WorldWideScience

Sample records for states fire missions

  1. Ikhana: Unmanned Aircraft System Western States Fire Missions. Monographs in Aerospace History, Number 44

    Science.gov (United States)

    Merlin, Peter W.

    2009-01-01

    In 2006, NASA Dryden Flight Research Center, Edwards, Calif., obtained a civil version of the General Atomics MQ-9 unmanned aircraft system and modified it for research purposes. Proposed missions included support of Earth science research, development of advanced aeronautical technology, and improving the utility of unmanned aerial systems in general. The project team named the aircraft Ikhana a Native American Choctaw word meaning intelligent, conscious, or aware in order to best represent NASA research goals. Building on experience with these and other unmanned aircraft, NASA scientists developed plans to use the Ikhana for a series of missions to map wildfires in the western United States and supply the resulting data to firefighters in near-real time. A team at NASA Ames Research Center, Mountain View, Calif., developed a multispectral scanner that was key to the success of what became known as the Western States Fire Missions. Carried out by team members from NASA, the U.S. Department of Agriculture Forest Service, National Interagency Fire Center, National Oceanic and Atmospheric Administration, Federal Aviation Administration, and General Atomics Aeronautical Systems Inc., these flights represented an historic achievement in the field of unmanned aircraft technology.

  2. FireBird - a small satellite fire monitoring mission: Status and first results

    Science.gov (United States)

    Lorenz, Eckehard; Rücker, Gernot; Terzibaschian, Thomas; Klein, Doris; Tiemann, Joachim

    2014-05-01

    The scientific mission FireBird is operated by the German Aerospace Center (DLR) and consists of two small satellites. The first satellite - TET-1 - was successfully launched from Baikonur, Russia in July 2012. Its first year in orbit was dedicated to a number of experiments within the framework of the DLR On Orbit Verification (OOV) program which is dedicated to technology testing in space. After successful completion of its OOV phase, TET-1 was handed over to the DLR FireBird mission and is now a dedicated Earth Observation mission. Its primary goal is sensing of hot phenomena such as wildfires, volcanoes, gas flares and industrial hotspots. The second satellite, BiROS is scheduled for launch in the second or third quarter of 2015. The satellite builds on the heritage of the DLR BIRD (BIspectral Infrared Detection) mission and delivers quantitative information (such as Fire Radiative Power, FRP) at a spatial resolution of 350 m, superior to any current fire enabled satellite system such as NPP VIIRS, MODIS or Meteosat SEVIRI. The satellite is undergoing a four month validation phase during which satellite operations are adapted to the new mission goals of FireBIRD and processing capacities are established to guarantee swift processing and delivery of high quality data. The validation phase started with an informal Operational Readiness Review and will be completed with a formal review, covering all aspects of the space and ground segments. The satellite is equipped with a camera with a 42 m ground pixel size in the red, green and near infrared spectral range, and a 370 m ground pixel size camera in the mid and thermal infrared with a swath of 185 km. The satellite can be pointed towards a target in order to enhance observation frequency. First results of the FireBird mission include a ground validation experiment and acquisitions over fires across the world. Once the validation phase is finished the data will be made available to a wide scientific community.

  3. Lessons learned from IAEA fire safety missions

    International Nuclear Information System (INIS)

    Lee, S.P.

    1998-01-01

    The IAEA has conducted expert missions to evaluate fire safety at the following nuclear power plants: the Zaporozhe plant in the Ukraine, the Borselle plant in the Netherlands, the Medzamor plant in Armenia, the Karachi plant in Pakistan, the Temelin plant in the Czech Republic, and the Laguna Verde plant in Mexico. The scope of these missions varied in subject and depth. The teams sent from the IAEA consisted of external fire experts and IAEA staff. All the missions were of great use to the host countries. The participating experts also benefited significantly. A summary of the missions and their findings is given. (author)

  4. The Integration of the Fire Scout Tactical Unmanned Aerial System into Littoral Combat Ship Missions

    National Research Council Canada - National Science Library

    Marsh, James J

    2007-01-01

    ...) is an effective mission multiplier for the Littoral Combat Ship (LCS). The U.S. Navy relies heavily on unmanned systems, such as the Fire Scout UAS, to enable LCS to conduct several complex littoral missions...

  5. High-β steady-state advanced tokamak regimes for ITER and FIRE

    International Nuclear Information System (INIS)

    Meade, D.M.; Sauthoff, N.R.; Kessel, C.E.; Budny, R.V.; Gorelenkov, N.; Jardin, S.C.; Schmidt, J.A.; Navratil, G.A.; Bialek, J.; Ulrickson, M.A.; Rognlein, T.; Mandrekas, J.

    2005-01-01

    An attractive tokamak-based fusion power plant will require the development of high-β steady-state advanced tokamak regimes to produce a high-gain burning plasma with a large fraction of self-driven current and high fusion-power density. Both ITER and FIRE are being designed with the objective to address these issues by exploring and understanding burning plasma physics both in the conventional H-mode regime, and in advanced tokamak regimes with β N ∼ 3 - 4, and f bs ∼50-80%. ITER has employed conservative scenarios, as appropriate for its nuclear technology mission, while FIRE has employed more aggressive assumptions aimed at exploring the scenarios envisioned in the ARIES power-plant studies. The main characteristics of the advanced scenarios presently under study for ITER and FIRE are compared with advanced tokamak regimes envisioned for the European Power Plant Conceptual Study (PPCS-C), the US ARIES-RS Power Plant Study and the Japanese Advanced Steady-State Tokamak Reactor (ASSTR). The goal of the present work is to develop advanced tokamak scenarios that would fully exploit the capability of ITER and FIRE. This paper will summarize the status of the work and indicate critical areas where further R and D is needed. (author)

  6. The impact of state fire safe cigarette policies on fire fatalities, injuries, and incidents.

    Science.gov (United States)

    Folz, David H; Shults, Chris

    Cigarettes are a leading cause of civilian deaths in home fires. Over the last decade, state fire service leaders and allied interest groups succeeded in persuading state lawmakers to require manufacturers to sell only low-ignition strength or "fire safe" cigarettes as a strategy to reduce these fatalities and the injuries and losses that stem from them. This article examines whether the states' fire safe cigarette laws actually helped to save lives, prevent injuries, and reduce the incidence of home fires ignited by cigarettes left unattended by smokers. Controlling for the effects of key demographic, social, economic, and housing variables, this study finds that the states' fire-safe cigarette policies had significant impacts on reducing the rate of smoking-related civilian fire deaths and the incidence of fires started by tobacco products. The findings also suggest that the states' fire safe cigarette policies may have helped to reduce the rate of smoking-related fire injuries. The study shows that collective actions by leaders in the fire service across the states can result in meaningful policy change that protects lives and advances public safety even when a political consensus for action is absent at the national level.

  7. Report of the international fire safety mission to Temelin, unit 1 nuclear power plant Czech Republic 4 to 14 February 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This report presents the results of an IAEA Fire Safety Mission conducted within the scope of Technical Co-operation Project CZR/9/005 to assess the licensing process, design, analysis and operational management of the Temelin Nuclear Power Plant with regards to fire safety of the plant. The Temelin Nuclear Power Plant currently has two units under construction. Each unit is equipped with a pressurized water reactor of the WWER design with a net electrical output of about MWe. The plant has already made significant upgrading in fire protection from the original design. The Team's evaluation is based on the IAEA Safety Series No. 50-SG-D2 (Rev.1), Fire Protection in Nuclear Power Plants, and other fire protection guidelines currently produced by the IAEA. The evaluation, conclusions and recommendations presented in this report reflect the views of the Fire Safety Mission experts. The recommendations are provided for consideration by the responsible authorities in the Czech Republic towards enhancing fire safety at the Temelin plant

  8. Utilizing Multi-Sensor Fire Detections to Map Fires in the United States

    Science.gov (United States)

    Howard, S. M.; Picotte, J. J.; Coan, M. J.

    2014-11-01

    In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 "unknown" or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.

  9. Using the Large Fire Simulator System to map wildland fire potential for the conterminous United States

    Science.gov (United States)

    LaWen Hollingsworth; James Menakis

    2010-01-01

    This project mapped wildland fire potential (WFP) for the conterminous United States by using the large fire simulation system developed for Fire Program Analysis (FPA) System. The large fire simulation system, referred to here as LFSim, consists of modules for weather generation, fire occurrence, fire suppression, and fire growth modeling. Weather was generated with...

  10. Mars together and FIRE and ICE: Report of the joint US/Russian technical working groups

    Science.gov (United States)

    1994-10-01

    The Cold War's end opened an opportunity for greater cooperation in planetary exploration for the United States and Russia. Two study groups were formed, Mars Together and FIRE and ICE. The Mars Together team developed a concept for a flight in 1998 that merged one U.S. Mars Surveyor 98 mission with the former Russian Mars 96 mission to further understanding of the Mars surface and atmosphere. The FIRE and ICE team developed concepts for a dual-spacecraft mission to the solar corona and for a mission to Pluto. The missions, scientific potential, and open issues are described.

  11. Mars together and FIRE and ICE: Report of the joint US/Russian technical working groups

    Science.gov (United States)

    1994-01-01

    The Cold War's end opened an opportunity for greater cooperation in planetary exploration for the United States and Russia. Two study groups were formed, Mars Together and FIRE and ICE. The Mars Together team developed a concept for a flight in 1998 that merged one U.S. Mars Surveyor 98 mission with the former Russian Mars 96 mission to further understanding of the Mars surface and atmosphere. The FIRE and ICE team developed concepts for a dual-spacecraft mission to the solar corona and for a mission to Pluto. The missions, scientific potential, and open issues are described.

  12. Mapping severe fire potential across the contiguous United States

    Science.gov (United States)

    Brett H. Davis

    2016-01-01

    The Fire Severity Mapping System (FIRESEV) project is an effort to provide critical information and tools to fire managers that enhance their ability to assess potential ecological effects of wildland fire. A major component of FIRESEV is the development of a Severe Fire Potential Map (SFPM), a geographic dataset covering the contiguous United States (CONUS) that...

  13. Hot-Fire Test of Liquid Oxygen/Hydrogen Space Launch Mission Injector Applicable to Exploration Upper Stage

    Science.gov (United States)

    Barnett, Greg; Turpin, Jason; Nettles, Mindy

    2015-01-01

    This task is to hot-fire test an existing Space Launch Mission (SLM) injector that is applicable for all expander cycle engines being considered for the exploration upper stage. The work leverages investment made in FY 2013 that was used to additively manufacture three injectors (fig. 1) all by different vendors..

  14. IAEA Completes Nuclear Security Review Mission in United States

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: A team of nuclear security experts led by the International Atomic Energy Agency (IAEA) today completed a mission to review nuclear security practices of civil nuclear facilities licensed by the United States Nuclear Regulatory Commission (NRC). Conducted at the U.S. Government's request, the two-week International Physical Protection Advisory Service (IPPAS) mission reviewed the United States' nuclear security-related legislative and regulatory framework. As part of this work, the IPPAS team, led by John O'Dacre of Canada and comprising nine experts from eight IAEA Member States, met with NRC officials and reviewed the physical protection systems at the Center for Neutron Research (NCNR) at the National Institute of Standards and Technology. The IPPAS team concluded that nuclear security within the U.S. civil nuclear sector is robust and sustainable and has been significantly enhanced in recent years. The team identified a number of good practices in the nation's nuclear security regime and at the NCNR. The IPPAS team also made a recommendation and some suggestions for the continuing improvement of nuclear security overall. The mission in the United States was the 60th IPPAS mission organized by the IAEA. 'Independent international peer reviews such as IAEA IPPAS missions are increasingly being recognized for their value as a key component for exchanges of views and advice on nuclear security measures', said Khammar Mrabit, Director of the IAEA Office of Nuclear Security. 'The good practices identified during this mission will contribute to the continuous improvements of nuclear security in other Member States'. The IPPAS team provided a draft report to the NRC and will submit a final report soon. Because it contains security-related information about a specific nuclear site, IPPAS reports are not made public. 'The IPPAS programme gives us a chance to learn from the experience and perspective of our international partners', said NRC Chairman Allison M

  15. Deterministic integer multiple firing depending on initial state in Wang model

    Energy Technology Data Exchange (ETDEWEB)

    Xie Yong [Institute of Nonlinear Dynamics, MSSV, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an 710049 (China)]. E-mail: yxie@mail.xjtu.edu.cn; Xu Jianxue [Institute of Nonlinear Dynamics, MSSV, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an 710049 (China); Jiang Jun [Institute of Nonlinear Dynamics, MSSV, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an 710049 (China)

    2006-12-15

    We investigate numerically dynamical behaviour of the Wang model, which describes the rhythmic activities of thalamic relay neurons. The model neuron exhibits Type I excitability from a global view, but Type II excitability from a local view. There exists a narrow range of bistability, in which a subthreshold oscillation and a suprathreshold firing behaviour coexist. A special firing pattern, integer multiple firing can be found in the certain part of the bistable range. The characteristic feature of such firing pattern is that the histogram of interspike intervals has a multipeaked structure, and the peaks are located at about integer multiples of a basic interspike interval. Since the Wang model is noise-free, the integer multiple firing is a deterministic firing pattern. The existence of bistability leads to the deterministic integer multiple firing depending on the initial state of the model neuron, i.e., the initial values of the state variables.

  16. Deterministic integer multiple firing depending on initial state in Wang model

    International Nuclear Information System (INIS)

    Xie Yong; Xu Jianxue; Jiang Jun

    2006-01-01

    We investigate numerically dynamical behaviour of the Wang model, which describes the rhythmic activities of thalamic relay neurons. The model neuron exhibits Type I excitability from a global view, but Type II excitability from a local view. There exists a narrow range of bistability, in which a subthreshold oscillation and a suprathreshold firing behaviour coexist. A special firing pattern, integer multiple firing can be found in the certain part of the bistable range. The characteristic feature of such firing pattern is that the histogram of interspike intervals has a multipeaked structure, and the peaks are located at about integer multiples of a basic interspike interval. Since the Wang model is noise-free, the integer multiple firing is a deterministic firing pattern. The existence of bistability leads to the deterministic integer multiple firing depending on the initial state of the model neuron, i.e., the initial values of the state variables

  17. Mission and design of the Fusion Ignition Research Experiment (FIRE)

    International Nuclear Information System (INIS)

    Meade, D.M.; Jardin, S.C.; Schmidt, J.

    2001-01-01

    Experiments are needed to test and extend present understanding of confinement, macroscopic stability, alpha-driven instabilities, and particle/power exhaust in plasmas dominated by alpha heating. A key issue is to what extent pressure profile evolution driven by strong alpha heating will act to self-organize advanced configurations with large bootstrap current fractions and internal transport barriers. A design study of a Fusion Ignition Research Experiment (FIRE) is underway to assess near term opportunities for advancing the scientific understanding of self-heated fusion plasmas. The emphasis is on understanding the behavior of fusion plasmas dominated by alpha heating (Q≥5) that are sustained for durations comparable to the characteristic plasma time scales (≥20 τ E and ∼τ skin , where τ skin is the time for the plasma current profile to redistribute at fixed current). The programmatic mission of FIRE is to attain, explore, understand and optimize alpha-dominated plasmas to provide knowledge for the design of attractive magnetic fusion energy systems. The programmatic strategy is to access the alpha-heating-dominated regime with confidence using the present advanced tokamak data base (e.g., Elmy-H-mode, ≤0.75 Greenwald density) while maintaining the flexibility for accessing and exploring other advanced tokamak modes (e. g., reversed shear, pellet enhanced performance) at lower magnetic fields and fusion power for longer durations in later stages of the experimental program. A major goal is to develop a design concept that could meet these physics objectives with a construction cost in the range of $1B. (author)

  18. Advancing dendrochronological studies of fire in the United States

    Science.gov (United States)

    Harley, Grant L.; Baisan, Christopher H.; Brown, Peter M.; Falk, Donald A.; Flatley, William T.; Grissino-Mayer, Henri D.; Hessl, Amy; Heyerdahl, Emily K.; Kaye, Margot W.; Lafon, Charles W.; Margolis, Ellis; Maxwell, R. Stockton; Naito, Adam T.; Platt, William J.; Rother, Monica T.; Saladyga, Thomas; Sherriff, Rosemary L.; Stachowiak, Lauren A.; Stambaugh, Michael C.; Sutherland, Elaine Kennedy; Taylor, Alan H.

    2018-01-01

    Dendroecology is the science that dates tree rings to their exact calendar year of formation to study processes that influence forest ecology (e.g., Speer 2010, Amoroso et al., 2017). Reconstruction of past fire regimes is a core application of dendroecology, linking fire history to population dynamics and climate effects on tree growth and survivorship. Since the early 20th century when dendrochronologists recognized that tree rings retained fire scars (e.g., Figure 1), and hence a record of past fires, they have conducted studies worldwide to reconstruct the historical range and variability of fire regimes (e.g., frequency, severity, seasonality, spatial extent), the influence of fire regimes on forest structure and ecosystem dynamics, and the top-down (e.g., climate) and bottom-up (e.g., fuels, topography) drivers of fire that operate at a range of temporal and spatial scales. As in other scientific fields, continued application of dendrochronological techniques to study fires has shaped new trajectories for the science. Here we highlight some important current directions in the United States (US) and call on our international colleagues to continue the conversation with perspectives from other countries.

  19. United States position paper on sodium fires, design and testing

    International Nuclear Information System (INIS)

    Hilliard, R.K.; Johnson, R.P.

    1983-01-01

    The first Specialists' Meeting on sodium fire technology sponsored by the International Working Group on Fast Reactors (IWGFR) was held in Richland, Washington in 1972. The group concluded that the state-of-technology at that time was inadequate to support the growing LMFBR industry. During the second IWGFR Specialists' Meeting on sodium fires, held in Cadarache, France in 1978, a large quantity of technical information was exchanged and areas were identified where additional work was needed. Advances in several important areas of sodium fire technology have been made in the United States since that time, including improved computer codes, design of a sodium fire protection system for the CRBRP, measurement of water release from heated concrete, and testing and modeling of the sodium-concrete reaction. Research in the U.S. related to sodium fire technology is performed chiefly at the Energy Systems Group of Rockwell International (including Atomics International), the Hanford Engineering Development Laboratory (HEDL), and the Sandia National Laboratories (SNL). The work at the first two laboratories is sponsored by the U.S. Department of Energy, while that at the latter is sponsored by the U.S. Nuclear Regulatory Commission. Various aspects of sodium fire related work is also performed at several other laboratories. The current status of sodium fire technology in the U.S. is summarized in this report

  20. Fire Department Emergency Response

    International Nuclear Information System (INIS)

    Blanchard, A.; Bell, K.; Kelly, J.; Hudson, J.

    1997-09-01

    In 1995 the SRS Fire Department published the initial Operations Basis Document (OBD). This document was one of the first of its kind in the DOE complex and was widely distributed and reviewed. This plan described a multi-mission Fire Department which provided fire, emergency medical, hazardous material spill, and technical rescue services

  1. The state of art of internal fire PSA in nuclear power plant

    International Nuclear Information System (INIS)

    Yu Xinli; Zhao Bo; Zheng Xiangyang

    2010-01-01

    The operational experiences of nuclear power plants (NPPs) show that the internal fires challenge effectively the nuclear safety of NPPs. Thus, the authorities having jurisdiction in the world have enhanced the supervision on fire safety in NPPs, asking the licensees to perform fire hazard analysis and evaluate the fire risk. This article mainly describes the state of art of internal fire probabilistic safety assessment (PSA) in the world, and compares the main methods and standards for internal fire PSA. (authors)

  2. Estimates of wildland fire emissions

    Science.gov (United States)

    Yongqiang Liu; John J. Qu; Wanting Wang; Xianjun Hao

    2013-01-01

    Wildland fire missions can significantly affect regional and global air quality, radiation, climate, and the carbon cycle. A fundamental and yet challenging prerequisite to understanding the environmental effects is to accurately estimate fire emissions. This chapter describes and analyzes fire emission calculations. Various techniques (field measurements, empirical...

  3. Deterioration of mechanical properties of high strength structural steel S460N under transient state fire condition

    International Nuclear Information System (INIS)

    Qiang, Xuhong; Bijlaard, Frans S.K.; Kolstein, Henk

    2012-01-01

    Highlights: ► Mechanical properties of S460N under transient state fire condition are obtained. ► Elevated-temperature mechanical properties of steels are dependent on steel grades. ► No design standard is applicable to HSS S460N under transient state fire condition. ► Specific statements on various HSS in fire should be proposed in design standards. ► Research results offer accurate material property for structural design engineers. -- Abstract: 911 World Trade Centre Tragedy put fire safety of constructional steel structures into question. Since then, more and more research attention has been paid to the elevated-temperature mechanical properties of structural steels, which is a critical basis of evaluating the fire performance of steel structures. In the literature the available mechanical properties of structural steels under fire conditions were mainly obtained from steady state test method, as steady state test method is easier to perform than transient state test method and offers stress–strain curves directly. However, the transient state fire condition is considered to be more realistic to represent the real condition when constructions are exposed to fire. In order to reveal the deterioration of mechanical properties of the commonly used high strength structural steel S460N under transient state fire condition, tensile tests were conducted under various constant stress levels up to 800 MPa. The reduction factors of elastic modulus, yield and ultimate strengths of S460N under transient state fire condition were obtained and compared with current leading design standards and available literature. The application of such accurate elevated-temperature mechanical properties reduction factors of S460N can ensure a safe fire-resistance design and evaluation of steel structures with high strength steel S460N under transient state fire condition. This experimental study also supports other relative research on fire performance of steel structures with

  4. Fire risk analysis, fire simulation, fire spreading and impact of smoke and heat on instrumentation electronics - State-of-the-Art Report

    International Nuclear Information System (INIS)

    Roewekamp, M.; Bertrand, R.; Bonneval, F.; Hamblen, D.; Siu, N.; Aulamo, H.; Martila, J.; Sandberg, J.; Virolainen, R.

    2000-01-01

    Numerous fire PSAs (probabilistic safety assessments) have shown that fire can be a major contributor to nuclear power plant risk. However, there are considerable uncertainties in the results of these assessments, due to significant gaps in current abilities to perform realistic assessments. These gaps involve multiple aspects of fire PSA, including the estimation of the probability of important fire scenarios, the modeling of fire growth and suppression, the prediction of fire-induced damage to equipment (including the effects of smoke), and the treatment of plant and operator responses to the fire. In response to recommendations of /VIR 93/, CSNI/PWG5 established a Task Group to review the present status and maturity of current methods used in fire risk assessments for operating nuclear power plants. The Task Group issued a questionnaire in May 1997 to all nuclear power generating OECD countries. The prime focus of the questionnaire (see Appendix A) was on a number of important issues in fire PSA: Fire PSA methodology and applications; Fire simulation codes; Ignition and damageability data; Modeling of fire spread on cables or other equipment; Modeling of smoke production and spread; Impact of smoke and heat on instrumentation, electronics, or other electrical equipment; Impact of actual cable fires on safety systems. The questionnaire requested specific information on these topics (e.g., computer codes used in fire PSAs, the physical parameters used to model ignition). Responses to the questionnaire were provided by Finland, France, Germany, Hungary, Japan, Spain, Switzerland, United Kingdom, and the USA. This report summarizes the questionnaire responses and thereby: a) provides a perspective on the current fire PSA state of the art (SOAR) with respect to the issues listed above, and b) provides numerous references for more detailed information regarding these issues. The main responsibility for writing different chapters of this report was divided between some

  5. 44 CFR 204.25 - FEMA-State agreement for fire management assistance grant program.

    Science.gov (United States)

    2010-10-01

    ... GRANT PROGRAM Declaration Process § 204.25 FEMA-State agreement for fire management assistance grant... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false FEMA-State agreement for fire management assistance grant program. 204.25 Section 204.25 Emergency Management and Assistance FEDERAL...

  6. Hanford fire department FY 99 annual work plan WBS 6.5.7

    Energy Technology Data Exchange (ETDEWEB)

    GOOD, D.E.

    1999-02-24

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing a full range of services at the lowest possible cost to customers. These services include fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, the general public, or interest of the U. S. Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under mutual aid and state mobilization agreements and fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site through Requests for Service from DOE-RL. The fire department also provides site fire marshal overview authority, fire system testing and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education.

  7. Hanford fire department FY 1999 annual work plan WBS 6.5.7

    International Nuclear Information System (INIS)

    GOOD, D.E.

    1999-01-01

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing a full range of services at the lowest possible cost to customers. These services include fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, the general public, or interest of the U. S. Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under mutual aid and state mobilization agreements and fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site through Requests for Service from DOE-RL. The fire department also provides site fire marshal overview authority, fire system testing and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education

  8. Experience of the United States in Hosting and Supporting IAEA Peer Review Missions

    International Nuclear Information System (INIS)

    Mamish, N.

    2016-01-01

    The International Atomic Energy Agency (IAEA) provides a number of peer review services to its Member States. The United States has strongly supported these peer reviews since their inception. In 2010, the United States hosted an Integrated Regulatory Review Service (IRRS) mission, with a follow-up mission completed in 2014. The missions provided valuable recommendations and suggestions, identified a number of best practices, and acknowledged the prompt and effective actions taken by the NRC following the Fukushima Daiichi accident. Through hosting an International Physical Protection Advisory Service (IPPAS) mission in 2013, the United States benefited both from the insights provided by the team, as well as the U.S. Government’s gap analyses and preparatory efforts in advance of the mission. The United States strongly supports the IAEA’s Operational Safety Review Team (OSART) program, inviting a peer review mission to a U.S. nuclear power plant every 3 years. Although OSART is an operational, not regulatory, peer review, the NRC provides funding for the mission and gives inspection credit to operators that host them. The United States also contributes significant technical expertise to IAEA peer review missions hosted by other Member States. With the IRRS and IPPAS reaching their 10th and 20th anniversaries respectively, these programs have improved as they have matured. However, it remains critical for Member States to continue to support these programs, and provide feedback to the IAEA Secretariat on their effectiveness and areas where IAEA might enhance them. Doing so will ensure peer reviews remain an effective tool for strengthening nuclear safety and security worldwide. (author)

  9. Development of Large-Scale Spacecraft Fire Safety Experiments

    DEFF Research Database (Denmark)

    Ruff, Gary A.; Urban, David L.; Fernandez-Pello, A. Carlos

    2013-01-01

    exploration missions outside of low-earth orbit and accordingly, more complex in terms of operations, logistics, and safety. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low...... of the spacecraft fire safety risk. The activity of this project is supported by an international topical team of fire experts from other space agencies who conduct research that is integrated into the overall experiment design. The large-scale space flight experiment will be conducted in an Orbital Sciences...

  10. Effects of accelerated wildfire on future fire regimes and implications for the United States federal fire policy

    Directory of Open Access Journals (Sweden)

    Alan A. Ager

    2017-12-01

    Full Text Available Wildland fire suppression practices in the western United States are being widely scrutinized by policymakers and scientists as costs escalate and large fires increasingly affect social and ecological values. One potential solution is to change current fire suppression tactics to intentionally increase the area burned under conditions when risks are acceptable to managers and fires can be used to achieve long-term restoration goals in fire adapted forests. We conducted experiments with the Envision landscape model to simulate increased levels of wildfire over a 50-year period on a 1.2 million ha landscape in the eastern Cascades of Oregon, USA. We hypothesized that at some level of burned area fuels would limit the growth of new fires, and fire effects on the composition and structure of forests would eventually reduce future fire intensity and severity. We found that doubling current rates of wildfire resulted in detectable feedbacks in area burned and fire intensity. Area burned in a given simulation year was reduced about 18% per unit area burned in the prior five years averaged across all scenarios. The reduction in area burned was accompanied by substantially lower fire severity, and vegetation shifted to open forest and grass-shrub conditions at the expense of old growth habitat. Negative fire feedbacks were slightly moderated by longer-term positive feedbacks, in which the effect of prior area burned diminished during the simulation. We discuss trade-offs between managing fuels with wildfire versus prescribed fire and mechanical fuel treatments from a social and policy standpoint. The study provides a useful modeling framework to consider the potential value of fire feedbacks as part of overall land management strategies to build fire resilient landscapes and reduce wildfire risk to communities in the western U.S. The results are also relevant to prior climate-wildfire studies that did not consider fire feedbacks in projections of future

  11. Fires Across the Western United States

    Science.gov (United States)

    2007-01-01

    Days of record heat made the western United States tinder dry in early July 2007. Numerous wildfires raced across the dry terrain during the weekend of July 7. From Washington to Arizona, firefighters were battling fast-moving wildfires that threatened residences, businesses, gas wells, coal mines, communications equipment, and municipal watersheds. This image of the West was captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite on Sunday, July 8. Places where MODIS detected actively burning fires are marked in red. Some of the largest blazes are labeled. Utah's Milford Flat was the largest; according to the July 9 morning report from the National Interagency Fire Center, the blaze was more than 280,000 acres, having grown more than 124,000 acres in the previous 24 hours. The fires have destroyed homes, forced evacuations, shut down trains and highways, and killed several people. Weather conditions were not expected to improve significantly across much of the area for several days, with hot temperatures and dry thunderstorms (lightning and winds, but little rain) likely in many places. Nearly the entire western United States was experiencing some level of drought as of July 3, according to the U.S. Drought Monitor. The drought had reached the 'extreme' category in southern California and western Arizona, and ranged from moderate to severe across most of the rest of the Southwest and Great Basin. The large image provided above has a spatial resolution (level of detail) of 500 meters per pixel. The MODIS Rapid Response Team provides twice-daily images of the region in additional resolutions and formats, including an infrared-enhanced version that makes burned terrain appear brick red. NASA image courtesy the MODIS Rapid Response Team, Goddard Space Flight Center

  12. DynCorp Tricities Services, Inc. Hanford fire department FY 1998 annual work plan

    International Nuclear Information System (INIS)

    Good, D.E.

    1997-01-01

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the U.S. Department of Energy operated Hanford site. This includes response to surrounding fire departments/districts under mutual aid and state mobilization agreements and fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site through Requests for Service from DOE-RL. This fire department also provides site fire marshal overview authority, fire system testing and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This plan provides a program overview, program baselines, and schedule baseline

  13. Computer Self-Efficacy, Competitive Anxiety and Flow State: Escaping from Firing Online Game

    Science.gov (United States)

    Hong, Jon-Chao; Pei-Yu, Chiu; Shih, Hsiao-Feng; Lin, Pei-Shin; Hong, Jon-Chao

    2012-01-01

    Flow state in game playing affected by computer self-efficacy and game competitive anxiety was studied. In order to examine the effect of those constructs with high competition, this study select "Escaping from firing online game" which require college students to escape from fire and rescue people and eliminate the fire damage along the way of…

  14. Fire Modeling Institute 2011 Annual Report

    Science.gov (United States)

    Robin J. Innes

    2012-01-01

    The Fire Modeling Institute (FMI), a part of the Rocky Mountain Research Station, Fire, Fuel, and Smoke Science Program, provides a bridge between scientists and managers. The mission of FMI is to bring the best available science and technology developed throughout the research community to bear on fire-related management issues across the nation. Resource management...

  15. Mid-21st-century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States

    Science.gov (United States)

    Riley, Karin L.; Loehman, Rachel A.

    2016-01-01

    Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st-century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains. Although large fires are rare they account for most of the area burned in western North America, burn under extreme weather conditions, and exhibit behaviors that preclude methods of direct control. Allocation of resources, development of management plans, and assessment of fire effects on ecosystems all require an understanding of when and where fires are likely to burn, particularly under altered climate regimes that may increase large fire occurrence. We used the large fire simulation model FSim to model ignition, growth, and containment of wildfires under two climate scenarios: contemporary (based on instrumental weather) and mid-century (based on an ensemble average of global climate models driven by the A1B SRES emissions scenario). Modeled changes in fire patterns include increased annual burn probability, particularly in areas of the study region with relatively short contemporary fire return intervals; increased individual fire size and annual area burned; and fewer years without large fires. High fire danger days, represented by threshold values of Energy Release Component (ERC), are projected to increase in number, especially in spring and fall, lengthening the climatic fire season. For fire managers, ERC is an indicator of fire intensity potential and fire economics, with higher ERC thresholds often associated with larger, more expensive fires. Longer periods of elevated ERC may significantly increase the cost and complexity of fire management activities, requiring new strategies to maintain desired ecological conditions and limit fire risk. Increased fire activity (within the historical range of

  16. Mission Statements of Christian Elementary Schools in the United States and the Netherlands

    Science.gov (United States)

    Zandstra, Anne M.

    2012-01-01

    This study compares the mission statements of a small sample of Christian elementary schools in the United States and the Netherlands. In the United States, Christian schools are private schools, while in the Netherlands Christian schools receive state funding, just like public schools. Content analysis of mission statements revealed similarities…

  17. Fire protection program fiscal year 1995 site support program plan, Hanford Fire Department

    International Nuclear Information System (INIS)

    Good, D.E.

    1994-09-01

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report describes the specific responsibilities and programs that the HFD must support and the estimated cost of this support for FY1995

  18. Large-Scale Spacecraft Fire Safety Experiments in ISS Resupply Vehicles

    Science.gov (United States)

    Ruff, Gary A.; Urban, David

    2013-01-01

    Our understanding of the fire safety risk in manned spacecraft has been limited by the small scale of the testing we have been able to conduct in low-gravity. Fire growth and spread cannot be expected to scale linearly with sample size so we cannot make accurate predictions of the behavior of realistic scale fires in spacecraft based on the limited low-g testing to date. As a result, spacecraft fire safety protocols are necessarily very conservative and costly. Future crewed missions are expected to be longer in duration than previous exploration missions outside of low-earth orbit and accordingly, more complex in terms of operations, logistics, and safety. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this concern, a spacecraft fire safety research project is underway to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. This project is supported by the NASA Advanced Exploration Systems Program Office in the Human Exploration and Operations Mission Directorate. The activity of this project is supported by an international topical team of fire experts from other space agencies to maximize the utility of the data and to ensure the widest possible scrutiny of the concept. The large-scale space flight experiment will be conducted on three missions; each in an Orbital Sciences Corporation Cygnus vehicle after it has deberthed from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew allows the fire products to be released into the cabin. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the

  19. Fire effects on soils in Lake States forests: A compilation of published research to facilitate long-term investigations

    Science.gov (United States)

    Jessica Miesel; P. Goebel; R. Corace; David Hix; Randall Kolka; Brian Palik; David. Mladenoff

    2012-01-01

    Fire-adapted forests of the Lake States region are poorly studied relative to those of the western and southeastern United States and our knowledge base of regional short- and long-term fire effects on soils is limited. We compiled and assessed the body of literature addressing fire effects on soils in Lake States forests to facilitate the re-measurement of previous...

  20. Fire Protection Program fiscal year 1996, site support program plan Hanford Fire Department. Revision 2

    International Nuclear Information System (INIS)

    Good, D.E.

    1995-09-01

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report gives a program overview, technical program baselines, and cost and schedule baseline

  1. Wildland fire in ecosystems: effects of fire on flora

    Science.gov (United States)

    James K. Brown; Jane Kapler Smith

    2000-01-01

    VOLUME 2: This state-of-knowledge review about the effects of fire on flora and fuels can assist land managers with ecosystem and fire management planning and in their efforts to inform others about the ecological role of fire. Chapter topics include fire regime classification, autecological effects of fire, fire regime characteristics and postfire plant community...

  2. Conservation education for Fire, Fuel and Smoke Program

    Science.gov (United States)

    Wayne Cook

    2009-01-01

    The mission of Conservation Education for the Fire, Fuel and Smoke (FFS) Program is to develop and deliver high-quality, science-based education about wildland fire to students, educators, the general public, and agency staff. Goals: 1) Increase awareness of the scope and content of FFS research. 2) Improve understanding of fundamental concepts in wildland fire science...

  3. Video-Guidance Design for the DART Rendezvous Mission

    Science.gov (United States)

    Ruth, Michael; Tracy, Chisholm

    2004-01-01

    NASA's Demonstration of Autonomous Rendezvous Technology (DART) mission will validate a number of different guidance technologies, including state-differenced GPS transfers and close-approach video guidance. The video guidance for DART will employ NASA/Marshall s Advanced Video Guidance Sensor (AVGS). This paper focuses on the terminal phase of the DART mission that includes close-approach maneuvers under AVGS guidance. The closed-loop video guidance design for DART is driven by a number of competing requirements, including a need for maximizing tracking bandwidths while coping with measurement noise and the need to minimize RCS firings. A range of different strategies for attitude control and docking guidance have been considered for the DART mission, and design decisions are driven by a goal of minimizing both the design complexity and the effects of video guidance lags. The DART design employs an indirect docking approach, in which the guidance position targets are defined using relative attitude information. Flight simulation results have proven the effectiveness of the video guidance design.

  4. Fire and climate suitability for woody vegetation communities in the south central United States

    Science.gov (United States)

    Stroh, Esther; Struckhoff, Matthew; Stambaugh, Michael C.; Guyette, Richard P.

    2018-01-01

    Climate and fire are primary drivers of plant species distributions. Long-term management of south central United States woody vegetation communities can benefit from information on potential changes in climate and fire frequencies, and how these changes might affect plant communities. We used historical (1900 to 1929) and future (2040 to 2069 and 2070 to 2099) projected climate data for the conterminous US to estimate reference and future fire probabilities

  5. A review of the relationships between drought and forest fire in the United States

    Science.gov (United States)

    Littell, Jeremy; Peterson, David L.; Riley, Karin L.; Yongquiang Liu,; Luce, Charles H.

    2016-01-01

    The historical and pre-settlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity, severity, extent, and frequency. Fire regime characteristics arise across many individual fires at a variety of spatial and temporal scales, so both weather and climate—including short- and long-term droughts—are important and influence several, but not all, aspects of fire regimes. We review relationships between drought and fire regimes in United States forests, fire-related drought metrics and expected changes in fire risk, and implications for fire management under climate change. Collectively, this points to a conceptual model of fire on real landscapes: fire regimes, and how they change through time, are products of fuels and how other factors affect their availability (abundance, arrangement, continuity) and flammability (moisture, chemical composition). Climate, management, and land use all affect availability, flammability, and probability of ignition differently in different parts of North America. From a fire ecology perspective, the concept of drought varies with scale, application, scientific or management objective, and ecosystem.

  6. 41 CFR 102-80.85 - Are Federally owned and leased buildings exempt from State and local code requirements in fire...

    Science.gov (United States)

    2010-07-01

    ... leased buildings exempt from State and local code requirements in fire protection? 102-80.85 Section 102... Fire Prevention State and Local Codes § 102-80.85 Are Federally owned and leased buildings exempt from State and local code requirements in fire protection? Federally owned buildings are generally exempt...

  7. Smoke management guide for prescribed and wildland fire: 2001 edition.

    Science.gov (United States)

    Colin C. Hardy; Roger D. Ottmar; Janice L Peterson; John E. Core; Paula Seamon

    2001-01-01

    The National Wildfire Coordinating Group's (NWCG) Fire Use Working Team has assumed overall responsibility for sponsoring the development and production of this revised Smoke Management Guide for Prescribed and Wildland Fire (the "Guide"). The Mission Statement for the Fire Use Working Team includes the need to coordinate and advocate the use of fire to...

  8. Modeling very large-fire occurrences over the continental United States from weather and climate forcing

    Science.gov (United States)

    R Barbero; J T Abatzoglou; E A Steel

    2014-01-01

    Very large-fires (VLFs) have widespread impacts on ecosystems, air quality, fire suppression resources, and in many regions account for a majority of total area burned. Empirical generalized linear models of the largest fires (>5000 ha) across the contiguous United States (US) were developed at ¡­60 km spatial and weekly temporal resolutions using solely atmospheric...

  9. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird).

    Science.gov (United States)

    Atwood, Elizabeth C; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2-3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future.

  10. A review of the relationships between drought and forest fire in the United States.

    Science.gov (United States)

    Littell, Jeremy S; Peterson, David L; Riley, Karin L; Liu, Yongquiang; Luce, Charles H

    2016-07-01

    The historical and presettlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity, severity, extent, and frequency. Fire regime characteristics arise across many individual fires at a variety of spatial and temporal scales, so both weather and climate - including short- and long-term droughts - are important and influence several, but not all, aspects of fire regimes. We review relationships between drought and fire regimes in United States forests, fire-related drought metrics and expected changes in fire risk, and implications for fire management under climate change. Collectively, this points to a conceptual model of fire on real landscapes: fire regimes, and how they change through time, are products of fuels and how other factors affect their availability (abundance, arrangement, continuity) and flammability (moisture, chemical composition). Climate, management, and land use all affect availability, flammability, and probability of ignition differently in different parts of North America. From a fire ecology perspective, the concept of drought varies with scale, application, scientific or management objective, and ecosystem. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  11. Land surveys show regional variability of historical fire regimes and dry forest structure of the western United States.

    Science.gov (United States)

    Baker, William L; Williams, Mark A

    2018-03-01

    An understanding of how historical fire and structure in dry forests (ponderosa pine, dry mixed conifer) varied across the western United States remains incomplete. Yet, fire strongly affects ecosystem services, and forest restoration programs are underway. We used General Land Office survey reconstructions from the late 1800s across 11 landscapes covering ~1.9 million ha in four states to analyze spatial variation in fire regimes and forest structure. We first synthesized the state of validation of our methods using 20 modern validations, 53 historical cross-validations, and corroborating evidence. These show our method creates accurate reconstructions with low errors. One independent modern test reported high error, but did not replicate our method and made many calculation errors. Using reconstructed parameters of historical fire regimes and forest structure from our validated methods, forests were found to be non-uniform across the 11 landscapes, but grouped together in three geographical areas. Each had a mixture of fire severities, but dominated by low-severity fire and low median tree density in Arizona, mixed-severity fire and intermediate to high median tree density in Oregon-California, and high-severity fire and intermediate median tree density in Colorado. Programs to restore fire and forest structure could benefit from regional frameworks, rather than one size fits all. © 2018 by the Ecological Society of America.

  12. Development of a fire incident database for the United States nuclear power industry

    International Nuclear Information System (INIS)

    Wilks, G.

    1998-01-01

    The Nuclear Power Industry in the United States has identified a need to develop and maintain a comprehensive fire events database to support anticipated performance-based or risk-based fire protection programs and regulations. These new programs will require accurate information on the frequency, severity and consequences of fire events. Previous attempts to collect fire incident data had been made over the years for other purposes, but it was recognized that the detail and form of the data collected would be insufficient to support the new initiatives. Weaknesses in the earlier efforts included the inability in some cases to obtain fire incidents reports, inconsistent of incomplete information reported, and the inability to easily retrieve, sort, analyze and trend the data. The critical elements identified for the new data collection efforts included a standardized fire incident report from to assure consistent and accurate information, some mechanism to assure that all fire events are reported, and the ability to easily access the data for trending and analysis. In addition, the database would need to be unbiased and viewed as such by outside agencies. A new database is currently being developed that should meet all of these identified need. (author)

  13. Wildland Fire Management Plan for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Green,T.

    2009-10-23

    This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) updates the 2003 plan incorporating changes necessary to comply with DOE Order 450.1 and DOE P 450.4, Federal Wildland Fire Management Policy and Program Review; Wildland and Prescribed Fire Management Policy and implementation Procedures Reference Guide. This current plan incorporates changes since the original draft of the FMP that result from new policies on the national level. This update also removes references and dependence on the U.S. Fish & Wildlife Service and Department of the Interior, fully transitioning Wildland Fire Management responsibilities to BNL. The Department of Energy policy for managing wildland fires requires that all areas, managed by the DOE and/or its various contractors, that can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wild fire, operational, and prescribed fires. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, 'prescribed' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of the DOE and BNL. This Fire Management Plan is presented in a format that coverers all aspects specified by DOE guidance documents which are based on the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. This FMP is to be used and implemented for the

  14. Body dimensions and weight to height indices in rescuers from the State Fire Service of Poland

    Directory of Open Access Journals (Sweden)

    Wiśniewski Andrzej

    2018-03-01

    Full Text Available Few studies have been published in Poland concerning body dimensions of firefighters from the State Fire Service although this knowledge is needed for e.g. development of personal protective equipment. The aim of the study was to evaluate body dimensions and weight-to-height ratio in firefighters from the State Fire Service. Using the anthropological procedures, body mass (BM and body height (BH were examined in 178 men at the chronological age (CA of 19.5 to 53 years who were rescuers from the national rescue and fire brigades of the State Fire Service. The study participants were divided into three categories of CA: up to 25 years, between 24 and 44 years, and over 44 years. The results were compared to population standards. It was found that BH of the youngest rescuers was significantly higher (0.05 than in other study participants. Based on the standardized values of BM and BMI, population of firefighters aged over 25 years was found to be characterized by overweight and, in certain cases, even by obesity. The excess level of body mass index (BMI ≥ 25 kgm2 was found in nearly 60% of study participants, with half of the group classified as overweight (n=31, BMI ranging from 25 to 29.9 kg/m2, and 10% classified as obese. Due to the worrying high percentage of cases of excess body mass in firefighters from the State Fire Service, it was found that it is recommended to evaluate the relationships between body height and mass on regular basis during periodical obligatory tests of physical fitness of rescuers from the State Fire Service and to increase the frequency and duration of training sessions.

  15. Evaluating potential changes in fire risk from Eucalyptus plantings in the Southern United States

    Science.gov (United States)

    Scott L. Goodrick; John A. Stanturf

    2012-01-01

    Renewed interest in short-rotation woody crops for bioenergy and bioproducts has prompted a reevaluation of the Eucalyptus species for the southern United States. One question that arises about the potential effects of introducing a nonnative species is what effect will there be on fire behavior. Our approximate answer based on modeling fire behavior...

  16. OCULUS fire: a command and control system for fire management with crowd sourcing and social media interconnectivity

    Science.gov (United States)

    Thomopoulos, Stelios C. A.; Kyriazanos, Dimitris M.; Astyakopoulos, Alkiviadis; Dimitros, Kostantinos; Margonis, Christos; Thanos, Giorgos Konstantinos; Skroumpelou, Katerina

    2016-05-01

    AF3 (Advanced Forest Fire Fighting2) is a European FP7 research project that intends to improve the efficiency of current fire-fighting operations and the protection of human lives, the environment and property by developing innovative technologies to ensure the integration between existing and new systems. To reach this objective, the AF3 project focuses on innovative active and passive countermeasures, early detection and monitoring, integrated crisis management and advanced public information channels. OCULUS Fire is the innovative control and command system developed within AF3 as a monitoring, GIS and Knowledge Extraction System and Visualization Tool. OCULUS Fire includes (a) an interface for real-time updating and reconstructing of maps to enable rerouting based on estimated hazards and risks, (b) processing of GIS dynamic re-construction and mission re-routing, based on the fusion of airborne, satellite, ground and ancillary geolocation data, (c) visualization components for the C2 monitoring system, displaying and managing information arriving from a variety of sources and (d) mission and situational awareness module for OCULUS Fire ground monitoring system being part of an Integrated Crisis Management Information System for ground and ancillary sensors. OCULUS Fire will also process and visualise information from public information channels, social media and also mobile applications by helpful citizens and volunteers. Social networking, community building and crowdsourcing features will enable a higher reliability and less false alarm rates when using such data in the context of safety and security applications.

  17. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird)

    Science.gov (United States)

    Atwood, Elizabeth C.; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2–3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future. PMID:27486664

  18. Climate-Driven Risk of Large Fire Occurrence in the Western United States, 1500 to 2003

    Science.gov (United States)

    Crockett, J.; Westerling, A. L.

    2017-12-01

    Spatially comprehensive fire climatology has provided managers with tools to understand thecauses and consequences of large forest wildfires, but a paleoclimate context is necessary foranticipating the trajectory of future climate-fire relationships. Although accumulated charcoalrecords and tree scars have been utilized in high resolution, regional fire reconstructions, there isuncertainty as to how current climate-fire relationships of the western United States (WUS) fitwithin the natural long-term variability. While contemporary PDSI falls within the naturalvariability of the past, contemporary temperatures skew higher. Here, we develop a WUSfire reconstruction by applying climate-fire-topography model built on the 1972 to 2003 periodto the past 500 years, validated by recently updated fire-scar histories from WUS forests. Theresultant narrative provides insight into changing climate-fire relationships during extendedperiods of high aridity and temperature, providing land managers with historical precedent toeffectively anticipate disturbances during future climate change.

  19. Fire and Smoke Model Evaluation Experiment: Coordination of a study to improve smoke modeling for fire operations within the United States

    Science.gov (United States)

    French, N. H. F.; Ottmar, R. D.; Brown, T. J.; Larkin, N. K.

    2017-12-01

    The Fire and Smoke Model Evaluation Experiment (FASMEE) is an integrative research effort to identify and collect critical measurements to improve operational wildland fire and smoke prediction systems. FASMEE has two active phases and one suggested phase. Phase 1 is the analysis and planning process to assess the current state of fire-plume-smoke modeling and to determine the critical measurements required to evaluate and improve these operational fire and smoke models. As the major deliverable for Phase 1, a study plan has been completed that describes the measurement needs, field campaigns, and command, safety and air space de-confliction plans necessary to complete the FASMEE project. Phase 2 is a set of field campaigns to collect data during 2019-2022. Future Improvements would be a set of analyses and model improvements based on the data collected within Phase 2 that is dependent on identifying future funding sources. In this presentation, we will review the FASMEE Study Plan and detailed measurements and conditions expected for the four to five proposed research burns. The recommended measurements during Phase 2 span the four interrelated disciplines of FASMEE: fuels and consumption, fire behavior and energy, plume dynamics and meteorology, and smoke emissions, chemistry, and transport. Fuel type, condition, and consumption during wildland fire relates to several fire impacts including radiative heating, which provides the energy that drives fire dynamics. Local-scale meteorology is an important factor which relates to atmospheric chemistry, dispersion, and transport. Plume dynamics provide the connection between fire behavior and far-field smoke dispersion, because it determines the vertical distribution of the emissions. Guided by the data needs and science questions generated during Phase 1, three wildland fire campaigns were selected. These included the western wildfire campaign (rapid deployment aimed at western wildfires supporting NOAA, NASA, and NSF

  20. Using NASA Satellite Observations to Map Wildfire Risk in the United States for Allocation of Fire Management Resources

    Science.gov (United States)

    Farahmand, A.; Reager, J. T., II; Behrangi, A.; Stavros, E. N.; Randerson, J. T.

    2017-12-01

    Fires are a key disturbance globally acting as a catalyst for terrestrial ecosystem change and contributing significantly to both carbon emissions and changes in surface albedo. The socioeconomic impacts of wildfire activities are also significant with wildfire activity results in billions of dollars of losses every year. Fire size, area burned and frequency are increasing, thus the likelihood of fire danger, defined by United States National Interagency Fire Center (NFIC) as the demand of fire management resources as a function of how flammable fuels (a function of ignitability, consumability and availability) are from normal, is an important step toward reducing costs associated with wildfires. Numerous studies have aimed to predict the likelihood of fire danger, but few studies use remote sensing data to map fire danger at scales commensurate with regional management decisions (e.g., deployment of resources nationally throughout fire season with seasonal and monthly prediction). Here, we use NASA Gravity Recovery And Climate Experiment (GRACE) assimilated surface soil moisture, NASA Atmospheric Infrared Sounder (AIRS) vapor pressure deficit, NASA Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index products and landcover products, along with US Forest Service historical fire activity data to generate probabilistic monthly fire potential maps in the United States. These maps can be useful in not only government operational allocation of fire management resources, but also improving understanding of the Earth System and how it is changing in order to refine predictions of fire extremes.

  1. A minimal model of fire-vegetation feedbacks and disturbance stochasticity generates alternative stable states in grassland–shrubland–woodland systems

    International Nuclear Information System (INIS)

    Batllori, Enric; Ackerly, David D; Moritz, Max A

    2015-01-01

    Altered disturbance regimes in the context of global change are likely to have profound consequences for ecosystems. Interactions between fire and vegetation are of particular interest, as fire is a major driver of vegetation change, and vegetation properties (e.g., amount, flammability) alter fire regimes. Mediterranean-type ecosystems (MTEs) constitute a paradigmatic example of temperate fire-prone vegetation. Although these ecosystems may be heavily impacted by global change, disturbance regime shifts and the implications of fire-vegetation feedbacks in the dynamics of such biomes are still poorly characterized. We developed a minimal modeling framework incorporating key aspects of fire ecology and successional processes to evaluate the relative influence of extrinsic and intrinsic factors on disturbance and vegetation dynamics in systems composed of grassland, shrubland, and woodland mosaics, which characterize many MTEs. In this theoretical investigation, we performed extensive simulations representing different background rates of vegetation succession and disturbance regime (fire frequency and severity) processes that reflect a broad range of MTE environmental conditions. Varying fire-vegetation feedbacks can lead to different critical points in underlying processes of disturbance and sudden shifts in the vegetation state of grassland–shrubland–woodland systems, despite gradual changes in ecosystem drivers as defined by the environment. Vegetation flammability and disturbance stochasticity effectively modify system behavior, determining its heterogeneity and the existence of alternative stable states in MTEs. Small variations in system flammability and fire recurrence induced by climate or vegetation changes may trigger sudden shifts in the state of such ecosystems. The existence of threshold dynamics, alternative stable states, and contrasting system responses to environmental change has broad implications for MTE management. (letter)

  2. Wildland Fire Management Plan for Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Schwager, K.; Green, T. M.

    2014-01-01

    The DOE policy for managing wildland fires requires that all areas managed by DOE and/or Its various contractors which can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wildland fire, operational, and prescribed fires. FMPs provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled ''prescribed'' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. The plan will be reviewed periodically to ensure fire program advances and will evolve with the missions of DOE and BNL.

  3. Wildland Fire Management Plan for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schwager, K.; Green, T. M.

    2014-10-01

    The DOE policy for managing wildland fires requires that all areas managed by DOE and/or Its various contractors which can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wildland fire, operational, and prescribed fires. FMPs provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled ''prescribed'' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. The plan will be reviewed periodically to ensure fire program advances and will evolve with the missions of DOE and BNL.

  4. Wildfire risk reduction in the United States: Leadership staff perceptions of local fire department roles and responsibilities

    Science.gov (United States)

    Rachel S. Madsen; Hylton J. G. Haynes; Sarah M. McCaffrey

    2018-01-01

    As wildland fires have had increasing negative impacts on a range of human values, in many parts of the United States (U.S.) and around the world, collaborative risk reduction efforts among agencies, homeowners, and fire departments are needed to improve wildfire safety and mitigate risk. Using interview data from 46 senior officers from local fire departments around...

  5. Climate drives inter-annual variability in probability of high severity fire occurrence in the western United States

    Science.gov (United States)

    Keyser, Alisa; Westerling, Anthony LeRoy

    2017-05-01

    A long history of fire suppression in the western United States has significantly changed forest structure and ecological function, leading to increasingly uncharacteristic fires in terms of size and severity. Prior analyses of fire severity in California forests showed that time since last fire and fire weather conditions predicted fire severity very well, while a larger regional analysis showed that topography and climate were important predictors of high severity fire. There has not yet been a large-scale study that incorporates topography, vegetation and fire-year climate to determine regional scale high severity fire occurrence. We developed models to predict the probability of high severity fire occurrence for the western US. We predict high severity fire occurrence with some accuracy, and identify the relative importance of predictor classes in determining the probability of high severity fire. The inclusion of both vegetation and fire-year climate predictors was critical for model skill in identifying fires with high fractional fire severity. The inclusion of fire-year climate variables allows this model to forecast inter-annual variability in areas at future risk of high severity fire, beyond what slower-changing fuel conditions alone can accomplish. This allows for more targeted land management, including resource allocation for fuels reduction treatments to decrease the risk of high severity fire.

  6. State of Fire Behavior Models and their Application to Ecosystem and Smoke Management Issues: Special Session Summary Report

    Science.gov (United States)

    2013-10-24

    Carl Seielstad, Clint Wright, and Susan Prichard. State of fuel characterization and consumption for wildland fire planning Author Bio: Roger Ottmar...University of Montana, Missoula, MT. Clint Wright is a research forester with USFS Pacific Northwest Research Station Pacific Wildland Fire Sciences...Ottmar R., Robichaud P., Sutherland E., Way F. and Lewis S. 2007. Lessons learned from rapid response research on wildland fires. Fire Management

  7. Evaluating Fire Risk in the Northeastern United States in the Past, Present, and Future

    Science.gov (United States)

    Miller, D.; Bradley, R. S.

    2017-12-01

    One poorly understood consequence of climate change is its effects on extreme events such as wildfires. Robust associations between wildfire frequency and climatic variability have been shown to exist, indicating that future climate change may continue to have a significant effect on wildfire activity. The Northeastern United States (NEUS) has seen some of the most infamous and largest historic fires in North America, such as the Miramichi Fire of 1825 and the fires of 1947. Although return intervals for large fires in the NEUS are long (hundreds of years), wildfires have played a critical role in ecosystem development and forest structure in the region. Understanding and predicting fire occurrence and vulnerability in the NEUS, especially in a changing climate, is economically and culturally important yet remains difficult due to human impacts (i.e. fire suppression activities and human disturbance). Thus, an alternative method for investigating fire risk in the NEUS is needed. Here, we present a compilation of meteorological data collected from Automated Surface Observing Systems (ASOS) from the NEUS throughout the 20th century through present day. We use these data to compute fifteen common "fire danger indices" employed in the USA and Canada to investigate changes in the region's fire risk over time, as well as the skill of each of these indices at predicting wildfire activity relative to the historical record of fires in the NEUS. We use dynamically-downscaled regional climate model output for the 21st century to project future wildfire activity based on the fire danger indices capable of capturing historical fire activity in the NEUS. These projections will aid in predicting how fire risk in the NEUS will evolve with anticipated climate change.

  8. Fire models for assessment of nuclear power plant fires

    International Nuclear Information System (INIS)

    Nicolette, V.F.; Nowlen, S.P.

    1989-01-01

    This paper reviews the state-of-the-art in available fire models for the assessment of nuclear power plants fires. The advantages and disadvantages of three basic types of fire models (zone, field, and control volume) and Sandia's experience with these models will be discussed. It is shown that the type of fire model selected to solve a particular problem should be based on the information that is required. Areas of concern which relate to all nuclear power plant fire models are identified. 17 refs., 6 figs

  9. Fire Ant Bites

    Science.gov (United States)

    ... Favorite Name: Category: Share: Yes No, Keep Private Fire Ant Bites Share | Fire ants are aggressive, venomous insects that have pinching ... across the United States, even into Puerto Rico. Fire ant stings usually occur on the feet or ...

  10. "Fire Moss" Cover and Function in Severely Burned Forests of the Western United States

    Science.gov (United States)

    Grover, H.; Doherty, K.; Sieg, C.; Robichaud, P. R.; Fulé, P. Z.; Bowker, M.

    2017-12-01

    With wildfires increasing in severity and extent throughout the Western United States, land managers need new tools to stabilize recently burned ecosystems. "Fire moss" consists of three species, Ceratodon purpureus, Funaria hygrometrica, and Bryum argentum. These mosses colonize burned landscapes quickly, aggregate soils, have extremely high water holding capacity, and can be grown rapidly ex-situ. In this talk, I will focus on our efforts to understand how Fire Moss naturally interacts with severely burned landscapes. We examined 14 fires in Arizona, New Mexico, Washington, and Idaho selecting a range of times since fire, and stratified plots within each wildfire by winter insolation and elevation. At 75+ plots we measured understory plant cover, ground cover, Fire Moss cover, and Fire Moss reproductive effort. On plots in the Southwest, we measured a suite of soil characteristics on moss covered and adjacent bare soil including aggregate stability, shear strength, compressional strength, and infiltration rates. Moss cover ranged from 0-75% with a mean of 16% across all plots and was inversely related to insolation (R2 = .32, p = stability and infiltration rates as adjacent bare ground. These results will allow us to model locations where Fire Moss will naturally increase postfire hillslope soil stability, locations for targeting moss restoration efforts, and suggest that Fire Moss could be a valuable tool to mitigate post wildfire erosion.

  11. Development of the fire PSA methodology and the fire analysis computer code system

    International Nuclear Information System (INIS)

    Katsunori, Ogura; Tomomichi, Ito; Tsuyoshi, Uchida; Yusuke, Kasagawa

    2009-01-01

    Fire PSA methodology has been developed and was applied to NPPs in Japan for power operation and LPSD states. CDFs of preliminary fire PSA for power operation were the higher than that of internal events. Fire propagation analysis code system (CFAST/FDS Network) was being developed and verified thru OECD-PRISME Project. Extension of the scope for LPSD state is planned to figure out the risk level. In order to figure out the fire risk level precisely, the enhancement of the methodology is planned. Verification and validation of phenomenological fire propagation analysis code (CFAST/FDS Network) in the context of Fire PSA. Enhancement of the methodology such as an application of 'Electric Circuit Analysis' in NUREG/CR-6850 and related tests in order to quantify the hot-short effect precisely. Development of seismic-induced fire PSA method being integration of existing seismic PSA and fire PSA methods is ongoing. Fire PSA will be applied to review the validity of fire prevention and mitigation measures

  12. Irregular Firing and High-Conductance States in Spinal Motoneurons during Scratching and Swimming

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Hounsgaard, Jorn; Alaburda, Aidas

    2016-01-01

    UNLABELLED: Intense synaptic transmission during scratch network activity increases conductance and induces irregular firing in spinal motoneurons. It is not known whether this high-conductance state is a select feature for scratching or a property that goes with spinal motor network activity...... in general. Here we compare conductance and firing patterns in spinal motoneurons during network activity for scratching and swimming in an ex vivo carapace-spinal cord preparation from adult turtles (Trachemys scripta elegans). The pattern and relative engagement of motoneurons are distinctly different...... in scratching and swimming. Nevertheless, we found increased synaptic fluctuations in membrane potential, irregular firing, and increased conductance in spinal motoneurons during scratch and swim network activity. Our finding indicates that intense synaptic activation of motoneurons is a general feature...

  13. Fire Stations

    Data.gov (United States)

    Department of Homeland Security — Fire Stations in the United States Any location where fire fighters are stationed or based out of, or where equipment that such personnel use in carrying out their...

  14. Protein crystal growth results from the United States Microgravity Laboratory-1 mission

    Science.gov (United States)

    Delucas, Lawrence J.; Moore, K. M.; Vanderwoerd, M.; Bray, T. L.; Smith, C.; Carson, M.; Narayana, S. V. L.; Rosenblum, W. M.; Carter, D.; Clark, A. D, Jr.

    1994-01-01

    Protein crystal growth experiments have been performed by this laboratory on 18 Space Shuttle missions since April, 1985. In addition, a number of microgravity experiments also have been performed and reported by other investigators. These Space Shuttle missions have been used to grow crystals of a variety of proteins using vapor diffusion, liquid diffusion, and temperature-induced crystallization techniques. The United States Microgravity Laboratory - 1 mission (USML-1, June 25 - July 9, 1992) was a Spacelab mission dedicated to experiments involved in materials processing. New protein crystal growth hardware was developed to allow in orbit examination of initial crystal growth results, the knowledge from which was used on subsequent days to prepare new crystal growth experiments. In addition, new seeding hardware and techniques were tested as well as techniques that would prepare crystals for analysis by x-ray diffraction, a capability projected for the planned Space Station. Hardware that was specifically developed for the USML-1 mission will be discussed along with the experimental results from this mission.

  15. Wildland fire in ecosystems: effects of fire on soils and water

    Science.gov (United States)

    Daniel G. Neary; Kevin C. Ryan; Leonard F. DeBano

    2005-01-01

    This state-of-knowledge review about the effects of fire on soils and water can assist land and fire managers with information on the physical, chemical, and biological effects of fire needed to successfully conduct ecosystem management, and effectively inform others about the role and impacts of wildland fire. Chapter topics include the soil resource, soil physical...

  16. WILDLAND FIRE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    ENVIRONMENTAL AND WASTE MANAGEMENT SERVICES DIVISION

    2003-09-01

    This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) and the Upton Ecological and Research Reserve (Upton Reserve) is based on the U.S. Fish & Wildlife Service (FWS) fire management planning procedures and was developed in cooperation with the Department of Energy (DOE) by Brookhaven Science Associates. As the Upton Reserve is contained within the BNL 5,265-acre site, it is logical that the plan applies to both the Upton Reserve and BNL. The Department of the Interior policy for managing wildland fires requires that all areas managed by FWS that can sustain fire must have an FMP that details fire management guidelines for operational procedures and specifies values to be protected or enhanced. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, ''prescribed'' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL/Upton Reserve Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered and threatened species and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL and the Upton Reserve. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of FWS, BNL, and the Upton Reserve. This Fire Management Plan is a modified version of the Long Island National Wildlife Refuge Complex Fire plan (updated in 2000), which contains all FWS fire plan requirements and is presented in the format specified by the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. FWS shall be, through an Interagency Agreement dated November 2000 (Appendix C), responsible for coordinating and

  17. The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Habitat

    Science.gov (United States)

    Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.

    2018-01-01

    The combined effects of fire history, climate, and landscape features (e.g., edges) on habitat specialists need greater focus in fire ecology studies, which usually only emphasize characteristics of the most recent fire. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights, which are dynamic because of frequent fires. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells (that represented potential territories) because fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities vary between states as functions of environmental covariates. Covariates included vegetative type, edges (e.g., roads, forests), precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presence/absence of fire covariate, but also fire history covariates: time since the previous fire, the longest fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Edges reduced the effectiveness of fires in setting degraded scrub and flatwoods into earlier successional states making mechanical cutting an important tool to compliment frequent prescribed fires.

  18. The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Ecosystems

    Science.gov (United States)

    Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.

    2017-01-01

    The combined effects of repeated fires, climate, and landscape features (e.g., edges) need greater focus in fire ecology studies, which usually emphasize characteristics of the most recent fire and not fire history. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells that represented potential territories because frequent fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities between states varied annually as functions of environmental covariates. Covariates included vegetative type, edges, precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presenceabsence of fire covariate, but also fire history covariates: time since the previous fire, the maximum fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Measuring territory quality states and environmental covariates each year combined with multistate modeling provided a useful empirical approach to quantify the effects of repeated fire in combinations with environmental variables on transition probabilities that drive management strategies and ecosystem change.

  19. State-of-the-art review of sodium fire analysis and current notions for improvements

    International Nuclear Information System (INIS)

    Tasi, S.S.

    1978-01-01

    Sodium releases from postulated pipe ruptures, as well as failures of sodium handling equipment in liquid metal fast breeder reactors, may lead to substantial pressure-temperature transients in the sodium system cells, as well as in the reactor containment building. Sodium fire analyses are currently performed with analytical tools, such as the SPRAY, SOMIX, SPOOL-FIRE and SOFIRE-II codes. A review and evaluation of the state-of-the-art in sodium fire analysis is presented, and suggestions for further improvements are made. This work is based, in part, on studies made at Brookhaven National Laboratory during the past several years in the areas of model development and improvement associated with the accident analyses of LMFBRs

  20. Fire propagation equation for the explicit identification of fire scenarios in a fire PSA

    International Nuclear Information System (INIS)

    Lim, Ho Gon; Han, Sang Hoon; Moon, Joo Hyun

    2011-01-01

    When performing fire PSA in a nuclear power plant, an event mapping method, using an internal event PSA model, is widely used to reduce the resources used by fire PSA model development. Feasible initiating events and component failure events due to fire are identified to transform the fault tree (FT) for an internal event PSA into one for a fire PSA using the event mapping method. A surrogate event or damage term method is used to condition the FT of the internal PSA. The surrogate event or the damage term plays the role of flagging whether the system/component in a fire compartment is damaged or not, depending on the fire being initiated from a specified compartment. These methods usually require explicit states of all compartments to be modeled in a fire area. Fire event scenarios, when using explicit identification, such as surrogate or damage terms, have two problems: there is no consideration of multiple fire propagation beyond a single propagation to an adjacent compartment, and there is no consideration of simultaneous fire propagations in which an initiating fire event is propagated to multiple paths simultaneously. The present paper suggests a fire propagation equation to identify all possible fire event scenarios for an explicitly treated fire event scenario in the fire PSA. Also, a method for separating fire events was developed to make all fire events a set of mutually exclusive events, which can facilitate arithmetic summation in fire risk quantification. A simple example is given to confirm the applicability of the present method for a 2x3 rectangular fire area. Also, a feasible asymptotic approach is discussed to reduce the computational burden for fire risk quantification

  1. Seasonality of fire weather strongly influences fire regimes in South Florida savanna-grassland landscapes.

    Directory of Open Access Journals (Sweden)

    William J Platt

    Full Text Available Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature. We used nonparametric cluster analyses of a 17-year (1993-2009 data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires over a 13-year period with fire records (1997-2009. Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with

  2. Seasonality of Fire Weather Strongly Influences Fire Regimes in South Florida Savanna-Grassland Landscapes

    Science.gov (United States)

    Platt, William J.; Orzell, Steve L.; Slocum, Matthew G.

    2015-01-01

    Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993–2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997–2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of

  3. The analysis of a complex fire event using multispaceborne observations

    Directory of Open Access Journals (Sweden)

    Andrei Simona

    2018-01-01

    Full Text Available This study documents a complex fire event that occurred on October 2016, in Middle East belligerent area. Two fire outbreaks were detected by different spacecraft monitoring instruments on board of TERRA, CALIPSO and AURA Earth Observation missions. Link with local weather conditions was examined using ERA Interim Reanalysis and CAMS datasets. The detection of the event by multiple sensors enabled a detailed characterization of fires and the comparison with different observational data.

  4. The analysis of a complex fire event using multispaceborne observations

    Science.gov (United States)

    Andrei, Simona; Carstea, Emil; Marmureanu, Luminita; Ene, Dragos; Binietoglou, Ioannis; Nicolae, Doina; Konsta, Dimitra; Amiridis, Vassilis; Proestakis, Emmanouil

    2018-04-01

    This study documents a complex fire event that occurred on October 2016, in Middle East belligerent area. Two fire outbreaks were detected by different spacecraft monitoring instruments on board of TERRA, CALIPSO and AURA Earth Observation missions. Link with local weather conditions was examined using ERA Interim Reanalysis and CAMS datasets. The detection of the event by multiple sensors enabled a detailed characterization of fires and the comparison with different observational data.

  5. Evaluating Potential Changes in Fire Risk from Eucalyptus Plantings in the Southern United States

    Directory of Open Access Journals (Sweden)

    Scott L. Goodrick

    2012-01-01

    Full Text Available Renewed interest in short-rotation woody crops for bioenergy and bioproducts has prompted a reevaluation of the Eucalyptus species for the southern United States. One question that arises about the potential effects of introducing a nonnative species is what effect will there be on fire behavior. Our approximate answer based on modeling fire behavior using the Fuel Characteristic Classification System is that surface fire behavior in young stands differs little from surface fires common to pine plantations in the southern Coastal Plain. By the age of 9, the absence of a shrub layer, along with an increased height to live crown, reduced initiation potential despite increased bark shedding. When a shrub layer was introduced in the model, the initiation potential became equivalent to common Pinus fuelbeds. If a crown is ignited, however, the potentials for transmissivity and spread are very high, and the potential for crown fire behavior is more severe. Our modeling effort suggests that fire behavior at the stand level differs little from current conditions and points to the importance of avoiding the development of a shrub layer. Stands managed on short rotation (less than 10 years will likely be harvested before bark shedding presents a significant spotting problem.

  6. Aerosols from fires: an examination of the effects on ozone photochemistry in the Western United States.

    Science.gov (United States)

    Jiang, Xiaoyan; Wiedinmyer, Christine; Carlton, Annmarie G

    2012-11-06

    This study presents a first attempt to investigate the roles of fire aerosols in ozone (O(3)) photochemistry using an online coupled meteorology-chemistry model, the Weather Research and Foresting model with Chemistry (WRF-Chem). Four 1-month WRF-Chem simulations for August 2007, with and without fire emissions, were carried out to assess the sensitivity of O(3) predictions to the emissions and subsequent radiative feedbacks associated with large-scale fires in the Western United States (U.S.). Results show that decreases in planetary boundary layer height (PBLH) resulting from the radiative effects of fire aerosols and increases in emissions of nitrogen oxides (NO(x)) and volatile organic compounds (VOCs) from the fires tend to increase modeled O(3) concentrations near the source. Reductions in downward shortwave radiation reaching the surface and surface temperature due to fire aerosols cause decreases in biogenic isoprene emissions and J(NO(2)) photolysis rates, resulting in reductions in O(3) concentrations by as much as 15%. Thus, the results presented in this study imply that considering the radiative effects of fire aerosols may reduce O(3) overestimation by traditional photochemical models that do not consider fire-induced changes in meteorology; implementation of coupled meteorology-chemistry models are required to simulate the atmospheric chemistry impacted by large-scale fires.

  7. Human presence diminishes the importance of climate in driving fire activity across the United States

    Science.gov (United States)

    Syphard, Alexandra D.; Keeley, Jon E.; Pfaff, Anne Hopkins; Ferschweiler, Ken

    2017-01-01

    Growing human and ecological costs due to increasing wildfire are an urgent concern in policy and management, particularly given projections of worsening fire conditions under climate change. Thus, understanding the relationship between climatic variation and fire activity is a critically important scientific question. Different factors limit fire behavior in different places and times, but most fire-climate analyses are conducted across broad spatial extents that mask geographical variation. This could result in overly broad or inappropriate management and policy decisions that neglect to account for regionally specific or other important factors driving fire activity. We developed statistical models relating seasonal temperature and precipitation variables to historical annual fire activity for 37 different regions across the continental United States and asked whether and how fire-climate relationships vary geographically, and why climate is more important in some regions than in others. Climatic variation played a significant role in explaining annual fire activity in some regions, but the relative importance of seasonal temperature or precipitation, in addition to the overall importance of climate, varied substantially depending on geographical context. Human presence was the primary reason that climate explained less fire activity in some regions than in others. That is, where human presence was more prominent, climate was less important. This means that humans may not only influence fire regimes but their presence can actually override, or swamp out, the effect of climate. Thus, geographical context as well as human influence should be considered alongside climate in national wildfire policy and management.

  8. SOLID-STATE CONTROLLED FIRE HAZARD DETECTION AND ...

    African Journals Online (AJOL)

    Microcontrol/er based fire hazard detection and quenching .system is developed, tested and found working satisfactory. Its response is very fast to quench thefire hazard before it spreads out. It is smart to ffiJoid any false alarming in case of momentary fire occurrence. ,Special emphasis has been laid down in choosing.

  9. Risk Assessment of the Main Control Room Fire Using Fire Simulations

    International Nuclear Information System (INIS)

    Kang, Dae Il; Kim, Kilyoo; Jang, Seung Cheol

    2013-01-01

    KAERI is performing a fire PSA for a reference plant, Ulchin Unit 3, as part of developing the Korean site risk profile (KSRP). Fire simulations of the MCR fire were conducted using the CFAST (Consolidated Fire Growth and Smoke Transport) model and FDS (fire dynamic simulator) to improve the uncertainty in the MCR fire risk analysis. Using the fire simulation results, the MCR abandonment risk was evaluated. Level 1 PSA (probabilistic safety assessment) results of Ulchin Unit 3 using the EPRI PRA (probabilistic risk assessment) implementation guide showed that the MCR (main control room) fire was the main contributor to the core damage frequency. Recently, U. S. NRC and EPRI developed NUREG/CR-6850 to provide state-of-the-art methods, tools, and data for the conduct of a fire PSA for a commercial NPP

  10. Rx fire laws: tools to protect fire: the `ecological imperative?

    Science.gov (United States)

    Dale Wade; Steven Miller; Johnny Stowe; James Brenner

    2006-01-01

    The South is the birthplace of statutes and ordinances that both advocate and protect the cultural heritage of woods burning, which has been practiced in this region uninterrupted for more than 10,000 years. We present a brief overview of fire use in the South and discuss why most southern states recognized early on that periodic fire was necessary to sustain fire...

  11. Human Health Impacts of Forest Fires in the Southern United States: A Literature Review

    Science.gov (United States)

    Cynthia T. Fowler

    2003-01-01

    Forestry management practices can shape patterns of health, illness, and disease. A primary goal for owners federal, state, andprivate forests is to crap ecosystem management plans that simultaneously optimize forest health and human health. Fire-a major forest management issue in the United States-complicates these goals. Wildfires are natural phenomena with...

  12. Tactical Firefighter Teams: Pivoting Toward the Fire Service’s Evolving Homeland Security Mission

    Science.gov (United States)

    2016-09-01

    Kevlar, strong, lightweight fabrics that withstand punctures and abrasions in addition to being fire - resistive .140 A vapor barrier follows and provides...characteristic of the work is that it addresses and counters many of the common arguments posed by fire and EMS personnel who resist the rescue task...will be needed to determine whether the ballistic helmet is fire resistive or can 138 Dodson

  13. Fire effects on aquatic ecosystems: an assessment of the current state of the science

    Science.gov (United States)

    Rebecca J. Bixby,; Scott D. Cooper,; Gresswell, Bob; Lee E. Brown,; Clifford N. Dahm,; Kathleen A. Dwire,

    2015-01-01

    Fire is a prevalent feature of many landscapes and has numerous and complex effects on geological, hydrological, ecological, and economic systems. In some regions, the frequency and intensity of wildfire have increased in recent years and are projected to escalate with predicted climatic and landuse changes. In addition, prescribed burns continue to be used in many parts of the world to clear vegetation for development projects, encourage desired vegetation, and reduce fuel loads. Given the prevalence of fire on the landscape, authors of papers in this special series examine the complexities of fire as a disturbance shaping freshwater ecosystems and highlight the state of the science. These papers cover key aspects of fire effects that range from vegetation loss and recovery in watersheds to effects on hydrology and water quality with consequences for communities (from algae to fish), food webs, and ecosystem processes (e.g., organic matter subsidies, nutrient cycling) across a range of scales. The results presented in this special series of articles expand our knowledge of fire effects in different biomes, water bodies, and geographic regions, encompassing aquatic population, community, and ecosystem responses. In this overview, we summarize each paper and emphasize its contributions to knowledge on fire ecology and freshwater ecosystems. This overview concludes with a list of 7 research foci that are needed to further our knowledge of fire effects on aquatic ecosystems, including research on: 1) additional biomes and geographic regions; 2) additional habitats, including wetlands and lacustrine ecosystems; 3) different fire severities, sizes, and spatial configurations; and 4) additional response variables (e.g., ecosystem processes) 5) over long (>5 y) time scales 6) with more rigorous study designs and data analyses, and 7) consideration of the effects of fire management practices and policies on aquatic ecosystems.

  14. Life assessment and emissions monitoring of Indian coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

  15. Planning and Management of Real-Time Geospatialuas Missions Within a Virtual Globe Environment

    Science.gov (United States)

    Nebiker, S.; Eugster, H.; Flückiger, K.; Christen, M.

    2011-09-01

    This paper presents the design and development of a hardware and software framework supporting all phases of typical monitoring and mapping missions with mini and micro UAVs (unmanned aerial vehicles). The developed solution combines state-of-the art collaborative virtual globe technologies with advanced geospatial imaging techniques and wireless data link technologies supporting the combined and highly reliable transmission of digital video, high-resolution still imagery and mission control data over extended operational ranges. The framework enables the planning, simulation, control and real-time monitoring of UAS missions in application areas such as monitoring of forest fires, agronomical research, border patrol or pipeline inspection. The geospatial components of the project are based on the Virtual Globe Technology i3D OpenWebGlobe of the Institute of Geomatics Engineering at the University of Applied Sciences Northwestern Switzerland (FHNW). i3D OpenWebGlobe is a high-performance 3D geovisualisation engine supporting the web-based streaming of very large amounts of terrain and POI data.

  16. Tunnel fire dynamics

    CERN Document Server

    Ingason, Haukur; Lönnermark, Anders

    2015-01-01

    This book covers a wide range of issues in fire safety engineering in tunnels, describes the phenomena related to tunnel fire dynamics, presents state-of-the-art research, and gives detailed solutions to these major issues. Examples for calculations are provided. The aim is to significantly improve the understanding of fire safety engineering in tunnels. Chapters on fuel and ventilation control, combustion products, gas temperatures, heat fluxes, smoke stratification, visibility, tenability, design fire curves, heat release, fire suppression and detection, CFD modeling, and scaling techniques all equip readers to create their own fire safety plans for tunnels. This book should be purchased by any engineer or public official with responsibility for tunnels. It would also be of interest to many fire protection engineers as an application of evolving technical principles of fire safety.

  17. Climatic stress increases forest fire severity across the western United States

    Science.gov (United States)

    van Mantgem, Philip J.; Nesmith, Jonathan C. B.; Keifer, MaryBeth; Knapp, Eric E.; Flint, Alan; Flint, Lorriane

    2013-01-01

    Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our findings support recent physiological evidence showing that both drought and heating from fire can impair xylem conductivity. Warming trends have been linked to increasing probabilities of severe fire weather and fire spread; our results suggest that warming may also increase forest fire severity (the number of trees killed) independent of fire intensity (the amount of heat released during a fire).

  18. Application of State Analysis and Goal-based Operations to a MER Mission Scenario

    Science.gov (United States)

    Morris, John Richard; Ingham, Michel D.; Mishkin, Andrew H.; Rasmussen, Robert D.; Starbird, Thomas W.

    2006-01-01

    State Analysis is a model-based systems engineering methodology employing a rigorous discovery process which articulates operations concepts and operability needs as an integrated part of system design. The process produces requirements on system and software design in the form of explicit models which describe the system behavior in terms of state variables and the relationships among them. By applying State Analysis to an actual MER flight mission scenario, this study addresses the specific real world challenges of complex space operations and explores technologies that can be brought to bear on future missions. The paper first describes the tools currently used on a daily basis for MER operations planning and provides an in-depth description of the planning process, in the context of a Martian day's worth of rover engineering activities, resource modeling, flight rules, science observations, and more. It then describes how State Analysis allows for the specification of a corresponding goal-based sequence that accomplishes the same objectives, with several important additional benefits.

  19. High severity fires, positive fire feedbacks and alternative stable states in Athrotaxis rainforest ecosystems in western Tasmania.

    Science.gov (United States)

    Holz, A.; Wood, S.; Fletcher, M. S.; Ward, C.; Hopf, F.; Veblen, T. T.; Bowman, D. M. J. S.

    2016-12-01

    Recurrent landscape fires present a powerful selective force on plant regeneration strategies that form a continuum between vegetative resprouters and obligate seeders. In the latter case, reduction of the interval between fires, combined with factors that affect plant traits and regeneration dynamics can drive plant population to local extinction. Here we use Athrotaxis selaginoides, a relict fire-sensitive Gondwanan tree species that occurs in western Tasmania, as model system to investigate the putative impacts of climate change and variability and human management of fire. We integrate landscape ecology (island-wide scale), with field survey and dendrochronology (stand-scale) and sedimentary records (watershed and landscape-scales) to garner a better understanding of the timing and impact of landscape fire on the vegetation dynamics of Athrotaxis at multiple scales. Across the species range sedimentary charcoal and pollen concentrations indicate that the recovery time since the last fire has consistently lengthened over the last 10,000 yrs. Stand-scale tree-age and fire-scar reconstructions suggest that populations of the Athrotxis have survive very infrequent landscape fires over the last 4-6 centuries, but that fire severity has increased following European colonization causing population collapse of Athrotaxis and an associate shift in stand structure and composition that favor resprouter species over obligate seeders. Overall our findings suggest that the resistance to fires and postfire recovery of populations of A. selaginoides have gradually declined throughout the Holocene and rapidly declined after Europeans altered fire regimes, a trend that matches the fate other Gondwanan conifers in temperate rainforests elsewhere in the southern Hemisphere.

  20. Past, Present, and Future Old Growth in Frequent-fire Conifer Forests of the Western United States

    Directory of Open Access Journals (Sweden)

    Scott R. Abella

    2007-12-01

    Full Text Available Old growth in the frequent-fire conifer forests of the western United States, such as those containing ponderosa pine (Pinus ponderosa, Jeffrey pine (P. jeffreyi, giant sequoia (Sequioa giganteum and other species, has undergone major changes since Euro-American settlement. Understanding past changes and anticipating future changes under different potential management scenarios are fundamental to developing ecologically based fuel reduction or ecological restoration treatments. Some of the many changes that have occurred in these forests include shifts from historically frequent surface fire to no fire or to stand-replacing fire regimes, increases in tree density, increased abundance of fire-intolerant trees, decreases in understory productivity, hydrological alterations, and accelerated mortality of old trees. Although these changes are widespread, the magnitude and causes of changes may vary within and among landscapes. Agents of change, such as fire exclusion or livestock grazing, likely interacted and had multiple effects. For example, historical ranching operations may have altered both fire regimes and understory vegetation, and facilitated institutional fire exclusion through fragmentation and settlement. Evidence exists for large variation in presettlement characteristics and current condition of old growth across this broad forest region, although there are many examples of striking similarities on widely distant landscapes. Exotic species, climate change, unnatural stand-replacing wildfires, and other factors will likely continue to degrade or eradicate old growth in many areas. As a policy of fire exclusion is proving to be unsustainable, mechanical tree thinning, prescribed fire, or wildland fire use will likely be key options for forestalling continued eradication of old growth by severe crown fires. For many practical and societal reasons, the wildland-urban interface may afford some of the most immediate opportunities for re

  1. Enhancing fire science exchange: The Joint Fire Science Program's National Network of Knowledge Exchange Consortia

    Science.gov (United States)

    Vita Wright; Crystal Kolden; Todd Kipfer; Kristine Lee; Adrian Leighton; Jim Riddering; Leana Schelvan

    2011-01-01

    The Northern Rocky Mountain region is one of the most fire-prone regions in the United States. With a history of large fires that have shaped national policy, including the fires of 1910 and 2000 in Idaho and Montana and the Yellowstone fires of 1988, this region is projected to have many large severe fires in the future. Communication about fire science needs and...

  2. Modeling very large-fire occurrences over the continental United States from weather and climate forcing

    International Nuclear Information System (INIS)

    Barbero, R; Abatzoglou, J T; Steel, E A; K Larkin, Narasimhan

    2014-01-01

    Very large-fires (VLFs) have widespread impacts on ecosystems, air quality, fire suppression resources, and in many regions account for a majority of total area burned. Empirical generalized linear models of the largest fires (>5000 ha) across the contiguous United States (US) were developed at ∼60 km spatial and weekly temporal resolutions using solely atmospheric predictors. Climate−fire relationships on interannual timescales were evident, with wetter conditions than normal in the previous growing season enhancing VLFs probability in rangeland systems and with concurrent long-term drought enhancing VLFs probability in forested systems. Information at sub-seasonal timescales further refined these relationships, with short-term fire weather being a significant predictor in rangelands and fire danger indices linked to dead fuel moisture being a significant predictor in forested lands. Models demonstrated agreement in capturing the observed spatial and temporal variability including the interannual variability of VLF occurrences within most ecoregions. Furthermore the model captured the observed increase in VLF occurrences across parts of the southwestern and southeastern US from 1984 to 2010 suggesting that, irrespective of changes in fuels and land management, climatic factors have become more favorable for VLF occurrence over the past three decades in some regions. Our modeling framework provides a basis for simulations of future VLF occurrences from climate projections. (letter)

  3. A new forest fire paradigm: The need for high-severity fires

    Science.gov (United States)

    Monica L. Bond; Rodney B. Siegel; Richard L. Hutto; Victoria A. Saab; Stephen A. Shunk

    2012-01-01

    Bond, Monica L.; Siegel, Rodney B.; Hutto, Richard L.; Saab, Victoria A.; Shunk, Stephen A. 2012. A new forest fire paradigm: The need for high-severity fires. The Wildlife Professional. Winter 2012: 46-49. During the 2012 fire season from June through August, wildfires in the drought-stricken western and central United States burned more than 3.6 million acres of...

  4. Modern fire regime resembles historical fire regime in a ponderosa pine forest on Native American land

    Science.gov (United States)

    Amanda B. Stan; Peter Z. Fule; Kathryn B. Ireland; Jamie S. Sanderlin

    2014-01-01

    Forests on tribal lands in the western United States have seen the return of low-intensity surface fires for several decades longer than forests on non-tribal lands. We examined the surface fire regime in a ponderosa pinedominated (Pinus ponderosa) forest on the Hualapai tribal lands in the south-western United States. Using fire-scarred trees, we inferred temporal (...

  5. Resumes of the Bird mission

    Science.gov (United States)

    Lorenz, E.; Borwald, W.; Briess, K.; Kayal, H.; Schneller, M.; Wuensten, Herbert

    2004-11-01

    The DLR micro satellite BIRD (Bi-spectral Infra Red Detection) was piggy- back launched with the Indian Polar Satellite Launch Vehicle PSLV-C3 into a 570 km circular sun-synchronous orbit on 22 October 2001. The BIRD mission, fully funded by the DLR, answers topical technological and scientific questions related to the operation of a compact infra- red push-broom sensor system on board of a micro satellite and demonstrates new spacecraft bus technologies. BIRD mission control is conducted by DLR / GSOC in Oberpfaffenhofen. Commanding, data reception and data processing is performed via ground stations in Weilheim and Neustrelitz (Germany). The BIRD mission is a demonstrator for small satellite projects dedicated to the hazard detection and monitoring. In the year 2003 BIRD has been used in the ESA project FUEGOSAT to demonstrate the utilisation of innovative space technologies for fire risk management.

  6. Mars Exploration Rover Terminal Descent Mission Modeling and Simulation

    Science.gov (United States)

    Raiszadeh, Behzad; Queen, Eric M.

    2004-01-01

    Because of NASA's added reliance on simulation for successful interplanetary missions, the MER mission has developed a detailed EDL trajectory modeling and simulation. This paper summarizes how the MER EDL sequence of events are modeled, verification of the methods used, and the inputs. This simulation is built upon a multibody parachute trajectory simulation tool that has been developed in POST I1 that accurately simulates the trajectory of multiple vehicles in flight with interacting forces. In this model the parachute and the suspended bodies are treated as 6 Degree-of-Freedom (6 DOF) bodies. The terminal descent phase of the mission consists of several Entry, Descent, Landing (EDL) events, such as parachute deployment, heatshield separation, deployment of the lander from the backshell, deployment of the airbags, RAD firings, TIRS firings, etc. For an accurate, reliable simulation these events need to be modeled seamlessly and robustly so that the simulations will remain numerically stable during Monte-Carlo simulations. This paper also summarizes how the events have been modeled, the numerical issues, and modeling challenges.

  7. Wildland fire in ecosystems: fire and nonnative invasive plants

    Science.gov (United States)

    Kristin Zouhar; Jane Kapler Smith; Steve Sutherland; Matthew L. Brooks

    2008-01-01

    This state-of-knowledge review of information on relationships between wildland fire and nonnative invasive plants can assist fire managers and other land managers concerned with prevention, detection, and eradication or control of nonnative invasive plants. The 16 chapters in this volume synthesize ecological and botanical principles regarding relationships between...

  8. Aid for the victims of the forest fires in Greece

    CERN Multimedia

    2007-01-01

    To support the victims of the fires which devastated the Peloponnese at the end of August, the Permanent Mission of Greece in Geneva has informed us that the Greek government has opened an account into which donations may be paid. The funds collected will be used to assist the many victims of these fires. Bank of Greece Account name: Logariasmos Arogis Pyropathon (Hellenic Republic) (account reserved for aid for the victims of the forest fires) SWIFT : BNGRGRAA IBAN : GR 98 0100 0230 0000 0234 1103 053

  9. Fire risk in California

    Science.gov (United States)

    Peterson, Seth Howard

    Fire is an integral part of ecosystems in the western United States. Decades of fire suppression have led to (unnaturally) large accumulations of fuel in some forest communities, such as the lower elevation forests of the Sierra Nevada. Urban sprawl into fire prone chaparral vegetation in southern California has put human lives at risk and the decreased fire return intervals have put the vegetation community at risk of type conversion. This research examines the factors affecting fire risk in two of the dominant landscapes in the state of California, chaparral and inland coniferous forests. Live fuel moisture (LFM) is important for fire ignition, spread rate, and intensity in chaparral. LFM maps were generated for Los Angeles County by developing and then inverting robust cross-validated regression equations from time series field data and vegetation indices (VIs) and phenological metrics from MODIS data. Fire fuels, including understory fuels which are not visible to remote sensing instruments, were mapped in Yosemite National Park using the random forests decision tree algorithm and climatic, topographic, remotely sensed, and fire history variables. Combining the disparate data sources served to improve classification accuracies. The models were inverted to produce maps of fuel models and fuel amounts, and these showed that fire fuel amounts are highest in the low elevation forests that have been most affected by fire suppression impacting the natural fire regime. Wildland fires in chaparral commonly burn in late summer or fall when LFM is near its annual low, however, the Jesusita Fire burned in early May of 2009, when LFM was still relatively high. The HFire fire spread model was used to simulate the growth of the Jesusita Fire using LFM maps derived from imagery acquired at the time of the fire and imagery acquired in late August to determine how much different the fire would have been if it had occurred later in the year. Simulated fires were 1.5 times larger

  10. Restoring surface fire stabilizes forest carbon under extreme fire weather in the Sierra Nevada

    Science.gov (United States)

    Daniel J. Krofcheck; Matthew D. Hurteau; Robert M. Scheller; E. Louise Loudermilk

    2017-01-01

    Climate change in the western United States has increased the frequency of extreme fire weather events and is projected to increase the area burned by wildfire in the coming decades. This changing fire regime, coupled with increased high-severity fire risk from a legacy of fire exclusion, could destabilize forest carbon (C), decrease net ecosystem exchange (...

  11. FIRE PROTECTION SYSTEMS AND TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Aristov Denis Ivanovich

    2016-03-01

    Full Text Available The All-Russian Congress “Fire Stop Moscow” was de-voted to the analysis of the four segments of the industry of fire protection systems and technologies: the design of fire protec-tion systems, the latest developments and technologies of active and passive fire protection of buildings, the state and the devel-opment of the legal framework, the practice of fire protection of buildings and structures. The forum brought together the repre-sentatives of the industry of fire protection systems, scientists, leading experts, specialists in fire protection and representatives of construction companies from different regions of Russia. In parallel with the Congress Industrial Exhibition of fire protection systems, materials and technology was held, where manufacturers presented their products. The urgency of the “Fire Stop Moscow” Congress in 2015 organized by the Congress Bureau ODF Events lies primarily in the fact that it considered the full range of issues related to the fire protection of building and construction projects; studied the state of the regulatory framework for fire safety and efficiency of public services, research centers, private companies and busi-nesses in the area of fire safety. The main practical significance of the event which was widely covered in the media space, was the opportunity to share the views and information between management, science, and practice of business on implementing fire protection systems in the conditions of modern economic relations and market realities. : congress, fire protection, systems, technologies, fire protection systems, exhibition

  12. Future Role of Fire Service in Homeland Security

    National Research Council Canada - National Science Library

    Cloud, Rosemary

    2008-01-01

    .... The problem is that the world has changed. Increasing terrorist threats against our homeland and the potential for pandemic or other natural disasters are shifting the mission and placing new unconventional demands on the fire department...

  13. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event.

    Science.gov (United States)

    Lydersen, Jamie M; Collins, Brandon M; Brooks, Matthew L; Matchett, John R; Shive, Kristen L; Povak, Nicholas A; Kane, Van R; Smith, Douglas F

    2017-10-01

    Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western United States. Given this increase, there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation, and water balance on fire-severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across scales. Both fuels treatments and previous low to moderate-severity wildfire reduced the prevalence of high-severity fire. In general, areas without recent fuels treatments and areas that previously burned at high severity tended to have a greater proportion of high-severity fire in the Rim Fire. Areas treated with prescribed fire, especially when combined with thinning, had the lowest proportions of high severity. The proportion of the landscape burned at high severity was most strongly influenced by fire weather and proportional area previously treated for fuels or burned by low to moderate severity wildfire. The proportion treated needed to effectively reduce the amount of high severity fire varied by spatial scale of analysis, with smaller spatial scales requiring a greater proportion treated to see an effect on fire severity. When moderate and high-severity fire encountered a previously treated area, fire severity was significantly reduced in the treated area relative to the adjacent untreated area. Our results show that fuels treatments and low to moderate-severity wildfire can reduce fire severity in a subsequent wildfire, even when burning under fire growth conditions. These results serve as further evidence that both fuels treatments and lower severity wildfire can increase forest resilience. © 2017 by the Ecological Society of America.

  14. Interagency Wildland Fire Cooperation

    National Research Council Canada - National Science Library

    2004-01-01

    Wildlife Fire Assistance includes training personnel, forms partnerships for prescribed burns, state and regional data for fire management plans, develops agreements for DoD civilians to be reimbursed...

  15. Review of state-of-the-art decision support systems (DSSs) for prevention and suppression of forest fires

    Institute of Scientific and Technical Information of China (English)

    Stavros Sakellariou; Stergios Tampekis; Fani Samara; Athanassios Sfougaris; Olga Christopoulou

    2017-01-01

    Forest ecosystems are our priceless natural resource and are a key component of the global carbon budget. Forest fires can be a hazard to the viability and sustainable management of forests with consequences for natural and cultural environments, economies, and the life quality of local and regional populations. Thus, the selec-tion of strategies to manage forest fires, while considering both functional and economic efficiency, is of primary importance. The use of decision support systems (DSSs) by managers of forest fires has rapidly increased. This has strengthened capacity to prevent and suppress forest fires while protecting human lives and property. DSSs are a tool that can benefit incident management and decision making and policy, especially for emergencies such as natural disasters. In this study we reviewed state-of-the-art DSSs that use:database management systems and mathematical/economic algorithms for spatial optimization of firefighting forces; forest fire simulators and satellite technology forimmediate detection and prediction of evolution of forest fires; GIS platforms that incorporate several tools to manipulate, process and analyze geographic data and develop strategic and operational plans.

  16. Fire protection for clean rooms

    International Nuclear Information System (INIS)

    Kirson, D.

    1990-01-01

    The fire protection engineer often must decide what size fire can be tolerated before automatic fire suppression systems actuate. Is it a wastepaper basket fire, a bushel basket fire...? In the case of state-of-the-art clean rooms, the answer clearly is not even an incipient fire. Minor fires in clean rooms can cause major losses. This paper discusses what a clean room is and gives a brief overview of the unique fire protection challenges encountered. The two major causes of fire related to clean rooms in the semiconductor industry are flammable/pyrophoric gas fires in plastic ducts and polypropylene wet bench fires. This paper concentrates on plastic ductwork in clean rooms, sprinkler protection in ductwork, and protection for wet benches

  17. 29 CFR 1910.156 - Fire brigades.

    Science.gov (United States)

    2010-07-01

    ... training schools as the Maryland Fire and Rescue Institute; Iowa Fire Service Extension; West Virginia Fire... University, Lamar University, Reno Fire School, or the Delaware State Fire School.) (4) The employer shall... laboratory oven at a temperature of 500 °F (260 °C) for a period of five minutes. After cooling to ambient...

  18. Fire and birds in the southwestern United States

    Science.gov (United States)

    Carl E. Bock; William M. Block

    2005-01-01

    Fire is an important ecological force in many southwestern ecosystems, but frequencies, sizes, and intensities of fire have been altered historically by grazing, logging, exotic vegetation, and suppression. Prescribed burning should be applied widely, but under experimental conditions that facilitate studying its impacts on birds and other components of biodiversity....

  19. Modeling regional-scale wildland fire emissions with the wildland fire emissions information system

    Science.gov (United States)

    Nancy H.F. French; Donald McKenzie; Tyler Erickson; Benjamin Koziol; Michael Billmire; K. Endsley; Naomi K.Y. Scheinerman; Liza Jenkins; Mary E. Miller; Roger Ottmar; Susan Prichard

    2014-01-01

    As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire. The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent...

  20. Enhancing adaptive capacity for restoring fire-dependent ecosystems: the Fire Learning Network's Prescribed Fire Training Exchanges

    Directory of Open Access Journals (Sweden)

    Andrew G. Spencer

    2015-09-01

    Full Text Available Prescribed fire is a critical tool for promoting restoration and increasing resilience in fire-adapted ecosystems, but there are barriers to its use, including a shortage of personnel with adequate ecological knowledge and operational expertise to implement prescribed fire across multijurisdictional landscapes. In the United States, recognized needs for both professional development and increased use of fire are not being met, often because of institutional limitations. The Fire Learning Network has been characterized as a multiscalar, collaborative network that works to enhance the adaptive capacity of fire management institutions, and this network developed the Prescribed Fire Training Exchanges (TREXs to address persistent challenges in increasing the capacity for prescribed fire implementation. Our research was designed to investigate where fire professionals face professional barriers, how the TREX addresses these, and in what ways the TREX may be contributing to the adaptive capacity of fire management institutions. We evaluated the training model using surveys, interviews, focus groups, and participant observation. We found that, although the training events cannot overcome all institutional barriers, they incorporate the key components of professional development in fire; foster collaboration, learning, and network building; and provide flexible opportunities with an emphasis on local context to train a variety of professionals with disparate needs. The strategy also offers an avenue for overcoming barriers faced by contingent and nonfederal fire professionals in attaining training and operational experience, thereby increasing the variety of actors and resources involved in fire management. Although it is an incremental step, the TREX is contributing to the adaptive capacity of institutions in social-ecological systems in which fire is a critical ecological process.

  1. A Fire Severity Mapping System (FSMS) for real-time management applications and long term planning: Developing a map of the landscape potential for severe fire in the western United States

    Science.gov (United States)

    Gregory K. Dillon; Zachary A. Holden; Penny Morgan; Bob Keane

    2009-01-01

    The Fire Severity Mapping System project is geared toward providing fire managers across the western United States with critical information for dealing with and planning for the ecological effects of wildfire at multiple levels of thematic, spatial, and temporal detail. For this project, we are developing a comprehensive, west-wide map of the landscape potential for...

  2. Life assessment and emissions monitoring of Indian coal-fired power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

  3. Account for fire induced loss of room cooling

    International Nuclear Information System (INIS)

    He Wei; Lin, J.

    2005-01-01

    temperature and the temperature at which the base case PRA failure rates were developed, and 2) mission time for the equipment operated at the elevated temperatures. With the mission time set to six hours, assuming a 60 degree F difference between the actual operating temperature and the temperature at which the PRA failure rates were established (180 degree F versus 120 degree F), the CDF and LERF increase by about 3.3% and 2.2%, respectively. Assuming a 100 degree F difference between the actual operating temperature and the temperature at which the PRA failure rates were established (180 degree F versus 80 degree F), the CDF and LERF increase by about 13.5 and 10.3%, respectively. The sensitivity results indicate that the plant risk might be significantly underestimated if the fire-induced loss of HVAC is not fully accounted for, in particular, if the equipment is exposed to elevated temperatures for an extended period of time, or the differences between the actual operating temperature and the temperature at which the PRA failure rates are based on are large. (authors)

  4. Fire modeling of the Heiss Dampf Reaktor containment

    International Nuclear Information System (INIS)

    Nicolette, V.F.; Yang, K.T.

    1995-09-01

    This report summarizes Sandia National Laboratories' participation in the fire modeling activities for the German Heiss Dampf Reaktor (HDR) containment building, under the sponsorship of the United States Nuclear Regulatory Commission. The purpose of this report is twofold: (1) to summarize Sandia's participation in the HDR fire modeling efforts and (2) to summarize the results of the international fire modeling community involved in modeling the HDR fire tests. Additional comments, on the state of fire modeling and trends in the international fire modeling community are also included. It is noted that, although the trend internationally in fire modeling is toward the development of the more complex fire field models, each type of fire model has something to contribute to the understanding of fires in nuclear power plants

  5. Fires and Food Safety

    Science.gov (United States)

    ... Forms FSIS United States Department of Agriculture Food Safety and Inspection Service About FSIS District Offices Careers ... JSR 286) Actions ${title} Loading... Fires and Food Safety Fire! Few words can strike such terror. Residential ...

  6. Effectiveness of Fire and Fire Surrogate Treatments For Controlling Wildfire Behavior in Piedmont Forests: A Simulation Study

    Science.gov (United States)

    Helen H. Mohr; Thomas A. Waldrop; Sandra Rideout; Ross J. Phillips; Charles T. Flint

    2004-01-01

    The need for fuel reduction has increased in United States forests due to decades of fire exclusion. Excessive fuel buildup has led to uncharacteristically severe fires in areas with historically short-interval, low-to-moderate-intensity fire regimes. The National Fire and Fire Surrogate (NFFS) Study compared the impacts of three fuel-reduction treatments on numerous...

  7. The Fire Brigade is training for the LHC

    CERN Multimedia

    2007-01-01

    Rescue exercise at Point 8: the CERN Fire Brigade works to save a virtual victim trapped under scaffolding in the LHCb cavern.The CERN Fire Brigade really is unique. Its mission is made even more difficult by the fact that it must be capable of responding to situations underground, in many kilometres of tunnels and dozens of shafts. These specialist skills have to be honed in preparation for LHC commissioning. With a view to meeting these requirements, the "Preparing for the LHC" training course was held for the second time on 23 and 24 May. "The aim of the course is to allow the Fire Brigade to familiarise itself with and use all the resources available in the event of a problem in the tunnel", explains Gilles Colin, who is in charge of training for the CERN Fire Brigade. The two-day programme is designed to train fire Brigade members in the techniques used to free and release trapped victims. Through a series of theoretical sess...

  8. Forest Fire Occurrence in Southern Counties, 1966-1975

    Science.gov (United States)

    M.L. Doolittle

    1977-01-01

    Forest fire occurrence data for individual protection units generally are unavailable outside particular state organization. Number of fires, area protected and fire occurrence rate (fires per 1,000,000 acres) from 1966 to 1975, are presented in tables for the 993 counties under protection in 13 southern states. These data are compared with data for the preceeding...

  9. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and

  10. Cultural missions in the state of Rio de Janeiro and its importance to the history of Fluminense education

    Directory of Open Access Journals (Sweden)

    Marcia da Silva Quaresma

    Full Text Available This work aims to analyze and to reflect upon the Cultural Missions that took place at Rio de Janeiro State during the years of 1944 and 1945 under the command of the Interventionist Amaral Peixoto. These Cultural Missions were inspired by the Mexican Cultural Missions that became source of discussions and studies during the 40’s and 50’s. The goal of Cultural Missions at Rio de Janeiro was to bring the community information about health, economy and civility using cinema, informal talks, practical workshops and home and institution visits. It was also the objective to register the day by day life of the population and its needs. All this gathered information was then reported to the State Government. This contribution provides a brief discussion about fundamental aspects of the Cultural Missions and the importance of the Fluminense Educational History.

  11. A Cost Benefit Analysis of Fire Scout Vertical Takeoff and Landing Tactical Unmanned Aerial Vehicle (VTUAV) Operator Alternatives

    Science.gov (United States)

    2012-03-01

    mile mission radius.24 Like the MH-60R manned helicopter, the Fire Scout mission systems suite includes Infrared Imaging, Electro Optical Imaging...homecoming just as sweet." dcmilitary.com. February 21, 2008. http:// ww2 .dcmilitary.com/stories/022108/southpotomac_28121.shtml (accessed February 29... ww2 .dcmilitary.com/stories/022108/southpotomac_28121.shtml (accessed February 29, 2012). Tilghman, Andrew. "Fire Scout Program could open door for

  12. Fire characteristics associated with firefighter injury on large federal wildland fires.

    Science.gov (United States)

    Britton, Carla; Lynch, Charles F; Torner, James; Peek-Asa, Corinne

    2013-02-01

    Wildland fires present many injury hazards to firefighters. We estimate injury rates and identify fire-related factors associated with injury. Data from the National Interagency Fire Center from 2003 to 2007 provided the number of injuries in which the firefighter could not return to his or her job assignment, person-days worked, and fire characteristics (year, region, season, cause, fuel type, resistance to control, and structures destroyed). We assessed fire-level risk factors of having at least one reported injury using logistic regression. Negative binomial regression was used to examine incidence rate ratios associated with fire-level risk factors. Of 867 fires, 9.5% required the most complex management and 24.7% required the next-highest level of management. Fires most often occurred in the western United States (82.8%), during the summer (69.6%), caused by lightening (54.9%). Timber was the most frequent fuel source (40.2%). Peak incident management level, person-days of exposure, and the fire's resistance to control were significantly related to the odds of a fire having at least one reported injury. However, the most complex fires had a lower injury incidence rate than less complex fires. Although fire complexity and the number of firefighters were associated with the risk for at least one reported injury, the more experienced and specialized firefighting teams had lower injury incidence. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Using the web tool GIS SPIDER for monitoring the state of forest cover in the pre- and post-fire periods

    Directory of Open Access Journals (Sweden)

    J. Villodre

    2013-09-01

    Full Text Available Pre- and post-wildland fire management will be improved by the knowledge of the stand conditions. Different types of quantitative and qualitative data, such as water stress, cover temperature or the Normalized Difference Vegetation Index (NDVI are critical for understanding fire risk, fire severity or vegetation recovering after the fire. Even though, there is a lack of easy accessible measurements about these topics. In this vein, remote sensing provides suitable information and in a global view about the canopy state: water balance, fire risk or the primary productivity estimation. It allows the monitoring of large areas in different temporal and spatial resolutions and with low cost. The output information can be disseminated using tools such as web-GIS based systems. In this paper the SPIDER (System of Participatory Information, Decision support, and Expert knowledge for irrigation and River basin water Management tool is presented, which allows monitoring canopy conditions before and after fires in a simple way and friendly environment. SPIDER is also able to analyse environmental conditions in almost the entire Iberian Peninsula, with a temporal resolution that ranges among 1 to 16 days. Images of NDVI, surface temperatures and water stress are based on MODIS aqua satellite images.Results show the potential of the system to the analysis of vegetation anomalies, monitoring of water stress, fire severity or the vegetation recovery after fire, in a dynamic way. The database allows multitemporal analysis of different parameters related to the state of the vegetation, growing, water deficit and fire severity degree. Further analysis of these data provides relevant information such as drought effects or catastrophic events in the vegetation.

  14. Penn State University ground software support for X-ray missions.

    Science.gov (United States)

    Townsley, L. K.; Nousek, J. A.; Corbet, R. H. D.

    1995-03-01

    The X-ray group at Penn State is charged with two software development efforts in support of X-ray satellite missions. As part of the ACIS instrument team for AXAF, the authors are developing part of the ground software to support the instrument's calibration. They are also designing a translation program for Ginga data, to change it from the non-standard FRF format, which closely parallels the original telemetry format, to FITS.

  15. Sky of ash, earth of ash: A brief history of fire in the United States

    International Nuclear Information System (INIS)

    Pyne, S.J.

    1991-01-01

    In this chapter, the author describes the history of fire practices in the United States from early man to the present. The effects of these practices on climates, natural resources, on ecological succession, and the establishment of environmental policy are discussed

  16. Climatic stress increases forest fire severity across the western United States

    Science.gov (United States)

    Phillip J. van Mantgem; Jonathan C.B. Nesmith; MaryBeth Keifer; Eric E. Knapp; Alan Flint; Lorriane Flint

    2013-01-01

    Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after...

  17. Tree mortality from fires, bark beetles, and timber harvest during a hot and dry decade in the western United States (2003-2012)

    Science.gov (United States)

    Berner, Logan T.; Law, Beverly E.; Meddens, Arjan J. H.; Hicke, Jeffrey A.

    2017-06-01

    High temperatures and severe drought contributed to extensive tree mortality from fires and bark beetles during the 2000s in parts of the western continental United States. Several states in this region have greenhouse gas (GHG) emission targets and would benefit from information on the amount of carbon stored in tree biomass killed by disturbance. We quantified mean annual tree mortality from fires, bark beetles, and timber harvest from 2003-2012 for each state in this region. We estimated tree mortality from fires and beetles using tree aboveground carbon (AGC) stock and disturbance data sets derived largely from remote sensing. We quantified tree mortality from harvest using data from US Forest Service reports. In both cases, we used Monte Carlo analyses to track uncertainty associated with parameter error and temporal variability. Regional tree mortality from harvest, beetles, and fires (MORTH+B+F) together averaged 45.8 ± 16.0 Tg AGC yr-1 (±95% confidence interval), indicating a mortality rate of 1.10 ± 0.38% yr-1. Harvest accounted for the largest percentage of MORTH+B+F (˜50%), followed by beetles (˜32%), and fires (˜18%). Tree mortality from harvest was concentrated in Washington and Oregon, where harvest accounted for ˜80% of MORTH+B+F in each state. Tree mortality from beetles occurred widely at low levels across the region, yet beetles had pronounced impacts in Colorado and Montana, where they accounted for ˜80% of MORTH+B+F. Tree mortality from fires was highest in California, though fires accounted for the largest percentage of MORTH+B+F in Arizona and New Mexico (˜50%). Drought and human activities shaped regional variation in tree mortality, highlighting opportunities and challenges to managing GHG emissions from forests. Rising temperatures and greater risk of drought will likely increase tree mortality from fires and bark beetles during coming decades in this region. Thus, sustained monitoring and mapping of tree mortality is necessary to

  18. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity

    Science.gov (United States)

    Sparks, Aaron M.; Kolden, Crystal A.; Smith, Alistair M. S.; Boschetti, Luigi; Johnson, Daniel M.; Cochrane, Mark A.

    2018-02-01

    Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy - FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred 1 year post-fire and ranged from -67 to -312 g C m-2 yr-1 (-13 to -54 %) across all fires. Forests dominated by fire-resistant species (species that typically survive low-intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire-resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose-response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.

  19. Fire patterns in piñon and juniper land cover types in the Semiarid Western United States from 1984 through 2013

    Science.gov (United States)

    David I. Board; Jeanne C. Chambers; Richard F. Miller; Peter J. Weisberg

    2018-01-01

    Increases in area burned and fire size have been reported across a wide range of forest and shrubland types in the Western United States in recent decades, but little is known about potential changes in fire regimes of piñon and juniper land cover types. We evaluated spatio-temporal patterns of fire in piñon and juniper land cover types from the National Gap Analysis...

  20. Review of vortices in wildland fire

    Science.gov (United States)

    Jason M. Forthofer; Scott L. Goodrick

    2011-01-01

    Vortices are almost always present in the wildland fire environment and can sometimes interact with the fire in unpredictable ways, causing extreme fire behavior and safety concerns. In this paper, the current state of knowledge of the interaction of wildland fire and vortices is examined and reviewed. A basic introduction to vorticity is given, and the two common...

  1. Prescribed fire research in Pennsylvania

    Science.gov (United States)

    Patrick Brose

    2009-01-01

    Prescribed fire in Pennsylvania is a relatively new forestry practice because of the State's adverse experience with highly destructive wildfires in the early 1900s. The recent introduction of prescribed fire raises a myriad of questions regarding its correct and safe use. This poster briefly describes the prescribed fire research projects of the Forestry Sciences...

  2. Effect of Environmental Variables on the Flammability of Fire Resistant Materials

    OpenAIRE

    Osorio, Andres Felipe

    2014-01-01

    This work investigates the effects of external radiation, ambient pressure and microgravity on the flammability limits of fire-resistant (FR) materials. Future space missions may require spacecraft cabin environments different than those used in the International Space Station, 21%O2, 101.3kPa. Environmental variables include flow velocity, oxygen concentration, ambient pressure, micro or partial-gravity, orientation, presence of an external radiant flux, etc. Fire-resistant materials are use...

  3. A mission to Mercury and a mission to the moons of Mars

    Science.gov (United States)

    1993-07-01

    Two Advanced Design Projects were completed this academic year at Penn State - a mission to the planet Mercury and a mission to the moons of Mars (Phobos and Deimos). At the beginning of the fall semester the students were organized into six groups and given their choice of missions. Once a mission was chosen, the students developed conceptual designs. These designs were then evaluated at the end of the fall semester and combined into two separate mission scenarios. To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form two mission teams. An integration team consisting of two members from each group was formed for each mission team so that communication and exchange of information would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Lewis Research Center Advanced Projects Office. Robotic planetary missions throughout the solar system can be considered valuable precursors to human visits and test beds for innovative technology. For example, by studying the composition of the Martian moons, scientists may be able to determine if their resources may be used or synthesized for consumption during a first human visit.

  4. Fire Risk Assessment in Germany

    International Nuclear Information System (INIS)

    Berg, H. P.

    2000-01-01

    Quantitative fire risk assessment can serve as an additional tool to assess the safety level of a nuclear power plant (NPP) and to set priorities for fire protection improvement measures. The recommended approach to be applied within periodic safety reviews of NPPs in Germany starts with a screening process providing critical fire zones in which a fully developed fire has the potential to both cause an initiating event and impair the function of at least one component or system critical to safety. The second step is to perform a quantitative analysis using a standard event tree has been developed with elements for fire initiation, ventilation of the room, fire detection, fire suppression, and fire propagation. In a final step, the fire induced frequency of initiating events, the main contributors and the calculated hazard state frequency for the fire event are determined. Results of the first quantitative fire risk studies performed in Germany are reported. (author)

  5. Synchronization of two coupled turbulent fires

    Science.gov (United States)

    Takagi, Kazushi; Gotoda, Hiroshi; Miyano, Takaya; Murayama, Shogo; Tokuda, Isao T.

    2018-04-01

    We numerically study the scale-free nature of a buoyancy-induced turbulent fire and synchronization of two coupled turbulent fires. A scale-free structure is detected in weighted networks between vortices, while its lifetime obeys a clear power law, indicating intermittent appearances, disappearances, and reappearances of the scale-free property. A significant decrease in the distance between the two fire sources gives rise to a synchronized state in the near field dominated by the unstable motion of large-scale of transverse vortex rings. The synchronized state vanishes in the far field forming well-developed turbulent plumes, regardless of the distance between the two fire sources.

  6. Fire effects on noxious weeds

    Science.gov (United States)

    Robin Innes

    2012-01-01

    The Fire Effects Information System (FEIS, www.fs.fed.us/database/feis/) has been providing reviews of scientific knowledge about fire effects since 1986. FEIS is an online collection of literature reviews on more than 1,100 species and their relationships with fire. Reviews cover plants and animals throughout the United States, providing a wealth of information for...

  7. FIRE, A Test Bed for ARIES-RS/AT Advanced Physics and Plasma Technology

    International Nuclear Information System (INIS)

    Meade, Dale M.

    2004-01-01

    The overall vision for FIRE [Fusion Ignition Research Experiment] is to develop and test the fusion plasma physics and plasma technologies needed to realize capabilities of the ARIES-RS/AT power plant designs. The mission of FIRE is to attain, explore, understand and optimize a fusion dominated plasma which would be satisfied by producing D-T [deuterium-tritium] fusion plasmas with nominal fusion gains ∼10, self-driven currents of ∼80%, fusion power ∼150-300 MW, and pulse lengths up to 40 s. Achieving these goals will require the deployment of several key fusion technologies under conditions approaching those of ARIES-RS/AT. The FIRE plasma configuration with strong plasma shaping, a double null pumped divertor and all metal plasma-facing components is a 40% scale model of the ARIES-RS/AT plasma configuration. ''Steady-state'' advanced tokamak modes in FIRE with high beta, high bootstrap fraction, and 100% noninductive current drive are suitable for testing the physics of the ARIES-RS/A T operating modes. The development of techniques to handle power plant relevant exhaust power while maintaining low tritium inventory is a major objective for a burning plasma experiment. The FIRE high-confinement modes and AT-modes result in fusion power densities from 3-10 MWm -3 and neutron wall loading from 2-4 MWm -2 which are at the levels expected from the ARIES-RS/AT design studies

  8. Frequency and distribution of forest, savanna, and crop fires over tropical regions during PEM-Tropics A

    Science.gov (United States)

    Olson, Jennifer R.; Baum, Bryan A.; Cahoon, Donald R.; Crawford, James H.

    1999-03-01

    Advanced very high resolution radiometer 1.1 km resolution satellite radiance data were used to locate active fires throughout much of the tropical region during NASA's Global Tropospheric Experiment (GTE) Pacific Exploratory Mission-Tropics (PEM-Tropics A) aircraft campaign, held in September and October 1996. The spatial and temporal distributions of the fires in Australia, southern Africa, and South America are presented here. The number of fires over northern Australia, central Africa, and South America appeared to decrease toward the end of the mission period. Fire over eastern Australia was widespread, and temporal patterns showed a somewhat consistent amount of burning with periodic episodes of enhanced fire counts observed. At least one episode of enhanced fire counts corresponded to the passage of a frontal system which brought conditions conducive to fire to the region, with strong westerlies originating over the hot, dry interior continent. Regions that were affected by lower than normal rainfall during the previous wet season (e.g., northern Australia and southwestern Africa) showed relatively few fires during this period. This is consistent with a drought-induced decrease in vegetation and therefore a decreased availability of fuel for burning. Alternatively, a heavier than normal previous wet season along the southeastern coast of South Africa may have contributed to high fuel loading and an associated relatively heavy amount of burning compared to data from previous years.

  9. A comparison of geospatially modeled fire behavior and fire management utility of three data sources in the southeastern United States

    Science.gov (United States)

    LaWen T. Hollingsworth; Laurie L. Kurth; Bernard R. Parresol; Roger D. Ottmar; Susan J. Prichard

    2012-01-01

    Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation...

  10. Mission environments for the Isotope Brayton Flight System (preliminary)

    International Nuclear Information System (INIS)

    1975-01-01

    The mission environments for the Isotope Brayton Flight Systems (IBFS) are summarized. These are based on (1) those environments established for the MHW-RTG system in the LES 8/9 and Mariner J/S and (2) engineering projections of those likely to exit for the IBFS. The pre-launch environments address transportation, storage, handling and assembly (to spacecraft) and checkout, field transportation, and launch site operations. Launch environments address the Titan IIIC and Shuttle launch vehicles. Operational mission environments address normal space temperature and meteoroide environments. Special environments that may be applicable to DOD missions are not included. Accident environments address explosion and fire for the Titan IIIC and the Shuttle, reentry, earth impact and post impact

  11. 77 FR 45650 - Interior Fire Program Assessment 2012

    Science.gov (United States)

    2012-08-01

    ... the Interior, Environment, and Related Agencies Appropriation Bill for fiscal year 2012, the House of... management services in support of the Departmental and bureau missions and to better direct scarce resources... been conducted as they are a major partner in the Federal wildland fire management program. On June 19...

  12. 350 Years of Fire-Climate-Human Interactions in a Great Lakes Sandy Outwash Plain

    Directory of Open Access Journals (Sweden)

    Richard P. Guyette

    2016-08-01

    Full Text Available Throughout much of eastern North America, quantitative records of historical fire regimes and interactions with humans are absent. Annual resolution fire scar histories provide data on fire frequency, extent, and severity, but also can be used to understand fire-climate-human interactions. This study used tree-ring dated fire scars from red pines (Pinus resinosa at four sites in the Northern Sands Ecological Landscapes of Wisconsin to quantify the interactions among fire occurrence and seasonality, drought, and humans. New methods for assessing the influence of human ignitions on fire regimes were developed. A temporal and spatial index of wildland fire was significantly correlated (r = 0.48 with drought indices (Palmer Drought Severity Index, PDSI. Fire intervals varied through time with human activities that included early French Jesuit missions, European trade (fur, diseases, war, and land use. Comparisons of historical fire records suggest that annual climate in this region has a broad influence on the occurrence of fire years in the Great Lakes region.

  13. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven fire...

  14. The Joint Fire Science Program Fire Exchange Network: Facilitating Knowledge Exchange About Wildland Fire Science Across the U.S.

    Science.gov (United States)

    York, A.; Blocksome, C.; Cheng, T.; Creighton, J.; Edwards, G.; Frederick, S.; Giardina, C. P.; Goebel, P. C.; Gucker, C.; Kobziar, L.; Lane, E.; Leis, S.; Long, A.; Maier, C.; Marschall, J.; McGowan-Stinski, J.; Mohr, H.; MontBlanc, E.; Pellant, M.; Pickett, E.; Seesholtz, D.; Skowronski, N.; Stambaugh, M. C.; Stephens, S.; Thode, A.; Trainor, S. F.; Waldrop, T.; Wolfson, B.; Wright, V.; Zedler, P.

    2014-12-01

    The Joint Fire Science Program's (JFSP) Fire Exchange Network is actively working to accelerate the awareness, understanding, and adoption of wildland fire science information by federal, tribal, state, local, and private stakeholders within ecologically similar regions. Our network of 15 regional exchanges provides timely, accurate, and regionally relevant science-based information to assist with fire management challenges. Regional activities, through which we engage fire and resource managers, scientists, and private landowners, include online newsletters and announcements, social media, regionally focused web-based clearinghouses of relevant science, field trips and demonstration sites, workshops and conferences, webinars and online training, and syntheses and fact sheets. Exchanges also help investigators design research that is relevant to regional management needs and assist with technology transfer to management audiences. This poster provides an introduction to and map of the regional exchanges.

  15. Simulating wall and corner fire tests on wood products with the OSU room fire model

    Science.gov (United States)

    H. C. Tran

    1994-01-01

    This work demonstrates the complexity of modeling wall and corner fires in a compartment. The model chosen for this purpose is the Ohio State University (OSU) room fire model. This model was designed to simulate fire growth on walls in a compartment and therefore lends itself to direct comparison with standard room test results. The model input were bench-scale data...

  16. 46 CFR 28.315 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... After September 15, 1991, and That Operate With More Than 16 Individuals on Board § 28.315 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel 36 feet (11.8 meters) or more in length must...

  17. Advancing dendrochronological studies of fire in the United States

    Science.gov (United States)

    Grant L. Harley; Christopher H. Baisan; Peter M. Brown; Donald A. Falk; William T. Flatley; Henri D. Grissino-Mayer; Amy Hessl; Emily K. Heyerdahl; Margot W. Kaye; Charles W. Lafon; Ellis Q. Margolis; R. Stockton Maxwell; Adam T. Naito; William J. Platt; Monica T. Rother; Thomas Saladyga; Rosemary L. Sherriff; Lauren A. Stachowiak; Michael C. Stambaugh; Elaine Kennedy Sutherland; Alan H. Taylor

    2018-01-01

    Dendroecology is the science that dates tree rings to their exact calendar year of formation to study processes that influence forest ecology (e.g., Speer 2010 [1], Amoroso et al., 2017 [2]). Reconstruction of past fire regimes is a core application of dendroecology, linking fire history to population dynamics and climate effects on tree growth and survivorship. Since...

  18. Development of a risk informed fire protection program

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, J.; McDevitt, B.; Sawyer, O.; Volk, M.A.; Drennan, J.; Sweely, C.

    2015-07-01

    Over the past decade, one of the largest challenges for the Nuclear Power Plant (NPP) Operator in the United States has been the implementation of risk-informed, performance-based (RI-PB) fire protection strategies into their fire protection program. Regardless of whether a utility decides to fully transition their licensing basis from deterministic to risk based, or if they simply complete a fire probabilistic risk assessment (FPRA) in order to augment their current program, it is clear that risk-informed, performance based fire protection strategies and the associated challenges are the growing trend in the United States and are here to stay. The experience of the nuclear industry in the United States with the implementation of RI-PB fire protection strategies can provide a great deal of insight for plants and utilities that follow, either by choice or necessity, a similar path. The similarities in the design of the United States and Spanish nuclear plants make these insights even more significant contributions to the strategy and planning for the Spanish fleet. The experience in United States will provide guidance to avoid similar missteps and better plan for the challenges of the transition process. As the Spanish fleet develops risk-informed and deterministic strategies to improve fire safety, an understanding of the challenges and lessons learned from the United States experience will save time and money. (Author)

  19. Chemistry fighting against fires

    International Nuclear Information System (INIS)

    Raffalsky, K.

    1975-01-01

    A detailed report is given on the general principle 'fire' and on fires as fast chemical reactions between consumable material and oxygen of the air (exothermal oxidation) as well as on the classes of fires A to D. Class D includes strongly incadescent burnable metals such as K, Na, Li, Cs, Rb, U, Pu, Ce, Zr, Be, Ca, Sr, Ba etc. The burning process, the extinguishing effects, the development of the extinguisher and its present state are individually dealt with. (HK/LH) [de

  20. Optimal fire histories for biodiversity conservation.

    Science.gov (United States)

    Kelly, Luke T; Bennett, Andrew F; Clarke, Michael F; McCarthy, Michael A

    2015-04-01

    Fire is used as a management tool for biodiversity conservation worldwide. A common objective is to avoid population extinctions due to inappropriate fire regimes. However, in many ecosystems, it is unclear what mix of fire histories will achieve this goal. We determined the optimal fire history of a given area for biological conservation with a method that links tools from 3 fields of research: species distribution modeling, composite indices of biodiversity, and decision science. We based our case study on extensive field surveys of birds, reptiles, and mammals in fire-prone semi-arid Australia. First, we developed statistical models of species' responses to fire history. Second, we determined the optimal allocation of successional states in a given area, based on the geometric mean of species relative abundance. Finally, we showed how conservation targets based on this index can be incorporated into a decision-making framework for fire management. Pyrodiversity per se did not necessarily promote vertebrate biodiversity. Maximizing pyrodiversity by having an even allocation of successional states did not maximize the geometric mean abundance of bird species. Older vegetation was disproportionately important for the conservation of birds, reptiles, and small mammals. Because our method defines fire management objectives based on the habitat requirements of multiple species in the community, it could be used widely to maximize biodiversity in fire-prone ecosystems. © 2014 Society for Conservation Biology.

  1. Fighting fire in the heat of the day: An analysis of operational and environmental conditions of use for large airtankers in United States fire suppression

    Science.gov (United States)

    Crystal S. Stonesifer; Dave Calkin; Matthew P. Thompson; Keith D. Stockmann

    2016-01-01

    Large airtanker use is widespread in wildfire suppression in the United States. The current approach to nationally dispatching the fleet of federal contract airtankers relies on filling requests for airtankers to achieve suppression objectives identified by fire managers at the incident level. In general, demand is met if resources are available, and the...

  2. U.S. Secretary of State addresses launch team

    Science.gov (United States)

    1998-01-01

    In a firing room of the Launch Control Center, U.S. Secretary of State Madeleine Albright speaks to the launch team after the successful launch of Space Shuttle Endeavour at 3:35:34 a.m. EST. During the nearly 12-day mission of STS-88, the six-member crew will mate in space the first two elements of the International Space Station -- the already-orbiting Zarya control module and the Unity connecting module carried by Endeavour.

  3. Experience gained from fires in nuclear power plants: Lessons learned

    International Nuclear Information System (INIS)

    2004-11-01

    In 1993, the IAEA launched a programme to assist Member States in improving fire safety in nuclear power plants (NPPs). The review of fire safety assessment in many plants has shown that fire is one of the most important risk contributors for NPPs. Moreover, operational experience has confirmed that many events have a similar root cause, initiation and development mechanism. Therefore, many States have improved the analysis of their operational experience and its feedback. States that operate NPPs play an important role in the effort to improve fire safety by circulating their experience internationally - this exchange of information can effectively prevent potential events. When operating experience is well organized and made accessible, it can feed an improved fire hazard assessment on a probabilistic basis. The practice of exchanging operational experience seems to be bearing fruit: serious events initiated by fire are on the decline at plants in operating States. However, to maximize this effort, means for communicating operational experience need to be continuously improved and the pool of recipients of operational experience data enlarged. The present publication is the third in a series started in 1998 on fire events, the first two were: Root Cause Analysis for Fire Events (IAEA-TECDOC-1112) and Use of Operational Experience in Fire Safety Assessment of Nuclear Power Plants (IAEA-TECDOC-1134). This TECDOC summarizes the experience gained and lessons learned from fire events at operating plants, supplemented by specific Member State experiences. In addition, it provides a possible structure of an international fire and explosion event database aimed at the analysis of experience from fire events and the evaluation of fire hazard. The intended readership of this is operators of plants and regulators. The present report includes a detailed analysis of the most recent events compiled with the IAEA databases and other bibliographic sources. It represents a

  4. Coal Field Fire Fighting - Practiced methods, strategies and tactics

    Science.gov (United States)

    Wündrich, T.; Korten, A. A.; Barth, U. H.

    2009-04-01

    Subsurface coal fires destroy millions of tons of coal each year, have an immense impact to the ecological surrounding and threaten further coal reservoirs. Due to enormous dimensions a coal seam fire can develop, high operational expenses are needed. As part of the Sino-German coal fire research initiative "Innovative technologies for exploration, extinction and monitoring of coal fires in Northern China" the research team of University of Wuppertal (BUW) focuses on fire extinction strategies and tactics as well as aspects of environmental and health safety. Besides the choice and the correct application of different extinction techniques further factors are essential for the successful extinction. Appropriate tactics, well trained and protected personnel and the choice of the best fitting extinguishing agents are necessary for the successful extinction of a coal seam fire. The chosen strategy for an extinction campaign is generally determined by urgency and importance. It may depend on national objectives and concepts of coal conservation, on environmental protection (e.g. commitment to green house gases (GHG) reductions), national funding and resources for fire fighting (e.g. personnel, infrastructure, vehicles, water pipelines); and computer-aided models and simulations of coal fire development from self ignition to extinction. In order to devise an optimal fire fighting strategy, "aims of protection" have to be defined in a first step. These may be: - directly affected coal seams; - neighboring seams and coalfields; - GHG emissions into the atmosphere; - Returns on investments (costs of fire fighting compared to value of saved coal). In a further step, it is imperative to decide whether the budget shall define the results, or the results define the budget; i.e. whether there are fixed objectives for the mission that will dictate the overall budget, or whether the limited resources available shall set the scope within which the best possible results shall be

  5. Concepts for Future Large Fire Modeling

    Science.gov (United States)

    A. P. Dimitrakopoulos; R. E. Martin

    1987-01-01

    A small number of fires escape initial attack suppression efforts and become large, but their effects are significant and disproportionate. In 1983, of 200,000 wildland fires in the United States, only 4,000 exceeded 100 acres. However, these escaped fires accounted for roughly 95 percent of wildfire-related costs and damages (Pyne, 1984). Thus, future research efforts...

  6. Preface: Special issue on wildland fires

    Science.gov (United States)

    Alistair M. S. Smith; James A. Lutz; Chad M. Hoffman; Grant J. Williamson; Andrew T. Hudak

    2018-01-01

    Wildland fires are a critical Earth-system process that impacts human populations in each settled continent [1,2]. Wildland fires have often been stated as being essential to human life and civilization through the impacts on land clearance, agriculture, and hunting, with fire as a phenomenon serving a key role in the development of agricultural and industrial...

  7. Engineering Status of the Fusion Ignition Research Experiment (FIRE)

    International Nuclear Information System (INIS)

    Heitzenroeder, Philip J.; Meade, Dale; Thome, Richard J.

    2000-01-01

    FIRE is a compact, high field tokamak being studied as an option for the next step in the US magnetic fusion energy program. FIRE's programmatic mission is to attain, explore, understand, and optimize alpha-dominated plasmas to provide the knowledge necessary for the design of attractive magnetic fusion energy systems. This study began in 1999 with broad participation of the US fusion community, including several industrial participants. The design under development has a major radius of 2 m, a minor radius of 0.525 m, a field on axis of 10T and capability to operate at 12T with upgrades to power supplies. Toroidal and poloidal field magnets are inertially cooled with liquid nitrogen. An important goal for FIRE is a total project cost in the $1B range. This paper presents an overview of the engineering details which were developed during the FIRE preconceptual design study in FY99 and 00

  8. INIR: Integrated Nuclear Infrastructure Review Missions. Guidance on Preparing and Conducting INIR Missions (Rev. 1)

    International Nuclear Information System (INIS)

    2011-04-01

    The IAEA's Integrated Nuclear Infrastructure Review (INIR) missions are designed to assist Member States, at their request, in evaluating the status of their national infrastructure for the introduction of a nuclear power programme. Each INIR mission is coordinated and led by the IAEA and conducted by a team of international experts drawn from Member States who have experience in different aspects of developing and deploying nuclear infrastructure. The IAEA publication Milestones in the Development of a National Infrastructure for Nuclear Power (IAEA Nuclear Energy Series No. NG-G-3.1) contains a description of 19 infrastructure issues to be considered during the different stages of development of a nuclear power programme. The starting point for an INIR mission is a self-evaluation performed by the Member State against these infrastructure issues. Following the self-evaluation, the INIR mission reviews the status of the national nuclear infrastructure, identifies existing gaps in specific infrastructure-related areas and proposes recommendations to fill these gaps. The INIR mission provides Member State representatives with an opportunity to have in depth discussions with international experts about experiences and best practices in different countries. In developing its recommendations, the INIR team takes into account the comments made by the relevant national organizations. Implementation of any of the team's recommendations is at the discretion of the Member State requesting the mission. The results of the INIR mission are expected to help the Member State to develop an action plan to fill any gaps, which in turn will help the development of the national nuclear infrastructure. The IAEA stands ready to assist, as requested and appropriate, in the different steps of this action plan. This guidance publication is directed to assist in preparing and conducting the INIR missions. It was developed under the coordination of the IAEA Integrated Nuclear Infrastructure

  9. Fire forbids fifty-fifty forest

    Science.gov (United States)

    Staal, Arie; Hantson, Stijn; Holmgren, Milena; Pueyo, Salvador; Bernardi, Rafael E.; Flores, Bernardo M.; Xu, Chi; Scheffer, Marten

    2018-01-01

    Recent studies have interpreted patterns of remotely sensed tree cover as evidence that forest with intermediate tree cover might be unstable in the tropics, as it will tip into either a closed forest or a more open savanna state. Here we show that across all continents the frequency of wildfires rises sharply as tree cover falls below ~40%. Using a simple empirical model, we hypothesize that the steepness of this pattern causes intermediate tree cover (30‒60%) to be unstable for a broad range of assumptions on tree growth and fire-driven mortality. We show that across all continents, observed frequency distributions of tropical tree cover are consistent with this hypothesis. We argue that percolation of fire through an open landscape may explain the remarkably universal rise of fire frequency around a critical tree cover, but we show that simple percolation models cannot predict the actual threshold quantitatively. The fire-driven instability of intermediate states implies that tree cover will not change smoothly with climate or other stressors and shifts between closed forest and a state of low tree cover will likely tend to be relatively sharp and difficult to reverse. PMID:29351323

  10. Fire forbids fifty-fifty forest.

    Science.gov (United States)

    van Nes, Egbert H; Staal, Arie; Hantson, Stijn; Holmgren, Milena; Pueyo, Salvador; Bernardi, Rafael E; Flores, Bernardo M; Xu, Chi; Scheffer, Marten

    2018-01-01

    Recent studies have interpreted patterns of remotely sensed tree cover as evidence that forest with intermediate tree cover might be unstable in the tropics, as it will tip into either a closed forest or a more open savanna state. Here we show that across all continents the frequency of wildfires rises sharply as tree cover falls below ~40%. Using a simple empirical model, we hypothesize that the steepness of this pattern causes intermediate tree cover (30‒60%) to be unstable for a broad range of assumptions on tree growth and fire-driven mortality. We show that across all continents, observed frequency distributions of tropical tree cover are consistent with this hypothesis. We argue that percolation of fire through an open landscape may explain the remarkably universal rise of fire frequency around a critical tree cover, but we show that simple percolation models cannot predict the actual threshold quantitatively. The fire-driven instability of intermediate states implies that tree cover will not change smoothly with climate or other stressors and shifts between closed forest and a state of low tree cover will likely tend to be relatively sharp and difficult to reverse.

  11. Impacts of TMDLs on coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Environmental Science Division

    2010-04-30

    The Clean Water Act (CWA) includes as one of its goals restoration and maintenance of the chemical, physical, and biological integrity of the Nation's waters. The CWA established various programs to accomplish that goal. Among the programs is a requirement for states to establish water quality standards that will allow protection of the designated uses assigned to each water body. Once those standards are set, state agencies must sample the water bodies to determine if water quality requirements are being met. For those water bodies that are not achieving the desired water quality, the state agencies are expected to develop total maximum daily loads (TMDLs) that outline the maximum amount of each pollutant that can be discharged to the water body and still maintain acceptable water quality. The total load is then allocated to the existing point and nonpoint sources, with some allocation held in reserve as a margin of safety. Many states have already developed and implemented TMDLs for individual water bodies or regional areas. New and revised TMDLs are anticipated, however, as federal and state regulators continue their examination of water quality across the United States and the need for new or revised standards. This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements its overall research effort by evaluating water issues that could impact power plants. One of the program missions of the DOE's NETL is to develop innovative environmental control technologies that will enable full use of the Nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. Some of the parameters for which TMDLs are being developed are components in discharges

  12. SAC-C Mission and the Morning Constellation

    Science.gov (United States)

    Colomb, F. R.; Alonso, C.; Hofmann, C.; Frulla, L.; Nollmann, I.; Milovich, J.; Kuba, J.; Ares, F.; Kalemkarian, M.

    2002-01-01

    components (ICARE), provided by CNES will permit improvement of risk estimation models for radiation effect on last generation integrated circuit technology. . On June 14th, 2000 CONAE and NASA signed an amendment to the Memorandum of Understanding for the SAC-C mission in order that the SAC-C satellite, were included in a constellation - named "Morning Constellation". It is integrated by USA satellites Landsat 7, EO 1, Terra, and Argentine SAC-C that feature on-board instruments from the United States, Argentina, Denmark, Italy, France, and Japan. The four satellite tracks on the Earth's surface are the same, their orbital height being 705 km and their inclination, 98.21 degrees. They cross the Equator at 10:00, 10:01, 10:15, and 10:30 hours, respectively (local time). Satellites comply with the World Wide Reference System. The Constellation has been working since March 2001 as a single mission and several cooperative activities have been undertaken and will be presented in this paper. Several jointly sponsored technical workshops have been held, and also collaborative spacecraft navigation experiments have been made. One of the objectives of the AM Constellation is the collaboration in the case of emergencies, NASA and CONAE agreed to give preference in those situation in the planification of their satellite acquisitions. From all the possible hazardous events, the most important for the country are fire and floods. In relation to fires, CONAE is presently adapting and developing the algorithms for using MODIS data to generate a fire map product. Additionally research on fire detection is carried out using the data from the HSTC camera. In relation to flooding, CONAE works in cooperation to national institutions providing the data and, in some cases, producing flood extent maps. In particular MMRS data is demonstrating to be very effective due to its spectral and radiometric resolutions, and its large swath which is well suited for extended countries like Argentina.

  13. Quantifying the multi-scale response of avifauna to prescribed fire experiments in the southwest United States

    Science.gov (United States)

    Brett G. Dickson; Barry R. Noon; Curtis H. Flather; Stephanie Jentsch; William M. Block

    2009-01-01

    Landscape-scale disturbance events, including ecological restoration and fuel reduction activities, can modify habitat and affect relationships between species and their environment. To reduce the risk of uncharacteristic stand-replacing fires in the southwestern United States, land managers are implementing restoration and fuels treatments (e.g., mechanical thinning,...

  14. Thinning and prescribed fire and projected trends in wood product potential, financial return, and fire hazard in Montana.

    Science.gov (United States)

    R. James Barbour; Roger D. Fight; Glenn A. Christensen; Guy L. Pinjuv; Rao V. Nagubadi

    2004-01-01

    This work was undertaken under a joint fire science project "Assessing the need, costs, and potential benefits of prescribed fire and mechanical treatments to reduce fire hazard." This paper compares the future mix of timber products under two treatment scenarios for the state of Montana. We developed and demonstrated an analytical method that uses readily...

  15. Ecological consequences of alternative fuel reduction treatments in seasonally dry forests: the national fire and fire surrogate study

    Science.gov (United States)

    J.D. McIver; C.J. Fettig

    2010-01-01

    This special issue of Forest Science features the national Fire and Fire Surrogate study (FFS), a niultisite, multivariate research project that evaluates the ecological consequences of prescribed fire and its mechanical surrogates in seasonally dry forests of the United States. The need for a comprehensive national FFS study stemmed from concern that information on...

  16. Development and validation of sodium fire codes

    International Nuclear Information System (INIS)

    Morii, Tadashi; Himeno Yoshiaki; Miyake, Osamu

    1989-01-01

    Development, verification, and validation of the spray fire code, SPRAY-3M, the pool fire codes, SOFIRE-M2 and SPM, the aerosol behavior code, ABC-INTG, and the simultaneous spray and pool fires code, ASSCOPS, are presented. In addition, the state-of-the-art of development of the multi-dimensional natural convection code, SOLFAS, for the analysis of heat-mass transfer during a fire, is presented. (author)

  17. Fire risk assessment in Germany. Procedure, data, results

    International Nuclear Information System (INIS)

    Berg, H.P.

    2000-01-01

    The recommended approach for a quantitative fire risk assessment to be applied within periodic safety reviews of nuclear power plants in Germany starts with a screening process providing critical fire zones and is followed by a quantitative analysis using a standard event tree with elements for fire initiation, ventilation of the room, fire detection, fire suppression, and fire propagation. In a final step, the fire induced frequency of initiating events, the main contributors and the calculated hazard state frequency for the fire event are determined. For that purpose, a comprehensive data base is needed which has been developed in particular for active fire protection measures. As an example results of one fire PSA are reported. (author)

  18. Biomass co-firing opportunities and experiences

    Energy Technology Data Exchange (ETDEWEB)

    Lyng, R. [Ontario Power Generation Inc., Niagara Falls, ON (Canada). Nanticoke Generating Station

    2006-07-01

    Biomass co-firing and opportunities in the electricity sector were described in this presentation. Biomass co-firing in a conventional coal plant was first illustrated. Opportunities that were presented included the Dutch experience and Ontario Power Generation's (OPG) plant and production mix. The biomass co-firing program at OPG's Nantucket generating station was presented in three phases. The fuel characteristics of co-firing were identified. Several images and charts of the program were provided. Results and current status of tests were presented along with conclusions of the biomass co-firing program. It was concluded that biomass firing is feasible and following the Dutch example. Biomass firing could considerably expand renewable electricity generation in Ontario. In addition, sufficient biomass exists in Ontario and the United States to support large scale biomass co-firing. Several considerations were offered such as electricity market price for biomass co-firing and intensity targets and credit for early adoption and banking. tabs., figs.

  19. Latent resilience in ponderosa pine forest: effects of resumed frequent fire.

    Science.gov (United States)

    Larson, Andrew J; Belote, R Travis; Cansler, C Alina; Parks, Sean A; Dietz, Matthew S

    2013-09-01

    Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels, but also stimulated establishment of a dense cohort of lodgepole pine, maintaining a trajectory toward an alternative state. Resumption of a frequent fire regime by a second fire in 2011 restored a low-density forest dominated by large-diameter ponderosa pine by eliminating many regenerating lodgepole pines and by continuing to remove surface fuels and small-diameter lodgepole pine and Douglas-fir that established during the fire suppression era. Our data demonstrate that some unlogged, fire-excluded, ponderosa pine forests possess latent resilience to reintroduced fire. A passive model of simply allowing lightning-ignited fires to burn appears to be a viable approach to restoration of such forests.

  20. Post-fire response of coast redwood one year after the Mendocino lightning complex fires

    Science.gov (United States)

    Robert B. Douglas; Tom. Bendurel

    2012-01-01

    Coast redwood (Sequoia sempervirens) forests have undergone significant changes over the past century and are now in state more conducive for wildfires. Because fires have been uncommon in redwood forests over the past 80 years, managers have limited data to make decisions about the post-fire environment. In June 2008, a series of lightning storms...

  1. Fire test of container for radioactive materials under the condition of transportation state

    International Nuclear Information System (INIS)

    Miyazaki, Sanae; Shimada, Hirohisa

    1986-01-01

    To secure the safe transportation of container for radioactive materials, furnace and open fire test for the thermal test of container are provided. Therefore, we have carried out furnace and open fire test using test model simulating a transportation state. Test model used in this test is made of stainless steel with diameter of 200 mm and length of 400 mm, and is set on the rest as in the case of transportation state. From the data on temperature measurement, some interesting results are obtained as follows. Near the surface of model, the temperature gradient in the direction perpendicular to the surface of model with the rest is greater than that without the rest. The temperature rise at the center of the model with the rest is less than that without the rest. In the experiment, temperature distributions are measured in the three radial directions. The temperature differences among three distributions in the model with rest are greater than that without rest. On the other hand, in the furnace test, the heat transfer coefficient on the surface of test model with the rest is 90 - 140 kcal/m 2 h · K for the range of furnace temperature from 700 to 950 deg C and this value is almost equal to the value without the rest. (author)

  2. Predicting wildfire ignitions, escapes, and large fire activity using Predictive Service’s 7-Day Fire Potential Outlook in the western USA

    Science.gov (United States)

    Karin L. Riley; Crystal Stonesifer; Haiganoush Preisler; Dave Calkin

    2014-01-01

    Can fire potential forecasts assist with pre-positioning of fire suppression resources, which could result in a cost savings to the United States government? Here, we present a preliminary assessment of the 7-Day Fire Potential Outlook forecasts made by the Predictive Services program. We utilized historical fire occurrence data and archived forecasts to assess how...

  3. Cigarette Fires Involving Upholstered Furniture in Residences: The Role that Smokers, Smoker Behavior, and Fire Standard Compliant Cigarettes Play

    Science.gov (United States)

    Butry, David T.; Thomas, Douglas S.

    2017-01-01

    Residential structure fires pose a significant risk to life and property. A major source of these fires is the ignition of upholstered furniture by cigarettes. It has long been established that cigarettes and other lighted tobacco products could ignite upholstered furniture and were a leading cause of fire deaths in residences. In recent years, states have adopted fire standard compliant cigarettes (‘FSC cigarettes’) that are made with a wrapping paper that contains regularly spaced bands, which increases the likelihood of self-extinguishment. This paper measures the effectiveness of FSC cigarettes on the number of residential fires involving upholstered furniture, and the resulting fatalities, injuries, and extent of flame spread, while accounting for the under-reporting of fire incidents. In total, four models were estimated using fire department data from 2002 to 2011. The results provide evidence that FSC cigarettes, on average, reduced the number of residential fires by 45 %, reduced fatalities by 23 %, and extent of flame spread by 27 % in 2011. No effect on injuries was found. Within each state, effectiveness is moderated by the number of smokers and their consumption patterns. In general, FSC cigarettes are more effective in places with a large smoking population who engage in heavier smoking. There is a very limited effect on the lightest of smokers, suggesting behavioral differences between heavy and light smokers that influence fire risk. PMID:28751788

  4. Living with fire: Fire ecology and policy for the twenty-first century [book review

    Science.gov (United States)

    Carol Miller

    2010-01-01

    This is a well-written polemic about the failure of fire policy and management in the United States. The book contains enough ecology and history for nonspecialists to understand the complexities of the policy and management dilemmas that we face today. The authors provide a particularly good treatment of the diversity of roles that fire plays in different ecosystems,...

  5. Understorey fire propagation and tree mortality on adjacent areas to an Amazonian deforestation fire

    Science.gov (United States)

    J.A. Carvalho; C.A. Gurgel Veras; E.C. Alvarado; D.V. Sandberg; S.J. Leite; R. Gielow; E.R.C. Rabelo; J.C. Santos

    2010-01-01

    Fire characteristics in tropical ecosystems are poorly documented quantitatively in the literature. This paper describes an understorey fire propagating across the edges of a biomass burn of a cleared primary forest. The experiment was carried out in 2001 in the Amazon forest near Alta Floresta, state of Mato Grosso, Brazil, as part of biomass burning experiments...

  6. Visibility analysis of fire lookout towers in the Boyabat State Forest Enterprise in Turkey.

    Science.gov (United States)

    Kucuk, Omer; Topaloglu, Ozer; Altunel, Arif Oguz; Cetin, Mehmet

    2017-07-01

    For a successful fire suppression, it is essential to detect and intervene forest fires as early as possible. Fire lookout towers are crucial assets in detecting forest fires, in addition to other technological advancements. In this study, we performed a visibility analysis on a network of fire lookout towers currently operating in a relatively fire-prone region in Turkey's Western Black Sea region. Some of these towers had not been functioning properly; it was proposed that these be taken out of the grid and replaced with new ones. The percentage of visible areas under the current network of fire lookout towers was 73%; it could rise to 81% with the addition of newly proposed towers. This study was the first research to conduct a visibility analysis of current and newly proposed fire lookout towers in the Western Black Sea region and focus on its forest fire problem.

  7. The Western States Water Mission: A Hyper-Resolution Hydrological Model and Data Integration Platform for the Western United States

    Science.gov (United States)

    Famiglietti, J. S.; David, C. H.; Reager, J. T., II; Oaida, C.; Stampoulis, D.; Levoe, S.; Liu, P. W.; Trangsrud, A.; Basilio, R. R.; Allen, G. H.; Crichton, D. J.; Emery, C. M.; Farr, T.; Granger, S. L.; Hobbs, J.; Malhotra, S.; Osterman, G. B.; Rueckert, M.; Turmon, M.

    2017-12-01

    The Western States Water Mission (WSWM) is a high-resolution (3 km2), hydrological model and data integration platform under development at the Jet Propulsion Laboratory for the last 2 years. Distinctive features of the WSWM are its explicit representations of river networks and deep groundwater, an emphasis on uncertainty quantification, a major visualization and data distribution effort, and its focus on multivariate data assimilation, including GRACE/FO, SMAP, SWOT and MODSCAG fractional snow covered area. Importantly, the WSWM is actively managed as a flight project, i.e. with the rigor of a satellite mission. In this presentation we give an overview of the WSWM, including past accomplishments status, and future plans. In particular, results from recent 30-year simulations with GRACE and MODSCAG assimilation will be presented.

  8. CERN Fire Brigade rescue simulation

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The CERN Fire Brigade is made up of experienced firemen from all of the 20 Member States. In these images they are seen at a 'Discovery Monday' held at the Microcosm exhibition. Here visitors learn how the Fire Brigade deal with various situations, including a simulated cave rescue performed by the Hazardous Environments Response Team.

  9. Post-fire debris flow prediction in Western United States: Advancements based on a nonparametric statistical technique

    Science.gov (United States)

    Nikolopoulos, E. I.; Destro, E.; Bhuiyan, M. A. E.; Borga, M., Sr.; Anagnostou, E. N.

    2017-12-01

    Fire disasters affect modern societies at global scale inducing significant economic losses and human casualties. In addition to their direct impacts they have various adverse effects on hydrologic and geomorphologic processes of a region due to the tremendous alteration of the landscape characteristics (vegetation, soil properties etc). As a consequence, wildfires often initiate a cascade of hazards such as flash floods and debris flows that usually follow the occurrence of a wildfire thus magnifying the overall impact in a region. Post-fire debris flows (PFDF) is one such type of hazards frequently occurring in Western United States where wildfires are a common natural disaster. Prediction of PDFD is therefore of high importance in this region and over the last years a number of efforts from United States Geological Survey (USGS) and National Weather Service (NWS) have been focused on the development of early warning systems that will help mitigate PFDF risk. This work proposes a prediction framework that is based on a nonparametric statistical technique (random forests) that allows predicting the occurrence of PFDF at regional scale with a higher degree of accuracy than the commonly used approaches that are based on power-law thresholds and logistic regression procedures. The work presented is based on a recently released database from USGS that reports a total of 1500 storms that triggered and did not trigger PFDF in a number of fire affected catchments in Western United States. The database includes information on storm characteristics (duration, accumulation, max intensity etc) and other auxiliary information of land surface properties (soil erodibility index, local slope etc). Results show that the proposed model is able to achieve a satisfactory prediction accuracy (threat score > 0.6) superior of previously published prediction frameworks highlighting the potential of nonparametric statistical techniques for development of PFDF prediction systems.

  10. Hot-Fire Testing of a 1N AF-M315E Thruster

    Science.gov (United States)

    Burnside, Christopher G.; Pedersen, Kevin; Pierce, Charles W.

    2015-01-01

    This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends. NASA completed a hot-fire test of a 1N AF-M315E monopropellant thruster at the Marshall Space Flight Center in the small altitude test stand located in building 4205. The thruster is a ground test article used for basic performance determination and catalyst studies. The purpose of the hot-fire testing was for performance determination of a 1N size thruster and form a baseline from which to study catalyst performance and life with follow-on testing to be conducted at a later date. The thruster performed as expected. The result of the hot-fire testing are presented in this paper and presentation.

  11. Forest fire danger index based on modifying Nesterov Index, fuel, and anthropogenic activities using MODIS TERRA, AQUA and TRMM satellite datasets

    Science.gov (United States)

    Suresh Babu, K. V.; Roy, Arijit; Ramachandra Prasad, P.

    2016-05-01

    Forest fire has been regarded as one of the major causes of degradation of Himalayan forests in Uttarakhand. Forest fires occur annually in more than 50% of forests in Uttarakhand state, mostly due to anthropogenic activities and spreads due to moisture conditions and type of forest fuels. Empirical drought indices such as Keetch-Byram drought index, the Nesterov index, Modified Nesterov index, the Zhdanko index which belongs to the cumulative type and the Angstrom Index which belongs to the daily type have been used throughout the world to assess the potential fire danger. In this study, the forest fire danger index has been developed from slightly modified Nesterov index, fuel and anthropogenic activities. Datasets such as MODIS TERRA Land Surface Temperature and emissivity (MOD11A1), MODIS AQUA Atmospheric profile product (MYD07) have been used to determine the dew point temperature and land surface temperature. Precipitation coefficient has been computed from Tropical Rainfall measuring Mission (TRMM) product (3B42RT). Nesterov index has been slightly modified according to the Indian context and computed using land surface temperature, dew point temperature and precipitation coefficient. Fuel type danger index has been derived from forest type map of ISRO based on historical fire location information and disturbance danger index has been derived from disturbance map of ISRO. Finally, forest fire danger index has been developed from the above mentioned indices and MODIS Thermal anomaly product (MOD14) has been used for validating the forest fire danger index.

  12. Multi-scalar influence of weather and climate on very large-fires in the Eastern United States

    Science.gov (United States)

    John T. Abatzoglou; Renaud Barbero; Crystal A. Kolden; Katherine C. Hegewisch; Narasimhan K. Larkin; Harry Podschwit

    2014-01-01

    A majority of area burned in the Eastern United States (EUS) results from a limited number of exceptionally large wildfires. Relationships between climatic conditions and the occurrence of very large-fires (VLF) in the EUS were examined using composite and climate-niche analyses that consider atmospheric factors across inter-annual, sub-seasonal and synoptic temporal...

  13. Near-term implications of a ban on new coal-fired power plants in the United States.

    Science.gov (United States)

    Newcomer, Adam; Apt, Jay

    2009-06-01

    Large numbers of proposed new coal power generators in the United States have been canceled, and some states have prohibited new coal power generators. We examine the effects on the U.S. electric power system of banning the construction of coal-fired electricity generators, which has been proposed as a means to reduce U.S. CO2 emissions. The model simulates load growth, resource planning, and economic dispatch of the Midwest Independent Transmission System Operator (ISO), Inc., Electric Reliability Council of Texas (ERCOT), and PJM under a ban on new coal generation and uses an economic dispatch model to calculate the resulting changes in dispatch order, CO2 emissions, and fuel use under three near-term (until 2030) future electric power sector scenarios. A national ban on new coal-fired power plants does not lead to CO2 reductions of the scale required under proposed federal legislation such as Lieberman-Warner but would greatly increase the fraction of time when natural gas sets the price of electricity, even with aggressive wind and demand response policies.

  14. Exploration of burning plasmas in FIRE

    International Nuclear Information System (INIS)

    Meade, D.M.; Kessel, C.E.; Hammett, G.W.

    2003-01-01

    The Advanced Reactor Innovation Evaluation Studies (ARIES) have identified the key physics and technical issues that must be resolved before attractive fusion reactors can be designed and built. The Fusion Ignition Research Experiment (FIRE) design study has been undertaken to define the lowest cost facility to address the key burning plasma and advanced tokamak physics issues identified in the ARIES studies. The configuration chosen for FIRE is similar to that of ARIES-AT, a steady-state advanced tokamak reactor based on a high-βand high-bootstrap-current operating regime. The key advanced tokamak features of FIRE are: strong plasma shaping, double-null pumping divertors, low toroidal field ripple ( cr ). A longer term goal of FIRE is to explore 'steady-state' high-β advanced tokamak regimes with high bootstrap fractions (f BS ) ∼ 75% at β N ∼ 4 and moderate fusion gain (Q ∼ 5 to 10) under quasi-steady-state conditions for ∼ 3 τ cr . FIRE activities have focused on the physics and engineering assessment of a compact, high-field, cryogenic-copper-coil tokamak with: R o = 2.14 m, a = 0.595 m, B t (R o ) = 6 to 10T, I p = 4.5 to 7.7 MA with a flat top time of 40 to 20 s for 150 MW of fusion power. FIRE will utilize only metal plasma facing components; Be coated tiles for the first wall and W brush divertors to reduce tritium retention as required for fusion reactors. FIRE will be able to test divertor and plasma facing components under reactor relevant power densities since the fusion power density of 6 MWm -3 and neutron wall loading of 2.3 MWm -2 approach those expected in a reactor. (author)

  15. Identification of neural firing patterns, frequency and temporal coding mechanisms in individual aortic baroreceptors

    Directory of Open Access Journals (Sweden)

    Huaguang eGu

    2015-08-01

    Full Text Available In rabbit depressor nerve fibers, an on-off firing pattern, period-1 firing, and integer multiple firing with quiescent state were observed as the static pressure level was increased. A bursting pattern with bursts at the systolic phase of blood pressure, continuous firing, and bursting with burst at diastolic phase and quiescent state at systolic phase were observed as the mean level of the dynamic blood pressure was increased. For both static and dynamic pressures, the firing frequency of the first two firing patterns increased and of the last firing pattern decreased due to the quiescent state. If the quiescent state is disregarded, the spike frequency becomes an increasing trend. The instantaneous spike frequency of the systolic phase bursting, continuous firing, and diastolic phase bursting can reflect the temporal process of the systolic phase, whole procedure, and diastolic phase of the dynamic blood pressure signal, respectively. With increasing the static current corresponding to pressure level, the deterministic Hodgkin-Huxley (HH model manifests a process from a resting state first to period-1 firing via a subcritical Hopf bifurcation and then to a resting state via a supercritical Hopf bifurcation, and the firing frequency increases. The on-off firing and integer multiple firing were here identified as noise-induced firing patterns near the subcritical and supercritical Hopf bifurcation points, respectively, using the stochastic HH model. The systolic phase bursting and diastolic phase bursting were identified as pressure-induced firings near the subcritical and supercritical Hopf bifurcation points, respectively, using an HH model with a dynamic signal. The firing, spike frequency, and instantaneous spike frequency observed in the experiment were simulated and explained using HH models. The results illustrate the dynamics of different firing patterns and the frequency and temporal coding mechanisms of aortic baroreceptor.

  16. Diagnostics for FIRE: A Status Report

    International Nuclear Information System (INIS)

    Kenneth M. Young

    2002-01-01

    The mission for the proposed FIRE (Fusion Ignition Research Experiment) device is to ''attain, explore, understand and optimize fusion-dominated plasmas.'' Operation at Q * 5, for 20 sec with a fusion power output of *150 MW is the major goal. Attaining this mission sets demands for plasma measurement that are at least as comprehensive as on present tokamaks, with the additional capabilities needed for control of the plasma and for understanding the effects of the alpha-particles. Because of the planned operation in advanced tokamak scenarios, with steep transport barriers, the diagnostic instrumentation must be able to provide fine spatial and temporal resolution. It must also be able to withstand the impact of the intense neutron and gamma irradiation. There are practical engineering issues of minimizing radiation streaming while providing essential diagnostic access to the plasma. Many components will operate close to the first wall, e.g. ceramics and mineral insulated cable for magnetic diagnostics and mirrors for optical diagnostics; these components must be selected and mounted so that they will operate and survive in fluxes which require special material selection. The measurement requirements have been assessed so that the diagnostics for the FIRE device can be defined. Clearly a better set of diagnostics of alpha-particles than that available for TFTR is essential, since the alpha-particles provide the dominant sources of heating and of instability-drive in the plasma

  17. Probabilistic safety analysis for fire events for the NPP Isar 2

    International Nuclear Information System (INIS)

    Schmaltz, H.; Hristodulidis, A.

    2007-01-01

    The 'Probabilistic Safety Analysis for Fire Events' (Fire-PSA KKI2) for the NPP Isar 2 was performed in addition to the PSA for full power operation and considers all possible events which can be initiated due to a fire. The aim of the plant specific Fire-PSA was to perform a quantitative assessment of fire events during full power operation, which is state of the art. Based on simplistic assumptions referring to the fire induced failures, the influence of system- and component-failures on the frequency of the core damage states was analysed. The Fire-PSA considers events, which will result due to fire-induced failures of equipment on the one hand in a SCRAM and on the other hand in events, which will not have direct operational effects but because of the fire-induced failure of safety related installations the plant will be shut down as a precautionary measure. These events are considered because they may have a not negligible influence on the frequency of core damage states in case of failures during the plant shut down because of the reduced redundancy of safety related systems. (orig.)

  18. Wildland fire limits subsequent fire occurrence

    Science.gov (United States)

    Sean A. Parks; Carol Miller; Lisa M. Holsinger; Scott Baggett; Benjamin J. Bird

    2016-01-01

    Several aspects of wildland fire are moderated by site- and landscape-level vegetation changes caused by previous fire, thereby creating a dynamic where one fire exerts a regulatory control on subsequent fire. For example, wildland fire has been shown to regulate the size and severity of subsequent fire. However, wildland fire has the potential to influence...

  19. Production and Transport of Ozone From Boreal Forest Fires

    Science.gov (United States)

    Tarasick, David; Liu, Jane; Osman, Mohammed; Sioris, Christopher; Liu, Xiong; Najafabadi, Omid; Parrington, Mark; Palmer, Paul; Strawbridge, Kevin; Duck, Thomas

    2013-04-01

    In the summer of 2010, the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) mission was planned by several universities and government agencies in the United Kingdom, Canada, and USA. Nearly 100 ozone soundings were made at 13 stations through the BORTAS Intensive Sounding Network, although aircraft measurements were unfortunately cancelled due to the volcanic eruption in Iceland. 2010 was actually an exceptional year for Canadian boreal fires. MODIS (Moderate Resolution Imaging Spectroradiometer) fire count data shows large fire events in Saskatchewan on several days in July. High amounts of NO2 close to the large fires are observed from OMI satellite data, indicating that not all NO2 is converted to PAN. Also associated with the fires, large amounts of CO, another precursor of ozone, are observed in MOPITT (Measurements Of Pollution In The Troposphere), AIRS and TES (Tropospheric Emission Spectrometer) satellite data in the middle to upper troposphere. These chemical conditions combined with sunny weather all favour ozone production. Following days with large fire activity, layers of elevated ozone mixing ratio (over 100 ppbv) are observed downwind at several sites. Back-trajectories suggest the elevated ozone in the profile is traceable to the fires in Saskatchewan. Lidar profiles also detect layers of aerosol at the same heights. However, the layers of high ozone are also associated with low humidity, which is not expected from a combustion source, and suggests the possibility of entrainment of stratospheric air.

  20. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    Science.gov (United States)

    The aerosol emissions from prescribed fires in the Southeastern United States were measured and compared to emissions from laboratory burns with fuels collected from the site. Fine particulate matter (PM2.5), black carbon, and aerosol light scattering and absorption were characte...

  1. Fire in Eastern Hardwood Forests through 14,000 Years

    Science.gov (United States)

    Martin A. Spetich; Roger W. Perry; Craig A. Harper; Stacy L. Clark

    2011-01-01

    Fire helped shape the structure and species composition of hardwood forests of the eastern United States over the past 14,000 years. Periodic fires were common in much of this area prior to European settlement, and fire-resilient species proliferated. Early European settlers commonly adopted Native American techniques of applying fire to the landscape. As the demand...

  2. Fire activity increasing as climate changes

    Science.gov (United States)

    Balcerak, Ernie; Showstack, Randy

    2013-01-01

    Analysis of images from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) satellites shows that more than 2.5 million hectares were burned in 2012 from January through August in the United States. The amount is less than a record 3.2 million hectares in 2011 but greater than the area burned in 12 of 15 years since satellite monitoring began, scientists reported at the AGU Fall Meeting. With satellites "we can detect fires as they're actively burning," said Louis Giglio of the University of Maryland, College Park, at a press conference on 4 December. "We can also map the cumulative area burned on the landscape after the fire's over." He noted that "2012 has been a particularly big fire year" in the United States.

  3. Satellite-Based Evaluation of the Post-Fire Recovery Process from the Worst Forest Fire Case in South Korea

    Directory of Open Access Journals (Sweden)

    Jae-Hyun Ryu

    2018-06-01

    Full Text Available The worst forest fire in South Korea occurred in April 2000 on the eastern coast. Forest recovery works were conducted until 2005, and the forest has been monitored since the fire. Remote sensing techniques have been used to detect the burned areas and to evaluate the recovery-time point of the post-fire processes during the past 18 years. We used three indices, Normalized Burn Ratio (NBR, Normalized Difference Vegetation Index (NDVI, and Gross Primary Production (GPP, to temporally monitor a burned area in terms of its moisture condition, vegetation biomass, and photosynthetic activity, respectively. The change of those three indices by forest recovery processes was relatively analyzed using an unburned reference area. The selected unburned area had similar characteristics to the burned area prior to the forest fire. The temporal patterns of NBR and NDVI, not only showed the forest recovery process as a result of forest management, but also statistically distinguished the recovery periods at the regions of low, moderate, and high fire severity. The NBR2.1 for all areas, calculated using 2.1 μm wavelengths, reached the unburned state in 2008. The NDVI for areas with low and moderate fire severity levels became significantly equal to the unburned state in 2009 (p > 0.05, but areas with high severity levels did not reach the unburned state until 2017. This indicated that the surface and vegetation moisture conditions recovered to the unburned state about 8 years after the fire event, while vegetation biomass and health required a longer time to recover, particularly for high severity regions. In the case of GPP, it rapidly recovered after about 3 years. Then, the steady increase in GPP surpassed the GPP of the reference area in 2015 because of the rapid growth and high photosynthetic activity of young forests. Therefore, the concluding scientific message is that, because the recovery-time point for each component of the forest ecosystem is

  4. Climate change effects on wildland fire risk in the Northeastern and Great Lakes states predicted by a downscaled multi-model ensemble

    Science.gov (United States)

    Kerr, Gaige Hunter; DeGaetano, Arthur T.; Stoof, Cathelijne R.; Ward, Daniel

    2018-01-01

    This study is among the first to investigate wildland fire risk in the Northeastern and the Great Lakes states under a changing climate. We use a multi-model ensemble (MME) of regional climate models from the Coordinated Regional Downscaling Experiment (CORDEX) together with the Canadian Forest Fire Weather Index System (CFFWIS) to understand changes in wildland fire risk through differences between historical simulations and future projections. Our results are relatively homogeneous across the focus region and indicate modest increases in the magnitude of fire weather indices (FWIs) during northern hemisphere summer. The most pronounced changes occur in the date of the initialization of CFFWIS and peak of the wildland fire season, which in the future are trending earlier in the year, and in the significant increases in the length of high-risk episodes, defined by the number of consecutive days with FWIs above the current 95th percentile. Further analyses show that these changes are most closely linked to expected changes in the focus region's temperature and precipitation. These findings relate to the current understanding of particulate matter vis-à-vis wildfires and have implications for human health and local and regional changes in radiative forcings. When considering current fire management strategies which could be challenged by increasing wildland fire risk, fire management agencies could adapt new strategies to improve awareness, prevention, and resilience to mitigate potential impacts to critical infrastructure and population.

  5. Repeated fires trap Amazonian blackwater floodplains in an open vegetation state

    NARCIS (Netherlands)

    Flores, Bernardo M.; Fagoaga, Raquel; Nelson, Bruce W.; Holmgren, Milena

    2016-01-01

    Climate change may increase the occurrence of droughts and fires in the Amazon. Most of our understanding on how fire affects tropical ecosystems is based on studies of non-flooded forest–savanna ecotones. Nonetheless, tropical floodplain forests in the Amazon can burn severely during extreme

  6. Organization and conduct of IAEA fire safety reviews at nuclear power plants

    International Nuclear Information System (INIS)

    1998-01-01

    The importance of fire safety in the safe and productive operation of nuclear power plants is recognized worldwide. Lessons learned from experience in nuclear power plants indicate that fire poses a real threat to nuclear safety and that its significance extends far beyond the scope of a conventional fire hazard. With a growing understanding of the close correlation between the fire hazard in nuclear power plants and nuclear safety, backfitting for fire safety has become necessary for a number of operating plants. However, it has been recognized that the expertise necessary for a systematic independent assessment of fire safety of a NPP may not always be available to a number of Member States. In order to assist in enhancing fire safety, the IAEA has already started to offer various services to Member States in the area of fire safety. At the request of a Member State, the IAEA may provide a team of experts to conduct fire safety reviews of varying scope to evaluate the adequacy of fire safety at a specific nuclear power plant during various phases such as construction, operation and decommissioning. The IAEA nuclear safety publications related to fire protection and fire safety form a common basis for these reviews. This report provides guidance for the experts involved in the organization and conduct of fire safety review services to ensure consistency and comprehensiveness of the reviews

  7. Risk of commercial truck fires in the United States : an exploratory data analysis

    Science.gov (United States)

    2012-06-29

    Large trucks are involved in only 8 percent of fatal crashes per year, but 17 percent of fatal fires. The scope of the current body of research is limited. Studies have treated truck fires generally as a subset of vehicle fires or in their own right ...

  8. A fundamental look at fire spread in California chaparral

    Science.gov (United States)

    David R. Weise; Thomas Fletcher; Larry Baxter; Shankar Mahalingam; Xiangyang Zhou; Patrick Pagni; Rod Linn; Bret Butler

    2004-01-01

    The USDA Forest Service National Fire Plan funded a research program to study fire spread in live fuels of the southwestern United States. In the U.S. current operational fire spread models do not distinguish between live and dead fuels in a sophisticated manner because the study of live fuels has been limited. The program is experimentally examining fire spread at 3...

  9. Root cause analysis for fire events at nuclear power plants

    International Nuclear Information System (INIS)

    1999-09-01

    Fire hazard has been identified as a major contributor to a plant' operational safety risk. The International nuclear power community (regulators, operators, designers) has been studying and developing tools for defending against this hazed. Considerable advances have been achieved during past two decades in design and regulatory requirements for fire safety, fire protection technology and related analytical techniques. The IAEA endeavours to provide assistance to Member States in improving fire safety in nuclear power plants. A task was launched by IAEA in 1993 with the purpose to develop guidelines and good practices, to promote advanced fire safety assessment techniques, to exchange state of the art information, and to provide engineering safety advisory services and training in the implementation of internationally accepted practices. This TECDOC addresses a systematic assessment of fire events using the root cause analysis methodology, which is recognized as an important element of fire safety assessment

  10. Forest worker exposure to airborne herbicide residues in smoke from prescribed fires in the Southern United States

    Science.gov (United States)

    Charles K. McMahon; Parshall B. Bush

    1992-01-01

    Occupational safety and health concerns have been raised in a number of southern states by workers conducting prescribed burns on forested lands treated with herbicides. Modeling assessments coupled with laboratory experiments have shown that the risk of airborne herbicide residues to workers is insignificant, even if the fire occurs immediately after herbicide...

  11. Unsupported inferences of high-severity fire in historical dry forests of the western United States: Response to Williams and Baker

    Science.gov (United States)

    Fulé, Peter Z.; Swetnam, Thomas W.; Brown, Peter M.; Falk, Donald A.; Peterson, David L.; Allen, Craig D.; Aplet, Gregory H.; Battaglia, Mike A.; Binkley, Dan; Farris, Calvin; Keane, Robert E.; Margolis, Ellis Q.; Grissino-Mayer, Henri; Miller, Carol; Sieg, Carolyn Hull; Skinner, Carl; Stephens, Scott L.; Taylor, Alan

    2014-01-01

    Reconstructions of dry western US forests in the late 19th century in Arizona, Colorado and Oregon based on General Land Office records were used by Williams & Baker (2012; Global Ecology and Biogeography, 21, 1042–1052; hereafter W&B) to infer past fire regimes with substantial moderate and high-severity burning. The authors concluded that present-day large, high-severity fires are not distinguishable from historical patterns. We present evidence of important errors in their study. First, the use of tree size distributions to reconstruct past fire severity and extent is not supported by empirical age–size relationships nor by studies that directly quantified disturbance history in these forests. Second, the fire severity classification of W&B is qualitatively different from most modern classification schemes, and is based on different types of data, leading to an inappropriate comparison. Third, we note that while W&B asserted ‘surprising’ heterogeneity in their reconstructions of stand density and species composition, their data are not substantially different from many previous studies which reached very different conclusions about subsequent forest and fire behaviour changes. Contrary to the conclusions of W&B, the preponderance of scientific evidence indicates that conservation of dry forest ecosystems in the western United States and their ecological, social and economic value is not consistent with a present-day disturbance regime of large, high-severity fires, especially under changing climate

  12. Advanced methods for a probabilistic safety analysis of fires. Development of advanced methods for performing as far as possible realistic plant specific fire risk analysis (fire PSA)

    International Nuclear Information System (INIS)

    Hofer, E.; Roewekamp, M.; Tuerschmann, M.

    2003-07-01

    In the frame of the research project RS 1112 'Development of Methods for a Recent Probabilistic Safety Analysis, Particularly Level 2' funded by the German Federal Ministry of Economics and Technology (BMWi), advanced methods, in particular for performing as far as possible realistic plant specific fire risk analyses (fire PSA), should be developed. The present Technical Report gives an overview on the methodologies developed in this context for assessing the fire hazard. In the context of developing advanced methodologies for fire PSA, a probabilistic dynamics analysis with a fire simulation code including an uncertainty and sensitivity study has been performed for an exemplary scenario of a cable fire induced by an electric cabinet inside the containment of a modern Konvoi type German nuclear power plant taking into consideration the effects of fire detection and fire extinguishing means. With the present study, it was possible for the first time to determine the probabilities of specified fire effects from a class of fire events by means of probabilistic dynamics supplemented by uncertainty and sensitivity analyses. The analysis applies a deterministic dynamics model, consisting of a dynamic fire simulation code and a model of countermeasures, considering effects of the stochastics (so-called aleatory uncertainties) as well as uncertainties in the state of knowledge (so-called epistemic uncertainties). By this means, probability assessments including uncertainties are provided to be used within the PSA. (orig.) [de

  13. Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression.

    Science.gov (United States)

    Parks, Sean A; Holsinger, Lisa M; Miller, Carol; Nelson, Cara R

    2015-09-01

    Theory suggests that natural fire regimes can result in landscapes that are both self-regulating and resilient to fire. For example, because fires consume fuel, they may create barriers to the spread of future fires, thereby regulating fire size. Top-down controls such as weather, however, can weaken this effect. While empirical examples demonstrating this pattern-process feedback between vegetation and fire exist, they have been geographically limited or did not consider the influence of time between fires and weather. The availability of remotely sensed data identifying fire activity over the last four decades provides an opportunity to explicitly quantify-the ability of wildland fire to limit the progression of subsequent fire. Furthermore, advances in fire progression mapping now allow an evaluation of how daily weather as a top-down control modifies this effect. In this study, we evaluated the ability of wildland fire to create barriers that limit the spread of subsequent fire along a gradient representing time between fires in four large study areas in the western United States. Using fire progression maps in conjunction with weather station data, we also evaluated the influence of daily weather. Results indicate that wildland fire does limit subsequent fire spread in all four study areas, but this effect decays over time; wildland fire no longer limits subsequent fire spread 6-18 years after fire, depending on the study area. We also found that the ability of fire to regulate, subsequent fire progression was substantially reduced under extreme conditions compared to moderate weather conditions in all four study areas. This study increases understanding of the spatial feedbacks that can lead to self-regulating landscapes as well as the effects of top-down controls, such as weather, on these feedbacks. Our results will be useful to managers who seek to restore natural fire regimes or to exploit recent burns when managing fire.

  14. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  15. IRSN global process for leading a comprehensive fire safety analysis for nuclear installations

    International Nuclear Information System (INIS)

    Ormieres, Yannick; Lacoue, Jocelyne

    2013-01-01

    A fire safety analysis (FSA) is requested to justify the adequacy of fire protection measures set by the operator. A recent document written by IRSN outlines a global process for such a comprehensive fire safety analysis. Thanks to the French nuclear fire safety regulation evolutions, from prescriptive requirements to objective requirements, the proposed fire safety justification process focuses on compliance with performance criteria for fire protection measures. These performance criteria are related to the vulnerability of targets to effects of fire, and not only based upon radiological consequences out side the installation caused by a fire. In his FSA, the operator has to define the safety functions that should continue to ensure its mission even in the case of fire in order to be in compliance with nuclear safety objectives. Then, in order to maintain these safety functions, the operator has to justify the adequacy of fire protection measures, defined according to defence in depth principles. To reach the objective, the analysis process is based on the identification of targets to be protected in order to maintain safety functions, taken into account facility characteristics. These targets include structures, systems, components and personal important to safety. Facility characteristics include, for all operating conditions, potential ignition sources and fire protections systems. One of the key points of the fire analysis is the assessment of possible fire scenarios in the facility. Given the large number of possible fire scenarios, it is then necessary to evaluate 'reference fires' which are the worst case scenarios of all possible fire scenarios and which are used by the operator for the design of fire protection measures. (authors)

  16. Fire and biodiversity: studies of vegetation and arthropods

    Science.gov (United States)

    S.M. Hermann; T. Van Hook; R.W. Flowers; [and others

    1998-01-01

    The authors summarize and update the state of knowledge for some components of prescribed fire in the southeastern Coastal Plain, with a primary focus on effects of season of burn on plants and arthropods. Specifically, the authors: 1) briefly explain season of fire terminology; 2) present a short synopsis of how fire regimes affect trees and groundcover vegetation in...

  17. Northeast Regional Biomass Program: Mission, accomplishments, prospects, 1991

    International Nuclear Information System (INIS)

    1991-03-01

    This 1991 Report contains an update on the mission, goals and accomplishments of the Northeast Regional Biomass Program (NRBP). It describes the activities conducted during the past two years and incorporates the information contained in the 1989 publication of the NRBP Five Year Report. It describes the biomass projects conducted by the individual states of the Northeast Region, and summarizes the results from the Program's technical studies. Publications from both the state and regional projects are listed as well. An appendix lists the biomass-fired electricity generating stations planned or in operation in the region. The NRBP began in 1983 by developing a five year plan to guide its work. Within that time frame, the NRBP undertook over 20 applied research and technology transfer projects, and supported and guided the work of its eleven member states. During and since that period, the NRBP has brought together public and private sector organizations to promote the use in the Northeast of biomass and municipal waste energy resources and technologies. The NRBP's long-range plan was updated in 1990. In light of the accomplishments of the NRBP and the remaining challenges, this Report considers directions for future efforts. The Northeast has abundant biomass resources and markets for their use as energy. Meeting this potential will contribute to reducing the atmospheric greenhouse effect and dependence on imported oil. 49 refs

  18. Integrating fire behavior models and geospatial analysis for wildland fire risk assessment and fuel management planning

    Science.gov (United States)

    Alan A. Ager; Nicole M. Vaillant; Mark A. Finney

    2011-01-01

    Wildland fire risk assessment and fuel management planning on federal lands in the US are complex problems that require state-of-the-art fire behavior modeling and intensive geospatial analyses. Fuel management is a particularly complicated process where the benefits and potential impacts of fuel treatments must be demonstrated in the context of land management goals...

  19. Post-fire bedload sediment delivery across spatial scales in the interior western United States

    Science.gov (United States)

    Joseph W. Wagenbrenner; Peter R. Robichaud

    2014-01-01

    Post-fire sediment yields can be up to three orders of magnitude greater than sediment yields in unburned forests. Much of the research on post-fire erosion rates has been at small scales (100m2 or less), and post-fire sediment delivery rates across spatial scales have not been quantified in detail. We developed relationships for post-fire bedload sediment delivery...

  20. Mars ISRU for Production of Mission Critical Consumables - Options, Recent Studies, and Current State of the Art

    Science.gov (United States)

    Sanders, G. B.; Paz, A.; Oryshchyn, L.; Araghi, K.; Muscatello, A.; Linne, D.; Kleinhenz, J.; Peters, T.

    2015-01-01

    In 1978, a ground breaking paper titled, "Feasibility of Rocket Propellant Production on Mars" by Ash, Dowler, and Varsi discussed how ascent propellants could be manufactured on the Mars surface from carbon dioxide collected from the atmosphere to reduce launch mass. Since then, the concept of making mission critical consumables such as propellants, fuel cell reactants, and life support consumables from local resources, commonly known as In-Situ Resource Utilization (ISRU), for robotic and human missions to Mars has been studied many times. In the late 1990's, NASA initiated a series of Mars Human Design Reference Missions (DRMs), the first of which was released in 1997. These studies primarily focused on evaluating the impact of making propellants on Mars for crew ascent to Mars orbit, but creating large caches of life support consumables (water & oxygen) as a backup for regenerative life support systems for long-duration surface stays (>500 days) was also considered in Mars DRM 3.0. Until science data from the Mars Odyssey orbiter and subsequent robotic missions revealed that water may be widely accessable across the surface of Mars, prior Mars ISRU studies were limited to processing Mars atmospheric resources (carbon dioxide, nitrogen, argon, oxygen, and water vapor). In December 2007, NASA completed the Mars Human Design Reference Architecture (DRA) 5.0 study which considered water on Mars as a potential resource for the first time in a human mission architecture. While knowledge of both water resources on Mars and the hardware required to excavate and extract the water were very preliminary, the study concluded that a significant reduction in mass and significant enhancements to the mission architecture were possible if Mars water resources were utilized. Two subsequent Mars ISRU studies aimed at reexamining ISRU technologies, processing options, and advancements in the state-of-the-art since 2007 and to better understand the volume and packaging associated

  1. Learning from escaped prescribed fire reviews

    Science.gov (United States)

    Anne E. Black; Dave Thomas; James Saveland; Jennifer D. Ziegler

    2011-01-01

    The U.S. wildland fire community has developed a number of innovative methods for conducting a review following escape of a prescribed fire (expanding on the typical regional or local reviews, to include more of a learning focus - expanded After Action Reviews, reviews that incorporate High Reliability Organizing, Facilitated Learning Analyses, etc). The stated purpose...

  2. Applying Multi-Criteria Analysis Methods for Fire Risk Assessment

    Directory of Open Access Journals (Sweden)

    Pushkina Julia

    2015-11-01

    Full Text Available The aim of this paper is to prove the application of multi-criteria analysis methods for optimisation of fire risk identification and assessment process. The object of this research is fire risk and risk assessment. The subject of the research is studying the application of analytic hierarchy process for modelling and influence assessment of various fire risk factors. Results of research conducted by the authors can be used by insurance companies to perform the detailed assessment of fire risks on the object and to calculate a risk extra charge to an insurance premium; by the state supervisory institutions to determine the compliance of a condition of object with requirements of regulations; by real state owners and investors to carry out actions for decrease in degree of fire risks and minimisation of possible losses.

  3. Manual fire fighting tactics at Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jee, Moon Hak; Moon, Chan Kook

    2012-01-01

    The general requirements of fire protection at nuclear power plant (NPP) are fire protection program, fire hazard analysis, and fire prevention features. In addition, specific fire protection requirements such as water supplies, fire detection, fire protection of safe related equipment, and safe shutdown capabilities must be provided. Particularly, manual fire fighting is required as specific requirements with the provisions to secure manual fire suppression, fire brigade and its training, and administrative controls for manual fire fighting. If a fire is alarmed and confirmed to be a real fire, the fire brigade must take manual fire fighting activities as requested at fire protection program. According to the present requirements in itself, there is not any specific manual fire fighting ways or practical strategies. In general, fire zones or compartments at NPPs are built in a confined condition. In theory, the fire condition will change from a combustible-controlled fire to a ventilation-governing fire with the time duration. In case of pool fire with the abundant oxygen and flammable liquid, it can take just a few minutes for the flash-over to occur. For the well-confined fire zone, it will change from a flame fire to a smoldering state before the entrance door is opened by the fire brigade. In this context, the manual fire fighting activities must be based on a quantitative analysis and a fire risk evaluation. At this paper, it was suggested that the fire zones at NPPs should be grouped on the inherent functions and fire characteristics. Based on the fire risk characteristics and the fire zone grouping, the manual fire fighting tactics are suggested as an advanced fire fighting solution

  4. Where there's smoking, there's fire: the effects of smoking policies on the incidence of fires in the USA.

    Science.gov (United States)

    Markowitz, Sara

    2014-11-01

    Fires and burns are among the leading causes of unintentional death in the USA. Most of these deaths occur in residences, and cigarettes are a primary cause. In this paper, I explore the relationship between smoking, cigarette policies, and fires. As smoking rates decline, there are fewer opportunities for fires; however, the magnitude of any reduction is in question. Using a state-level panel, I find that increases in cigarette prices are associated with fewer residential fires and deaths. However, laws regulating indoor smoking are associated with more fires; in particular, restaurant and bar smoking bans are associated with an increase in fires at eating and drinking establishments. This increase is important given the growing popularity of smoking bans in the USA and around the world. As workplaces, schools, and businesses ban smoking and remove ashtrays, smokers who continue to smoke are left without safe options for disposal of cigarettes, leading to more opportunities for fires to start. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Mapping Fire Severity Using Imaging Spectroscopy and Kernel Based Image Analysis

    Science.gov (United States)

    Prasad, S.; Cui, M.; Zhang, Y.; Veraverbeke, S.

    2014-12-01

    Improved spatial representation of within-burn heterogeneity after wildfires is paramount to effective land management decisions and more accurate fire emissions estimates. In this work, we demonstrate feasibility and efficacy of airborne imaging spectroscopy (hyperspectral imagery) for quantifying wildfire burn severity, using kernel based image analysis techniques. Two different airborne hyperspectral datasets, acquired over the 2011 Canyon and 2013 Rim fire in California using the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) sensor, were used in this study. The Rim Fire, covering parts of the Yosemite National Park started on August 17, 2013, and was the third largest fire in California's history. Canyon Fire occurred in the Tehachapi mountains, and started on September 4, 2011. In addition to post-fire data for both fires, half of the Rim fire was also covered with pre-fire images. Fire severity was measured in the field using Geo Composite Burn Index (GeoCBI). The field data was utilized to train and validate our models, wherein the trained models, in conjunction with imaging spectroscopy data were used for GeoCBI estimation wide geographical regions. This work presents an approach for using remotely sensed imagery combined with GeoCBI field data to map fire scars based on a non-linear (kernel based) epsilon-Support Vector Regression (e-SVR), which was used to learn the relationship between spectra and GeoCBI in a kernel-induced feature space. Classification of healthy vegetation versus fire-affected areas based on morphological multi-attribute profiles was also studied. The availability of pre- and post-fire imaging spectroscopy data over the Rim Fire provided a unique opportunity to evaluate the performance of bi-temporal imaging spectroscopy for assessing post-fire effects. This type of data is currently constrained because of limited airborne acquisitions before a fire, but will become widespread with future spaceborne sensors such as those on

  6. A Feasibility Study on the Establishment of a Fire Fighting Academy for the State of New Mexico.

    Science.gov (United States)

    Sanchez, Alex A.

    The report on the desirability and feasibility of establishing the New Mexico State Fire Academy and firemen training program is presented in three parts: (1) the result of a survey of firemen training, (2) a proposal for a total system of firemen training, and (3) an analysis of the cost of implementing this program of training and education. The…

  7. Development of Fire Detection Algorithm at Its Early Stage Using Fire Colour and Shape Information

    Science.gov (United States)

    Suleiman Abdullahi, Zainab; Hamisu Dalhatu, Shehu; Hassan Abdullahi, Zakariyya

    2018-04-01

    Fire can be defined as a state in which substances combined chemically with oxygen from the air and give out heat, smoke and flame. Most of the conventional fire detection techniques such as smoke, fire and heat detectors respectively have a problem of travelling delay and also give a high false alarm. The algorithm begins by loading the selected video clip from the database developed to identify the present or absence of fire in a frame. In this approach, background subtraction was employed. If the result of subtraction is less than the set threshold, the difference is ignored and the next frame is taken. However, if the difference is equal to or greater than the set threshold then it subjected to colour and shape test. This is done by using combined RGB colour model and shape signature. The proposed technique was very effective in detecting fire compared to those technique using only motion or colour clues.

  8. Climate data system supports FIRE

    Science.gov (United States)

    Olsen, Lola M.; Iascone, Dominick; Reph, Mary G.

    1990-01-01

    The NASA Climate Data System (NCDS) at Goddard Space Flight Center is serving as the FIRE Central Archive, providing a centralized data holding and data cataloging service for the FIRE project. NCDS members are carrying out their responsibilities by holding all reduced observations and data analysis products submitted by individual principal investigators in the agreed upon format, by holding all satellite data sets required for FIRE, by providing copies of any of these data sets to FIRE investigators, and by producing and updating a catalog with information about the FIRE holdings. FIRE researchers were requested to provide their reduced data sets in the Standard Data Format (SDF) to the FIRE Central Archive. This standard format is proving to be of value. An improved SDF document is now available. The document provides an example from an actual FIRE SDF data set and clearly states the guidelines for formatting data in SDF. NCDS has received SDF tapes from a number of investigators. These tapes were analyzed and comments provided to the producers. One product which is now available is William J. Syrett's sodar data product from the Stratocumulus Intensive Field Observation. Sample plots from all SDF tapes submitted to the archive will be available to FSET members. Related cloud products are also available through NCDS. Entries describing the FIRE data sets are being provided for the NCDS on-line catalog. Detailed information for the Extended Time Observations is available in the general FIRE catalog entry. Separate catalog entries are being written for the Cirrus Intensive Field Observation (IFO) and for the Marine Stratocumulus IFO. Short descriptions of each FIRE data set will be installed into the NCDS Summary Catalog.

  9. Forest Fire Ecology.

    Science.gov (United States)

    Zucca, Carol; And Others

    1995-01-01

    Presents a model that integrates high school science with the needs of the local scientific community. Describes how a high school ecology class conducted scientific research in fire ecology that benefited the students and a state park forest ecologist. (MKR)

  10. A probabilistic analysis of fire-induced tree-grass coexistence in savannas.

    Science.gov (United States)

    D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca

    2006-03-01

    Fires play an important role in determining the composition and structure of vegetation in semiarid ecosystems. The study of the interactions between fire and vegetation requires a stochastic approach because of the random and unpredictable nature of fire occurrences. To this end, this article develops a minimalist probabilistic framework to investigate the impact of intermittent fire occurrences on the temporal dynamics of vegetation. This framework is used to analyze the emergence of statistically stable conditions favorable to tree-grass coexistence in savannas. It is found that these conditions can be induced and stabilized by the stochastic fire regime. A decrease in fire frequency leads to bush encroachment, while more frequent and intense fires favor savanna-to-grassland conversions. The positive feedback between fires and vegetation can convert states of tree-grass coexistence in semiarid savannas into bistable conditions, with both woodland and grassland as possible, though mutually exclusive, stable states of the system.

  11. Alcohol skin preparation causes surgical fires.

    Science.gov (United States)

    Rocos, B; Donaldson, L J

    2012-03-01

    Surgical fires are a rare but serious preventable safety risk in modern hospitals. Data from the US show that up to 650 surgical fires occur each year, with up to 5% causing death or serious harm. This study used the National Reporting and Learning Service (NRLS) database at the National Patient Safety Agency to explore whether spirit-based surgical skin preparation fluid contributes to the cause of surgical fires. The NRLS database was interrogated for all incidents of surgical fires reported between 1 March 2004 and 1 March 2011. Each report was scrutinised manually to discover the cause of the fire. Thirteen surgical fires were reported during the study period. Of these, 11 were found to be directly related to spirit-based surgical skin preparation or preparation soaked swabs and drapes. Despite manufacturer's instructions and warnings, surgical fires continue to occur. Guidance published in the UK and US states that spirit-based skin preparation solutions should continue to be used but sets out some precautions. It may be that fire risk should be included in pre-surgical World Health Organization checklists or in the surgical training curriculum. Surgical staff should be aware of the risk that spirit-based skin preparation fluids pose and should take action to minimise the chance of fire occurring.

  12. Fire-induced Carbon Emissions and Regrowth Uptake in Western U.S. Forests: Documenting Variation Across Forest Types, Fire Severity, and Climate Regions

    Science.gov (United States)

    Ghimire, Bardan; Williams, Christopher A.; Collatz, George James; Vanderhoof, Melanie

    2012-01-01

    The forest area in the western United States that burns annually is increasing with warmer temperatures, more frequent droughts, and higher fuel densities. Studies that examine fire effects for regional carbon balances have tended to either focus on individual fires as examples or adopt generalizations without considering how forest type, fire severity, and regional climate influence carbon legacies. This study provides a more detailed characterization of fire effects and quantifies the full carbon impacts in relation to direct emissions, slow release of fire-killed biomass, and net carbon uptake from forest regrowth. We find important variations in fire-induced mortality and combustion across carbon pools (leaf, live wood, dead wood, litter, and duff) and across low- to high-severity classes. This corresponds to fire-induced direct emissions from 1984 to 2008 averaging 4 TgC/yr and biomass killed averaging 10.5 TgC/yr, with average burn area of 2723 sq km/yr across the western United States. These direct emission and biomass killed rates were 1.4 and 3.7 times higher, respectively, for high-severity fires than those for low-severity fires. The results show that forest regrowth varies greatly by forest type and with severity and that these factors impose a sustained carbon uptake legacy. The western U.S. fires between 1984 and 2008 imposed a net source of 12.3 TgC/yr in 2008, accounting for both direct fire emissions (9.5 TgC/yr) and heterotrophic decomposition of fire-killed biomass (6.1 TgC yr1) as well as contemporary regrowth sinks (3.3 TgC/yr). A sizeable trend exists toward increasing emissions as a larger area burns annually.

  13. FIRE

    International Nuclear Information System (INIS)

    Brtis, J.S.; Hausheer, T.G.

    1990-01-01

    FIRE, a microcomputer based program to assist engineers in reviewing and documenting the fire protection impact of design changes has been developed. Acting as an electronic consultant, FIRE is designed to work with an experienced nuclear system engineer, who may not have any detailed fire protection expertise. FIRE helps the engineer to decide if a modification might adversely affect the fire protection design of the station. Since its first development, FIRE has been customized to reflect the fire protection philosophy of the Commonwealth Edison Company. That program is in early production use. This paper discusses the FIRE program in light of its being a useful application of expert system technologies in the power industry

  14. Estimation of fire frequency from PWR operating experience

    International Nuclear Information System (INIS)

    Bertrand, R.; Bonneval, F.; Barrachin, G.; Bonino, F.

    1998-01-01

    In the framework of a fire probabilistic safety assessment (Fire PSA), the French Institute for Nuclear Safety and Protection (IPSN) has developed a method for estimating the frequency of fire in a nuclear power plant room. This method is based on the analysis of French Pressurized Water Reactors operating experience. The method adopted consists is carrying out an in-depth analysis of fire-related incidents. A database has been created including 202 fire events reported in 900 MWe and 1300 MWe reactors from the start of their commercial operation up to the first of March 1994, which represents a cumulated service life of 508 reactor-years. For each reported fire, several data were recorded among which: The operating state of the reactor in the stage preceding the fire, the building in which the fire broke out, the piece of equipment or the human intervention which caused the fire. Operating experience shows that most fires are initiated by electrical problems (short-circuits, arcing, faulty contacts, etc.) and that human intervention also plays an important role (grinding, cutting, welding, cleaning, etc.). A list of equipment and of human interventions which proved to be possible fire sources was therefore drawn up. the items of this list were distributed in 19 reference groups defined by taking into account the nature of the potential ignition source (transformers, electrical cabinets, pumps, fans, etc.). The fire frequency assigned to each reference group was figured out using the operating experience information of the database. The fire frequency in a room is considered to be made out of two contributions: one due to equipment which is proportional to the number of pieces of equipment from each reference group contained in the room, and a second one which is due to human interventions and assumed to be uniform throughout the reactor. Formulas to assess the fire frequencies in a room, the reactor being in a shutdown state or at power, are then proposed

  15. Summary of fire protection programs of the United States Department of Energy

    International Nuclear Information System (INIS)

    1991-10-01

    This edition of the Annual Summary of DOE Fire Protection Programs continues the series started in 1972. Since May 1950, an annual report has been required from each field organization. The content has varied through the years and most of the accident data reporting requirements have been superseded by the Computerized Accident/Incident Reporting System administered by EG ampersand G, Idaho. However, this report is the sole source of information relating to fire protection programs, and to the actions of the field offices and to headquarters that are of general fire protection interest

  16. A Review of Fire Interactions and Mass Fires

    Directory of Open Access Journals (Sweden)

    Mark A. Finney

    2011-01-01

    Full Text Available The character of a wildland fire can change dramatically in the presence of another nearby fire. Understanding and predicting the changes in behavior due to fire-fire interactions cannot only be life-saving to those on the ground, but also be used to better control a prescribed fire to meet objectives. In discontinuous fuel types, such interactions may elicit fire spread where none otherwise existed. Fire-fire interactions occur naturally when spot fires start ahead of the main fire and when separate fire events converge in one location. Interactions can be created intentionally during prescribed fires by using spatial ignition patterns. Mass fires are among the most extreme examples of interactive behavior. This paper presents a review of the detailed effects of fire-fire interaction in terms of merging or coalescence criteria, burning rates, flame dimensions, flame temperature, indraft velocity, pulsation, and convection column dynamics. Though relevant in many situations, these changes in fire behavior have yet to be included in any operational-fire models or decision support systems.

  17. Mitigating old tree mortality in long-unburned, fire-dependent forests: a synthesis

    Science.gov (United States)

    Sharon M. Hood

    2010-01-01

    This report synthesizes the literature and current state of knowledge pertaining to reintroducing fire in stands where it has been excluded for long periods and the impact of these introductory fires on overstory tree injury and mortality. Only forested ecosystems in the United States that are adapted to survive frequent fire are included. Treatment options that...

  18. Fire and earthquake counter measures in radiation handling facilities

    International Nuclear Information System (INIS)

    1985-01-01

    'Fire countermeasures in radiation handling facilities' published in 1961 is still widely utilized as a valuable guideline for those handling radiation through the revision in 1972. However, science and technology rapidly advanced, and the relevant laws were revised after the publication, and many points which do not conform to the present state have become to be found. Therefore, it was decided to rewrite this book, and the new book has been completed. The title was changed to 'Fire and earthquake countermeasures in radiation handling facilities', and the countermeasures to earthquakes were added. Moreover, consideration was given so that the book is sufficiently useful also for those concerned with fire fighting, not only for those handling radiation. In this book, the way of thinking about the countermeasures against fires and earthquakes, the countermeasures in normal state and when a fire or an earthquake occurred, the countermeasures when the warning declaration has been announced, and the data on fires, earthquakes, the risk of radioisotopes, fire fighting equipment, the earthquake counter measures for equipment, protectors and radiation measuring instruments, first aid, the example of emergency system in radiation handling facilities, the activities of fire fighters, the example of accidents and so on are described. (Kako, I.)

  19. Tank waste remediation system mission analysis report

    International Nuclear Information System (INIS)

    Acree, C.D.

    1998-01-01

    The Tank Waste Remediation System Mission Analysis Report identifies the initial states of the system and the desired final states of the system. The Mission Analysis Report identifies target measures of success appropriate to program-level accomplishments. It also identifies program-level requirements and major system boundaries and interfaces

  20. Fire hazard analysis for fusion energy experiments

    International Nuclear Information System (INIS)

    Alvares, N.J.; Hasegawa, H.K.

    1979-01-01

    The 2XIIB mirror fusion facility at Lawrence Livermore Laboratory (LLL) was used to evaluate the fire safety of state-of-the-art fusion energy experiments. The primary objective of this evaluation was to ensure the parallel development of fire safety and fusion energy technology. Through fault-tree analysis, we obtained a detailed engineering description of the 2XIIB fire protection system. This information helped us establish an optimum level of fire protection for experimental fusion energy facilities as well as evaluate the level of protection provided by various systems. Concurrently, we analyzed the fire hazard inherent to the facility using techniques that relate the probability of ignition to the flame spread and heat-release potential of construction materials, electrical and thermal insulations, and dielectric fluids. A comparison of the results of both analyses revealed that the existing fire protection system should be modified to accommodate the range of fire hazards inherent to the 2XIIB facility

  1. FIRES: Fire Information Retrieval and Evaluation System - A program for fire danger rating analysis

    Science.gov (United States)

    Patricia L. Andrews; Larry S. Bradshaw

    1997-01-01

    A computer program, FIRES: Fire Information Retrieval and Evaluation System, provides methods for evaluating the performance of fire danger rating indexes. The relationship between fire danger indexes and historical fire occurrence and size is examined through logistic regression and percentiles. Historical seasonal trends of fire danger and fire occurrence can be...

  2. A Review of State-of-the-Art Separator Materials for Advanced Lithium-Based Batteries for Future Aerospace Missions

    Science.gov (United States)

    Bladwin, Richard S.

    2009-01-01

    As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.

  3. Live Fire Range Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-08-01

    The Central Training Academy (CTA) is a DOE Headquarters Organization located in Albuquerque, New Mexico, with the mission to effectively and efficiently educate and train personnel involved in the protection of vital national security interests of DOE. The CTA Live Fire Range (LFR), where most of the firearms and tactical training occurs, is a complex separate from the main campus. The purpose of the proposed action is to expand the LFR to allow more options of implementing required training. The Department of Energy has prepared this Environmental Assessment (EA) for the proposed construction and operation of an expanded Live Fire Range Facility at the Central Training Academy in Albuquerque, New Mexico. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  4. POZHARNYYe RISKI I IKH VLIYANIYe NA RISK-ORIYENTIROVANNYY PODKHOD PRI ORGANIZATSII I OSUSHCHESTVLENII FEDERAL'NOGO GOSUDARSTVENNOGO POZHARNOGO NADZORA [Fire risks and their impact on the risk-oriented approach in the organization and implementation of federal state fire supervision

    Directory of Open Access Journals (Sweden)

    Fomin A.I.

    2017-09-01

    Full Text Available The essence of fire risks and risk-oriented approaches in the organization and implementation of supervisory measures to fulfill the requirements in the field of fire safety is described. In accordance with the regulatory legal acts of the Russian Federation, the criteria for the assignment of protection objects and the frequency of conducting scheduled inspections with respect to them by the bodies of the federal state fire supervision are given. The influence of various factors on the risk category is given. Measures aimed at reducing the risk category and, as a result, reducing administrative barriers to the activities of legal entities and individuals have been identified. The analysis of the parameters influencing the magnitude of fire risks, as well as the risk category of the protection object, is given. The foregoing is provided in the form of an accessible scheme for persons who do not have special knowledge in meeting the requirements of fire safety. The urgency of developing a methodology and a criterion for reducing the hazard category of fire safety surveillance facilities is determined, taking into account the fulfillment by legal entities and individuals of previously issued regulations. That means: methodology, the application of which is possible when conducting unscheduled inspections by federal fire safety authorities.

  5. Integrated Nuclear Infrastructure Review (INIR) Missions: The First Six Years

    International Nuclear Information System (INIS)

    2015-12-01

    IAEA Integrated Nuclear Infrastructure Review (INIR) missions are designed to assist Member States in evaluating the status of their national infrastructure for the introduction of a nuclear power programme. INIR missions are conducted upon request from the Member State. Each INIR mission is coordinated and led by the IAEA and conducted by a team of IAEA staff and international experts drawn from Member States which have experience in different aspects of developing and deploying nuclear infrastructure. INIR missions cover the 19 infrastructure issues described in Milestones in the Development of a National Infrastructure for Nuclear Power, IAEA Nuclear Energy Series No. NG-G-3.1, published in 2007 and revised in 2015, and the assessment is based on an analysis of a self-evaluation report prepared by the Member State, a review of the documents it provides and interviews with its key officials. Phase 1 INIR missions evaluate the status of the infrastructure to achieve Milestone 1 (Ready to make a knowledgeable commitment to a nuclear power programme). Phase 2 INIR missions evaluate the status of the infrastructure to achieve Milestone 2 (Ready to invite bids/negotiate a contract for the first nuclear power plant). From 2009 to 2014, 14 IAEA INIR missions and follow-ups were conducted in States embarking on a nuclear power programme and one State expanding its programme. During this time, considerable experience was gained by the IAEA on the conduct of INIR missions, and this feedback has been used to continually improve the overall INIR methodology. The INIR methodology has thus evolved and is far more comprehensive today than in 2009. Despite the limited number of INIR missions conducted, some common findings were identified in Member States embarking on nuclear power programmes. This publication summarizes the results of the missions and highlights the most significant areas in which recommendations were made

  6. A tale of two fires

    International Nuclear Information System (INIS)

    Swearingen, Gary L.

    2001-01-01

    Timeline and decision response related to the Hanford Site wildfire. Nothing could have been done on-site to prevent the severe fires at two US nuclear facilities last summer. Fires that began outside the boundaries of the Hanford site in Washington and the Los Alamos National Laboratory (LANL) in New Mexico grew and spread into their boundaries and right up to their buildings. Hanford - Washington A vehicle fire resulting from a fatal head-on collision triggered the 24 Command Wildland Fire, which threatened several radioactive waste sites and the Fast Flux Test Facility on the Hanford site. Vegetation on both sides of Washington State Route 24, which runs across the DoE Hanford site, caught fire after a passenger vehicle and semitractor-trailer collided on June 27, 2000. An abundance of natural fuel and adverse weather conditions allowed the fire to move rapidly across the 120-square-mile Fitzner-Eberhardt Arid Lands Ecology Reserve, part of the Hanford Reach National Monument located southwest of the central Hanford site. Unlike the Los Alamos fire (see opposite) the vegetation consisted mainly of cheatgrass, tumbleweed and sage brush. Hot, dry weather had accelerated the fire season in the area, and the National Weather Service had warned that a critical fire weather pattern was ongoing or imminent. From June 27 to July 1 the wildfire burned over nearly 300 square miles, consuming an average of 2000 acres per hour (see panel, opposite). The fire came close to several major radioactive waste sites and blanketed others in a thick layer of smoke. The work of firefighters and the design of the buildings (which have wide concrete and gravel perimeters) kept site facilities safe. However, flames did pass over three inactive waste sites. On June 30 the manager of the DoE Richland Operations Office established a Type B accident investigation board (Board) to address the responses of the DoE and its Hanford site contractors to the fire. Having analysed the event, the

  7. Fire Safety Consideration in the Pre-conceptual Design State of Pyro-Facillity

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hong Rae; Seo, Seok Jun; Lee, Hyo Jik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The government, in order to solve this problem, has organized a public engagement committee and is searching for a solution. To use sustainable nuclear energy, our country is also pursuing research and development of fast breeder reactor and pyroprocessing technology in accordance with the international movement of spent fuel recycling and efforts towards nuclear non-proliferation which is centered on the development and demonstration of recycling spent fuel and fast breeder reactors. Pyro-facility has different features with nuclear power plant. In the pyroprocess, chemical and electrochemical separation were took place in the hot cells and material at risk (MAR) is distributed in many working areas. In this paper, we conducted the fire modeling of hot cells to see the stability of pyrophoric materials which is considered as one of the potential hazardous materials in the main process cell. Based on modeling results, consideration of fire safety pyrofacility will be discussed. We performed preliminary hazard analysis for pyrofacility and summarized potential fire hazard. Pyrophoric material fire is the dominant hazard in the main process hot cell and fire modeling of cable tray in the cell was analyzed to see the stability of pyrophoric materials. Analysis results clearly shows that pyrophoric materials are prone to be affected.

  8. Fighting fires... with science

    CERN Document Server

    Anaïs Schaeffer

    2016-01-01

    CERN firefighters are working with a research centre in the United States to develop more effective firefighting techniques.   One of the UL FSRI’s model houses is set alight... in the interest of science. (Photo: ©UL FSRI) For around ten years, the Underwriters Laboratories Firefighter Safety Research Institute (UL FSRI) has been carrying out scientific research on the various techniques used by firefighters in the United States and around the world. This research has focused on evaluating the effectiveness and safety of current practices worldwide with the aim of developing even better techniques. In many cases the research has shown that a combination of techniques gives the best results. The interiors of the model houses are fully furnished. (Photo: ©UL FSRI) Art Arnalich, who has worked with fire brigades in the United States and Europe and is now a member of CERN’s Fire Brigade, has actively participated in this research since 2013. His knowledge of ...

  9. Fire resistance of wood members with directly applied protection

    Science.gov (United States)

    Robert H. White

    2009-01-01

    Fire-resistive wood construction is achieved either by having the structural elements be part of fire-rated assemblies or by using elements of sufficient size that the elements themselves have the required fire-resistance ratings. For exposed structural wood elements, the ratings in the United States are calculated using either the T.T. Lie method or the National...

  10. Prescribed fire opportunities in grasslands invaded by Douglas-fir: state-of-the-art guidelines

    Science.gov (United States)

    George E. Gruell; James K. Brown; Charles L. Bushey

    1986-01-01

    Provides information on use of prescribed fire to enhance productivity of bunchgrass ranges that have been invaded by Douglas-fir. Six vegetative "situations" representative of treatment opportunities most commonly encountered in Montana are discussed. Included are fire prescription considerations and identification of the resource objective, fire objective,...

  11. Fire-induced risk in Andisols: An State-of-the-Art

    Science.gov (United States)

    Neris, Jonay; Cerdà, Artemi; Santamarta, Juan C.; Doerr, Stefan

    2014-05-01

    Wildfires are increasingly recognized as the primary natural hazard affecting forests and woodlands (Pausas, 2004), and changing the soil properties due to the heat (Aznar et al., 2013). They are also the factor that determines the increase in soil and water losses (Cerdà, 1998a; Shakesby, 2011). Fire contributes to increase the surface runoff due to the water repellency (Mataix-Solera et al., 2004; Cerdà and Doerr, 2008) although a quick recovery is found when vegetation is recovered (Cerdà, 1988b; Guénon et al., 2013). Within the recovery process ash is the key factor once the vegetation is recovered (Bodí et al., 2011; León et al., 2013; Pereira et al., 2013). To reduce the impact of forest fires some strategies were developed (Prats et al., 2013). The fire direct and indirect impacts on ecosystems and the human population, infrastructures, supplies and goods have been increasing over the last decades due to climatic and socio-economic changes and are projected to increase further in the future. In the densely populated volcanic regions that are characterized by steep and fire-prone slopes, Andisols are the main soil type. Their mineralogical properties provide them with specific chemical and physical properties which strength their fertility and resistance to erosion but also differentiate their response to environmental disturbances such as land use change (Jiménez et al., 2006; Neris et al., 2012) but also forest fires and agricultural burning (Neris et al., 2013; Poulenard et al., 2001). Despite their relevance for human development and safety, little specific knowledge exists about them and papers addressing their singularities are limited. This works seeks to compile and review existing scientific works focused on the effects of fire on this particular type of soils, evaluate their response to this disturbance and identify knowledge gaps related to the fire-induced risk in Andisols in order to develop new lines of research. Acknowledgements This

  12. Random Sampling with Interspike-Intervals of the Exponential Integrate and Fire Neuron: A Computational Interpretation of UP-States.

    Directory of Open Access Journals (Sweden)

    Andreas Steimer

    Full Text Available Oscillations between high and low values of the membrane potential (UP and DOWN states respectively are an ubiquitous feature of cortical neurons during slow wave sleep and anesthesia. Nevertheless, a surprisingly small number of quantitative studies have been conducted only that deal with this phenomenon's implications for computation. Here we present a novel theory that explains on a detailed mathematical level the computational benefits of UP states. The theory is based on random sampling by means of interspike intervals (ISIs of the exponential integrate and fire (EIF model neuron, such that each spike is considered a sample, whose analog value corresponds to the spike's preceding ISI. As we show, the EIF's exponential sodium current, that kicks in when balancing a noisy membrane potential around values close to the firing threshold, leads to a particularly simple, approximative relationship between the neuron's ISI distribution and input current. Approximation quality depends on the frequency spectrum of the current and is improved upon increasing the voltage baseline towards threshold. Thus, the conceptually simpler leaky integrate and fire neuron that is missing such an additional current boost performs consistently worse than the EIF and does not improve when voltage baseline is increased. For the EIF in contrast, the presented mechanism is particularly effective in the high-conductance regime, which is a hallmark feature of UP-states. Our theoretical results are confirmed by accompanying simulations, which were conducted for input currents of varying spectral composition. Moreover, we provide analytical estimations of the range of ISI distributions the EIF neuron can sample from at a given approximation level. Such samples may be considered by any algorithmic procedure that is based on random sampling, such as Markov Chain Monte Carlo or message-passing methods. Finally, we explain how spike-based random sampling relates to existing

  13. Random Sampling with Interspike-Intervals of the Exponential Integrate and Fire Neuron: A Computational Interpretation of UP-States.

    Science.gov (United States)

    Steimer, Andreas; Schindler, Kaspar

    2015-01-01

    Oscillations between high and low values of the membrane potential (UP and DOWN states respectively) are an ubiquitous feature of cortical neurons during slow wave sleep and anesthesia. Nevertheless, a surprisingly small number of quantitative studies have been conducted only that deal with this phenomenon's implications for computation. Here we present a novel theory that explains on a detailed mathematical level the computational benefits of UP states. The theory is based on random sampling by means of interspike intervals (ISIs) of the exponential integrate and fire (EIF) model neuron, such that each spike is considered a sample, whose analog value corresponds to the spike's preceding ISI. As we show, the EIF's exponential sodium current, that kicks in when balancing a noisy membrane potential around values close to the firing threshold, leads to a particularly simple, approximative relationship between the neuron's ISI distribution and input current. Approximation quality depends on the frequency spectrum of the current and is improved upon increasing the voltage baseline towards threshold. Thus, the conceptually simpler leaky integrate and fire neuron that is missing such an additional current boost performs consistently worse than the EIF and does not improve when voltage baseline is increased. For the EIF in contrast, the presented mechanism is particularly effective in the high-conductance regime, which is a hallmark feature of UP-states. Our theoretical results are confirmed by accompanying simulations, which were conducted for input currents of varying spectral composition. Moreover, we provide analytical estimations of the range of ISI distributions the EIF neuron can sample from at a given approximation level. Such samples may be considered by any algorithmic procedure that is based on random sampling, such as Markov Chain Monte Carlo or message-passing methods. Finally, we explain how spike-based random sampling relates to existing computational

  14. Fire hazards analysis for the uranium oxide (UO3) facility

    International Nuclear Information System (INIS)

    Wyatt, D.M.

    1994-01-01

    The Fire Hazards Analysis (FHA) documents the deactivation end-point status of the UO 3 complex fire hazards, fire protection and life safety systems. This FHA has been prepared for the Uranium Oxide Facility by Westinghouse Hanford Company in accordance with the criteria established in DOE 5480.7A, Fire Protection and RLID 5480.7, Fire Protection. The purpose of the Fire Hazards Analysis is to comprehensively and quantitatively assess the risk from a fire within individual fire areas in a Department of Energy facility so as to ascertain whether the objectives stated in DOE Order 5480.7, paragraph 4 are met. Particular attention has been paid to RLID 5480.7, Section 8.3, which specifies the criteria for deactivating fire protection in decommission and demolition facilities

  15. Continental-scale simulation of burn probabilities, flame lengths, and fire size distribution for the United States

    Science.gov (United States)

    Mark A. Finney; Charles W. McHugh; Isaac Grenfell; Karin L. Riley

    2010-01-01

    Components of a quantitative risk assessment were produced by simulation of burn probabilities and fire behavior variation for 134 fire planning units (FPUs) across the continental U.S. The system uses fire growth simulation of ignitions modeled from relationships between large fire occurrence and the fire danger index Energy Release Component (ERC). Simulations of 10,...

  16. The status and challenge of global fire modelling

    Science.gov (United States)

    Hantson, Stijn; Arneth, Almut; Harrison, Sandy P.; Kelley, Douglas I.; Prentice, I. Colin; Rabin, Sam S.; Archibald, Sally; Mouillot, Florent; Arnold, Steve R.; Artaxo, Paulo; Bachelet, Dominique; Ciais, Philippe; Forrest, Matthew; Friedlingstein, Pierre; Hickler, Thomas; Kaplan, Jed O.; Kloster, Silvia; Knorr, Wolfgang; Lasslop, Gitta; Li, Fang; Mangeon, Stephane; Melton, Joe R.; Meyn, Andrea; Sitch, Stephen; Spessa, Allan; van der Werf, Guido R.; Voulgarakis, Apostolos; Yue, Chao

    2016-06-01

    Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, using either well-founded empirical relationships or process-based models with good predictive skill. While a large variety of models exist today, it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project (FireMIP), an international initiative to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we review how fires have been represented in fire-enabled dynamic global vegetation models (DGVMs) and give an overview of the current state of the art in fire-regime modelling. We indicate which challenges still remain in global fire modelling and stress the need for a comprehensive model evaluation and outline what lessons may be learned from FireMIP.

  17. Fire protection measures

    International Nuclear Information System (INIS)

    Bittner

    1997-01-01

    The presentation could only show a very brief overview of the analysis results of a wide study of the existing fire protection situation at Mochovce. As far not already done the next steps will be the selection of the final suppliers of the different measures, the detailed design and the implementation of the measures. As part of the further assistance in fire protection EUCOM will perform compliance checks of the DD and implementation and assist EMO for raising problems. Especially during the implementation of the measures the belonging quality checks have a high priority. Assuming that the implementation of measures will be in accordance with with the study results and the relevant basic design requirements it can be stated that safety level concerning fire protection will be in accordance with international requirement like IAEA 50 SG D2. The next step of our work will be the delta analysis for 2 unit and the relevant basic design as far as there are differences to unit 1. (author)

  18. ACADEMIC MISSION - FROM AUTOCRACY TO BUREAUCRACY

    Directory of Open Access Journals (Sweden)

    LIVIU NEAMŢU

    2015-12-01

    Full Text Available The mission is generic expression of reason for the existence of an organization. Organizational mission ensure continuity of existence beyond the objectives and targets of activities. It is the expression of an organization's responsibilities towards the environment in which it belongs. As the organization grows and its activities or environmental conditions change, managers adapt their strategies, but stated mission will remain valid for a period of time or unchanged throughout the life of the organization. All managerial elements of the organization are aligned with stated mission, starting from the organization structure, management behavior or specific business processes. The focus of the mission of an higher education institution on a need or several integrated needs, on customers who manifest this need and on how they can be met, that really means defining of its strategic domanin, as a sphere of influence of the organization in their environment. In this sphere of influence, three components integrate on three levels of the mission: to establish needs; identify the customer type to which an organization adress and key competencies that differentiate it from the rest competitors. To that context identifies four specific forms of academic institutions starting from their mission and strategic area: autocratic academic institutions, meritocrate academic institutions, democratic academic institutions, bureaucrats academic institutions.

  19. Status of native fishes in the western United States and issues for fire and fuels management

    Science.gov (United States)

    Rieman, B.; Lee, D.; Burns, D.; Gresswell, Robert E.; Young, M.; Stowell, R.; Rinne, J.; Howell, P.

    2003-01-01

    Conservation of native fishes and changing patterns in wildfire and fuels are defining challenges for managers of forested landscapes in the western United States. Many species and populations of native fishes have declined in recorded history and some now occur as isolated remnants of what once were larger more complex systems. Land management activities have been viewed as one cause of this problem. Fires also can have substantial effects on streams and riparian systems and may threaten the persistence of some populations of fish, particularly those that are small and isolated. Despite that, major new efforts to actively manage fires and fuels in forests throughout the region may be perceived as a threat rather than a benefit to conservation of native fishes and their habitats. The management of terrestrial and aquatic resources has often been contentious, divided among a variety of agencies with different goals and mandates. Management of forests, for example, has generally been viewed as an impact on aquatic systems. Implementation of the management-regulatory process has reinforced a uniform approach to mitigate the threats to aquatic species and habitats that may be influenced by management activities. The problems and opportunities, however, are not the same across the landscapes of interest. Attempts to streamline the regulatory process often search for generalized solutions that may oversimplify the complexity of natural systems. Significant questions regarding the influence of fire on aquatic ecosystems, changing fire regimes, and the effects of fire-related management remain unresolved and contribute to the uncertainty. We argue that management of forests and fishes can be viewed as part of the same problem, that of conservation and restoration of the natural processes that create diverse and productive ecosystems. We suggest that progress toward more integrated management of forests and native fishes will require at least three steps: (1) better

  20. Comparison of the characteristics of fire and non-fire households in the 2004-2005 survey of fire department-attended and unattended fires.

    Science.gov (United States)

    Greene, Michael A

    2012-06-01

    Comparison of characteristics of fire with non-fire households to determine factors differentially associated with fire households (fire risk factors). National household telephone survey in 2004-2005 by the US Consumer Product Safety Commission with 916 fire households and a comparison sample of 2161 non-fire households. There were an estimated 7.4 million fires (96.6% not reported to fire departments) with 130,000 injuries. Bivariate analysis and multivariate logistic regression analyses to assess differences in household characteristics. Significant factors associated with fire households were renting vs. owning (OR 1.988 pfire households with non-cooking fires (OR 1.383 p=0.0011). Single family houses were associated with non-fire households in the bivariate analysis but not in the multivariate analyses. Renting, household members under 18 years old and smokers are risk factors for unattended fires, similar to the literature for fatal and injury fires. Differences included household members over 65 years old (associated with non-fire households), college/postgraduate education (associated with fire households) and lack of significance of income. Preventing cooking fires (64% of survey incidents), smoking prevention efforts and fire prevention education for families with young children have the potential for reducing unattended fires and injuries.

  1. Non-conserved magnetization operator and 'fire-and-ice' ground states in the Ising-Heisenberg diamond chain

    Science.gov (United States)

    Torrico, Jordana; Ohanyan, Vadim; Rojas, Onofre

    2018-05-01

    We consider the diamond chain with S = 1/2 XYZ vertical dimers which interact with the intermediate sites via the interaction of the Ising type. We also suppose all four spins form the diamond-shaped plaquette to have different g-factors. The non-uniform g-factors within the quantum spin dimer as well as the XY-anisotropy of the exchange interaction lead to the non-conserving magnetization for the chain. We analyze the effects of non-conserving magnetization as well as the effects of the appearance of negative g-factors among the spins from the unit cell. A number of unusual frustrated states for ferromagnetic couplings and g-factors with non-uniform signs are found out. These frustrated states generalize the "half-fire-half-ice" state introduced in reference Yin et al. (2015). The corresponding zero-temperature ground state phase diagrams are presented.

  2. Fire Prevention Efforts in the Northwest

    Science.gov (United States)

    A.W. Lindenmuth; J.J. Keetch

    1952-01-01

    The frequency of forest fires in 13 northeastern states dropped about one-half from 1943 to 1950, exclusive of the fluctuations due to weather. The average downward trend and the annual observations from which the trend is determined are shown graphically in the lower chart on the other side of this page. Each dot on the chart is the ratio of fire occurrence (actual...

  3. Testing transferability of willingness to pay for forest fire prevention among three states of California, Florida and Montana

    Science.gov (United States)

    John B. Loomis; Hung Trong Le; Armando Gonzalez-Caban

    2005-01-01

    The equivalency of willingness to pay between the states of California, Florida and Montana is tested. Residents in California, Florida and Montana have an average willingness to pay of $417, $305, and $382 for prescribed burning program, and $403, $230, and $208 for mechanical fire fuel reduction program, respectively. Due to wide confidence intervals, household WTP...

  4. Coal fires in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Whitehouse, Alfred E.; Mulyana, Asep A.S. [Office of Surface Mining/Ministry of Energy and Mineral Resources Coal Fire Project, Ministry of Energy and Mineral Resources, Agency for Training and Education, Jl. Gatot Subroto, Kav. 49, Jakarta 12950 (Indonesia)

    2004-07-12

    Indonesia's fire and haze problem is increasingly being ascribed to large-scale forest conversion and land clearing activities making way for pulpwood, rubber and oil palm plantations. Fire is the cheapest tool available to small holders and plantation owners to reduce vegetation cover and prepare and fertilize extremely poor soils. Fires that escaped from agricultural burns have ravaged East Kalimantan forests on the island of Borneo during extreme drought periods in 1982-1983, 1987, 1991, 1994 and 1997-1998. Estimates based on satellite data and ground observations are that more than five million hectares were burned in East Kalimantan during the 1997/1998 dry season. Not only were the economic losses and ecological damage from these surface fires enormous, they ignited coal seams exposed at the ground surface along their outcrops.Coal fires now threaten Indonesia's shrinking ecological resources in Kutai National Park and Sungai Wain Nature Reserve. Sungai Wain has one of the last areas of unburned primary rainforest in the Balikpapan-Samarinda area with an extremely rich biodiversity. Although fires in 1997/1998 damaged nearly 50% of this Reserve and ignited 76 coal fires, it remains the most valuable water catchment area in the region and it has been used as a reintroduction site for the endangered orangutan. The Office of Surface Mining provided Indonesia with the capability to take quick action on coal fires that presented threats to public health and safety, infrastructure or the environment. The US Department of State's Southeast Asia Environmental Protection Initiative through the US Agency for International Development funded the project. Technical assistance and training transferred skills in coal fire management through the Ministry of Energy and Mineral Resource's Training Agency to the regional offices; giving the regions the long-term capability to manage coal fires. Funding was also included to extinguish coal fires as

  5. Principles of effective USA federal fire management plans

    Science.gov (United States)

    Meyer, Marc D.; Roberts, Susan L.; Wills, Robin; Brooks, Matthew L.; Winford, Eric M.

    2015-01-01

    Federal fire management plans are essential implementation guides for the management of wildland fire on federal lands. Recent changes in federal fire policy implementation guidance and fire science information suggest the need for substantial changes in federal fire management plans of the United States. Federal land management agencies are also undergoing land management planning efforts that will initiate revision of fire management plans across the country. Using the southern Sierra Nevada as a case study, we briefly describe the underlying framework of fire management plans, assess their consistency with guiding principles based on current science information and federal policy guidance, and provide recommendations for the development of future fire management plans. Based on our review, we recommend that future fire management plans be: (1) consistent and compatible, (2) collaborative, (3) clear and comprehensive, (4) spatially and temporally scalable, (5) informed by the best available science, and (6) flexible and adaptive. In addition, we identify and describe several strategic guides or “tools” that can enhance these core principles and benefit future fire management plans in the following areas: planning and prioritization, science integration, climate change adaptation, partnerships, monitoring, education and communication, and applied fire management. These principles and tools are essential to successfully realize fire management goals and objectives in a rapidly changing world.

  6. Probabilistic assessment of fire related events in CWPH (Pilot study)

    International Nuclear Information System (INIS)

    Chatterjee, D.; Maity, S.C.; Guptan, Rajee; Mohan, Nalini; Ghadge, S.G.; Bajaj, S.S.

    2006-01-01

    As a part of Fire PSA for KAPS, a pilot study has been taken up identifying CWPH as the important zone vulnerable to fire. As the CWPH houses pumps belonging to all important cooling (APWC, FFW, NAHPPW, NALPW, etc.) of both the units, a single fire leads to failure of multiple safety/safety support system cooling affecting the safety of the plant. The objective of this study is as follows: Familiarising with the various published Fire-PSA study, comparing and finalisation of the computer code amongst various codes available with DAE, identifying and sequencing different activities involved for carrying out Fire PSA, i.e. Zoning and Sub-Zoning of Fire Source Area, Fire vulnerability of System and Component surrounding Fire Source, etc., finalization of report format and documentation. Computer Code FDS is used to carry out Fire Hazard Analysis. FDS is the latest state-of the-art software package extensively used for Fire Hazard Analysis. It develops a 3D scenario for any given fire giving credit to actual physical location of fire load and ventilation. It gives the time dependent of any fire in a specific zone crediting the time required by operator to take necessary preventive action which helps in quantifying the probability of error for any particular operator's for PSA study. To identify the most vulnerable sub-zone in CWPH, a walk down was organized and physical location of each load; their separation, fire barrier, ventilator in the room, arrangement of fire protection/fighting system, localized operator's room were reviewed. Fire in the middle diesel tank with pump is considered as initiating event in the sub-zone of CWPH. The Event Tree for this initiating event for CWPH was developed. Event Tree end states are identified as large fire i.e. fire which is failed to be detected by both means, i.e. early and late and failure in fighting by both means i.e. early and late. (author)

  7. Performance Evaluation of Orbit Determination System during Initial Phase of INSAT-3 Mission

    Science.gov (United States)

    Subramanian, B.; Vighnesam, N. V.

    INSAT-3C is the second in the third generation of ISRO's INSAT series of satellites that was launched by ARIANE-SPACE on 23 January 2002 at 23 h 46 m 57 s (lift off time in U.T). The ARIANE-4 Flight Nr.147 took off from Kourou in French Guyana and injected the 2750-kg communications satellite in a geostationary transfer orbit of (571 X 35935) km with an inclination of 4.007 deg at 00 h 07 m 48 s U.T on 24 January 2002 (1252 s after lift off). The satellite was successfully guided into its intended geostationary position of 74 deg E longitude by 09 February 2002 after a series of four firings of its Liquid Apogee Motor (LAM) and four station acquisition (STAQ) maneuvers. Six distinct phases of the mission were categorized based on the orbit characteristics of the INSAT- 3C mission, namely, the pre-launch phase, the launch phase, transfer orbit phase, intermediate orbit phase, drift orbit phase and synchronous orbit phase. The orbit with a perigee height of 571 km at injection of the satellite, was gradually raised to higher orbits with perigee height increasing to 9346 km after Apogee Motor Firing #1 (AMF #1), 18335 km after AMF #2, 32448 km after AMF #3 and 35493 km after AMF #4. The North and South solar panels and the reflectors were deployed at this stage of the mission and the attitude of the satellite with respect to the three axes was stabilized. The Orbit Determination System (ODS) that was used in the initial phase of the mission played a crucial role in realizing the objectives of the mission. This system which consisted of Tracking Data Pre-Processing (TDPP) software, Ephemeris Generation (EPHGEN) software and the Orbit Determination (OD) software, performed rigorously and its results were used for planning the AMF and STAQ strategies with a greater degree of accuracy. This paper reports the results of evaluation of the performance of the apogee-motor firings employed to place the satellite in its intended position where it is collocated with INSAT-1D

  8. Defining old growth for fire-adapted forests of the Western United States

    Science.gov (United States)

    Merrill R. Kaufmann; Daniel Binkley; Peter Z. Fule; Johnson Marlin; Scott L. Stephens; Thomas W. Swetnam

    2007-01-01

    There are varying definitions of old-growth forests because of differences in environment and differing fire influence across the Intermountain West. Two general types of forests reflect the role of fire: 1) forests shaped by natural changes in structure and species makeup-plant succession-that are driven by competitive differences among species and individual trees...

  9. Calculation of Fire Severity Factors and Fire Non-Suppression Probabilities For A DOE Facility Fire PRA

    International Nuclear Information System (INIS)

    Elicson, Tom; Harwood, Bentley; Lucek, Heather; Bouchard, Jim

    2011-01-01

    Over a 12 month period, a fire PRA was developed for a DOE facility using the NUREG/CR-6850 EPRI/NRC fire PRA methodology. The fire PRA modeling included calculation of fire severity factors (SFs) and fire non-suppression probabilities (PNS) for each safe shutdown (SSD) component considered in the fire PRA model. The SFs were developed by performing detailed fire modeling through a combination of CFAST fire zone model calculations and Latin Hypercube Sampling (LHS). Component damage times and automatic fire suppression system actuation times calculated in the CFAST LHS analyses were then input to a time-dependent model of fire non-suppression probability. The fire non-suppression probability model is based on the modeling approach outlined in NUREG/CR-6850 and is supplemented with plant specific data. This paper presents the methodology used in the DOE facility fire PRA for modeling fire-induced SSD component failures and includes discussions of modeling techniques for: Development of time-dependent fire heat release rate profiles (required as input to CFAST), Calculation of fire severity factors based on CFAST detailed fire modeling, and Calculation of fire non-suppression probabilities.

  10. Course in fire protection training for nuclear power plant personnel

    International Nuclear Information System (INIS)

    Walker, K.L.; Bates, E.F.; Randall, J.D.

    1979-01-01

    Proposed Regulatory Guide 1.120, entitled ''Fire Protection Guidelines for Nuclear Power Plants,'' provides detailed requirements for the overall fire protection programs at nuclear power plant sites in the United States. An essential element in such a program in the training of plant fire brigade personnel is the use of proper firefighting techniques and equipment. The Texas A and M University Nuclear Science Center (NSC) in conjunction with the Fire Protection Training Division of the Texas Engineering Extension Service has developed a one-week course to meet this training need. The program emphasizes hands-on exercises. The course is designed for up to 18 students with all protective clothing provided. Fire instructors are certified by the State of Texas, and registered nuclear engineers and certified health physicists supervise the radiological safety exercises. The first course was conducted during the week of January 8--12, 1979

  11. Interactions between Climate, Land Use and Vegetation Fire Occurrences in El Salvador

    Directory of Open Access Journals (Sweden)

    Dolors Armenteras

    2016-02-01

    Full Text Available Vegetation burning is a global environmental threat that results in local ecological, economic and social impacts but also has large-scale implications for global change. The burning is usually a result of interacting factors such as climate, land use and vegetation type. Despite its importance as a factor shaping ecological, economic and social processes, countries highly vulnerable to climate change in Central America, such as El Salvador, lack an assessment of this complex relationship. In this study we rely on remotely sensed measures of the Normalized Vegetation Difference Index (NDVI and thermal anomaly detections by the Moderate Resolution Imaging Spectroradiometer (MODIS sensor to identify vegetation cover changes and fire occurrences. We also use land use data and rainfall observations derived from the Tropical Rainfall Measuring Mission (TRMM data to determine the spatial and temporal variability and interactions of these factors. Our results indicate a highly marked seasonality of fire occurrence linked to the climatic variability with a peak of fire occurrences in 2004 and 2013. Low vegetation indices occurred in March–April, around two months after the driest period of the year (December–February, corresponding to months with high detection of fires. Spatially, 65.6% of the fires were recurrent and clustered in agriculture/cropland areas and within 1 km of roads (70% and only a 4.7% of fires detected were associated with forests. Remaining forests in El Salvador deserve more attention due to underestimated consequences of forest fires. The identification of these clear patterns can be used as a baseline to better shape management of fire regimes and support decision making in this country. Recommendations resulting from this work include focusing on fire risk models and agriculture fires and long-term ecological and economic consequences of those. Furthermore, El Salvador will need to include agricultural fires in the

  12. Broad-Scale Environmental Conditions Responsible for Post-Fire Vegetation Dynamics

    OpenAIRE

    Casady, Grant M.; Marsh, Stuart E.

    2010-01-01

    Ecosystem response to disturbance is influenced by environmental conditions at a number of scales. Changes in climate have altered fire regimes across the western United States, and have also likely altered spatio-temporal patterns of post-fire vegetation regeneration. Fire occurrence data and a vegetation index (NDVI) derived from the NOAA Advanced Very High Resolution Radiometer (AVHRR) were used to monitor post-fire vegetation from 1989 to 2007. We first investigated differences in post-fi...

  13. Grassroots movement building and preemption in the campaign for residential fire sprinklers.

    Science.gov (United States)

    Pertschuk, Mark; Hobart, Robin; Paloma, Marjorie; Larkin, Michelle A; Balbach, Edith D

    2013-10-01

    Home fires account for 85% of fire deaths in the United States, the majority in 1- or 2-family homes lacking fire sprinklers. Since 1978, however, a grassroots movement has successfully promoted more than 360 local ordinances mandating sprinklers in all new residential construction, including 1- and 2-family homes. The homebuilding industry has responded by seeking state preemption of local authority, a strategy previously used by other industries concerned about protecting their profits. From 2009 through 2011, 13 states adopted laws eliminating or limiting local authority over residential fire sprinklers. This study of the residential sprinkler movement adds to our understanding of grassroots public health movements and provides additional evidence that preemption can have a negative impact on public health and safety.

  14. A review of fire interactions and mass fires

    Science.gov (United States)

    Mark A. Finney; Sara S. McAllister

    2011-01-01

    The character of a wildland fire can change dramatically in the presence of another nearby fire. Understanding and predicting the changes in behavior due to fire-fire interactions cannot only be life-saving to those on the ground, but also be used to better control a prescribed fire to meet objectives. In discontinuous fuel types, such interactions may elicit fire...

  15. Changing Weather Extremes Call for Early Warning of Potential for Catastrophic Fire

    Science.gov (United States)

    Boer, Matthias M.; Nolan, Rachael H.; Resco De Dios, Víctor; Clarke, Hamish; Price, Owen F.; Bradstock, Ross A.

    2017-12-01

    Changing frequencies of extreme weather events and shifting fire seasons call for enhanced capability to forecast where and when forested landscapes switch from a nonflammable (i.e., wet fuel) state to the highly flammable (i.e., dry fuel) state required for catastrophic forest fires. Current forest fire danger indices used in Europe, North America, and Australia rate potential fire behavior by combining numerical indices of fuel moisture content, potential rate of fire spread, and fire intensity. These numerical rating systems lack the physical basis required to reliably quantify forest flammability outside the environments of their development or under novel climate conditions. Here, we argue that exceedance of critical forest flammability thresholds is a prerequisite for major forest fires and therefore early warning systems should be based on a reliable prediction of fuel moisture content plus a regionally calibrated model of how forest fire activity responds to variation in fuel moisture content. We demonstrate the potential of this approach through a case study in Portugal. We use a physically based fuel moisture model with historical weather and fire records to identify critical fuel moisture thresholds for forest fire activity and then show that the catastrophic June 2017 forest fires in central Portugal erupted shortly after fuels in the region dried out to historically unprecedented levels.

  16. The Science of Firescapes: Achieving Fire-Resilient Communities.

    Science.gov (United States)

    Smith, Alistair M S; Kolden, Crystal A; Paveglio, Travis B; Cochrane, Mark A; Bowman, David Mjs; Moritz, Max A; Kliskey, Andrew D; Alessa, Lilian; Hudak, Andrew T; Hoffman, Chad M; Lutz, James A; Queen, Lloyd P; Goetz, Scott J; Higuera, Philip E; Boschetti, Luigi; Flannigan, Mike; Yedinak, Kara M; Watts, Adam C; Strand, Eva K; van Wagtendonk, Jan W; Anderson, John W; Stocks, Brian J; Abatzoglou, John T

    2016-02-01

    Wildland fire management has reached a crossroads. Current perspectives are not capable of answering interdisciplinary adaptation and mitigation challenges posed by increases in wildfire risk to human populations and the need to reintegrate fire as a vital landscape process. Fire science has been, and continues to be, performed in isolated "silos," including institutions (e.g., agencies versus universities), organizational structures (e.g., federal agency mandates versus local and state procedures for responding to fire), and research foci (e.g., physical science, natural science, and social science). These silos tend to promote research, management, and policy that focus only on targeted aspects of the "wicked" wildfire problem. In this article, we provide guiding principles to bridge diverse fire science efforts to advance an integrated agenda of wildfire research that can help overcome disciplinary silos and provide insight on how to build fire-resilient communities.

  17. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 06: Guide to fuel treatments in dry forests of the Western United States: assessing forest structure and fire hazard

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2005-01-01

    The Guide to Fuel Treatments analyzes a range of potential silvicultural thinnings and surface fuel treatments for 25 representative dry-forest stands in the Western United States. The guide provides quantitative guidelines and visualization for treatment based on scientific principles identified for reducing potential crown fires. This fact sheet identifies the...

  18. Risk management of emergency service vehicle crashes in the United States fire service: process, outputs, and recommendations.

    Science.gov (United States)

    Bui, David P; Pollack Porter, Keshia; Griffin, Stephanie; French, Dustin D; Jung, Alesia M; Crothers, Stephen; Burgess, Jefferey L

    2017-11-17

    Emergency service vehicle crashes (ESVCs) are a leading cause of death in the United States fire service. Risk management (RM) is a proactive process for identifying occupational risks and reducing hazards and unwanted events through an iterative process of scoping hazards, risk assessment, and implementing controls. We describe the process, outputs, and lessons learned from the application of a proactive RM process to reduce ESVCs in US fire departments. Three fire departments representative of urban, suburban, and rural geographies, participated in a facilitated RM process delivered through focus groups and stakeholder discussion. Crash reports from department databases were reviewed to characterize the context, circumstances, hazards and risks of ESVCs. Identified risks were ranked using a risk matrix that considered risk likelihood and severity. Department-specific control measures were selected based on group consensus. Interviews, and focus groups were used to assess acceptability and utility of the RM process and perceived facilitators and barriers of implementation. Three to six RM meetings were conducted at each fire department. There were 7.4 crashes per 100 personnel in the urban department and 10.5 per 100 personnel in the suburban department; the rural department experienced zero crashes. All departments identified emergency response, backing, on scene struck by, driver distraction, vehicle/road visibility, and driver training as high or medium concerns. Additional high priority risks varied by department; the urban department prioritized turning and rear ending crashes; the suburban firefighters prioritized inclement weather/road environment and low visibility related crashes; and the rural volunteer fire department prioritized exiting station, vehicle failure, and inclement weather/road environment related incidents. Selected controls included new policies and standard operating procedures to reduce emergency response, cameras to enhance driver

  19. Updated logistic regression equations for the calculation of post-fire debris-flow likelihood in the western United States

    Science.gov (United States)

    Staley, Dennis M.; Negri, Jacquelyn A.; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.

    2016-06-30

    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can generate dangerous flash floods and debris flows. To reduce public exposure to hazard, the U.S. Geological Survey produces post-fire debris-flow hazard assessments for select fires in the western United States. We use publicly available geospatial data describing basin morphology, burn severity, soil properties, and rainfall characteristics to estimate the statistical likelihood that debris flows will occur in response to a storm of a given rainfall intensity. Using an empirical database and refined geospatial analysis methods, we defined new equations for the prediction of debris-flow likelihood using logistic regression methods. We showed that the new logistic regression model outperformed previous models used to predict debris-flow likelihood.

  20. Fire characteristics charts for fire behavior and U.S. fire danger rating

    Science.gov (United States)

    Faith Ann Heinsch; Pat Andrews

    2010-01-01

    The fire characteristics chart is a graphical method of presenting U.S. National Fire Danger Rating indices or primary surface or crown fire behavior characteristics. A desktop computer application has been developed to produce fire characteristics charts in a format suitable for inclusion in reports and presentations. Many options include change of scales, colors,...

  1. From fire whirls to blue whirls and combustion with reduced pollution

    Science.gov (United States)

    Xiao, Huahua; Gollner, Michael J.; Oran, Elaine S.

    2016-08-01

    Fire whirls are powerful, spinning disasters for people and surroundings when they occur in large urban and wildland fires. Whereas fire whirls have been studied for fire-safety applications, previous research has yet to harness their potential burning efficiency for enhanced combustion. This article presents laboratory studies of fire whirls initiated as pool fires, but where the fuel sits on a water surface, suggesting the idea of exploiting the high efficiency of fire whirls for oil-spill remediation. We show the transition from a pool fire, to a fire whirl, and then to a previously unobserved state, a “blue whirl.” A blue whirl is smaller, very stable, and burns completely blue as a hydrocarbon flame, indicating soot-free burning. The combination of fast mixing, intense swirl, and the water-surface boundary creates the conditions leading to nearly soot-free combustion. With the worldwide need to reduce emissions from both wanted and unwanted combustion, discovery of this state points to possible new pathways for reduced-emission combustion and fuel-spill cleanup. Because current methods to generate a stable vortex are difficult, we also propose that the blue whirl may serve as a research platform for fundamental studies of vortices and vortex breakdown in fluid mechanics.

  2. From fire whirls to blue whirls and combustion with reduced pollution.

    Science.gov (United States)

    Xiao, Huahua; Gollner, Michael J; Oran, Elaine S

    2016-08-23

    Fire whirls are powerful, spinning disasters for people and surroundings when they occur in large urban and wildland fires. Whereas fire whirls have been studied for fire-safety applications, previous research has yet to harness their potential burning efficiency for enhanced combustion. This article presents laboratory studies of fire whirls initiated as pool fires, but where the fuel sits on a water surface, suggesting the idea of exploiting the high efficiency of fire whirls for oil-spill remediation. We show the transition from a pool fire, to a fire whirl, and then to a previously unobserved state, a "blue whirl." A blue whirl is smaller, very stable, and burns completely blue as a hydrocarbon flame, indicating soot-free burning. The combination of fast mixing, intense swirl, and the water-surface boundary creates the conditions leading to nearly soot-free combustion. With the worldwide need to reduce emissions from both wanted and unwanted combustion, discovery of this state points to possible new pathways for reduced-emission combustion and fuel-spill cleanup. Because current methods to generate a stable vortex are difficult, we also propose that the blue whirl may serve as a research platform for fundamental studies of vortices and vortex breakdown in fluid mechanics.

  3. Histone acetylation regulates the time of replication origin firing.

    Science.gov (United States)

    Vogelauer, Maria; Rubbi, Liudmilla; Lucas, Isabelle; Brewer, Bonita J; Grunstein, Michael

    2002-11-01

    The temporal firing of replication origins throughout S phase in yeast depends on unknown determinants within the adjacent chromosomal environment. We demonstrate here that the state of histone acetylation of surrounding chromatin is an important regulator of temporal firing. Deletion of RPD3 histone deacetylase causes earlier origin firing and concurrent binding of the replication factor Cdc45p to origins. In addition, increased acetylation of histones in the vicinity of the late origin ARS1412 by recruitment of the histone acetyltransferase Gcn5p causes ARS1412 alone to fire earlier. These data indicate that histone acetylation is a direct determinant of the timing of origin firing.

  4. Directory of fire research specialists

    Science.gov (United States)

    Junod, T. L.; Mandel, G.; Jason, N. H.

    1979-01-01

    Directory indexes, 1,475 researchers and various organizations in the United States or Canada who have recently participated in or made contributions to fire science research or related areas of concern.

  5. Fire protection and fire fighting in nuclear installations

    International Nuclear Information System (INIS)

    1989-01-01

    Fires are a threat to all technical installations. While fire protection has long been a well established conventional discipline, its application to nuclear facilities requires special considerations. Nevertheless, for a long time fire engineering has been somewhat neglected in the design and operation of nuclear installations. In the nuclear industry, the Browns Ferry fire in 1975 brought about an essential change in the attention paid to fire problems. Designers and plant operators, as well as insurance companies and regulators, increased their efforts to develop concepts and methods for reducing fire risks, not only to protect the capital investment in nuclear plants but also to consider the potential secondary effects which could lead to nuclear accidents. Although the number of fires in nuclear installations is still relatively large, their overall importance to the safety of nuclear power plants was not considered to be very high. Only more recently have probabilistic analyses changed this picture. The results may well have to be taken into account more carefully. Various aspects of fire fighting and fire protection were discussed during the Symposium, the first of its kind to be organized by the IAEA. It was convened in co-operation with several organizations working in the nuclear or fire protection fields. The intention was to gather experts from nuclear engineering areas and the conventional fire protection field at one meeting with a view to enhancing the exchange of information and experience and to presenting current knowledge on the various disciplines involved. The presentations at the meeting were subdivided into eight sessions: standards and licensing (6 papers); national fire safety practices (7 papers); fire safety by design (11 papers); fire fighting (2 papers); computer fire modeling (7 papers); fire safety in fuel center facilities (7 papers); fire testing of materials (3 papers); fire risk assessment (5 papers). A separate abstract was

  6. Development at the wildland-urban interface and the mitigation of forest-fire risk.

    Science.gov (United States)

    Spyratos, Vassilis; Bourgeron, Patrick S; Ghil, Michael

    2007-09-04

    This work addresses the impacts of development at the wildland-urban interface on forest fires that spread to human habitats. Catastrophic fires in the western United States and elsewhere make these impacts a matter of urgency for decision makers, scientists, and the general public. Using a simple fire-spread model, along with housing and vegetation data, we show that fire size probability distributions can be strongly modified by the density and flammability of houses. We highlight a sharp transition zone in the parameter space of vegetation flammability and house density. Many actual fire landscapes in the United States appear to have spreading properties close to this transition. Thus, the density and flammability of buildings should be taken into account when assessing fire risk at the wildland-urban interface. Moreover, our results highlight ways for regulation at this interface to help mitigate fire risk.

  7. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere–fire numerical model

    OpenAIRE

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-01-01

    Fire channelling is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep lee-facing slope in a direction transverse to the background winds, and is often accompanied by a downwind extension of the active flaming region and extreme pyro-convection. Recent work using the WRF-Fire coupled atmosphere-fire model has demonstrated that fire channelling can be characterised as vorticity-driven lateral fire spread (VDLS). In t...

  8. First Order Fire Effects Model: FOFEM 4.0, user's guide

    Science.gov (United States)

    Elizabeth D. Reinhardt; Robert E. Keane; James K. Brown

    1997-01-01

    A First Order Fire Effects Model (FOFEM) was developed to predict the direct consequences of prescribed fire and wildfire. FOFEM computes duff and woody fuel consumption, smoke production, and fire-caused tree mortality for most forest and rangeland types in the United States. The model is available as a computer program for PC or Data General computer.

  9. Sensitivity Analysis on Fire Modeling of Main Control Board Fire Using Fire Dynamics Simulator

    International Nuclear Information System (INIS)

    Kang, Dae Il; Lim, Ho Gon

    2015-01-01

    In this study, sensitivity analyses for an MCB fire were performed to identify the effects on the MCR forced abandonment time according to the changes of height and number for fire initiation places. Hanul Unit 3 NPP was selected as a reference plant for this study. In this study, sensitivity analyses for an MCB fire were performed to identify the effects on the MCR forced abandonment time according to the changes of height and number of fire initiation places. A main control board (MCB) fire can cause a forced main control room (MCR) abandonment of the operators as well as the function failures or spurious operations of the control and instrumentation-related components. If the MCR cannot be habitable, a safe shutdown from outside the MCR can be achieved and maintained at an alternate shutdown panel independent from the MCR. When the fire modeling for an electrical cabinet such as an MCB was performed, its many input parameters can affect the fire simulation results. This study results showed that the decrease in the height of fire ignition place and the use of single fire ignition place in fire modeling for the propagating fire shortened MCR abandonment time

  10. Sensitivity Analysis on Fire Modeling of Main Control Board Fire Using Fire Dynamics Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Lim, Ho Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, sensitivity analyses for an MCB fire were performed to identify the effects on the MCR forced abandonment time according to the changes of height and number for fire initiation places. Hanul Unit 3 NPP was selected as a reference plant for this study. In this study, sensitivity analyses for an MCB fire were performed to identify the effects on the MCR forced abandonment time according to the changes of height and number of fire initiation places. A main control board (MCB) fire can cause a forced main control room (MCR) abandonment of the operators as well as the function failures or spurious operations of the control and instrumentation-related components. If the MCR cannot be habitable, a safe shutdown from outside the MCR can be achieved and maintained at an alternate shutdown panel independent from the MCR. When the fire modeling for an electrical cabinet such as an MCB was performed, its many input parameters can affect the fire simulation results. This study results showed that the decrease in the height of fire ignition place and the use of single fire ignition place in fire modeling for the propagating fire shortened MCR abandonment time.

  11. Post-fire vegetation behaviour in large burnt scars from 2005 fire season in Spain

    Science.gov (United States)

    Bastos, A.; Gouveia, C. M.; DaCamara, C. C.; Trigo, R. M.

    2012-04-01

    Wildfires have a wide diversity of impacts on landscape which, in turn, depend on the interaction of fire regimes (e.g. intensity, extent, frequency) and the response of vegetation to them in short and long-terms. The increase in erosion rates and the loss of nutrients by runoff in the first months following the fire are among the major impacts of wildfires. A minimum of 30% of vegetation cover is enough to protect soils against erosion but vegetation may require a long period to reach this threshold after severe fires. Since erosion risk is strongly linked to vegetation recovery rates, post-fire vegetation monitoring becomes crucial in land management. Fire regimes in the Mediterranean have been changing in the past decades due to modifications in both socio-economic and climate patterns. Although many vegetation species in Mediterranean ecosystems are adapted to wildfires, changes in fire regime characteristics affect the ability of ecosystems to recover to their previous state. In Spain, fire is an important driver of changes in landscape composition, leading to dominance of shrubland following fire and to a major decrease of pine woodlands (Viedma et al., 2006). Remote sensing is a powerful tool in land management, allowing vegetation monitoring on large spatial scales for relatively long periods of time. In order to assess vegetation dynamics, monthly NDVI data from 1998-2009 from SPOT/VEGETATION at 1km spatial resolution over the Iberian Peninsula were used. This work focuses on 2005 fire season in Spain, which registered the highest amount of burnt area since 1994, with more than 188000 ha burnt. Burnt scars in this fire season were identified by cluster analysis. Post-fire vegetation recovery was assessed based on the monoparametric model developed by Gouveia et al. (2010) that was applied to four large scars located in different geographical settings with different land cover characteristics. While the two northern regions presented fast recovery, in the

  12. Radiation Environment at LEO in the frame of Space Monitoring Data Center at Moscow State University - recent, current and future missions

    Science.gov (United States)

    Myagkova, Irina; Kalegaev, Vladimir; Panasyuk, Mikhail; Svertilov, Sergey; Bogomolov, Vitaly; Bogomolov, Andrey; Barinova, Vera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Shiroky, Vladimir; Shugay, Julia

    2016-04-01

    Radiation Environment of Near-Earth space is one of the most important factors of space weather. Space Monitoring Data Center of Moscow State University provides operational control of radiation conditions at Low Earth's Orbits (LEO) of the near-Earth space using data of recent (Vernov, CORONAS series), current (Meteor-M, Electro-L series) and future (Lomonosov) space missions. Internet portal of Space Monitoring Data Center of Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) http://swx.sinp.msu.ru/ provides possibilities to control and analyze the space radiation conditions in the real time mode together with the geomagnetic and solar activity including hard X-ray and gamma- emission of solar flares. Operational data obtained from space missions at L1, GEO and LEO and from the Earth's magnetic stations are used to represent radiation and geomagnetic state of near-Earth environment. The models of space environment that use space measurements from different orbits were created. Interactive analysis and operational neural network forecast services are based on these models. These systems can automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons of outer Earth's radiation belt using data from GEO and LEO as input. As an example of LEO data we consider data from Vernov mission, which was launched into solar-synchronous orbit (altitude 640 - 83 0 km, inclination 98.4°, orbital period about 100 min) on July 8, 2014 and began to receive scientific information since July 20, 2014. Vernov mission have provided studies of the Earth's radiation belt relativistic electron precipitation and its possible connection with atmosphere transient luminous events, as well as the solar hard X-ray and gamma-emission measurements. Radiation and electromagnetic environment monitoring in the near-Earth Space, which is very important for space weather study, was also realised

  13. Built structure identification in wildland fire decision support

    Science.gov (United States)

    David E. Calkin; Jon D. Rieck; Kevin D. Hyde; Jeffrey D. Kaiden

    2011-01-01

    Recent ex-urban development within the wildland interface has significantly increased the complexity and associated cost of federal wildland fire management in the United States. Rapid identification of built structures relative to probable fire spread can help to reduce that complexity and improve the performance of incident management teams. Approximate structure...

  14. Native American depopulation, reforestation, and fire regimes in the Southwest United States, 1492-1900 CE.

    Science.gov (United States)

    Liebmann, Matthew J; Farella, Joshua; Roos, Christopher I; Stack, Adam; Martini, Sarah; Swetnam, Thomas W

    2016-02-09

    Native American populations declined between 1492 and 1900 CE, instigated by the European colonization of the Americas. However, the magnitude, tempo, and ecological effects of this depopulation remain the source of enduring debates. Recently, scholars have linked indigenous demographic decline, Neotropical reforestation, and shifting fire regimes to global changes in climate, atmosphere, and the Early Anthropocene hypothesis. In light of these studies, we assess these processes in conifer-dominated forests of the Southwest United States. We compare light detection and ranging data, archaeology, dendrochronology, and historical records from the Jemez Province of New Mexico to quantify population losses, establish dates of depopulation events, and determine the extent and timing of forest regrowth and fire regimes between 1492 and 1900. We present a new formula for the estimation of Pueblo population based on architectural remains and apply this formula to 18 archaeological sites in the Jemez Province. A dendrochronological study of remnant wood establishes dates of terminal occupation at these sites. By combining our results with historical records, we report a model of pre- and post-Columbian population dynamics in the Jemez Province. Our results indicate that the indigenous population of the Jemez Province declined by 87% following European colonization but that this reduction occurred nearly a century after initial contact. Depopulation also triggered an increase in the frequency of extensive surface fires between 1640 and 1900. Ultimately, this study illustrates the quality of integrated archaeological and paleoecological data needed to assess the links between Native American population decline and ecological change after European contact.

  15. How can prescribed burning and harvesting restore shortleaf pine-oak woodland at the landscape scale in central United States? Modeling joint effects of harvest and fire regimes

    Science.gov (United States)

    Wenchi Jin; Hong S. He; Stephen R. Shifley; Wen J. Wang; John M. Kabrick; Brian K. Davidson

    2018-01-01

    Historical fire regimes in the central United States maintained open-canopy shortleaf pine-oak woodlands on xeric sites. Following large-scale harvest and fire suppression, those woodlands grew denser with more continuous canopy cover, and they gained mesic species at the expense of shortleaf pine. There is high interest in restoring shortleaf pine-oak woodlands; most...

  16. A new North American fire scar network for reconstructing historical pyrogeography, 1600-1900 AD

    Science.gov (United States)

    Donald A. Falk; Thomas Swetnam; Thomas Kitzberger; Elaine Sutherland; Peter Brown; Erica Bigio; Matthew Hall

    2013-01-01

    The Fire and Climate Synthesis (FACS) project is a collaboration of about 50 fire ecologists to compile and synthesize fire and climate data for western North America. We have compiled nearly 900 multi-century fire-scar based fire histories from the western United States, Canada, and Mexico. The resulting tree-ring based fire history is the largest and most spatially...

  17. Fire protection

    International Nuclear Information System (INIS)

    Janetzky, E.

    1980-01-01

    Safety and fire prevention measurements have to be treated like the activities developing, planning, construction and erection. Therefore it is necessary that these measurements have to be integrated into the activities mentioned above at an early stage in order to guarantee their effectiveness. With regard to fire accidents the statistics of the insurance companies concerned show that the damage caused increased in the last years mainly due to high concentration of material. Organization of fire prevention and fire fighting, reasons of fire break out, characteristics and behaviour of fire, smoke and fire detection, smoke and heat venting, fire extinguishers (portable and stationary), construction material in presence of fire, respiratory protection etc. will be discussed. (orig./RW)

  18. Reliability and Failure in NASA Missions: Blunders, Normal Accidents, High Reliability, Bad Luck

    Science.gov (United States)

    Jones, Harry W.

    2015-01-01

    NASA emphasizes crew safety and system reliability but several unfortunate failures have occurred. The Apollo 1 fire was mistakenly unanticipated. After that tragedy, the Apollo program gave much more attention to safety. The Challenger accident revealed that NASA had neglected safety and that management underestimated the high risk of shuttle. Probabilistic Risk Assessment was adopted to provide more accurate failure probabilities for shuttle and other missions. NASA's "faster, better, cheaper" initiative and government procurement reform led to deliberately dismantling traditional reliability engineering. The Columbia tragedy and Mars mission failures followed. Failures can be attributed to blunders, normal accidents, or bad luck. Achieving high reliability is difficult but possible.

  19. Installation and operation of the Plantwide Fire Protection Systems and related Domestic Water Supply Systems

    International Nuclear Information System (INIS)

    1991-12-01

    A safe work environment is needed to support the Savannah River Site (SRS) mission of producing special nuclear material. This Environmental Assessment (EA) assesses the potential environmental impact(s) of adding to and upgrading the Plantwide Fire Protection System and selected related portions of the Domestic Water Supply System at SRS, Aiken, South Carolina. The following objectives are expected to be met by this action: Prevent undue threat to public health and welfare from fire at SRS; prevent undue hazard to employees at SRS from fire; prevent unacceptable delay to vital DOE programs as a result of fire at SRS; keep fire related property damage at SRS to a manageable level;, and provide an upgraded supply of domestic water for the Reactor Areas. The Reactor Areas' domestic water supplies do not meet current demand capacity due to the age and condition of the 30-year old iron piping. In addition, the water quality for these supplies is not consistent with current SCDHEC requirements. Therefore, DOE proposes to upgrade this Domestic Water Supply System to meet current demand and quality levels, as well as the needs of fire protection system improvement

  20. Detecting fire in video stream using statistical analysis

    Directory of Open Access Journals (Sweden)

    Koplík Karel

    2017-01-01

    Full Text Available The real time fire detection in video stream is one of the most interesting problems in computer vision. In fact, in most cases it would be nice to have fire detection algorithm implemented in usual industrial cameras and/or to have possibility to replace standard industrial cameras with one implementing the fire detection algorithm. In this paper, we present new algorithm for detecting fire in video. The algorithm is based on tracking suspicious regions in time with statistical analysis of their trajectory. False alarms are minimized by combining multiple detection criteria: pixel brightness, trajectories of suspicious regions for evaluating characteristic fire flickering and persistence of alarm state in sequence of frames. The resulting implementation is fast and therefore can run on wide range of affordable hardware.

  1. Simulating fuel treatment effects in dry forests of the western United States: testing the principles of a fire-safe forest

    Science.gov (United States)

    Morris C. Johnson; Maureen C Kennedy; David L. Peterson

    2011-01-01

    We used the Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS) to simulate fuel treatment effects on stands in low- to midelevation dry forests (e.g., ponderosa pine (Pinus ponderosa Dougl. ex. P. & C. Laws.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) of the western United States. We...

  2. Estimating canopy bulk density and canopy base height for conifer stands in the interior Western United States using the Forest Vegetation Simulator Fire and Fuels Extension.

    Science.gov (United States)

    Seth Ex; Frederick Smith; Tara Keyser; Stephanie Rebain

    2017-01-01

    The Forest Vegetation Simulator Fire and Fuels Extension (FFE-FVS) is often used to estimate canopy bulk density (CBD) and canopy base height (CBH), which are key indicators of crown fire hazard for conifer stands in the Western United States. Estimated CBD from FFE-FVS is calculated as the maximum 4 m running mean bulk density of predefined 0.3 m thick canopy layers (...

  3. Laboratory fire behavior measurements of chaparral crown fire

    Science.gov (United States)

    C. Sanpakit; S. Omodan; D. Weise; M Princevac

    2015-01-01

    In 2013, there was an estimated 9,900 wildland fires that claimed more than 577,000 acres of land. That same year, about 542 prescribed fires were used to treat 48,554 acres by several agencies in California. Being able to understand fires using laboratory models can better prepare individuals to combat or use fires. Our research focused on chaparral crown fires....

  4. Communication of 14 March 2000 received from the Permanent Mission of the United States of America to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    2000-01-01

    The document reproduces the text of the communication of 14 March 2000 received from the Permanent Mission of the United States of America to the International Atomic Energy Agency including two statements of the President and the Secretary of State of the United States of America regarding the Nuclear Non-proliferation Treaty

  5. Current Status of Fire Risk Assessment in Germany

    International Nuclear Information System (INIS)

    Berg, H. P.

    2002-01-01

    The approach for fire risk assessment to be applied within periodic safety reviews of nuclear power plants in Germany starts with a screening process providing critical fire zones in which a fully developed fire has the potential to both cause an initiating event and impair the function of at least one component or system critical to safety. The second step is to perform a quantitative analysis. For that purpose, a standard event tree has been developed with elements for fire initiation, ventilation of the room, fire detection, fire suppression, and fire propagation. This standard event tree has to be adapted to each critical fire zone or room. In a final step, the fire induced frequency of initiating events, the main contributors and the calculated hazard state frequency for the fire event are determined. In order to perform a quantitative fire risk assessment, a basic data base must be established which should, e.g., include initiating frequencies, reliability data for all fire protection measures, fire barriers, etc. Detailed plant-specific information is needed on ignition sources, detection and extinguishing systems, manual fire fighting, stationary fire suppression systems. As one contributor to fire specific PSA input data, reliability data for the active fire protection measures are required for the application in the fire specific event tree analysis. These data needed to be estimated are unavailabilities per demand or failure rates per hour of plant operation for those components or systems belonging to the active fire protection means. The data on potential failures or unavailabilities per demand of the respective fire protection measures were gained from the plant specific documentation of inspection and maintenance. The assessment whether the detected findings are estimated as failures or only as deficiencies or deteriorations requires a deep insight in the plant specific operating conditions for the fire protection means and needs careful engineering

  6. Unites States position paper on sodium fires. Design basis and testing

    International Nuclear Information System (INIS)

    Lancet, R.T.; Johnson, R.P.; Matlin, E.; Vaughan, E.U.; Fields, D.E.; Glueckler, E.; McCormack, J.D.; Miller, C.W.; Pedersen, D.R.

    1989-01-01

    This paper focuses on designs, analyses, and tests performed since the last Sodium Fires Meeting of the IAEA International Working Group on Fast Reactors in May 1982. Since the U.S. Liquid Metal Reactor (LMR) program is focused on the two advanced LMRs, SAFR and PRISM, the paper relates this work to these designs. First, the design philosophy and approach taken by these advanced pool reactors are described. This includes methods of leak detection, the design basis leaks, and passive accommodation of sodium fires. Then the small- and large-scale sodium fire tests performed in support of the Clinch River Breeder Reactor Plant (CRBRP) program, including post-accident cleanup, are presented and related to the advanced LMR designs. Next, the assessment and behavior of the aerosols generated are discussed including generation rate, behavior within structures, release and dispersal, and deposition on safety-grade equipment. Finally, the impact of these aerosols on the performance of safety-grade decay heat removal heat exchange surfaces is discussed including some test results as well as planned tests. (author)

  7. The impact of fire on sand dune stability: Surface coverage and biomass recovery after fires on Western Australian coastal dune systems from 1988 to 2016

    Science.gov (United States)

    Shumack, Samuel; Hesse, Paul; Turner, Liam

    2017-12-01

    This study aims to determine the common response of coastal sand dunes in Western Australia (WA) to fire on decadal time-scales, in terms of ecological-geomorphic-climatic interactions to test the hypothesis that fire plays a role in coastal dune destabilisation. Fires are commonly suggested to have contributed to widespread dune reactivation in Australia and globally, a hypothesis that is relatively untested. We used data from the Landsat Thematic Mapper, Enhanced Thematic Mapper Plus, and Operational Land Imager missions to monitor changes in surface coverage on coastal sand dunes in south-west WA after fires. We analysed 31 fire scars from 1988 to 2016 in two Landsat scenes on the west and south coast of WA. Recovery ratios derived from the Normalised Difference Vegetation Index (NDVI) were used to monitor patterns in post-fire biomass and surface cover. Recovery ratios are correlated with indices of burn severity, and meteorological data to investigate relationships. We also used Maximum Likelihood Classification to monitor changes in bare sand area. Results suggest that recovery followed a strongly consistent pattern, and is characterised by rapid vegetation cover re-establishment within six to twelve months. Prior to this, some aeolian activity may have occurred but without substantial surface changes. Initial germination and/or resprouting were followed by steady growth up to seven years, where NDVI typically neared pre-fire values. Some variation in early recovery occurred between the west and south coast, possibly owing to relative proportions of reseeding and resprouting plants. A log regression explained 75% of the recovery pattern (79% on the south coast). Precipitation had some ability to explain recovery up to nine months post-fire (r2 = 0.29 to 0.54). No relationships were observed between estimates of burn severity and recovery. After nine months, the biggest cause of spatial variation in recovery was the pre-fire community composition and related

  8. The importance of fire simulation in fire prediction

    Directory of Open Access Journals (Sweden)

    Jevtić Radoje B.

    2014-01-01

    Full Text Available The appearance of fire in objects with lot of humans inside represents very possible real situation that could be very danger and could cause destructive consequences on human lives and material properties. Very important influence in fire prediction, fire protection, human and material properties safety could be a fire simulation in object. This simulation could give many useful information of possible fire propagation; possible and existed evacuation routes; possible and exited placing of fire, smoke, temperature conditions in object and many other information of crucial importance for human lives and material properties, such as the best places for sensors position, optimal number of sensors, projection of possible evacuation routes etc. There are many different programs for fire simulation. This paper presents complete fire simulation in Electrotechnical school Nikola Tesla in Niš in FDS.

  9. The state of the residential fire fatality problem in Sweden: Epidemiology, risk factors, and event typologies.

    Science.gov (United States)

    Jonsson, Anders; Bonander, Carl; Nilson, Finn; Huss, Fredrik

    2017-09-01

    Residential fires represent the largest category of fatal fires in Sweden. The purpose of this study was to describe the epidemiology of fatal residential fires in Sweden and to identify clusters of events. Data was collected from a database that combines information on fatal fires with data from forensic examinations and the Swedish Cause of Death-register. Mortality rates were calculated for different strata using population statistics and rescue service turnout reports. Cluster analysis was performed using multiple correspondence analysis with agglomerative hierarchical clustering. Male sex, old age, smoking, and alcohol were identified as risk factors, and the most common primary injury diagnosis was exposure to toxic gases. Compared to non-fatal fires, fatal residential fires more often originated in the bedroom, were more often caused by smoking, and were more likely to occur at night. Six clusters were identified. The first two clusters were both smoking-related, but were separated into (1) fatalities that often involved elderly people, usually female, whose clothes were ignited (17% of the sample), (2) middle-aged (45-64years old), (often) intoxicated men, where the fire usually originated in furniture (30%). Other clusters that were identified in the analysis were related to (3) fires caused by technical fault, started in electrical installations in single houses (13%), (4) cooking appliances left on (8%), (5) events with unknown cause, room and object of origin (25%), and (6) deliberately set fires (7%). Fatal residential fires were unevenly distributed in the Swedish population. To further reduce the incidence of fire mortality, specialized prevention efforts that focus on the different needs of each cluster are required. Cooperation between various societal functions, e.g. rescue services, elderly care, psychiatric clinics and other social services, with an application of both human and technological interventions, should reduce residential fire

  10. Wildfire and drought dynamics destabilize carbon stores of fire-suppressed forests

    Science.gov (United States)

    J. Mason Earles; Malcolm P. North; Matthew D. Hurteau

    2014-01-01

    Widespread fire suppression and thinning have altered the structure and composition of many forests in the western United States, making them more susceptible to the synergy of large-scale drought and fire events. We examine how these changes affect carbon storage and stability compared to historic fire-adapted conditions. We modeled carbon dynamics under possible...

  11. The Fire Locating and Modeling of Burning Emissions (FLAMBE) Project

    Science.gov (United States)

    Reid, J. S.; Prins, E. M.; Westphal, D.; Richardson, K.; Christopher, S.; Schmidt, C.; Theisen, M.; Eck, T.; Reid, E. A.

    2001-12-01

    The Fire Locating and Modeling of Burning Emissions (FLAMBE) project was initiated by NASA, the US Navy and NOAA to monitor biomass burning and burning emissions on a global scale. The idea behind the mission is to integrate remote sensing data with global and regional transport models in real time for the purpose of providing the scientific community with smoke and fire products for planning and research purposes. FLAMBE is currently utilizing real time satellite data from GOES satellites, fire products based on the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) are generated for the Western Hemisphere every 30 minutes with only a 90 minute processing delay. We are currently collaborating with other investigators to gain global coverage. Once generated, the fire products are used to input smoke fluxes into the NRL Aerosol Analysis and Prediction System, where advection forecasts are performed for up to 6 days. Subsequent radiative transfer calculations are used to estimate top of atmosphere and surface radiative forcing as well as surface layer visibility. Near real time validation is performed using field data collected by Aerosol Robotic Network (AERONET) Sun photometers. In this paper we fully describe the FLAMBE project and data availability. Preliminary result from the previous year will also be presented, with an emphasis on the development of algorithms to determine smoke emission fluxes from individual fire products. Comparisons to AERONET Sun photometer data will be made.

  12. Fire resistance in American heavy timber construction history and preservation

    CERN Document Server

    Heitz, Jesse

    2016-01-01

    This volume presents a history of heavy timber construction (HTC) in the United States, chronicling nearly two centuries of building history, from inception to a detailed evaluation of one of the best surviving examples of the type, with an emphasis on fire resistance. The book does not limit itself in scope to serving only as a common history. Rather, it provides critical analysis of HTC in terms of construction methods, design, technical specifications, and historical performance under fire conditions. As such, this book provides readers with a truly comprehensive understanding and exploration of heavy timber construction in the United States and its performance under fire conditions.

  13. Status of wildland fire prevention evaluation in the United States.

    Science.gov (United States)

    Larry Doolittle; Linda R. Donoghue

    1991-01-01

    Presents findings of an assessment of the evaluation of wildland prevention efforts by all U.S. Wildland fire management agencies, and offers recommendations for improvements in prevention valuation techniques and procedures.

  14. German data for risk based fire safety assessment

    International Nuclear Information System (INIS)

    Roewekamp, M.; Berg, H.P.

    1998-01-01

    Different types of data are necessary to perform risk based fire safety assessments and, in particular, to quantify the fire event tree considering the plant specific conditions. Data on fire barriers, fire detection and extinguishing, including also data on secondary effects of a fire, have to be used for quantifying the potential hazard and damage states. The existing German database on fires in nuclear power plants (NPPs) is very small. Therefore, in general generic data, mainly from US databases, are used for risk based safety assessments. Due to several differences in the plant design and conditions generic data can only be used as conservative assumptions. World-wide existing generic data on personnel failures in case of fire fighting have only to be adapted to the plant specific conditions inside the NPP to be investigated. In contrary, unavailabilities of fire barrier elements may differ strongly depending on different standards, testing requirements, etc. In addition, the operational behaviour of active fire protection equipment may vary depending on type and manufacturer. The necessity for more detailed and for additional plant specific data was the main reason for generating updated German data on the operational behaviour of active fire protection equipment/features in NPPs to support risk based fire safety analyses being recommended to be carried out as an additional tool to deterministic fire hazard analyses in the frame of safety reviews. The results of these investigations revealed a broader and more realistic database for technical reliability of active fire protection means, but improvements as well as collection of further data are still necessary. (author)

  15. Chapter 3: Simulating fire hazard across landscapes through time: integrating state-and-transition models with the Fuel Characteristic Classification System

    Science.gov (United States)

    Jessica E. Halofsky; Stephanie K. Hart; Miles A. Hemstrom; Joshua S. Halofsky; Morris C. Johnson

    2014-01-01

    Information on the effects of management activities such as fuel reduction treatments and of processes such as vegetation growth and disturbance on fire hazard can help land managers prioritize treatments across a landscape to best meet management goals. State-and-transition models (STMs) allow landscape-scale simulations that incorporate effects of succession,...

  16. Climate change effects on wildland fire risk in the Northeastern and Great Lakes states predicted by a downscaled multi-model ensemble

    NARCIS (Netherlands)

    Kerr, Gaige Hunter; DeGaetano, Arthur T.; Stoof, Cathelijne R.; Ward, Daniel

    2018-01-01

    This study is among the first to investigate wildland fire risk in the Northeastern and the Great Lakes states under a changing climate. We use a multi-model ensemble (MME) of regional climate models from the Coordinated Regional Downscaling Experiment (CORDEX) together with the Canadian Forest

  17. FORMOSAT-3/COSMIC Spacecraft Constellation System, Mission Results, and Prospect for Follow-On Mission

    Directory of Open Access Journals (Sweden)

    Chen-Joe Fong

    2009-01-01

    Full Text Available The FORMOSAT-3/COSMIC spacecraft constellation consisting of six LEO satellites is the world's first operational GPS Radio Occultation (RO mission. The mission is jointly developed by Taiwan¡¦s National Space Organization (NSPO and the United States¡¦UCAR in collaboration with NSF, USAF, NOAA, NASA, NASA's Jet Propulsion Laboratory, and the US Naval Research Laboratory. The FORMOSAT-3/COSMIC satellites were successfully launched from Vandenberg US AFB in California at 0140 UTC 15 April 2006 into the same orbit plane of the designated 516 km altitude. The mission goal is to deploy the six satellites into six orbit planes at 800 km altitude with a 30-degree separation for evenly distributed global coverage. All six FORMOSAT-3/COSMIC satellites are currently maintaining a satisfactory good state-of-health. Five out of six satellites have reached their final mission orbit of 800 km as of November 2007. The data as received by FORMOSAT-3/COSMIC satellites constellation have been processed in near real time into 2500 good ionospheric profiles and 1800 good atmospheric profiles per day. These have outnumbered the worldwide radiosondes (~900 mostly over land launched from the ground per day. The processed atmospheric RO data have been assimilated into the Numerical Weather Prediction (NWP models for real-time weather prediction and typhoon/hurricane forecasting by many major weather centers in the world. This paper describes the FORMOSAT-3/COSMIC satellite constellation system performance and the mission results that span the period from April 2006 to October 2007; and reviews the prospect of a future follow-on mission.

  18. Adsorber fires

    International Nuclear Information System (INIS)

    Holmes, W.

    1987-01-01

    The following conclusions are offered with respect to activated charcoal filter systems in nuclear power plants: (1) The use of activated charcoal in nuclear facilities presents a potential for deep-seated fires. (2) The defense-in-depth approach to nuclear fire safety requires that if an ignition should occur, fires must be detected quickly and subsequently suppressed. (3) Deep-seated fires in charcoal beds are difficult to extinguish. (4) Automatic water sprays can be used to extinguish fires rapidly and reliably when properly introduced into the burning medium. The second part of the conclusions offered are more like challenges: (1) The problem associated with inadvertent actuations of fire protection systems is not a major one, and it can be reduced further by proper design review, installation, testing, and maintenance. Eliminating automatic fire extinguishing systems for the protection of charcoal adsorbers is not justified. (2) Removal of automatic fire protection systems due to fear of inadvertent fire protection system operation is a case of treating the effect rather than the cause. On the other hand, properly maintaining automatic fire protection systems will preserve the risk of fire loss at acceptable levels while at the same time reducing the risk of damage presented by inadvertent operation of fire protection systems

  19. Implementation & Flight Testing of IMPACT system for Autonomous ISR using Collaborating UAVs with Application to Wild Fire Monitoring, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI and MIT propose to further develop, implement and test the Integrated Mission Planning (ii) Robust on-line learning for prediction of the fire spread using the...

  20. Is the United States Marine Corps the Best Organization to be Tasked with Providing Security to U.S. Diplomatic Missions?

    National Research Council Canada - National Science Library

    Thomas, Jeffrey

    2001-01-01

    ...; this partnership can be improved to the betterment of the program and the missions they protect. Since its inception in 1791, Department of State diplomats have been escorted and protected by U.S. Marines...

  1. Regional scales of fire danger rating in the forest: improved technique

    Directory of Open Access Journals (Sweden)

    A. V. Volokitina

    2017-04-01

    Full Text Available Wildland fires distribute unevenly in time and over area under the influence of weather and other factors. It is unfeasible to air patrol the whole forest area daily during a fire season as well as to keep all fire suppression forces constantly alert. Daily work and preparedness of forest fire protection services is regulated by the level of fire danger according to weather conditions (Nesterov’s index. PV-1 index, fire hazard class (Melekhov’s scale, regional scales (earlier called local scales. Unfortunately, there is still no unified comparable technique of making regional scales. As a result, it is difficult to maneuver forest fire protection resources, since the techniques currently used are not approved and not tested for their performance. They give fire danger rating incomparable even for neighboring regions. The paper analyzes the state-of-the-art in Russia and abroad. It is stated the irony is that with factors of fire danger measured quantitatively, the fire danger itself as a function has no quantitative expression. Thus, selection of an absolute criteria is of high importance for improvement of daily fire danger rating. On the example of the Chunsky forest ranger station (Krasnoyarsk Krai, an improved technique is suggested of making comparable local scales of forest fire danger rating based on an absolute criterion of fire danger rating – a probable density of active fires per million ha. A method and an algorithm are described of automatized local scales of fire danger that should facilitate effective creation of similar scales for any forest ranger station or aviation regional office using a database on forest fires and weather conditions. The information system of distant monitoring by Federal Forestry Agency of Russia is analyzed for its application in making local scales. To supplement the existing weather station net it is suggested that automatic compact weather stations or, if the latter is not possible, simple

  2. Use of multi-sensor active fire detections to map fires in the United States: the future of monitoring trends in burn severity

    Science.gov (United States)

    Picotte, Joshua J.; Coan, Michael; Howard, Stephen M.

    2014-01-01

    The effort to utilize satellite-based MODIS, AVHRR, and GOES fire detections from the Hazard Monitoring System (HMS) to identify undocumented fires in Florida and improve the Monitoring Trends in Burn Severity (MTBS) mapping process has yielded promising results. This method was augmented using regression tree models to identify burned/not-burned pixels (BnB) in every Landsat scene (1984–2012) in Worldwide Referencing System 2 Path/Rows 16/40, 17/39, and 1839. The burned area delineations were combined with the HMS detections to create burned area polygons attributed with their date of fire detection. Within our study area, we processed 88,000 HMS points (2003–2012) and 1,800 Landsat scenes to identify approximately 300,000 burned area polygons. Six percent of these burned area polygons were larger than the 500-acre MTBS minimum size threshold. From this study, we conclude that the process can significantly improve understanding of fire occurrence and improve the efficiency and timeliness of assessing its impacts upon the landscape.

  3. Fire, humans and landscape. Is there a connection?

    Science.gov (United States)

    Valese, Eva; Ascoli, Davide; Conedera, Marco; Held, Alex

    2013-04-01

    Fire evolved on the earth under the direct influence of climate and the accumulation of burnable biomass at various times and spatial scales. As a result, fire regimes depend not only on climatic and biological factors, but also greatly reflect the cultural background of how people do manage ecosystems and fire. A new awareness among scientists and managers has been rising about the ecological role of fire and the necessity to understand its past natural and cultural dynamics in different ecosystems, in order to preserve present ecosystem functionality and minimize management costs and negative impacts. As a consequence we assisted in the last decades to a general shift from the fire control to the fire management approach, where fire prevention, fire danger rating, fire ecology, fire pre-suppression and suppression strategies are fully integrated in the landscape management. Nowadays, a large number of authors recognize that a total suppression strategy, as the one adopted during last decades, leads to a fire paradox: the more we fight for putting out all fires, the more extreme events occur and cause long term damages. The aim of this review is to provide a state of art about the connection between fire, humans and landscape, along time and space. Negative and positive impacts on ecosystem services and values are put in evidence, as well as their incidence on human aptitude to fire use as to fire suppression. In order to capture a consistent fragment of fire history, palaeofires and related palynological studies are considered. They enable a valuable, even if partial, look at the millenary fire regime. Actual strategies and future directions are described in order to show what are the alternatives for living with fire, since removing completely this disturbance from earth is not a option, nor feasible neither advisable. Examples from the world, in particular from the Alps and the Mediterranean basin, are shown for better illustrating the signature of

  4. Risk assessment of main control board fire using fire dynamics simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il, E-mail: dikang@kaeri.re.kr [KAERI, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Kim, Kilyoo; Jang, Seung-Cheol [KAERI, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Yoo, Seong Yeon [Chungnam National University, 79, Daehagro, Yuseong-Gu, Daejeon (Korea, Republic of)

    2015-08-15

    Highlights: • A decision tree for evaluating the risk of a main control board (MCB) fire was proposed to systematically determine the MCB fire scenarios. • Fire simulations using fire dynamics simulator (FDS) were performed to estimate the time to MCR abandonment. • Non-propagating and propagating fire scenarios were considered for fire simulations. • The current study indicates that the quantification of the MCB fire risk should address the propagating fire and non-propagating fire scenarios if the MCB has no internal barriers between the panels. - Abstract: This paper presents the process and results of a risk assessment for a main control board (MCB) fire using fire dynamics simulator (FDS). A decision tree for evaluating the risk of a MCB fire was proposed to systematically determine the MCB fire scenarios, and fire simulations using FDS were performed to estimate the time to MCR abandonment. As a reference NPP for this study, Hanul unit 3 in Korea was selected and its core damage frequency (CDF) owing to the MCB fire was quantified. Two types of fire scenarios were considered for fire simulations: non-propagating fire scenarios occurring within a single MCB panel and propagating fire scenarios spreading from one control panel to the adjacent panels. Further, the fire scenarios were classified into fires with and without a heating, ventilation, and air conditioning system (HVACS). The fire simulation results showed that the major factor causing the MCR evacuation was the optical density irrelevant to the availability of the HVACS. The risk assessment results showed that the abandonment fire scenario risk was less than the non-abandonment fire scenario risk and the propagating fire scenario risk was greater than the non-propagating fire scenario risk.

  5. Risk assessment of main control board fire using fire dynamics simulator

    International Nuclear Information System (INIS)

    Kang, Dae Il; Kim, Kilyoo; Jang, Seung-Cheol; Yoo, Seong Yeon

    2015-01-01

    Highlights: • A decision tree for evaluating the risk of a main control board (MCB) fire was proposed to systematically determine the MCB fire scenarios. • Fire simulations using fire dynamics simulator (FDS) were performed to estimate the time to MCR abandonment. • Non-propagating and propagating fire scenarios were considered for fire simulations. • The current study indicates that the quantification of the MCB fire risk should address the propagating fire and non-propagating fire scenarios if the MCB has no internal barriers between the panels. - Abstract: This paper presents the process and results of a risk assessment for a main control board (MCB) fire using fire dynamics simulator (FDS). A decision tree for evaluating the risk of a MCB fire was proposed to systematically determine the MCB fire scenarios, and fire simulations using FDS were performed to estimate the time to MCR abandonment. As a reference NPP for this study, Hanul unit 3 in Korea was selected and its core damage frequency (CDF) owing to the MCB fire was quantified. Two types of fire scenarios were considered for fire simulations: non-propagating fire scenarios occurring within a single MCB panel and propagating fire scenarios spreading from one control panel to the adjacent panels. Further, the fire scenarios were classified into fires with and without a heating, ventilation, and air conditioning system (HVACS). The fire simulation results showed that the major factor causing the MCR evacuation was the optical density irrelevant to the availability of the HVACS. The risk assessment results showed that the abandonment fire scenario risk was less than the non-abandonment fire scenario risk and the propagating fire scenario risk was greater than the non-propagating fire scenario risk

  6. Fire-Walking

    Science.gov (United States)

    Willey, David

    2010-01-01

    This article gives a brief history of fire-walking and then deals with the physics behind fire-walking. The author has performed approximately 50 fire-walks, took the data for the world's hottest fire-walk and was, at one time, a world record holder for the longest fire-walk (www.dwilley.com/HDATLTW/Record_Making_Firewalks.html). He currently…

  7. Present state of research in Japan on toxicities of gases during fire

    Science.gov (United States)

    Kishitani, K.; Saito, F.; Yusa, S.

    Research on toxicities of gases during fire and gas toxicity experiments using animals conducted in full size fire tests is reported. The following tests were conducted: (1) analyses of formaldehyde, acrolein, and HCN; (2) analyses of smoke particulates; and (3) types and rates of generation of combustion products, and the investigation of the relationship between CO and CO2 generation and combustion conditions. The relationship between conditions of maximum emission of CO and CO2 is also investigated.

  8. Forest-fire models

    Science.gov (United States)

    Haiganoush Preisler; Alan Ager

    2013-01-01

    For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...

  9. Fire Perimeters

    Data.gov (United States)

    California Natural Resource Agency — The Fire Perimeters data consists of CDF fires 300 acres and greater in size and USFS fires 10 acres and greater throughout California from 1950 to 2003. Some fires...

  10. Fire History

    Data.gov (United States)

    California Natural Resource Agency — The Fire Perimeters data consists of CDF fires 300 acres and greater in size and USFS fires 10 acres and greater throughout California from 1950 to 2002. Some fires...

  11. Cryogenic propulsion for lunar and Mars missions

    Science.gov (United States)

    Redd, Larry

    1988-01-01

    Future missions to the moon and Mars have been investigated with regard to propulsion system selection. The results of this analysis show that near state-of-the-art LO2/LH2 propulsion technology provides a feasible means of performing lunar missions and trans-Mars injections. In other words, existing cryogenic space engines with certain modifications and product improvements would be suitable for these missions. In addition, present day cryogenic system tankage and structural weights appear to scale reasonably when sizing for large payload and high energy missions such as sending men to Mars.

  12. Electronic firing systems and methods for firing a device

    Science.gov (United States)

    Frickey, Steven J [Boise, ID; Svoboda, John M [Idaho Falls, ID

    2012-04-24

    An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.

  13. Dynamics and Physiological Roles of Stochastic Firing Patterns Near Bifurcation Points

    Science.gov (United States)

    Jia, Bing; Gu, Huaguang

    2017-06-01

    Different stochastic neural firing patterns or rhythms that appeared near polarization or depolarization resting states were observed in biological experiments on three nervous systems, and closely matched those simulated near bifurcation points between stable equilibrium point and limit cycle in a theoretical model with noise. The distinct dynamics of spike trains and interspike interval histogram (ISIH) of these stochastic rhythms were identified and found to build a relationship to the coexisting behaviors or fixed firing frequency of four different types of bifurcations. Furthermore, noise evokes coherence resonances near bifurcation points and plays important roles in enhancing information. The stochastic rhythms corresponding to Hopf bifurcation points with fixed firing frequency exhibited stronger coherence degree and a sharper peak in the power spectrum of the spike trains than those corresponding to saddle-node bifurcation points without fixed firing frequency. Moreover, the stochastic firing patterns changed to a depolarization resting state as the extracellular potassium concentration increased for the injured nerve fiber related to pathological pain or static blood pressure level increased for aortic depressor nerve fiber, and firing frequency decreased, which were different from the physiological viewpoint that firing frequency increased with increasing pressure level or potassium concentration. This shows that rhythms or firing patterns can reflect pressure or ion concentration information related to pathological pain information. Our results present the dynamics of stochastic firing patterns near bifurcation points, which are helpful for the identification of both dynamics and physiological roles of complex neural firing patterns or rhythms, and the roles of noise.

  14. Fire weather conditions and fire-atmosphere interactions observed during low-intensity prescribed fires - RxCADRE 2012

    Science.gov (United States)

    Craig B. Clements; Neil P. Lareau; Daisuke Seto; Jonathan Contezac; Braniff Davis; Casey Teske; Thomas J. Zajkowski; Andrew T. Hudak; Benjamin C. Bright; Matthew B. Dickinson; Bret W. Butler; Daniel Jimenez; J. Kevin. Hiers

    2016-01-01

    The role of fire-atmosphere coupling on fire behaviour is not well established, and to date few field observations have been made to investigate the interactions between fire spread and fire-induced winds. Therefore, comprehensive field observations are needed to better understand micrometeorological aspects of fire spread. To address this need, meteorological...

  15. Community participation in fire management planning: The Trinity county fire safe council's fire plan

    Science.gov (United States)

    Yvonne Everett

    2008-01-01

    In 1999, Trinity County CA, initiated a participatory fire management planning effort. Since that time, the Trinity County Fire Safe Council has completed critical portions of a fire safe plan and has begun to implement projects defined in the plan. Completion of a GIS based, landscape scale fuels reduction element in the plan defined by volunteer fire fighters, agency...

  16. Managing wildland fires: integrating weather models into fire projections

    Science.gov (United States)

    Anne M. Rosenthal; Francis Fujioka

    2004-01-01

    Flames from the Old Fire sweep through lands north of San Bernardino during late fall of 2003. Like many Southern California fires, the Old Fire consumed susceptible forests at the urban-wildland interface and spread to nearby city neighborhoods. By incorporating weather models into fire perimeter projections, scientist Francis Fujioka is improving fire modeling as a...

  17. An Organizational Culture Study of Missouri State University Faculty/Staff in Relation to the University's Public Affair Mission

    Science.gov (United States)

    Weaver, Marissa LeClaire

    2012-01-01

    The purpose of the study was to address a problem of practice of the public affairs mission through the perceptions of faculty and staff members at Missouri State University of the University's organizational culture. The design included a phenomenological study with a set of organizational culture procedural questions related to the perceptions…

  18. Native American depopulation, reforestation, and fire regimes in the Southwest United States, 1492–1900 CE

    Science.gov (United States)

    Liebmann, Matthew J.; Farella, Joshua; Roos, Christopher I.; Stack, Adam; Martini, Sarah

    2016-01-01

    Native American populations declined between 1492 and 1900 CE, instigated by the European colonization of the Americas. However, the magnitude, tempo, and ecological effects of this depopulation remain the source of enduring debates. Recently, scholars have linked indigenous demographic decline, Neotropical reforestation, and shifting fire regimes to global changes in climate, atmosphere, and the Early Anthropocene hypothesis. In light of these studies, we assess these processes in conifer-dominated forests of the Southwest United States. We compare light detection and ranging data, archaeology, dendrochronology, and historical records from the Jemez Province of New Mexico to quantify population losses, establish dates of depopulation events, and determine the extent and timing of forest regrowth and fire regimes between 1492 and 1900. We present a new formula for the estimation of Pueblo population based on architectural remains and apply this formula to 18 archaeological sites in the Jemez Province. A dendrochronological study of remnant wood establishes dates of terminal occupation at these sites. By combining our results with historical records, we report a model of pre- and post-Columbian population dynamics in the Jemez Province. Our results indicate that the indigenous population of the Jemez Province declined by 87% following European colonization but that this reduction occurred nearly a century after initial contact. Depopulation also triggered an increase in the frequency of extensive surface fires between 1640 and 1900. Ultimately, this study illustrates the quality of integrated archaeological and paleoecological data needed to assess the links between Native American population decline and ecological change after European contact. PMID:26811459

  19. Hot-Fire Testing of 5N and 22N HPGP Thrusters

    Science.gov (United States)

    Burnside, Christopher G.; Pedersen, Kevin W.; Pierce, Charles W.

    2015-01-01

    This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends.NASA completed hot-fire testing of 5N and 22N HPGP thrusters at the Marshall Space Flight Center’s Component Development Area altitude test stand in April 2015. Both thrusters are ground test articles and not flight ready units, but are representative of potential flight hardware with a known path towards flight application. The purpose of the 5N testing was to perform facility check-outs and generate a small set of data for comparison to ECAPS and Orbital ATK data sets. The 5N thruster performed as expected with thrust and propellant flow-rate data generated that are similar to previous testing at Orbital ATK. Immediately following the 5N testing, and using the same facility, the 22N testing was conducted on the same test stand with the purpose of demonstrating the 22N performance. The results of 22N testing indicate it performed as expected.The results of the hot-fire testing are presented in this paper and presentation.

  20. Monitoring Fires from Space: a case study in transitioning from research to applications

    Science.gov (United States)

    Justice, C. O.; Giglio, L.; Vadrevu, K. P.; Csiszar, I. A.; Schroeder, W.; Davies, D.

    2012-12-01

    This paper discusses the heritage and relationships between science and applications in the context of global satellite-based fire monitoring. The development of algorithms for satellite-based fire detection has been supported primarily by NASA for the polar orbiters with a global focus, and initially by NOAA and more recently by EUMETSAT for the geostationary satellites, with a regional focus. As the feasibility and importance of space-based fire monitoring was recognized, satellite missions were designed to include fire detection capabilities. As a result, the algorithms and accuracy of the detections have improved. Due to the role of fire in the Earth System and its relevance to society, at each step in the development of the sensing capability the research has made a transition into fire-related applications to such an extent that there is now broad use of these data worldwide. The origin of the polar-orbiting satellite fire detection capability was with the AVHRR sensor beginning in the early 1980s, but was transformed with the launch of the EOS MODIS instruments, which included sensor characteristics specifically for fire detection. NASA gave considerable emphasis on the accuracy assessment of the fire detection and the development of fire characterization and burned area products from MODIS. Collaboration between the MODIS Fire Team and the RSAC USFS, initiated in the context of the Montana wildfires of 2001, prompted the development of a Rapid Response System for fire data and eventually led to operational use of MODIS data by the USFS for strategic fire monitoring. Building on this success, the Fire Information for Resource Management Systems (FIRMS) project was funded by NASA Applications to further develop products and services for the fire information community. The FIRMS was developed as a web-based geospatial tool, offering a range of geospatial data services, including SMS text messaging and is now widely used. This system, developed in the research

  1. Biogenic volatile organic compound emissions from vegetation fires.

    Science.gov (United States)

    Ciccioli, Paolo; Centritto, Mauro; Loreto, Francesco

    2014-08-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  2. Cutting costs through detailed probabilistic fire risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luiz; Huser, Asmund; Vianna, Savio [Det Norske Veritas PRINCIPIA, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    A new procedure for calculation of fire risks to offshore installations has been developed. The purposes of the procedure are to calculate the escalation and impairment frequencies to be applied in quantitative risk analyses, to optimize Passive Fire Protection (PFP) arrangement, and to optimize other fire mitigation means. The novelties of the procedure are that it uses state of the art Computational Fluid Dynamics (CFD) models to simulate fires and radiation, as well as the use of a probabilistic approach to decide the dimensioning fire loads. A CFD model of an actual platform was used to investigate the dynamic properties of a large set of jet fires, resulting in detailed knowledge of the important parameters that decide the severity of offshore fires. These results are applied to design the procedure. Potential increase in safety is further obtained for those conditions where simplified tools may have failed to predict abnormal heat loads due to geometrical effects. Using a field example it is indicated that the probabilistic approach can give significant reductions in PFP coverage with corresponding cost savings, still keeping the risk at acceptable level. (author)

  3. Fire hazard analysis for Plutonium Finishing Plant complex

    International Nuclear Information System (INIS)

    MCKINNIS, D.L.

    1999-01-01

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards

  4. EPRI/NRC-RES fire PRA guide for nuclear power facilities. Volume 1, summary and overview

    International Nuclear Information System (INIS)

    2004-01-01

    This report documents state-of-the-art methods, tools, and data for the conduct of a fire Probabilistic Risk Assessment (PRA) for a commercial nuclear power plant (NPP) application. The methods have been developed under the Fire Risk Re-quantification Study. This study was conducted as a joint activity between EPRI and the U. S. NRC Office of Nuclear Regulatory Research (RES) under the terms of an EPRI/RES Memorandum of Understanding (RS.1) and an accompanying Fire Research Addendum (RS.2). Industry participants supported demonstration analyses and provided peer review of this methodology. The documented methods are intended to support future applications of Fire PRA, including risk-informed regulatory applications. The documented method reflects state-of-the-art fire risk analysis approaches. The primary objective of the Fire Risk Study was to consolidate recent research and development activities into a single state-of-the-art fire PRA analysis methodology. Methodological issues raised in past fire risk analyses, including the Individual Plant Examination of External Events (IPEEE) fire analyses, have been addressed to the extent allowed by the current state-of-the-art and the overall project scope. Methodological debates were resolved through a consensus process between experts representing both EPRI and RES. The consensus process included a provision whereby each major party (EPRI and RES) could maintain differing technical positions if consensus could not be reached. No cases were encountered where this provision was invoked. While the primary objective of the project was to consolidate existing state-of-the-art methods, in many areas, the newly documented methods represent a significant advancement over previously documented methods. In several areas, this project has, in fact, developed new methods and approaches. Such advances typically relate to areas of past methodological debate.

  5. US Fire Administration Fire Statistics

    Data.gov (United States)

    Department of Homeland Security — The U.S. Fire Administration collects data from a variety of sources to provide information and analyses on the status and scope of the fire problem in the United...

  6. Experimental study of fire barriers preventing vertical fire spread in ETISs

    Directory of Open Access Journals (Sweden)

    Xin Huang

    2013-11-01

    Full Text Available In recent years, the external thermal insulation system (ETIS has been applied increasingly in a large amount of buildings for energy conservation purpose. However, the increase use of combustible insulation materials in the ETIS has raised serious fire safety problems. Fires involving this type of ETIS have caused severe damage and loss. In order to improve its fire safety, fire barriers were suggested to be installed. This paper introduces fire experiments that have been done to study the effects of fire barriers on preventing vertical fire spread along the ETIS. The experiments were performed according to BS 8414-1:2002 “Fire performance of external cladding systems – Part 1: Test method for non-loadbearing external cladding systems applied to the face of the building”. The test facility consists of a 9 m high wall. The fire sources were wood cribs with a fire size of 3 ± 0.5 MW. The insulation materials were expanded polystyrene foam (EPS. The fire barrier was a horizontal strip of rockwool with a width of 300 mm. Thermocouples were used to measure temperatures outside and inside the ETIS. A series of experiments with different fire scenarios were done: no fire barrier, two fire barriers and three fire barriers at different heights. Test results were compared. The results show that the ETIS using EPS without fire barriers almost burned out, while the ETIS with fire barriers performed well in preventing fire spread. The temperatures above the fire barrier were much lower than those below the fire barrier, and most of the insulation materials above the top fire barrier stayed in place.

  7. Survival analysis and classification methods for forest fire size.

    Science.gov (United States)

    Tremblay, Pier-Olivier; Duchesne, Thierry; Cumming, Steven G

    2018-01-01

    Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at "being held" (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at "being held" exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances.

  8. Endeavour blasts-off on ambitious mission

    Science.gov (United States)

    1993-12-01

    "I am delighted to see the servicing mission off to such a beautiful start", said Roger Bonnet, ESA's Director of Science, who watched the launch from the Kennedy Space Center, Florida. "We are anxious to see the Hubble Space Telescope restored to its full capability so astronomers world- wide can take advantage of this unique observatory". During the eight and a half minute climb to orbit ESA astronaut Claude Nicollier helped the shuttle commander and pilot monitor the cockpit displays. Nicollier is the first international astronaut to serve as a shuttle's flight engineer. He will perform the same task at the end of the mission for reentry and landing. The European Space Agency has a major role in the telescope servicing mission. In addition to the presence of its astronaut, the agency is supplying new, improved power generating solar arrays and helped NASA test the Costar system of corrective optics. Nicollier will be responsible for operation of the shuttle's robot arm during the 11-day mission. He will use the arm to pluck the telescope from orbit and move astronauts and equipment around the payload bay during the mission's five spacewalks. The astronauts are spending their first hours in space setting up equipment in the orbiter's crew cabin. They will fire the shuttle's manoeuvring jets before going to bed to begin the two-day pursuit of the orbiting telescope. There will be three orbital manoeuvres tomorrow to further close the gap. The shuttle is due to reach the telescope Saturday and repair work will begin Sunday. Checkouts of the four space suits and the robot arm will occupy the crew tomorrow. Nicollier will use the arm to inspect the equipment in the cargo bay and later practise the manoeuvre he will use on Saturday to capture the telescope. Hubble Space Telescope science operations will be suspended at midnight tonight EST (06h00 a.m. CET tomorrow) and the HST aperture door closed at 07h30 a.m. EST (01h30 p.m. CET).

  9. Centralized mission planning and scheduling system for the Landsat Data Continuity Mission

    Science.gov (United States)

    Kavelaars, Alicia; Barnoy, Assaf M.; Gregory, Shawna; Garcia, Gonzalo; Talon, Cesar; Greer, Gregory; Williams, Jason; Dulski, Vicki

    2014-01-01

    Satellites in Low Earth Orbit provide missions with closer range for studying aspects such as geography and topography, but often require efficient utilization of space and ground assets. Optimizing schedules for these satellites amounts to a complex planning puzzle since it requires operators to face issues such as discontinuous ground contacts, limited onboard memory storage, constrained downlink margin, and shared ground antenna resources. To solve this issue for the Landsat Data Continuity Mission (LDCM, Landsat 8), all the scheduling exchanges for science data request, ground/space station contact, and spacecraft maintenance and control will be coordinated through a centralized Mission Planning and Scheduling (MPS) engine, based upon GMV’s scheduling system flexplan9 . The synchronization between all operational functions must be strictly maintained to ensure efficient mission utilization of ground and spacecraft activities while working within the bounds of the space and ground resources, such as Solid State Recorder (SSR) and available antennas. This paper outlines the functionalities that the centralized planning and scheduling system has in its operational control and management of the Landsat 8 spacecraft.

  10. 77 FR 7171 - Agency Information Collection Activities: Proposed Collection; Comment Request, National Fire...

    Science.gov (United States)

    2012-02-10

    ..., National Fire Incident Reporting System (NFIRS) v5.0 AGENCY: Federal Emergency Management Agency, DHS... accordance with the Paperwork Reduction Act of 1995, this notice seeks comments concerning National Fire... standardized reporting methods, to collect and analyze fire incident data at the Federal, State, and local...

  11. Marked by Fire: Anishinaabe Articulations of Nationhood in Treaty Making with the United States and Canada

    Science.gov (United States)

    Stark, Heidi Kiiwetinepinesiik

    2012-01-01

    The story, known as "The Theft of Fire," illustrates numerous meanings and teachings crucial to understanding Anishinaabe nationhood. This story contains two discernible points. First, it reveals how the Anishinaabe obtained fire. The second discernible feature within this story is the marking of the hare by his theft of fire. Stories…

  12. Forest fire risk zonation mapping using remote sensing technology

    Science.gov (United States)

    Chandra, Sunil; Arora, M. K.

    2006-12-01

    Forest fires cause major losses to forest cover and disturb the ecological balance in our region. Rise in temperature during summer season causing increased dryness, increased activity of human beings in the forest areas, and the type of forest cover in the Garhwal Himalayas are some of the reasons that lead to forest fires. Therefore, generation of forest fire risk maps becomes necessary so that preventive measures can be taken at appropriate time. These risk maps shall indicate the zonation of the areas which are in very high, high, medium and low risk zones with regard to forest fire in the region. In this paper, an attempt has been made to generate the forest fire risk maps based on remote sensing data and other geographical variables responsible for the occurrence of fire. These include altitude, temperature and soil variations. Key thematic data layers pertaining to these variables have been generated using various techniques. A rule-based approach has been used and implemented in GIS environment to estimate fuel load and fuel index leading to the derivation of fire risk zonation index and subsequently to fire risk zonation maps. The fire risk maps thus generated have been validated on the ground for forest types as well as for forest fire risk areas. These maps would help the state forest departments in prioritizing their strategy for combating forest fires particularly during the fire seasons.

  13. Optimizing prescribed fire allocation for managing fire risk in central Catalonia.

    Science.gov (United States)

    Alcasena, Fermín J; Ager, Alan A; Salis, Michele; Day, Michelle A; Vega-Garcia, Cristina

    2018-04-15

    We used spatial optimization to allocate and prioritize prescribed fire treatments in the fire-prone Bages County, central Catalonia (northeastern Spain). The goal of this study was to identify suitable strategic locations on forest lands for fuel treatments in order to: 1) disrupt major fire movements, 2) reduce ember emissions, and 3) reduce the likelihood of large fires burning into residential communities. We first modeled fire spread, hazard and exposure metrics under historical extreme fire weather conditions, including node influence grid for surface fire pathways, crown fraction burned and fire transmission to residential structures. Then, we performed an optimization analysis on individual planning areas to identify production possibility frontiers for addressing fire exposure and explore alternative prescribed fire treatment configurations. The results revealed strong trade-offs among different fire exposure metrics, showed treatment mosaics that optimize the allocation of prescribed fire, and identified specific opportunities to achieve multiple objectives. Our methods can contribute to improving the efficiency of prescribed fire treatment investments and wildfire management programs aimed at creating fire resilient ecosystems, facilitating safe and efficient fire suppression, and safeguarding rural communities from catastrophic wildfires. The analysis framework can be used to optimally allocate prescribed fire in other fire-prone areas within the Mediterranean region and elsewhere. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Improving the Operations of the Earth Observing One Mission via Automated Mission Planning

    Science.gov (United States)

    Chien, Steve A.; Tran, Daniel; Rabideau, Gregg; Schaffer, Steve; Mandl, Daniel; Frye, Stuart

    2010-01-01

    We describe the modeling and reasoning about operations constraints in an automated mission planning system for an earth observing satellite - EO-1. We first discuss the large number of elements that can be naturally represented in an expressive planning and scheduling framework. We then describe a number of constraints that challenge the current state of the art in automated planning systems and discuss how we modeled these constraints as well as discuss tradeoffs in representation versus efficiency. Finally we describe the challenges in efficiently generating operations plans for this mission. These discussions involve lessons learned from an operations model that has been in use since Fall 2004 (called R4) as well as a newer more accurate operations model operational since June 2009 (called R5). We present analysis of the R5 software documenting a significant (greater than 50%) increase in the number of weekly observations scheduled by the EO-1 mission. We also show that the R5 mission planning system produces schedules within 15% of an upper bound on optimal schedules. This operational enhancement has created value of millions of dollars US over the projected remaining lifetime of the EO-1 mission.

  15. FUEGO — Fire Urgency Estimator in Geosynchronous Orbit — A Proposed Early-Warning Fire Detection System

    Directory of Open Access Journals (Sweden)

    Scott Stephens

    2013-10-01

    Full Text Available Current and planned wildfire detection systems are impressive but lack both sensitivity and rapid response times. A small telescope with modern detectors and significant computing capacity in geosynchronous orbit can detect small (12 m2 fires on the surface of the earth, cover most of the western United States (under conditions of moderately clear skies every few minutes or so, and attain very good signal-to-noise ratio against Poisson fluctuations in a second. Hence, these favorable statistical significances have initiated a study of how such a satellite could operate and reject the large number of expected systematic false alarms from a number of sources. Here we present both studies of the backgrounds in Geostationary Operational Environmental Satellites (GOES 15 data and studies that probe the sensitivity of a fire detection satellite in geosynchronous orbit. We suggest a number of algorithms that can help reduce false alarms, and show efficacy on a few. Early detection and response would be of true value in the United States and other nations, as wildland fires continue to severely stress resource managers, policy makers, and the public, particularly in the western US. Here, we propose the framework for a geosynchronous satellite with modern imaging detectors, software, and algorithms able to detect heat from early and small fires, and yield minute-scale detection times.

  16. A true-to-life fire alert in the LHC tunnel

    CERN Multimedia

    2008-01-01

    Around 40 men from the fire brigades of CERN and the two Host States were put through their paces in an exercise with a scenario involving a fire between Points 6 and 7 of the LHC tunnel and the mysterious disappearance of a member of personnel.

  17. Enhanced Fire Events Database to Support Fire PRA

    International Nuclear Information System (INIS)

    Baranowsky, Patrick; Canavan, Ken; St. Germain, Shawn

    2010-01-01

    This paper provides a description of the updated and enhanced Fire Events Data Base (FEDB) developed by the Electric Power Research Institute (EPRI) in cooperation with the U.S. Nuclear Regulatory Commission (NRC). The FEDB is the principal source of fire incident operational data for use in fire PRAs. It provides a comprehensive and consolidated source of fire incident information for nuclear power plants operating in the U.S. The database classification scheme identifies important attributes of fire incidents to characterize their nature, causal factors, and severity consistent with available data. The database provides sufficient detail to delineate important plant specific attributes of the incidents to the extent practical. A significant enhancement to the updated FEDB is the reorganization and refinement of the database structure and data fields and fire characterization details added to more rigorously capture the nature and magnitude of the fire and damage to the ignition source and nearby equipment and structures.

  18. An Implementing Strategy for Improving Wildland Fire Environmental Literacy

    Science.gov (United States)

    McCalla, M. R.; Andrus, D.; Barnett, K.

    2007-12-01

    Wildland fire is any planned or unplanned fire which occurs in wildland ecosystems. Wildland fires affect millions of acres annually in the U.S. An average of 5.4 million acres a year were burned in the U.S. between 1995 and 2004, approximately 142 percent of the average burned area between 1984 and 1994. In 2005 alone, Federal agencies spent nearly $1 billion on fire suppression and state and local agencies contributed millions more. Many Americans prefer to live and vacation in relatively remote surroundings, (i.e., woods and rangelands). These choices offer many benefits, but they also present significant risks. Most of North America is fire-prone and every day developed areas and home sites are extending further into natural wildlands, which increases the chances of catastrophic fire. In addition, an abundance of accumulated biomass in forests and rangelands and persistent drought conditions are contributing to larger, costlier wildland fires. To effectively prevent, manage, suppress, respond to, and recover from wildland fires, fire managers, and other communities which are impacted by wildland fires (e.g., the business community; healthcare providers; federal, state, and local policymakers; the media; the public, etc.) need timely, accurate, and detailed wildland fire weather and climate information to support their decision-making activities. But what are the wildland fire weather and climate data, products, and information, as well as information dissemination technologies, needed to reach out and promote wildland fire environmental literacy in these communities? The Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM) conducted a comprehensive review and assessment of weather and climate needs of providers and users in their wildland fire and fuels management activities. The assessment has nine focus areas, one of which is environmental literacy (e.g., education, training, outreach, partnering, and collaboration

  19. Fire Behavior (FB)

    Science.gov (United States)

    Robert E. Keane

    2006-01-01

    The Fire Behavior (FB) method is used to describe the behavior of the fire and the ambient weather and fuel conditions that influence the fire behavior. Fire behavior methods are not plot based and are collected by fire event and time-date. In general, the fire behavior data are used to interpret the fire effects documented in the plot-level sampling. Unlike the other...

  20. Does fire affect amphibians and reptiles in eastern U.S. oak forests?

    Science.gov (United States)

    Rochelle B. Renken

    2006-01-01

    Current information about the effect of fire on amphibians and reptiles in oak forests of the Eastern and Central United States is reviewed. Current data suggest that fire results in little direct mortality of amphibians and reptiles. Fire has no effect on overall amphibian abundance, diversity, and number of species in comparisons of burned and unburned plots, though...

  1. Effects of new environmental regulations on coal-fired generation

    International Nuclear Information System (INIS)

    LaCount, R.

    1999-01-01

    As restructuring of the electricity industry places downward pressure on power production costs, new environmental regulations are having the opposite effect. Although power plants may be subject to a variety of environmental regulations over the next ten years including reductions in mercury, toxics, and carbon dioxide, new regulations for sulfur dioxide (SO2) and nitrogen oxides (NOX) are poised to impact the electricity industry in the very short term. The cost for coal-fired power plants to comply with these new regulations has the potential to alter their competitive position. January 1, 2000 marks the beginning of Phase II for the Environmental Protection Agency's SO2 allowance market. Starting in January, all coal and oil plants above 25 MW will be required to comply with the federal SO2 provisions. Regulatory deadlines for NOX are also fast approaching; though the ultimate requirements are still subject to change. On May 1, 1999, a NOX allowance market began for states within the Northeast Ozone Transport Commission (OTC). A second phase of this program is scheduled to begin in 2003 that will lower the overall cap for allowable NOX emissions in the participating states. EPA is also working to expand the reach of regional NOX reductions in 2003 through its NOX SIP call. This program, which is currently subject to litigation, would require NOX reductions in 14 states outside of the OTC. A new study by Resource Data International (RDI), Coal-Fired Generation in Competitive Power Markets, assessed the potential impact that the new SO2 and NOX regulations may have on the competitiveness of coal-fired generation. Overall, the study shows that coal-fired generation will continue to grow despite significant environmental costs and competition from natural gas-fired units. The new environmental regulations have the effect of increasing the dispatch cost of coal-fired units from $0.65/MWh on average in the WSCC to $4.14/MWh on average in the MAAC region. The addition

  2. Water quality impacts of forest fires

    Science.gov (United States)

    Tecle Aregai; Daniel Neary

    2015-01-01

    Forest fires have been serious menace, many times resulting in tremendous economic, cultural and ecological damage to many parts of the United States. One particular area that has been significantly affected is the water quality of streams and lakes in the water thirsty southwestern United States. This is because the surface water coming off burned areas has resulted...

  3. Upgrading of fire safety in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Agarwal, N.K.

    1998-01-01

    Indian nuclear power programme started with the installation of 2 nos. of Boiling Water Reactor (BWR) at Tarapur (TAPS I and II) of 210 MWe each commissioned in the year 1996. The Pressurized Heavy Water Reactor (PHWR) programme in the country started with the installation of 2x220 MWe stations at Rawatbhatta near Kota (RAPS I and II) in the State of Rajasthan in the sixties. At the present moment, the country has 10 stations in operation. Construction is going on for 4 more units of 220 MWe where as work on two more 500 MWe units is going to start soon. Fire safety systems for the earlier units were engineered as per the state-of-art knowledge available then. The need for review of fire protection systems in the Indian nuclear power plants has also been felt since long almost after Brown's Ferry fire in 1975 itself. Task forces consisting of fire experts, systems design engineers, O and M personnel as well as the Fire Protection engineers at the plant were constituted for each plant to review the existing fire safety provisions in details and highlight the upgradation needed for meeting the latest requirements as per the national as well as international practices. The recommendations made by three such task forces for the three plants are proposed to be reviewed in this paper. The paper also highlights the recommendations to be implemented immediately as well as on long-term basis over a period of time

  4. Integrating models to predict regional haze from wildland fire.

    Science.gov (United States)

    D. McKenzie; S.M. O' Neill; N. Larkin; R.A. Norheim

    2006-01-01

    Visibility impairment from regional haze is a significant problem throughout the continental United States. A substantial portion of regional haze is produced by smoke from prescribed and wildland fires. Here we describe the integration of four simulation models, an array of GIS raster layers, and a set of algorithms for fire-danger calculations into a modeling...

  5. India's mission to Mars cost less than the movie Gravity: Multidimensional View in Engineering Education

    Science.gov (United States)

    Rani, Meenu; Kumar, Pawan; Vandana, Vandana

    2016-07-01

    Over the years, Mars has been the centre of attraction for science fiction writers, Hollywood movie makers, astrologers, astronomers and the scientific community. For scientists and technologists, Mars continues to be an enigma. This is essentially because even tough humans have dreamt for long about human colonisation of Mars. Indian space programme had a very humble beginning during the early 1960s. India launched its first satellite in 1975 with assistance from the erstwhile USSR. India achieved the status of space-faring nation2 by 1980, and by the end of 2014 has launched around 75 satellites. India has become the first nation to reach Mars on its maiden attempt after its Mars Orbiter Mission completed its 10-month journey and successfully entered the Red Planet's orbit. The Mars Orbiter Mission, a low-cost 74 million project, blasted off from Earth on November 5, 2013, aboard an Indian Polar Satellite Launch Vehicle. At its initial stage, the rocket booster placed the probe into Earth's orbit before the craft fired the engines to break free of Earth's gravity en route to Mars. This is India's first mission into such deep space to search for evidence of life on the Red Planet. But the mission's primary objective is technological-if successful, the country will be joining an elite club of nations: the United States, Russia and Europe. India is becoming known for low-cost innovation in diverse fields such as healthcare and education. The technological capability being demonstrated and the knowledge gained from the operations of the mission will be invaluable in future developments and also in the training of the flight operations and mission control staff. All of this capability can be carried forward to future launches and operations. The sustained presence of methane observed by previous missions suggests that an active production mechanism is at work, most likely tectonic in nature, although there are some suggestions that it may point to a biological origin

  6. Fire-driven alien invasion in a fire-adapted ecosystem

    Science.gov (United States)

    Keeley, Jon E.; Brennan, Teresa J.

    2012-01-01

    Disturbance plays a key role in many alien plant invasions. However, often the main driver of invasion is not disturbance per se but alterations in the disturbance regime. In some fire-adapted shrublands, the community is highly resilient to infrequent, high-intensity fires, but changes in the fire regime that result in shorter fire intervals may make these communities more susceptible to alien plant invasions. This study examines several wildfire events that resulted in short fire intervals in California chaparral shrublands. In one study, we compared postfire recovery patterns in sites with different prefire stand ages (3 and 24 years), and in another study we compared sites that had burned once in four years with sites that had burned twice in this period. The population size of the dominant native shrub Adenostoma fasciculatum was drastically reduced following fire in the 3-year sites relative to the 24-year sites. The 3-year sites had much greater alien plant cover and significantly lower plant diversity than the 24-year sites. In a separate study, repeat fires four years apart on the same sites showed that annual species increased significantly after the second fire, and alien annuals far outnumbered native annuals. Aliens included both annual grasses and annual forbs and were negatively correlated with woody plant cover. Native woody species regenerated well after the first fire but declined after the second fire, and one obligate seeding shrub was extirpated from two sites by the repeat fires. It is concluded that some fire-adapted shrublands are vulnerable to changes in fire regime, and this can lead to a loss of native diversity and put the community on a trajectory towards type conversion from a woody to an herbaceous system. Such changes result in alterations in the proportion of natives to non-natives, changes in functional types from deeply rooted shrubs to shallow rooted grasses and forbs, increased fire frequency due to the increase in fine fuels

  7. Fire-driven alien invasion in a fire-adapted ecosystem.

    Science.gov (United States)

    Keeley, Jon E; Brennan, Teresa J

    2012-08-01

    Disturbance plays a key role in many alien plant invasions. However, often the main driver of invasion is not disturbance per se but alterations in the disturbance regime. In some fire-adapted shrublands, the community is highly resilient to infrequent, high-intensity fires, but changes in the fire regime that result in shorter fire intervals may make these communities more susceptible to alien plant invasions. This study examines several wildfire events that resulted in short fire intervals in California chaparral shrublands. In one study, we compared postfire recovery patterns in sites with different prefire stand ages (3 and 24 years), and in another study we compared sites that had burned once in four years with sites that had burned twice in this period. The population size of the dominant native shrub Adenostoma fasciculatum was drastically reduced following fire in the 3-year sites relative to the 24-year sites. The 3-year sites had much greater alien plant cover and significantly lower plant diversity than the 24-year sites. In a separate study, repeat fires four years apart on the same sites showed that annual species increased significantly after the second fire, and alien annuals far outnumbered native annuals. Aliens included both annual grasses and annual forbs and were negatively correlated with woody plant cover. Native woody species regenerated well after the first fire but declined after the second fire, and one obligate seeding shrub was extirpated from two sites by the repeat fires. It is concluded that some fire-adapted shrublands are vulnerable to changes in fire regime, and this can lead to a loss of native diversity and put the community on a trajectory towards type conversion from a woody to an herbaceous system. Such changes result in alterations in the proportion of natives to non-natives, changes in functional types from deeply rooted shrubs to shallow rooted grasses and forbs, increased fire frequency due to the increase in fine fuels

  8. Spent fuel transportation cask response to a tunnel fire scenario

    Energy Technology Data Exchange (ETDEWEB)

    Bajwa, C.S. [U.S. Nuclear Regulatory Commission, Washington, D.C. (United States); Adkins, H.E.; Cuta, J.M. [Pacific Northwest National Lab., Richland, WA (United States)

    2004-07-01

    On July 18, 2001, a freight train carrying hazardous (non-nuclear) materials derailed and caught fire while passing through the Howard Street railroad tunnel in downtown Baltimore, Maryland. The United States Nuclear Regulatory Commission (USNRC), one of the agencies responsible for ensuring the safe transportation of radioactive materials in the United States, undertook an investigation of the train derailment and fire to determine the possible regulatory implications of this particular event for the transportation of spent nuclear fuel by railroad. Shortly after the accident occurred, the USNRC met with the National Transportation Safety Board (NTSB), the U.S. agency responsible for determining the cause of transportation accidents, to discuss the details of the accident and the ensuing fire. Following these discussions, the USNRC assembled a team of experts from the National Institute of Standards and Technology (NIST), the Center for Nuclear Waste Regulatory Analyses (CNWRA), and Pacific Northwest National Laboratory (PNNL) to determine the thermal conditions that existed in the Howard Street tunnel fire and analyze the effects of this fire on various spent fuel transportation cask designs. The Fire Dynamics Simulator (FDS) code, developed by NIST, was used to determine the thermal environment present in the Howard Street tunnel during the fire. The FDS results were used as boundary conditions in the ANSYS {sup registered} and COBRA-SFS computer codes to evaluate the thermal performance of different cask designs. The staff concluded that the transportation casks analyzed would withstand a fire with thermal conditions similar to those that existed in the Baltimore tunnel fire event. No release of radioactive materials would result from exposure of the casks analyzed to such an event. This paper describes the methods and approach used for this assessment.

  9. Spent fuel transportation cask response to a tunnel fire scenario

    International Nuclear Information System (INIS)

    Bajwa, C.S.; Adkins, H.E.; Cuta, J.M.

    2004-01-01

    On July 18, 2001, a freight train carrying hazardous (non-nuclear) materials derailed and caught fire while passing through the Howard Street railroad tunnel in downtown Baltimore, Maryland. The United States Nuclear Regulatory Commission (USNRC), one of the agencies responsible for ensuring the safe transportation of radioactive materials in the United States, undertook an investigation of the train derailment and fire to determine the possible regulatory implications of this particular event for the transportation of spent nuclear fuel by railroad. Shortly after the accident occurred, the USNRC met with the National Transportation Safety Board (NTSB), the U.S. agency responsible for determining the cause of transportation accidents, to discuss the details of the accident and the ensuing fire. Following these discussions, the USNRC assembled a team of experts from the National Institute of Standards and Technology (NIST), the Center for Nuclear Waste Regulatory Analyses (CNWRA), and Pacific Northwest National Laboratory (PNNL) to determine the thermal conditions that existed in the Howard Street tunnel fire and analyze the effects of this fire on various spent fuel transportation cask designs. The Fire Dynamics Simulator (FDS) code, developed by NIST, was used to determine the thermal environment present in the Howard Street tunnel during the fire. The FDS results were used as boundary conditions in the ANSYS registered and COBRA-SFS computer codes to evaluate the thermal performance of different cask designs. The staff concluded that the transportation casks analyzed would withstand a fire with thermal conditions similar to those that existed in the Baltimore tunnel fire event. No release of radioactive materials would result from exposure of the casks analyzed to such an event. This paper describes the methods and approach used for this assessment

  10. Survival analysis and classification methods for forest fire size

    Science.gov (United States)

    2018-01-01

    Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at “being held” (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at “being held” exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances. PMID:29320497

  11. FIRE - Flyby of Io with Repeat Encounters: A conceptual design for a New Frontiers mission to Io

    Science.gov (United States)

    Suer, Terry-Ann; Padovan, Sebastiano; Whitten, Jennifer L.; Potter, Ross W. K.; Shkolyar, Svetlana; Cable, Morgan; Walker, Catherine; Szalay, Jamey; Parker, Charles; Cumbers, John; Gentry, Diana; Harrison, Tanya; Naidu, Shantanu; Trammell, Harold J.; Reimuller, Jason; Budney, Charles J.; Lowes, Leslie L.

    2017-09-01

    A conceptual design is presented for a low complexity, heritage-based flyby mission to Io, Jupiter's innermost Galilean satellite and the most volcanically active body in the Solar System. The design addresses the 2011 Decadal Survey's recommendation for a New Frontiers class mission to Io and is based upon the result of the June 2012 NASA-JPL Planetary Science Summer School. A science payload is proposed to investigate the link between the structure of Io's interior, its volcanic activity, its surface composition, and its tectonics. A study of Io's atmospheric processes and Io's role in the Jovian magnetosphere is also planned. The instrument suite includes a visible/near-IR imager, a magnetic field and plasma suite, a dust analyzer, and a gimbaled high gain antenna to perform radio science. Payload activity and spacecraft operations would be powered by three Advanced Stirling Radioisotope Generators (ASRG). The primary mission includes 10 flybys with close-encounter altitudes as low as 100 km. The mission risks are mitigated by ensuring that relevant components are radiation tolerant and by using redundancy and flight-proven parts in the design. The spacecraft would be launched on an Atlas V rocket with a delta-v of 1.3 km/s. Three gravity assists (Venus, Earth, Earth) would be used to reach the Jupiter system in a 6-year cruise. The resulting concept demonstrates the rich scientific return of a flyby mission to Io.

  12. The state of development of fire management decision support systems in America and Europe

    Science.gov (United States)

    Robert Mavsar; Armando González-Cabán; Elsa. Varela

    2013-01-01

    Forest fires affect millions of people worldwide, and cause major ecosystem and economic impacts at different scales. The management policies implemented to minimize the negative impacts of forest fires require substantial investment of financial, human and organizational resources, which must be justifiable and efficient. Decision support systems based on economic...

  13. The ecological importance of mixed-severity fires: Nature's phoenix [Book Review

    Science.gov (United States)

    Carolyn H. Sieg

    2016-01-01

    The stated goal of a recent book, The Ecological Importance of Mixed-Severity Fires: Nature’s Phoenix, edited by Dominick A. DellaSala and Chad T. Hansen, is to provide a global reference on the benefits of mixed- and high-severity fires. Note that the goal is not to provide an objective reference on the ecological aspects of mixed- and high-severity fires. Rather, the...

  14. 77 FR 1945 - Agency Information Collection Activities: Proposed Collection; Comment Request, National Fire...

    Science.gov (United States)

    2012-01-12

    ... National Fire 490 1 490 .4167 hours (25 minutes) 204 (career). Department Census/ FEMA Form 070-0-0- 1... hours (10 minutes) 124 (career). Department Census/ FEMA Form 070-0-0- 1 (update). State, Local, or... recommendations, the USFA is working to identify all fire departments in the United States to develop a database...

  15. Gas fired heat pumps

    International Nuclear Information System (INIS)

    Seifert, M.

    2006-01-01

    The condensing gas boiler is now state of the art and there is no more room for improvement in performance, technically speaking. The next logical step to improve the overall efficiency is to exploit ambient heat in combination with the primary source of energy, natural gas. That means using natural-gas driven heat pumps and gas-fired heat pumps. Based on this, the Swiss Gas Industry decided to set up a practical test programme enjoying a high priority. The aim of the project 'Gas-fired heat pump practical test' is to assess by field tests the characteristics and performance of the foreign serial heat pumps currently on the market and to prepare and promote the introduction on the market place of this sustainable natural-gas technology. (author)

  16. Post-fire vegetation and fuel development influences fire severity patterns in reburns.

    Science.gov (United States)

    Coppoletta, Michelle; Merriam, Kyle E; Collins, Brandon M

    2016-04-01

    In areas where fire regimes and forest structure have been dramatically altered, there is increasing concern that contemporary fires have the potential to set forests on a positive feedback trajectory with successive reburns, one in which extensive stand-replacing fire could promote more stand-replacing fire. Our study utilized an extensive set of field plots established following four fires that occurred between 2000 and 2010 in the northern Sierra Nevada, California, USA that were subsequently reburned in 2012. The information obtained from these field plots allowed for a unique set of analyses investigating the effect of vegetation, fuels, topography, fire weather, and forest management on reburn severity. We also examined the influence of initial fire severity and time since initial fire on influential predictors of reburn severity. Our results suggest that high- to moderate-severity fire in the initial fires led to an increase in standing snags and shrub vegetation, which in combination with severe fire weather promoted high-severity fire effects in the subsequent reburn. Although fire behavior is largely driven by weather, our study demonstrates that post-fire vegetation composition and structure are also important drivers of reburn severity. In the face of changing climatic regimes and increases in extreme fire weather, these results may provide managers with options to create more fire-resilient ecosystems. In areas where frequent high-severity fire is undesirable, management activities such as thinning, prescribed fire, or managed wildland fire can be used to moderate fire behavior not only prior to initial fires, but also before subsequent reburns.

  17. Fire damage data analysis as related to current testing practices for nuclear power applications

    International Nuclear Information System (INIS)

    Klevan, J.; MacDougall, E.A.; Hall, R.E.

    1978-01-01

    A review of reports of specific fires which have occurred in nuclear power plants in the United States is presented. A limited comparison of cable and similar fires with results of the IEEE 383 fire test used to evaluate cable insulation is also presented

  18. Modeling the spatial distribution of forest crown biomass and effects on fire behavior with FUEL3D and WFDS

    Science.gov (United States)

    Russell A. Parsons; William Mell; Peter McCauley

    2010-01-01

    Crown fire poses challenges to fire managers and can endanger fire fighters. Understanding of how fire interacts with tree crowns is essential to informed decisions about crown fire. Current operational crown fire predictions in the United States assume homogeneous crown fuels. While a new class of research fire models, which model fire behavior with computational...

  19. Identifying vulnerable populations to death and injuries from residential fires.

    Science.gov (United States)

    Gilbert, Stanley W; Butry, David T

    2017-08-03

    This study proposes and evaluates the theory that people who are susceptible to injury in residential fires are not susceptible to death in residential fires and vice versa. It is proposed that the population vulnerable to death in residential fires can be proxied by 'frailty', which is measured as age-gender adjusted fatality rates due to natural causes. This study uses an ecological approach and controls for exposure to estimate the vulnerability of different population groups to death and injury in residential fires. It allows fatalities and injuries to be estimated by different models. Frailty explains fire-related death in adults while not explaining injuries, which is consistent with the idea that deaths and injuries affect disjoint populations. Deaths and injuries in fire are drawn from different populations. People who are susceptible to dying in fires are unlikely to be injured in fires, and the people who are susceptible to injury are unlikely to die in fires. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. A Method of Fire Scenarios Identification in a Consolidated Fire Risk Analysis

    International Nuclear Information System (INIS)

    Lim, Ho Gon; Han, Sang Hoon; Yang, Joon Eon

    2010-01-01

    Conventional fire PSA consider only two cases of fire scenarios, that is one for fire without propagation and the other for single propagation to neighboring compartment. Recently, a consolidated fire risk analysis using single fault tree (FT) was developed. However, the fire scenario identification in the new method is similar to conventional fire analysis method. The present study develops a new method of fire scenario identification in a consolidated fire risk analysis method. An equation for fire propagation is developed to identify fire scenario and a mapping method of fire scenarios into internal event risk model is discussed. Finally, an algorithm for automatic program is suggested

  1. Fire and fire ecology: Concepts and principles

    Science.gov (United States)

    Mark A. Cochrane; Kevin C. Ryan

    2009-01-01

    Fire has been central to terrestrial life ever since early anaerobic microorganisms poisoned the atmosphere with oxygen and multicellular plant life moved onto land. The combination of fuels, oxygen, and heat gave birth to fire on Earth. Fire is not just another evolutionary challenge that life needed to overcome, it is, in fact, a core ecological process across much...

  2. Forest fires

    International Nuclear Information System (INIS)

    Fuller, M.

    1991-01-01

    This book examines the many complex and sensitive issues relating to wildland fires. Beginning with an overview of the fires of 1980s, the book discusses the implications of continued drought and considers the behavior of wildland fires, from ignition and spread to spotting and firestorms. Topics include the effects of weather, forest fuels, fire ecology, and the effects of fire on plants and animals. In addition, the book examines firefighting methods and equipment, including new minimum impact techniques and compressed air foam; prescribed burning; and steps that can be taken to protect individuals and human structures. A history of forest fire policies in the U.S. and a discussion of solutions to fire problems around the world completes the coverage. With one percent of the earth's surface burning every year in the last decade, this is a penetrating book on a subject of undeniable importance

  3. Fire hazard analysis for Plutonium Finishing Plant complex

    Energy Technology Data Exchange (ETDEWEB)

    MCKINNIS, D.L.

    1999-02-23

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.

  4. Dampers, fluidics and the failsafe fallacy [fire protection

    International Nuclear Information System (INIS)

    Dann, M.; Hodgson, T.

    1989-01-01

    The fire protection practices adopted at nuclear power stations generally follow the well established principles used throughout industry. Unfortunately, there is one particular area - the interaction with heating, ventilation and air conditioning (HVAC) services - where nuclear power stations pose a seemingly insoluble conflict: that between the need to contain and the need to ventilate. Now, however, solid state fire dampers using power fluidics may promise a solution. One of the key characteristics of a fluidic device is that it is 'solid state', i.e. it has no moving parts. Because of this, its inherent reliability is orders of magnitude greater than a mechanical device. (U.K.)

  5. Safety climate in the US federal wildland fire management community: influences of organizational, environmental, group, and individual characteristics

    Science.gov (United States)

    Anne E. Black; Brooke Baldauf McBride

    2013-01-01

    This study examined the effects of organisational, environmental, group and individual characteristics on five components of safety climate (High Reliability Organising Practices, Leadership, Group Culture, Learning Orientation and Mission Clarity) in the US federal wildland fire management community. Of particular interest were differences between perceptions based on...

  6. Browns Ferry fire

    International Nuclear Information System (INIS)

    Harkleroad, J.R.

    1983-01-01

    A synopsis of the March 22, 1975 fire at Browns Ferry Nuclear Plant is discussed. Emphasis is placed on events prior to and during the fire. How the fire started, fire fighting activities, fire and smoke development, and restoration activities are discussed

  7. Overview of the 2013 FireFlux II grass fire field experiment

    Science.gov (United States)

    C.B. Clements; B. Davis; D. Seto; J. Contezac; A. Kochanski; J.-B. Fillipi; N. Lareau; B. Barboni; B. Butler; S. Krueger; R. Ottmar; R. Vihnanek; W.E. Heilman; J. Flynn; M.A. Jenkins; J. Mandel; C. Teske; D. Jimenez; J. O' Brien; B. Lefer

    2014-01-01

    In order to better understand the dynamics of fire-atmosphere interactions and the role of micrometeorology on fire behaviour the FireFlux campaign was conducted in 2006 on a coastal tall-grass prairie in southeast Texas, USA. The FireFlux campaign dataset has become the international standard for evaluating coupled fire-atmosphere model systems. While FireFlux is one...

  8. MILITARY MISSION COMBAT EFFICIENCY ESTIMATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Ighoyota B. AJENAGHUGHRURE

    2017-04-01

    Full Text Available Military infantry recruits, although trained, lacks experience in real-time combat operations, despite the combat simulations training. Therefore, the choice of including them in military operations is a thorough and careful process. This has left top military commanders with the tough task of deciding, the best blend of inexperienced and experienced infantry soldiers, for any military operation, based on available information on enemy strength and capability. This research project delves into the design of a mission combat efficiency estimator (MCEE. It is a decision support system that aids top military commanders in estimating the best combination of soldiers suitable for different military operations, based on available information on enemy’s combat experience. Hence, its advantages consist of reducing casualties and other risks that compromises the entire operation overall success, and also boosting the morals of soldiers in an operation, with such information as an estimation of combat efficiency of their enemies. The system was developed using Microsoft Asp.Net and Sql server backend. A case study test conducted with the MECEE system, reveals clearly that the MECEE system is an efficient tool for military mission planning in terms of team selection. Hence, when the MECEE system is fully deployed it will aid military commanders in the task of decision making on team members’ combination for any given operation based on enemy personnel information that is well known beforehand. Further work on the MECEE will be undertaken to explore fire power types and impact in mission combat efficiency estimation.

  9. Assessment of Post-Fire Vegetation Recovery Using Fire Severity and Geographical Data in the Mediterranean Region (Spain

    Directory of Open Access Journals (Sweden)

    Alba Viana-Soto

    2017-12-01

    Full Text Available Wildfires cause disturbances in ecosystems and generate environmental, economic, and social costs. Studies focused on vegetation regeneration in burned areas acquire interest because of the need to understand the species dynamics and to apply an adequate restoration policy. In this work we intend to study the variables that condition short-term regeneration (5 years of three species of the genus Pinus in the Mediterranean region of the Iberian Peninsula. Regeneration modelling has been performed through multiple regressions, using Ordinary Least Squares (OLS and Geographic Weight Regression (GWR. The variables used were fire severity, measured through the Composite Burn Index (CBI, and a set of environmental variables (topography, post-fire climate, vegetation type, and state after fire. The regeneration dynamics were measured through the Normalized Difference Vegetation Index (NDVI obtained from Landsat images. The relationship between fire severity and regeneration dynamics showed consistent results. Short-term regeneration was slowed down when severity was higher. The models generated by GWR showed better results in comparison with OLS (adjusted R2 = 0.77 for Pinus nigra and Pinus pinaster; adjusted R2 = 0.80 for Pinus halepensis. Further studies should focus on obtaining more precise variables and considering new factors which help to better explain post-fire vegetation recovery.

  10. Fire vegetative ash and erosion in the Mediterranean areas. State of the art and future perspectives

    Science.gov (United States)

    Pereira, Paulo; Cerdà, Artemi

    2013-04-01

    Fire is a global phenomenon with important ecological impacts. Among all ecosystems, the Mediterranean is frequently visited by severe wildfires with serious impacts on soil properties and increase soil vulnerability to erosion due vegetation removal. After the fire the ash distributed in soil surface can mitigate soil exposition to erosion and rain splash (Cerda and Doerr, 2008), however, this depends on the fire severity that have implications on the type of ash produced (Pereira et al., 2010). High fire severities produced thinner ash that it is easily transported by wind, contrary to low severity wildfires where combustion is not so intense and the mass loss is less, providing a better soil protection in the immediate period after the fire. Soil protection after the fire highly depends on fire severity (Pereira et al. 2013a; Pereira et al. 2013b). Ash it is a highly mobile material, thus this protection can change in space and time, providing a better cover in some areas and worst in others. In the period immediate after the fire, ash can change soil hydrological properties, increasing water retention and reducing sediment transport in relation to bare soil areas (Cerda and Doerr, 2008), but also clog soil pores, seal the soil and increase erosion (Onda et al., 2008). In fact results are controversial and the impacts of vegetative ash in soil erosion may rely on the proprieties of ash produced, that can be extremely variable, even in small distances (Pereira and Úbeda, 2010), due the different conditions of combustions. Ash produced at low severity temperatures can be highly hydrophilic (Bodi et al., 2011) and induce soil hydrophobicity (Bodi et al., 2012). Other mechanisms as the direct impact of fire in soil, can induce soil water repellency, and do not have any interference of vegetative ash. This fire can induce direct (e.g temperature) and indirect (e.g. ash properties) on soil wettability, with obvious implications on spatio-temporal pattern of soil

  11. Communication from the Permanent Missions of the Russian Federation and the United States of America regarding a joint statement on nuclear cooperation

    International Nuclear Information System (INIS)

    2009-01-01

    The Secretariat has received a communication from the Permanent Missions of the Russian Federation and the United States of America, transmitting the text of the Joint Statement by the Presidents of the Russian Federation and the United States of America on Nuclear Cooperation issued on 6 July 2009 in Moscow. As requested in that communication, the abovementioned statement is herewith circulated for the information of all Member States

  12. Safety climate in the federal fire management community: Influences of organizational, environmental, group, and individual characteristics (Abstract)

    Science.gov (United States)

    Brooke Baldauf McBride; Anne E. Black

    2012-01-01

    This study examined the effects of organizational, environmental, group and individual characteristics on five components of safety climate in the US federal fire management community (HRO Practices, Leadership, Group Culture, Learning Orientation and Mission Clarity). Multiple analyses of variance revealed that all types of characteristics had a significant effect on...

  13. Vegetation recovery after fire in the Klamath-Siskiyou region, southern Oregon

    Science.gov (United States)

    Hibbs, David; Jacobs, Ruth

    2011-01-01

    In July 2002, lightning strikes started five forest fires that merged into one massive wildfire in the Klamath-Siskiyou Ecoregion of southern Oregon. Aided by drought, severe weather conditions, dry fuels, and steep topography, the fire grew to more than 200,000 hectares of mostly public forest land. Known as the Biscuit Fire, it was Oregon's largest forest fire in more than 130 years and one of the largest wildfires on record in the United States. Discussions centered around why such a massive fire was happening, how large would it become, who was keeping communities and homes safe, and what would be the final economic and ecological outcome. Weeks later when the fire was out, conversations turned to other questions, including what, if anything, should happen for forest recovery.

  14. MIDN: A spacecraft Micro-dosimeter mission

    International Nuclear Information System (INIS)

    Pisacane, V. L.; Ziegler, J. F.; Nelson, M. E.; Caylor, M.; Flake, D.; Heyen, L.; Youngborg, E.; Rosenfeld, A. B.; Cucinotta, F.; Zaider, M.; Dicello, J. F.

    2006-01-01

    MIDN (Micro-dosimetry instrument) is a payload on the MidSTAR-I spacecraft (Midshipman Space Technology Applications Research) under development at the United States Naval Academy. MIDN is a solid-state system being designed and constructed to measure Micro-dosimetric spectra to determine radiation quality factors for space environments. Radiation is a critical threat to the health of astronauts and to the success of missions in low-Earth orbit and space exploration. The system will consist of three separate sensors, one external to the spacecraft, one internal and one embedded in polyethylene. Design goals are mass <3 kg and power <2 W. The MidSTAR-I mission in 2006 will provide an opportunity to evaluate a preliminary version of this system. Its low power and mass makes it useful for the International Space Station and manned and unmanned interplanetary missions as a real-time system to assess and alert astronauts to enhanced radiation environments. (authors)

  15. Fire severity and ecosytem responses following crown fires in California shrublands.

    Science.gov (United States)

    Keeley, Jon E; Brennan, Teresa; Pfaff, Anne H

    2008-09-01

    Chaparral shrublands burn in large high-intensity crown fires. Managers interested in how these wildfires affect ecosystem processes generally rely on surrogate measures of fire intensity known as fire severity metrics. In shrublands burned in the autumn of 2003, a study of 250 sites investigated factors determining fire severity and ecosystem responses. Using structural equation modeling we show that stand age, prefire shrub density, and the shortest interval of the prior fire history had significant direct effects on fire severity, explaining > 50% of the variation in severity. Fire severity per se is of interest to resource managers primarily because it is presumed to be an indicator of important ecosystem processes such as vegetative regeneration, community recovery, and erosion. Fire severity contributed relatively little to explaining patterns of regeneration after fire. Two generalizations can be drawn: fire severity effects are mostly shortlived, i.e., by the second year they are greatly diminished, and fire severity may have opposite effects on different functional types. Species richness exhibited a negative relationship to fire severity in the first year, but fire severity impacts were substantially less in the second postfire year and varied by functional type. Much of this relationship was due to alien plants that are sensitive to high fire severity; at all scales from 1 to 1000 m2, the percentage of alien species in the postfire flora declined with increased fire severity. Other aspects of disturbance history are also important determinants of alien cover and richness as both increased with the number of times the site had burned and decreased with time since last fire. A substantial number of studies have shown that remote-sensing indices are correlated with field measurements of fire severity. Across our sites, absolute differenced normalized burn ratio (dNBR) was strongly correlated with field measures of fire severity and with fire history at a

  16. Broad-Scale Environmental Conditions Responsible for Post-Fire Vegetation Dynamics

    Directory of Open Access Journals (Sweden)

    Stuart E. Marsh

    2010-11-01

    Full Text Available Ecosystem response to disturbance is influenced by environmental conditions at a number of scales. Changes in climate have altered fire regimes across the western United States, and have also likely altered spatio-temporal patterns of post-fire vegetation regeneration. Fire occurrence data and a vegetation index (NDVI derived from the NOAA Advanced Very High Resolution Radiometer (AVHRR were used to monitor post-fire vegetation from 1989 to 2007. We first investigated differences in post-fire rates of vegetation regeneration between ecoregions. We then related precipitation, temperature, and elevation records at four temporal scales to rates of post-fire vegetation regeneration to ascertain the influence of climate on post-fire vegetation dynamics. We found that broad-scale climate factors are an important influence on post-fire vegetation regeneration. Most notably, higher rates of post-fire regeneration occurred with warmer minimum temperatures. Increases in precipitation also resulted in higher rates of post-fire vegetation growth. While explanatory power was slight, multiple statistical approaches provided evidence for real ecological drivers of post-fire regeneration that should be investigated further at finer scales. The sensitivity of post-disturbance vegetation dynamics to climatic drivers has important ramifications for the management of ecosystems under changing climatic conditions. Shifts in temperature and precipitation regimes are likely to result in changes in post-disturbance dynamics, which could represent important feedbacks into the global climate system.

  17. Forecasting wildland fire behavior using high-resolution large-eddy simulations

    Science.gov (United States)

    Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.

    2017-12-01

    Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.

  18. DYNAMIC: A Decadal Survey and NASA Roadmap Mission

    Science.gov (United States)

    Paxton, L. J.; Oberheide, J.

    2016-12-01

    In this talk we will review the DYNAMIC mission science and implementation plans. DYNAMIC is baselined as a two satellite mission to delineate the dynamical behavior and structure of the ionosphere, thermosphere and mesosphere system. DYNAMIC was considered the top priority in the Decadal Survey upper atmosphere missions by the AIMI panel. The NASA Heliophysics Roadmap recommended that consideration be given to flying DYNAMIC as the STP 5 (next STP mission) rather than IMAP given the time-lag between the Decadal Survey recommendations and the flight of the STP 5 mission. It certainly seems as though STP 5 will be the IMAP mission. In that case what is the status of DYNAMIC? DYNAMIC could be STP 6 or some portion of the DYNAMIC mission could be executed as the next MidEx mission. In this talk we discuss the DYNAMIC science questions and goals and how they might be addressed. We note that DYNAMIC is not a mission just for the space community. DYNAMIC will enable new groundbased investigations and provide a global context for the long and rich history of groundbased observations of the dynamical state of the ITM system. Issues include: How and to what extent do waves and tides in the lower atmosphere contribute to the variability and mean state of the IT system? [Mission driver: Must have two spacecraft separated in local solar time in near polar orbits] How does the AIM system respond to outside forcing? [Mission Driver: Must measure high latitude inputs] How do neutral-plasma interactions produce neutral and ionospheric density changes over regional and global scales? [Mission Driver: Must measure all major species (O, N2, O2, H, He) and their ions] What part of the IT response occurs in the form of aurorally generated waves? [Mission Driver: Must measure small and mesoscale phenomena at high latitudes] What is the relative importance of thermal expansion, upwelling and advection in defining total mass density changes? [Mission Driver: Must determine the mid

  19. Fire Extinguisher Training for Fire Watch and Designated Workers, Course 9893

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Jimmy D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-19

    At Los Alamos National Laboratory (LANL), all workers must be aware of LANL fire protection policies and be trained on what to do in the event of a fire. This course, Fire Extinguisher Training for Fire Watch and Designated Workers (#9893), provides awareness-level and hands-on training for fire watch personnel and designated workers. Fire watch personnel and designated workers are appointed by line management and must receive both awareness-level training and hands-on training in the use of portable fire extinguishers to extinguish an incipient-stage fire. This training meets the requirements of the Occupational Safety and Health Administration (OSHA) Code of Federal Regulations (CFR) 29 CFR 1910.157, Portable Fire Extinguishers, and Procedure (P) 101-26, Welding, Cutting, and Other Spark-/Flame-Producing Operations.

  20. Fire Extinguisher Designated Worker and Fire Watch: Self-Study Course 15672

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Jimmy D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-08

    At Los Alamos National Laboratory (LANL), all workers must be aware of LANL fire protection policies and be trained on what to do in the event of a fire. This course, Fire Extinguisher Training for Fire Watch and Designated Workers (#9893), provides awareness-level and hands-on training for fire watch personnel and designated workers. Fire watch personnel and designated workers are appointed by line management and must receive both awareness-level training and hands-on training in the use of portable fire extinguishers to extinguish an incipient-stage fire. This training meets the requirements of the Occupational Safety and Health Administration (OSHA) Code of Federal Regulations (CFR) 29 CFR 1910.157, Portable Fire Extinguishers, and Procedure (P) 101-26, Welding, Cutting, and Other Spark-/Flame-Producing Operations.

  1. Model Based Mission Assurance in a Model Based Systems Engineering (MBSE) Framework: State-of-the-Art Assessment

    Science.gov (United States)

    Cornford, Steven L.; Feather, Martin S.

    2016-01-01

    This report explores the current state of the art of Safety and Mission Assurance (S&MA) in projects that have shifted towards Model Based Systems Engineering (MBSE). Its goal is to provide insight into how NASA's Office of Safety and Mission Assurance (OSMA) should respond to this shift. In MBSE, systems engineering information is organized and represented in models: rigorous computer-based representations, which collectively make many activities easier to perform, less error prone, and scalable. S&MA practices must shift accordingly. The "Objective Structure Hierarchies" recently developed by OSMA provide the framework for understanding this shift. Although the objectives themselves will remain constant, S&MA practices (activities, processes, tools) to achieve them are subject to change. This report presents insights derived from literature studies and interviews. The literature studies gleaned assurance implications from reports of space-related applications of MBSE. The interviews with knowledgeable S&MA and MBSE personnel discovered concerns and ideas for how assurance may adapt. Preliminary findings and observations are presented on the state of practice of S&MA with respect to MBSE, how it is already changing, and how it is likely to change further. Finally, recommendations are provided on how to foster the evolution of S&MA to best fit with MBSE.

  2. Use of operational experience in fire safety assessment of nuclear power plants

    International Nuclear Information System (INIS)

    2000-01-01

    Fire hazard has been identified as a major contributor to a plant's operational risk and the international nuclear power industry has been studying and developing tools for defending against this hazard. Considerable progress in design and regulatory requirements for fire safety, in fire protection technology and in related analytical techniques has been made in the past two decades. Substantial efforts have been undertaken worldwide to implement these advances in the interest of improving fire safety both at new and existing nuclear power plants. To assist in these efforts, the IAEA initiated a programme on fire safety that was intended to provide assistance to Member States in improving fire safety in nuclear power plants. In order to achieve this general objective, the IAEA programme aimed at the development of guidelines and good practices, the promotion of advanced fire safety assessment techniques, the exchange of state of the art information between practitioners and the provision of engineering safety advisory services and training in the implementation of internationally accepted practices. During the period 1993-1994, the IAEA activities related to fire safety concentrated on the development of guidelines and good practice documents related to fire safety and fire protection of operating plants. One of the first tasks was the development of a Safety Guide that formulates specific requirements with regard to the fire safety of operating nuclear power plants. Several documents, which provide advice on fire safety inspection, were developed to assist in its implementation. In the period 1995-1996, the programme focused on the preparation of guidelines for the systematic analysis of fire safety at nuclear power plants (NPPs). The IAEA programme on fire safety for 1997-1998 includes tasks aimed at promoting systematic assessment of fire safety related occurrences and dissemination of essential insights from this assessment. One of the topics addressed is the

  3. Integrated system of occupational safety and health and fire protection of the fire rescue brigades members.

    Science.gov (United States)

    Božović, Marijola; Živković, Snežana; Mihajlović, Emina

    2018-06-01

    The objective of the conducted research is the identification and determination of requirements of members of fire rescue brigades during operations in the conditions of high risk in order to minimize the possibilities for injury incidence during the intervention. The research is focused on examination, determination and identification of factors affecting the increasing number of occupational injuries of members of fire rescue brigades during interventions. Hypothetical framework of the research problem consists of general hypothesis and six special hypotheses. Results suggest that almost all respondents believe that their skills and abilities are applicable in the intervention phase, but less than a half believe that their skills are applicable in prevention phase. Two-thirds of respondents stated that in their organization they have support for further education and upgrading while a half of respondents stated that they need education concerning identification, assessment and management of risks that can lead to emergency situations.

  4. Fire Research Enclosure

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Simulates submarine fires, enclosed aircraft fires, and fires in enclosures at shore facilities .DESCRIPTION: FIRE I is a pressurizable, 324 cu m(11,400 cu...

  5. Fire protection for launch facilities using machine vision fire detection

    Science.gov (United States)

    Schwartz, Douglas B.

    1993-02-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  6. Spatial and Temporal Patterns of Unburned Areas within Fire Perimeters in the Northwestern United States from 1984 to 2014

    Science.gov (United States)

    Meddens, A. J.; Kolden, C.; Lutz, J. A.; Abatzoglou, J. T.; Hudak, A. T.

    2016-12-01

    Recently, there has been concern about increasing extent and severity of wildfires across the globe given rapid climate change. Areas that do not burn within fire perimeters can act as fire refugia, providing (1) protection from the detrimental effects of the fire, (2) seed sources, and (3) post-fire habitat on the landscape. However, recent studies have mainly focused on the higher end of the burn severity spectrum whereas the lower end of the burn severity spectrum has been largely ignored. We developed a spatially explicit database for 2,200 fires across the inland northwestern USA, delineating unburned areas within fire perimeters from 1984 to 2014. We used 1,600 Landsat scenes with one or two scenes before and one or two scenes after the fires to capture the unburned proportion of the fire. Subsequently, we characterized the spatial and temporal patterns of unburned areas and related the unburned proportion to interannual climate variability. The overall classification accuracy detecting unburned locations was 89.2% using a 10-fold cross-validation classification tree approach in combination with 719 randomly located field plots. The unburned proportion ranged from 2% to 58% with an average of 19% for a select number of fires. We find that using both an immediate post-fire image and a one-year post fire image improves classification accuracy of unburned islands over using just a single post-fire image. The spatial characteristics of the unburned islands differ between forested and non-forested regions with a larger amount of unburned area within non-forest. In addition, we show trends of unburned proportion related primarily to concurrent climatic drought conditions across the entire region. This database is important for subsequent analyses of fire refugia prioritization, vegetation recovery studies, ecosystem resilience, and forest management to facilitate unburned islands through fuels breaks, prescribed burning, and fire suppression strategies.

  7. Special aspects of motivation of the structural subdivisions of the state emergency service of Ukraine in terms of physical self-culture

    Directory of Open Access Journals (Sweden)

    Stetsenko A.I.

    2015-03-01

    Full Text Available Purpose: to determine the motivation of employees of structural subdivisions of the State Emergency Service of Ukraine to improve their level of professional competence by means of physical training. Material: questionnaire survey of 130 rescue workers aged 25 to 40 years. Results: the main motives of rescue team personnel for physical culture and sports activities are gain in physical health and professional competence, while performing rescue missions. It was established that, when on duty, most of the firefighters and rescue workers are not engaged in physical exercise at all; household chores and poor state of health in case of men prevent rescue team employees from doing exercises outside of working hours. It was found that fire-rescue specialists give preference to the development of muscle strength during professional physical trainings and would like to perform power exercises. Conclusions: the low level of motivation of current fire-rescue workers for physical self-improvement requires optimization of control over professional physical education in departments of the State Emergency Service of Ukraine.

  8. Radioactive waste management. Ukraine. WAMAP mission to Ukraine

    International Nuclear Information System (INIS)

    Bergman, C.; Samiei, M.; Takats, F.

    1993-01-01

    In February 1992, the Ukrainian State Committee on Nuclear and Radiation Safety IAEA assisted in management of radwaste and spent fuel. A three member IAEA mission was sent to Ukraine for fact-finding. The present report discusses the outcome of this mission. It gives present legislation, regulations and organizational situation in Ukraine and generation and waste management of radioactive wastes. It discusses possible area of technical co-operation, conclusions and recommendations of the mission

  9. 34 CFR 668.49 - Institutional fire safety policies and fire statistics.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Institutional fire safety policies and fire statistics... fire statistics. (a) Additional definitions that apply to this section. Cause of fire: The factor or...; however, it does not include indirect loss, such as business interruption. (b) Annual fire safety report...

  10. Bridging EOS remote sensing measurements and fire emissions, smoke dispersion, and air quality DSS in the Eastern US

    Science.gov (United States)

    John J. Qu; Xianjun Hao; Ruixin Yang; Swarvanu Dasgupta; Sanjeeb Bhoi; Menas Kafatos

    1999-01-01

    Fire eniissions, smoke dispersiotl. ancl air quality are very important for fire fighting and planing of prescribed burning. BlueskyRATNS (BSR) is a comprehenisive and state-of-the-art Decision Support System (DSS) for fire managers and air quality managers to plan fiiels treatments and support state air qiiality smoke regulatory actions, especially related to...

  11. All fired up

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    Members of the Directorate and their support staff took part in a fire-fighting course organised by the CERN Fire Brigade just before the end-of-year break.  The Bulletin takes a look at the fire-fighting training on offer at CERN.   At CERN the risk of fire can never be under-estimated. In order to train personnel in the use of fire extinguishers, CERN's fire training centre in Prévessin acquired a fire-simulation platform in 2012. On the morning of 17 December 2012, ten members of the CERN directorate and their support staff tried out the platform, following in the footsteps of 400 other members of the CERN community who had already attended the course. The participants were welcomed to the training centre by Gilles Colin, a fire-fighter and instructor, who gave them a 30-minute introduction to general safety and the different types of fire and fire extinguishers, followed by an hour of practical instruction in the simulation facility. There they were able to pract...

  12. Internal fire protection analysis for the United Kingdom EPR design

    Energy Technology Data Exchange (ETDEWEB)

    Laid, Abdallah [Nuclear New Build Generation Company Ltd. (NNB GenCo), Barnwood (United Kingdom). EDF Energy Plc.; Cesbron, Mickael [Service Etudes et Project Thermiques et Nucleaires (SEPTEN), Lyon (France). EDF-SA

    2015-12-15

    In the deterministic design basis analysis of the United Kingdom (UK) EPR based nuclear power plants all postulated initiating events are grouped into two different types, internal faults and internal/external hazards. ''Internal Fires'' is one of the internal hazards analysed at the design stage of the UK EPR. In effect, the main safety objective for fire protection is to ensure that all the required safety functions are performed in the event of an internal fire. To achieve this safety objective, provisions for protection against fire risks are taken to: (i) limit the spread of a fire, protect the safety functions of the facility; (ii) limit the propagation of smoke and dispersion of toxic, radioactive, inflammable, corrosive or explosive materials, and (iii) ensure the achievement of a safe shutdown state, personnel evacuation and all other necessary emergency actions. This paper presents the UK EPR approach on how the above provisions are applied. Such provisions involve implementing means of fire prevention, surveillance, firefighting and limiting fire consequences, appropriate to the risks inherent to the facility. Overall, the design of the UK EPR fire protection systems is based on three types of measures: prevention, containment and control.

  13. Mission to the comets

    International Nuclear Information System (INIS)

    Hughes, D.

    1980-01-01

    The plans of space agencies in the United States and Europe for an exploratory comet mission including a one year rendezvous with comet Temple-2 and a fast fly-by of comet Halley are discussed. The mission provides an opportunity to make comparative measurements on the two different types of comets and also satisfies the three major scientific objectives of cometary missions namely: (1) To determine the chemical nature and the physical structure of cometary nuclei, and the changes that occur with time and orbital position. (2) To study the chemical and physical nature of the atmospheres and ionospheres of comets, the processes that occur in them, and their development with time and orbital position. (3) To determine the nature of the tails of comets and the processes by which they are formed, and to characterise the interaction of comets with solar wind. (UK)

  14. Lidar instruments for ESA Earth observation missions

    Science.gov (United States)

    Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland

    2017-11-01

    The idea of deploying a lidar system on an Earthorbiting satellite stems from the need for continuously providing profiles of our atmospheric structure with high accuracy and resolution and global coverage. Interest in this information for climatology, meteorology and the atmospheric sciences in general is huge. Areas of application range from the determination of global warming and greenhouse effects, to monitoring the transport and accumulation of pollutants in the different atmospheric regions (such as the recent fires in Southeast Asia), to the assessment of the largely unknown microphysical properties and the structural dynamics of the atmosphere itself. Spaceborne lidar systems have been the subject of extensive investigations by the European Space Agency since mid 1970's, resulting in mission and instrument concepts, such as ATLID, the cloud backscatter lidar payload of the EarthCARE mission, ALADIN, the Doppler wind lidar of the Atmospheric Dynamics Mission (ADM) and more recently a water vapour Differential Absorption Lidar considered for the WALES mission. These studies have shown the basic scientific and technical feasibility of spaceborne lidars, but they have also demonstrated their complexity from the instrument viewpoint. As a result, the Agency undertook technology development in order to strengthen the instrument maturity. This is the case for ATLID, which benefited from a decade of technology development and supporting studies and is now studied in the frame of the EarthCARE mission. ALADIN, a Direct Detection Doppler Wind Lidar operating in the Ultra -Violet, will be the 1st European lidar to fly in 2007 as payload of the Earth Explorer Core Mission ADM. WALES currently studied at the level of a phase A, is based upon a lidar operating at 4 wavelengths in near infrared and aims to profile the water vapour in the lower part of the atmosphere with high accuracy and low bias. Lastly, the European Space Agency is extending the lidar instrument field

  15. Monitoring of cloudiness in the function of the forests fire protection

    Directory of Open Access Journals (Sweden)

    Živanović Stanimir

    2016-01-01

    Full Text Available Fires in forests are seasonal in nature, conditioned by the moisture content of the fuel material. The emergence of these fires in Serbia is becoming more common and depending on the intensity and duration, fires have a major impact on the state of vegetation. The aim of this study was to determine the correlation between dynamics of cloudiness occurrence and forest fires. To study the correlation of these elements, Pearson correlation coefficients were used. The analysis is based on the meteorological data obtained from meteorological station Negotin for the period from 1991 to 2010. Among the tested influences, the degree of cloudiness showed positive correlative interdependence with the dynamics of fire occurrence in nature. The annual number of fires correlates positively with the average number of clear days (p = 0.25. Also, it was found that the annual number of fires with medium intensity, correlated negatively with the average number of cloudy days (p= -0.26, but not statistically significant (p> 0.05.

  16. Thermal weapon sights with integrated fire control computers: algorithms and experiences

    Science.gov (United States)

    Rothe, Hendrik; Graswald, Markus; Breiter, Rainer

    2008-04-01

    The HuntIR long range thermal weapon sight of AIM is deployed in various out of area missions since 2004 as a part of the German Future Infantryman system (IdZ). In 2007 AIM fielded RangIR as upgrade with integrated laser Range finder (LRF), digital magnetic compass (DMC) and fire control unit (FCU). RangIR fills the capability gaps of day/night fire control for grenade machine guns (GMG) and the enhanced system of the IdZ. Due to proven expertise and proprietary methods in fire control, fast access to military trials for optimisation loops and similar hardware platforms, AIM and the University of the Federal Armed Forces Hamburg (HSU) decided to team for the development of suitable fire control algorithms. The pronounced ballistic trajectory of the 40mm GMG requires most accurate FCU-solutions specifically for air burst ammunition (ABM) and is most sensitive to faint effects like levelling or firing up/downhill. This weapon was therefore selected to validate the quality of the FCU hard- and software under relevant military conditions. For exterior ballistics the modified point mass model according to STANAG 4355 is used. The differential equations of motions are solved numerically, the two point boundary value problem is solved iteratively. Computing time varies according to the precision needed and is typical in the range from 0.1 - 0.5 seconds. RangIR provided outstanding hit accuracy including ABM fuze timing in various trials of the German Army and allied partners in 2007 and is now ready for series production. This paper deals mainly with the fundamentals of the fire control algorithms and shows how to implement them in combination with any DSP-equipped thermal weapon sights (TWS) in a variety of light supporting weapon systems.

  17. The analysis outlining the occurrence and consequences of accidents in the work environment of the firefighters employed by the State Fire Service in Poland in 2008-2013.

    Science.gov (United States)

    Pawlak, Agata; Gotlib, Joanna; Gałązkowski, Robert

    2016-01-01

    Due to the specifics of their work and to being exposed to a wide range of hazards, firefighters working for the State Fire Service (SFS) face the risk of work-related accidents more often than members of other occupational groups. The aim of this paper is to analyze the occurrence and consequences of accidents in the work environment of the SFS officers in Poland between the years 2008-2013. The material analyzed is based on aggregate data collected by the Headquarters of the State Fire Service. Figures regarding accidents in the period between 1 January 2008 and 31 December 2013 show that 8518 work-related accidents occurred in that period and 8635 people were injured. The data shows that neither the number of accidents nor their frequency indicator underwent any significant fluctuations over the 6 years under consideration. The group that is most exposed to accidents on duty in the profession includes active firefighters serving in rescue and fire extinguishment divisions. According to the data, the greatest number of trauma incidents in the SFS between the years 2008-2013 occurred during sporting activities. The predominant cause of these was inappropriate behavior or the lack of proper care. The most frequent injuries sustained during the accidents were broken or fractured bones and sprained joints. Accidents on duty occur significantly more often when firefighters are at their stations, during sporting classes, exercises or maneuvers, than in the course of actual rescue operations. The firefighters of the State Fire Services are insufficiently prepared for their sporting activities. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  18. Characterization of potential fire regimes: applying landscape ecology to fire management in Mexico

    Science.gov (United States)

    Jardel, E.; Alvarado, E.; Perez-Salicrup, D.; Morfín-Rios, J.

    2013-05-01

    Knowledge and understanding of fire regimes is fundamental to design sound fire management practices. The high ecosystem diversity of Mexico offers a great challenge to characterize the fire regime variation at the landscape level. A conceptual model was developed considering the main factors controlling fire regimes: climate and vegetation cover. We classified landscape units combining bioclimatic zones from the Holdridge life-zone system and actual vegetation cover. Since bioclimatic conditions control primary productivity and biomass accumulation (potential fuel), each landscape unit was considered as a fuel bed with a particular fire intensity and behavior potential. Climate is also a determinant factor of post-fire recovery rates of fuel beds, and climate seasonality (length of the dry and wet seasons) influences fire probability (available fuel and ignition efficiency). These two factors influence potential fire frequency. Potential fire severity can be inferred from fire frequency, fire intensity and behavior, and vegetation composition and structure. Based in the conceptual model, an exhaustive literature review and expert opinion, we developed rules to assign a potential fire regime (PFR) defined by frequency, intensity and severity (i.e. fire regime) to each bioclimatic-vegetation landscape unit. Three groups and eight types of potential fire regimes were identified. In Group A are fire-prone ecosystems with frequent low severity surface fires in grasslands (PFR type I) or forests with long dry season (II) and infrequent high-severity fires in chaparral (III), wet temperate forests (IV, fire restricted by humidity), and dry temperate forests (V, fire restricted by fuel recovery rate). Group B includes fire-reluctant ecosystems with very infrequent or occasional mixed severity surface fires limited by moisture in tropical rain forests (VI) or fuel availability in seasonally dry tropical forests (VII). Group C and PFR VIII include fire-free environments

  19. The role of fuels for understanding fire behavior and fire effects

    Science.gov (United States)

    E. Louise Loudermilk; J. Kevin Hiers; Joseph J. O' Brien

    2018-01-01

    Fire ecology, which has emerged as a critical discipline, links the complex interactions that occur between fire regimes and ecosystems. The ecology of fuels, a first principle in fire ecology, identifies feedbacks between vegetation and fire behavior-a cyclic process that starts with fuels influencing fire behavior, which in turn governs patterns of postfire...

  20. Behaviour of concrete structures in fire

    Directory of Open Access Journals (Sweden)

    Fletcher Ian A.

    2007-01-01

    Full Text Available This paper provides a "state-of-the-art" review of research into the effects of high temperature on concrete and concrete structures, extending to a range of forms of construction, including novel developments. The nature of concrete-based structures means that they generally perform very well in fire. However, concrete is fundamentally a complex material and its properties can change dramatically when exposed to high temperatures. The principal effects of fire on concrete are loss of compressive strength, and spalling - the forcible ejection of material from the surface of a member. Though a lot of information has been gathered on both phenomena, there remains a need for more systematic studies of the effects of thermal exposures. The response to realistic fires of whole concrete structures presents yet greater challenges due to the interactions of structural elements, the impact of complex small-scale phenomena at full scale, and the spatial and temporal variations in exposures, including the cooling phase of the fire. Progress has been made on modeling the thermomechanical behavior but the treatment of detailed behaviors, including hygral effects and spalling, remains a challenge. Furthermore, there is still a severe lack of data from real structures for validation, though some valuable insights may also be gained from study of the performance of concrete structures in real fires. .

  1. STS-61 mission director's post-mission report

    Science.gov (United States)

    Newman, Ronald L.

    1995-01-01

    To ensure the success of the complex Hubble Space Telescope servicing mission, STS-61, NASA established a number of independent review groups to assess management, design, planning, and preparation for the mission. One of the resulting recommendations for mission success was that an overall Mission Director be appointed to coordinate management activities of the Space Shuttle and Hubble programs and to consolidate results of the team reviews and expedite responses to recommendations. This report presents pre-mission events important to the experience base of mission management, with related Mission Director's recommendations following the event(s) to which they apply. All Mission Director's recommendations are presented collectively in an appendix. Other appendixes contain recommendations from the various review groups, including Payload Officers, the JSC Extravehicular Activity (EVA) Section, JSC EVA Management Office, JSC Crew and Thermal Systems Division, and the STS-61 crew itself. This report also lists mission events in chronological order and includes as an appendix a post-mission summary by the lead Payload Deployment and Retrieval System Officer. Recommendations range from those pertaining to specific component use or operating techniques to those for improved management, review, planning, and safety procedures.

  2. Modeling fires in adjacent ship compartments with computational fluid dynamics

    International Nuclear Information System (INIS)

    Wix, S.D.; Cole, J.K.; Koski, J.A.

    1998-01-01

    This paper presents an analysis of the thermal effects on radioactive (RAM) transportation pack ages with a fire in an adjacent compartment. An assumption for this analysis is that the adjacent hold fire is some sort of engine room fire. Computational fluid dynamics (CFD) analysis tools were used to perform the analysis in order to include convective heat transfer effects. The analysis results were compared to experimental data gathered in a series of tests on the United States Coast Guard ship Mayo Lykes located at Mobile, Alabama. (authors)

  3. Alternative fuels in fire debris analysis: biodiesel basics.

    Science.gov (United States)

    Stauffer, Eric; Byron, Doug

    2007-03-01

    Alternative fuels are becoming more prominent on the market today and, soon, fire debris analysts will start seeing them in liquid samples or in fire debris samples. Biodiesel fuel is one of the most common alternative fuels and is now readily available in many parts of the United States and around the world. This article introduces biodiesel to fire debris analysts. Biodiesel fuel is manufactured from vegetable oils and/or animal oils/fats. It is composed of fatty acid methyl esters (FAMEs) and is sold pure or as a blend with diesel fuel. When present in fire debris samples, it is recommended to extract the debris using passive headspace concentration on activated charcoal, possibly followed by a solvent extraction. The gas chromatographic analysis of the extract is first carried out with the same program as for regular ignitable liquid residues, and second with a program adapted to the analysis of FAMEs.

  4. Fire Problems in High-Rise Buildings. California Fire Service Training Program.

    Science.gov (United States)

    California State Dept. of Education, Sacramento. Bureau of Industrial Education.

    Resulting from a conference concerned with high-rise fire problems, this manual has been prepared as a fire department training manual and as a reference for students enrolled in fire service training courses. Information is provided for topics dealing with: (1) Typical Fire Problems in High-Rise Buildings, (2) Heat, (3) Smoke and Fire Gases, (4)…

  5. Forest fires in Pennsylvania.

    Science.gov (United States)

    Donald A. Haines; William A. Main; Eugene F. McNamara

    1978-01-01

    Describes factors that contribute to forest fires in Pennsylvania. Includes an analysis of basic statistics; distribution of fires during normal, drought, and wet years; fire cause, fire activity by day-of-week; multiple-fire day; and fire climatology.

  6. Post-fire Water Quality Response and Associated Physical Drivers

    Science.gov (United States)

    Rust, A.; Saxe, S.; Hogue, T. S.; McCray, J. E.; Rhoades, C.

    2017-12-01

    The frequency and severity of forest fires is increasing across the western US. Wildfires are known to impact water quality in receiving waters; many of which are important sources of water supply. Studies on individual forest fires have shown an increase in total suspended solids, nutrient and metal concentrations and loading in receiving streams. The current research looks at a large number of fires across a broad region (Western United States) to identify typical water quality changes after fire and the physical characteristics that drive those responses. This presentation will overview recent development of an extensive database on post-fire water quality. Across 172 fires, we found that water quality changed significantly in one out of three fires up to five years after the event compared to pre-burn conditions. For basins with higher frequency data, it was evident that water quality changes were significant in the first three years following fire. In both the initial years following fire and five years after fire, concentrations and loading rates of dissolved nutrients such as nitrite, nitrate and orthophosphate and particulate forms of nutrients, total organic nitrogen, total nitrogen, total phosphate, and total phosphorus increase thirty percent of the time. Concentrations of some major dissolved ions and metals decrease, with increased post-fire flows, while total particulate concentrations increased; the flux of both dissolved and particulate forms increase in thirty percent of the fires over five years. Water quality change is not uniform across the studied watersheds. A second goal of this study is to identify physical characteristics of a watershed that drive water quality response. Specifically, we investigate the physical, geochemical, and climatological characteristics of watersheds that control the type, direction, and magnitude of water quality change. Initial results reveal vegetation recovery is a key driver in post-fire water quality response

  7. Brief communication Decreasing fires in a Mediterranean region (1970–2010, NE Spain

    Directory of Open Access Journals (Sweden)

    M. Turco

    2013-03-01

    Full Text Available We analyse the recent evolution of fires in Catalonia (north-eastern Iberian Peninsula, a typical Mediterranean region. We examine a homogeneous series of forest fires in the period 1970–2010. During this period, more than 9000 fire events greater than 0.5 ha were recorded, and the total burned area was more than 400 kha. Our analysis shows that both the burned area and number of fire series display a decreasing trend. Superposed onto this general decrease, strong oscillations on shorter time scales are evident. After the large fires of 1986 and 1994, the increased effort in fire prevention and suppression could explain part of the decreasing trend. Although it is often stated that fires have increased in Mediterranean regions, the higher efficiency in fire detection could have led to spurious trends and misleading conclusions.

  8. Fire safety assessment for the fire areas of the nuclear power plant using fire model CFAST

    International Nuclear Information System (INIS)

    Lee, Yoon Hwan; Yang, Joon Eon; Kim, Jong Hoon

    2005-03-01

    Now the deterministic analysis results for the cable integrity is not given in case of performing the fire PSA. So it is necessary to develop the assessment methodology for the fire growth and propagation. This document is intended to analyze the peak temperature of the upper gas layer using the fire modeling code, CFAST, to evaluate the integrity of the cable located on the dominant pump rooms, and to assess the CCDP(Conditional Core Damage Probability) using the results of the cable integrity. According to the analysis results, the cable integrity of the pump rooms is maintained and CCDP is reduced about two times than the old one. Accordingly, the fire safety assessment for the dominant fire areas using the fire modeling code will capable to reduce the uncertainty and to develop a more realistic model

  9. Introduction of Sodium Fire Extinguishing System for STELLA-1

    Energy Technology Data Exchange (ETDEWEB)

    Gam, Dayoung; Kim, Jong-Man; Jung, Min-Hwan; Eoh, Jae-Hyuk; Jeong, Eoh Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    This characteristic is a big advantage as a thermal transfer fluid. However, the high reactivity of sodium, especially with water and oxygen, and white aerosol in the event of fire can cause serious accidents. Thus, large sodium facility needs a specific-developed fire extinguishing system for a safe experiment. Korea Atomic Energy Research Institute (KAERI) has conducted sodium heat transfer experiments using the facility named the Sodium Integral Effect Test Loop for Safety Simulation and Assessment (STELLA-1). STELLA-1 fully equipped a sodium fire extinguishing system for the safe experiment and fire spread prevention. In this paper, a preparation of the fire extinguishing system of STELLA-1 facility is introduced. This paper can provide an example of how to design a sodium fire extinguishing system for a large sodium experiment facility. In this paper, a preparation of the fire extinguishment system for STELLA-1 as a large sodium experiment facility was introduced and explained. For safe operation of the liquid sodium utility, it is important to equip specific-developed fire extinguishing system because of the chemical characteristics of sodium. Operators should know the process and operating manual before conducting an experiment to prevent hazardous situation. Though the dry chemical extinguishing agent put out the fire target, removing agent at high temperature state can cause re-combustion. Thus, extinguishment confirmation work should be conducted after sufficient cooling time to stabilize the surface. And in case of fire at a sealed room, a method making the percentage of oxygen low(injecting nitrogen gas or argon gas) is effective.

  10. Introduction of Sodium Fire Extinguishing System for STELLA-1

    International Nuclear Information System (INIS)

    Gam, Dayoung; Kim, Jong-Man; Jung, Min-Hwan; Eoh, Jae-Hyuk; Jeong, Eoh Jiyoung

    2015-01-01

    This characteristic is a big advantage as a thermal transfer fluid. However, the high reactivity of sodium, especially with water and oxygen, and white aerosol in the event of fire can cause serious accidents. Thus, large sodium facility needs a specific-developed fire extinguishing system for a safe experiment. Korea Atomic Energy Research Institute (KAERI) has conducted sodium heat transfer experiments using the facility named the Sodium Integral Effect Test Loop for Safety Simulation and Assessment (STELLA-1). STELLA-1 fully equipped a sodium fire extinguishing system for the safe experiment and fire spread prevention. In this paper, a preparation of the fire extinguishing system of STELLA-1 facility is introduced. This paper can provide an example of how to design a sodium fire extinguishing system for a large sodium experiment facility. In this paper, a preparation of the fire extinguishment system for STELLA-1 as a large sodium experiment facility was introduced and explained. For safe operation of the liquid sodium utility, it is important to equip specific-developed fire extinguishing system because of the chemical characteristics of sodium. Operators should know the process and operating manual before conducting an experiment to prevent hazardous situation. Though the dry chemical extinguishing agent put out the fire target, removing agent at high temperature state can cause re-combustion. Thus, extinguishment confirmation work should be conducted after sufficient cooling time to stabilize the surface. And in case of fire at a sealed room, a method making the percentage of oxygen low(injecting nitrogen gas or argon gas) is effective

  11. Robotic Platform for Automated Search and Rescue Missions of Humans

    Directory of Open Access Journals (Sweden)

    Eli Kolberg

    2013-02-01

    Full Text Available We present a novel type of model incorporating a special remote life signals sensing optical system on top of a controllable robotic platform. The remote sensing system consists of a laser and a camera. By properly adapting our optics and by applying a proper image processing algorithm we can sense within the field of view, illuminated by the laser and imaged by the camera, the heartbeats and the blood pulse pressure of subjects (even several simultaneously. The task is to use the developed robotic system for search and rescue mission such as saving survivals from a fire.

  12. Impacts of fire, fire-fighting chemicals and post-fire stabilization techniques on the soil-plant system

    OpenAIRE

    Fernández Fernández, María

    2017-01-01

    Forest fires, as well as fire-fighting chemicals, greatly affect the soil-plant system causing vegetation loss, alterations of soil properties and nutrient losses through volatilization, leaching and erosion. Soil recovery after fires depends on the regeneration of the vegetation cover, which protects the soil and prevents erosion. Fire-fighting chemicals contain compounds potentially toxic for plants and soil organisms, and thus their use might hamper the regeneration of burnt ecosystems. In...

  13. Thirty-Two Years of Forest Service Research at the Southern Forest Fire Laboratory in Macon, GA

    Science.gov (United States)

    USDA Forest Service

    1991-01-01

    When completed in 1959, the Southern Forest Fire Laboratory was the world?s first devoted entirely to the study of forest fires, Since then the scientists at the Laboratory have: 1) performed basic and applied research on critical fire problems of national interest, 2) conducted special regional research on fire problems peculiar to the 13 Southern States, and 3)...

  14. Phased mission methodology. A state of the art report: Parts A, B and C

    International Nuclear Information System (INIS)

    Terpstra, K.; Van Driel, G.; Kafka, P.; Polke, H.

    1986-01-01

    A complex system has to perform a number of different tasks. Sometimes these tasks must be performed at the same time, but in a lot of cases the system has to perform its tasks subsequently. The execution of the different tasks is effected by parts of the system, so-called subsystems more or less dependent by means of processes and/or shared equipment. Examples of such complex systems can be found, for instance, in modern space travel, in nuclear power plants, in military weapon systems, etc. A phased mission is a task for a complex system to be performed in parts (subtasks), one part after the other. The present report covers the work carried out under the tripartite concert between the European Communities (CEC), the Gesellschaft fuer Reaktorsicherheit mbH (GRS) and the Netherlands Energy Research Foundation (ECN). The scope of the studies is to assess the practical usefulness of phased mission analyses. The present volume consists of three parts: Part A: Phased mission analysis. A review of mathematical modelling and of a number of existing computer programs; Part B: Example for the application of phased mission methods in reliability and risk studies; and, Part C: Calculation results for a phased mission - Part C1 - Phased mission calculation for a reference heat removal system - Part C2 - Application of phased mission methods in reliability and risk studies

  15. Parallel Enhancements of the General Mission Analysis Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The General Mission Analysis Tool (GMAT) is a state of the art spacecraft mission design tool under active development at NASA's Goddard Space Flight Center (GSFC)....

  16. Fire Propagation Tracing Model in the Explicit Treatment of Events of Fire PSA

    International Nuclear Information System (INIS)

    Lim, Ho Gon; Han, Sang Hoon; Yang, Jun Eon

    2010-01-01

    The fire propagation model in a fire PSA has not been considered analytically instead a simplified analyst's intuition was used to consider the fire propagation path. A fire propagation equation is developed to trace all the propagation paths in the fire area in which a zone is defined to identify various fire ignition sources. An initiation of fire is assumed to take place in a zone. Then, the propagation is modeled with a Boolean equation. Since the explicit fire PSA modeling requires an exclusive event set to sum up the..., exclusive event sets are derived from the fire propagation equation. As an example, we show the exclusive set for a 2x3 rectangular fire zone. Also, the applicability the developed fire equation is discussed when the number of zone increases including the limitation of the explicit fire PSA modeling method

  17. Fire regime: history and definition of a key concept in disturbance ecology.

    Science.gov (United States)

    Krebs, Patrik; Pezzatti, Gianni B; Mazzoleni, Stefano; Talbot, Lee M; Conedera, Marco

    2010-06-01

    "Fire regime" has become, in recent decades, a key concept in many scientific domains. In spite of its wide spread use, the concept still lacks a clear and wide established definition. Many believe that it was first discussed in a famous report on national park management in the United States, and that it may be simply defined as a selection of a few measurable parameters that summarize the fire occurrence patterns in an area. This view has been uncritically perpetuated in the scientific community in the last decades. In this paper we attempt a historical reconstruction of the origin, the evolution and the current meaning of "fire regime" as a concept. Its roots go back to the 19th century in France and to the first half of the 20th century in French African colonies. The "fire regime" concept took time to evolve and pass from French into English usage and thus to the whole scientific community. This coincided with a paradigm shift in the early 1960s in the United States, where a favourable cultural, social and scientific climate led to the natural role of fires as a major disturbance in ecosystem dynamics becoming fully acknowledged. Today the concept of "fire regime" refers to a collection of several fire-related parameters that may be organized, assembled and used in different ways according to the needs of the users. A structure for the most relevant categories of parameters is proposed, aiming to contribute to a unified concept of "fire regime" that can reconcile the physical nature of fire with the socio-ecological context within which it occurs.

  18. Changes in fire weather distributions: effects on predicted fire behavior

    Science.gov (United States)

    Lucy A. Salazar; Larry S. Bradshaw

    1984-01-01

    Data that represent average worst fire weather for a particular area are used to index daily fire danger; however, they do not account for different locations or diurnal weather changes that significantly affect fire behavior potential. To study the effects that selected changes in weather databases have on computed fire behavior parameters, weather data for the...

  19. Wildland fire risk and social vulnerability in the Southeastern United States: An exploratory spatial data analysis approach

    Science.gov (United States)

    Cassandra Johnson Gaither; Neelam C. Poudyal; Scott Goodrick; J. M. Bowker; Sparkle L Malone; Jianbang. Gan

    2011-01-01

    The southeastern U.S. is one of the more wildland fire prone areas of the country and also contains some of the poorest or most socially vulnerable rural communities. Our project addresses wildland fire risk in this part of the U.S and its intersection with social vulnerability. We examine spatial association between high wildland fire prone areas which also rank high...

  20. Environmental Monitoring as Part of Life Support for the Crew Habitat for Lunar and Mars Missions

    Science.gov (United States)

    Jan, Darrell L.

    2010-01-01

    Like other crewed space missions, future missions to the moon and Mars will have requirements for monitoring the chemical and microbial status of the crew habitat. Monitoring the crew habitat becomes more critical in such long term missions. This paper will describe the state of technology development for environmental monitoring of lunar lander and lunar outpost missions, and the state of plans for future missions.

  1. Processing Infrared Images For Fire Management Applications

    Science.gov (United States)

    Warren, John R.; Pratt, William K.

    1981-12-01

    The USDA Forest Service has used airborne infrared systems for forest fire detection and mapping for many years. The transfer of the images from plane to ground and the transposition of fire spots and perimeters to maps has been performed manually. A new system has been developed which uses digital image processing, transmission, and storage. Interactive graphics, high resolution color display, calculations, and computer model compatibility are featured in the system. Images are acquired by an IR line scanner and converted to 1024 x 1024 x 8 bit frames for transmission to the ground at a 1.544 M bit rate over a 14.7 GHZ carrier. Individual frames are received and stored, then transferred to a solid state memory to refresh the display at a conventional 30 frames per second rate. Line length and area calculations, false color assignment, X-Y scaling, and image enhancement are available. Fire spread can be calculated for display and fire perimeters plotted on maps. The performance requirements, basic system, and image processing will be described.

  2. Climate Impacts of Fire-Induced Land-Surface Changes

    Science.gov (United States)

    Liu, Y.; Hao, X.; Qu, J. J.

    2017-12-01

    One of the consequences of wildfires is the changes in land-surface properties such as removal of vegetation. This will change local and regional climate through modifying the land-air heat and water fluxes. This study investigates mechanism by developing and a parameterization of fire-induced land-surface property changes and applying it to modeling of the climate impacts of large wildfires in the United States. Satellite remote sensing was used to quantitatively evaluate the land-surface changes from large fires provided from the Monitoring Trends in Burning Severity (MTBS) dataset. It was found that the changes in land-surface properties induced by fires are very complex, depending on vegetation type and coverage, climate type, season and time after fires. The changes in LAI are remarkable only if the actual values meet a threshold. Large albedo changes occur in winter for fires in cool climate regions. The signs are opposite between the first post-fire year and the following years. Summer day-time temperature increases after fires, while nigh-time temperature changes in various patterns. The changes are larger in forested lands than shrub / grassland lands. In the parameterization scheme, the detected post-fire changes are decomposed into trends using natural exponential functions and fluctuations of periodic variations with the amplitudes also determined by natural exponential functions. The final algorithm is a combination of the trends, periods, and amplitude functions. This scheme is used with Earth system models to simulate the local and regional climate effects of wildfires.

  3. Assessing fire impacts on the carbon stability of fire-tolerant forests.

    Science.gov (United States)

    Bennett, Lauren T; Bruce, Matthew J; Machunter, Josephine; Kohout, Michele; Krishnaraj, Saravanan Jangammanaidu; Aponte, Cristina

    2017-12-01

    The carbon stability of fire-tolerant forests is often assumed but less frequently assessed, limiting the potential to anticipate threats to forest carbon posed by predicted increases in forest fire activity. Assessing the carbon stability of fire-tolerant forests requires multi-indicator approaches that recognize the myriad ways that fires influence the carbon balance, including combustion, deposition of pyrogenic material, and tree death, post-fire decomposition, recruitment, and growth. Five years after a large-scale wildfire in southeastern Australia, we assessed the impacts of low- and high-severity wildfire, with and without prescribed fire (≤10 yr before), on carbon stocks in multiple pools, and on carbon stability indicators (carbon stock percentages in live trees and in small trees, and carbon stocks in char and fuels) in fire-tolerant eucalypt forests. Relative to unburned forest, high-severity wildfire decreased short-term (five-year) carbon stability by significantly decreasing live tree carbon stocks and percentage stocks in live standing trees (reflecting elevated tree mortality), by increasing the percentage of live tree carbon in small trees (those vulnerable to the next fire), and by potentially increasing the probability of another fire through increased elevated fine fuel loads. In contrast, low-severity wildfire enhanced carbon stability by having negligible effects on aboveground stocks and indicators, and by significantly increasing carbon stocks in char and, in particular, soils, indicating pyrogenic carbon accumulation. Overall, recent preceding prescribed fire did not markedly influence wildfire effects on short-term carbon stability at stand scales. Despite wide confidence intervals around mean stock differences, indicating uncertainty about the magnitude of fire effects in these natural forests, our assessment highlights the need for active management of carbon assets in fire-tolerant eucalypt forests under contemporary fire regimes

  4. Proceedings of the second international symposium on fire economics, planning, and policy: a global view

    Science.gov (United States)

    Armando González-Cabán

    2008-01-01

    hese proceedings summarize the results of a symposium designed to address current issues of agencies with wildland fire protection responsibility at the federal and state levels in the United States as well as agencies in the international community. The topics discussed at the symposium included fire economics, theoretical and methodological approaches to strategic...

  5. Humans, Fires, and Forests - Social science applied to fire management

    Science.gov (United States)

    Hanna J. Cortner; Donald R. Field; Pam Jakes; James D. Buthman

    2003-01-01

    The 2000 and 2002 fire seasons resulted in increased political scrutiny of the nation's wildland fire threats, and given the fact that millions of acres of lands are still at high risk for future catastrophic fire events, the issues highlighted by the recent fire seasons are not likely to go away any time soon. Recognizing the magnitude of the problem, the...

  6. EPS insulated façade fires from a fire and rescue perspective

    Directory of Open Access Journals (Sweden)

    Kumm M.

    2013-11-01

    Full Text Available This paper highlights the challenges the fire and rescue services can meet at façade fires involving EPS insulation during construction and use of a building. The EPS characteristics are discussed in respect to the fire and rescue operation and results from orientating fire tests performed at a fire and rescue services training and test field are presented. Types of evacuation solutions, involving the fire and rescue services, where façade fires can delay or completely rule out the possibilities for safe evacuation, are presented. The restrictions in the Swedish building codes regarding use of combustible insulation are analysed and reflections over the practical problems with following the instructions to keep an EPS insulated façade safe through the building's whole lifespan are made. A number of occurred fires involving EPS are discussed and analysed from a fire and rescue perspective. Finally, recommendations are given for the fire and rescue services and future research fields are proposed.

  7. Using unplanned fires to help suppressing future large fires in Mediterranean forests.

    Directory of Open Access Journals (Sweden)

    Adrián Regos

    Full Text Available Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain, we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050. An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire

  8. Using unplanned fires to help suppressing future large fires in Mediterranean forests.

    Science.gov (United States)

    Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís

    2014-01-01

    Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be

  9. OECD-FIRE PR02. OECD-FIRE database record structure

    International Nuclear Information System (INIS)

    Kolar, L.

    2005-12-01

    In the coding guidelines, the scope, format, and details of any record required to input a real fire event at a nuclear reactor unit to the international OECD-FIRE database are described in detail. The database was set up in the OECD-FIRE-PR02 code

  10. Geo-oculus: high resolution multi-spectral earth imaging mission from geostationary orbit

    Science.gov (United States)

    Vaillon, L.; Schull, U.; Knigge, T.; Bevillon, C.

    2017-11-01

    Geo-Oculus is a GEO-based Earth observation mission studied by Astrium for ESA in 2008-2009 to complement the Sentinel missions, the space component of the GMES (Global Monitoring for Environment & Security). Indeed Earth imaging from geostationary orbit offers new functionalities not covered by existing LEO observation missions, like real-time monitoring and fast revisit capability of any location within the huge area in visibility of the satellite. This high revisit capability is exploited by the Meteosat meteorogical satellites, but with a spatial resolution (500 m nadir for the third generation) far from most of GMES needs (10 to 100 m). To reach such ground resolution from GEO orbit with adequate image quality, large aperture instruments (> 1 m) and high pointing stability (challenges of such missions. To address the requirements from the GMES user community, the Geo-Oculus mission is a combination of routine observations (daily systematic coverage of European coastal waters) with "on-demand" observation for event monitoring (e.g. disasters, fires and oil slicks). The instrument is a large aperture imaging telescope (1.5 m diameter) offering a nadir spatial sampling of 10.5 m (21 m worst case over Europe, below 52.5°N) in a PAN visible channel used for disaster monitoring. The 22 multi-spectral channels have resolutions over Europe ranging from 40 m in UV/VNIR (0.3 to 1 μm) to 750 m in TIR (10-12 μm).

  11. Prevention of Surgical Fires: A Certification Course for Healthcare Providers.

    Science.gov (United States)

    Fisher, Marquessa

    2015-08-01

    An estimated 550 to 650 surgical fires occur annually in the United States. Surgical fires may have severe consequences, including burns, disfigurement, long-term medical care, or death. This article introduces a potential certification program for the prevention of surgical fires. A pilot study was conducted with a convenience sample of 10 anesthesia providers who participated in the education module. The overall objective was to educate surgical team members and to prepare them to become certified in surgical fire prevention. On completion of the education module, participants completed the 50-question certification examination. The mean pretest score was 66%; none of the participants had enough correct responses (85%) to be considered competent in surgical fire prevention. The mean post- test score was 92.80%, with all participants answering at least 85% of questions correct. A paired-samples t test showed a statistically significant increase in knowledge: t (df = 9) = 11.40; P = .001. Results of the pilot study indicate that this course can remediate gaps in knowledge of surgical fire prevention for providers. Their poor performance on the pretest suggests that many providers may not receive sufficient instruction in surgical fire prevention.

  12. Numerical modeling of the effects of fire-induced convection and fire-atmosphere interactions on wildfire spread and fire plume dynamics

    Science.gov (United States)

    Sun, Ruiyu

    It is possible due to present day computing power to produce a fluid dynamical physically-based numerical solution to wildfire behavior, at least in the research mode. This type of wildfire modeling affords a flexibility and produces details that are not available in either current operational wildfire behavior models or field experiments. However before using these models to study wildfire, validation is necessary, and model results need to be systematically and objectively analyzed and compared to real fires. Plume theory and data from the Meteotron experiment, which was specially designed to provide results from measurements for the theoretical study of a convective plume produced by a high heat source at the ground, are used here to evaluate the fire plume properties simulated by two numerical wildfire models, the Fire Dynamics Simulator or FDS, and the Clark coupled atmosphere-fire model. The study indicates that the FDS produces good agreement with the plume theory and the Meteotron results. The study also suggests that the coupled atmosphere-fire model, a less explicit and ideally less computationally demanding model than the FDS; can produce good agreement, but that the agreement is sensitive to the method of putting the energy released from the fire into the atmosphere. The WFDS (Wildfire and wildland-urban interface FDS), an extension of the FDS to the vegetative fuel, and the Australian grass fire experiments are used to evaluate and improve the UULES-wildfire coupled model. Despite the simple fire parameterization in the UULES-wildfire coupled model, the fireline is fairly well predicted in terms of both shape and location in the simulation of Australian grass fire experiment F19. Finally, the UULES-wildfire coupled model is used to examine how the turbulent flow in the atmospheric boundary layer (ABL) affects the growth of the grass fires. The model fires showed significant randomness in fire growth: Fire spread is not deterministic in the ABL, and a

  13. Fire protection at hot laboratories: Prevention, surveillance and fire-fighting

    International Nuclear Information System (INIS)

    Chappellier, A.M.

    1976-01-01

    After pointing out that fire in a hot laboratory can be an important factor contributing to a radioactivity accident, the author briefly recalls the items to be taken into account in a fire hazard analysis. He then describes various important aspects of prevention, detection and fire-fighting which - at the French Commissariat a l'Energie Atomique - are governed by already defined rules or by guidelines which are sufficiently advanced to give a clear idea of the final conclusions to be drawn therefrom. From the point of view protection, the concept of fire sector has been evolved, at hot laboratories, becomes the fire and contamination sector, so as to ensure under all circumstances the containment of any radioactive materials dispersed in the premises on fire. Regarding fire detection, a study should be made on the constraints specific to the facility and liable to affect detector operation. These include ventilation, radiations, neutral or corrosive atmosphere, etc. As regards fire-fighting, two particular aspects are dealt with, namely the question of using water in case of fire and action to be taken concerning ventilation. A practical example - the protection of a ventilation system - is described. In conclusion the paper refers to the need for a thorough analysis specific to each hot laboratory, and to the importance of preparing an operational plan so as to avoid any dangerous improvisations in case of an accident. (author)

  14. Landsat Data Continuity Mission (LDCM) space to ground mission data architecture

    Science.gov (United States)

    Nelson, Jack L.; Ames, J.A.; Williams, J.; Patschke, R.; Mott, C.; Joseph, J.; Garon, H.; Mah, G.

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a scientific endeavor to extend the longest continuous multi-spectral imaging record of Earth's land surface. The observatory consists of a spacecraft bus integrated with two imaging instruments; the Operational Land Imager (OLI), built by Ball Aerospace & Technologies Corporation in Boulder, Colorado, and the Thermal Infrared Sensor (TIRS), an in-house instrument built at the Goddard Space Flight Center (GSFC). Both instruments are integrated aboard a fine-pointing, fully redundant, spacecraft bus built by Orbital Sciences Corporation, Gilbert, Arizona. The mission is scheduled for launch in January 2013. This paper will describe the innovative end-to-end approach for efficiently managing high volumes of simultaneous realtime and playback of image and ancillary data from the instruments to the reception at the United States Geological Survey's (USGS) Landsat Ground Network (LGN) and International Cooperator (IC) ground stations. The core enabling capability lies within the spacecraft Command and Data Handling (C&DH) system and Radio Frequency (RF) communications system implementation. Each of these systems uniquely contribute to the efficient processing of high speed image data (up to 265Mbps) from each instrument, and provide virtually error free data delivery to the ground. Onboard methods include a combination of lossless data compression, Consultative Committee for Space Data Systems (CCSDS) data formatting, a file-based/managed Solid State Recorder (SSR), and Low Density Parity Check (LDPC) forward error correction. The 440 Mbps wideband X-Band downlink uses Class 1 CCSDS File Delivery Protocol (CFDP), and an earth coverage antenna to deliver an average of 400 scenes per day to a combination of LGN and IC ground stations. This paper will also describe the integrated capabilities and processes at the LGN ground stations for data reception using adaptive filtering, and the mission operations approach fro- the LDCM

  15. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Analysis of core damage frequency from internal fire events for Plant Operational State 5 during a refueling outage. Volume 3

    International Nuclear Information System (INIS)

    Lambright, J.; Yakle, J.

    1994-07-01

    This report, Volume 3, presents the details of the analysis of core damage frequency due to fire during shutdown Plant Operational State 5 at the Grand Gulf Nuclear Station. Insights from previous fire analyses (Peach Bottom, Surry, LaSalle) were used to the greatest extent possible in this analysis. The fire analysis was fully integrated utilizing the same event trees and fault trees that were used in the internal events analysis. In assessing shutdown risk due to fire at Grand Gulf, a detailed screening was performed which included the following elements: (a) Computer-aided vital area analysis; (b) Plant inspections; (c) Credit for automatic fire protection systems; (d) Recovery of random failures; (e) Detailed fire propagation modeling. This screening process revealed that all plant areas had a negligible (<1.0E-8 per year) contribution to fire-induced core damage frequency

  16. The contribution of natural fire management to wilderness fire science

    Science.gov (United States)

    Carol Miller

    2014-01-01

    When the federal agencies established policies in the late 1960s and early 1970s to allow the use of natural fires in wilderness, they launched a natural fire management experiment in a handful of wilderness areas. As a result, wildland fire has played more of its natural role in wilderness than anywhere else. Much of what we understand about fire ecology comes from...

  17. State DOT mission evolution.

    Science.gov (United States)

    2013-04-01

    This paper highlights the challenges faced by six state departments of transportation (California, Colorado, Florida, Massachusetts, Missouri, Oregon) and the views of their respective chief executive officers within the context of national trends. E...

  18. A maintenance optimization model for mission-oriented systems based on Wiener degradation

    International Nuclear Information System (INIS)

    Guo, Chiming; Wang, Wenbin; Guo, Bo; Si, Xiaosheng

    2013-01-01

    Over the past few decades, condition-based maintenance (CBM) has attracted many researchers because of its effectiveness and practical significance. This paper deals with mission-oriented systems subject to gradual degradation modeled by a Wiener stochastic process within the context of CBM. For a mission-oriented system, the mission usually has constraints on availability/reliability, the opportunity for maintenance actions, and the monitoring type (continuous or discrete). Furthermore, in practice, a mission-oriented system may undertake some preventive maintenance (PM) and after such PM, the system may return to an intermediate state between an as-good-as new state and an as-bad-as old state, i.e., the PM is not perfect and only partially restores the system. However, very few CBM models integrated these mission constraints together with an imperfect nature of the PM into the course of optimizing the PM policy. This paper develops a model to optimize the PM policy in terms of the maintenance related cost jointly considering the mission constraints and the imperfect PM nature. A numerical example is presented to demonstrate the proposed model. The comparison with the simulated results and the sensitivity analysis show the usefulness of the optimization model for mission-oriented system maintenance presented in this paper.

  19. 2015 Science Mission Directorate Technology Highlights

    Science.gov (United States)

    Seablom, Michael S.

    2016-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation, e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  20. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review

    Directory of Open Access Journals (Sweden)

    Jordi Fonollosa

    2018-02-01

    Full Text Available Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative.

  1. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review.

    Science.gov (United States)

    Fonollosa, Jordi; Solórzano, Ana; Marco, Santiago

    2018-02-11

    Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative.

  2. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review

    Science.gov (United States)

    Fonollosa, Jordi

    2018-01-01

    Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative. PMID:29439490

  3. Application of FIRE PSA in case of modifications for post-operational shutdown states

    Energy Technology Data Exchange (ETDEWEB)

    Tuerschmann, Michael; Babst, Siegfried [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Berlin (Germany); Roewekamp, Marina [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany)

    2013-07-01

    This contribution presents results of recent research and development activities in the field of Hazards PSA (HPSA). The reactor accidents at Fukushima Dai-ichi in March 2011 gave reason and indications for checking the risk assessment approach for internal and external hazards as currently described in the German PSA Guideline and its supplementary technical documents. A standardized approach for performing a comprehensive HPSA has been developed emphasizing the complete consideration of all potential failure dependencies induced by hazards. The systematic extension of the given plant model of Level 1 PSA is the real crux of the new HPSA approach. The extension is carried out for each hazard H using the corresponding Hazard Equipment List (H-EL) and the corresponding Hazard Dependency List (H-DL). Parts of the approach have already been tested. In the paper a successful application for the plant internal hazard fire is presented. A German licensee plans a system modification of the spent fuel pool cooling, therefore a Level 1 PSA has been carried out to compare the fuel damage frequencies for the existing and the modified version. It is described how the systematic (and partly automatic) extension of the fault trees is performed using the Fire Equipment List (F-EL). The F-EL contains a compartment assignment for all relevant components and cables. The probability of a room failure by fire must be determined for any mapped room. This is the conditional probability that the components and cables within the room are destroyed by the fire. (orig.)

  4. Wildfire and aspect effects on hydrologic states after the 2010 Fourmile Canyon Fire

    Science.gov (United States)

    Ebel, Brian A.

    2013-01-01

    Wildfire can change how soils take in, store, and release water. This study examined differences in how burned and unburned plots on north versus south-facing slope aspects respond to rainfall. The largest wildfire impacts were litter/duff combustion on burned north-facing slopes versus soil-water retention reduction on burned south-facing slopes.Wildfire is one of the most significant disturbances in mountainous landscapes, affecting water supply and ecologic function and setting the stage for natural hazards such as flash floods. The impacts of wildfire can affect the entire hydrologic cycle. Measurements of soil-water content and matric potential in the near surface (top 30 cm) captured the hydrologic state in both burned and unburned hillslopes during the first spring through fall period (1 June–1 Oct. 2011) after the 2010 Fourmile Canyon Fire near Boulder, CO. This time span included different hydrologic periods characterized by cyclonic frontal storms (low-intensity, long duration), convective storms (high-intensity, short duration), and dry periods. In mountainous environments, aspect can also control hydrologic states, so north- vs. south-facing slopes were compared. Wildfire tended to homogenize soil-water contents across aspects and with depth in the soil, yet it also may have introduced an aspect control on matric potential that was not observed in unburned soils. Post-wildfire changes in hydrologic state were observed in south-facing soils, probably reflecting decreased soil-water retention after wildfire. North-facing soils were impacted the most, in terms of hydrologic state, by the loss of water storage in the combusted litter–duff layer and forest canopy, which had provided a large “hydrologic buffering” capacity when unburned. Unsaturated zone measurements showed increased variability in hydrologic states and more rapid state transitions in wildfire-impacted soils. A simple, qualitative analysis suggested that the range of unsaturated

  5. Hydrological modelling for flood forecasting: Calibrating the post-fire initial conditions

    Science.gov (United States)

    Papathanasiou, C.; Makropoulos, C.; Mimikou, M.

    2015-10-01

    Floods and forest fires are two of the most devastating natural hazards with severe socioeconomic, environmental as well as aesthetic impacts on the affected areas. Traditionally, these hazards are examined from different perspectives and are thus investigated through different, independent systems, overlooking the fact that they are tightly interrelated phenomena. In fact, the same flood event is more severe, i.e. associated with increased runoff discharge and peak flow and decreased time to peak, if it occurs over a burnt area than that occurring over a land not affected by fire. Mediterranean periurban areas, where forests covered with flammable vegetation coexist with agricultural land and urban zones, are typical areas particularly prone to the combined impact of floods and forest fires. Hence, the accurate assessment and effective management of post-fire flood risk becomes an issue of priority. The research presented in this paper aims to develop a robust methodological framework, using state of art tools and modern technologies to support the estimation of the change in time of five representative hydrological parameters for post-fire conditions. The proposed methodology considers both longer- and short-term initial conditions in order to assess the dynamic evolution of the selected parameters. The research focuses on typical Mediterranean periurban areas that are subjected to both hazards and concludes with a set of equations that associate post-fire and pre-fire conditions for five Fire Severity (FS) classes and three soil moisture states. The methodology has been tested for several flood events on the Rafina catchment, a periurban catchment in Eastern Attica (Greece). In order to validate the methodology, simulated hydrographs were produced and compared against available observed data. Results indicate a close convergence of observed and simulated flows. The proposed methodology is particularly flexible and thus easily adaptable to catchments with similar

  6. Fire Behavior System for the Full Range of Fire Management Needs

    Science.gov (United States)

    Richard C. Rothermel; Patricia L. Andrews

    1987-01-01

    An "integrated fire behavior/fire danger rating system" should be "seamless" to avoid requiring choices among alternate, independent systems. Descriptions of fuel moisture, fuels, and fire behavior should be standardized, permitting information to flow easily through the spectrum of fire management needs. The level of resolution depends on the...

  7. The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS mission: design, execution, and first results

    Directory of Open Access Journals (Sweden)

    D. J. Jacob

    2010-06-01

    Full Text Available The NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS mission was conducted in two 3-week deployments based in Alaska (April 2008 and western Canada (June–July 2008. Its goal was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1 influx of mid-latitude pollution, (2 boreal forest fires, (3 aerosol radiative forcing, and (4 chemical processes. The June–July deployment was preceded by one week of flights over California (ARCTAS-CARB focused on (1 improving state emission inventories for greenhouse gases and aerosols, (2 providing observations to test and improve models of ozone and aerosol pollution. ARCTAS involved three aircraft: a DC-8 with a detailed chemical payload, a P-3 with an extensive aerosol and radiometric payload, and a B-200 with aerosol remote sensing instrumentation. The aircraft data augmented satellite observations of Arctic atmospheric composition, in particular from the NASA A-Train. The spring phase (ARCTAS-A revealed pervasive Asian pollution throughout the Arctic as well as significant European pollution below 2 km. Unusually large Siberian fires in April 2008 caused high concentrations of carbonaceous aerosols and also affected ozone. Satellite observations of BrO column hotspots were found not to be related to Arctic boundary layer events but instead to tropopause depressions, suggesting the presence of elevated inorganic bromine (5–10 pptv in the lower stratosphere. Fresh fire plumes from Canada and California sampled during the summer phase (ARCTAS-B indicated low NOx emission factors from the fires, rapid conversion of NOx to PAN, no significant secondary aerosol production, and no significant ozone enhancements except when mixed with urban pollution.

  8. Fire Resistance Tests of Various Fire Protective Coatings

    Directory of Open Access Journals (Sweden)

    Mindaugas GRIGONIS

    2011-03-01

    Full Text Available Tests were carried out on more than 14 different samples of fire protective coatings in order to investigate a relation between the thickness of the intumescent fire protection coating and the time of exposure to heat. A number of coatings of different chemical composition enabled to determine the fire resistance behaviour patterns. During test the one-side and volumetric methods were employed in observance of the standard temperature-time curves. For one-side method, the coating was applied on one side and all edges of the specimen, whereas for volumetric test the specimens were completely covered with fire protective coating. It is shown that a layer of coating protects the specimen's surface from heat exposure for a certain period of time until full oxidation of the coating occurs. The efficiency of fire protective coatings also depends on thickness of the charred layer of the side exposed to heat.http://dx.doi.org/10.5755/j01.ms.17.1.257

  9. The influences of Wildfires and Stratospheric-Tropospheric exchange on ozone during SEACIONS mission over St. Louis, MO

    Science.gov (United States)

    Wilkins, J. L.

    2015-12-01

    A series of 32 ozonesondes were launched from St. Louis, Missouri, from 8 Aug - 23 Sept 2013, as part of the SouthEast American Consortium for Intensive Ozone Network Study (SEACIONS) mission. The time during which this site operated coincided with two large wildfires, Idaho's Beaver Creek fire and California's RIM fire, in addition to widespread agricultural fires in the Midwest. As part of our analyses, we examined multiple satellite-derived products that have been used in the analysis of tropospheric pollution, fires, and air mass flow patterns. The Fire Locating and Modeling of Burning Emissions (FLAMBE) inventory was used as an input to FLEXPART-WRF to quantify the contribution of particle trajectories and injection heights from the various sources. Trajectories from the sonde launch sites and fire locations were used as input for the two FLEXPART-WRF Model simulations to determine the origins of pollution plumes. The first simulation was conducted to model fire emissions within the planetary boundary layer (<3500m), while the second was added to investigate transportation effects from locations identified to have pyro-convective cumulonimbus. The Goddard Earth Observing System Model, Version 5 (GEOS-5) potential vorticity was used to analyze the stratospheric component of ozone enhancements. We examined three meteorological test cases: 1) a cut-off low, 2) a blocking high pressure, and 3) a frontal passage, which involve mixed-layer O3 enhancements, which can be spotted at several sites within SEACIONS. We look to quantify the contribution of these ozone enhancement sources to local air quality.

  10. A Novel Arc Fault Detector for Early Detection of Electrical Fires.

    Science.gov (United States)

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-04-09

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires.

  11. A Novel Arc Fault Detector for Early Detection of Electrical Fires

    Science.gov (United States)

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-01-01

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618

  12. FIRE CHARACTERISTICS FOR ADVANCED MODELLING OF FIRES

    OpenAIRE

    Otto Dvořák

    2016-01-01

    This paper summarizes the material and fire properties of solid flammable/combustible materials /substances /products, which are used as inputs for the computer numerical fire models. At the same time it gives the test standards for their determination.

  13. Codimension-two bifurcation analysis on firing activities in Chay neuron model

    International Nuclear Information System (INIS)

    Duan Lixia; Lu Qishao

    2006-01-01

    Using codimension-two bifurcation analysis in the Chay neuron model, the relationship between the electric activities and the parameters of neurons is revealed. The whole parameter space is divided into two parts, that is, the firing and silence regions of neurons. It is found that the transition sets between firing and silence regions are composed of the Hopf bifurcation curves of equilibrium states and the saddle-node bifurcation curves of limit cycles, with some codimension-two bifurcation points. The transitions from silence to firing in neurons are due to the Hopf bifurcation or the fold limit cycle bifurcation, but the codimension-two singularities lead to complexity in dynamical behaviour of neuronal firing

  14. Codimension-two bifurcation analysis on firing activities in Chay neuron model

    Energy Technology Data Exchange (ETDEWEB)

    Duan Lixia [School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Lu Qishao [School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)]. E-mail: qishaolu@hotmail.com

    2006-12-15

    Using codimension-two bifurcation analysis in the Chay neuron model, the relationship between the electric activities and the parameters of neurons is revealed. The whole parameter space is divided into two parts, that is, the firing and silence regions of neurons. It is found that the transition sets between firing and silence regions are composed of the Hopf bifurcation curves of equilibrium states and the saddle-node bifurcation curves of limit cycles, with some codimension-two bifurcation points. The transitions from silence to firing in neurons are due to the Hopf bifurcation or the fold limit cycle bifurcation, but the codimension-two singularities lead to complexity in dynamical behaviour of neuronal firing.

  15. Evaluation of fire models for nuclear power plant applications. Benchmark exercise no. 4: Fuel pool fire inside a compartment - International panel report

    International Nuclear Information System (INIS)

    Klein-Hessling, W.; Roewekamp, M.; Riese, O.

    2006-11-01

    Fire simulations as well as their analytical validation procedures have gained more and more significance, particularly in the context of the fire safety analysis for operating nuclear power plants. Meanwhile, fire simulation models have been adapted as analytical tools for a risk oriented fire safety assessment. Calculated predictions can be used, on the one hand, for the improvements and upgrades of fire protection in nuclear power plants by the licensees and, on the other hand, as a tool for reproducible and clearly understandable estimations in assessing the available and/or foreseen fire protection measures by the authorities and their experts. For consideration of such aspects in the context of implementing new nuclear fire protection standards or of updating existing ones, an 'International Collaborative Project to Evaluate Fire Models for Nuclear Power Plant Applications' also known as the 'International Collaborative Fire Model Project' (ICFMP) was started in 1999. It has made use of the experience and knowledge of a variety of worldwide expert institutions in this field to assess and improve, if necessary, the state-of-the-art with respect to modeling fires in nuclear power plants and other nuclear installations. This document contains the results of the ICFMP Benchmark Exercise No. 4, where two fuel pool fire experiments in an enclosure with two different natural vent sizes have been considered. Analyzing the results of different fire simulation codes and code types provides some indications with respect to the uncertainty of the results. This information is especially important in setting uncertainty parameters in probabilistic risk studies and to provide general insights concerning the applicability and limitations in the application of different types of fire simulation codes for this type of fire scenario and boundary conditions. During the benchmark procedure the participants performed different types of calculations. These included totally blind

  16. Current status of sodium fire and aerosol research in Japan

    International Nuclear Information System (INIS)

    Himeno, Yoshiaki

    1989-01-01

    State-of-the-art of the research and development related to sodium fire and aerosol behaviour is presented. This paper covers the Japanese work on sodium leak, leak detector, sodium oxidation and combustion, sodium aerosol release, fire mitigation, reliabilities of the electrical instruments and the reactor components under the sodium aerosols suspended atmosphere, aerosol plugging in a leak path, and the computer codes are presented. (author)

  17. Water Supply. Fire Service Certification Series. Unit FSCS-FF-9-80.

    Science.gov (United States)

    Pribyl, Paul F.

    This training unit on water supply is part of a 17-unit course package written to aid instructors in the development, teaching, and evaluation of fire fighters in the Wisconsin Fire Service Certification Series. The purpose stated for the 4-hour unit is to assist the firefighter in the proper use of water supplies and the understanding of the…

  18. Fire retardant formulations

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to compositions where a substrate is liable to catch fire such as bituminous products, paints, carpets or the like. The invention relates to a composition comprising 40-95 weight % of a substrate to be rendered fire resistant such as bituminous material or paint......, carpets which substrate is mixed with 5-60 weight % of a fire retardant component. The invention relates to a fire retardant component comprising or being constituted of attapulgite, and a salt being a source of a blowing or expanding agent, where the attapulgite and the salt are electrostatically...... connected by mixing and subjecting the mixture of the two components to agitation. Also, the invention relates to compositions comprising 40-95 weight % of a substrate to be rendered fire resistant mixed with 5-60 weight % of a fire retardant according to claim 1 or 2, which fire retardant component...

  19. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland

    Directory of Open Access Journals (Sweden)

    Tineke Kraaij

    2017-08-01

    Full Text Available Season of fire has marked effects on floristic composition in fire-prone Mediterranean-climate shrublands. In these winter-rainfall systems, summer-autumn fires lead to optimal recruitment of overstorey proteoid shrubs (non-sprouting, slow-maturing, serotinous Proteaceae which are important to the conservation of floral diversity. We explored whether fire season has similar effects on early establishment of five proteoid species in the eastern coastal part of the Cape Floral Kingdom (South Africa where rainfall occurs year-round and where weather conducive to fire and the actual incidence of fire are largely aseasonal. We surveyed recruitment success (ratio of post-fire recruits to pre-fire parents of proteoids after fires in different seasons. We also planted proteoid seeds into exclosures, designed to prevent predation by small mammals and birds, in cleared (intended to simulate fire fynbos shrublands at different sites in each of four seasons and monitored their germination and survival to one year post-planting (hereafter termed ‘recruitment’. Factors (in decreasing order of importance affecting recruitment success in the post-fire surveys were species, pre-fire parent density, post-fire age of the vegetation at the time of assessment, and fire season, whereas rainfall (for six months post-fire and fire return interval (>7 years had little effect. In the seed-planting experiment, germination occurred during the cooler months and mostly within two months of planting, except for summer-plantings, which took 2–3 months longer to germinate. Although recruitment success differed significantly among planting seasons, sites and species, significant interactions occurred among the experimental factors. In both the post-fire surveys and seed planting experiment, recruitment success in relation to fire- or planting season varied greatly within and among species and sites. Results of these two datasets were furthermore inconsistent, suggesting

  20. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland.

    Science.gov (United States)

    Kraaij, Tineke; Cowling, Richard M; van Wilgen, Brian W; Rikhotso, Diba R; Difford, Mark

    2017-01-01

    Season of fire has marked effects on floristic composition in fire-prone Mediterranean-climate shrublands. In these winter-rainfall systems, summer-autumn fires lead to optimal recruitment of overstorey proteoid shrubs (non-sprouting, slow-maturing, serotinous Proteaceae) which are important to the conservation of floral diversity. We explored whether fire season has similar effects on early establishment of five proteoid species in the eastern coastal part of the Cape Floral Kingdom (South Africa) where rainfall occurs year-round and where weather conducive to fire and the actual incidence of fire are largely aseasonal. We surveyed recruitment success (ratio of post-fire recruits to pre-fire parents) of proteoids after fires in different seasons. We also planted proteoid seeds into exclosures, designed to prevent predation by small mammals and birds, in cleared (intended to simulate fire) fynbos shrublands at different sites in each of four seasons and monitored their germination and survival to one year post-planting (hereafter termed 'recruitment'). Factors (in decreasing order of importance) affecting recruitment success in the post-fire surveys were species, pre-fire parent density, post-fire age of the vegetation at the time of assessment, and fire season, whereas rainfall (for six months post-fire) and fire return interval (>7 years) had little effect. In the seed-planting experiment, germination occurred during the cooler months and mostly within two months of planting, except for summer-plantings, which took 2-3 months longer to germinate. Although recruitment success differed significantly among planting seasons, sites and species, significant interactions occurred among the experimental factors. In both the post-fire surveys and seed planting experiment, recruitment success in relation to fire- or planting season varied greatly within and among species and sites. Results of these two datasets were furthermore inconsistent, suggesting that proteoid

  1. A hierarchical fire frequency model to simulate temporal patterns of fire regimes in LANDIS

    Science.gov (United States)

    Jian Yang; Hong S. He; Eric J. Gustafson

    2004-01-01

    Fire disturbance has important ecological effects in many forest landscapes. Existing statistically based approaches can be used to examine the effects of a fire regime on forest landscape dynamics. Most examples of statistically based fire models divide a fire occurrence into two stages--fire ignition and fire initiation. However, the exponential and Weibull fire-...

  2. Fire and invasive exotic plant species in eastern oak communities: an assessment of current knowledge

    Science.gov (United States)

    Cynthia D. Huebner

    2006-01-01

    Successful regeneration of oak-dominated communities in the Eastern United States historically requires disturbance such as fire, making them vulnerable to invasion by exotic plants. Little is currently known about the effects of fire on invasive plant species and the effects of invasive plant species on fire regimes of this region. Seventeen common eastern invaders...

  3. FIRE CHARACTERISTICS FOR ADVANCED MODELLING OF FIRES

    Directory of Open Access Journals (Sweden)

    Otto Dvořák

    2016-07-01

    Full Text Available This paper summarizes the material and fire properties of solid flammable/combustible materials /substances /products, which are used as inputs for the computer numerical fire models. At the same time it gives the test standards for their determination.

  4. Stochastic representation of fire behavior in a wildland fire protection planning model for California.

    Science.gov (United States)

    J. Keith Gilless; Jeremy S. Fried

    1998-01-01

    A fire behavior module was developed for the California Fire Economics Simulator version 2 (CFES2), a stochastic simulation model of initial attack on wildland fire used by the California Department of Forestry and Fire Protection. Fire rate of spread (ROS) and fire dispatch level (FDL) for simulated fires "occurring" on the same day are determined by making...

  5. Fire-regime variability impacts forest carbon dynamics for centuries to millennia

    Science.gov (United States)

    Hudiburg, Tara W.; Higuera, Philip E.; Hicke, Jeffrey A.

    2017-08-01

    Wildfire is a dominant disturbance agent in forest ecosystems, shaping important biogeochemical processes including net carbon (C) balance. Long-term monitoring and chronosequence studies highlight a resilience of biogeochemical properties to large, stand-replacing, high-severity fire events. In contrast, the consequences of repeated fires or temporal variability in a fire regime (e.g., the characteristic timing or severity of fire) are largely unknown, yet theory suggests that such variability could strongly influence forest C trajectories (i.e., future states or directions) for millennia. Here we combine a 4500-year paleoecological record of fire activity with ecosystem modeling to investigate how fire-regime variability impacts soil C and net ecosystem carbon balance. We found that C trajectories in a paleo-informed scenario differed significantly from an equilibrium scenario (with a constant fire return interval), largely due to variability in the timing and severity of past fires. Paleo-informed scenarios contained multi-century periods of positive and negative net ecosystem C balance, with magnitudes significantly larger than observed under the equilibrium scenario. Further, this variability created legacies in soil C trajectories that lasted for millennia. Our results imply that fire-regime variability is a major driver of C trajectories in stand-replacing fire regimes. Predicting carbon balance in these systems, therefore, will depend strongly on the ability of ecosystem models to represent a realistic range of fire-regime variability over the past several centuries to millennia.

  6. Characterization of a mine fire using atmospheric monitoring system sensor data.

    Science.gov (United States)

    Yuan, L; Thomas, R A; Zhou, L

    2017-06-01

    Atmospheric monitoring systems (AMS) have been widely used in underground coal mines in the United States for the detection of fire in the belt entry and the monitoring of other ventilation-related parameters such as airflow velocity and methane concentration in specific mine locations. In addition to an AMS being able to detect a mine fire, the AMS data have the potential to provide fire characteristic information such as fire growth - in terms of heat release rate - and exact fire location. Such information is critical in making decisions regarding fire-fighting strategies, underground personnel evacuation and optimal escape routes. In this study, a methodology was developed to calculate the fire heat release rate using AMS sensor data for carbon monoxide concentration, carbon dioxide concentration and airflow velocity based on the theory of heat and species transfer in ventilation airflow. Full-scale mine fire experiments were then conducted in the Pittsburgh Mining Research Division's Safety Research Coal Mine using an AMS with different fire sources. Sensor data collected from the experiments were used to calculate the heat release rates of the fires using this methodology. The calculated heat release rate was compared with the value determined from the mass loss rate of the combustible material using a digital load cell. The experimental results show that the heat release rate of a mine fire can be calculated using AMS sensor data with reasonable accuracy.

  7. Tending for Cattle: Traditional Fire Management in Ethiopian Montane Heathlands

    Directory of Open Access Journals (Sweden)

    Maria U. Johansson

    2012-09-01

    Full Text Available Fire has long been a principal tool for manipulating ecosystems, notably for pastoralist cultures, but in modern times, fire use has often been a source of conflicts with state bureaucracies. Despite this, traditional fire management practices have rarely been examined from a perspective of fire behavior and fire effects, which hampers dialogue on management options. In order to analyze the rationale for fire use, its practical handling, and ecological effects in high-elevation ericaceous heathlands in Ethiopia, we used three different information sources: interviews with pastoralists, field observations of fires, and analysis of vegetation age structure at the landscape level. The interviews revealed three primary reasons for burning: increasing the grazing value, controlling a toxic caterpillar, and reducing predator attacks. Informants were well aware of critical factors governing fire behavior, such as slope, wind, vertical and horizontal fuel structure, and fuel moisture. Recent burns (1-4 years since fire were used as firebreaks to control the size of individual burns, which resulted in a mosaic of vegetation of different ages. The age structure indicated an average fire return interval of ~10 years. At these elevations (> 3500 m, the dry period is unreliable, with occasional rains. Of all observed fires, 83% were ignited during very high Fire Weather Index levels, reached during only 11% of all days of the year. Burning is illegal, but if this ban was respected, our data suggest that the Erica shrubs would grow out of reach of cattle within a few years only, creating a dense and continuous canopy. This would also create a risk of large high-intensity wildfires since the landscape is virtually devoid of natural fuel breaks. Under the present management regime, this heathland ecosystem should be quite resilient to degradation by fire due to a relatively slow fuel buildup (limiting fire intervals and an effective regrowth of Erica shoots

  8. Wildland fire in ecosystems: effects of fire on fauna

    Science.gov (United States)

    Jane Kapler Smith

    2000-01-01

    VOLUME 1: Fires affect animals mainly through effects on their habitat. Fires often cause short-term increases in wildlife foods that contribute to increases in populations of some animals. These increases are moderated by the animals' ability to thrive in the altered, often simplified, structure of the postfire environment. The extent of fire effects on animal...

  9. Incorporating anthropogenic influences into fire probability models: Effects of development and climate change on fire activity in California

    Science.gov (United States)

    Mann, M.; Moritz, M.; Batllori, E.; Waller, E.; Krawchuk, M.; Berck, P.

    2014-12-01

    The costly interactions between humans and natural fire regimes throughout California demonstrate the need to understand the uncertainties surrounding wildfire, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires. Models estimate an increase in fire occurrence between nine and fifty-three percent by the end of the century. Our goal is to assess the role of uncertainty in climate and anthropogenic influences on the state's fire regime from 2000-2050. We develop an empirical model that integrates novel information about the distribution and characteristics of future plant communities without assuming a particular distribution, and improve on previous efforts by integrating dynamic estimates of population density at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of the total fire count, and that further housing development will incite or suppress additional fires according to their intensity. We also find that the total area burned is likely to increase but at a slower than historical rate. Previous findings of substantially increased numbers of fires may be tied to the assumption of static fuel loadings, and the use of proxy variables not relevant to plant community distributions. We also find considerable agreement between GFDL and PCM model A2 runs, with decreasing fire counts expected only in areas of coastal influence below San Francisco and above Los Angeles. Due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid deserts of the inland south. The broad shifts of wildfire between California's climatic regions forecast in this study point to dramatic shifts in the pressures plant and human communities will face by midcentury. The information provided by this study reduces the

  10. Dynamical behaviour of the firing in coupled neuronal system

    International Nuclear Information System (INIS)

    Wei Wang; Perez, G.; Cerdeira, H.A.

    1993-03-01

    The time interval sequences and the spatio-temporal patterns of the firings of a coupled neuronal network are investigated in this paper. For a single neuron stimulated by an external stimulus I, the time interval sequences show a low frequency firing of bursts of spikes, and reversed period-doubling cascade to a high frequency repetitive firing state as the stimulus I is increased. For two neurons coupled to each other through the firing of the spikes, the complexity of the time interval sequences becomes simple as the coupling strength increases. A network with large numbers of neurons shows a complex spatio-temporal pattern structure. As the coupling strength increases, the numbers of phase locked neurons increase and the time interval diagram shows temporal chaos and a bifurcation in the space. The dynamical behaviour is also verified by the Lyapunov exponent. (author). 17 refs, 6 figs

  11. A Lean, Fast Mars Round-trip Mission Architecture: Using Current Technologies for a Human Mission in the 2030s

    Science.gov (United States)

    Bailey, Lora; Folta, David; Barbee, Brent W.; Vaughn, Frank; Kirchman, Frank; Englander, Jacob; Campbell, Bruce; Thronson, Harley; Lin, Tzu Yu

    2013-01-01

    We present a lean fast-transfer architecture concept for a first human mission to Mars that utilizes current technologies and two pivotal parameters: an end-to-end Mars mission duration of approximately one year, and a deep space habitat of approximately 50 metric tons. These parameters were formulated by a 2012 deep space habitat study conducted at the NASA Johnson Space Center (JSC) that focused on a subset of recognized high- engineering-risk factors that may otherwise limit space travel to destinations such as Mars or near-Earth asteroid (NEA)s. With these constraints, we model and promote Mars mission opportunities in the 2030s enabled by a combination of on-orbit staging, mission element pre-positioning, and unique round-trip trajectories identified by state-of-the-art astrodynamics algorithms.

  12. Inducing repetitive action potential firing in neurons via synthesized photoresponsive nanoscale cellular prostheses.

    Science.gov (United States)

    Lu, Siyuan; Madhukar, Anupam

    2013-02-01

    Recently we reported an analysis that examined the potential of synthesized photovoltaic functional abiotic nanosystems (PVFANs) to modulate membrane potential and activate action potential firing in neurons. Here we extend the analysis to delineate the requirements on the electronic energy levels and the attendant photophysical properties of the PVFANs to induce repetitive action potential under continuous light, a capability essential for the proposed potential application of PVFANs as retinal cellular prostheses to compensate for loss of photoreceptors. We find that repetitive action potential firing demands two basic characteristics in the electronic response of the PVFANs: an exponential dependence of the PVFAN excited state decay rate on the membrane potential and a three-state system such that, following photon absorption, the electron decay from the excited state to the ground state is via intermediate state(s) whose lifetime is comparable to the refractory time following an action potential. In this study, the potential of synthetic photovoltaic functional abiotic nanosystems (PVFANs) is examined under continuous light to modulate membrane potential and activate action potential firing in neurons with the proposed potential application of PVFANs as retinal cellular prostheses. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Fostering Application Opportunites for the NASA Soil Moisture Active Passive (SMAP) Mission

    Science.gov (United States)

    Moran, M. Susan; O'Neill, Peggy E.; Entekhabi, Dara; Njoku, Eni G.; Kellogg, Kent H.

    2010-01-01

    The NASA Soil Moisture Active Passive (SMAP) Mission will provide global observations of soil moisture and freeze/thaw state from space. We outline how priority applications contributed to the SMAP mission measurement requirements and how the SMAP mission plans to foster applications and applied science.

  14. Crown Fire Potential

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Crown fire potential was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The...

  15. Instrumentation for mine safety: fire and smoke problems and solutions

    International Nuclear Information System (INIS)

    Stevens, R.B.

    1982-01-01

    Underground fires continue to be one of the most serious hazards to life and property in the mining industry. Although underground mines are analogous to high-rise buildings where persons are isolated from immediate escape or rescue, application of technology to locate and control fire hazards while still in their controllable state is slow to be implemented in underground mines. This paper describes several USBM (Bureau of Mines) safety programs which included in-mine testing with mine fire and smoke sensors, telemetry and instrumentation to develop recommendations for improving mine fire safety. It is hoped that the technology developed during these programs can be added to other programs to provide the mining industry with the necessary fire safety facts. By recognizing fire potentials and being provided with cost-effective, proven components that will perform reliably under the poor environmental conditions of mining, mine operators can provide protection for their working life and property equal to that which they provide for themselves and their families at home. The basis of this report is two USBM programs for fire protection in metal and nonmetal mines and one coal program. The data was collected beginning in May 1974 and continuing through the present with underground tests of a South African fire system installed at Magma Mine in Superior, Arizona, and a computer-assisted, experimental system at Peabody Coal Mine in Pawnee, Illinois

  16. Development of fire PRA methodologies for the analysis of typical Italian NPP designs

    International Nuclear Information System (INIS)

    Silvestri, E.; Dore, B.; Ferro, G.; Apostolakis, G.

    1987-01-01

    To compute fire induced Core Melt probability, the results of hazard and propagation analyses were combined with the Core Melt frequency computed for the initiating event and the support state as determined by the fire considered. From the PRA for internal event, the average value of this frequency was found 2.5x10 -3 event/year. Using the average fire frequency the resulting fire induced Core Melt frequency is 1.4x10 -8 event/year. Although high separation of safety systems is required in Italian PWR plants, the frequency of fire induced Core Melt can reach values not negligible with respect to Italian safety standards. For this reason, fire PRA studies for the entire plant are considered necessary and should be performed with appropriate modifications of the methods used for the American plants in order to be able to estimate lower fire induced Core Melt frequencies. (orig./HP)

  17. Operating room fire prevention: creating an electrosurgical unit fire safety device.

    Science.gov (United States)

    Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J

    2014-08-01

    To reduce the incidence of surgical fires. Operating room fires represent a potentially life-threatening hazard and are triggered by the electrosurgical unit (ESU) pencil. Carbon dioxide is a fire suppressant and is a routinely used medical gas. We hypothesize that a shroud of protective carbon dioxide covering the tip of the ESU pencil displaces oxygen, thereby preventing fire ignition. Using 3-dimensional modeling techniques, a polymer sleeve was created and attached to an ESU pencil. This sleeve was connected to a carbon dioxide source and directed the gas through multiple precisely angled ports, generating a cone of fire-suppressive carbon dioxide surrounding the active pencil tip. This device was evaluated in a flammability test chamber containing 21%, 50%, and 100% oxygen with sustained ESU activation. The sleeve was tested with and without carbon dioxide (control) until a fuel was ignited or 30 seconds elapsed. Time to ignition was measured by high-speed videography. Fires were ignited with each control trial (15/15 trials). The control group median ± SD ignition time in 21% oxygen was 3.0 ± 2.4 seconds, in 50% oxygen was 0.1 ± 1.8 seconds, and in 100% oxygen was 0.03 ± 0.1 seconds. No fire was observed when the fire safety device was used in all concentrations of oxygen (0/15 trials; P fire ignition was 76% to 100%. A sleeve creating a cone of protective carbon dioxide gas enshrouding the sparks from an ESU pencil effectively prevents fire in a high-flammability model. Clinical application of this device may reduce the incidence of operating room fires.

  18. Active Fire Mapping Program

    Science.gov (United States)

    Active Fire Mapping Program Current Large Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS Data Fire Data in Google Earth ...

  19. Cost and Operational Effectiveness Analysis of Aiternative Force Structures for Fulfillment of the United States Marine Corps Operational Support Airlift and Search and Rescue Missions

    National Research Council Canada - National Science Library

    Chase, Eric

    2000-01-01

    This thesis provides a preliminary cost and operational effectiveness analysis of alternative force structures for the United States Marine Corps operational support airlift and search and rescue missions...

  20. Noise in attractor networks in the brain produced by graded firing rate representations.

    Directory of Open Access Journals (Sweden)

    Tristan J Webb

    Full Text Available Representations in the cortex are often distributed with graded firing rates in the neuronal populations. The firing rate probability distribution of each neuron to a set of stimuli is often exponential or gamma. In processes in the brain, such as decision-making, that are influenced by the noise produced by the close to random spike timings of each neuron for a given mean rate, the noise with this graded type of representation may be larger than with the binary firing rate distribution that is usually investigated. In integrate-and-fire simulations of an attractor decision-making network, we show that the noise is indeed greater for a given sparseness of the representation for graded, exponential, than for binary firing rate distributions. The greater noise was measured by faster escaping times from the spontaneous firing rate state when the decision cues are applied, and this corresponds to faster decision or reaction times. The greater noise was also evident as less stability of the spontaneous firing state before the decision cues are applied. The implication is that spiking-related noise will continue to be a factor that influences processes such as decision-making, signal detection, short-term memory, and memory recall even with the quite large networks found in the cerebral cortex. In these networks there are several thousand recurrent collateral synapses onto each neuron. The greater noise with graded firing rate distributions has the advantage that it can increase the speed of operation of cortical circuitry.