) and hydrochemical properties (Section 3.0) for groundwater within this system. A detailed description of the range of the identified hydrochemical parameter subgroups for groundwater in the upper basalt confined aquifer system is also presented in Section 3.0. Evidence that is indicative of aquifer contamination/aquifer intercommunication and an assessment of the potential for offsite migration of contaminants in groundwater within the upper basalt aquifer is provided in Section 4.0. The references cited throughout the report are given in Section 5.0. Tables that summarize groundwater sample analysis results for individual test interval/well sites are included in the Appendix

  20. Vortex Ring Dynamics in Radially Confined Domains

    Science.gov (United States)

    Stewart, Kelley; Niebel, Casandra; Jung, Sunghwan; Vlachos, Pavlos

    2010-11-01

    Vortex ring dynamics have been studied extensively in semi-infinite quiescent volumes. However, very little is known about vortex-ring formation in wall-bounded domains where vortex wall interaction will affect both the vortex ring pinch-off and propagation velocity. This study addresses this limitation and studies vortex formation in radially confined domains to analyze the affect of vortex-ring wall interaction on the formation and propagation of the vortex ring. Vortex rings were produced using a pneumatically driven piston cylinder arrangement and were ejected into a long cylindrical tube which defined the confined downstream domain. A range of confinement domains were studied with varying confinement diameters Velocity field measurements were performed using planar Time Resolved Digital Particle Image Velocimetry (TRDPIV) and were processed using an in-house developed cross-correlation PIV algorithm. The experimental analysis was used to facilitate the development of a theoretical model to predict the variations in vortex ring circulation over time within confined domains.

  1. A PSP-based small-signal MOSFET model for both quasi-static and nonquasi-static operations

    NARCIS (Netherlands)

    Aarts, A.C.T.; Smit, G.D.J.; Scholten, A.J.; Klaassen, D.B.M.

    2008-01-01

    In this paper, a small-signal MOSFET model is described, which takes the local effects of both velocity saturation and transverse mobility reduction into account. The model is based on the PSP model and is valid for both quasi-static and nonquasi-static (NQS) operations. Recently, it has been found

  2. Covariant, chirally symmetric, confining model of mesons

    International Nuclear Information System (INIS)

    Gross, F.; Milana, J.

    1991-01-01

    We introduce a new model of mesons as quark-antiquark bound states. The model is covariant, confining, and chirally symmetric. Our equations give an analytic solution for a zero-mass pseudoscalar bound state in the case of exact chiral symmetry, and also reduce to the familiar, highly successful nonrelativistic linear potential models in the limit of heavy-quark mass and lightly bound systems. In this fashion we are constructing a unified description of all the mesons from the π through the Υ. Numerical solutions for other cases are also presented

  3. Effects of quadriceps strength after static and dynamic whole-body vibration exercise.

    Science.gov (United States)

    Bush, Jill A; Blog, Gabriel L; Kang, Jie; Faigenbaum, Avery D; Ratamess, Nicholas A

    2015-05-01

    Numerous studies have shown performance benefits including whole-body vibration (WBV) as a training modality or an acute exercise protocol when used as a component of the resistance training program. Some studies have indicated that performing dynamic exercises as compared with static position exercises while exposed to WBV might be beneficial; however, evidence is lacking. Thus, the purpose of this study was to determine if an acute bout of dynamic versus static squats performed during WBV results in increase in quadriceps force production by means of dynamic isokinetic knee extension and flexion exercise. Nonresistance-trained healthy young men and women (N = 21) of 18-25 years participated in 4 protocols with 2-week rest in-between. Protocol 1 consisted of 5 sets of 10 dynamic squats without vibration; Protocol 2: 5 sets of 30-second static squats without vibration; Protocol 3: 5 sets of 10 dynamic squats with 30-Hz WBV for a total of 2.5 minutes; and Protocol 4: 5 sets of 30-second static squats with 30-Hz WBV for a total of 2.5 minutes. Prestrength tests (1 set of 4 repetitions at 100° · s(-1) for the knee extension exercise) was performed within 5 minutes of starting each protocol, and poststrength testing was performed within 1 minute of completing each protocol. Strength outcomes were analyzed by repeated measures analysis of variance with a significance level set at p ≤ 0.05. A significant decrease in strength was observed after dynamic and static squats without WBV (p = 0.002); an increase in strength after dynamic squats with WBV (p = 0.003); and a decrease in strength after static squats with WBV (p = 0.003). The inclusion of WBV to dynamic resistance exercise can be an added modality to increase strength. Whole-body vibration can have varied effects in altering muscle strength in untrained individuals according to the type of resistance training performed. As a dynamic squat with WBV seems to immediately potentiate neuromuscular functioning, the

  4. Newton gauge cosmological perturbations for static spherically symmetric modifications of the de Sitter metric

    Science.gov (United States)

    Santa Vélez, Camilo; Enea Romano, Antonio

    2018-05-01

    Static coordinates can be convenient to solve the vacuum Einstein's equations in presence of spherical symmetry, but for cosmological applications comoving coordinates are more suitable to describe an expanding Universe, especially in the framework of cosmological perturbation theory (CPT). Using CPT we develop a method to transform static spherically symmetric (SSS) modifications of the de Sitter solution from static coordinates to the Newton gauge. We test the method with the Schwarzschild de Sitter (SDS) metric and then derive general expressions for the Bardeen's potentials for a class of SSS metrics obtained by adding to the de Sitter metric a term linear in the mass and proportional to a general function of the radius. Using the gauge invariance of the Bardeen's potentials we then obtain a gauge invariant definition of the turn around radius. We apply the method to an SSS solution of the Brans-Dicke theory, confirming the results obtained independently by solving the perturbation equations in the Newton gauge. The Bardeen's potentials are then derived for new SSS metrics involving logarithmic, power law and exponential modifications of the de Sitter metric. We also apply the method to SSS metrics which give flat rotation curves, computing the radial energy density profile in comoving coordinates in presence of a cosmological constant.

  5. Martian Atmospheric Pressure Static Charge Elimination Tool

    Science.gov (United States)

    Johansen, Michael R.

    2014-01-01

    A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

  6. Quasi-static responses and variational principles in gradient plasticity

    Science.gov (United States)

    Nguyen, Quoc-Son

    2016-12-01

    Gradient models have been much discussed in the literature for the study of time-dependent or time-independent processes such as visco-plasticity, plasticity and damage. This paper is devoted to the theory of Standard Gradient Plasticity at small strain. A general and consistent mathematical description available for common time-independent behaviours is presented. Our attention is focussed on the derivation of general results such as the description of the governing equations for the global response and the derivation of related variational principles in terms of the energy and the dissipation potentials. It is shown that the quasi-static response under a loading path is a solution of an evolution variational inequality as in classical plasticity. The rate problem and the rate minimum principle are revisited. A time-discretization by the implicit scheme of the evolution equation leads to the increment problem. An increment of the response associated with a load increment is a solution of a variational inequality and satisfies also a minimum principle if the energy potential is convex. The increment minimum principle deals with stables solutions of the variational inequality. Some numerical methods are discussed in view of the numerical simulation of the quasi-static response.

  7. Correlations In Confined Quantum Plasmas

    International Nuclear Information System (INIS)

    Dufty, J.W.

    2012-01-01

    This is the final report for the project 'Correlations in Confined Quantum Plasmas', NSF-DOE Partnership Grant DE FG02 07ER54946, 8/1/2007 - 7/30/2010. The research was performed in collaboration with a group at Christian Albrechts University (CAU), Kiel, Germany. That collaboration, almost 15 years old, was formalized during the past four years under this NSF-DOE Partnership Grant to support graduate students at the two institutions and to facilitate frequent exchange visits. The research was focused on exploring the frontiers of charged particle physics evolving from new experimental access to unusual states associated with confinement. Particular attention was paid to combined effects of quantum mechanics and confinement. A suite of analytical and numerical tools tailored to the specific inquiry has been developed and employed

  8. Cylindrical fabric-confined soil structures

    Science.gov (United States)

    Harrison, Richard A.

    A cylindrical fabric-soil structural concept for implementation on the moon and Mars which provides many advantages is proposed. The most efficient use of fabric is to fashion it into cylindrical tubes, creating cylindrical fabric-confined soil structures. The length, diameter, and curvature of the tubes will depend on the intended application. The cylindrical hoop forces provide radial confinement while end caps provide axial confinement. One of the ends is designed to allow passage of the soil into the fabric tube before sealing. Transportation requirements are reduced due to the low mass and volume of the fabric. Construction requirements are reduced due to the self-erection capability via the pneumatic exoskeleton. Maintenance requirements are reduced due to the passive nature of the concept. The structure's natural ductility is well suited for any seismic activity.

  9. Reinforced confinement in a nuclear reactor

    International Nuclear Information System (INIS)

    Norman, H.

    1988-01-01

    The present invention concerns a nuclear reactor containing a reactor core, a swimming pool space that is filled and pressurized with a neutron-absorbing solution, a reactor tank, at least one heat exchanger, at least one inlet line, at least one return line and at least one circulation pump, where the said reactor tank is confined in the said swimming pool space and designed to be cooled with the aid of relatively pure water, which is fed by means of the said at least one circulating pump to the said reactor tank from the said heat exchanger via the said at least one inlet line and is returned to the heat exchanger via the said at least one return line. The problem that is to be solved by the invention is to design a reactor of the above type in such a way that a complete confinement of the primary circuit of the reactor is achieved at relatively low extra cost. This problem is solved by providing the reactor with a special confinement space that confines the heat exchanger, but not the reactor tank, with the confinement space and the swimming pool space being fashioned in the same concrete body

  10. Small business life cycle: statics and dynamics (S

    Directory of Open Access Journals (Sweden)

    Matejun Marek

    2017-12-01

    Full Text Available The aim of the paper is the presentation of theoretical foundations and the structure of original, 8-stage statics and dynamics model in the small business life cycle. Based on theoretical considerations, two hypotheses concerning the impact of dynamic and static nature of the life-cycle stages on selected determinants and effects of SMEs’ development were formulated. The hypotheses were verified based on the results of the survey conducted on a sample of 1,741 SMEs from 22 countries of the European Union. The results indicate that companies in the dynamic life-cycle stages are run by more enterprising owners, operate in more promising markets with a higher potential and make greater use of market niches thus limiting the level of competition. At the same time, such companies are characterised by higher levels of flexibility and involvement in innovative activities, which translates into obtaining a significantly higher level of business performance, in the area of quantitative as well as qualitative results.

  11. An improved technique for quasi-static C-V measurements

    International Nuclear Information System (INIS)

    Turan, R.; Finstad, T.G.

    1990-10-01

    A new automated quasi-static C-V measurement technique for MOS capacitors has been developed. This techniques uses an integrating electrometer to measure the charge accumulated on a MOS capacitor in response of a small voltage step. Making use of the internal data storage system of a commercial electrometer and a personal computer, the charge Q on the MOS capacitor is measured as a function of time t and stored. The capacitance is then obtained by analyzing this Q-t data set. A Si MOS sample is measured and analyzed in terms of interface charges as an example. Advantages over a commercial quasi-static meter which uses similar measurement technique are presented. It is also shown that this technique is potentially capable of measuring both high and low frequency C-V curves simultaneously. 9 refs. 5 figs

  12. Strategies for effective management of health and safety in confined site construction

    Directory of Open Access Journals (Sweden)

    John Spillane

    2013-12-01

    Full Text Available Purpose: The overall aim of this research is to identify and catalogue the numerous managerial strategies for effective management of health and safety on a confined, urban, construction site. Design/Methodology/Approach: This is achieved by utilising individual interviews, focus groups discussion on selected case studies of confined construction sites, coupled with a questionnaire survey. Findings: The top five key strategies include (1 Employ safe system of work plans to mitigate personnel health and safety issues; (2 Inform personnel, before starting on-site, of the potential issues using site inductions; (3 Effective communication among site personnel; (4 Draft and implement an effective design site layout prior to starting on-site; and (5 Use of banksman (traffic co-ordinator to segregate personnel from vehicular traffic. Practical Implication: The construction sector is one of the leading industries in accident causation and with the continued development and regeneration of our urban centres, confined site construction is quickly becoming the norm - an environment which only fuels accident creation within the construction sector. Originality/Value: This research aids on-site management that requires direction and assistance in the identification and implementation of key strategies for the management of health and safety, particularly in confined construction site environments.

  13. Energy Confinement of both Ohmic and LHW Plasma on EAST

    International Nuclear Information System (INIS)

    Yang Yao; Gao Xiang

    2011-01-01

    Study on the characters of energy confinement in both Ohmic and lower hybrid wave (LHW) discharges on EAST is conducted and the linear Ohmic confinement (LOC), saturated ohmic confinement (SOC) and improved Ohmic confinement (IOC) regimes are investigated in this paper. It is observed that an improved confinement mode characterized by both a drop of D α line intensity and an increase in line average density can be triggered by a gas puffing pulse. (magnetically confined plasma)

  14. Modelling of HTR Confinement Behaviour during Accidents Involving Breach of the Helium Pressure Boundary

    Directory of Open Access Journals (Sweden)

    Joan Fontanet

    2009-01-01

    Full Text Available Development of HTRs requires the performance of a thorough safety study, which includes accident analyses. Confinement building performance is a key element of the system since the behaviour of aerosol and attached fission products within the building is of an utmost relevance in terms of the potential source term to the environment. This paper explores the available simulation capabilities (ASTEC and CONTAIN codes and illustrates the performance of a postulated HTR vented confinement under prototypical accident conditions by a scoping study based on two accident sequences characterized by Helium Pressure Boundary breaches, a small and a large break. The results obtained indicate that both codes predict very similar thermal-hydraulic responses of the confinement both in magnitude and timing. As for the aerosol behaviour, both codes predict that most of the inventory coming into the confinement is eventually depleted on the walls and only about 1% of the aerosol dust is released to the environment. The crosscomparison of codes states that largest differences are in the intercompartmental flows and the in-compartment gas composition.

  15. Energy confinement in Doublet III with high-Z limiters

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F.B.; Adcock, S.J.; Baker, D.R.; Blau, F.P.; Brooks, N.H.; Chase, R.P.; DeBoo, J.C.; Ejima, S.; Fairbanks, E.S.; Fisher, R.K.

    1980-02-01

    This report describes the experimental measurements and data analysis techniques used to evaluate the energy confinement in noncircular plasmas produced in Doublet III. Major aspects of the confinement measurements and analysis techniques are summarized. Machine parameters, diagnostic systems and discharge parameters relavent to the confinement measurements are given. Magnetic analysis techniques used to determine the plasma shape are reviewed. Scaling of the on-axis values of electron temperature, confinement time and Z/sub eff/ with plasma density is presented. Comparison with scaling results from other circular tokamaks is discussed. Numerical and analytic techniques developed for calculating the plasma energy confinement time and self-consistent profiles of density, temperature, current, and flux in non-circular geometries are described. These techniques are applied to the data and used to determine the central and global electron energy confinement time for a typical doublet plasma. Additional aspects of the confinement such as the radial dependence of the electron thermal conductivity and the estimated ion temperature are explored with the aid of a non-circular transport simulation code. The results of the confinement measurements are summarized and discussed. A brief summary of the theoretically expected effects of noncircularity on plasma confinement is included for reference as Appendix I.

  16. Monopole current dynamics and color confinement

    International Nuclear Information System (INIS)

    Ichie, H.; Suganuma, H.; Tanaka, A.

    1998-01-01

    Color confinement can be understood by the dual Higgs theory, where monopole condensation leads to the exclusion of the electric flux from the QCD vacuum. We study the role of the monopole for color confinement by investigating the monopole current system. When the self-energy of the monopole current is small enough, long and complicated monopole world-lines appear, which is a signal of monopole condensation. In the dense monopole system, the Wilson loop obeys the area-law, and the string tension and the monopole density have similar behavior as the function of the self-energy, which seems that monopole condensation leads to color confinement. On the long-distance physics, the monopole current system almost reproduces essential features of confinement properties in lattice QCD. In the short-distance physics, however, the monopole-current theory would become nonlocal and complicated due to the monopole size effect. This monopole size would provide a critical scale of QCD in terms of the dual Higgs mechanism. (orig.)

  17. Extended BRS algebra and color confinement

    International Nuclear Information System (INIS)

    Shintani, Meiun.

    1984-02-01

    We examine the color confinement scheme and its realizations proposed by Kugo and Ojima. Using the Nakanishi's theorem, we obtain a representation of the extended BRS algebra compatible with the so-called K-O condition of their confinement criteria. However, it turns out that the representation is not physically acceptable, and thus their scheme lacks self-consistency at the level of realizations. We also clarify what kind of ghost structures are suggested by the well-definedness or ill-definedness of the charge operator Nsup(a) constituting a part of the global color charge operator. It is shown that there are four possible cancellation mechanisms of ghosts. In particular, it turns out that the octet of ghosts suggested by Nishijima in his confinement theory arises from the well-definedness of the Nsup(a) charge, whereas the elementary quartet arises from the ill-definedness of the Nsup(a). Moreover, from the octet structures, we deduce the confinement condition which replaces the K-O condition. (author)

  18. Physics of inertial confinement pellets

    International Nuclear Information System (INIS)

    Mead, W.C.

    1979-01-01

    An overview of inertial confinement fusion pellet physics is given. A discussion is presented of current estimated ICF driver requirements and a couple of pellet examples. The physics of driver/plasma coupling for two drivers which are being considered, namely a laser driver and a heavy ion accelerator driver, is described. Progress towards inertial confinement fusion that has been made using laser drivers in target experiments to date is discussed

  19. On the relationship between ontogenetic and static allometry.

    Science.gov (United States)

    Pélabon, Christophe; Bolstad, Geir H; Egset, Camilla K; Cheverud, James M; Pavlicev, Mihaela; Rosenqvist, Gunilla

    2013-02-01

    Ontogenetic and static allometries describe how a character changes in size when the size of the organism changes during ontogeny and among individuals measured at the same developmental stage, respectively. Understanding the relationship between these two types of allometry is crucial to understanding the evolution of allometry and, more generally, the evolution of shape. However, the effects of ontogenetic allometry on static allometry remain largely unexplored. Here, we first show analytically how individual variation in ontogenetic allometry and body size affect static allometry. Using two longitudinal data sets on ontogenetic and static allometry, we then estimate variances and covariances for the different parameters of the ontogenetic allometry defined in our model and assess their relative contribution to the static allometric slope. The mean ontogenetic allometry is the main parameter that determines the static allometric slope, while the covariance between the ontogenetic allometric slope and body size generates most of the discrepancies between ontogenetic and static allometry. These results suggest that the apparent evolutionary stasis of the static allometric slope is not generated by internal (developmental) constraints but more likely results from external constraints imposed by selection.

  20. The destructive interference phenomenon as a reason for the confinement in QEDsub(1+1)

    International Nuclear Information System (INIS)

    Ilieva, N.P.; Pervushina, V.N.

    1986-01-01

    Two-dimensional massless QED is considered in terms of gauge-invariant dynamical variables. By an example of the fermion Green function it is shown that the linearly risng potential allows the existence of excitations with quark quantum numbers in the spectrum of the model (so the validity of Wilson criterion does not lead automaticaly to the confinement). The topological generation of the physical-field phase in a finite-volume space-time is considered. The destructive interference of the phase factors is pointed out as a possible reason for the confinement

  1. On the scaling of gas leakage from static seals

    International Nuclear Information System (INIS)

    Chivers, T.C.; Hunt, R.P.

    1977-01-01

    The interaction between gas leakage from static seals and eight potential variables is discussed. From a consideration of the interaction of these various parameters and the mechanical design of the seal system the importance of correctly interpreting leakage data is demonstrated. Given a situation where model experiments are necessary, this document forms a basis for the definition and interpretation of a test programme. (author)

  2. Acceleration of a Static Observer Near the Event Horizon of a Static Isolated Black Hole.

    Science.gov (United States)

    Doughty, Noel A.

    1981-01-01

    Compares the magnitude of the proper acceleration of a static observer in a static, isolated, spherically symmetric space-time region with the Newtonian result including the situation in the interior of a perfect-fluid star. This provides a simple physical interpretation of surface gravity and illustrates the global nature of the event horizon.…

  3. Homotheties of cylindrically symmetric static spacetimes

    International Nuclear Information System (INIS)

    Qadir, A.; Ziad, M.; Sharif, M.

    1998-08-01

    In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)

  4. Ferromagnetic rollers in a harmonic confinement

    Science.gov (United States)

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.

    We present the emergence of flocking and global rotation in a system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field confined in a harmonic potential. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clock / counterclockwise particle rotation, collisional alignment of particle velocities, and random particle re-orientations due to shape imperfections. We also emphasize a subtle role of rotational noise: While the low-frequency flocking appears to be noise-insensitive, the reentrant flocking happens to be noise-activated. Moreover, we uncover a new relation between collective motion and synchronisation.

  5. Climate conditions in bedded confinement buildings

    Science.gov (United States)

    Confinement buildings are utilized for finishing cattle to allow more efficient collection of animal waste and to buffer animals against adverse climatic conditions. Environmental data were obtained from a 29 m wide x 318 m long bedded confinement building with the long axis oriented east to west. T...

  6. Performance assessment of static lead-lag feedforward controllers for disturbance rejection in PID control loops.

    Science.gov (United States)

    Yu, Zhenpeng; Wang, Jiandong

    2016-09-01

    This paper assesses the performance of feedforward controllers for disturbance rejection in univariate feedback plus feedforward control loops. The structures of feedback and feedforward controllers are confined to proportional-integral-derivative and static-lead-lag forms, respectively, and the effects of feedback controllers are not considered. The integral squared error (ISE) and total squared variation (TSV) are used as performance metrics. A performance index is formulated by comparing the current ISE and TSV metrics to their own lower bounds as performance benchmarks. A controller performance assessment (CPA) method is proposed to calculate the performance index from measurements. The proposed CPA method resolves two critical limitations in the existing CPA methods, in order to be consistent with industrial scenarios. Numerical and experimental examples illustrate the effectiveness of the obtained results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Plasma confinement system and methods for use

    Science.gov (United States)

    Jarboe, Thomas R.; Sutherland, Derek

    2017-09-05

    A plasma confinement system is provided that includes a confinement chamber that includes one or more enclosures of respective helicity injectors. The one or more enclosures are coupled to ports at an outer radius of the confinement chamber. The system further includes one or more conductive coils aligned substantially parallel to the one or more enclosures and a further set of one or more conductive coils respectively surrounding portions of the one or more enclosures. Currents may be provided to the sets of conductive coils to energize a gas within the confinement chamber into a plasma. Further, a heat-exchange system is provided that includes an inner wall, an intermediate wall, an outer wall, and pipe sections configured to carry coolant through cavities formed by the walls.

  8. A compliant mechanism for inspecting extremely confined spaces

    Science.gov (United States)

    Mascareñas, David; Moreu, Fernando; Cantu, Precious; Shields, Daniel; Wadden, Jack; El Hadedy, Mohamed; Farrar, Charles

    2017-11-01

    We present a novel, compliant mechanism that provides the capability to navigate extremely confined spaces for the purpose of infrastructure inspection. Extremely confined spaces are commonly encountered during infrastructure inspection. Examples of such spaces can include pipes, conduits, and ventilation ducts. Often these infrastructure features go uninspected simply because there is no viable way to access their interior. In addition, it is not uncommon for extremely confined spaces to possess a maze-like architecture that must be selectively navigated in order to properly perform an inspection. Efforts by the imaging sensor community have resulted in the development of imaging sensors on the millimeter length scale. Due to their compact size, they are able to inspect many extremely confined spaces of interest, however, the means to deliver these sensors to the proper location to obtain the desired images are lacking. To address this problem, we draw inspiration from the field of endoscopic surgery. Specifically we consider the work that has already been done to create long flexible needles that are capable of being steered through the human body. These devices are typically referred to as ‘steerable needles.’ Steerable needle technology is not directly applicable to the problem of navigating maze-like arrangements of extremely confined spaces, but it does provide guidance on how this problem should be approached. Specifically, the super-elastic nitinol tubing material that allows steerable needles to operate is also appropriate for the problem of navigating maze-like arrangements of extremely confined spaces. Furthermore, the portion of the mechanism that enters the extremely confined space is completely mechanical in nature. The mechanical nature of the device is an advantage when the extremely confined space features environmental hazards such as radiation that could degrade an electromechanically operated mechanism. Here, we present a compliant mechanism

  9. Density and Phase State of a Confined Nonpolar Fluid

    Science.gov (United States)

    Kienle, Daniel F.; Kuhl, Tonya L.

    2016-07-01

    Measurements of the mean refractive index of a spherelike nonpolar fluid, octamethytetracylclosiloxane (OMCTS), confined between mica sheets, demonstrate direct and conclusive experimental evidence of the absence of a first-order liquid-to-solid phase transition in the fluid when confined, which has been suggested to occur from previous experimental and simulation results. The results also show that the density remains constant throughout confinement, and that the fluid is incompressible. This, along with the observation of very large increases (many orders of magnitude) in viscosity during confinement from the literature, demonstrate that the molecular motion is limited by the confining wall and not the molecular packing. In addition, the recently developed refractive index profile correction method, which enables the structural perturbation inherent at a solid-liquid interface and that of a liquid in confinement to be determined independently, was used to show that there was no measurable excess or depleted mass of OMCTS near the mica surface in bulk films or confined films of only two molecular layers.

  10. Static and Dynamic Anisotropic Muduli of a Shale Sample from Southern Alberta, Canada

    Science.gov (United States)

    Melendez Martinez, J.; Schmitt, D. R.; Kofman, R. S.

    2012-12-01

    Recent interest in unconventional reservoirs broadly motivates our work in laboratory measurements of seismic anisotropy. Seismic anisotropy is the variation in speed of a wave as a function of its direction of propagation and particle polarization. When assuming an isotropic model of Earth during conventional seismic processing in areas with evidence of anisotropy a poor resolution images or erroneous localization of geological structures with strong dipping is produced. Ignoring anisotropy in unconventional reservoirs leads, for example, leads to erroneous estimation of horizontal stresses, wellbore stress as well as wellbore stability during hydraulic fracturing In this sense, laboratory measurements are an important tool to study seismic anisotropy since they provide information on the anisotropy intrinsic to the rock material itself. This is important to know as this contributes to the observed seismic anisotropy that is influenced by stress states and fractures. In this work, assuming a transversally isotropic medium (VTI), elastic anisotropic moduli of a dry shale from Southern Alberta are estimated as a function of confining pressure. Estimation of elastic constants and dynamic bulk moduli in a VTI medium involves recording P and S travel times by using pulse transmission method in a minimum of three different directions. These are often taken for the sake of convenience to be perpendicular (P0o and S0o), parallel (P90o and SH90o), and oblique (P45o and SH45o) to the layering of the material with the assumption that the perpendicular and parallel directions align with the principal anisotropic axes. The pulse transmission method involves generating and recording P and S ultrasonic waves traveling through a sample. Static Bulk moduli is estimated by measuring the volumetric deformation (strain) for a given confining pressure (stress) by using strain gauges directly bonded on the sample in two different directions: perpendicular to bedding and parallel to

  11. Entropic transport without external force in confined channel with oscillatory boundary

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Huai; Jiang, Huijun; Hou, Zhonghuai, E-mail: hzhlj@ustc.edu.cn [Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-12-28

    The dynamics of point-like Brownian particles in a periodic confined channel with oscillating boundaries has been studied. Directional transport (DT) behavior, characterized by net displacement along the horizontal direction, is observed even without external force which is necessary for the conventional DT where the boundaries are static. For typical parameter values, the average velocity V{sub t} of DT reaches a maximum with the variation of the noise intensity D, being alike to the phenomenon of stochastic resonance. Interestingly, we find that V{sub t} shows nontrivial dependences on the particle gravity G depending on the noise level. When the noise is large, V{sub t} increases monotonically with G indicating that heavier particle moves faster, while for small noise, V{sub t} shows a bell-shape dependence on G, suggesting that a particle with an intermediate weight may move the fastest. Such results were not observed for DT in a channel with static boundaries. To understand these findings, we have adopted an effective one-dimensional coarsening description, which facilitates us to introduce an effective entropic force along the horizontal direction. The average force is apparently nonzero due to the oscillatory boundary, hence leading to the net transport, and it shows similar dependences as V{sub t} on the noise intensity D and particle gravity G. The dependences of the DT behavior on other parameters describing the oscillatory channel have also been investigated, showing that DT is more pronounced for larger oscillation amplitude and frequency, and asymmetric geometry within a channel period and phase difference between neighboring periods are both necessary for the occurrence of DT.

  12. Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures.

    Science.gov (United States)

    Chen, Zefeng; Wang, Zhao; Li, Xinming; Lin, Yuxuan; Luo, Ningqi; Long, Mingzhu; Zhao, Ni; Xu, Jian-Bin

    2017-05-23

    The piezoelectric effect is widely applied in pressure sensors for the detection of dynamic signals. However, these piezoelectric-induced pressure sensors have challenges in measuring static signals that are based on the transient flow of electrons in an external load as driven by the piezopotential arisen from dynamic stress. Here, we present a pressure sensor with nanowires/graphene heterostructures for static measurements based on the synergistic mechanisms between strain-induced polarization charges in piezoelectric nanowires and the caused change of carrier scattering in graphene. Compared to the conventional piezoelectric nanowire or graphene pressure sensors, this sensor is capable of measuring static pressures with a sensitivity of up to 9.4 × 10 -3 kPa -1 and a fast response time down to 5-7 ms. This demonstration of pressure sensors shows great potential in the applications of electronic skin and wearable devices.

  13. Electronic confining effects in Sierpiński triangle fractals

    Science.gov (United States)

    Wang, Hao; Zhang, Xue; Jiang, Zhuoling; Wang, Yongfeng; Hou, Shimin

    2018-03-01

    Electron confinement in fractal Sierpiński triangles (STs) on Ag(111) is investigated using scanning tunneling spectroscopy and theoretically simulated by employing an improved two-dimensional (2D) multiple scattering theory in which the energy-dependent phase shifts are explicitly calculated from the electrostatic potentials of the molecular building block of STs. Well-defined bound surface states are observed in three kinds of triangular cavities with their sides changing at a scale factor of 2. The decrease in length of the cavities results in an upshift of the resonances that deviates from an expected inverse quadratic dependence on the cavity length due to the less efficient confinement of smaller triangular cavities. Differential conductance maps at some specific biases present a series of alternative bright and dark rounded triangles preserving the symmetry of the boundary. Our improved 2D multiple scattering model reproduces the characteristics of the standing wave patterns and all features in the differential conductance spectra measured in experiments, illustrating that the elastic loss boundary scattering dominates the resonance broadening in these ST quantum corrals. Moreover, the self-similar structure of STs, that a larger central cavity is surrounded by three smaller ones with a half side length, gives rise to interactions of surface states confined in neighboring cavities, which are helpful for the suppression of the linewidth in differential conductance spectra.

  14. Impurity confinement and transport in high confinement regimes without edge localized modes on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Grierson, B. A., E-mail: bgriers@pppl.gov; Nazikian, R. M.; Solomon, W. M. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Burrell, K. H.; Garofalo, A. M.; Belli, E. A.; Staebler, G. M.; Evans, T. E.; Smith, S. P.; Chrobak, C. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Fenstermacher, M. E. [Lawerence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); McKee, G. R. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53796 (United States); Orlov, D. M. [Center for Energy Research, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Chrystal, C. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States)

    2015-05-15

    Impurity transport in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is investigated in stationary high confinement (H-mode) regimes without edge localized modes (ELMs). In plasmas maintained by resonant magnetic perturbation (RMP), ELM-suppression, and QH-mode, the confinement time of fluorine (Z = 9) is equivalent to that in ELMing discharges with 40 Hz ELMs. For selected discharges with impurity injection, the impurity particle confinement time compared to the energy confinement time is in the range of τ{sub p}/τ{sub e}≈2−3. In QH-mode operation, the impurity confinement time is shown to be smaller for intense, coherent magnetic, and density fluctuations of the edge harmonic oscillation than weaker fluctuations. Transport coefficients are derived from the time evolution of the impurity density profile and compared to neoclassical and turbulent transport models NEO and TGLF. Neoclassical transport of fluorine is found to be small compared to the experimental values. In the ELMing and RMP ELM-suppressed plasma, the impurity transport is affected by the presence of tearing modes. For radii larger than the mode radius, the TGLF diffusion coefficient is smaller than the experimental value by a factor of 2–3, while the convective velocity is within error estimates. Low levels of diffusion are observed for radii smaller than the tearing mode radius. In the QH-mode plasma investigated, the TGLF diffusion coefficient is higher inside of ρ=0.4 and lower outside of 0.4 than the experiment, and the TGLF convective velocity is more negative by a factor of approximately 1.7.

  15. Gauge orbits and the Coulomb potential

    International Nuclear Information System (INIS)

    Greensite, J.

    2009-01-01

    If the color Coulomb potential is confining, then the Coulomb field energy of an isolated color charge is infinite on an infinite lattice, even if the usual UV divergence is lattice regulated. A simple criterion for Coulomb confinement is that the expectation value of timelike link variables vanishes in the Coulomb gauge, but it is unclear how this criterion is related to the spectrum of the corresponding Faddeev-Popov operator, which can be used to formulate a quite different criterion for Coulomb confinement. The purpose of this article is to connect the two seemingly different Coulomb confinement criteria, and explain the geometrical basis of the connection.

  16. Hot electron confinement in a microwave heated spindle cusp

    International Nuclear Information System (INIS)

    Prelas, M.A.

    1991-08-01

    The Plasma Research Laboratory at the University of Missouri-Columbia was established with awards from the McDonnel Douglas Foundation, ARMCO, Union Electric, Black and Vetch, Kansas City Power and Light, the National Science Foundation, and DOE. The Plasma Research Lab's major effort is the Missouri Magnetic Mirror (MMM or M 3 ) Project. The technical goals of MMM have been (1) Diagnostic Development, (2) Plasma Physics in the Cusp geometry, (3) plasma-wall interactions, (4) impurity effects in a steady-state plasma, and (5) Development of Diagnostics for use in harsh plasma processing environments. The other major goal of MMM has remained providing a facility for hands-on training in experimental plasma physics. The major experimental facility of MMM is the MMM Modified Experiment (M4X). Other research efforts in the Plasma Research Laboratory include small efforts in cold fusion, toroidal magnetic confinement, and inertial confinement and a potentially major effort in direct conversion of nuclear energy

  17. Random walks and polygons in tight confinement

    International Nuclear Information System (INIS)

    Diao, Y; Ernst, C; Ziegler, U

    2014-01-01

    We discuss the effect of confinement on the topology and geometry of tightly confined random walks and polygons. Here the walks and polygons are confined in a sphere of radius R ≥ 1/2 and the polygons are equilateral with n edges of unit length. We illustrate numerically that for a fixed length of random polygons the knotting probability increases to one as the radius decreases to 1/2. We also demonstrate that for random polygons (walks) the curvature increases to πn (π(n – 1)) as the radius approaches 1/2 and that the torsion decreases to ≈ πn/3 (≈ π(n – 1)/3). In addition we show the effect of length and confinement on the average crossing number of a random polygon

  18. The cruel and unusual phenomenology of solitary confinement.

    Science.gov (United States)

    Gallagher, Shaun

    2014-01-01

    What happens when subjects are deprived of intersubjective contact? This paper looks closely at the phenomenology and psychology of one example of that deprivation: solitary confinement. It also puts the phenomenology and psychology of solitary confinement to use in the legal context. Not only is there no consensus on whether solitary confinement is a "cruel and unusual punishment," there is no consensus on the definition of the term "cruel" in the use of that legal phrase. I argue that we can find a moral consensus on the meaning of "cruelty" by looking specifically at the phenomenology and psychology of solitary confinement.

  19. Higher representations: Confinement and large N

    International Nuclear Information System (INIS)

    Sannino, Francesco

    2005-01-01

    We investigate the confining phase transition as a function of temperature for theories with dynamical fermions in the two index symmetric and antisymmetric representation of the gauge group. By studying the properties of the center of the gauge group we predict for an even number of colors a confining phase transition, if second order, to be in the universality class of Ising in three dimensions. This is due to the fact that the center group symmetry does not break completely for an even number of colors. For an odd number of colors the center group symmetry breaks completely. This pattern remains unaltered at a large number of colors. The confining/deconfining phase transition in these theories at large and finite N is not mapped in the one of super Yang-Mills theory. We extend the Polyakov loop effective theory to describe the confining phase transition of the theories studied here for a generic number of colors. Our results are not modified when adding matter in the same higher dimensional representations of the gauge group. We comment on the interplay between confinement and chiral symmetry in these theories and suggest that they are ideal laboratories to shed light on this issue also for ordinary QCD. We compare the free energy as a function of temperature for different theories. We find that the conjectured thermal inequality between the infrared and ultraviolet degrees of freedom computed using the free energy does not lead to new constraints on asymptotically free theories with fermions in higher dimensional representations of the gauge group. Since the center of the gauge group is an important quantity for the confinement properties at zero temperature our results are relevant here as well

  20. Human exposure to static magnetic fields and basic precautions

    International Nuclear Information System (INIS)

    Vulevic, B.

    1999-01-01

    The development of new technologies using the static magnetic fields and their application in the last several years has increased the possibility of higher human exposure to such fields what has raised an issue of potential adverse health effects. The object of this work is to point, on the basis of the past knowledge, to the significance of the problem and therefore to contribute to its popularization. (author)

  1. Magnetic well for plasma confinement

    International Nuclear Information System (INIS)

    Valfells, A.; Chiu, Y.C.

    1977-01-01

    A multipole magnetic well for plasma confinement includes a plurality of current-carrying coils placed on planes corresponding to the facets of a regular polyhedron that can be symmetrically circumscribed about a sphere. The direction of current in the coils is such as to minimize the flux density at the center of the polyhedron, thereby providing a confinement well with three-dimensional symmetry having an increasing flux density in all directions from the center. 16 claims, 18 figures

  2. Neutron spectroscopy for confinement studies

    International Nuclear Information System (INIS)

    Zorn, R.

    2010-01-01

    Neutron spectroscopy is an important method for the study of microscopic dynamics because it captures the spatial as well as the temporal aspects of the atomic or molecular motion. In this article techniques will be presented which are of special importance for the study of confined systems. Many of these are based on the fact that neutron scattering is isotope-dependent. Possible sources of systematic errors in measurements of confined systems will be pointed out. (author)

  3. Universality classes and critical phenomena in confined liquid systems

    Directory of Open Access Journals (Sweden)

    A.V. Chalyi

    2013-06-01

    Full Text Available It is well known that the similar universal behavior of infinite-size (bulk systems of different nature requires the same basic conditions: space dimensionality; number components of order parameter; the type (short- or long-range of the intermolecular interaction; symmetry of the fluctuation part of thermodynamical potential. Basic conditions of similar universal behavior of confined systems needs the same supplementary conditions such as the number of monolayers for a system confinement; low crossover dimensionality, i.e., geometric form of restricted volume; boundary conditions on limiting surfaces; physical properties under consideration. This review paper is aimed at studying all these conditions of similar universal behavior for diffusion processes in confined liquid systems. Special attention was paid to the effects of spatial dispersion and low crossover dimensionality. This allowed us to receive receiving correct nonzero expressions for the diffusion coefficient at the critical point and to take into account the specific geometric form of the confined liquid volume. The problem of 3D⇔2D dimensional crossover was analyzed. To receive a smooth crossover for critical exponents, the Kawasaki-like approach from the theory of mode coupling in critical dynamics was proposed. This ensured a good agreement between data of computer experiment and theoretical calculations of the size dependence of the critical temperature Tc(H of water in slitlike pores. The width of the quasi-elastic scattering peak of slow neutrons near the structural phase transition in the aquatic suspensions of plasmatic membranes (mesostructures with the typical thickness up to 10 nm was studied. It was shown that the width of quasi-elastic peak of neutron scattering decreases due to the process of cell proliferation, i.e., with an increase of the membrane size (including the membrane thickness. Thus, neutron studies could serve as an additional diagnostic test for the

  4. Perspectives on confinement in helical systems

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae

    1989-01-01

    A review on recent experimental results and theoretical models on anomalous transport and density limit in toroidal helical devices is presented. Importance of transport problems is discussed. Experiments on Heliotron-E, Wendelstein-VIIA and new devices, i.e., ATF, Wendelstein-VIIAS and CHS, are reviewed and an overview on confinement property is given. From recent experimental results one sees that there are anomalous transport, which increases with temperature, and density limit, and that they limit the energy confinement time as well as the attainable beta value. The confinement characteristics of the scrape off layer plasma and loss cone loss are discussed, and perspectives on the high temperature plasma are given. These anomalous transport and density limit will be difficult obstacles in realizing a reactor grade plasma in helical systems. It is an urgent task to draw a realistic picture of the confinement based on the present data base. The relevant knowledge now would be critically essential for the successful development of the research in 1990's. (author) 102 refs

  5. Comments on experimental results of energy confinement of tokamak plasmas

    International Nuclear Information System (INIS)

    Chu, T.K.

    1989-04-01

    The results of energy-confinement experiments on steady-state tokamak plasmas are examined. For plasmas with auxiliary heating, an analysis based on the heat diffusion equation is used to define heat confinement time (the incremental energy confinement time). For ohmically sustained plasmas, experiments show that the onset of the saturation regime of energy confinement, marfeing, detachment, and disruption are marked by distinct values of the parameter /bar n//sub e///bar j/. The confinement results of the two types of experiments can be described by a single surface in 3-dimensional space spanned by the plasma energy, the heating power, and the plasma density: the incremental energy confinement time /tau//sub inc/ = ΔW/ΔP is the correct concept for describing results of heat confinement in a heating experiment; the commonly used energy confinement time defined by /tau//sub E/ = W/P is not. A further examination shows that the change of edge parameters, as characterized by the change of the effective collision frequency ν/sub e/*, governs the change of confinement properties. The totality of the results of tokamak experiments on energy confinement appears to support a hypothesis that energy transport is determined by the preservation of the pressure gradient scale length. 70 refs., 6 figs., 1 tab

  6. Inertial confinement fusion with light ion beams

    International Nuclear Information System (INIS)

    VanDevender, J.P.; Cook, D.L.

    1986-01-01

    The Particle Beam Fusion Accelerator II (PBFA II) is presently under construction and is the only existing facility with the potential of igniting thermonuclear fuel in the laboratory. The accelerator will generate up to 5 megamperes of lithium ions at 30 million electron volts and will focus them onto an inertial confinement fusion (ICF) target after beam production and focusing have been optimized. Since its inception, the light ion approach to ICF has been considered the one that combines low cost, high risk, and high payoff. The beams are of such high density that their self-generated electric and magnetic fields were thought to prohibit high focal intensities. Recent advances in beam production and focusing demonstrate that these self-forces can be controlled to the degree required for ignition, break-even, and high gain experiments. ICF has been pursued primarily for its potential military applications. However, the high efficiency and cost-effectiveness of the light ion approach enhance its potential for commercial energy application as well

  7. Local gauge symmetry and confinement in quantum chromodynamics

    International Nuclear Information System (INIS)

    Bardeen, W.A.; Pearson, R.B.

    1977-01-01

    The nonabelian color gauge theory of quarks and gluons has been proposed as the basis for fundamental theory of hadrons. The features of this theory (quantum chromodynamics) are considered which lead to confinement. A transverse lattice formulation of the theory is also discussed, which is used as a basis for calculation of properties of the hadron bound states. The theory is quantized by eliminating the longitudinal degrees of freedom in favour of coulomb potential. Hadrons are formed as bound states of quarks and the symmetric phase gluons

  8. Confinement and quark structure of light hadrons

    International Nuclear Information System (INIS)

    Efimov, G.V.; Ivanov, M.A.

    1988-01-01

    We present a quark confinement model (QCM) for the description of the low-energy physics of light hadrons (mesons and baryons). The model is based on two hypotheses. First, the quark confinement is realized as averaging over vacuum gluon fields which are believed to provide the confinement of any colour objects. Second, hadrons are treated as collective colourless excitations of quark-gluon interactions. The description of strong, electromagnetic and weak interactions of mesons and baryons at the low energy is given from a unique point of view

  9. Static Einstein--Maxwell field equations

    International Nuclear Information System (INIS)

    Das, A.

    1979-01-01

    The static Einstein--Maxwell field equations are investigated in the presence of both electric and magnetic fields. The sources or bodies are assumed to be of finite size and to not affect the connectivity of the associated space. Furthermore, electromagnetic and metric fields are assumed to have reasonable differentiabilities. It is then proved that the electric and magnetic field vectors are constant multiples of one another. Moreover, the static Einstein--Maxwell equations reduce to the static magnetovac case. If, furthermore, the variational derivation of the Einstein--Maxwell equations is assumed, then both the total electric and magnetic charge of each body must vanish. As a physical consequence it is pointed out that if a suspended magnet be electrically charged then it must experience a purely general relativistic torque

  10. Wave function for harmonically confined electrons in time-dependent electric and magnetostatic fields.

    Science.gov (United States)

    Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht

    2014-01-14

    We derive via the interaction "representation" the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field-the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement - the uniform electron gas - the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.

  11. High temperature L- and H-mode confinement in JET

    International Nuclear Information System (INIS)

    Balet, B.; Boyd, D.A.; Campbell, D.J.

    1990-01-01

    The energy confinement properties of low density, high ion temperature L- and H-mode plasmas are investigated. For L-mode plasmas it is shown that, although the global confinement is independent of density, the energy confinement in the central region is significantly better at low densities than at higher densities. The improved confinement appears to be associated with the steepness of the density gradient. For the H-mode phase, although the confinement at the edge is dramatically improved, which is once again associated with the steep density gradient in the edge region, the central confinement properties are essentially the same as for the standard L-mode. The results are compared in a qualitative manner with the predictions of the ion temperature gradient instability theory and appear to be in disagreement with some aspects of this theory. (author). 13 refs, 15 figs

  12. Quark confinement: Dual superconductor picture based on a non-Abelian Stokes theorem and reformulations of Yang-Mills theory

    Science.gov (United States)

    Kondo, Kei-Ichi; Kato, Seikou; Shibata, Akihiro; Shinohara, Toru

    2015-05-01

    The purpose of this paper is to review the recent progress in understanding quark confinement. The emphasis of this review is placed on how to obtain a manifestly gauge-independent picture for quark confinement supporting the dual superconductivity in the Yang-Mills theory, which should be compared with the Abelian projection proposed by 't Hooft. The basic tools are novel reformulations of the Yang-Mills theory based on change of variables extending the decomposition of the SU(N) Yang-Mills field due to Cho, Duan-Ge and Faddeev-Niemi, together with the combined use of extended versions of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the SU(N) Wilson loop operator. Moreover, we give the lattice gauge theoretical versions of the reformulation of the Yang-Mills theory which enables us to perform the numerical simulations on the lattice. In fact, we present some numerical evidences for supporting the dual superconductivity for quark confinement. The numerical simulations include the derivation of the linear potential for static interquark potential, i.e., non-vanishing string tension, in which the "Abelian" dominance and magnetic monopole dominance are established, confirmation of the dual Meissner effect by measuring the chromoelectric flux tube between quark-antiquark pair, the induced magnetic-monopole current, and the type of dual superconductivity, etc. In addition, we give a direct connection between the topological configuration of the Yang-Mills field such as instantons/merons and the magnetic monopole. We show especially that magnetic monopoles in the Yang-Mills theory can be constructed in a manifestly gauge-invariant way starting from the gauge-invariant Wilson loop operator and thereby the contribution from the magnetic monopoles can be extracted from the Wilson loop in a gauge-invariant way through the non-Abelian Stokes theorem for the Wilson loop operator, which is a prerequisite for exhibiting magnetic monopole dominance for quark

  13. Study on fusion potential barrier in heavy ion reactions based on the dynamical model

    International Nuclear Information System (INIS)

    Tian Junlong; Wu Xizhen; Li Zhuxia; Wang Ning; Liu Fuhu

    2004-01-01

    Based on an improved quantum molecular dynamics model the static and dynamic potential in the entrance channel of synthesis of superheavy nuclei are studied. The dependence of the static potential (and driving potential) on mass-asymmetry is obtained. From this study authors find out that the mass-symmetric system seems to be difficult to fuse and the fusing system with the largest driving potential could be the optimal choice of the projectile-target combination. By comparing the static potential barrier with the dynamic one authors find that the latter one is lower than former one obviously, and that the dynamical potential barrier is entrance energy dependent. The maximum and minimum of dynamic potential barriers approach to the diabatic (sudden approximation) and the adiabatic static potential barriers, respectively

  14. Solitons and confinement

    International Nuclear Information System (INIS)

    Swieca, J.A.

    1976-01-01

    Some aspects of two recent developments in quantum field theory are discussed. First, related with 'extended particles' such as soliton, kink and the 't Hooft monopole. Second, with confinement of particles which are realized in the Schwinger model [pt

  15. Evaluation of the confinement option for LMRs

    International Nuclear Information System (INIS)

    Himes, D.A.; Stepnewski, D.D.; Franz, G.R.

    1985-12-01

    The coolant in liquid metal cooled reactors operates at low pressures and therefore contains relatively little stored energy compared to LWR systems. This presents the possibility of using a more conventional building for containment coupled with a confinement system which vents the internal volume of the building through a filter/scrubber. The confinement system would be designed to keep the internal pressure in the containment near atmospheric thereby minimizing unfiltered leakage. The principal benefits of such an arrangement would be lower capital cost and less stringent leaktightness requirements permitting simpler and less disruptive testing. In conclusion, the confinement system assumed here would reduce consequences to the public of an LMR HCDA to acceptable levels. However control room doses are unacceptable due to the noble gas concentration inside the control room. A confinement system is therefore a viable design option for LMR's provided means are included for keeping noble gases out of the control room. Such means are readily available including, for example, selectable remote air intakes, an exhaust stack, or a noble gas filter. Probably the most satisfactory alternative would be a large cryogenic filter on the confinement system exhaust

  16. Generating equilateral random polygons in confinement II

    International Nuclear Information System (INIS)

    Diao, Y; Ernst, C; Montemayor, A; Ziegler, U

    2012-01-01

    In this paper we continue an earlier study (Diao et al 2011 J. Phys. A: Math. Theor. 44 405202) on the generation algorithms of random equilateral polygons confined in a sphere. Here, the equilateral random polygons are rooted at the center of the confining sphere and the confining sphere behaves like an absorbing boundary. One way to generate such a random polygon is the accept/reject method in which an unconditioned equilateral random polygon rooted at origin is generated. The polygon is accepted if it is within the confining sphere, otherwise it is rejected and the process is repeated. The algorithm proposed in this paper offers an alternative to the accept/reject method, yielding a faster generation process when the confining sphere is small. In order to use this algorithm effectively, a large, reusable data set needs to be pre-computed only once. We derive the theoretical distribution of the given random polygon model and demonstrate, with strong numerical evidence, that our implementation of the algorithm follows this distribution. A run time analysis and a numerical error estimate are given at the end of the paper. (paper)

  17. 'Static' octupole deformation

    International Nuclear Information System (INIS)

    Leander, G.A.

    1985-01-01

    Certain nuclei can be described as having intrinsic shapes with parity breaking static moments. The rationale for this description is discussed, spectroscopic models are outlined and their consequences are compared with experiment. (orig.)

  18. Packing frustration in dense confined fluids.

    Science.gov (United States)

    Nygård, Kim; Sarman, Sten; Kjellander, Roland

    2014-09-07

    Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile--each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.

  19. Quantum chromodynamics near the confinement limit

    International Nuclear Information System (INIS)

    Quigg, C.

    1985-09-01

    These nine lectures deal at an elementary level with the strong interaction between quarks and its implications for the structure of hadrons. Quarkonium systems are studied as a means for measuring the interquark interaction. This is presumably (part of) the answer a solution to QCD must yield, if it is indeed the correct theory of the strong interactions. Some elements of QCD are reviewed, and metaphors for QCD as a confining theory are introduced. The 1/N expansion is summarized as a way of guessing the consequences of QCD for hadron physics. Lattice gauge theory is developed as a means for going beyond perturbation theory in the solution of QCD. The correspondence between statistical mechanics, quantum mechanics, and field theory is made, and simple spin systems are formulated on the lattice. The lattice analog of local gauge invariance is developed, and analytic methods for solving lattice gauge theory are considered. The strong-coupling expansion indicates the existence of a confining phase, and the renormalization group provides a means for recovering the consequences of continuum field theory. Finally, Monte Carlo simulations of lattice theories give evidence for the phase structure of gauge theories, yield an estimate for the string tension characterizing the interquark force, and provide an approximate description of the quarkonium potential in encouraging good agreement with what is known from experiment

  20. Static Analysis of Mobile Programs

    Science.gov (United States)

    2017-02-01

    and not allowed, to do. The second issue was that a fully static analysis was never a realistic possibility, because Java , the programming langauge...scale to large programs it had to handle essentially all of the features of Java and could also be used as a general-purpose analysis engine. The...static analysis of imperative languages. • A framework for adding specifications about the behavior of methods, including methods that were

  1. Static Decoupling in fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    1998-01-01

    An algebraic approach is given for a design of a static residual weighting factor in connection with fault detection. A complete parameterization is given of the weighting factor which will minimize a given performance index......An algebraic approach is given for a design of a static residual weighting factor in connection with fault detection. A complete parameterization is given of the weighting factor which will minimize a given performance index...

  2. The cruel and unusual phenomenology of solitary confinement

    Directory of Open Access Journals (Sweden)

    Shaun eGallagher

    2014-06-01

    Full Text Available What happens when subjects are deprived of intersubjective contact? This paper looks closely at the phenomenology and psychology of one example of that deprivation: solitary confinement. It also puts the phenomenology and psychology of solitary confinement to use in the legal context. Not only is there no consensus on whether solitary confinement is a cruel and unusual punishment, there is no consensus on the definition of the term ‘cruel’ in the use of that legal phrase. I argue that we can find a moral consensus on the meaning of ‘cruelty’ by looking specifically at the phenomenology and psychology of solitary confinement.

  3. Fluctuations and confinement in ATF

    International Nuclear Information System (INIS)

    Isler, R.C.; Harris, J.H.; Murakami, M.

    1993-01-01

    In the period immediately prior to the suspension of ATF operation in November, 1991, a great deal of emphasis was palced on investigations of the fundamental mechanisms controlling confinement in this device. At that time, measurements of the density fluctuations throughout the plasma volume indicated the existence of theoretically predicted dissipative trapped electron and resistive interchange instabilities. These identifications were supported by results of dynamic configuration scans of the magnetic fields during which the extent of the magnetic well, shear, and fraction of confined trapped particles were changed continuously. Interpretation of the data from these experiments has been an ongoing exercise. Most recently, analysis of discharges employing strong gas puffing to change density gradients and fluctuation levels have strengthened the view that dissipative trapped electron modes may be present but do not play a significant direct role in energy transport. The present paper summarizes the current understanding concerning the identification of instabilities and their relationship to confinement in ATF

  4. Confinement and strings in MQCD

    International Nuclear Information System (INIS)

    Hanany, A.; Strassler, M.J.; Zaffaroni, A.

    1998-01-01

    We study aspects of confinement in the M-theory fivebrane version of QCD (MQCD). We show heavy quarks are confined in hadrons (which take the form of membrane-fivebrane bound states) for N=1 and softly broken N=2 SU(N) MQCD. We explore and clarify the transition from the exotic physics of the latter to the standard physics of the former. In particular, the many strings and quark-antiquark mesons found in N=2 field theory by Douglas and Shenker are reproduced. It is seen that in the N=1 limit all but one such meson disappears while all of the strings survive. The strings of softly broken N=2, N=1, and even non-supersymmetric SU(N) MQCD have a common ratio for their tensions as a function of the amount of flux they carry. We also comment on the almost BPS properties of the Douglas-Shenker strings and discuss the brane picture for monopole confinement on N=2 QCD Higgs branches. (orig.)

  5. 20007: Quantum particle displacement by a moving localized potential trap

    Science.gov (United States)

    Granot, E.; Marchewka, A.

    2009-04-01

    We describe the dynamics of a bound state of an attractive δ-well under displacement of the potential. Exact analytical results are presented for the suddenly moved potential. Since this is a quantum system, only a fraction of the initially confined wave function remains confined to the moving potential. However, it is shown that besides the probability to remain confined to the moving barrier and the probability to remain in the initial position, there is also a certain probability for the particle to move at double speed. A quasi-classical interpretation for this effect is suggested. The temporal and spectral dynamics of each one of the scenarios is investigated.

  6. The influence of sand content on swelling pressures and structure developed in statically compacted Na-bentonite

    International Nuclear Information System (INIS)

    Gray, M.N.; Cheung, S.C.H.; Dixon, D.A.

    1984-09-01

    A laboratory investigation of the vertical and lateral swelling pressures developed in statically compacted, air-dry specimens of sodium (Na)-bentonite:silica sand mixtures as they are saturated in confined conditions with double-distilled, deionized water is described. The results are interpreted with the aid of observations of the compacted soil structures made in a scanning electron microscope. It is shown that the sand acts as an inert filler material and vertical swelling pressures are controlled by a parameter termed the effective clay dry density (qsub(c)). A limiting value of qsub(c) exists below which vertical and lateral swelling pressures do not differ and are theoretically predictable. Above this value, vertical pressures exceed lateral ones. This is related to a change from an isotropic to an anisotropic soil fabric as qsub(c) is increased above the limiting value

  7. Inverse modeling and uncertainty analysis of potential groundwater recharge to the confined semi-fossil Ohangwena II Aquifer, Namibia

    Science.gov (United States)

    Wallner, Markus; Houben, Georg; Lohe, Christoph; Quinger, Martin; Himmelsbach, Thomas

    2017-12-01

    The identification of potential recharge areas and estimation of recharge rates to the confined semi-fossil Ohangwena II Aquifer (KOH-2) is crucial for its future sustainable use. The KOH-2 is located within the endorheic transboundary Cuvelai-Etosha-Basin (CEB), shared by Angola and Namibia. The main objective was the development of a strategy to tackle the problem of data scarcity, which is a well-known problem in semi-arid regions. In a first step, conceptual geological cross sections were created to illustrate the possible geological setting of the system. Furthermore, groundwater travel times were estimated by simple hydraulic calculations. A two-dimensional numerical groundwater model was set up to analyze flow patterns and potential recharge zones. The model was optimized against local observations of hydraulic heads and groundwater age. The sensitivity of the model against different boundary conditions and internal structures was tested. Parameter uncertainty and recharge rates were estimated. Results indicate that groundwater recharge to the KOH-2 mainly occurs from the Angolan Highlands in the northeastern part of the CEB. The sensitivity of the groundwater model to different internal structures is relatively small in comparison to changing boundary conditions in the form of influent or effluent streams. Uncertainty analysis underlined previous results, indicating groundwater recharge originating from the Angolan Highlands. The estimated recharge rates are less than 1% of mean yearly precipitation, which are reasonable for semi-arid regions.

  8. Thermal effects in static friction: thermolubricity.

    Science.gov (United States)

    Franchini, A; Bortolani, V; Santoro, G; Brigazzi, M

    2008-10-01

    We present a molecular dynamics analysis of the static friction between two thick slabs. The upper block is formed by N2 molecules and the lower block by Pb atoms. We study the effects of the temperature as well as the effects produced by the structure of the surface of the lower block on the static friction. To put in evidence the temperature effects we will compare the results obtained with the lower block formed by still atoms with those obtained when the atoms are allowed to vibrate (e.g., with phonons). To investigate the importance of the geometry of the surface of the lower block we apply the external force in different directions, with respect to a chosen crystallographic direction of the substrate. We show that the interaction between the lattice dynamics of the two blocks is responsible for the strong dependence of the static friction on the temperature. The lattice dynamics interaction between the two blocks strongly reduces the static friction, with respect to the case of the rigid substrate. This is due to the large momentum transfer between atoms and the N2 molecules which disorders the molecules of the interface layer. A further disorder is introduced by the temperature. We perform calculations at T = 20K which is a temperature below the melting, which for our slab is at 50K . We found that because of the disorder the static friction becomes independent of the direction of the external applied force. The very low value of the static friction seems to indicate that we are in a regime of thermolubricity similar to that observed in dynamical friction.

  9. Literature review Quasi-static and Dynamic pile load tests : Primarily report on non-static pile load tests

    NARCIS (Netherlands)

    Huy, N.Q.

    2010-01-01

    Pile testing, which plays an importance role in the field of deep foundation design, is performed by static and non-static methods to provide information about the following issues: (Poulos, 1998) - The ultimate capacity of a single pile. - The load-displacement behavior of a pile. - The performance

  10. Static Analysis for JavaScript

    DEFF Research Database (Denmark)

    Jensen, Simon Holm

    . This dissertation describes the design and implementation of a static analysis for JavaScript that can assist programmers in finding bugs in code during development. We describe the design of a static analysis tool for JavaScript, built using the monotone framework. This analysis infers detailed type information......Web applications present unique challenges to designers of static analysis tools. One of these challenges is the language JavaScript used for client side scripting in the browser. JavaScript is a complex language with many pitfalls and poor tool support compared to other languages...... about programs. This information can be used to detect bugs such as null pointer dereferences and unintended type coercions. The analysis is sound, enabling it to prove the absence of certain program errors. JavaScript is usually run within the context of the browser and the DOM API. The major...

  11. Bistability in a self-assembling system confined by elastic walls: Exact results in a one-dimensional lattice model

    Energy Technology Data Exchange (ETDEWEB)

    Pȩkalski, J.; Ciach, A. [Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa (Poland); Almarza, N. G. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid (Spain)

    2015-01-07

    The impact of confinement on self-assembly of particles interacting with short-range attraction and long-range repulsion potential is studied for thermodynamic states corresponding to local ordering of clusters or layers in the bulk. Exact and asymptotic expressions for the local density and for the effective potential between the confining surfaces are obtained for a one-dimensional lattice model introduced by J. Pȩkalski et al. [J. Chem. Phys. 138, 144903 (2013)]. The simple asymptotic formulas are shown to be in good quantitative agreement with exact results for slits containing at least 5 layers. We observe that the incommensurability of the system size and the average distance between the clusters or layers in the bulk leads to structural deformations that are different for different values of the chemical potential μ. The change of the type of defects is reflected in the dependence of density on μ that has a shape characteristic for phase transitions. Our results may help to avoid misinterpretation of the change of the type of defects as a phase transition in simulations of inhomogeneous systems. Finally, we show that a system confined by soft elastic walls may exhibit bistability such that two system sizes that differ approximately by the average distance between the clusters or layers are almost equally probable. This may happen when the equilibrium separation between the soft boundaries of an empty slit corresponds to the largest stress in the confined self-assembling system.

  12. Transcranial static magnetic field stimulation of the human motor cortex

    Science.gov (United States)

    Oliviero, Antonio; Mordillo-Mateos, Laura; Arias, Pablo; Panyavin, Ivan; Foffani, Guglielmo; Aguilar, Juan

    2011-01-01

    Abstract The aim of the present study was to investigate in healthy humans the possibility of a non-invasive modulation of motor cortex excitability by the application of static magnetic fields through the scalp. Static magnetic fields were obtained by using cylindrical NdFeB magnets. We performed four sets of experiments. In Experiment 1, we recorded motor potentials evoked by single-pulse transcranial magnetic stimulation (TMS) of the motor cortex before and after 10 min of transcranial static magnetic field stimulation (tSMS) in conscious subjects. We observed an average reduction of motor cortex excitability of up to 25%, as revealed by TMS, which lasted for several minutes after the end of tSMS, and was dose dependent (intensity of the magnetic field) but not polarity dependent. In Experiment 2, we confirmed the reduction of motor cortex excitability induced by tSMS using a double-blind sham-controlled design. In Experiment 3, we investigated the duration of tSMS that was necessary to modulate motor cortex excitability. We found that 10 min of tSMS (compared to 1 min and 5 min) were necessary to induce significant effects. In Experiment 4, we used transcranial electric stimulation (TES) to establish that the tSMS-induced reduction of motor cortex excitability was not due to corticospinal axon and/or spinal excitability, but specifically involved intracortical networks. These results suggest that tSMS using small static magnets may be a promising tool to modulate cerebral excitability in a non-invasive, painless, and reversible way. PMID:21807616

  13. Trapped particle confinement studies in L = 2 torsatrons for additional helical coils, radial electric field and finite beta effect

    International Nuclear Information System (INIS)

    Kato, A.; Nakamura, Y.; Wakatani, M.

    1990-07-01

    L = 2 torsatrons are studied to improve the high energy trapped particle confinement with additional l = 1 and/or l = 3 helical coils. The winding laws are selected in two ways. One is to realize 'σ - optimization' by the additional helical coils, but this approach loses magnetic well region. The other selection is to produce or deepen the magnetic well by the additional helical coils. L=3 helical coils are usable to this end. In this case the improvement of the trapped particle confinement depends on magnetic axis position. Radial electric field producing sheared rotational motion is also considered to improve the trapped particle confinement in a standard l = 2 torsatron. By excluding cancellation between E x B and ΔB drift motion occurred for the parabolic potential profiles, all deeply trapped particles can be confined in the central region. Degradation of the trapped particle confinement by the Shafranov shift is mitigated by shifting the magnetic axis inside in the vacuum configuration. (author)

  14. Adiabatic and non-adiabatic electron oscillations in a static electric field

    International Nuclear Information System (INIS)

    Wahlberg, C.

    1977-03-01

    The influence of a static electric field on the oscillations of a one-dimensional stream of electrons is investigated. In the weak field limit the oscillations are adiabatic and mode coupling negligible, but becomes significant if the field is tronger. The latter effect is believed to be of importance for the stability of e.g. potential double layers

  15. Manipulating topological-insulator properties using quantum confinement

    International Nuclear Information System (INIS)

    Kotulla, M; Zülicke, U

    2017-01-01

    Recent discoveries have spurred the theoretical prediction and experimental realization of novel materials that have topological properties arising from band inversion. Such topological insulators are insulating in the bulk but have conductive surface or edge states. Topological materials show various unusual physical properties and are surmised to enable the creation of exotic Majorana-fermion quasiparticles. How the signatures of topological behavior evolve when the system size is reduced is interesting from both a fundamental and an application-oriented point of view, as such understanding may form the basis for tailoring systems to be in specific topological phases. This work considers the specific case of quantum-well confinement defining two-dimensional layers. Based on the effective-Hamiltonian description of bulk topological insulators, and using a harmonic-oscillator potential as an example for a softer-than-hard-wall confinement, we have studied the interplay of band inversion and size quantization. Our model system provides a useful platform for systematic study of the transition between the normal and topological phases, including the development of band inversion and the formation of massless-Dirac-fermion surface states. The effects of bare size quantization, two-dimensional-subband mixing, and electron–hole asymmetry are disentangled and their respective physical consequences elucidated. (paper)

  16. Fluorescence Microscopy of Nanochannel-Confined DNA.

    Science.gov (United States)

    Westerlund, Fredrik; Persson, Fredrik; Fritzsche, Joachim; Beech, Jason P; Tegenfeldt, Jonas O

    2018-01-01

    Stretching of DNA in nanoscale confinement allows for several important studies. The genetic contents of the DNA can be visualized on the single DNA molecule level and both the polymer physics of confined DNA and also DNA/protein and other DNA/DNA-binding molecule interactions can be explored. This chapter describes the basic steps to fabricate the nanostructures, perform the experiments and analyze the data.

  17. Modeling of static characteristics of switched reluctance motor

    International Nuclear Information System (INIS)

    Asgharmemon, A.; Hussain, I.; Daudpoto, J.

    2013-01-01

    To investigate the running characteristics of a switched reluctance motor, the static characteristics and related input data tables are required. The static characteristics comprise of flux linkage, co-energy and static torque characteristics. The co-energy and static torque are calculated once data of magnetization characteristics is available. The data of co-energy is required for the calculation of static torque characteristics. The simulation model includes the data of static characteristics for prediction of the instantaneous and steady state performance of the motor. In this research a computer based procedure of experiments is carried out for measurement of the magnetization characteristics. For every set of measurements, the removal of eddy current is carefully addressed. The experiments are carried out on an existing 8/6 pole rotary switched reluctance motor. Additionally, the instantaneous phase current, instantaneous torque and flux waveforms are produced by using linear, which is by default and spline data interpolation separately. The information obtained from theses simulation results will help in an improved simulation model for predicting the performance of the machine. (author)

  18. Intrinsic rippling enhances static non-reciprocity in a graphene metamaterial.

    Science.gov (United States)

    Ho, Duc Tam; Park, Harold S; Kim, Sung Youb

    2018-01-18

    In mechanical systems, Maxwell-Betti reciprocity means that the displacement at point B in response to a force at point A is the same as the displacement at point A in response to the same force applied at point B. Because the notion of reciprocity is general, fundamental, and is operant for other physical systems like electromagnetics, acoustics, and optics, there is significant interest in understanding systems that are not reciprocal, or exhibit non-reciprocity. However, most studies on non-reciprocity have occurred in bulk-scale structures for dynamic problems involving time reversal symmetry. As a result, little is known about the mechanisms governing static non-reciprocal responses, particularly in atomically-thin two-dimensional materials like graphene. Here, we use classical atomistic simulations to demonstrate that out-of-plane ripples, which are intrinsic to graphene, enable significant, multiple orders of magnitude enhancements in the statically non-reciprocal response of graphene metamaterials. Specifically, we find that a striking interplay between the ripples and the stress fields that are induced in the metamaterials due to their geometry impacts the displacements that are transmitted by the metamaterial, thus leading to a significantly enhanced static non-reciprocal response. This study thus demonstrates the potential of two-dimensional mechanical metamaterials for symmetry-breaking applications.

  19. Behaviour of FRP confined concrete in square columns

    OpenAIRE

    Diego Villalón, Ana de; Arteaga Iriarte, Ángel; Fernandez Gomez, Jaime Antonio; Perera Velamazán, Ricardo; Cisneros, Daniel

    2015-01-01

    A significant amount of research has been conducted on FRP-confined circular columns, but much less is known about rectangular/square columns in which the effectiveness of confinement is much reduced. This paper presents the results of experimental investigations on low strength square concrete columns confined with FRP. Axial compression tests were performed on ten intermediate size columns. The tests results indicate that FRP composites can significantly improve the bearing capacity and duc...

  20. Interfacial ionic 'liquids': connecting static and dynamic structures.

    Science.gov (United States)

    Uysal, Ahmet; Zhou, Hua; Feng, Guang; Lee, Sang Soo; Li, Song; Cummings, Peter T; Fulvio, Pasquale F; Dai, Sheng; McDonough, John K; Gogotsi, Yury; Fenter, Paul

    2015-01-28

    It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene-RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (∼0.15 eV).