WorldWideScience

Sample records for state-of-the-art-dehumidification cost-effective corrosion

  1. Practical use of solar heating-dehumidification dry kiln

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yoshinori

    1988-06-01

    In order to decrease the energy cost for drying, a solar-dehumidification dry kiln which used the dehumidification dry process together with the solar thermal drier was developed and tested. In the daytime the drying temperature rose up to 60/sup 0/C in summer and 40/sup 0/C in winter, and it was kept higher by 15 to 20/sup 0/C than the outside temperature at night. Owing to the adoption of the combination of direct solar heating and exhausting highly humid air, it was not necessary to operate the dry kiln in the day time. Average electrical energy consumption which was consumed to 15% moisture content from the raw lumber was about 73kWh/m/sup 3/ in summer which was lowest, about 87kWh/m/sup 3/ in winter. Energy cost required for the solar dehumidification dry kiln is 1/2 to 2/3 of that of the conventional dehumidification dry kiln. The solar-dehumidification dry kiln has a merit of cheaper operating cost in the low energy cost and reduced drying time. (7 figs, 1 tab, 6 refs)

  2. Effect of hygroscopic materials on water vapor permeation and dehumidification performance of poly(vinyl alcohol) membranes

    KAUST Repository

    Bui, T. D.

    2017-01-16

    In this study, two hygroscopic materials, inorganic lithium chloride (LiCl) and organic triethylene glycol (TEG) were separately added to poly(vinyl alcohol) (PVA) to form blend membranes for air dehumidification. Water vapor permeation, dehumidification performance and long-term durability of the membranes were studied systematically. Membrane hydrophilicity and water vapor sorbability increased significantly with higher the hygroscopic material contents. Water vapor permeance of the membranes increased with both added hygroscopic material and absorbed water. Water permeation energy varied from positive to negative with higher hygroscopic content. This observation is attributed to a lower diffusion energy and a relatively constant sorption energy when hygroscopic content increases. Comparatively, PVA/TEG has less corrosive problems and is more environmentally friendly than PVA/LiCl. A membrane with PVA/TEG is observed to be highly durable and is suitable for dehumidification applications.

  3. Corrosion control for low-cost reliability

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This conference was held September 19-24, 1993 in Houston, Texas to provide a forum for exchange of state-of-the-art information on corrosion. Topics of interest focus on the following: atmospheric corrosion; chemical process industry corrosion; high temperature corrosion; and corrosion of plant materials. Individual papers have been processed separately for inclusion in the appropriate data bases

  4. Energy Demand Comparison between Hollow Fiber Membrane Based Dehumidification and Evaporative Cooling Dehumidification Using TRNSYS

    Directory of Open Access Journals (Sweden)

    Jeachul Jang

    2018-05-01

    Full Text Available This communication presents the performance evaluation and comparative study between two different techniques: a membrane-based dehumidification system (MDS and evaporative cooling dehumidification (ECD for a typical climate of South Korea. Although there are different ways to dehumidify the air in living and work spaces, the membrane-based dehumidification system (MDS is the most effective way as it neither causes a change in the temperature nor harms the environment. Moreover, it consumes significantly less energy when compared to other methods. There are also limitations concerning products that are sensitive to temperature such as food and pharmaceutical products; the method of evaporative cooling dehumidification is not suitable for such applications. The present work demonstrated the excellent energy-saving performance of the membrane-based dehumidification system against evaporative cooling dehumidification by comparing the performance of these two systems during the rainy season using a transient system simulation. The results showed that the MDS helped to reduce the dehumidification load by more than 47.6% when compared to the ECD system, which is a significant achievement in this regard.

  5. Air dehumidification and drying processes

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, R.

    1988-07-01

    Details are given on the physical principles of air dehumidification and drying as well as on appropriate systems available on the market. Reference is made to dehumidification through condensation (intermittent compressor or electric auxiliary heater defrosting, reversible-circuit hot gas bypass defrosting), air drying through sorption (sorbents, regeneration through heat inputs), the operation of absorptive dryers (schematic sketches), and the change of state of air (Mollier h,x-diagramm). Practical examples refer to the dehumidification of storage rooms, archives, and waterworks as well as to air drying in the pharmaceutical industry, the pastry and candy industry, the food industry, and the drying (preservation) of turbines and generators during long standstill periods. A diagramm shows that while adsorption processes are efficient at temperatures below 80/sup 0/C, low-temperature dehumidification is efficient at temperatures above. (HWJ).

  6. Triple-bore hollow fiber membrane contactor for liquid desiccant based air dehumidification

    KAUST Repository

    Bettahalli Narasimha, Murthy Srivatsa

    2016-04-26

    Dehumidification is responsible for a large part of the energy consumption in cooling systems in high humidity environments worldwide. Improving efficiency is therefore essential. Liquid desiccants offer a promising solution for dehumidification, as desired levels of humidity removal could be easily regulated. The use of membrane contactors in combination with liquid desiccant is attractive for dehumidification because they prevent direct contact between the humid air and the desiccant, removing both the potential for desiccant carryover to the air and the potential for contamination of the liquid desiccant by dust and other airborne materials, as well as minimizing corrosion. However, the expected additional mass transport barrier of the membrane surface can lower the expected desiccation rate per unit of desiccant surface area. In this context, hollow fiber membranes present an attractive option for membrane liquid desiccant contactors because of their high surface area per unit volume. We demonstrate in this work the performance of polyvinylidene fluoride (PVDF) based triple-bore hollow fiber membranes as liquid desiccant contactors, which are permeable to water vapor but impermeable to liquid water, for dehumidification of hot and humid air.

  7. Performance and cost assessment of solar driven humidification dehumidification desalination system

    International Nuclear Information System (INIS)

    Zubair, M. Ifras; Al-Sulaiman, Fahad A.; Antar, M.A.; Al-Dini, Salem A.; Ibrahim, Nasiru I.

    2017-01-01

    Highlights: • Optimization of a new HDH system integrated solar evacuated tubes collectors was conducted. • The mathematical models developed for the collector and the HDH system were validated. • A multi-location analysis was then performed for six locations in Saudi Arabia. • Sharurah was found to have the highest annual output and Dhahran the lowest at 19,445 and 16,430 L. • The cost per liter of water produced varies from $0.032 to $0.038, depends on the location. - Abstract: A humidification-dehumidification (HDH) desalination system integrated with solar evacuated tubes was optimized. Then, the optimized system was assessed for the operation in different geographical locations, and the rate of freshwater production and cost per liter were determined in each location. The system design proposed in this paper uses a heat pipe design evacuated tube collector, which performs significantly better based on cost. An HDH desalination system with a closed-air/open-water loop, connected to the collector, was evaluated to determine the optimum operating parameters and the system performance during daytime (from 8 am to 3 pm), as well as the average day of each month for an entire year. The impact of the effectiveness of the humidifier and the dehumidifier, as well as, the number of collectors, were also studied. The analyses were performed for Dhahran, Jeddah, Riyadh, Sharurah, Qassim, and Tabuk to determine the effects of varying the geographical location. Sharurah has the highest calculated productivity of freshwater and Dhahran has the lowest at 19,445 and 16,430 L, respectively. To have a comprehensive study of the system proposed, a cost analysis was also performed to determine the feasibility of the system and the cost of water production. Results show that the price varied from $0.032 to $0.038 per liter for the locations evaluated.

  8. Investigation on a two-stage solar liquid-desiccant (LiBr) dehumidification system assisted by CaCl2 solution

    International Nuclear Information System (INIS)

    Xiong, Z.Q.; Dai, Y.J.; Wang, R.Z.

    2009-01-01

    A two-stage solar powered liquid-desiccant dehumidification system, for which two kinds of desiccant solution (lithium chloride and calcium bromide) are fed to the two dehumidification stages separately, has been studied. In the studied system air moisture (latent) load is separately removed by a pre-dehumidifier using cheap calcium chloride (CaCl 2 ) and a main dehumidifier using stable lithium bromide (LiBr). Side-effect of mixing heat rejected during dehumidification process is considerably alleviated by an indirect evaporative cooling unit added between the two dehumidification stages. The feasibility of high-desiccant concentration difference achieved by reusing desiccant solution to dehumidify air and regenerating desiccant repeatedly is analyzed. By increasing desiccant concentration difference, desiccant storage capacity is effectively explored. It is found that the pre-dehumidification effect of CaCl 2 solution is significant in high ambient humidity condition. Also seen is that the desiccant investment can be decreased by 53%, though the cost of equipments is somewhat increased, and the Tcop and COP of the proposed system can reach 0.97 and 2.13, respectively

  9. Energy performance of an innovative liquid desiccant dehumidification system with a counter-flow heat and mass exchanger using potassium formate

    DEFF Research Database (Denmark)

    Jradi, Muhyiddine; Riffat, Saffa

    2014-01-01

    An innovative micro-scale liquid desiccant dehumidification system is numerically investigated. The liquid desiccant dehumidification unit employs a counter-flow low-cost and efficient heat and mass exchange core, improving the thermal performance and eliminating desiccant carryover...... that the dehumidifier effectiveness is directly proportional to the intake air temperature, intake air relative humidity and liquid desiccant flow rate where the effectiveness is inversely proportional to the intake air velocity and the heat exchanger air channel height....

  10. EVALUATION OF CORROSION COST OF CRUDE OIL PROCESSING INDUSTRY

    Directory of Open Access Journals (Sweden)

    ADESANYA A.O.

    2012-08-01

    Full Text Available Crude oil production industry as the hub of Nigeria Economy is not immune to the global financial meltdown being experienced world over which have resulted in a continual fall of oil price. This has necessitated the need to reduce cost of production. One of the major costs of production is corrosion cost, hence, its evaluation. This research work outlined the basic principles of corrosion prevention, monitoring and inspection and attempted to describe ways in which these measures may be adopted in the context of oil production. A wide range of facilities are used in crude oil production making it difficult to evaluate precisely the extent of corrosion and its cost implication. In this study, cost of corrosion per barrel was determined and the annualized value of corrosion cost was also determined using the principles of engineering economy and results analyzed using descriptive statistics. The results showed that among the corrosion prevention methods identified, the use of chemical treatment gave the highest cost contribution (81% of the total cost of prevention while coating added 19%. Cleaning pigging and cathodic protection gave no cost. The contribution of corrosion maintenance methods are 60% for repairs and 40% for replacement. Also among the corrosion monitoring and inspection identified, NDT gave the highest cost contribution of 41% of the total cost, followed by coating survey (34%. Cathodic protection survey and crude analysis gives the lowest cost contribution of 19% and 6% respectively. Corrosion control cost per barrel was found to be 77 cent/barrel. The significance of this cost was not much due to high price of crude oil in the international market. But the effect of corrosion in crude oil processing takes its toll on crude oil production (i.e. deferment.

  11. Air dehumidification by membrane with cold water for manned spacecraft environmental control

    Directory of Open Access Journals (Sweden)

    Shang Yonghong

    2017-01-01

    Full Text Available The traditional condensation dehumidification method requires additional gas-liquid separation and water recovery process in the manned spacecraft humidity control system, which would increase weight and complexity of systems. A new membrane dehumidification with cold water is proposed, which uses water vapor partial pressure difference to promote water vapor transmembrane mass transfer for dehumidification. The permeability of the membrane was measured and the experimental results agree well with the theoretical calculations. Based on the simulation of dehumidification process of cold water-membrane, the influence of module structure and working condition on dehumidification performance was analyzed, which provided reference for the design of membrane module construct. It can be seen from the simulation and experiments that the cold water-membrane dehumidification can effectively reduce the thermal load of the manned spacecraft.

  12. Cost management of IT beyond cost of ownership models : a state of the art overview of the Dutch financial services industry

    NARCIS (Netherlands)

    van Maanen, H.; Berghout, E.W.

    Controlling costs is an essential part of a value driven information technology (IT) management. This paper gives a state of the art overview of IT cost management practice. Both theoretical and an empirical approach are taken. The theoretical approach is based on both general accounting literature

  13. Dry air preservation and corrosion prevention using desiccant dehumidification

    International Nuclear Information System (INIS)

    Tykesson, M.; Ashworth, C.

    1991-01-01

    The preservation and longevity of power station plants is a significant problem, particularly in cold shut down situations for prolonged periods of time, and also in storage of parts prior to installation. Power station protection and equipment preservation using the desiccant method is not new. For many years dehumidification machinery has been employed as a barrier to moisture related degradation. The first rotary desiccant dehumidifiers were installed within the power plant industry in the mid 1960s. Many of these first installations remain in operation today. In order to understand the functioning of a desiccant unit as compared with other air handling systems, it is essential to understand the fundamentals of a psychrometric chart. This article will attempt to give the reader an understanding of the subject. (author)

  14. Modeling of Metal Structure Corrosion Damage: A State of the Art Report

    Directory of Open Access Journals (Sweden)

    Francesco Portioli

    2010-07-01

    Full Text Available The durability of metal structures is strongly influenced by damage due to atmospheric corrosion, whose control is a key aspect for design and maintenance of both new constructions and historical buildings. Nevertheless, only general provisions are given in European codes to prevent the effects of corrosion during the lifetime of metal structures. In particular, design guidelines such as Eurocode 3 do not provide models for the evaluation of corrosion depth that are able to predict the rate of thickness loss as a function of different influencing parameters. In this paper, the modeling approaches of atmospheric corrosion damage of metal structures, which are available in both ISO standards and the literature, are presented. A comparison among selected degradation models is shown in order to evaluate the possibility of developing a general approach to the evaluation of thickness loss due to corrosion.

  15. Solar Desalination by Humidification-Dehumidification of Air

    OpenAIRE

    Moumouh J.; Tahiri M.; Balli L.

    2018-01-01

    The importance of supplying potable water can hardly be overstressed. In many arid zones, coastal or inlands, seawater or brackish water desalination may be the only solution to the shortage of fresh water. The process based on humidification-dehumidification of air (HDH) principle mimic the natural water cycle. HDH technique has been subjected to many studies in recent years due to the low temperature, renewable energy use, simplicity, low cost installation and operation. An experimental tes...

  16. The effects of de-humidification and O{sub 2} direct injection in oxy-PC combustion

    Energy Technology Data Exchange (ETDEWEB)

    Choi, C.G.; Na, I.H.; Lee, J.W.; Chae, T.Y.; Yang, W. [Korea Insitute of Industrial Technology, Seoul (Korea, Republic of). Energy System R and D Dept.

    2013-07-01

    This study is aimed to derive effects of de-humidification and O{sub 2} direct injection in oxy-PC combustion system. Temperature distribution and flue gas composition were observed for various air and oxy-fuel conditions such as effect of various O{sub 2} concentration of total oxidant, O{sub 2} concentration of primary stream and O{sub 2} direct injection through 0-D heat and mass balance calculation and experiments in the oxy-PC combustion system of 0.3 MW scale in KITECH (Korea Institute of Industrial Technology). Flame attachment characteristic related to O{sub 2} direct injection was also observed experimentally. We found that FEGT (furnace exit gas temperature) of 100% de-humidification to oxidizer is lower than humidification condition; difference between two conditions is lower than 20 C in all cases. The efficiency changing of combustion was negligible in O{sub 2} direct injection. But O{sub 2} direct injection should be carefully designed to produce a stable flame.

  17. Dehumidification by dessiccant regenerated by natural gas at the Campeau ice rink in Gatineau; La deshumidification par dessiccant regenere par le gaz naturel a l'Arena Campeau de Gatineau

    Energy Technology Data Exchange (ETDEWEB)

    Lajoie, S.

    2003-03-01

    As air quality gains in importance, dehumidification by dessiccant represents an interesting technological solution, especially in ice rinks where bad air quality (carbon monoxide) is not unknown. Contrary to conventional technologies, dehumidification by dessiccant allows to maintain adequate levels of air quality and optimum humidity levels. Three major advantages are: improved user comfort, the building structure is protected from corrosion, and superior air quality levels are achieved. The document first provided the reader with a brief overview of conventional mechanical dehumidification systems before discussing dehumidification by natural gas dessiccant. A quick historical review of the Campeau ice rink in Gatineau, Quebec was provided, including results obtained. The article concluded by indicating that the technology offers interesting potential for ice rinks. Energy savings are made possible through the utilization of this technology, and improves revenues by stretching operations for longer periods. 1 tab., 1 fig.

  18. Comparison of dehumidification and heat and vent drying of hem-fir softwood

    Energy Technology Data Exchange (ETDEWEB)

    Mackay, J F.G.; Nielson, R W

    1988-03-01

    The objective of this project was to demonstrate the performance of dehumidifier kilns, compared to gas-fired, hot-air kilns in drying a commercial grade of softwood lumber. To accomplish this, drying tests were conducted with matched loads of lumber in a new test facility which was constructed to operate as a conventional heat and vent kiln or as a dehumidifier kiln. Comparisons were made of drying times, shrinkage and quality of dried product and total drying energy consumptions. Data from these tests were used in conjunction with capital, energy and other costs obtained from suppliers and operators of existing kilns to make economic comparisons between commercial-sized dehumidifier and heat and vent kilns. These comparisons were made on the basis of equivalent uniform annual costs. Dehumidification drying took about 20% longer and used about 50% of energy compared to heat and vent drying. Analysis of the test runs indicated that further improvements in the energy utilization efficiencies of dehumidifier kilns are feasible since one run indicated an energy consumption of only 36% of that in heat and vent drying. No differences in shrinkage or degrade were apparent. Economic comparisons for three sizes of kilns showed total drying costs by dehumidification to be less for a small-size kiln but more for medium- and large-size operations. Sensitivity analyses were performed to observe the effect of alternate energy prices, dehumidifier energy consumptions, dehumidifier drying times, building costs and degrade. 9 refs., 7 figs., 36 tabs.

  19. Corrosion Cost and Corrosion Map of Korea - Based on the Data from 2005 to 2010

    International Nuclear Information System (INIS)

    Kim, Y. S.; Lim, H. K.; Kim, J. J.; Hwang, W. S.; Park, Y. S.

    2011-01-01

    Corrosion of metallic materials occurs by the reaction with corrosive environment such as atmosphere, marine, soil, urban, high temperature etc. In general, reduction of thickness and cracking and degradation are resulted from corrosion. Corrosion in all industrial facilities and infrastructure causes large economic losses as well as a large number of accidents. Economic loss by corrosion has been reported to be nearly 1-6% of GNP or GDP. In order to reduce corrosion damage of industrial facilities, corrosion map as well as a systematic investigation of the loss of corrosion in each industrial sector is needed. The Corrosion Science Society of Korea in collaboration with 15 universities and institutes has started to survey on the cost of corrosion and corrosion map of Korea since 2005. This work presents the results of the survey on cost of corrosion by Uhlig, Hoar, and input-output methods, and the evaluation of atmospheric corrosion rate of carbon steel, weathering steel, galvanized steel, copper, and aluminum in Korea. The total corrosion cost was estimated in terms of the percentage of the GDP of industry sectors and the total GDP of Korea. According to the result of Input/output method, corrosion cost of Korea was calculated as 2.9% to GDP (2005). Time of wetness was shown to be categories 3 to 4 in all exposure areas. A definite seasonal difference was observed in Korea. In summer and fall, time of wetness was higher than in other seasons. Because of short exposure period (12 months), significant corrosion trends depending upon materials and exposure corrosion environments were not revealed even though increased mass loss and decreased corrosion rate by exposure time

  20. A hybrid desalination system using humidification-dehumidification and solar stills integrated with evacuated solar water heater

    International Nuclear Information System (INIS)

    Sharshir, S.W.; Peng, Guilong; Yang, Nuo; Eltawil, Mohamed A.; Ali, Mohamed Kamal Ahmed; Kabeel, A.E.

    2016-01-01

    Highlights: • Evacuated solar water heater integrated with humidification-dehumidification system. • Reuse of warm water drained from humidification-dehumidification to feed solar stills. • The thermal performance of hybrid system is increased by 50% and maximum yield is 63.3 kg/day. • The estimated price of the freshwater produced from the hybrid system is $0.034/L. - Abstract: This paper offers a hybrid solar desalination system comprising a humidification-dehumidification and four solar stills. The developed hybrid desalination system reuses the drain warm water from humidification-dehumidification to feed solar stills to stop the massive warm water loss during desalination. Reusing the drain warm water increases the gain output ratio of the system by 50% and also increased the efficiency of single solar still to about 90%. Furthermore, the production of a single solar still as a part of the hybrid system was more than that of the conventional one by approximately 200%. The daily water production of the conventional one, single solar still, four solar still, humidification- dehumidification and hybrid system were 3.2, 10.5, 42, 24.3 and 66.3 kg/day, respectively. Furthermore, the cost per unit liter of distillate from conventional one, humidification- dehumidification and hybrid system were around $0.049, $0.058 and $0.034, respectively.

  1. Exfoliation Corrosion and Pitting Corrosion and Their Role in Fatigue Predictive Modeling: State-of-the-Art Review

    Directory of Open Access Journals (Sweden)

    David W. Hoeppner

    2012-01-01

    Full Text Available Intergranular attack (IG and exfoliation corrosion (EC have a detrimental impact on the structural integrity of aircraft structures of all types. Understanding the mechanisms and methods for dealing with these processes and with corrosion in general has been and is critical to the safety of critical components of aircraft. Discussion of cases where IG attack and exfoliation caused issues in structural integrity in aircraft in operational fleets is presented herein along with a much more detailed presentation of the issues involved in dealing with corrosion of aircraft. Issues of corrosion and fatigue related to the structural integrity of aging aircraft are introduced herein. Mechanisms of pitting nucleation are discussed which include adsorption-induced, ion migration-penetration, and chemicomechanical film breakdown theories. In addition, pitting corrosion (PC fatigue models are presented as well as a critical assessment of their application to aircraft structures and materials. Finally environmental effects on short crack behavior of materials are discussed, and a compilation of definitions related to corrosion and fatigue are presented.

  2. Corrosion and protection in reinforced concrete : Pulse cathodic protection: an improved cost-effective alternative

    NARCIS (Netherlands)

    Koleva, D.A.

    2007-01-01

    Corrosion and protection in reinforced concrete. Pulse cathodic protection: an improved cost-effective alternative. The aim of the research project was to study the possibilities for establishing a new or improved electrochemical method for corrosion prevention/protection for reinforced concrete.

  3. Review of state-of-the-art of solar collector corrosion processes. Task 1 of solar collector studies for solar heating and cooling applications. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, J E; Diegle, R B

    1980-04-11

    The state-of-the-art of solar collector corrosion processes is reviewed, and Task 1 of a current research program on use of aqueous heat transfer fluids for solar heating and cooling is summarized. The review of available published literature has indicated that lack of quantitative information exists relative to collector corrosion at the present time, particularly for the higher temperature applications of solar heating and cooling compared to domestic water heating. Solar collector systems are reviewed from the corrosion/service life viewpoint, with emphasis on various applications, collector design, heat transfer fluids, and freeze protection methods. Available information (mostly qualitative) on collector corrosion technology is reviewed to indicate potential corrosion problem areas and corrosion prevention practices. Sources of limited quantitative data that are reviewed are current solar applications, research programs on collector corrosion, and pertinent experience in related applications of automotive cooling and non-solar heating and cooling. A data bank was developed to catalog corrosion information. Appendix A of this report is a bibliography of the data bank, with abstracts reproduced from presently available literature accessions (about 220). This report is presented as a descriptive summary of information that is contained in the data bank.

  4. HIV Treatment as Prevention: Modelling the Cost of Antiretroviral Treatment—State of the Art and Future Directions

    Science.gov (United States)

    Meyer-Rath, Gesine; Over, Mead

    2012-01-01

    Policy discussions about the feasibility of massively scaling up antiretroviral therapy (ART) to reduce HIV transmission and incidence hinge on accurately projecting the cost of such scale-up in comparison to the benefits from reduced HIV incidence and mortality. We review the available literature on modelled estimates of the cost of providing ART to different populations around the world, and suggest alternative methods of characterising cost when modelling several decades into the future. In past economic analyses of ART provision, costs were often assumed to vary by disease stage and treatment regimen, but for treatment as prevention, in particular, most analyses assume a uniform cost per patient. This approach disregards variables that can affect unit cost, such as differences in factor prices (i.e., the prices of supplies and services) and the scale and scope of operations (i.e., the sizes and types of facilities providing ART). We discuss several of these variables, and then present a worked example of a flexible cost function used to determine the effect of scale on the cost of a proposed scale-up of treatment as prevention in South Africa. Adjusting previously estimated costs of universal testing and treatment in South Africa for diseconomies of small scale, i.e., more patients being treated in smaller facilities, adds 42% to the expected future cost of the intervention. PMID:22802731

  5. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels.

    Science.gov (United States)

    Chan, Kai Wang; Tjong, Sie Chin

    2014-07-22

    Duplex stainless steels (DSSs) with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700-900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350-550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs.

  6. State of the Art on Cactus Additions in Alkaline Media as Corrosion Inhibitors

    Directory of Open Access Journals (Sweden)

    A. A. Torres-Acosta

    2012-01-01

    Full Text Available This research in progress includes results on the corrosion performance of reinforcing steel in alkaline media when two different dehydrated cacti (Opuntia ficus-indica—Nopal—and Aloe Vera were used as additions in pH 12.5 and 13.3 solutions and in concrete. The dehydrated cactus addition was mixed at different concentrations by either solution or cement mass (0.10%, 0.25%, 0.5%, 1.0%, and 2.0%. Half-cell potentials and LPR measurements were performed at different time periods to characterize the possible corrosion inhibiting effect of the cactus additions tested in such alkaline media. Results showed good corrosion inhibiting effect of dehydrated Nopal on reinforcing steel, in all tested solutions, when chloride ions are present. Aloe Vera did show also corrosion inhibiting improvements in some extent. The addition of such cactus led to an apparent formation of a denser and more packed oxide/hydroxide surface layer on the steel surface that decreased corrosion activity. This oxide/hydroxide layer growth was confirmed by microscopic evaluation of the metal surface layer performed at the end of the research program. The preliminary findings suggest that adding Nopal at concentrations between 1% and 2%, by mass, might be suitable for durability enhancing applications in alkaline media, especially in concrete structures.

  7. Feasibility and economic analysis of solid desiccant wheel used for dehumidification and preheating in blast furnace: A case study of steel plant, Nanjing, China

    International Nuclear Information System (INIS)

    Guan, Yipeng; Zhang, Yufeng; Sheng, Ying; Kong, Xiangrui; Du, Song

    2015-01-01

    To overcome the shortcomings of huge energy consumption from conventional dehumidification using lithium bromide adsorption refrigerating (LBARD) system, a novel desiccant wheel dehumidification and preheating (DWDP) system using two-stage desiccant wheel for blast furnace is brought forward. The DWDP system was designed for dehumidification and preheating in blast furnace of steel plant. It takes waste heat in the slag flushing water as desiccant regeneration and preheating energy. To validate the feasibility of the new DWDP system, experimental studies were conducted based on a steel plant in Nanjing, China. The experiment was designed to use DWDP system in humid outdoor climates e.g. summer seasons. The experimental results indicate that the moisture removal capacity of DWDP system can reach 8.7 g/kg which will lead to the improvement of steel production by 0.9% and the coal is saved of about 2100 tons per year. With the DWDP system, the energy consumed by cooling tower of slag flushing water can decrease 7.3%. All of these energy saved equates to 10.3 million CNY annually. A comparison of initial investment and operating cost between DWDP system and LBRAD system was then carried out. The results show that the initial investment and operating cost of DWDP system is 37% and 57% of present LBARD system, and the payback period is shortened 66%. - Highlights: • A novel two-stage desiccant wheel dehumidification system for blast furnace is proposed. • Average moisture removal of 8.7 g/kg is achieved and dehumidification efficiency is 47%. • Outlet humidity ratio is less than 10 g/kg that satisfies the requirement of blast air. • Waste heat in slag flushing water is utilized and 61.4 million kJ is saved annually. • The investment and operating cost is 37% and 57% of former dehumidification system

  8. Expanding ART for Treatment and Prevention of HIV in South Africa: Estimated Cost and Cost-Effectiveness 2011-2050

    Science.gov (United States)

    Granich, Reuben; Kahn, James G.; Bennett, Rod; Holmes, Charles B.; Garg, Navneet; Serenata, Celicia; Sabin, Miriam Lewis; Makhlouf-Obermeyer, Carla; De Filippo Mack, Christina; Williams, Phoebe; Jones, Louisa; Smyth, Caoimhe; Kutch, Kerry A.; Ying-Ru, Lo; Vitoria, Marco; Souteyrand, Yves; Crowley, Siobhan; Korenromp, Eline L.; Williams, Brian G.

    2012-01-01

    Background Antiretroviral Treatment (ART) significantly reduces HIV transmission. We conducted a cost-effectiveness analysis of the impact of expanded ART in South Africa. Methods We model a best case scenario of 90% annual HIV testing coverage in adults 15–49 years old and four ART eligibility scenarios: CD4 count ART costs reflect South African data and international generic prices. ART reduces transmission by 92%. We conducted sensitivity analyses. Results Expanding ART to CD4 count ART and monitoring costs, all CD4 levels saves $0.6 billion versus current; other ART scenarios cost $9–194 per DALY averted. If ART reduces transmission by 99%, savings from all CD4 levels reach $17.5 billion. Sensitivity analyses suggest that poor retention and predominant acute phase transmission reduce DALYs averted by 26% and savings by 7%. Conclusion Increasing the provision of ART to ART uptake, retention, and adherence should be evaluated. PMID:22348000

  9. Review of Desiccant Dehumidification Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A. A.

    1994-10-01

    This paper overviews applications of desiccant technology for dehumidifying commercial and institutional buildings. Because of various market, policy, and regulatory factors, this technology is especially attractive for dehumidification applications in the I990s.

  10. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels

    Directory of Open Access Journals (Sweden)

    Kai Wang Chan

    2014-07-01

    Full Text Available Duplex stainless steels (DSSs with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700–900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350–550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs.

  11. Laser Beam Machining (LBM), State of the Art and New Opportunities

    NARCIS (Netherlands)

    Meijer, J.

    2004-01-01

    An overview is given of the state of the art of laser beam machining in general with special emphasis on applications of short and ultrashort lasers. In laser welding the trend is to apply optical sensors for process control. Laser surface treatment is mostly used to apply corrosion and wear

  12. Procedures for Calculating Residential Dehumidification Loads

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    Residential building codes and voluntary labeling programs are continually increasing the energy efficiency requirements of residential buildings. Improving a building's thermal enclosure and installing energy-efficient appliances and lighting can result in significant reductions in sensible cooling loads leading to smaller air conditioners and shorter cooling seasons. However due to fresh air ventilation requirements and internal gains, latent cooling loads are not reduced by the same proportion. Thus, it's becoming more challenging for conventional cooling equipment to control indoor humidity at part-load cooling conditions and using conventional cooling equipment in a non-conventional building poses the potential risk of high indoor humidity. The objective of this project was to investigate the impact the chosen design condition has on the calculated part-load cooling moisture load, and compare calculated moisture loads and the required dehumidification capacity to whole-building simulations. Procedures for sizing whole-house supplemental dehumidification equipment have yet to be formalized; however minor modifications to current Air-Conditioner Contractors of America (ACCA) Manual J load calculation procedures are appropriate for calculating residential part-load cooling moisture loads. Though ASHRAE 1% DP design conditions are commonly used to determine the dehumidification requirements for commercial buildings, an appropriate DP design condition for residential buildings has not been investigated. Two methods for sizing supplemental dehumidification equipment were developed and tested. The first method closely followed Manual J cooling load calculations; whereas the second method made more conservative assumptions impacting both sensible and latent loads.

  13. The Cost Analysis of Corrosion Protection Solutions for Steel Components in Terms of the Object Life Cycle Cost

    Directory of Open Access Journals (Sweden)

    Kowalski Dariusz

    2017-09-01

    Full Text Available Steel materials, due to their numerous advantages - high availability, easiness of processing and possibility of almost any shaping are commonly applied in construction for carrying out basic carrier systems and auxiliary structures. However, the major disadvantage of this material is its high corrosion susceptibility, which depends strictly on the local conditions of the facility and the applied type of corrosion protection system. The paper presents an analysis of life cycle costs of structures installed on bridges used in the road lane conditions. Three anti-corrosion protection systems were considered, analyzing their essential cost components. The possibility of reducing significantly the costs associated with anti-corrosion protection at the stage of steel barriers maintenance over a period of 30 years has been indicated. The possibility of using a new approach based on the life cycle cost estimation in the anti-corrosion protection of steel elements is presented. The relationship between the method of steel barrier protection, the scope of repair, renewal work and costs is shown. The article proposes an optimal solution which, while reducing the cost of maintenance of road infrastructure components in the area of corrosion protection, allows to maintain certain safety standards for steel barriers that are installed on the bridge.

  14. The Cost Analysis of Corrosion Protection Solutions for Steel Components in Terms of the Object Life Cycle Cost

    Science.gov (United States)

    Kowalski, Dariusz; Grzyl, Beata; Kristowski, Adam

    2017-09-01

    Steel materials, due to their numerous advantages - high availability, easiness of processing and possibility of almost any shaping are commonly applied in construction for carrying out basic carrier systems and auxiliary structures. However, the major disadvantage of this material is its high corrosion susceptibility, which depends strictly on the local conditions of the facility and the applied type of corrosion protection system. The paper presents an analysis of life cycle costs of structures installed on bridges used in the road lane conditions. Three anti-corrosion protection systems were considered, analyzing their essential cost components. The possibility of reducing significantly the costs associated with anti-corrosion protection at the stage of steel barriers maintenance over a period of 30 years has been indicated. The possibility of using a new approach based on the life cycle cost estimation in the anti-corrosion protection of steel elements is presented. The relationship between the method of steel barrier protection, the scope of repair, renewal work and costs is shown. The article proposes an optimal solution which, while reducing the cost of maintenance of road infrastructure components in the area of corrosion protection, allows to maintain certain safety standards for steel barriers that are installed on the bridge.

  15. A state of the art on primary side stress corrosion cracking in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. P.; Kim, J. S.; Han, J. H.; Lee, D. H.; Lim, Y. S.; Suh, J. H.; Hwang, S. S.; Hur, D. H

    1999-09-01

    A state of art on primary water stress corrosion cracking (PWSCC) of alloy 600 used as steam generator tubing of nuclear power plant and remedial action on the PWSCC were reviewed and analyzed. One of the major metallurgical factors which have effect on PWSCC is Cr carbide distribution. A semicontinuous intergranular Cr carbide distribution enhance PWSCC of alloy 600. PWSCC rate is reported to be reported to be proportional to exp(-50 cal/RT) {sigma}{sup 4}. PWSCC rate also increase with increase in hydrogen partial pressure from 0 to 150 ppm and then decreased with further increase in hydrogen partial pressure to 757 ppm. Development of PWSCC prediction technology which takes into account tubing material, fabrication process and operating history of steam generator is needed to manage PWSCC of domestic nuclear power plant. PWSCC has mainly occurred at expansion irregularities within tubesheet, expansion transitions, dented tube support plate intersections and transition and apex of U bend. Remedial actions to PWSCC are sleeving, plugging, temperature reduction, Ni plating, Ni sleeving, shot peening and steam generator replacement in worst case. Option to remedial actions depend on plant specific such as plant age, leak rate from primary to secondary, density and progression of PWSCC. Ni sleeving developed in Framatome seems to be a powerful method because it never subject to PWSCC. Remedial action should be developed and evaluated for possible PWSCC of domestic nuclear power plant. (author)

  16. Research and development needs for desiccant cooling technology 1992--1997. (Supplement to the NREL report, Desiccant Cooling: State-of-the-Art Assessment)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A A

    1992-12-01

    This report is a supplement to Desiccant Cooling: State-of-the-Art Assessment (NREL/TP-254-4147, DE93000013). In this supplement document we have described a detailed program assuming sufficient funding to implement the R&D activities needed. Desiccant dehumidification is a mature technology for industrial applications, and in recent years the technology has been used for air conditioning a number of institutional and commercial buildings. Our proposal is based on argumentative discussions at various national meetings with leaders of the technology. The goal is the penetration of the broad air conditioning market. This work is funded by the Buildings technology Office of the US Department of Energy.

  17. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    Science.gov (United States)

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-11-16

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  18. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Baiwang Zhao

    2015-11-01

    Full Text Available In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  19. New simulators from old - achieving state-of-the-art simulation without state-of-the-art costs

    International Nuclear Information System (INIS)

    Heilmeier, H.J.; Rosser, R.M.; Fyffe, K.L.; Gaerttner, G.F.; Chulick, E.T.

    1990-01-01

    Achieving a state-of-the-art simulator for operator training requires neither the expensive remodeling of old simulators nor the acquisition of very expensive new machines. In this paper the authors present two distinct cases where older training simulators have been upgraded to meet training requirements with a minimum of inexpensive hardware additions, including plug-in/-out panels, and software changes

  20. Experimental study of a cascade solar still coupled with a humidification–dehumidification system

    International Nuclear Information System (INIS)

    Farshchi Tabrizi, Farshad; Khosravi, Meisam; Shirzaei Sani, Iman

    2016-01-01

    Graphical abstract: In this study, coupling of a cascade solar still with a humidification–dehumidification system investigated experimentally. In addition, the effects of different operating conditions and configurations on thermal performance and productivity of the under investigation solar system were studied. - Highlights: • We investigate coupling of a cascade solar still with a humidification–dehumidification system. • The effects of different operating conditions on thermal performance were studied. • Temperature and flow rate of feed water as well as air process flow rate had undeniable effects on the productivity. • Coupling several CSS systems with just one HD system to maximize the productivity. • Enhancing daily productivity of coupling system from 28% to 141% for 40–150 ml/min flow rates, respectively. - Abstract: In this study, coupling of a cascade solar still with a humidification–dehumidification system was investigated experimentally under the climatological conditions of Zahedan (Latitude: 29.49, Longitude: 60.87), Iran. The inclined solar stills produce distillated and hot water simultaneously. In addition, the effects of different operating conditions and configurations on thermal performance and productivity of the solar system were studied. The effect of feed water and air flow rates on the daily productivity of HD system in different conditions such as feed water temperature has been investigated. The daily productivity of cascade solar still with and without HD system at different flow rates is investigated. Moreover, the end result of assembling the HD system with a cascade solar still was studied. The daily productivity of the system increases from 28% to 141% in the presence of humidification–dehumidification system. It also improves the thermal efficiency from 9% to 20% after using 40–150 ml/min of flow rate, respectively. The maximum productivity and efficiency were 5.4 kg/m"2 day and 39% for minimum flow rate.

  1. Composite tube cracking in kraft recovery boilers: A state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Singbeil, D.L.; Prescott, R. [Pulp and Paper Research Inst. of Canada, Vancouver, British Columbia (Canada); Keiser, J.R.; Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-07-01

    Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.

  2. The size effect in corrosion greatly influences the predicted life span of concrete infrastructures.

    Science.gov (United States)

    Angst, Ueli M; Elsener, Bernhard

    2017-08-01

    Forecasting the life of concrete infrastructures in corrosive environments presents a long-standing and socially relevant challenge in science and engineering. Chloride-induced corrosion of reinforcing steel in concrete is the main cause for premature degradation of concrete infrastructures worldwide. Since the middle of the past century, this challenge has been tackled by using a conceptual approach relying on a threshold chloride concentration for corrosion initiation ( C crit ). All state-of-the-art models for forecasting chloride-induced steel corrosion in concrete are based on this concept. We present an experiment that shows that C crit depends strongly on the exposed steel surface area. The smaller the tested specimen is, the higher and the more variable C crit becomes. This size effect in the ability of reinforced concrete to withstand corrosion can be explained by the local conditions at the steel-concrete interface, which exhibit pronounced spatial variability. The size effect has major implications for the future use of the common concept of C crit . It questions the applicability of laboratory results to engineering structures and the reproducibility of typically small-scale laboratory testing. Finally, we show that the weakest link theory is suitable to transform C crit from small to large dimensions, which lays the basis for taking the size effect into account in the science and engineering of forecasting the durability of infrastructures.

  3. Zirconia powders production by precipitation: state-of-art review

    International Nuclear Information System (INIS)

    Oliveira, Ana Paula Almeida de; Torem, Mauricio Leonardo

    1994-01-01

    The important role played by zirconia in advanced ceramics can be attributed to its excellent wear and corrosion resistance and refractory character. The polymorphic nature of zirconia made the controlled addition of stabilizing oxides or the constraining effect of a dense ceramics matrix necessary to maintain high parameters had a significant influence on powder properties and on compacted powder behaviour in sintering. Particle shape and size, purity and crystalline structure were specially influenced by precipitation parameters. Therefore, this work presented a review of the state of the art in zirconia powder production and in the recent research on precipitation of that powder. (author)

  4. Economical analysis of the spray drying process by pre-dehumidification of the inlet air

    Energy Technology Data Exchange (ETDEWEB)

    Madeira, A.N.; Camargo, J.R. [University of Taubate (UNITAU), SP (Brazil). Mechanical Engineering Dept.

    2009-07-01

    Spray drying is a dehumidification process by atomization in a closed chamber that aims to remove moisture of a product by heat and mass transfer from the product's contained water to the air that, in this process is previously heated. This paper presents a case study for an industry that produces food ingredients. The current process applied in the product to heat the air can uses one of these two systems: a direct heating process that burns liquid petroleum gas in contact with the inlet air or indirect heating that uses a heat exchanger which heat the air. This heating system consumes 90% of the total process energy. However, this inlet air can reach the dehumidifier with high moisture from the atmosphere condition requesting, in this case, more energy consumption according to the year's seasons. This paper promotes a utilization study of the current process through the installation of a pre-dehumidification device of the inlet air and shows a study to three different dehumidification systems that means by refrigeration, adsorption and actual comparing their performance in an energetic and economical point of view. The goals of this study are to analyze the capacity of moisture removing of each removing device, the influence of moisture variation of the inlet air in the process as well as the economic impact of each device in the global system. It concludes that the utilization of dehumidification devices can eliminate the heating system reducing this way the energy consumption. Moreover it promotes the increasing of moisture gradient between the inlet air and the product optimizing the drying process and increasing the global energy efficiency in the global system. Choosing the most appropriate system for the pre-dehumidification device depends on the desired initial and final moisture content of the product, but applying pre-dehumidifiers at the inlet air promotes an energetic optimization in the spray drying process. (author)

  5. Corrosion-product transport, oxidation state and remedial measures

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brett, M.E.; Tapping, R.L.

    1998-01-01

    The issues associated with monitoring and controlling corrosion-product transport (CPT) in the balance-of-plant (BOP) and steam generators (SG) of CANDU stations are briefly reviewed. The efforts are focused on minimizing corrosion of carbon steel, which is used extensively in the CANDU primary and secondary systems. Emphasis is placed on the corrosion-product oxidation state as a monitor of water chemistry effectiveness, and as a monitor of system corrosion effects. The discussion is based mostly on the results and observations from Ontario Hydro plants, and their comparisons with PWRs. The effects of low oxygen and elevated hydrazine chemistry are reviewed, as well as the effects of lay-up and various start-up conditions. Progress in monitoring electrochemical potential (ECP) at Ontario Hydro plants and its relationship to the oxidation state of corrosion products is reviewed. Observations on corrosion-product transport on the primary side of steam generators are also discussed. (author)

  6. Corrosion-product transport, oxidation state and remedial measures

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brett, M.E.; Tapping, R.L.

    1998-10-01

    The issues associated with monitoring and controlling corrosion-product transport (CPT) in the balance-of-plant (BOP) and steam generators (SG) of CANDU stations are briefly reviewed. Efforts are focused on minimizing corrosion of carbon steel, which is used extensively in the CANDU primary and secondary systems. Emphasis is placed on the corrosion-product oxidation state as a monitor of water chemistry effectiveness and as a monitor of system corrosion effects. The discussion is based mostly on the results of observations from Ontario Hydro plants, and their comparisons with pressurized-water reactors. The effects of low oxygen and elevated hydrazine chemistry are reviewed, as well as the effects of layup and various startup conditions. Progress in monitoring electrochemical potential (ECP) at Ontario Hydro plants and its relationship to the oxidation state of corrosion products is reviewed. Observations on CPT on the primary side of SGs are also discussed. (author)

  7. A comparative study of compression-expansion type dehumidification systems to achieve low dew point air

    International Nuclear Information System (INIS)

    Moon, Choon; Bansal, Pradeep

    2009-01-01

    This paper presents a theoretical feasibility study of three dehumidification systems to achieve air with dew points down to (-) 40 deg. C. The systems consist of compressors, heat exchangers, expanders and heaters. A thermodynamic model has been developed of the systems to study the effect of the compressor, expander, and heat recovery heat exchanger efficiency as a function of pressure ratio, net required work, quantity of condensed moisture, and system outlet dew point temperature. The analysis has revealed that the selection of a heat recovery heat exchanger is critical for an efficient dehumidification system, where compressor efficiency has the dominant effect on power consumption.

  8. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  9. Solid state dye-sensitized solar cells. Current state of the art. Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Lenzmann, F.O.; Olson, C.L.; Goris, M.J.A.A.; Kroon, J.M. [ECN Solar Energy, Petten (Netherlands)

    2008-09-15

    The first generation of dye-sensitized solar cell technology is based on a liquid electrolyte component. Today, this technology is on the verge of commercialization. The step towards the market and real applications is supported by the prospect of low manufacturing costs, good efficiency as well as the expectation that the current stability level of this technology is at least sufficient for applications in mobile electronics. These favorable developments may be reinforced and accelerated even further, if the corrosive liquid electrolyte could be replaced by a non-corrosive solid, since this would ease a number of stringent requirements in the production process. A successful exchange of the liquid electrolyte by a solid-state holeconductor requires to at least maintain, preferably improve, the most relevant technical parameters of the solar cell (efficiency, stability, cost). First pioneering work with solid-state hole conductors was carried out 10 years ago with an initial efficiency level below 1%. Until 2007, the record efficiency could be improved to 5%. This paper gives an overview of the solid-state concept as an early stage approach with good perspectives for the mid-term future (5-10 years)

  10. Material selection and corrosion control practices in petroleum production

    International Nuclear Information System (INIS)

    Tuttle, R.N.

    1980-01-01

    The intent of this paper is to review briefly the current state of the art and to discuss some of the anticipated future oil and gas drilling and production activities which may challenge the materials selection and corrosion technologies. The current state of art discussions in this paper have been augmented by providing a list of references so that interested engineers may delve into each subject in more detail as desired. The technological areas which appear to require additional input to meet future needs include high strength tubular goods for sour gas service, corrosion resistant high strength alloys, definition of the effects of pressure, temperature, and fluid composition on corrosion behavior, and fatigue properties of various steels in seawater

  11. Assessing Level and Effectiveness of Corrosion Education in the UAE

    Directory of Open Access Journals (Sweden)

    Hwee Ling Lim

    2012-01-01

    Full Text Available The consequences of corrosion can be minimized by an engineering workforce well trained in corrosion fundamentals and management. Since the United Arab Emirates incurs the second highest cost of corrosion after Saudi Arabia, this paper examined the quality of corrosion education in the UAE. Surveys with academia and industry respondents showed that dedicated corrosion courses and engineering courses that integrated corrosion into the curricula were available in UAE universities, but graduates had insufficient knowledge of corrosion engineering and superficial understanding of corrosion in real-life design contexts. The effectiveness of corrosion education is determined by both competence in corrosion knowledge/skills and availability of resources (faculty and research. Though most departments would not hire new corrosion-specialist faculty, department research efforts and industry partnerships in corrosion research were present. The paper concluded with recommendations for improving knowledge and skills of future engineers in corrosion and enhancing corrosion instruction to better meet industry needs.

  12. Study on bubble column humidification and dehumidification system for coal mine wastewater treatment.

    Science.gov (United States)

    Gao, Penghui; Zhang, Meng; Du, Yuji; Cheng, Bo; Zhang, Donghai

    2018-04-01

    Water is important resource for human survival and development. Coal mine wastewater (CMW) is a byproduct of the process of coal mining, which is about 7.0 × 10 10 m 3 in China in 2016. Considering coal mine wastewater includes different ingredients, a new bubble column humidification and dehumidification system is proposed for CMW treatment. The system is mainly composed of a bubble column humidification and dehumidification unit, solar collector, fan and water tank, in which air is used as a circulating medium. The system can avoid water treatment component blocking for reverse osmosis (RO) and multi effect distillation (MED) dealing with CMW, and produce water greenly. By analysis of heat and mass transfer, the effects of solar radiation, air bubble velocity and mine water temperature on water treatment production characteristics are studied. Compared with other methods, thermal energy consumption (TEC) of bubble column humidification and dehumidification (BCHD) is moderate, which is about 700 kJ/kg (powered by solar energy). The results would provide a new method for CMW treatment and insights into the efficient coal wastewater treatment, besides, it helps to identify the parameters for the technology development in mine water treatment.

  13. State of the art in protection of erosion-corrosion on vertical axis tidal current turbine

    Science.gov (United States)

    Musabikha, Siti; Utama, I. Ketut Aria Pria; Mukhtasor

    2018-05-01

    Vertical axis tidal current turbine is main part of ocean energy devices which converts the tidal current energy into electricity. Its development is arising too due to increased interest research topic concerning climate change mitigation. Due to its rotating movement, it will be induced mechanical forces, such as shear stress and/or particle impact. Because of its natural operations, vertical axis turbine is also being exposed to harsh and corroding marine environment itself. In order to secure the vertical tidal turbine devices from mechanical wear and corrosion effects which is lead to a material loss, an appropriate erosion-corrosion protection needs to be defined. Its protection actionscan be derived such as design factors, material selections, inhibitors usage, cathodic protections, and coatings. This paper aims to analyze protection method which is necessary to control erosion-corrosion phenomenon that appears to the vertical axis tidal current turbine.

  14. State-of-the-art review of OPG steam generator tubing degradation mechanisms

    International Nuclear Information System (INIS)

    Brennenstuhl, A.M.; Ramamurthy, S.; Good, G.M.

    2009-01-01

    Steam generator (SG) degradation has been a major cause of pressurized water reactor (PWR) incapability world-wide and has limited the useful life of SGs at some utilities. The vast majority of the degradation has been the result of SCC of the thin walled nickel alloy SG tubes and has been most prevalent in mill annealed (MA) Alloy 600. Fortunately, Ontario Power Generation (OPG) SG tubes are manufactured from alloys that have much better resistance to this form of localized corrosion than Alloy 600MA and as a consequence have not encountered SCC to date. Other forms of degradation nevertheless have been experienced; some units at Pickering - B in particular have had many Alloy 400 SG tubes removed from service due to severe underdeposit corrosion (UDC) and costly modifications have been made to Darlington SGs to prevent leaks as a result of SG tube fretting-wear at tube supports. Degradation other than UDC and fretting-wear which could pose a threat to the future reliable operation of OPG's nuclear fleet has also been observed. Important activities in effectively managing SG degradation include determining the mode of degradation and arriving at an understanding of the contributing factors. This is done by a combination of non-destructive examination (NDE) of SG tubing in-situ, SG tube removals for metallurgical examination and research and development. SG tube metallurgical examinations provide information that can be used in the timely development of a strategy dealing with the degradation in the short to intermediate timeframe. Determining the main causative factors at a mechanistic level helps to improve the predictive capability and increases the probability of dealing with the problem in the most cost-effective way. OPG has used this approach together with in-situ NDE inspections during planned outages of its nuclear reactors to minimize the possibility of unscheduled outages and provide the best possible fitness-for-service assessments. Many metallurgical

  15. Cost assessment of natural hazards in Europe - state-of-the-art, knowledge gaps and recommendations

    Science.gov (United States)

    Meyer, V.; Becker, N.; Markantonis, V.; Schwarze, R.; van den Bergh, J. C. J. M.; Bouwer, L. M.; Bubeck, P.; Ciavola, P.; Thieken, A. H.; Genovese, E.; Green, C.; Hallegatte, S.; Kreibich, H.; Lequeux, Q.; Viavattenne, C.; Logar, I.; Papyrakis, E.; Pfurtscheller, C.; Poussin, J.; Przyluski, V.

    2012-04-01

    Effective and efficient reduction of natural hazard risks requires a thorough understanding of the costs of natural hazards in order to develop sustainable risk management strategies. The current methods that assess the costs of different natural hazards employ a diversity of terminologies and approaches for different hazards and impacted sectors. This makes it difficult to arrive at robust, comprehensive and comparable cost figures. The CONHAZ (Costs of Natural Hazards) project aimed to compile and synthesise current knowledge on cost assessment methods in order to strengthen the role of cost assessments in the development of integrated natural hazard management and adaptation planning. In order to achieve this, CONHAZ has adopted a comprehensive approach, considering natural hazards ranging from droughts, floods and coastal hazards to Alpine hazards, as well as different impacted sectors and cost types. Its specific objectives have been 1) to compile the state-of-the-art methods for cost assessment; 2) to analyse and assess these methods in terms of technical aspects, as well as terminology, data quality and availability, and research gaps; and 3) to synthesise resulting knowledge into recommendations and to identify further research needs. This presentation summarises the main results of CONHAZ. CONHAZ differentiates between direct tangible damages, losses due to business interruption, indirect damages, intangible effects, and costs of risk mitigation. It is shown that the main focus of cost assessment methods and their application in practice is on direct costs, while existing methods for assessing intangible and indirect effects are rather rarely applied and methods for assessing indirect effects often cannot be used on the scale of interest (e.g. the regional scale). Furthermore, methods often focus on single sectors and/or hazards, and only very few are able to reflect several sectors or multiple hazards. Process understanding and its use in cost assessment

  16. Theoretical modelling and optimization of bubble column dehumidifier for a solar driven humidification-dehumidification system

    Science.gov (United States)

    Ranjitha, P. Raj; Ratheesh, R.; Jayakumar, J. S.; Balakrishnan, Shankar

    2018-02-01

    Availability and utilization of energy and water are the top most global challenges being faced by the new millennium. At the present state water scarcity has become a global as well as a regional challenge. 40 % of world population faces water shortage. Challenge of water scarcity can be tackled only with increase in water supply beyond what is obtained from hydrological cycle. This can be achieved either by desalinating the sea water or by reusing the waste water. High energy requirement need to be overcome for either of the two processes. Of many desalination technologies, humidification dehumidification (HDH) technology powered by solar energy is widely accepted for small scale production. Detailed optimization studies on system have the potential to effectively utilize the solar energy for brackish water desalination. Dehumidification technology, specifically, require further study because the dehumidifier effectiveness control the energetic performance of the entire HDH system. The reason attributes to the high resistance involved to diffuse dilute vapor through air in a dehumidifier. The present work intends to optimize the design of a bubble column dehumidifier for a solar energy driven desalination process. Optimization is carried out using Matlab simulation. Design process will identify the unique needs of a bubble column dehumidifier in HDH system.

  17. Materials Characterization Center state-of-the-art report on corrosion data pertaining to metallic barriers for nuclear-waste repositories

    International Nuclear Information System (INIS)

    Merz, M.D.

    1982-10-01

    A compilation of published corrosion data on metals that have been suggested as canisters and overpack materials is presented. The data were categorized according to the solutions used in testing and divided into two parts: high-ionic strength solutions (such as seawater and brine) and low-ionic-strength waters (such as basalt and tuff waters). This distinction was made primarily because of the general difference in aggressiveness of these solutions with respect to general corrosion. A considerable amount of data indicated that titanium alloys have acceptably low uniform corrosion rates in anticipated repository sites; the other possible corrosion failure modes for titanium alloys, such as stress corrosion cracking and delayed failure due to hydrogen, have not been sufficiently studied to make any similar conclusions about lifetime with respect to these particular degradation processes. Other data suggested that iron-base alloys are sufficiently resistant to corrosion in basalt and tuff waters, although the effects of radiation and radiation combined with elevated temperature have not been reported in enough detail to conclusively qualify iron-base alloys for any particular barrier thickness in regard to uniform corrosion rate. The effect of overpack size on corrosion rate has been given little attention. A review of long-term underground data indicated that temperature and accessibility to oxygen were too different for deep geologic repositories to make the underground corrosion data directly applicable. However, the characteristics of corrosion attack, statistical treatment of data, and kinetics of corrosion showed that corrosion proceeds in a systematic and predictable way

  18. First results of a coated heat exchanger for the use in dehumidification and cooling processes

    International Nuclear Information System (INIS)

    Munz, Gunther M.; Bongs, C.; Morgenstern, A.; Lehmann, S.; Kummer, H.; Henning, H.-M.; Henninger, Stefan K.

    2013-01-01

    In this work a novel solar driven dehumidification and cooling system is presented. The core components of this combined system are a sorptive dehumidification device based on high performance sorptive coatings and a novel evacuated tube solar air collector providing the driving heat. The essential part of the system is the coated heat exchanger. The chosen adsorbent is attached to the heat exchanger surface by a newly developed coating technique. Besides a brief description of the novel components and the experimental setup, the development of the aluminum heat exchanger, the coating procedure and scale up for geometries comparable to the heat exchanger in the dehumidification setup, as well as a first characterization of a small-sized coated heat exchanger regarding water uptake and dehumidification performance are presented. For estimating an overall system performance, a 2-dimensional thermodynamic model was applied, using the parameters in focus for the development of heat exchanger, coating and demonstration system. Highlights: • A novel developed technology is applied for sorptive coating of heat exchangers. • Upscaling to dimensions of 100 × 100 × 400 mm 3 was successful. • A small scale heat exchanger was coated and characterized showing good results. • Evaluation of adsorbents and simulation of system performance were carried out. • SAPO-34 gives best performance for driving temperatures of 100 °C and above

  19. Effects of air conditioning, dehumidification and natural ventilation on indoor concentrations of 222Rn and 220Rn

    International Nuclear Information System (INIS)

    Lee, Thomas K.C.; Yu, K.N.

    2000-01-01

    A bedroom was selected for detailed measurements on 220 Rn and 222 Rn concentrations and environmental parameters including CO 2 concentration, temperature and relative humidity. To simulate different sealing conditions, five conditions were artificially created in the sampling period of 25 consecutive days. It was concluded that natural ventilation is the most efficient way to lower the 222 Rn levels, while air conditioning is the next. Dehumidification provides only a marginal reduction of 222 Rn levels. The 220 Rn concentrations are not affected by natural ventilation, air conditioner or dehumidification, and were all around 10 Bq m -3 . There are no significant correlations between the 220 Rn and 222 Rn concentrations and environmental conditions such as CO 2 concentrations, temperature, relative humidity and pressure

  20. State of the art

    International Nuclear Information System (INIS)

    Lederman, L.M.

    1983-01-01

    There is a large body of experience in high luminosity data taking in fixed target research. We try to consider a wide variety of high rate experiments which were limited by the detector (not by available beam) to a preset number of collisions per second. We then attempt to translate these state-of-the-art experiments to effective collider experiments. To this end, we extend the chosen detector to a comparison 4π collider detector operating near 1 TeV. There are several issues: (1) effective solid angle must be translated to approx. = 4π, (2) environments may be quite different, e.g., beam dump near fixed target or beam halo muons vs. collider backgrounds, (3) the multiplicity varies over the experiments selected and (4) we have to treat open vs closed geometries. The large variety of experiments selected is designed to average over the causes for detector limitation. Finally we chose detectors which have produced physics in order to gauge the state of the art

  1. Life cycle impacts and costs of photovoltaic systems: Current state of the art and future outlooks

    International Nuclear Information System (INIS)

    Raugei, Marco; Frankl, Paolo

    2009-01-01

    The photovoltaic energy sector is rapidly expanding and technological specification for PV has improved dramatically in the last two decades. This paper sketches the current state of the art and drafts three alternative scenarios for the future, in terms of costs, market penetration and environmental performance. According to these scenarios, if economic incentives are supported long enough into the next ten to twenty years, PV looks set for a rosy future, and is likely to play a significant role in the future energy mix, while at the same time contributing to reduce the environmental impact of electricity supply. (author)

  2. Life cycle impacts and costs of photovoltaic systems: Current state of the art and future outlooks

    Energy Technology Data Exchange (ETDEWEB)

    Raugei, Marco [Environmental Management Research Group, Escola Superior de Commerc Internacional-Universitat Pompeu Fabra, Passeig Pujades 1, 08003 Barcelona (Spain); Frankl, Paolo [Renewable Energy Unit, International Energy Agency, Rue de la Federation 9, 75739 Paris Cedex 15 (France)

    2009-03-15

    The photovoltaic energy sector is rapidly expanding and technological specification for PV has improved dramatically in the last two decades. This paper sketches the current state of the art and drafts three alternative scenarios for the future, in terms of costs, market penetration and environmental performance. According to these scenarios, if economic incentives are supported long enough into the next ten to twenty years, PV looks set for a rosy future, and is likely to play a significant role in the future energy mix, while at the same time contributing to reduce the environmental impact of electricity supply. (author)

  3. State of the art of solid state dosimetry

    International Nuclear Information System (INIS)

    Souza, Susana O.; Yamamoto, Takayoshi; D'Errico, Francesco

    2014-01-01

    Passive solid-state detectors still dominate the personal dosimetry field. This article provides state of the art in this field and summarizes the most recent works presented on TL, OSL and RPL during the 17th International Conference on Solid State Dosimetry held in Recife in September 2013. The Article contains in particular the techniques Thermoluminescence (TL), Optically Stimulated Luminescence (OSL), radio photoluminescence (RPL). Thermoluminescence has the biggest advantage of the wide availability of commercial materials for dosimetry, and the nature tissue-equivalent of several of these materials. The limitation of the TL dosimetry presents fading luminance signal and the need for high temperatures to obtain the signal. The Optically Stimulated Luminescence has the advantages of high sensitivity, the possibility of multiple reading, while its limit is the need to use response compensating filters in addition to the high cost of equipment and dosimeters still restricted very few options trading . The radio photoluminescence has a reading that is completely non-destructive, but their dosimeters present lack of tissue-equivalent and a high cost. Presents the details of the techniques and the advantages and limitations of each of these will be discussed

  4. Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system

    International Nuclear Information System (INIS)

    Zhang, Ning; Yin, Shao-You; Zhang, Li-Zhi

    2016-01-01

    Graphical abstract: A heat pump driven, hollow fiber membrane-based two-stage liquid desiccant air dehumidification system. - Highlights: • A two-stage hollow fiber membrane based air dehumidification is proposed. • It is heat pump driven liquid desiccant system. • Performance is improved 20% upon single stage system. • The optimal first to second stage dehumidification area ratio is 1.4. - Abstract: A novel compression heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system is presented. The liquid desiccant droplets are prevented from crossing over into the process air by the semi-permeable membranes. The isoenthalpic processes are changed to quasi-isothermal processes by the two-stage dehumidification processes. The system is set up and a model is proposed for simulation. Heat and mass capacities in the system, including the membrane modules, the condenser, the evaporator and the heat exchangers are modeled in detail. The model is also validated experimentally. Compared with a single-stage dehumidification system, the two-stage system has a lower solution concentration exiting from the dehumidifier and a lower condensing temperature. Thus, a better thermodynamic system performance is realized and the COP can be increased by about 20% under the typical hot and humid conditions in Southern China. The allocations of heat and mass transfer areas in the system are also investigated. It is found that the optimal regeneration to dehumidification area ratio is 1.33. The optimal first to second stage dehumidification area ratio is 1.4; and the optimal first to second stage regeneration area ratio is 1.286.

  5. State-of-the-art in Heterogeneous Computing

    Directory of Open Access Journals (Sweden)

    Andre R. Brodtkorb

    2010-01-01

    Full Text Available Node level heterogeneous architectures have become attractive during the last decade for several reasons: compared to traditional symmetric CPUs, they offer high peak performance and are energy and/or cost efficient. With the increase of fine-grained parallelism in high-performance computing, as well as the introduction of parallelism in workstations, there is an acute need for a good overview and understanding of these architectures. We give an overview of the state-of-the-art in heterogeneous computing, focusing on three commonly found architectures: the Cell Broadband Engine Architecture, graphics processing units (GPUs, and field programmable gate arrays (FPGAs. We present a review of hardware, available software tools, and an overview of state-of-the-art techniques and algorithms. Furthermore, we present a qualitative and quantitative comparison of the architectures, and give our view on the future of heterogeneous computing.

  6. Microbiologically Influenced Corrosion (MIC) in the Oil and Gas Industry

    DEFF Research Database (Denmark)

    Skovhus, Torben Lund; Eckert, Rickard

    2015-01-01

    Microbiologically influenced corrosion (MIC) is a serious corrosion threat that impacts the operating integrity and reliability of assets in the oil and gas, maritime, power generation, and other industries. Yet MIC is also commonly misunderstood, leading to ineffective mitigation programs, wasted...... and implement improved mitigation strategies and thereby reduce operating risk. Our experts provide guidance in applying the latest state-of-the-art molecular microbiological methods (MMM) and industry standards to properly diagnose MIC in operating assets and on failed components. With this understanding, MIC...... can be effectively addressed as part of the overall Corrosion Management System (CMS)....

  7. Radiant floor cooling coupled with dehumidification systems in residential buildings: A simulation-based analysis

    International Nuclear Information System (INIS)

    Zarrella, Angelo; De Carli, Michele; Peretti, Clara

    2014-01-01

    Highlights: • The floor radiant cooling in a typical apartment is analyzed. • Dehumidification devices, fan-coil and mechanical ventilation are compared. • The results are analyzed in terms of both thermal comfort and energy consumption. • The energy consumption of the dehumidifiers is higher than that of other systems. • The mechanical ventilation decreases the moisture level better than other systems. - Abstract: The development of radiant cooling has stimulated an interest in new systems based on coupling ventilation with radiant cooling. However, radiant cooling systems may cause condensation to form on an active surface under warm and humid conditions during the cooling season. This phenomenon occurs when surface temperature falls below dew point. To prevent condensation, air humidity needs to be reduced with a dehumidification device or a mechanical ventilation system. There are two main options to achieve this. The first is to use dehumidification devices that reduce humidity, but are not coupled with ventilation, i.e. devices that handle room air and leave air change to infiltrations. The second is to combine a mechanical ventilation system with dehumidifying finned coils. This study analyzes the floor radiant cooling of a typical residential apartment within a multi-storey building in three Italian climate zones by means of a detailed simulation tool. Five systems were compared in terms of both indoor thermal comfort and energy consumption: radiant cooling without dehumidification; radiant cooling with a soft dehumidification device; radiant cooling with a dehumidification device which also supplies sensible cooling; radiant cooling coupled with fan coils; and radiant cooling with a mechanical ventilation system which dehumidifies and cools

  8. Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification-dehumidification

    International Nuclear Information System (INIS)

    Deniz, Emrah; Çınar, Serkan

    2016-01-01

    Highlights: • Possibility of suppling all energy consumption from solar energy was tested. • Air and water-heated humidification-dehumidification desalination system was proposed. • Energy, exergy, economic and environmental analysis were performed. • Productivity and performance of the desalination system was analyzed. • Various operational parameters were investigated. - Abstract: A novel humidification-dehumidification (HDH) solar desalination system is designed and tested with actual conditions and solar energy was used to provide both thermal and electrical energy. Energy-exergy analyses of the system are made and economic and enviro-economic properties are investigated using data obtained from experimental studies. In this way, economic and environmental impacts of the HDH solar desalination systems have also been determined. The maximum daily energy efficiency of the system was calculated as 31.54% and the maximum exergy efficiency was found as 1.87%. The maximum fresh water production rate is obtained as 1117.3 g/h. The estimated cost of fresh water produced through the designed HDH system is 0.0981 USD/L and enviro-economic parameter is 2.4041 USD/annum.

  9. A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: Modeling and experimental validation

    International Nuclear Information System (INIS)

    Zhang, Li-Zhi; Zhang, Ning

    2014-01-01

    A compression heat pump driven and membrane-based liquid desiccant air dehumidification system is presented. The dehumidifier and the regenerator are made of two hollow fiber membrane bundles packed in two shells. Water vapor can permeate through these membranes effectively, while the liquid desiccant droplets are prevented from cross-over. Simultaneous heating and cooling of the salt solution are realized with a heat pump system to improve energy efficiency. In this research, the system is built up and a complete modeling is performed for the system. Heat and mass transfer processes in the membrane modules, as well as in the evaporator, the condenser, and other key components are modeled in detail. The whole model is validated by experiment. The performances of SDP (specific dehumidification power), dehumidification efficiency, EER (energy efficiency ratio) of heat pump, and the COP (coefficient of performance) of the system are investigated numerically and experimentally. The results show that the model can predict the system accurately. The dehumidification capabilities and the energy efficiencies of the system are high. Further, it performs well even under the harsh hot and humid South China weather conditions. - Highlights: • A membrane-based and heat pump driven air dehumidification system is proposed. • A real experimental set up is built and used to validate the model for the whole system. • Performance under design and varying operation conditions is investigated. • The system performs well even under harsh hot and humid conditions

  10. A Liquid Desiccant Cycle for Dehumidification and Fresh Water Supply in Controlled Environment Agriculture

    KAUST Repository

    Lefers, Ryan

    2017-12-01

    Controlled environment agriculture allows the production of fresh food indoors from global locations and contexts where it would not otherwise be possible. Growers in extreme climates and urban areas produce food locally indoors, saving thousands of food import miles and capitalizing upon the demand for fresh, tasty, and nutritious food. However, the growing of food, both indoors and outdoors, consumes huge quantities of water - as much as 70-80% of global fresh water supplies. The utilization of liquid desiccants in a closed indoor agriculture cycle provides the possibility of capturing plant-transpired water vapor. The regeneration/desalination of these liquid desiccants offers the potential to recover fresh water for irrigation and also to re-concentrate the desiccants for continued dehumidification. Through the utilization of solar thermal energy, the process can be completed with a very small to zero grid-energy footprint. The primary research in this dissertation focused on two areas: the dehumidification of indoor environments utilizing liquid desiccants inside membrane contactors and the regeneration of these desiccants using membrane distillation. Triple-bore PVDF hollow fiber membranes yielded dehumidification permeance rates around 0.25-0.31 g m-2 h-1 Pa-1 in lab-scale trials. A vacuum membrane distillation unit utilizing PVDF fibers yielded a flux of 2.8-7.0 kg m-2 hr-1. When the membrane contactor dehumidification system was applied in a bench scale controlled environment agriculture setup, the relative humidity levels responded dynamically to both plant transpiration and dehumidification rates, reaching dynamic equilibrium levels during day and night cycles. In addition, recovered fresh water from distillation was successfully applied for irrigation of crops and concentrated desiccants were successfully reused for dehumidification. If applied in practice, the liquid desiccant system for controlled environment agriculture offers the potential to reduce

  11. Review studies on the state of the art of separate effects and component behaviour of LWR cooling systems

    International Nuclear Information System (INIS)

    Haefner, W.; Fischer, K.; Mewes, D.; Beckmann, H.

    1990-09-01

    In the frame of the Shared Cost Action (SCA) Reactor Safety 1985-87 programme Review Studies on the state of the art of separate effects and component behaviour (preparation for a possible future experimental programme) have been performed. The final reports of three of the selected topics closely related and of particular interest for the development of specific two-phase models are collected in this volume: - Contact condensation effects relevant to ECC-water injection into a cold leg main coolant pipe (Contract 3002-86-07 ELISPD, Battelle Frankfurt) - State of the art of two phase steam water flow in piping junctions (Contract 3006-86-07 ELISPF, CEA-CEN Grenoble) - Critical investigation and model development for countercurrent flow of gas and liquid in horizontal and vertical channels (Contract 3007-86-07 ELISPD, Universitat Hannover). Specific conclusions are drawn and recommendations are given in each of the three papers. A common conclusion is that for developing more general models applicable to a wider range of situations further experimental work needs to be done but with emphasis on larger pipe diameters of test sections up to 30 mm and increasing the system pressures. For better understanding the physical phenomena local parameters and their variations need to be measured more accurately by applying better and more advanced instrumentation

  12. State of the art review of degradation processes in LMFBR materials. Volume II. Corrosion behavior

    International Nuclear Information System (INIS)

    Dillon, R.D.

    1975-01-01

    Degradation of materials exposed to Na in LMFBR service is reviewed. The degradation processes are discussed in sections on corrosion and mass transfer, erosion, wear and self welding, sodium--water reactions, and external corrosion. (JRD)

  13. Self-Healing Corrosion Protective Sol-Gel Coatings

    NARCIS (Netherlands)

    Abdolah Zadeh, M.

    2016-01-01

    Inspired by the state of the art and the recent advances in the field of self-healing corrosion protective coatings, the thesis entitled “Self-healing corrosion protective sol-gel coatings” addresses novel routes to self-healing corrosion protective sol-gel coatings via extrinsic and intrinsic

  14. Biocorrosion and biofouling of metals and alloys of industrial usage. present state of the art at the beginning of the new millennium

    International Nuclear Information System (INIS)

    Videla, H. A.

    2003-01-01

    An overview on the present state of the art on Biocorrosion and Biofouling of metals and alloys of industrial usage is offered on the basis of the experience gathered in our laboratory over 25 years of research. The key concepts to understand the main effects of microorganisms on metal decay are briefly discussed. new trends in monitoring and control strategies to mitigate biocorrosion and biofouling deleterious effects are also described. Several relevant cases of biocorrosion studied by our research group are successively described: i) biocorrosion of aluminum and its alloys by fungal contaminants of jet fuels; ii) Sulfate-reducing bacteria SRB induced corrosion of steel; iii) biocorrosion and biofouling interactions in the marine environment: iv) monitoring strategies for assessing biocorrosion in industrial water systems; v) microbial inhibition of corrosion; vi) use and limitations of electrochemical techniques for evaluating biocorrosion effects. The future perspective of the field is made considering the potential of innovative techniques in microscopy (environmental scanning electron microscopy, confocal scanning laser microscopy, atomic force microscopy), new spectroscopy techniques used for the study of corrosion products and biofilms (energy dispersion X-ray analysis, X-ray photoelectron spectroscopy, electron microprobe analysis) and electrochemistry (electrochemical impedance spectroscopy, electrochemical noise analysis. (Author) 53 refs

  15. Biocorrosion and biofouling of metals and alloys of industrial usage. present state of the art at the beginning of the new millennium

    Energy Technology Data Exchange (ETDEWEB)

    Videla, H. A.

    2003-07-01

    An overview on the present state of the art on Biocorrosion and Biofouling of metals and alloys of industrial usage is offered on the basis of the experience gathered in our laboratory over 25 years of research. The key concepts to understand the main effects of microorganisms on metal decay are briefly discussed. new trends in monitoring and control strategies to mitigate biocorrosion and biofouling deleterious effects are also described. Several relevant cases of biocorrosion studied by our research group are successively described: i) biocorrosion of aluminum and its alloys by fungal contaminants of jet fuels; ii) Sulfate-reducing bacteria SRB induced corrosion of steel; iii) biocorrosion and biofouling interactions in the marine environment: iv) monitoring strategies for assessing biocorrosion in industrial water systems; v) microbial inhibition of corrosion; vi) use and limitations of electrochemical techniques for evaluating biocorrosion effects. The future perspective of the field is made considering the potential of innovative techniques in microscopy (environmental scanning electron microscopy, confocal scanning laser microscopy, atomic force microscopy), new spectroscopy techniques used for the study of corrosion products and biofilms (energy dispersion X-ray analysis, X-ray photoelectron spectroscopy, electron microprobe analysis) and electrochemistry (electrochemical impedance spectroscopy, electrochemical noise analysis. (Author) 53 refs.

  16. State of the States, 2012: Arts Education State Policy Summary

    Science.gov (United States)

    Arts Education Partnership (NJ1), 2012

    2012-01-01

    The "State of the States 2012" summarizes state policies for arts education identified in statute or code for all 50 states and the District of Columbia. Information is based primarily on results from the AEP Arts Education State Policy Survey conducted in 2010-11, and updated in April 2012.

  17. Assessing Level and Effectiveness of Corrosion Education in the UAE

    OpenAIRE

    Lim, Hwee Ling

    2012-01-01

    The consequences of corrosion can be minimized by an engineering workforce well trained in corrosion fundamentals and management. Since the United Arab Emirates incurs the second highest cost of corrosion after Saudi Arabia, this paper examined the quality of corrosion education in the UAE. Surveys with academia and industry respondents showed that dedicated corrosion courses and engineering courses that integrated corrosion into the curricula were available in UAE universities, but graduates...

  18. The effect of recasting on corrosion of DUCINOX prosthetic alloy

    Directory of Open Access Journals (Sweden)

    L. Klimek

    2009-07-01

    Full Text Available The effect of recasting, up to two times, Ni-Cr (DUCINOX prosthetic alloy on its corrosion properties was carried out. The corrosion measurements were done in deoxygenated Fusayama Meyer artificial saliva solution at temperature of 37°C. In the study following electrochemical methods were used: measurement of free corrosion potential Ecor in open circuit, measurement of polarization resistance according to Stern-Geary's method and measurement of potentiodynamic characteristic in wide range of anodic polarization. In general, it can be stated that casting number weakly influence on corrosion properties of investigated alloy. At free corrosion potential there is no monotonic dependence of corrosion parameters versus casting number. However, at extreme anodic potentials monotonic changes of corrosion parameters with increasing casting number is observed. Obtained results and drawn conclusions are partially compatible with literature data.

  19. Selecting HVAC Systems to Achieve Comfortable and Cost-effective Residential Net-Zero Energy Buildings.

    Science.gov (United States)

    Wu, Wei; Skye, Harrison M; Domanski, Piotr A

    2018-02-15

    HVAC is responsible for the largest share of energy use in residential buildings and plays an important role in broader implementation of net-zero energy building (NZEB). This study investigated the energy, comfort and economic performance of commercially-available HVAC technologies for a residential NZEB. An experimentally-validated model was used to evaluate ventilation, dehumidification, and heat pump options for the NZEB in the mixed-humid climate zone. Ventilation options were compared to mechanical ventilation without recovery; a heat recovery ventilator (HRV) and energy recovery ventilator (ERV) respectively reduced the HVAC energy by 13.5 % and 17.4 % and reduced the building energy by 7.5 % and 9.7 %. There was no significant difference in thermal comfort between the ventilation options. Dehumidification options were compared to an air-source heat pump (ASHP) with a separate dehumidifier; the ASHP with dedicated dehumidification reduced the HVAC energy by 7.3 % and the building energy by 3.9 %. The ASHP-only option (without dedicated dehumidification) reduced the initial investment but provided the worst comfort due to high humidity levels. Finally, ground-source heat pump (GSHP) alternatives were compared to the ASHP; the GSHP with two and three boreholes reduced the HVAC energy by 26.0 % and 29.2 % and the building energy by 13.1 % and 14.7 %. The economics of each HVAC configuration was analyzed using installation cost data and two electricity price structures. The GSHPs with the ERV and dedicated dehumidification provided the highest energy savings and good comfort, but were the most expensive. The ASHP with dedicated dehumidification and the ERV (or HRV) provided reasonable payback periods.

  20. Effect of Flow Velocity on Corrosion Rate and Corrosion Protection Current of Marine Material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong Jong [Kunsan National University, Kunsan (Korea, Republic of); Han, Min Su; Jang, Seok Ki; Kim, Seong Jong [Mokpo National Maritime University, Mokpo (Korea, Republic of)

    2015-10-15

    In spite of highly advanced paint coating techniques, corrosion damage of marine metal and alloys increase more and more due to inherent micro-cracks and porosities in coatings formed during the coating process. Furthermore, flowing seawater conditions promote the breakdown of the protective oxide of the materials introducing more oxygen into marine environments, leading to the acceleration of corrosion. Various corrosion protection methods are available to prevent steel from marine corrosion. Cathodic protection is one of the useful corrosion protection methods by which the potential of the corroded metal is intentionally lowered to an immune state having the advantage of providing additional protection barriers to steel exposed to aqueous corrosion or soil corrosion, in addition to the coating. In the present investigation, the effect of flow velocity was examined for the determination of the optimum corrosion protection current density in cathodic protection as well as the corrosion rate of the steel. It is demonstrated from the result that the material corrosion under dynamic flowing conditions seems more prone to corrosion than under static conditions.

  1. Zirconia powders production by precipitation: state-of-art review; Producao de pos de zirconia por precipitacao - revisao do estado da arte

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ana Paula Almeida de; Torem, Mauricio Leonardo [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia

    1994-12-31

    The important role played by zirconia in advanced ceramics can be attributed to its excellent wear and corrosion resistance and refractory character. The polymorphic nature of zirconia made the controlled addition of stabilizing oxides or the constraining effect of a dense ceramics matrix necessary to maintain high parameters had a significant influence on powder properties and on compacted powder behaviour in sintering. Particle shape and size, purity and crystalline structure were specially influenced by precipitation parameters. Therefore, this work presented a review of the state of the art in zirconia powder production and in the recent research on precipitation of that powder. (author) 15 refs., 5 figs., 2 tabs.

  2. An update of the state-of-the-art report on the corrosion of copper under expected conditions in a deep geologic repository

    International Nuclear Information System (INIS)

    King, Fraser; Lilja, Christina; Pedersen, Karsten; Pitkaenen, Petteri; Vaehaenen, Marjut

    2010-12-01

    Copper has been the corrosion barrier of choice for the canister in the Swedish and Finnish, nuclear waste disposal programmes for over 30 years. During that time many studies have been carried out on the corrosion behaviour of copper under conditions likely to exist in an underground nuclear waste repository located in the Fenno-Scandian bedrock. This review is a summary of what has been learnt about the long-term behaviour of the corrosion barrier during this period and what the implications of this knowledge are for the predicted service life of the canisters. The review is based on the existing knowledge from various nuclear waste management programs around the world and from the open literature. Various areas are considered: the expected evolution of the geochemical and microbiological conditions in the groundwater and of the repository environment, the thermodynamics of copper corrosion, corrosion during the operational phase and in the bentonite prior to saturation of the buffer by groundwater, general and localised corrosion following saturation of the compacted bentonite buffer, stress corrosion cracking, radiation effects, the implications of corrosion on the service life of the canister, and areas for further study. This report is an updated version of that originally published in 2001/2002. The original material has been supplemented by information from studies carried out over the last decade. The conclusion drawn from this review is that the original prediction made in 1978 of canister lifetimes exceeding 100,000 years remains valid

  3. An update of the state-of-the-art report on the corrosion of copper under expected conditions in a deep geologic repository

    Energy Technology Data Exchange (ETDEWEB)

    King, F. [Integrity Corrosion Consulting Limited (Canada); Lilja, C. [Svensk Kaernbraenslehantering AB, Stockholm (Sweden); Pedersen, K. [Microbial Analytics Sweden AB, Molnlycke (Sweden); Pitkaenen, P.; Vaehaenen, M.

    2012-07-15

    Copper has been the corrosion barrier of choice for the canister in the Swedish and Finnish, nuclear waste disposal programmes for over 30 years. During that time many studies have been carried out on the corrosion behaviour of copper under conditions likely to exist in an underground nuclear waste repository located in the Fenno-Scandian bedrock. This review is a summary of what has been learnt about the long-term behaviour of the corrosion barrier during this period and what the implications of this knowledge are for the predicted service life of the canisters. The review is based on the existing knowledge from various nuclear waste management programs around the world and from the open literature. Various areas are considered: the expected evolution of the geochemical and microbiological conditions in the groundwater and of the repository environment, the thermodynamics of copper corrosion, corrosion during the operational phase and in the bentonite prior to saturation of the buffer by groundwater, general and localised corrosion following saturation of the compacted bentonite buffer, stress corrosion cracking, radiation effects, the implications of corrosion on the service life of the canister, and areas for further study. This report is an updated version of that originally published in 2001/2002. The original material has been supplemented by information from studies carried out over the last decade. The conclusion drawn from this review is that the original prediction made in 1978 of canister lifetimes exceeding 100,000 years remains valid. (orig.)

  4. An update of the state-of-the-art report on the corrosion of copper under expected conditions in a deep geologic repository

    Energy Technology Data Exchange (ETDEWEB)

    King, Fraser (Integrity Corrosion Consulting Limited (Canada)); Lilja, Christina (Svensk Kaernbraenslehantering AB (Sweden)); Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden)); Pitkaenen, Petteri; Vaehaenen, Marjut (Posiva Oy (Finland))

    2010-12-15

    Copper has been the corrosion barrier of choice for the canister in the Swedish and Finnish, nuclear waste disposal programmes for over 30 years. During that time many studies have been carried out on the corrosion behaviour of copper under conditions likely to exist in an underground nuclear waste repository located in the Fenno-Scandian bedrock. This review is a summary of what has been learnt about the long-term behaviour of the corrosion barrier during this period and what the implications of this knowledge are for the predicted service life of the canisters. The review is based on the existing knowledge from various nuclear waste management programs around the world and from the open literature. Various areas are considered: the expected evolution of the geochemical and microbiological conditions in the groundwater and of the repository environment, the thermodynamics of copper corrosion, corrosion during the operational phase and in the bentonite prior to saturation of the buffer by groundwater, general and localised corrosion following saturation of the compacted bentonite buffer, stress corrosion cracking, radiation effects, the implications of corrosion on the service life of the canister, and areas for further study. This report is an updated version of that originally published in 2001/2002. The original material has been supplemented by information from studies carried out over the last decade. The conclusion drawn from this review is that the original prediction made in 1978 of canister lifetimes exceeding 100,000 years remains valid

  5. An update of the state-of-the-art report on the corrosion of copper under expected conditions in a deep geologic repository

    International Nuclear Information System (INIS)

    King, F.; Lilja, C.; Pedersen, K.; Pitkaenen, P.; Vaehaenen, M.

    2012-07-01

    Copper has been the corrosion barrier of choice for the canister in the Swedish and Finnish, nuclear waste disposal programmes for over 30 years. During that time many studies have been carried out on the corrosion behaviour of copper under conditions likely to exist in an underground nuclear waste repository located in the Fenno-Scandian bedrock. This review is a summary of what has been learnt about the long-term behaviour of the corrosion barrier during this period and what the implications of this knowledge are for the predicted service life of the canisters. The review is based on the existing knowledge from various nuclear waste management programs around the world and from the open literature. Various areas are considered: the expected evolution of the geochemical and microbiological conditions in the groundwater and of the repository environment, the thermodynamics of copper corrosion, corrosion during the operational phase and in the bentonite prior to saturation of the buffer by groundwater, general and localised corrosion following saturation of the compacted bentonite buffer, stress corrosion cracking, radiation effects, the implications of corrosion on the service life of the canister, and areas for further study. This report is an updated version of that originally published in 2001/2002. The original material has been supplemented by information from studies carried out over the last decade. The conclusion drawn from this review is that the original prediction made in 1978 of canister lifetimes exceeding 100,000 years remains valid. (orig.)

  6. Behavior of cross flow heat exchangers during the cooling and dehumidification of air

    Energy Technology Data Exchange (ETDEWEB)

    Ober, C [Karlsruhe Univ. (TH) (Germany, F.R.). Inst. fuer Mess- und Regelungstechnik mit Maschinenlaboratorium

    1980-09-01

    The task of cross flow heat exchangers in room air engineering consists on the one hand in heating up the air and, on the other hand, in the simultaneous cooling and dehumidification. The facilities used for this purpose generally are multi-row finned pipe heat exchangers which when used for cooling contain cold water or brine as the working fluid. The use of directly evaporating freezing mixtures may not be included in this consideration. The model establishment for the dynamic and the static behavior of multi-row cross flow heat exchangers during cooling and dehumidification of air has been derived in this contribution. The representation is performed for the dynamic case in the complex, display range of the Laplace transformation. A comparison with experimental results can be done very simply by means of measurements of the frequency-responce curves in the form of Bode diagrams. The description of the static behaviour may be applied as a basis for humidity controls with more favourable energy utilization.

  7. Astrakhan-Mangyshlak water main (pipeline): corrosion state of the inner surface, and methods for its corrosion protection. Part III. The effects of KW2353 inhibitor. Part IV. Microbiological corrosion

    International Nuclear Information System (INIS)

    Reformatskaya, I.I.; Ashcheulova, I.I.; Barinova, M.A.; Kostin, D.V.; Prutchenko, S.G.; Ivleva, G.A.; Taubaldiev, T.S.; Murinov, K.S.; Tastanov, K.Kh.

    2003-01-01

    The effect of the KW2353 corrosion inhibitor, applied on the Astrakhan-Mangyshlak water main (pipeline) since 1997, on the corrosion processes, occurring on the 17G1S steel surface, is considered. The properties of the surface sediments are also considered. The role of the microbiological processes in the corrosion behavior of the water main (pipeline) inner surface is studied. It is shown, that application of the polyphosphate-type inhibitors, including the KW2353 one, for the anticorrosive protection of the inner surface of the extended water main (pipelines) is inadmissible: at the temperature of ∼20 deg C this corrosion inhibitor facilitates the development of the local corrosion processes on the water main (pipeline) inner surface. At the temperature of ∼8 deg C the above inhibitor discontinues to effect the corrosive stability of the 17G1S steel. The optimal way of the anticorrosive protection of the steel equipment, contacting with the water media, is the increase in the oxygen content therein [ru

  8. State of the art of solid state dosimetry; Estado da arte em dosimetria do estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Susana O., E-mail: sosouza@ufs.br [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil); Yamamoto, Takayoshi [Radioisotope Research Center, Osaka University (Japan); D' Errico, Francesco, E-mail: francesco.derrico@yale.edu [Yale University, School of Medicine, CT (United States)

    2014-07-01

    Passive solid-state detectors still dominate the personal dosimetry field. This article provides state of the art in this field and summarizes the most recent works presented on TL, OSL and RPL during the 17th International Conference on Solid State Dosimetry held in Recife in September 2013. The Article contains in particular the techniques Thermoluminescence (TL), Optically Stimulated Luminescence (OSL), radio photoluminescence (RPL). Thermoluminescence has the biggest advantage of the wide availability of commercial materials for dosimetry, and the nature tissue-equivalent of several of these materials. The limitation of the TL dosimetry presents fading luminance signal and the need for high temperatures to obtain the signal. The Optically Stimulated Luminescence has the advantages of high sensitivity, the possibility of multiple reading, while its limit is the need to use response compensating filters in addition to the high cost of equipment and dosimeters still restricted very few options trading . The radio photoluminescence has a reading that is completely non-destructive, but their dosimeters present lack of tissue-equivalent and a high cost. Presents the details of the techniques and the advantages and limitations of each of these will be discussed.

  9. Preparation of Natural Zeolite for Air Dehumidification in Food Drying

    Directory of Open Access Journals (Sweden)

    Mohamad Djaeni

    2015-03-01

    Full Text Available Drying with air dehumidification with solid adsorbent improves the quality of food product as well as energy efficiency. The natural zeolite is one of adsorbent having potential to adsorb the water.  Normally, the material was activated to open the pore, remove the organic impurities, and increase Si/Al rate. Hence, it can enhance the adsorbing capacity. This research studied the activation of natural zeolite mined from Klaten, Indonesia as air dehumidification for food drying. Two different methods were used involving activation by heat and NaOH introduction.  As indicators, the porosity and water loaded were evaluated. Results showed both methods improved the adsorbing capacity significantly. With NaOH, the adsorbing capacity was higher. The simple test in onion and corn drying showed the presence of activated natural zeolite can speed up water evaporation positively. This performance was also comparable with Zeolite 3A

  10. Low temperature humidification dehumidification desalination process

    International Nuclear Information System (INIS)

    Al-Enezi, Ghazi; Ettouney, Hisham; Fawzy, Nagla

    2006-01-01

    The humidification dehumidification desalination process is viewed as a promising technique for small capacity production plants. The process has several attractive features, which include operation at low temperature, ability to utilize sustainable energy sources, i.e. solar and geothermal, and requirements of low technology level. This paper evaluates the characteristics of the humidification dehumidification desalination process as a function of operating conditions. A small capacity experimental system is used to evaluate the process characteristics as a function of the flow rate of the water and air streams, the temperature of the water stream and the temperature of the cooling water stream. The experimental system includes a packed humidification column, a double pipe glass condenser, a constant temperature water circulation tank and a chiller for cooling water. The water production is found to depend strongly on the hot water temperature. Also, the water production is found to increase upon the increase of the air flow rate and the decrease of the cooling water temperature. The measured air and water temperatures, air relative humidity and the flow rates are used to calculate the air side mass transfer coefficient and the overall heat transfer coefficient. Measured data are found to be consistent with previous literature results

  11. Evaluation of the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Kerrigan, P. [Building Science Corporation, Westford, MA (United States)

    2014-10-01

    This report describes a research study that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance homes in a hot-humid climate. The purpose of this research project was to observe and compare the humidity control performance. Specifically, the study sought to compare the interior conditions and mechanical systems operation between two distinct groups of houses; homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were 10 single-family, new construction homes in New Orleans, LA.

  12. A state-of-the art report on the investigation of the various corrosion models for zirconium-based alloy

    International Nuclear Information System (INIS)

    Kim, S. J.; Kim, K. H.; Baek, J. H.; Choi, B. K.; Jeong, Y. H.

    1999-02-01

    The desire to increase uranium utilization and to minimize spent fuel storage requirements provides an incentive to extend the average fuel rod discharge burnup to about 70,000MWd/MTU. For these higher burnups data are needed to determine if waterside corrosion of the cladding may be a life-limiting feature of fuel rod design. It is apparent that many factors can influence waterside corrosion, and these need to be better understood in order to minimize corrosion at these higher target burnups. The objective of this report is to review published data relevant to the corrosion of Zircaloy under PWR operating conditions. (author). 100 refs., 4 tabs., 21 figs

  13. Developing a Standard Method of Test for Packaged, Solid-Desiccant Based Dehumidification Systems

    International Nuclear Information System (INIS)

    Sand, J.R.

    2001-01-01

    A draft Method of Test (MOT) has been proposed for packaged, air-to-air, desiccant-based dehumidifier systems that incorporate a thermally-regenerated desiccant material for dehumidification. This MOT is intended to function as the ''system'' testing and rating compliment to the desiccant ''component'' (desiccant wheels and/or cassettes) MOT (ASHRAE 1998) and rating standard (ARI 1998) already adopted by industry. This draft standard applies to ''packaged systems'' that: Use desiccants for dehumidification of conditioned air for buildings; Use heated air for regeneration of the desiccant material; Include fans for moving process and regeneration air; May include other system components for filtering, pre-cooling, post-cooling, or heating conditioned air; and May include other components for humidification of conditioned air. The proposed draft applies to four different system operating modes depending on whether outdoor or indoor air is used for process air and regeneration air streams . Only the ''ventilation'' mode which uses outdoor air for both process and regeneration inlets is evaluated in this paper. Performance of the dehumidification system is presented in terms that would be most familiar and useful to designers of building HVAC systems to facilitate integration of desiccant equipment with more conventional hardware. Parametric performance results from a modified, commercial desiccant dehumidifier undergoing laboratory testing were used as data input to evaluate the draft standard. Performance results calculated from this experimental input, results from an error-checking/heat-balance verification test built into the standard, and estimated comparisons between desiccant and similarly performing conventional dehumidification equipment are calculated and presented. Some variations in test procedures are suggested to aid in analytical assessment of individual component performance

  14. A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification

    KAUST Repository

    Bui, Thuan Duc

    2017-05-13

    In humid environments, decoupling the latent and sensible cooling loads - dehumidifying - can significantly improve chiller efficiency. Here, a basic limit for dehumidification efficiency is established from fundamental thermodynamics. This is followed by the derivation of how this limit is modified when the pragmatic constraint of a finite flux must be accommodated. These limits allow one to identify promising system modifications, and to quantify their impact. The focus is on vacuum-based membrane dehumidification. New high-efficiency configurations are formulated, most notably, by coupling pumping with condensation. More than an order-of-magnitude improvement in efficiency is achievable. It is contingent on water vapor exiting at its saturation pressure rather than at ambient pressure. Sensitivity studies to recovery ratio, temperature, relative humidity and membrane selectivity are also presented.

  15. A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification

    KAUST Repository

    Bui, Thuan Duc; Kum Ja, M.; Gordon, Jeffrey M.; Ng, Kim Choon; Chua, Kian Jon

    2017-01-01

    In humid environments, decoupling the latent and sensible cooling loads - dehumidifying - can significantly improve chiller efficiency. Here, a basic limit for dehumidification efficiency is established from fundamental thermodynamics

  16. Fabrication and Properties of Micro-Nanoencapsulated Phase Change Materials for Internally-Cooled Liquid Desiccant Dehumidification

    Directory of Open Access Journals (Sweden)

    Xiaofeng Niu

    2017-04-01

    Full Text Available Micro-nanoencapsulated phase change materials (M-NEPCMs are proposed to be useful in liquid desiccant dehumidification by restraining the temperature rise in the moisture-removal process and improving the dehumidification efficiency. In this paper, the n-octadecane M-NEPCMs with desirable thermal properties for internally-cooled dehumidification were fabricated by using compound emulsifiers through the in-situ polymerization method. Melamine-formaldehyde resin was used as the shell material. The effects of the mixing ratio, emulsification methods and amount of the compound emulsifiers on the morphology, size and thermal properties of the M-NEPCMs were investigated experimentally. The optimum weight mixing ratio of the compound emulsifiers is SDS (sodium dodecyl sulfate:Tween80 (polyoxyethylene sorbitan monooleate:Span80 (sorbitan monooleate = 0.1:0.6:0.3, which achieves the best stability of the n-octadecane emulsion. When the compound emulsifiers are 10 wt. % of the core material, the melting enthalpy of M-NEPCMs reaches its maximum of 145.26 J/g of capsules, with an encapsulation efficiency of 62.88% and a mean diameter of 636 nm. The sub-cooling of the prepared M-NEPCMs is lower than 3 °C, with an acceptable thermal reliability after the thermal cycling test. A pre-emulsification prior to the addition of deionized water in the emulsification is beneficial to the morphology of the capsules, as the phase change enthalpy can be increased by 123.7%.

  17. Fabrication and Properties of Micro-Nanoencapsulated Phase Change Materials for Internally-Cooled Liquid Desiccant Dehumidification.

    Science.gov (United States)

    Niu, Xiaofeng; Xu, Qing; Zhang, Yi; Zhang, Yue; Yan, Yufeng; Liu, Tao

    2017-04-29

    Micro-nanoencapsulated phase change materials (M-NEPCMs) are proposed to be useful in liquid desiccant dehumidification by restraining the temperature rise in the moisture-removal process and improving the dehumidification efficiency. In this paper, the n -octadecane M-NEPCMs with desirable thermal properties for internally-cooled dehumidification were fabricated by using compound emulsifiers through the in-situ polymerization method. Melamine-formaldehyde resin was used as the shell material. The effects of the mixing ratio, emulsification methods and amount of the compound emulsifiers on the morphology, size and thermal properties of the M-NEPCMs were investigated experimentally. The optimum weight mixing ratio of the compound emulsifiers is SDS (sodium dodecyl sulfate):Tween80 (polyoxyethylene sorbitan monooleate):Span80 (sorbitan monooleate) = 0.1:0.6:0.3, which achieves the best stability of the n -octadecane emulsion. When the compound emulsifiers are 10 wt. % of the core material, the melting enthalpy of M-NEPCMs reaches its maximum of 145.26 J/g of capsules, with an encapsulation efficiency of 62.88% and a mean diameter of 636 nm. The sub-cooling of the prepared M-NEPCMs is lower than 3 °C, with an acceptable thermal reliability after the thermal cycling test. A pre-emulsification prior to the addition of deionized water in the emulsification is beneficial to the morphology of the capsules, as the phase change enthalpy can be increased by 123.7%.

  18. Current state of knowledge in radiolysis effects on spent fuel corrosion

    International Nuclear Information System (INIS)

    Christensen, H.; Sunder, S.

    1998-09-01

    Literature data on the effect of water radiolysis products on spent fuel oxidation and dissolution have been reviewed. Effects of γ-radiolysis, α-radiolysis and dissolved O 2 or H 2 O 2 in unirradiated solutions have been discussed separately. Also the effect of carbonate in γ-irradiated solutions and radiolysis effects on leaching of spent fuels have been reviewed. In addition a radiolysis model for calculation of corrosion rates of UO 2 , presented previously, has been discussed. The model has been shown to give a good agreement between calculated and measured corrosion rates in the case of γ-radiolysis and in unirradiated solutions of dissolved oxygen or hydrogen peroxide. The model has failed to predict the results of α-radiolysis. In a recent study it was shown that the model gave a good agreement with measured corrosion rates of spent fuel exposed in deionized water

  19. The state-of-the-art of ART sealants.

    Science.gov (United States)

    Frencken, Jo E

    2014-03-01

    Sealing caries-prone pits and fissure systems is an effective caries-preventive measure. There are basically two types of sealant materials: glass-ionomer and resin-based materials. Low- and medium-viscosity glass-ionomers were initially used and showed a low level of retention. With the advent of the ART approach in the mid-nineties, high-viscosity glass-ionomers were introduced as sealant material and the retention rate of ART sealants increased substantially. As the effectiveness of a sealant is measured by its capacity to prevent (dentine) carious lesion development, sealant retention is considered a surrogate endpoint. The ART sealant protocol is described. Systematic reviews and meta-analysis covering low- medium- and high-viscosity glass-ionomer (ART) sealants have concluded that there is no evidence that either glass-ionomer or resin-based sealants prevent dentine carious lesions better. The annual dentine carious lesion development in teeth with high-viscosity glass-ionomer ART sealants over the first three years is 1%. These ART sealants have a high capacity of preventing carious lesion development. Because no electricity and running water is required, ART sealants can be placed both inside and outside the dental surgery. High-viscosity glass-ionomer ART sealants can be used alongside resin-based sealants.41:119-124

  20. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    Science.gov (United States)

    Calle, Luz Marina

    2014-01-01

    Corrosion is the degradation of a material that results from its interaction with the environment. The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the United States. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the 70 tons of highly corrosive hydrochloric acid that were generated by the solid rocket boosters. Numerous failures at the launch pads are caused by corrosion.The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. As a result of fifty years of experience with launch and ground operations in a natural marine environment that is highly corrosive, NASAs Corrosion Technology Laboratory at KSC is a major source of corrosion control expertise in the launch and other environments. Throughout its history, the Laboratory has evolved from what started as an atmospheric exposure facility near NASAs launch pads into a world-wide recognized capability that provides technical innovations and engineering services in all areas of corrosion for NASA and external customers.This presentation will provide a historical overview of the role of NASAs Corrosion Technology in anticipating, managing, and preventing corrosion. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  1. State-of-the-art

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report presents a short overview on the state-of-the-art of wave tank testing of wave energy converters (WEC). Here for, it focuses mainly on the Phase 1 and 2 development phases of wave energy converters, as these are done in the wave tank (WEC), while the other development phases are perfo......This report presents a short overview on the state-of-the-art of wave tank testing of wave energy converters (WEC). Here for, it focuses mainly on the Phase 1 and 2 development phases of wave energy converters, as these are done in the wave tank (WEC), while the other development phases...

  2. Effect of heat treatment on the grooving corrosion resistance of ERW pipes

    International Nuclear Information System (INIS)

    Lee, Jong Kwon; Lee, Jae Young; Lim, Soo Hyun; Park, Ji Hwan; Seo, Bo Min; Kim, Seon Hwa

    2002-01-01

    The v-sharp grooving corrosion of ERW(electrical resistance welding) steel pipes limited their wide application in the industry in spite of their high productivity and efficiency. The grooving corrosion is caused mainly by the different microstructures between the matrix and weld that is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. Even though the diminishing of sulfur content is most effective to decrease the susceptibility of grooving corrosion, it requires costly process. In this study, improvement of grooving corrosion resistance was pursuited by post weld heat treatment in the temperature range between 650 .deg. C and 950 .deg. C. Also, the effect of heat input in the welding was investigated. By employing chromnoamperometry and potentiodynamic experiment, the corrosion rate and grooving corrosion index(α) were obtained. It was found that heat treatment could improve the grooving corrosion resistance. Among them, the heat treated at 900 .deg. C and 950 .deg. C had excellent grooving corrosion resistance. The index of heat treated specimen at 900 .deg. C and 950 .deg. C were 1.0, 1.2, respectively, which are almost immune to the grooving corrosion. Potential difference after the heat treatment, between base and weld metal was decreased considerably. While the as-received one measured 61∼71 mV, that of the 900 .deg. C heat treated steel pipe measured only 10mV. The results were explained and discussed

  3. Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications

    Energy Technology Data Exchange (ETDEWEB)

    Atcitty, S.; Gray-Fenner, A.; Ranade, S.

    1998-09-01

    The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

  4. Using EnergyPlus to Perform Dehumidification Analysis on Building America Homes: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Fang, X.; Winkler, J.; Christensen, D.

    2011-03-01

    A parametric study was conducted using EnergyPlus version 6.0 to investigate humidity issues on a typical mid-1990s reference home, a 2006 International Energy Conservation Code home, and a high-performance home in a hot-humid climate. The impacts of various dehumidification equipment and controls are analyzed on the high performance home. The study examined the combined effects of infiltration and mechanical ventilation with balanced and unbalanced mechanical ventilation systems. Indoor relative humidity excursions were examined; specifically, the number of excursions, average excursion length, and maximum excursion length. Space relative humidity, thermal comfort, and whole-house source energy consumption were analyzed for indoor relative humidity set points of 50%, 55%, and 60%. The study showed and explained why similar trends of high humidity were observed in all three homes regardless of energy efficiency, and why humidity problems are not necessarily unique in high-performance homes. Thermal comfort analysis indicated that occupants are unlikely to notice indoor humidity problems. The study confirmed that supplemental dehumidification should be provided to maintain space relative humidity below 60% in a hot-humid climate.

  5. Acoustic emission in wet or dry corrosion studies: an update on the art and usefulness of a data base; L'emission acoustique en corrosion humide et seche: etat de l'art et interet d'une base de donnees

    Energy Technology Data Exchange (ETDEWEB)

    Caron, D.; Rigault, C. [Cetim-Centre Technique des Industries Mecaniques, 30 - Senlis (France); Rothea, C.; Mazille, H. [Institut National des Sciences Appliquees, INSA, 69 - Villeurbanne (France); Gaillet, L.; Moulin, G.; Beranger, G. [Universite de Technologie de Compiegne, 60 (France)

    2001-07-01

    At the initiative of CETIM, a bibliographical work was accomplished at the LPCI (INSA Lyon) and UTC. The aim of this work was to establish the most current and complete state of the art on the potential of the acoustic emission (A.E.) for the detection of wet or dry corrosion met on many equipments used in the mechanical, chemical and petrochemical industries. Corrosion can affect all metallic equipments of industry under more or less aggressive operating conditions. In spite of the existing knowledge of the degradation mechanisms, the post-mortem analysis or laboratory simulation only gives either late or incomplete information. This usually results from difficulties to determine the actual local conditions. A.E. is a non-destructive control technique that can be applied as well in laboratory as on industrial site. According to literature data, the ability of A.E. to detect and monitor wet or dry corrosion was evidenced. Thus, it could be used for to a more reliable, secure and economic industrial management. However A.E. was and is still sometimes discussed. Indeed, the diversity of the equipments, processes and conditions of exploitation can generate some discrepancies. This study attempts to remove these ambiguities by detailing the principal parameters and key factors in order to objectively compare the referenced works. Our works confirms that A.E. is a very sensitive and powerful technique for studying wet or dry corrosion in laboratories or on industrial plants. (authors)

  6. Solar Desalination by Humidification-Dehumidification of Air

    Directory of Open Access Journals (Sweden)

    Moumouh J.

    2018-01-01

    Full Text Available The importance of supplying potable water can hardly be overstressed. In many arid zones, coastal or inlands, seawater or brackish water desalination may be the only solution to the shortage of fresh water. The process based on humidification-dehumidification of air (HDH principle mimic the natural water cycle. HDH technique has been subjected to many studies in recent years due to the low temperature, renewable energy use, simplicity, low cost installation and operation. An experimental test set-up has been fabricated and assembled. The prototype equipped with appropriate measuring and controlling devices. Detailed experiments have been carried out at various operating conditions. The heat and mass transfer coefficients have been obtained experimentally. The results of the investigation have shown that the system productivity increases with the increase in the mass flow rate of water through the unit. Water temperature at condenser exit increases linearly with water temperature at humidifier inlet and it decreases as water flow rate increases. HDH desalination systems realised on also work at atmospheric pressure; hence they do not need mechanical energy except for circulation pumps and fans. These kinds of systems are suitable for developing countries. The system is modular, it is possible to increase productivity with additional solar collectors and additional HDH cycles.

  7. Performance analysis of proposed hybrid air conditioning and humidification–dehumidification systems for energy saving and water production in hot and dry climatic regions

    International Nuclear Information System (INIS)

    Nada, S.A.; Elattar, H.F.; Fouda, A.

    2015-01-01

    Highlights: • Integrative air-conditioning (A/C) and humidification–dehumidification desalination systems are proposed. • Effects of operating parameters on the proposed systems are investigated. • System configurations that have the highest fresh water production rate, power saving and total cost saving are identified. - Abstract: Performance of integrative air-conditioning (A/C) and humidification–dehumidification desalination systems proposed for hot and dry climatic regions is theoretically investigated. The proposed systems aim to energy saving and systems utilization in fresh water production. Four systems with evaporative cooler and heat recovery units located at different locations are proposed, analyzed and evaluated at different operating parameters (fresh air ratio, supply air temperature and outside air wet bulb temperature). Other two basic systems are used as reference systems in proposed systems assessment. Fresh water production rate, A/C cooling capacity, A/C electrical power consumption, saving in power consumptions and total cost saving (TCS) parameters are used for systems evaluations and comparisons. The results show that (i) the fresh water production rates of the proposed systems increase with increasing fresh air ratio, supply air temperature and outdoor wet bulb temperature, (ii) powers saving of the proposed systems increase with increasing fresh air ratio and supply air temperature and decreasing of the outdoor air wet bulb temperature, (iii) locating the evaporative cooling after the fresh air mixing remarkably increases water production rate, and (vi) incorporating heat recovery in the air conditioning systems with evaporative cooling may adversely affect both of the water production rate and the total cost saving of the system. Comparison study has been presented to identify systems configurations that have the highest fresh water production rate, highest power saving and highest total cost saving. Numerical correlations for

  8. Physicochemical characteristics and sensory profile of honey samples from stingless bees (Apidae: Meliponinae submitted to a dehumidification process

    Directory of Open Access Journals (Sweden)

    Carlos A.L. Carvalho

    2009-03-01

    Full Text Available This study was conducted to evaluate the effect of a dehumidification process on the physicochemical and sensory characteristics of stingless-bee honey. Melipona scutellaris and M. quadrifasciata honey samples were submitted to a dehumidification process and to physicochemical (reducing sugars, apparent sucrose, moisture, diastatic activity, hydroxymethylfurfural, ash, pH, acidity, and electric conductivity and sensory evaluations (fluidity, color, aroma, crystallization,flavor,and acceptability. The results indicated that the dehumidification process does not interfere with honey quality and acceptability.Este estudo foi conduzido com o objetivo de avaliar o efeito do processo de desumidificação sobre as características físico-químicas e sensoriais do mel das abelhas sem ferrão. Amostras de méis de Melipona scutellaris e M. quadrifasciata foram submetidas ao processo de desumidificação, passando em seguida por avaliações físico-químicas (açúcares redutores, sacarose aparente, umidade, atividade diastásica, hidroximetilfurfural, cinzas, pH, acidez e condutividade elétrica e sensoriais (fluidez, cor, aroma, cristalização, sabor e aceitabilidade. Os resultados indicaram que o processo de desumidificação não interfere na qualidade e aceitabilidade do mel.

  9. Effect of compression deformation on the microstructure and corrosion behavior of magnesium alloys

    International Nuclear Information System (INIS)

    Snir, Y.; Ben-Hamu, G.; Eliezer, D.; Abramov, E.

    2012-01-01

    Highlights: ► Metallurgical features (mainly twinning, dislocation accumulation, and dynamic recrystallization). ► The thermo-mechanical state (amount of deformation and its temperature). ► The corrosion behavior of wrought Mg-alloys. This correlation was emphasized by the mechanical behavior measured through micro-hardness. ► Microstructural changes during deformation, and potentio-dynamic corrosion tests were correlated. - Abstract: The effect of deformation on the corrosion and mechanical behavior of wrought Mg-alloys AZ31, AM50, and ZK60 was investigated. The materials’ behavior was correlated to the changes in metallurgical features, during compression, into different amounts of deformation at three temperatures: 250° C, 280° C, and 350° C. The metallurgical features were monitored by optical microscope, scanning electron microscope (SEM), and transmission electron microscopy (TEM). It was observed that there is a very strong correlation between three features: 1. metallurgical features (mainly twinning, dislocation accumulation, and dynamic recrystallization); 2. The thermo-mechanical state (amount of deformation and its temperature); and 3. The corrosion behavior of wrought Mg-alloys. This correlation was emphasized by the mechanical behavior measured through micro-hardness. Microstructural changes during deformation, and potentio-dynamic corrosion tests were correlated. These results show that studies on the effect of thermo-mechanical state (related to the microstructure) on the corrosion behavior of wrought Mg-alloys are essential in order to optimize their applicability to plastic forming processes.

  10. High Dehumidification Performance of Amorphous Cellulose Composite Membranes prepared from Trimethylsilyl Cellulose

    KAUST Repository

    Puspasari, Tiara

    2018-04-11

    Cellulose is widely regarded as an environmentally friendly, natural and low cost material which can significantly contribute the sustainable economic growth. In this study, cellulose composite membranes were prepared via regeneration of trimethylsilyl cellulose (TMSC), an easily synthesized cellulose derivative. The amorphous hydrophilic feature of the regenerated cellulose enabled fast permeation of water vapour. The pore-free cellulose layer thickness was adjustable by the initial TMSC concentration and acted as an efficient gas barrier. As a result, a 5,000 GPU water vapour transmission rate (WVTR) at the highest ideal selectivity of 1.1 x 106 was achieved by the membranes spin coated from a 7% (w/w) TMSC solution. The membranes maintained a 4,000 GPU WVTR with selectivity of 1.1 x 104 in the mixed-gas experiments, surpassing the performances of the previously reported composite membranes. This study provides a simple way to not only produce high performance membranes but also to advance cellulose as a low-cost and sustainable membrane material for dehumidification applications.

  11. The state-of-the-art of ART restorations.

    Science.gov (United States)

    Frencken, Jo E

    2014-04-01

    ART is less anxiety- and pain-provoking than traditional restorative treatments; administration of local anaesthesia is rarely required. Systematic reviews have provided evidence of the high level of effectiveness of high-viscosity glass-ionomer ART restoration in restoring single-surface cavities, both in primary and permanent posterior teeth, but its survival rates in restoring multiple-surface cavities in primary posterior teeth needs to be improved. Insufficient information is available regarding the survival rates of multiple-surface ART restorations in permanent teeth. Evidence from these reviews indicates no difference in the survival rates of single-surface high-viscosity glass-ionomer ART restorations and amalgam restorations in primary and permanent posterior teeth. Where indicated, high-viscosity glass-ionomer ART restorations can be used alongside traditional restorations. ART provides a much more acceptable introduction to dental restorative care than the traditional 'injection, drill and fill'.

  12. Critical corrosion issues and mitigation strategies impacting the operability of LWR's

    International Nuclear Information System (INIS)

    Jones, R.L.

    1996-01-01

    Recent corrosion experience in US light water reactor nuclear power plants is reviewed with emphasis on mitigation strategies to control the cost of corrosion to LWR operators. Many components have suffered corrosion problems resulting in industry costs of billions of dollars. The most costly issues have been stress corrosion cracking of stainless steel coolant piping in boiling water reactors and corrosion damage to steam generator tubes in pressurized water reactors. Through industry wide R and D programs these problems are now understood and mitigation strategies have been developed to address the issues in a cost effective manner. Other significant corrosion problems for both reactor types are briefly reviewed. Tremendous progress has been made in controlling corrosion, however, minimizing its impact on plant operations will present a continuing challenge throughout the remaining service lives of these power plants

  13. The Impact of Company-Level ART Provision to a Mining Workforce in South Africa: A Cost-Benefit Analysis.

    Directory of Open Access Journals (Sweden)

    Gesine Meyer-Rath

    2015-09-01

    Full Text Available HIV impacts heavily on the operating costs of companies in sub-Saharan Africa, with many companies now providing antiretroviral therapy (ART programmes in the workplace. A full cost-benefit analysis of workplace ART provision has not been conducted using primary data. We developed a dynamic health-state transition model to estimate the economic impact of HIV and the cost-benefit of ART provision in a mining company in South Africa between 2003 and 2022.A dynamic health-state transition model, called the Workplace Impact Model (WIM, was parameterised with workplace data on workforce size, composition, turnover, HIV incidence, and CD4 cell count development. Bottom-up cost analyses from the employer perspective supplied data on inpatient and outpatient resource utilisation and the costs of absenteeism and replacement of sick workers. The model was fitted to workforce HIV prevalence and separation data while incorporating parameter uncertainty; univariate sensitivity analyses were used to assess the robustness of the model findings. As ART coverage increases from 10% to 97% of eligible employees, increases in survival and retention of HIV-positive employees and associated reductions in absenteeism and benefit payments lead to cost savings compared to a scenario of no treatment provision, with the annual cost of HIV to the company decreasing by 5% (90% credibility interval [CrI] 2%-8% and the mean cost per HIV-positive employee decreasing by 14% (90% CrI 7%-19% by 2022. This translates into an average saving of US$950,215 (90% CrI US$220,879-US$1.6 million per year; 80% of these cost savings are due to reductions in benefit payments and inpatient care costs. Although findings are sensitive to assumptions regarding incidence and absenteeism, ART is cost-saving under considerable parameter uncertainty and in all tested scenarios, including when prevalence is reduced to 1%-except when no benefits were paid out to employees leaving the workforce and

  14. The Impact of Company-Level ART Provision to a Mining Workforce in South Africa: A Cost-Benefit Analysis.

    Science.gov (United States)

    Meyer-Rath, Gesine; Pienaar, Jan; Brink, Brian; van Zyl, Andrew; Muirhead, Debbie; Grant, Alison; Churchyard, Gavin; Watts, Charlotte; Vickerman, Peter

    2015-09-01

    HIV impacts heavily on the operating costs of companies in sub-Saharan Africa, with many companies now providing antiretroviral therapy (ART) programmes in the workplace. A full cost-benefit analysis of workplace ART provision has not been conducted using primary data. We developed a dynamic health-state transition model to estimate the economic impact of HIV and the cost-benefit of ART provision in a mining company in South Africa between 2003 and 2022. A dynamic health-state transition model, called the Workplace Impact Model (WIM), was parameterised with workplace data on workforce size, composition, turnover, HIV incidence, and CD4 cell count development. Bottom-up cost analyses from the employer perspective supplied data on inpatient and outpatient resource utilisation and the costs of absenteeism and replacement of sick workers. The model was fitted to workforce HIV prevalence and separation data while incorporating parameter uncertainty; univariate sensitivity analyses were used to assess the robustness of the model findings. As ART coverage increases from 10% to 97% of eligible employees, increases in survival and retention of HIV-positive employees and associated reductions in absenteeism and benefit payments lead to cost savings compared to a scenario of no treatment provision, with the annual cost of HIV to the company decreasing by 5% (90% credibility interval [CrI] 2%-8%) and the mean cost per HIV-positive employee decreasing by 14% (90% CrI 7%-19%) by 2022. This translates into an average saving of US$950,215 (90% CrI US$220,879-US$1.6 million) per year; 80% of these cost savings are due to reductions in benefit payments and inpatient care costs. Although findings are sensitive to assumptions regarding incidence and absenteeism, ART is cost-saving under considerable parameter uncertainty and in all tested scenarios, including when prevalence is reduced to 1%-except when no benefits were paid out to employees leaving the workforce and when absenteeism

  15. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of California

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of California. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  16. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Arizona. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  17. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Georgia. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  18. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Florida

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Florida. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  19. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Arkansas. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  20. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Connecticut. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  1. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Hawaii. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  2. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Alaska. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  3. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Colorado. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  4. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Delaware. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  5. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Alabama. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  6. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Washington. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  7. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Kentucky. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  8. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Vermont

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Vermont. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  9. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Wyoming. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  10. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Louisiana. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  11. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Maryland. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  12. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Nevada. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  13. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Ohio. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  14. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Nebraska

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Nebraska. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  15. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Idaho. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  16. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Iowa. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  17. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Utah

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Utah. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  18. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Oklahoma. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  19. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Tennessee. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  20. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Mississippi. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  1. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Montana

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Montana. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  2. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Maine

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Maine. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  3. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Michigan. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  4. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Indiana. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  5. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Pennsylvania. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  6. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Texas

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Texas. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  7. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Kansas. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  8. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Massachusetts. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  9. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Minnesota. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  10. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Illinois. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  11. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Virginia. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  12. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Oregon. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  13. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Missouri. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  14. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Wisconsin. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  15. Materials corrosion and protection at high temperatures

    International Nuclear Information System (INIS)

    Balbaud, F.; Desgranges, Clara; Martinelli, Laure; Rouillard, Fabien; Duhamel, Cecile; Marchetti, Loic; Perrin, Stephane; Molins, Regine; Chevalier, S.; Heintz, O.; David, N.; Fiorani, J.M.; Vilasi, M.; Wouters, Y.; Galerie, A.; Mangelinck, D.; Viguier, B.; Monceau, D.; Soustelle, M.; Pijolat, M.; Favergeon, J.; Brancherie, D.; Moulin, G.; Dawi, K.; Wolski, K.; Barnier, V.; Rebillat, F.; Lavigne, O.; Brossard, J.M.; Ropital, F.; Mougin, J.

    2011-01-01

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  16. Electrochemical testing of passivity state and corrosion resistance of supermartensitic stainless steels

    Directory of Open Access Journals (Sweden)

    S. Lasek

    2010-01-01

    Full Text Available On low interstitial - supermartensitic stainless steels (X1CrNiMo 12-5-1, X2CrNiMo 13-6-2, X1CrNiMo 12-6-2 the electrochemical potentiodynamic polarization tests were carried out and the passive state stability and localized corrosion resistance were compared and evaluated. The effect of quenching and tempering as well as the changes in microstructure on polarisation curves and corrosion properties at room temperature were established. Small differences in chemical composition of steels were also registered on their corrosion parameters changes and resistance.

  17. Cultivating Demand for the Arts: Arts Learning, Arts Engagement, and State Arts Policy. Summary

    Science.gov (United States)

    Zakaras, Laura; Lowell, Julia F.

    2008-01-01

    The findings summarized in this report are intended to shed light on what it means to cultivate demand for the arts, why it is necessary and important to cultivate this demand, and what state arts agencies (SAAs) and other arts and education policymakers can do to help. The research considered only the benchmark arts central to public policy:…

  18. Cost of a dedicated ART clinic | Harling | South African Medical ...

    African Journals Online (AJOL)

    Abstract. Background. The provision of antiretroviral therapy (ART) is being rolled out across South Africa. Little evidence exists on the cost of running clinics for ART provision. Objectives. To determine the cost per patient-month enrolled in an ART programme and per patient-visit for a dedicated, public-sector ART clinic in a ...

  19. The Effect of Low-Quantity Cr Addition on the Corrosion Behaviour of Dual-Phase High Carbon Steel

    Directory of Open Access Journals (Sweden)

    Wilson Handoko

    2018-03-01

    Full Text Available Industrial application of high carbon low alloy steel with the dual-phase structure of martensite and austenite has increased drastically in recent years. Due to its excellent compression strength and its high abrasion resistance, this grade of steel has used as a high performance cutting tool and in press machinery applications. By increasing the usage of more corrosive media in industrial practice and increasing the demand for reducing the production cost, it is crucial to understand the effect of the small addition of Cr on the corrosion behaviour of this grade of steel. In this study, this effect was investigated using Secondary Electron Microscopy (SEM and in-situ Atomic Force Microscopy (AFM in the sodium chloride solution. Also, the corrosion rate was measured using the Tafel polarisation curve. It has been found that the small addition of Cr increased the stability of retained austenite, thus improving its corrosion resistance and reducing its corrosion rate. This effect has been acquired through in-situ high resolution topography images in which the samples were submerged in a corrosive solution. It has been demonstrated that the corrosion rate was reduced when the stability of austenite enhanced.

  20. Support for Arts Education. State Arts Agency Fact Sheet

    Science.gov (United States)

    National Assembly of State Arts Agencies, 2011

    2011-01-01

    Supporting lifelong learning in the arts is a top priority for state arts agencies. By supporting arts education in the schools, state arts agencies foster young imaginations, address core academic standards, and promote the critical thinking and creativity skills essential to a 21st century work force. State arts agencies also support…

  1. Evaluation of the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Kerrigan, P.; Norton, P.

    2014-10-01

    This report, Evaluation of the Performance of Houses with and without Supplemental Dehumidification in a Hot-Humid Climate, describes a research study that that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance, homes in a Hot-Humid climate. The purpose of this research project was to observe and compare the humidity control performance of new, single family, low energy, and high performance, homes. Specifically, the study sought to compare the interior conditions and mechanical systems operation between two distinct groups of houses, homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were ten single-family new construction homes in New Orleans, LA.Data logging equipment was installed at each home in 2012. Interior conditions and various end-use loads were monitored for one year. In terms of averages, the homes with dehumidifiers are limiting elevated levels of humidity in the living space. However, there was significant variation in humidity control between individual houses. An analysis of the equipment operation did not show a clear correlation between energy use and humidity levels. In general, no single explanatory variable appears to provide a consistent understanding of the humidity control in each house. Indoor humidity is likely due to all of the factors we have examined, and the specifics of how they are used by each occupant.

  2. State Arts Agency Fact Sheet: Support for Arts Education

    Science.gov (United States)

    Online Submission, 2015

    2015-01-01

    This national overview of state arts agency grants and services for arts education includes summary statistics and geographic distribution. The fact sheet uses data from Final Descriptive Reports of state arts agency grant-making activities submitted annually to the National Assembly of State Arts Agencies (NASAA) and the National Endowment for…

  3. The dual role of microbes in corrosion.

    Science.gov (United States)

    Kip, Nardy; van Veen, Johannes A

    2015-03-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion.

  4. The dual role of microbes in corrosion

    Science.gov (United States)

    Kip, Nardy; van Veen, Johannes A

    2015-01-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion. PMID:25259571

  5. The composition effect on the long-term corrosion of high-level waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, P. [Pacific Northwest National Laboratory, Richland, Washington (United States)

    1997-07-01

    Waste glass can be optimized for long-term corrosion behavior if the key parameters that control the rate of corrosion are identified, measured, and modeled as functions of glass composition. Second-order polynomial models have been used to optimize glass with respect to a set of requirements on glass properties, such as viscosity and outcomes of standard corrosion tests. Extensive databases exist for the 7-day Product Consistency Test and the 28-day Materials Characterization Center tests, which have been used for nuclear waste glasses in the United States. Models based on these tests are reviewed and discussed to demonstrate the compositional effects on the extent of corrosion under specified conditions. However, modeling the rate of corrosion is potentially more useful for predicting long-term behavior than modeling the extent of corrosion measured by standard tests. Based on an experimental study of two glasses, it is shown that the rate of corrosion can be characterized by simple functions with physically meaningful coefficients. (author)

  6. Exergy Analysis of a Solar Humidification- Dehumidification Desalination Unit

    OpenAIRE

    Mohammed A. Elhaj; Jamal S. Yassin

    2013-01-01

    This paper presents the exergy analysis of a desalination unit using humidification-dehumidification process. Here, this unit is considered as a thermal system with three main components, which are the heating unit by using a solar collector, the evaporator or the humidifier, and the condenser or the dehumidifier. In these components the exergy is a measure of the quality or grade of energy and it can be destroyed in them. According to the second law of thermodynamics thi...

  7. State of the States 2016: Arts Education State Policy Summary

    Science.gov (United States)

    Aragon, Stephanie

    2016-01-01

    The "State of the States 2016" summarizes state policies for arts education identified in statute or administrative code for all 50 states and the District of Columbia. Information is based on a comprehensive search of state education statute and codes on each state's relevant websites. Complete results from this review are available in…

  8. Multi-objective Optimization of a Solar Humidification Dehumidification Desalination Unit

    Science.gov (United States)

    Rafigh, M.; Mirzaeian, M.; Najafi, B.; Rinaldi, F.; Marchesi, R.

    2017-11-01

    In the present paper, a humidification-dehumidification desalination unit integrated with solar system is considered. In the first step mathematical model of the whole plant is represented. Next, taking into account the logical constraints, the performance of the system is optimized. On one hand it is desired to have higher energetic efficiency, while on the other hand, higher efficiency results in an increment in the required area for each subsystem which consequently leads to an increase in the total cost of the plant. In the present work, the optimum solution is achieved when the specific energy of the solar heater and also the areas of humidifier and dehumidifier are minimized. Due to the fact that considered objective functions are in conflict, conventional optimization methods are not applicable. Hence, multi objective optimization using genetic algorithm which is an efficient tool for dealing with problems with conflicting objectives has been utilized and a set of optimal solutions called Pareto front each of which is a tradeoff between the mentioned objectives is generated.

  9. Hospital utilization, costs and mortality rates during the first 5 years of life: a population study of ART and non-ART singletons.

    Science.gov (United States)

    Chambers, G M; Lee, E; Hoang, V P; Hansen, M; Bower, C; Sullivan, E A

    2014-03-01

    Do singletons conceived following assisted reproduction technologies (ARTs) have significantly different hospital utilization, and therefore costs, compared with non-ART children during the first 5 years of life? ART singletons have longer hospital birth-admissions and a small increased risk of re-admission during the first 5 years of life resulting in higher costs of hospital care. ART singletons are at greater risk of adverse perinatal outcomes compared with non-ART singletons. Long-term physical and mental health outcomes of ART singletons are generally reassuring. There is a scarcity of information on health service utilization and the health economic impact of ART conceived children. A population cohort study using linked birth, hospital and death records. Perinatal outcomes, hospital utilization and costs, and mortality rates were compared for non-ART and ART singletons to 5 years. Adjustments were made for maternal age, parity, sex, birth year, socioeconomic status and funding source. Australian Diagnosis Related Groups cost-weights were used to derive costs. All costs are reported in 2009/2010 Australian dollars. All babies born in Western Australia between 1994 and 2003 were included; 224 425 non-ART singletons and 2199 ART conceived singletons. Hospital admission and death records in Western Australia linked to 2008 were used. Overall, ART singletons had a significantly longer length of stay during the birth-admission (mean difference 1.8 days, P birth-admission ($1473). The independent residual cost associated with ART conception was $342 during the birth-admission and an additional $548 up to 5 years of age, indicating that being conceived as an ART child predicts not only higher birth-admission costs but excess costs to at least 5 years of age. This study could not investigate the impact of different ART practices and techniques on perinatal outcomes or hospital utilization, nor could it adjust for parental characteristics such as cause of infertility

  10. Microencapsulation Technologies for Corrosion Protective Coating Applications

    Science.gov (United States)

    Li, Wenyan; Buhrow, Jerry; Jolley, Scott; Calle, Luz; Pearman, Benjamin; Zhang, Xuejun

    2015-01-01

    Microencapsulation technologies for functional smart Coatings for autonomous corrosion control have been a research area of strong emphasis during the last decade. This work concerns the development of pH sensitive micro-containers (microparticles and microcapsules) for autonomous corrosion control. This paper presents an overview of the state-of-the-art in the field of microencapsulation for corrosion control applications, as well as the technical details of the pH sensitive microcontainer approach, such as selection criteria for corrosion indicators and corrosion inhibitors; the development and optimization of encapsulation methods; function evaluation before and after incorporation of the microcontainers into coatings; and further optimization to improve coating compatibility and performance.

  11. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    International Nuclear Information System (INIS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-01-01

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  12. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Guo, Changhong; Jiang, Guirong [College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen, Dejiu, E-mail: DejiuShen@163.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-08-15

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  13. Biotribocorrosion-an appraisal of the time dependence of wear and corrosion interactions: I. The role of corrosion

    International Nuclear Information System (INIS)

    Yan, Y; Neville, A; Dowson, D

    2006-01-01

    With the increasing interest in metal-on-metal (MoM) joint implants, studies have been focused on their wear and corrosion behaviour. Integrated electrochemical tests have been conducted and are reported in this paper. The corrosion, wear and wear-corrosion behaviour for three materials (high carbon CoCrMo, low carbon CoCrMo and UNS S31603) have been discussed. Corrosion effects on the overall performance for the three materials are analysed. Two distinct regimes have been found for the three materials: (a) the running-in regime and (b) the steady state regime, in line with other research. Even in the steady state regime, 20%-30% of the material degradation can be attributed to corrosion-related damage. High carbon CoCrMo showed excellent corrosion, wear and corrosion-wear resistance and therefore it delivered the best overall performance in terms of a lower wear rate, a lower friction coefficient and a higher resistance to corrosion

  14. Cost-Effective and Environmentally Safe Corrosion Prevention for 2nd Marine Air Wing Support Equipment Using Desiccant Wheel Dehumidification (DEW)

    National Research Council Canada - National Science Library

    McCarthy, David

    1994-01-01

    ...: change the material, coat its surface or keep the item dry. In an effort to reduce the cost and environmental impact of maintaining contingency support equipment, the 2nd Marine Air Wing (2nd MAW...

  15. Current state of knowledge of water radiolysis effects on spent nuclear fuel corrosion

    International Nuclear Information System (INIS)

    Christensen, H.; Sunder, S.

    2000-07-01

    Literature data on the effect of water radiolysis products on spent-fuel oxidation and dissolution are reviewed. Effects of gamma radiolysis, alpha radiolysis, and dissolved O 2 or H 2 O 2 in unirradiated solutions are discussed separately. Also, the effect of carbonate in gamma-irradiated solutions and radiolysis effects on leaching of spent fuel are reviewed. In addition, a kinetic model for calculating the corrosion rates of UO 2 in solutions undergoing radiolysis is discussed. The model gives good agreement between calculated and measured corrosion rates in the case of gamma radiolysis and in unirradiated solutions containing dissolved oxygen or hydrogen peroxide. However, the model fails to predict the results of alpha radiolysis. In a recent study , it was shown that the model gave good agreement with measured corrosion rates of spent fuel exposed in deionized water. The applications of radiolysis studies for geologic disposal of used nuclear fuel are discussed. (author)

  16. Orphan diseases: state of the drug discovery art.

    Science.gov (United States)

    Volmar, Claude-Henry; Wahlestedt, Claes; Brothers, Shaun P

    2017-06-01

    Since 1983 more than 300 drugs have been developed and approved for orphan diseases. However, considering the development of novel diagnosis tools, the number of rare diseases vastly outpaces therapeutic discovery. Academic centers and nonprofit institutes are now at the forefront of rare disease R&D, partnering with pharmaceutical companies when academic researchers discover novel drugs or targets for specific diseases, thus reducing the failure risk and cost for pharmaceutical companies. Considerable progress has occurred in the art of orphan drug discovery, and a symbiotic relationship now exists between pharmaceutical industry, academia, and philanthropists that provides a useful framework for orphan disease therapeutic discovery. Here, the current state-of-the-art of drug discovery for orphan diseases is reviewed. Current technological approaches and challenges for drug discovery are considered, some of which can present somewhat unique challenges and opportunities in orphan diseases, including the potential for personalized medicine, gene therapy, and phenotypic screening.

  17. Corrosion by concentrated sulfuric acid in carbon steel pipes and tanks: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Panossian, Zehbour; Almeida, Neusvaldo Lira de; Sousa, Raquel Maria Ferreira de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil); Pimenta, Gutemberg de Souza [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas e Desenvolvimento (CENPES); Marques, Leandro Bordalo Schmidt [PETROBRAS Engenharia, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    PETROBRAS, allied to the policy of reduction of emission of pollutants, has been adjusting the processes of the new refineries to obtain products with lower sulfur content. Thus, the sulfur dioxide, extracted from the process gases of a new refinery to be built in the Northeast, will be used to produce sulfuric acid with concentration between (94-96) %. This acid will be stored in carbon steel tanks and transported through a buried 8-km carbon steel pipe from the refinery to a pier, where it will be loaded onto ships and sent to the consumer markets. Therefore, the corrosion resistance of carbon steel by concentrated acid will become a great concern for the mentioned storage and transportation. When the carbon steel comes into contact with concentrated sulfuric acid, there is an immediate acid attack with the formation of hydrogen gas and ferrous ions which, in turn, forms a protective layer of FeSO{sub 4} on the metallic surface. The durability of the tanks and pipes made of carbon steel will depend on the preservation of this protective layer. This work presents a review of the carbon steel corrosion in concentrated sulfuric acid and discusses the preventive methods against this corrosion, including anodic protection. (author)

  18. Is scorpion antivenom cost-effective as marketed in the United States?

    Science.gov (United States)

    Armstrong, Edward P; Bakall, Maja; Skrepnek, Grant H; Boyer, Leslie V

    2013-12-15

    The purpose of this study was to analyze the cost-effectiveness of scorpion antivenom compared to no antivenom, in the United States, using a decision analysis framework. A decision analytic model was created to assess patient course with and without antivenom. Costs were determined from the perspective of a health care payer. Cost data used in the model were extracted from Arizona Medicaid. The probability of clinical events occurring with and without antivenom was obtained from the published literature, medical claims obtained from Arizona Medicaid, and results of recent clinical trials. Patients that became so ill that mechanical ventilator support was necessary were considered treatment failures. A Monte Carlo simulation was run 1000 times and sampled simultaneously across all variable distributions in the model. The mean success rate was 99.87% (95% CI 99.64%-99.98%) with scorpion antivenom and 94.31% (95% CI 91.10%-96.61%) without scorpion antivenom. The mean cost using scorpion antivenom was $10,708 (95% CI $10,556 - $11,010) and the mean cost without scorpion antivenom was $3178 (95% CI $1627 - $5184). Since the 95% CIs do not overlap for either the success or cost, use of the scorpion antivenom was significantly more effective and significantly more expensive than no antivenom. Cost-effectiveness analysis found that the scorpion antivenom was not cost-effective at its current price as marketed in the United States. The scorpion antivenom marketed in the United States is extremely effective, but too costly to justify its use in most clinical situations. Formulary committees should restrict the use of this antivenom to only the most severe scorpion envenomations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Effect of nanograin-boundary networks generation on corrosion of carburized martensitic stainless steel.

    Science.gov (United States)

    Boonruang, Chatdanai; Thong-On, Atcharawadi; Kidkhunthod, Pinit

    2018-02-02

    Martensitic stainless steel parts used in carbonaceous atmosphere at high temperature are subject to corrosion which results in a large amount of lost energy and high repair and maintenance costs. This work therefore proposes a model for surface development and corrosion mechanism as a solution to reduce corrosion costs. The morphology, phase, and corrosion behavior of steel are investigated using GIXRD, XANES, and EIS. The results show formation of nanograin-boundary networks in the protective layer of martensitic stainless steel. This Cr 2 O 3 -Cr 7 C 3 nanograin mixture on the FeCr 2 O 4 layer causes ion transport which is the main reason for the corrosion reaction during carburizing of the steel. The results reveal the rate determining steps in the corrosion mechanism during carburizing of steel. These steps are the diffusion of uncharged active gases in the stagnant-gas layer over the steel surface followed by the conversion of C into C 4- and O into O 2- at the gas-oxide interface simultaneously with the migration of Cr 3+ from the metal-oxide interface to the gas-oxide interface. It is proposed that previous research on Al 2 O 3 coatings may be the solution to producing effective coatings that overcome the corrosion challenges discussed in this work.

  20. Cost of a dedicated ART clinic | Harling | South African Medical ...

    African Journals Online (AJOL)

    Little evidence exists on the cost of running clinics for ART provision. Objectives. To determine the cost per patient-month enrolled in an ART programme and per patient-visit for a dedicated, public-sector ART clinic in a South African peri-urban setting in 2004/05 and 2005/06, as the clinic moved from a temporary to a ...

  1. Cost-effectiveness of human papillomavirus vaccination in the United States.

    Science.gov (United States)

    Chesson, Harrell W; Ekwueme, Donatus U; Saraiya, Mona; Markowitz, Lauri E

    2008-02-01

    We describe a simplified model, based on the current economic and health effects of human papillomavirus (HPV), to estimate the cost-effectiveness of HPV vaccination of 12-year-old girls in the United States. Under base-case parameter values, the estimated cost per quality-adjusted life year gained by vaccination in the context of current cervical cancer screening practices in the United States ranged from $3,906 to $14,723 (2005 US dollars), depending on factors such as whether herd immunity effects were assumed; the types of HPV targeted by the vaccine; and whether the benefits of preventing anal, vaginal, vulvar, and oropharyngeal cancers were included. The results of our simplified model were consistent with published studies based on more complex models when key assumptions were similar. This consistency is reassuring because models of varying complexity will be essential tools for policy makers in the development of optimal HPV vaccination strategies.

  2. Ecological effects assessment: requirements vs state-of-the-art

    International Nuclear Information System (INIS)

    McKenzie, D.H.; Thomas, J.M.; Eberhardt, L.L.

    1981-05-01

    Concerns for environmental quality, the ecologist's understanding of ecosystems, and the ability to quantitatively sample and evaluate hypotheses have contributed to current requirements and the state-of-the-art in ecological effects assessments in refard to nuclear power plants. The current cooling system approaches, data collection programs, and ecological effects assessments reflect these contributions. Over a decade of experience provides the basis for a timely review and evaluation of current proactice. The magnitude of economic and environmental resources being committed to cooling system alternatives mandates that the decision-making process result in as many optimal choices as possible. In addition, the resources being devoted to environmental data collection and integration provide considerable motivation for providing meaningful input to the decision-making process. It is maintained that the input should be as quantitative and as free from subjective content as is reasonably possible. An alternative viewpoint suggests that the past several decades of experience be considered but a first step, and the current task to be one of designing a second step

  3. The effects of corrosion conditions and cold work on the nodular corrosion of zircaloy-4

    International Nuclear Information System (INIS)

    You, Gil Sung

    1992-02-01

    The nodular corrosion of Zircaloy-4 was investigated on the effects of corrosion conditions and cold work. Variation of steam pressures, heat-up environments and prefilms were considered and cold work effects were also studied. The corrosion rate of Zircaloy-4 was dependent on pressure between 1 and 100 atm and it followed the cubic law as W=16.85 x P 0.31 for plate specimens and W=12.69 x P 0.27 for tube specimens, where W is weight gain (mg/dm 2 ) and P is the steam pressure (atm). The environment variation in autoclave during heat-up period did not affect the early stage of nodular corrosion. The prefilm, which was formed at 500 .deg. C under 1 atm steam for 4 hours, restrained the formation of the initial small nodules. The oxide film formed under 1 atm steam showed no difference of electrical resistivity from the oxides formed under 100 atm steam pressure. Cold work specimens showed the higher resistivity against nodular corrosion than as-received specimens. The corrosion resistance arising from cold work seems to be due to the texture changes by the cold work. The results showed that cold work can affect the later stage of uniform corrosion and the early stage of nodular corrosion, namely, the nodule initiation stage

  4. Corrosion '98: 53. annual conference and exposition, proceedings

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    This conference was divided into the following sections: Corrosion in Gas Treating; Problems and Solutions in Commercial Building Water Systems; Green Corrosion/Scale Inhibitors; Atmospheric Corrosion; AIRPOL Update/98; Rubber Lining--Answers to Many Problems; Interference Problems; Environmental Assisted Cracking: Fundamental Research and Industrial Applications; Corrosion in Nuclear Systems; New Developments in Scale and Deposit Control; Corrosion and Corrosion Protection in the Transportation Industries; What's All the Noise About--Electrochemical That Is; Refining Industry Corrosion; Corrosion Problems in Military Hardware: Case Histories, Fixes and Lessons Learned; Cathodic Protection Test Methods and Instrumentation for Underground and On-grade Pipelines and Tanks; Recent Developments in Volatile Corrosion Inhibitors; Corrosion in Supercritical Fluids; Microbiologically Influenced Corrosion; Advances in Understanding and Controlling CO 2 Corrosion; Managing Corrosion with Plastics; Material Developments for Use in Exploration and Production Environments; Corrosion in Cold Regions; The Effect of Downsizing and Outsourcing on Cooling System Monitoring and Control Practices; New Developments in Mechanical and Chemical Industrial Cleaning; Mineral Scale Deposit Control in Oilfield Related Operations; Biocides in Cooling Water; Corrosion and Corrosion Control of Reinforced Concrete Structures; Materials Performance for Fossil Energy Conversion Systems; Marine corrosion; Thermal Spray--Coating and Corrosion Control; Flow Effects on Corrosion in Oil and Gas Production; Corrosion Measurement Technologies; Internal Pipeline Monitoring--Corrosion Monitoring, Intelligent Pigging and Leak Detection; Cathodic Protection in Natural Waters; Corrosion in Radioactive Liquid Waste Systems; On-line Hydrogen Permeation Monitoring Equipment and Techniques, State of the Art; Water Reuse and Recovery; Performance of Materials in High Temperature Environments; Advances in Motor

  5. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of North Dakota. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  6. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of West Virginia. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  7. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of New Mexico. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  8. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of New York

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of New York. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  9. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Rhode Island

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Rhode Island. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  10. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of New Hampshire. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  11. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of North Carolina. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  12. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of New Jersey. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  13. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of South Carolina. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  14. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of South Dakota. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  15. State-of-the-art of wind turbine design codes: main features overview for cost-effective generation

    Energy Technology Data Exchange (ETDEWEB)

    Molenaar, D-P.; Dijkstra, S. [Delft University of Technology (Netherlands). Mechanical Engineering Systems and Control Group

    1999-07-01

    For successful large-scale application of wind energy, the price of electricity generated by wind turbines should decrease. Model-based control can be important since it has the potential to reduce fatigue loads, while simultaneously maintaining a desired amount of energy production. The controller synthesis, however, requires a mathematical model describing the most important dynamics of the complete wind turbine. In the wind energy community there is a wide variety in codes used to model a wind turbine's dynamic behaviour or to carry out design calculations. In this paper, the main features of the state-of-the-art wind turbine design codes have been investigated in order to judge the appropriateness of using one of these for the modeling, identification and control of flexible, variable speed wind turbines. It can be concluded that, although the sophistication of the design codes has increased enormously over the last two decades, they are, in general, not suitable for the design, and easy implementation of optimal operating strategies.

  16. A New Corrosion Sensor to Determine the Start and Development of Embedded Rebar Corrosion Process at Coastal Concrete

    Directory of Open Access Journals (Sweden)

    Weiliang Jin

    2013-09-01

    Full Text Available The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate.

  17. A new corrosion sensor to determine the start and development of embedded rebar corrosion process at coastal concrete.

    Science.gov (United States)

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-09-30

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate.

  18. State of the art magnetic resonance imaging

    International Nuclear Information System (INIS)

    Weissman, J.D.

    1987-01-01

    In less than a decade Magnetic Resonance Imaging (MRI) has evolved from a laboratory demonstration to a safe and effective technique for clinical diagnosis. This evolutionary process continues. At this time 2-D and 3-D imaging of the head and body is firmly established in clinical use. Surface coil imaging, two-component chemical shift imaging, in-vivo spectroscopy and flow imaging are currently in various stages of development. The present state of the art of MRI is a function of an array of technologies: magnet, Rf coil, Rf pulse amplifier, gradient coil and driver, pulse programmer, A/D converter, computer system architecture, array processors and mass storage (both magnetic and optical). The overall product design is the result of a complex process which balances the advantages and disadvantages of each component for optimal system performance and flexibility. The author discusses the organization of a state-of-the-art MRI system. Several examples of the kinds of system interactions affecting design choices are given. (Auth.)

  19. Improving corrosion resistance of post-tensioned substructures emphasizing high performance grouts

    Science.gov (United States)

    Schokker, Andrea Jeanne

    The use of post-tensioning in bridges can provide durability and structural benefits to the system while expediting the construction process. When post-tensioning is combined with precast elements, traffic interference can be greatly reduced through rapid construction. Post-tensioned concrete substructure elements such as bridge piers, hammerhead bents, and straddle bents have become more prevalent in recent years. Chloride induced corrosion of steel in concrete is one of the most costly forms of corrosion each year. Coastal substructure elements are exposed to seawater by immersion or spray, and inland bridges may also be at risk due to the application of deicing salts. Corrosion protection of the post-tensioning system is vital to the integrity of the structure because loss of post-tensioning can result in catastrophic failure. Documentation for durability design of the grout, ducts, and anchorage systems is very limited. The objective of this research is to evaluate the effectiveness of corrosion protection measures for post-tensioned concrete substructures by designing and testing specimens representative of typical substructure elements using state-of-the-art practices in aggressive chloride exposure environments. This was accomplished through exposure testing of twenty-seven large-scale beam specimens and ten large-scale column specimens. High performance grout for post-tensioning tendon injection was also developed through a series of fresh property tests, accelerated exposure tests, and a large-scale pumping test to simulate field conditions. A high performance fly ash grout was developed for applications with small vertical rises, and a high performance anti-bleed grout was developed for applications involving large vertical rises such as tall bridge piers. Long-term exposure testing of the beam and column specimens is ongoing, but preliminary findings indicate increased corrosion protection with increasing levels of post-tensioning, although traditional

  20. Commercial high efficiency dehumidification systems using heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    An improved heat pipe design using separately connected two-section one-way flow heat pipes with internal microgrooves instead of wicks is described. This design is now commercially available for use to increase the dehumidification capacity of air conditioning systems. The design also includes a method of introducing fresh air into buildings while recovering heat and controlling the humidity of the incoming air. Included are applications and case studies, load calculations and technical data, and installation, operation, and maintenance information.

  1. A state of the art on electrochemical noise technique. Assessment of corrosion characteristics and development of remedial technology in nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Jin; Kim, Joung Soo; Kim, Hong Pyo; Lim, Yun Soo; Yi, Yong Sun; Chung, Man Kyo

    2003-02-01

    The studies for the application of electrochemical noise technique were reviewed in terms of principle, analysing method and application examples of this technique. Because 4% of the economic damage of industry is caused by metallic corrosion, it is important to find and protect corrosive materials and location. By corrosion monitoring of industrial facilities such as nuclear power plant using Electrochemical Noise Measurement(ENM), corrosion attack can be detected and furthermore it can be indicated whether the attacked materials is replaced by new one or not. According to development of control and electronic technology, it was easy to apply ENM to the industry and the interest in ENM also increased. As corrosion is produced on a metal under corrosive environment, local anode(oxidation) and cathode(reduction) are formed. Hence, there is potential difference and current flow between the anode and cathode. ENM is monitoring the potential difference and the current flow with time by high impedance load voltmeter and Zero Resistance Ammeter(ZRA), respectively. The potential difference and current flow generated spontaneously without any application of current and potential between electrodes are monitored by electrochemical noise technique, Thereby ENM can be regarded as the most ideal corrosion monitoring method for the industrial facility and nuclear power plant having corrosion damage and difficulty in access of human body. Moreover, it is possible to obtain the spontaneous and reliable results from the metals damaged by ununiform and localized corrosion such as pitting and SCC using ENM while it is difficult to obtain the reliable result using traditional linear polarization and ac-impedance measurement. In many countries, there are extensive works concerned with application of electrochemical noise technique to corrosion monitoring of nuclear power plant and other industrial facilities, whereas there is little work on this field in Korea. Systematic study for

  2. Design of State-of-the-art Flow Cells for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-31

    The worldwide energy demand is increasing every day and it necessitates rational and efficient usage of renewable energy. Undoubtedly, utilization of renewable energy can address various environmental challenges. However, all current renewable energy resources (wind, solar, and hydroelectric power) are intermittent and fluctuating in their nature that raises an important question of introducing effective energy storage solutions. Utilization of redox flow cells (RFCs) has recently been recognized as a viable technology for large-scale energy storage and, hence, is well suited for integrating renewable energy and balancing electricity grids. In brief, RFC is an electrochemical storage device where energy is stored in chemical bonds, similar to a battery, but with reactants external to the cell. The state-of-the-art in flow cell technology uses an aqueous acidic electrolyte and simple metal redox couples. Thus, there is an urgent call to develop efficient (high-energy density) and low-cost RFCs to meet the efflorescent energy storage demands. To address the first challenge of achieving high-energy density, we plan to design and further modify complexes composed of bifunctional multidentate ligands and specific metal centers, capable of storing as many electrons as possible. In order to address the second challenge of reducing cost of the RFCs, we plan to use iron (Fe) metal as it regularly occupies multiple oxidation states and is the second most abundant metal in the earth’s crust that makes it an ideal metal for improved energy densities, higher potentials, and numbers of electrons per molecule while maintaining potential cost competitiveness. Density functional theory calculations considering solvation effects will be performed to yield accurate predictions of redox potentials.

  3. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Science.gov (United States)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  4. The Art of the Renaissance Capitalist State

    Directory of Open Access Journals (Sweden)

    Rebeka Vidrih

    2007-12-01

    This article also highlights the fact that the concept of art developed in Florence – a city-state that played an important role in the early-capitalist world of the Renaissance, but never assumed a leading role like Venice and Genoa. »Art« was thus created through Florence’s efforts to demonstrate its equality and importance and, although it failed to achieve this in the field of the (capitalist economy, it at least succeeded in the field of the (absolutist state that was subordinate to this economy.

  5. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates

    Science.gov (United States)

    Dur, Ender; Cora, Ömer Necati; Koç, Muammer

    2014-01-01

    Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.

  6. Performance analysis of a direct expansion air dehumidification system combined with membrane-based total heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Cai-Hang; Zhang, Li-Zhi; Pei, Li-Xia [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2010-09-15

    A direct expansion (DX) air dehumidification system is an efficient way to supply fresh and dry air to a built environment. It plays a key role in preventing the spread of respiratory disease like Swine flu (H1N1). To improve the efficiency of a conventional DX system in hot and humid regions, a new system of DX in combination with a membrane-based total heat exchanger is proposed. Air is supplied with dew points. A detailed mathematical modeling is performed. A cell-by-cell simulation technique is used to simulate its performances. A real prototype is built in our laboratory in South China University of Technology to validate the model. The effects of inlet air humidity and temperature, evaporator and condenser sizes on the system performance are investigated. The results indicate that the model can predict the system accurately. Compared to a conventional DX system, the air dehumidification rate (ADR) of the novel system is 0.5 times higher, and the coefficient of performance (COP) is 1 times higher. Furthermore, the system performs well even under harsh hot and humid weather conditions. (author)

  7. Shadow corrosion phenomenon. An out-of-pile study on electrochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Nadine

    2017-04-28

    The focus of the present thesis was the study of the enhanced corrosion phenomenon named ''Shadow Corrosion''. Within the context of researching based on the corrosion mechanism as well as the influencing parameters and driving forces, which cause or even intensify the corrosion, a variety of electrochemical characterization and surface analysis techniques were used. The first part of this thesis gives a short introduction with the definition of the term Shadow Corrosion and of the specific type called ''Enhanced Spacer Shadow Corrosion'' (ESSC). This is followed by a description of the involved materials being Zircaloy and Inconel 718. Chapter 2 introduces the background knowledge including fundamentals about environ-mental conditions under which Shadow Corrosion occurs as well as the oxidation behavior of Zircaloy and Inconel 718. Furthermore, the state of the art about the Shadow Corrosion mechanism is presented and a description of the influencing effects on the enhanced corrosion phenomenon, like galvanic corrosion, water radiolysis, and photo-effect, is given. Further information and parameters on the part of AREVA GmbH concerning water impurities and a used coating layer on Inconel 718 are listed, which are of interest for the issue concerning the phenomenon Shadow Corrosion. The last part of this chapter contains the experimental conditions and parameters for the laboratory experiments with focus on water chemistry, specimen geometry, and UV-light exposure for photoexcitation and water radiolysis. Three different working hypotheses of this thesis are described in chapter 3. One hypothesis regarding the Shadow Corrosion Phenomenon is based on a galvanic corrosion mechanism between Zircaloy and Inconel 718. In addition, it is supposed that the galvanic corrosion could be influenced by the deposition of silver on Zircaloy and Inconel 718 in the form of an increased galvanic current. A further assumption is that the

  8. Shadow corrosion phenomenon. An out-of-pile study on electrochemical effects

    International Nuclear Information System (INIS)

    Weber, Nadine

    2017-01-01

    The focus of the present thesis was the study of the enhanced corrosion phenomenon named ''Shadow Corrosion''. Within the context of researching based on the corrosion mechanism as well as the influencing parameters and driving forces, which cause or even intensify the corrosion, a variety of electrochemical characterization and surface analysis techniques were used. The first part of this thesis gives a short introduction with the definition of the term Shadow Corrosion and of the specific type called ''Enhanced Spacer Shadow Corrosion'' (ESSC). This is followed by a description of the involved materials being Zircaloy and Inconel 718. Chapter 2 introduces the background knowledge including fundamentals about environ-mental conditions under which Shadow Corrosion occurs as well as the oxidation behavior of Zircaloy and Inconel 718. Furthermore, the state of the art about the Shadow Corrosion mechanism is presented and a description of the influencing effects on the enhanced corrosion phenomenon, like galvanic corrosion, water radiolysis, and photo-effect, is given. Further information and parameters on the part of AREVA GmbH concerning water impurities and a used coating layer on Inconel 718 are listed, which are of interest for the issue concerning the phenomenon Shadow Corrosion. The last part of this chapter contains the experimental conditions and parameters for the laboratory experiments with focus on water chemistry, specimen geometry, and UV-light exposure for photoexcitation and water radiolysis. Three different working hypotheses of this thesis are described in chapter 3. One hypothesis regarding the Shadow Corrosion Phenomenon is based on a galvanic corrosion mechanism between Zircaloy and Inconel 718. In addition, it is supposed that the galvanic corrosion could be influenced by the deposition of silver on Zircaloy and Inconel 718 in the form of an increased galvanic current. A further assumption is that the galvanic current could be decreased by a Cr

  9. Cryptococcal Meningitis Treatment Strategies Affected by the Explosive Cost of Flucytosine in the United States: A Cost-effectiveness Analysis.

    Science.gov (United States)

    Merry, Matthew; Boulware, David R

    2016-06-15

    In the United States, cryptococcal meningitis causes approximately 3400 hospitalizations and approximately 330 deaths annually. The US guidelines recommend treatment with amphotericin B plus flucytosine for at least 2 weeks, followed by fluconazole for a minimum of 8 weeks. Due to generic drug manufacturer monopolization, flucytosine currently costs approximately $2000 per day in the United States, with a 2-week flucytosine treatment course costing approximately $28 000. The daily flucytosine treatment cost in the United Kingdom is approximately $22. Cost-effectiveness analysis was performed to determine the value of flucytosine relative to alternative regimens. We estimated the incremental cost-effectiveness ratio (ICER) of 3 cryptococcal induction regimens: (1) amphotericin B deoxycholate for 4 weeks; (2) amphotericin and flucytosine (100 mg/kg/day) for 2 weeks; and (3) amphotericin and fluconazole (800 mg/day) for 2 weeks. Costs of care were calculated using 2015 US prices and the medication costs. Survival estimates were derived from a randomized trial and scaled relative to published US survival data. Cost estimates were $83 227 for amphotericin monotherapy, $75 121 for amphotericin plus flucytosine, and $44 605 for amphotericin plus fluconazole. The ICER of amphotericin plus flucytosine was $23 842 per quality-adjusted life-year. Flucytosine is currently cost-effective in the United States despite a dramatic increase in price in recent years. Combination therapy with amphotericin and flucytosine is the most attractive treatment strategy for cryptococcal meningitis, though the rising price may be creating access issues that will exacerbate if the trend of profiteering continues. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  10. Corrosion resistant alloy uses in the power industry

    International Nuclear Information System (INIS)

    Nickerson, J.L.; Hall, F.A.; Asphahani, A.I.

    1989-01-01

    Nickel-base alloys have been used as cost-effective measures in a variety of severely corrosive situations in pollution control units for coal-fired power plants. Cost effectiveness and practical answers to corrosion problems are illustrated (specifically the wallpaper concept/metallic lining technique). Numerous cases of successful use of HASTELLOY alloys in Flue Gas Desulfurization (FGD) systems and hazardous waste treatment incineration scrubber systems are listed. In this paper developments in nickel-base alloys and their use in FGD and other segments of the power industry are discussed. In the Ni-Cr-Mo-W alloy family, the C-22 alloy has the best resistance to localized corrosion in halide environments (chloride/fluoride-containing solutions). This alloy is also used effectively as a universal filler metal to weld less-resistant alloys were weld corrosion may be a problem. Field performance of this alloy in the power industry is described

  11. The impact of corrosion on oil and gas industry

    International Nuclear Information System (INIS)

    Kermani, M.B.; Harrop, D.

    1995-01-01

    The impact of corrosion on the oil industry has been viewed in terms of its effect on both capital and operational expenditures (CAPEX and OPEX) and health, safety and the environment (HSE). To fight against the high cost and the impact of corrosion within the oil industry, an overview of topical research and engineering activities is presented. This covers corrosion and metallurgy issues related to drilling, production, transportation and refinery activities

  12. The cost-effectiveness of male HPV vaccination in the United States.

    Science.gov (United States)

    Chesson, Harrell W; Ekwueme, Donatus U; Saraiya, Mona; Dunne, Eileen F; Markowitz, Lauri E

    2011-10-26

    The objective of this study was to estimate the cost-effectiveness of adding human papillomavirus (HPV) vaccination of 12-year-old males to a female-only vaccination program for ages 12-26 years in the United States. We used a simplified model of HPV transmission to estimate the reduction in the health and economic burden of HPV-associated diseases in males and females as a result of HPV vaccination. Estimates of the incidence, cost-per-case, and quality-of-life impact of HPV-associated health outcomes were based on the literature. The HPV-associated outcomes included were: cervical intraepithelial neoplasia (CIN); genital warts; juvenile-onset recurrent respiratory papillomatosis (RRP); and cervical, vaginal, vulvar, anal, oropharyngeal, and penile cancers. The cost-effectiveness of male vaccination depended on vaccine coverage of females. When including all HPV-associated outcomes in the analysis, the incremental cost per quality-adjusted life year (QALY) gained by adding male vaccination to a female-only vaccination program was $23,600 in the lower female coverage scenario (20% coverage at age 12 years) and $184,300 in the higher female coverage scenario (75% coverage at age 12 years). The cost-effectiveness of male vaccination appeared less favorable when compared to a strategy of increased female vaccination coverage. For example, we found that increasing coverage of 12-year-old girls would be more cost-effective than adding male vaccination even if the increased female vaccination strategy incurred program costs of $350 per additional girl vaccinated. HPV vaccination of 12-year-old males might potentially be cost-effective, particularly if female HPV vaccination coverage is low and if all potential health benefits of HPV vaccination are included in the analysis. However, increasing female coverage could be a more efficient strategy than male vaccination for reducing the overall health burden of HPV in the population. Published by Elsevier Ltd.

  13. Effect of Precipitate State on Mechanical Properties, Corrosion Behavior, and Microstructures of Al-Zn-Mg-Cu Alloy

    Science.gov (United States)

    Peng, Xiaoyan; Li, Yao; Xu, Guofu; Huang, Jiwu; Yin, Zhimin

    2018-03-01

    The mechanical properties, corrosion behavior and microstructures of the Al-Zn-Mg-Cu alloy under various ageing treatments were investigated comparatively. The results show that the tensile strength and corrosion resistance are strongly affected by the precipitate state. Massive fine intragranular precipitates contribute to high strength. Discontinuous coarse grain boundary precipitates containing high Cu content, as well as the narrow precipitate free zone, result in low corrosion susceptibility. After the non-isothermal ageing (NIA) treatment, the tensile strength of 577 MPa is equivalent to that of 579 MPa for the T6 temper. Meanwhile, the stress corrosion susceptibility r tf and the maximum corrosion depth are 97.8% and 23.5 μm, which are comparable to those of 92.8% and 26.7 μm for the T73 temper. Moreover, the total ageing time of the NIA treatment is only 7.25 h, which is much less than that of 48.67 h for the retrogression and re-ageing condition.

  14. The effect of corrosion on stained glass windows

    Directory of Open Access Journals (Sweden)

    Laissner, Johanna

    1996-06-01

    Full Text Available Stained glass windows belong to the most important cultural heritage of Europe. Within the last decades a disastrous deterioration took place. The wonderful stained glass windows and their glass paintings as pieces of art are acutely menaced by environmental corrosive influences. This corrosion process is a very complex reaction which is not only influenced by temperature and humidity changes but also by gaseous pollutants like sulfur dioxide, nitrogen oxides or ozone, by dust and air, microorganisms as well as synergetic interactions. Strongly affected by these environmental attacks are medieval stained glasses due to their chemical composition. They have a low content in silica and high contents of modifier ions (e.g. potassium and calcium. The corrosion phenomena can range from predominantly pitting on the surface to the formation of thick corrosion crusts which are turning the panel opaque and thus reducing strongly the transparency of the windows. In order to set up a conservation and restoration concept, it is necessary to know about the environmental conditions to which the stained glass windows are exposed. For this purpose very corrosion sensitive model glasses (so called glass sensors were developed which have a similar chemical composition as historic stained glasses. They exhibit the same corrosion reactions but react much faster, and are now widely used to estimate corrosive stresses on stained glass windows to give basic information about the corrosive impacts which work on the historic glasses. In this paper principle corrosion mechanisms of stained glass windows and their enhancing factors are discussed. For the evaluation of the environmental impact, the application of glass sensors is demonstrated.

    Las vidrieras coloreadas pertenecen al legado cultural más importante de Europa. En las últimas décadas se ha producido en ellas un desastroso deterioro. Las maravillosas vidrieras coloreadas y sus policromías est

  15. Investigation of parameters governing the corrosion protection efficacy of fusion bonded epoxy coatings

    OpenAIRE

    Ramniceanu, Andrei

    2007-01-01

    The primary cause of corrosion in transportation structures is due to chlorides which are applied to bridge decks as deicing salts. The direct cost of corrosion damage to the countryâ s infrastructure is approximately $8.3 billion per year. One of the most common corrosion abatement methods in the United States is the barrier protection implemented through the application of fusion bonded epoxy coatings. The purpose of this study was to investigate various coating and exposure param...

  16. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  17. Monitoring corrosion of steel bars in reinforced concrete structures.

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  18. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Verma

    2014-01-01

    Full Text Available Corrosion of steel bars embedded in reinforced concrete (RC structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP method. This paper also presents few techniques to protect concrete from corrosion.

  19. Effect of surface stress states on the corrosion behavior of alloy 690

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Mo; Shim, Hee Sang; Seo, Myung Ji; Hur, Do Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The test environment simulated the primary water chemistry in PWRs. Dissolved oxygen (DO), dissolved hydrogen (DH), pH and conductivity were monitored at room temperature using sensors manufactured by Orbisphere and Mettler Toledo. The temperature and pressure were maintained at 330 .deg. C and 150 bars during the corrosion test. The condition of the test solution was lithium (LiOH) 2 ppm and boron (H3BO4) 1,200 ppm, DH 35 cc/kg (STP) and less than 5 ppb DO. The flow rate of the loop system was 3.8 L/hour. Corrosion tests were conducted for 500 hours. The corrosion release rate was evaluated by a gravimetric analysis method using a two-step alkaline permanganate-ammonium citrate (AP/AC) descaling process. Compressive residual stress is induced by shot peening treatment but its value reveals some different trend between the shot peening intensity on the surface of Alloy 690 TT. A higher shot peening intensity causes a reduction in the corrosion rate and it is considered that the compressive residual stress beneath the surface layer suppresses the metal ion transfer in an alloy matrix.

  20. Water vapor permeation and dehumidification performance of poly(vinyl alcohol)/lithium chloride composite membranes

    KAUST Repository

    Bui, Duc Thuan

    2015-10-09

    Thin and robust composite membranes comprising stainless steel scaffold, fine and porous TiO2 and polyvinyl alcohol/lithium chloride were fabricated and studied for air dehumidification application. Higher hydrophilicity, sorption and permeation were observed for membranes with increased lithium chloride content up to 50%. The permeation and sorption properties of the membranes were investigated under different temperatures. The results provided a deeper insight into the membrane water vapor permeation process. It was specifically noted that lithium chloride significantly reduces water diffusion energy barrier, resulting in the change of permeation energy from positive to negative values. Higher water vapor permeance was observed for the membrane with higher LiCl content at lower temperature. The isothermal air dehumidification tests show that the membrane is suitable for dehumidifying air in high humid condition. Additionally, results also indicate a trade-off between the humidity ratio drop with the water vapor removal rate when varying air flowrate.

  1. Base technology development enhances state-of-the-art in meeting performance requirements

    International Nuclear Information System (INIS)

    Freedman, J.M.; Allen, G.C. Jr.; Luna, R.E.

    1987-01-01

    Sandia National Laboratories (SNL) has responsibility to the United States Department of Energy (DOE) for baseline technology to support the design of radioactive material transportation packages. To fulfill this responsibility, SNL works with industry, government agencies, and national laboratories to identify and develop state-of-the-art technology required to design and test safe, cost-effective radioactive materials packages. Principal elements of the base technology program include: 1) analysis techniques, 2) testing, 3) subsystem and component development, 4) packaging systems development support, and 5) technical support for policy development. These program elements support a systems approach for meeting performance requirements and assure that there is a sound underlying technical basis for both transportation packaging design and associated policy decisions. Highlights from the base technology program included in this paper are testing, design and analysis methods, advanced materials, risk assessment and logistics models, and transportation package support

  2. Effect of separation and drainage of condensate on dehumidification in a refrigerated dryer; Reito joshitsuki ni okeru gyoshukusui bunri/haishutsu noryoku no joshitsu seino ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Goto, H.; Ichinose, T. [SMC Corp., Tokyo (Japan); Tanzawa, Y.; Hashizume, T. [Waseda Univ., Tokyo (Japan). Science and Engineering Research Lab.

    1995-11-15

    The representative refrigerated dryer as the compressed air dryers is one in which air was cooled at rather low temperature by working medium of refrigerators, and the dew point was decreased with increase of pressure, and air with low relative humility called as the dried air was obtained again by heating. In this paper, for clarifying effect of separation and drainage of condensate on dehumidification in a refrigerated dryer in relation to shape of a main cooler and a precool-reheater and air temperature of each part, calculation and experimental investigation were conducted. In a refrigerated dryer, condensate happened in the precool part of a precool-reheater and a main cooler, and this would give rise to reduce of separation and drainage of condensate and increase of thermal loads of each heat exchange, and would made dehumidification low. For a fact that decrease of separation and drainage of condensate in a main cooler would bring out heat conduction with phase change in the reheating part of a precool-reheater, it has a profitable side, but it is not desirable for ability of dryers. 6 refs., 9 figs., 1 tab.

  3. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    International Nuclear Information System (INIS)

    Ebert, W.L.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs

  4. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W.L. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs.

  5. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    Science.gov (United States)

    Calle, Luz Marina

    2015-01-01

    The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  6. Using EnergyPlus to Perform Dehumidification Analysis on Building America Homes

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, Dane [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-03-01

    This study used EnergyPlus to investigate humidity issues on a typical mid-1990s reference home, a 2006 International Energy Conservation Code home, and a high-performance home in a hot-humid climate; the study confirmed that supplemental dehumidification should be provided to maintain space relative humidity below 60% in a hot-humid climate.

  7. Influence of steam generator surface state on corrosion and oxide formation

    International Nuclear Information System (INIS)

    Mazenc, Arnaud; Leclercq, Stephanie; Seyeux, Antoine; Galtayries, Anouk; Marcus, Philippe

    2012-09-01

    The corrosion and release of nickel-based alloy Steam Generator tubes are partly due to their surface state. Among the most important parameters influencing the corrosion, the effect of grain size and the effect of grain crystallographic orientation have been chosen to be studied. The aim of this study is to determine how these parameters have an impact on the corrosion of Steam Generator tubes. Thermal treatments (700 deg. C and 1050 deg. C) have been performed on several samples in Alloy 690 to obtain homogeneous grain sizes, varying from 25 μm to 110 μm. Two samples have been oxidised for four days in a recirculating autoclave, reproducing primary conditions. The changes of oxide composition and thickness were examined by ToF-SIMS on samples exposed to primary water conditions. The intensity profiles versus thicknesses of characteristic oxide anions, such as CrO - , NiO - or FeO - enable us to evaluate the effect of grain size and crystallographic orientation on the formation of an enriched inner chromium layer. As regards to the grain size, there was no effect on the growth, but smaller grains led to a chromium-rich oxide layer. The effect of crystallographic orientation was observed on the oxidation kinetics and the composition of oxide scales. (authors)

  8. Characterizing Corrosion Effects of Weak Organic Acids Using a Modified Bono Test

    Science.gov (United States)

    Zhou, Yuqin; Turbini, Laura J.; Ramjattan, Deepchand; Christian, Bev; Pritzker, Mark

    2013-12-01

    To meet environmental requirements and achieve benefits of cost-effective manufacturing, no-clean fluxes (NCFs) or low-solids fluxes have become popular in present electronic manufacturing processes. Weak organic acids (WOAs) as the activation ingredients in NCFs play an important role, especially in the current lead-free and halogen-free soldering technology era. However, no standard or uniform method exists to characterize the corrosion effects of WOAs on actual metallic circuits of printed wiring boards (PWBs). Hence, the development of an effective quantitative test method for evaluating the corrosion effects of WOAs on the PWB's metallic circuits is imperative. In this paper, the modified Bono test, which was developed to quantitatively examine the corrosion properties of flux residues, is used to characterize the corrosion effects of five WOAs (i.e., abietic acid, succinic acid, glutaric acid, adipic acid, and malic acid) on PWB metallic circuits. Experiments were performed under three temperature/humidity conditions (85°C/85% RH, 60°C/93% RH, and 40°C/93% RH) using two WOA solution concentrations. The different corrosion effects among the various WOAs were best reflected in the testing results at 40°C and 60°C. Optical microscopy was used to observe the morphology of the corroded copper tracks, and scanning electron microscopy (SEM) energy-dispersive x-ray (EDX) characterization was performed to determine the dendrite composition.

  9. A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models

    International Nuclear Information System (INIS)

    Vanaei, H.R.; Eslami, A.; Egbewande, A.

    2017-01-01

    Pipelines are the very important energy transmission systems. Over time, pipelines can corrode. While corrosion could be detected by in-line inspection (ILI) tools, corrosion growth rate prediction in pipelines is usually done through corrosion rate models. For pipeline integrity management and planning selecting the proper corrosion ILI tool and also corrosion growth rate model is important and can lead to significant savings and safer pipe operation. In this paper common forms of pipeline corrosion, state of the art ILI tools, and also corrosion growth rate models are reviewed. The common forms of pipeline corrosion introduced in this paper are Uniform/General Corrosion, Pitting Corrosion, Cavitation and Erosion Corrosion, Stray Current Corrosion, Micro-Bacterial Influenced Corrosion (MIC). The ILI corrosion detection tools assessed in this study are Magnetic Flux Leakage (MFL), Circumferential MFL, Tri-axial MFL, and Ultrasonic Wall Measurement (UT). The corrosion growth rate models considered in this study are single-value corrosion rate model, linear corrosion growth rate model, non-linear corrosion growth rate model, Monte-Carlo method, Markov model, TD-GEVD, TI-GEVD model, Gamma Process, and BMWD model. Strengths and limitations of ILI detection tools, and also corrosion predictive models with some practical examples are discussed. This paper could be useful for those whom are supporting pipeline integrity management and planning. - Highlights: • Different forms of pipeline corrosion are explained. • Common In-Line Inspection (ILI) tools and corrosion growth rate models are introduced. • Strength and limitations of corrosion growth rate models/ILI tools are discussed. • For pipeline integrity management programs using more than one corrosion growth rate model/ILI tool is suggested.

  10. The Effect of Homogenization on the Corrosion Behavior of Al-Mg Alloy

    Science.gov (United States)

    Li, Yin; Hung, Yuanchun; Du, Zhiyong; Xiao, Zhengbing; Jia, Guangze

    2018-04-01

    The effect of homogenization on the corrosion behavior of 5083-O aluminum alloy is presented in this paper. The intergranular corrosion and exfoliation corrosion were used to characterize the discussed corrosion behavior of 5083-O aluminum alloy. The variations in the morphology, the kind and distribution of the precipitates, and the dislocation configurations in the samples after the homogenization were evaluated using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The effects of the highly active grain boundary character distribution and the types of constituent particles on the corrosion are discussed on the basis of experimental observations. The results indicated that the corrosion behavior of 5083-O alloy was closely related to the microstructure obtained by the heat treatment. Homogenization carried out after casting had the optimal effect on the overall corrosion resistance of the material. Nevertheless, all samples could satisfy the requirements of corrosion resistance in marine applications.

  11. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Science.gov (United States)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  12. Solar desalination system of combined solar still and humidification-dehumidification unit

    Science.gov (United States)

    Ghazy, Ahmed; Fath, Hassan E. S.

    2016-11-01

    Solar stills, as a simple technology, have many advantages such as simple design; unsophisticated fabrication; low capital and operation costs and easily maintained. However, their low daily production has put constraints on their usage. A radical improvement in the performance of solar stills can be achieved by the partial recovery of the energy losses from the glass cover of the still. This paper simulates a direct solar distillation system of combined solar still with an air heating humidification-dehumidification (HDH) sub-system. The main objective of the Still-HDH system is to improve the productivity and thermal efficiency of the conventional solar still by partially recovering the still energy losses to the ambient for additional water production. Various procedures have been employed to improve the thermal performance of the integrated system by recovering heat losses from one component in another component of the system. Simulations have been carried out for the performance of the Still-HDH system under different weather conditions. A comparison has been held between the Still-HDH system and a conventional solar still of the same size and under the same operating conditions.

  13. CMOS image sensors: State-of-the-art

    Science.gov (United States)

    Theuwissen, Albert J. P.

    2008-09-01

    This paper gives an overview of the state-of-the-art of CMOS image sensors. The main focus is put on the shrinkage of the pixels : what is the effect on the performance characteristics of the imagers and on the various physical parameters of the camera ? How is the CMOS pixel architecture optimized to cope with the negative performance effects of the ever-shrinking pixel size ? On the other hand, the smaller dimensions in CMOS technology allow further integration on column level and even on pixel level. This will make CMOS imagers even smarter that they are already.

  14. EUROCORR 2007 - The European corrosion congress - Progress by corrosion control. Book of Abstracts

    International Nuclear Information System (INIS)

    2007-01-01

    This book of abstracts contains lectures, workshops and posters which were held on the European Corrosion Congress 2007 in Freiburg (Germany). The main topics of the sessions and posters are: 1. Corrosion and scale inhibition; 2. Corrosion by hot gases and combustion products; 3. Nuclear corrosion; 4. Environment sensitive fracture; 5. Surface Science; 6. Physico-chemical methods of corrosion testing; 7. Marine corrosion; 8. Microbial corrosion; 9. Corrosion of steel in concrete; 10. Corrosion in oil and gas production; 11. Coatings; 12. Corrosion in the refinery industry; 13. Cathodic protection; 14. Automotive Corrosion; 15. Corrosion of polymer materials. The main topics of the workshops are: 1. High temperature corrosion in the chemical, refinery and petrochemical industries; 2. Bio-Tribocorrosion; 3. Stress corrosion cracking in nuclear power plants; 4. Corrosion monitoring in nuclear systems; 5. Cathodic protection for marine and offshore environments; 6. Self-healing properties of new surface treatments; 7. Bio-Tribocorrosion - Cost 533/Eureka-ENIWEP-Meeting; 8. Drinking water systems; 9. Heat exchangers for seawater cooling

  15. State-of-the-art inventory

    NARCIS (Netherlands)

    Verhagen, H.J.; Van Gerven, K.A.J.; Akkerman, G.J.

    2005-01-01

    The present report provides a state-of-the-art inventory of relevant information and technical concepts for the ComCoast project, being the first phase of the research stages of Work Package 3 (WP3). This project was assigned to Royal Haskoning by CUR. The information scan was set-up in a systematic

  16. Multimodal Dialogue Management - State of the art

    NARCIS (Netherlands)

    Bui Huu Trung, B.H.T.

    This report is about the state of the art in dialogue management. We first introduce an overview of a multimodal dialogue system and its components. Second, four main approaches to dialogue management are described (finite-state and frame-based, information-state based and probabilistic, plan-based,

  17. Leadership and Fairness: The state of the art.

    OpenAIRE

    van Knippenberg, D.; de Cremer, D.; van Knippenberg, B.M.

    2007-01-01

    textabstractResearch in leadership effectiveness has paid less to the role of leader fairness than probably it should have. More recently, this has started to change. To capture this development, we review the empirical literature in leadership and fairness to define the field of leadership and fairness, to assess the state of the art, and to identify a research agenda for future efforts in the field. The review shows that leader distributive, procedural, and especially interactional fairness...

  18. Greenhouse mechanization: State of the art and future perspective

    NARCIS (Netherlands)

    Henten, van E.

    2006-01-01

    This paper reviews the state of the art and future perspective of greenhouse mechanization. Driving forces for mechanization are identified. Dutch greenhouse crop production is used as an example. Analysis of a generic crop production process combined with a review of the state of the art in

  19. Fuel cells: state of the art

    International Nuclear Information System (INIS)

    Campanari, S.; Casalegno, A.

    2007-01-01

    This paper deals with the main features at present state-of-the-art fuel cell and hybrid cycle technologies, discussing their actual performance, possible applications, market entry perspectives and potential development [it

  20. State of the art of the welding method for sealing spent nuclear fuel canister made of copper. Part 2 - EBW

    International Nuclear Information System (INIS)

    Salonen, T.

    2014-05-01

    This report consist the results of the development of the electron beam welding (EBW) method for sealing spent nuclear fuel (SNF) disposal canister. This report has been used as background material for selection of the sealing method for the SNF canister. Report contains the state of the art knowledge of the EBW method and research and development (R and D) results done by Posiva. Relevant R and D results of EB-welds done by SKB are also reviewed in this report. Requirements set for the welding and weld are present. These requirements are based on the long term safety and also some part of requirements are set by other processes like non-destructive testing (NDT) and manufacturing processes of components. Initial state of the weld is described in this report. Initial state has significant effect on the long term safety issues like corrosion resistance and creep ductility. Also short and long term mechanical properties as well as corrosion properties are described. Microstructure and residual stresses of the weld is represented in this report. Report consists also imperfections of the weld and statistical analysis of the evaluation of the probability of the largest defect size on the weld. Results of corrosion and creep tests of EB-welds are reviewed in this report. EBW process and machine are described. Preliminary designing of the EBW-machine has been done including component handling equipments. Preliminary welding procedure specification (pWPS) has drawn up and qualification of the personnel is described briefly. In-line process and quality control system including seam tracking system is implemented in modern EBW machine. Also NDT methods for inspection of the weld are described in this report. Concerning the results from the research and development work it can be concluded that EB welding method is suitable method for sealing SNF canister. Weld material fulfils requirements set by the long term safety. The welding system is robust and reliable and it is based

  1. The cost-effectiveness of Antiretroviral Treatment in Khayelitsha, South Africa – a primary data analysis

    Directory of Open Access Journals (Sweden)

    Boulle Andrew M

    2006-12-01

    Full Text Available Abstract Background Given the size of the HIV epidemic in South Africa and other developing countries, scaling up antiretroviral treatment (ART represents one of the key public health challenges of the next decade. Appropriate priority setting and budgeting can be assisted by economic data on the costs and cost-effectiveness of ART. The objectives of this research were therefore to estimate HIV healthcare utilisation, the unit costs of HIV services and the cost per life year (LY and quality adjusted life year (QALY gained of HIV treatment interventions from a provider's perspective. Methods Data on service utilisation, outcomes and costs were collected in the Western Cape Province of South Africa. Utilisation of a full range of HIV healthcare services was estimated from 1,729 patients in the Khayelitsha cohort (1,146 No-ART patient-years, 2,229 ART patient-years using a before and after study design. Full economic costs of HIV-related services were calculated and were complemented by appropriate secondary data. ART effects (deaths, therapy discontinuation and switching to second-line were from the same 1,729 patients followed for a maximum of 4 years on ART. No-ART outcomes were estimated from a local natural history cohort. Health-related quality of life was assessed on a sub-sample of 95 patients. Markov modelling was used to calculate lifetime costs, LYs and QALYs and uncertainty was assessed through probabilistic sensitivity analysis on all utilisation and outcome variables. An alternative scenario was constructed to enhance generalizability. Results Discounted lifetime costs for No-ART and ART were US$2,743 and US$9,435 over 2 and 8 QALYs respectively. The incremental cost-effectiveness ratio through the use of ART versus No-ART was US$1,102 (95% CI 1,043-1,210 per QALY and US$984 (95% CI 913-1,078 per life year gained. In an alternative scenario where adjustments were made across cost, outcome and utilisation parameters, costs and outcomes

  2. Heteronomy in the arts field: state funding and British arts organizations.

    Science.gov (United States)

    Alexander, Victoria D

    2018-03-01

    For Bourdieu, the field of cultural production is comprised of an autonomous and a heteronomous sector. A heteronomous sector is one that is interpenetrated by the commercial field. I discuss an arena that, until recently, was part of the relatively autonomous sector in the field of cultural production - the supported arts sector in the United Kingdom - and argue that it became more heteronomous, due to the penetration by the state. Heteronomy due to the commercial field is present but secondary to, and driven by, the actions of the state. Political parties' attempts to diffuse and legitimate a particular economic ideology have led to state demands that arts institutions adopt neoliberal business practices in exchange for funding. Government giving to the arts, previously at arm's length, proved to be a Faustian bargain that demanded significant repayment in the form of lost autonomy. Coercive pressures from the state, enacted over time, show how the domination of one field over another can occur, even when the domination is resisted. © London School of Economics and Political Science 2017.

  3. Meeting the challenge of extremely corrosive service: A primer on clad oilfield equipment

    International Nuclear Information System (INIS)

    Pendley, M.R.

    1993-01-01

    Extremely corrosive environments, such as those often encountered in deep, hot, sour oil and gas wells, are usually characterized by the presence of hydrogen sulfide (H 2 S), carbon dioxide (CO 2 ), chlorides, and other corrosive species coupled with high temperatures (> 400 F/204 C) and high pressures (up to 20,000 psi/138 MPa). Most low alloy and stainless steel materials are not suitable for such environments. Extremely corrosive service conditions dictate the use of a corrosion-resistant alloy (CRA) in areas which are exposed to the hostile environment. However, it is often cost-prohibitive to make an entire component out of CRA material. An alternative strategy is to use a low alloy steel for the bulk of the component and clad critical surfaces with a corrosion-resistant material. Clad equipment can provide excellent corrosion resistance in hostile environments at a fraction of the cost of 100% CRA components. This paper will detail the problems posed by extremely corrosive environments and discuss how clad equipment provides a cost-effective solution

  4. 蓄冰柜在密闭空间中的降温除湿性能分析%Cooling and dehumidification performance ofthe storage freezer in the emergency confined space

    Institute of Scientific and Technical Information of China (English)

    刘立瑶; 茅靳丰; 侯普民; 陈飞

    2017-01-01

    To ensure the confined space within the environment of temperature and humidity in the acceptable range, according to the mine chamber cooling and dehumidification technology, a new type of storage freezer cooling and dehumidification device was developed based on numerical simulation of fluent and theoretical calculation.The device adopts the modular design, and the number of ice storage module can be adjusted according to the change of the load, and removed for cooling dehumidification of the natural convection when power is interruption.Melted water can also be used for drinking.Through experiments, cooling and dehumidification performance and insulation properties of the storage freezer in a forced convection conditions were obtained.The results show that under the same ambient conditions of temperature and humidity, the larger the inlet airflow, the larger the total cooling and dehumidification amount, but with the air temperature increase, relative humidity reduces, and cooling and dehumidification effect of the unit mass air decreases.Under the same air flow rate, the higher the ambient temperature and humidity, the more obvious the unit mass air cooling and dehumidification effect.The total heat transfered is approximately in direct proportion to the air flow rate, and the higher the ambient temperature and humidity, the greater the proportion coefficient.Under the condition that the air flow rate is more than 420 m3/h, the storage freezer cooling and dehumidification capacity can meet the cooling load of 15 people in the emergency confined space.%为保证密闭空间内环境的温湿度在人员可接受的范围内,参照矿用救生舱降温除湿技术,基于fluent数值模拟与理论计算,研制了一种新型蓄冰柜降温除湿装置.该装置采用模块化设计,可以根据负

  5. Influence of vapor absorption cooling on humidification-dehumidification (HDH desalination

    Directory of Open Access Journals (Sweden)

    C. Chiranjeevi

    2016-09-01

    Full Text Available The desalination yield in humidification-dehumidification (HDH process is increased by proposing cooling plant integration with two stage operation. The current work is targeted on the investigation of vapor absorption refrigeration (VAR parameters on overall energy utilization factor (EUF. The dephlegmator heat is recovered internally in VAR instead of rejecting to environment. This work can be used to control the operational conditions of VAR to enhance the desalination and cooling together. The studied process parameters in VAR are strong solution concentration, separator or generator temperature, dephlegmator effectiveness, circulating water inlet temperature and evaporator temperature. Out of these five variables, lower limit of separator temperature, upper limit of dephlegmator effectiveness and lower limit of circulating water temperature are fixed in the specified range to attain the optimum strong solution concentration and optimum evaporator temperature. At the specified boundaries of three variables, the optimized strong solution concentration and evaporator temperature are 0.47 and 10 °C respectively. At this condition, the maximized cycle EUF is 0.358.

  6. State of the art undersøgelse

    DEFF Research Database (Denmark)

    Nielsen, Nils

    1998-01-01

    Dette skrift omhandler nogle af de erfaringer der til dato er opnået i forbindelse med standby projektets udførelse. Hovedtemaet er en “State of the art undersøgelse” der omhandler standby-spændingsforsyninger, samt komponenter der kan anvendes til konstruktion af dem......Dette skrift omhandler nogle af de erfaringer der til dato er opnået i forbindelse med standby projektets udførelse. Hovedtemaet er en “State of the art undersøgelse” der omhandler standby-spændingsforsyninger, samt komponenter der kan anvendes til konstruktion af dem...

  7. The cost of providing combined prevention and treatment services, including ART, to female sex workers in Burkina Faso.

    Directory of Open Access Journals (Sweden)

    Fiona Cianci

    Full Text Available BACKGROUND: Female Sex workers (FSW are important in driving HIV transmission in West Africa. The Yerelon clinic in Burkina Faso has provided combined preventative and therapeutic services, including anti-retroviral therapy (ART, for FSWs since 1998, with evidence suggesting it has decreased HIV prevalence and incidence in this group. No data exists on the costs of such a combined prevention and treatment intervention for FSW. This study aims to determine the mean cost of service provision per patient year for FSWs attending the Yerelon clinic, and identifies differences in costs between patient groups. METHODS: Field-based retrospective cost analyses were undertaken using top-down and bottom-up costing approaches for 2010. Expenditure and service utilisation data was collated from primary sources. Patients were divided into groups according to full-time or occasional sex-work, HIV status and ART duration. Patient specific service use data was extracted. Costs were converted to 2012 US$. Sensitivity analyses considered removal of all research costs, different discount rates and use of different ART treatment regimens and follow-up schedules. RESULTS: Using the top-down costing approach, the mean annual cost of service provision for FSWs on or off ART was US$1098 and US$882, respectively. The cost for FSWs on ART reduced by 29%, to US$781, if all research-related costs were removed and national ART monitoring guidelines were followed. The bottom-up patient-level costing showed the cost of the service varied greatly across patient groups (US$505-US$1117, primarily due to large differences in the costs of different ART regimens. HIV-negative women had the lowest annual cost at US$505. CONCLUSION: Whilst FSWs may require specialised services to optimise their care and hence, the public health benefits, our study shows that the cost of ART provision within a combined prevention and treatment intervention setting is comparable to providing ART to

  8. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.S., E-mail: yinwenfeng2010@163.com [College of Materials Science and Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China); Yin, W.F. [College of Mechatronic Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China); Sang, D.H. [Sheng Li Construction Group International Engineering Department, Shandong, Dongying, 257000 (China); Jiang, Z.Y. [College of Materials Science and Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer The corrosion of a carbon-manganese steel and a stainless steel in sulfur and/or naphthenic acid media was investigated. Black-Right-Pointing-Pointer The corrosion rate of the carbon-manganese steel increased with the increase of the acid value and sulfur content. Black-Right-Pointing-Pointer The critical values of the concentration of sulfur and acid for corrosion rate of the stainless steel were ascertained respectively. Black-Right-Pointing-Pointer The stainless steel is superior to the carbon-manganese steel in corrosion resistance because of the presence of stable Cr{sub 5}S{sub 8} phases. - Abstract: The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 Degree-Sign C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr{sub 5}S{sub 8} phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  9. Drying hard maple (Acer saccharum L.) lumber in a small dehumidification kiln

    Science.gov (United States)

    Neal. Bennett

    2013-01-01

    Portable sawmill owners quickly recognize the advantage to kiln drying lumber they produce. Having the ability to provide properly kiln-dried lumber opens new market opportunities and can increase profit margins. However, the construction and operation of a dry kiln must be economical and simple. A small dehumidification dry kiln constructed and tested in Princeton, WV...

  10. Where is your state of the art?

    Science.gov (United States)

    Ríos Gaona, Manuel

    2015-04-01

    Beyond the purposes of publishing, questioning and/or hypothesizing, every research has the noble aim to quench the constant human need of pushing farther away the boundaries of knowledge, may such frontier exist. The state of the art is the generic expression coined to limit the whereabouts of any particular knowledge. We use it just like a compass, it tells us how far we are, what has been done and where we should go. Take for instance quantum field theory, the state of the art in particle physics will tell you that everything that exists in this universe is made of bosons, quarks and leptons. What!?. Hold on, I was taught (and luckily maybe you weren't) that the fundamental particles were electrons, neutrons and protons, right?. Indeed, that is the state of the art but from almost one century ago. So, if I may ask... where is your state of the art? This is not about quantum physics; it is not even about hydrology; it is about everything. Today, everybody doing or not a PhD fiercely believes that their research is important, extremely unique, life changing (and help us God if we are wrong); but how can you be so sure that what you do, isn't already done?. We live in a modern world, cool environmental scientists now have tagged this era as the Anthropocene; globalization is everywhere and of course knowledge has not escaped to it. Not only knowledge is now global but is totally diversified, any crazy idea you can think of (or actually you can't) it is very likely that somebody already has his/hers hands on it. Nevertheless, this is a good thing, isn't it?. Well, that is the whole point. Every time I should write my research's state of the art, I always get overwhelmed because it actually is pretty difficult to establish, and later when I think I get it, it seems that I am solving issues that somebody already bothered to solve 30 years ago. Therefore, does it really have some purpose to be swimming in a huge pool of knowledge, not knowing where exactly I am? or

  11. Effect of radiation on anaerobic corrosion of iron

    International Nuclear Information System (INIS)

    Smart, N.R.; Rance, A.P.

    2005-01-01

    To ensure the safe encapsulation of spent nuclear fuel elements for geological disposal, SKB of Sweden are considering using the Advanced Cold Process Canister, which consists of an outer copper canister and a cast iron insert. A programme of work has been carried out to investigate a range of corrosion issues associated with the canister, including measurements of gas generation due to the anaerobic corrosion of ferrous materials (carbon steel and cast iron) over a range of conditions. To date, all this work has been conducted in the absence of a radiation field. SKB asked Serco Assurance to carry out a set of experiments designed to investigate the effect of radiation on the corrosion of steel in repository environments. This report describes the experimental programme and presents the results that were obtained. The measurements were carried out in the type of gas cell used previously, in which the change in gas pressure was measured using a liquid-filled manometer. The test cells were placed in a radiation cell and positioned so that the received radiation dose was equivalent to that expected in the repository. Control cells were used to allow for any gas generation caused by radiolytic breakdown of the construction materials and the water. Tests were carried out at two temperatures (30 deg C and 50 deg C), two dose rates (11 Gray/hr and 300 Gray/hr), and in two different artificial groundwaters. A total of four tests were carried out, using carbon steel wires as the test material. The cells were exposed for a period of several months, after which they were dismantled and the corrosion product on one wire from each test cell was analysed using Raman spectroscopy. The report presents the results from the gas generation tests and compares the results obtained under irradiated conditions to results obtained previously in the absence of radiation. Radiation was found to enhance the corrosion rate at both dose rates but the greatest enhancement occurred at the

  12. State of the Art in the Cramer Classification Scheme and ...

    Science.gov (United States)

    Slide presentation at the SOT FDA Colloquium on State of the Art in the Cramer Classification Scheme and Threshold of Toxicological Concern in College Park, MD. Slide presentation at the SOT FDA Colloquium on State of the Art in the Cramer Classification Scheme and Threshold of Toxicological Concern in College Park, MD.

  13. Theoretical investigation of solar humidification-dehumidification desalination system using parabolic trough concentrators

    International Nuclear Information System (INIS)

    Mohamed, A.M.I.; El-Minshawy, N.A.

    2011-01-01

    Highlights: → We evaluated the performance of sea water HDD system powered by solar PTC. → The proposed design to the expected desalination plant performance was introduced. → The collector thermal efficiency was a function of solar radiation value. → The highest fresh water productivity is found to be in the summer season. → The production time reaches 42% of the day time in the summer season. - Abstract: This paper deals with the status of solar energy as a clean and renewable energy applications in desalination. The object of this research is to theoretically investigate the principal operating parameters of a proposed desalination system based on air humidification-dehumidification principles. A parabolic trough solar collector is adapted to drive and optimize the considered desalination system. A test set-up of the desalination system was designed and a theoretical simulation model was constructed to evaluate the performance and productivity of the proposed solar humidification-dehumidification desalination system. The theoretical simulation model was developed in which the thermodynamic models of each component of the considered were set up respectively. The study showed that, parabolic trough solar collector is the suitable to drive the proposed desalination system. A comparison study had been presented to show the effect of the different parameters on the performance and the productivity of the system. The productivity of the proposed system showed also an increase with the increase of the day time till an optimum value and then decreased. The highest fresh water productivity is found to be in the summer season, when high direct solar radiation and long solar time are always expected. The production time reaches a maximum value in the summer season, which is 42% of the day.

  14. The effects of water radiolysis on the corrosion and stress corrosion behavior of type 316 stainless steel in pure water

    International Nuclear Information System (INIS)

    Wyllie, W.E. II; Duquette, D.J.; Steiner, D.

    1994-11-01

    In the ITER Conceptual Design Activity, water will be used as coolant for the major reactor components, which will be made of solution-annealed 316 SS. A concern is that the radiolysis products may increase the stress corrosion cracking (SCC) susceptibility of 316 SS. The corrosion and stress corrosion of 316 SS was observed under irradiated and nonirradiated conditions. Gamma irradiation produced a 100 mV potential shift in the active direction, probably from the polarizing effect of reducing radiolysis products. The irradiation also resulted in nearly an order of magnitude increase in the passive current density of 316 SS, probably from increased surface reaction rates involving radiolysis products as well as increased corrosion rates; however the latter was considered insignificant. Computer simulations of pure water radiolysis at 50, 90, and 130 C and dose rates of 10 18 -10 24 were performed; effects of hydrogen, argon, and argon + 20% oxygen deaeration were also studied. Slow strain rate suggest that annealed and sensitized 316 SS was not suscepible to SCC in hydrogen- or argon-deaerated water at 50 C. Modeling of irradiated water chemistry was performed. Open circuit potential of senstizied and annealed 316 SS had a shift of 800 mV in the noble (positive) direction. Steady-state potentials of -0.180 V for sensitized 316 SS wire and -0.096 V vs Hg/HgSO 4 for annealed 316 SS wire were independent of oxygen presence. The -0.180 V shift is likely to promote SCC

  15. Cost-effectiveness of anti-retroviral therapy at a district hospital in southern Ethiopia

    Directory of Open Access Journals (Sweden)

    Robberstad Bjarne

    2009-07-01

    Full Text Available Abstract Background As the resource implications of expanding anti-retroviral therapy (ART are likely to be large, there is a need to explore its cost-effectiveness. So far, there is no such information available from Ethiopia. Objective To assess the cost-effectiveness of ART for routine clinical practice in a district hospital setting in Ethiopia. Methods We estimated the unit cost of HIV-related care from the 2004/5 fiscal year expenditure of Arba Minch Hospital in southern Ethiopia. We estimated outpatient and inpatient service use from HIV-infected patients who received care and treatment at the hospital between January 2003 and March 2006. We measured the health effect as life years gained (LYG for patients receiving ART compared with those not receiving such treatment. The study adopted a health care provider perspective and included both direct and overhead costs. We used Markov model to estimate the lifetime costs, health benefits and cost-effectiveness of ART. Findings ART yielded an undiscounted 9.4 years expected survival, and resulted in 7.1 extra LYG compared to patients not receiving ART. The lifetime incremental cost is US$2,215 and the undiscounted incremental cost per LYG is US$314. When discounted at 3%, the additional LYG decreases to 5.5 years and the incremental cost per LYG increases to US$325. Conclusion The undiscounted and discounted incremental costs per LYG from introducing ART were less than the per capita GDP threshold at the base year. Thus, ART could be regarded as cost-effective in a district hospital setting in Ethiopia.

  16. Evaluation of State-of-the-Art Acoustic Feedback Cancellation Systems for Hearing Aids

    DEFF Research Database (Denmark)

    Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper

    2013-01-01

    This research evaluates four state-of-the-art acoustic feedback cancellation systems in hearing aids in terms of the cancellation performance, sound quality degradation, and computational complexity. The authors compared a traditional full-band system to a system with a prediction error method...... in a full band, a subband system, a subband system with frequency shifting, and a recently proposed subband system with a novel probe noise deployment. All systems outperformed the traditional full-band system in cancellation performance, especially the subband system with probe noise is most effective...... for cancellation. However, in all cases there was a trade-off between performance and computational cost. With a 3-times increase in computation load, the probe noise based cancellation system can be realized that functions even in the most challenging feedback situation....

  17. Guide to state-of-the-art electron devices

    CERN Document Server

    2013-01-01

    Concise, high quality and comparative overview of state-of-the-art electron device development, manufacturing technologies and applications Guide to State-of-the-Art Electron Devices marks the 60th anniversary of the IEEE Electron Devices Committee and the 35th anniversary of the IEEE Electron Devices Society, as such it defines the state-of-the-art of electron devices, as well as future directions across the entire field. Spans full range of electron device types such as photovoltaic devices, semiconductor manufacturing and VLSI technology and circuits, covered by IEEE Electron and Devices Society Contributed by internationally respected members of the electron devices community A timely desk reference with fully-integrated colour and a unique lay-out with sidebars to highlight the key terms Discusses the historical developments and speculates on future trends to give a more rounded picture of the topics covered A valuable resource R&D managers; engineers in the semiconductor industry; applied scientists...

  18. Corrosion in the oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Brondel, D [Sedco Forex, Montrouge (France); Edwards, R [Schlumberger Well Services, Columbus, OH (United States); Hayman, A [Etudes et Productions Schlumberger, Clamart (France); Hill, D [Schlumberger Dowell, Tulsa, OK (United States); Mehta, S [Schlumberger Dowell, St. Austell (United Kingdom); Semerad, T [Mobil Oil Indonesia, Inc., Sumatra (Indonesia)

    1994-04-01

    Corrosion costs the oil industry billions of dollars a year, a fact that makes the role of the corrosion engineer an increasingly important one. Attention is paid to how corrosion affects every aspect of exploration and production, from offshore rigs to casing. Also the role of corrosion agents such as drilling and production fluids is reviewed. Methods of control and techniques to monitor corrosion are discussed, along with an explanation of the chemical causes of corrosion. 21 figs., 32 refs.

  19. Prediction of higher cost of antiretroviral therapy (ART) according to clinical complexity. A validated clinical index.

    Science.gov (United States)

    Velasco, Cesar; Pérez, Inaki; Podzamczer, Daniel; Llibre, Josep Maria; Domingo, Pere; González-García, Juan; Puig, Inma; Ayala, Pilar; Martín, Mayte; Trilla, Antoni; Lázaro, Pablo; Gatell, Josep Maria

    2016-03-01

    The financing of antiretroviral therapy (ART) is generally determined by the cost incurred in the previous year, the number of patients on treatment, and the evidence-based recommendations, but not the clinical characteristics of the population. To establish a score relating the cost of ART and patient clinical complexity in order to understand the costing differences between hospitals in the region that could be explained by the clinical complexity of their population. Retrospective analysis of patients receiving ART in a tertiary hospital between 2009 and 2011. Factors potentially associated with a higher cost of ART were assessed by bivariate and multivariate analysis. Two predictive models of "high-cost" were developed. The normalized estimated (adjusted for the complexity scores) costs were calculated and compared with the normalized real costs. In the Hospital Index, 631 (16.8%) of the 3758 patients receiving ART were responsible for a "high-cost" subgroup, defined as the highest 25% of spending on ART. Baseline variables that were significant predictors of high cost in the Clinic-B model in the multivariate analysis were: route of transmission of HIV, AIDS criteria, Spanish nationality, year of initiation of ART, CD4+ lymphocyte count nadir, and number of hospital admissions. The Clinic-B score ranged from 0 to 13, and the mean value (5.97) was lower than the overall mean value of the four hospitals (6.16). The clinical complexity of the HIV patient influences the cost of ART. The Clinic-B and Clinic-BF scores predicted patients with high cost of ART and could be used to compare and allocate costs corrected for the patient clinical complexity. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  20. State of the art in video system performance

    Science.gov (United States)

    Lewis, Michael J.

    1990-01-01

    The closed circuit television (CCTV) system that is onboard the Space Shuttle has the following capabilities: camera, video signal switching and routing unit (VSU); and Space Shuttle video tape recorder. However, this system is inadequate for use with many experiments that require video imaging. In order to assess the state-of-the-art in video technology and data storage systems, a survey was conducted of the High Resolution, High Frame Rate Video Technology (HHVT) products. The performance of the state-of-the-art solid state cameras and image sensors, video recording systems, data transmission devices, and data storage systems versus users' requirements are shown graphically.

  1. Evaluating the cost-effectiveness of combination antiretroviral therapy for the prevention of mother-to-child transmission of HIV in Uganda

    NARCIS (Netherlands)

    Kuznik, Andreas; Lamorde, Mohammed; Hermans, Sabine; Castelnuovo, Barbara; Auerbach, Brandon; Semeere, Aggrey; Sempa, Joseph; Ssennono, Mark; Ssewankambo, Fred; Manabe, Yukari C.

    2012-01-01

    Objective To model the cost-effectiveness in Uganda of combination antiretroviral therapy (ART) to prevent mother-to-child transmission of human immunodeficiency virus (HIV). Methods The cost-effectiveness of ART was evaluated on the assumption that ART reduces the risk of an HIV-positive pregnant

  2. TRU-ART: A cost-effective prototypical neutron imaging technique for transuranic waste certification systems

    International Nuclear Information System (INIS)

    Horton, W.S.

    1989-01-01

    The certification of defense radioactive waste as either transuranic or low-level waste requires very sensitive and accurate assay instrumentation to determine the specific radioactivity within an individual waste package. An assay instrument that employs a new technique (TRU-ART), which can identify the location of the radioactive material within a waste package, was designed, fabricated, and tested to potentially enhance the certification of problem defense waste drums. In addition, the assay instrumentation has potential application in radioactive waste reprocessing and neutron tomography. The assay instrumentation uses optimized electronic signal responses from an array of boral- and cadmium-shielded polyethylene-moderated 3 H detector packages. Normally, thermal neutrons that are detected by 3 H detectors have very poor spatial dependency that may be used to determine the location of the radioactive material. However, these shielded-detector packages of the TRU-ART system maintain the spatial dependency of the radioactive material in that the point of fast neutron thermalization is immediately adjacent to the 3 H detector. The TRU-ART was used to determine the location of radioactive material within three mock-up drums (empty, peat moss, and concrete) and four actual waste drums. The TRU-ART technique is very analogous to emission tomography. The mock-up drum and actual waste drum data, which were collected by the TRU-ART, were directly input into a algebraic reconstruction code to produce three-dimensional isoplots. Finally, a comprehensive fabrication cost estimate of the fielded drum assay system and the TRU-ART system was determined, and, subsequently, these estimates were used in a cost-benefit analysis to compare the economic advantage of the respective systems

  3. Applications of heat pipes for HVAC dehumidification at Walt Disney World

    International Nuclear Information System (INIS)

    Allen, P.J.; Dinh, K.

    1993-01-01

    This paper presents the theory and application of heat pipes for HVAC dehumidification purposes. In HVAC applications, a heat pipe is used as a heat exchanger that transfers heat from the return air directly to the supply air. The air is pre-cooled entering the cooling coil and reheated using the same heat removed from the return air. While consuming no energy, the heat pipe lets the evaporator coil operate at a lower temperature, increasing the moisture removal capabilities of the HVAC system by 50% to 100%. WALT DISNEY WORLD is currently testing several heat pipe applications ranging from 1 to 240 tons. The applications include (1) water attractions (2) museums/artifacts areas (3) resort guest rooms and (4) locker rooms. Actual energy usage and relative humidity reductions are shown to determine the effectiveness of the heat pipe as an energy efficient method of humidity control

  4. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    International Nuclear Information System (INIS)

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2011-01-01

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  5. Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103

    NARCIS (Netherlands)

    Callini, Elsa; Aguey-Zinsou, Kondo Francois; Ahuja, Rajeev; Ares, Jos Ramon; Bals, Sara; Biliskov, Nikola; Chakraborty, Sudip; Charalambopoulou, Georgia; Chaudhary, Anna Lisa; Cuevas, Fermin; Dam, Bernard; de Jongh, Petra; Dornheim, Martin; Filinchuk, Yaroslav; Novakovic, Jasmina G.; Hirscher, Michael; Hirscher, M.; Jensen, Torben R.; Jensen, Peter Bjerre; Novakovic, Nikola; Lai, Qiwen; Leardini, Fabrice; Gattia, Daniele Mirabile; Pasquini, Luca; Steriotis, Theodore; Turner, Stuart; Vegge, Tejs; Zuttel, Andreas; Montone, Amelia

    2016-01-01

    In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated

  6. Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103

    DEFF Research Database (Denmark)

    Callini, Elsa; Aguey-Zinsou, Kondo-Francois; Ahuja, Rajeev

    2016-01-01

    In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated...

  7. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C Keith [ORNL; Uselton, Robert B. [Lennox Industries, Inc; Shen, Bo [ORNL; Baxter, Van D [ORNL; Shrestha, Som S [ORNL

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  8. Detrimental effect of Air pollution, Corrosion on Building Materials and Historical Structures

    OpenAIRE

    N. Venkat Rao; M. Rajasekhar; Dr. G. Chinna Rao

    2016-01-01

    The economy of any country would be drastically changed if there were no corrosion. The annual cost of corrosion world wise is over 3 % of the worlds GDP. As pet the sources available, India losses $ 45 billion every year on account of corrosion of infrastructure, Industrial machinery and other historical heritage. Keeping this critical and alarming situation in view, this paper focuses on how all these forms of corrosion affect building materials and historical structures. It als...

  9. Electric automation history and state of the art; Historia da automacao eletrica e estado da arte

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, M.F. [Itaipu Binacional, Foz do Iguacu, PR (Brazil). Div. de Engenharia Eletronica e Sistemas de Controle], E-mail: mendes@ieee.org; Jardini, J.A. [Universidade de Sao Paulo (PEA/EP/USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia de Energia e Automacao Eletricas], E-mail: jardini@pea.usp.br

    2009-07-01

    The article summarizes the history of electric systems automation, used in hydroelectric power plants, since the rise to the present day. Technologies are presented employed at various times, developments, the difference and the reasons for evolution. The emphasis is on today's modern systems technology, covering: communication, standardization, hardware, software, architecture, maintenance, operation and challenges. This work pretend to give subsidies for the design and implementation of automation systems electricity using state of the art. The scope are the new plants as well as those being modernized. Knowledge of history is important to investigate, to plan and evaluate the costs and benefits of automation systems for new electric plants and those that are undergoing processes technological upgrading.

  10. Corrosion and inhibition of stainless steel pitting corrosion in alkaline medium and the effect of Cl- and Br- anions

    International Nuclear Information System (INIS)

    Refaey, S.A.M.; Taha, F.; El-Malak, A.M. Abd

    2005-01-01

    The effect of carbonate anion on the pitting corrosion and inhibition behavior of stainless steel samples (304L SS and 316L SS) has been studied using potentiodynamic and scanning electron microscope (SEM) techniques. The effect of concentration of CO 3 2- ions, pH, potential scanning rate and the composition of stainless steel are discussed. Additions of Cl - and Br - ions into the carbonate solution increase the anodic dissolution of stainless steel and decrease its pitting corrosion resistance. The effect of CO 3 2- anion on the inhibition of chloride and bromide pitting corrosion of the two stainless steel types has been studied also. Pitting corrosion decrease with the increasing of sodium carbonate concentration, i.e. increases the resistance of stainless steels towards the chloride and bromide pitting corrosion. This inhibition effect argued to formation of [Fe,Cr]CO 3 film caused by preferential adsorption of the CO 3 2- ion, leading to instantaneous repair of weak sites for pit nucleation

  11. The Effects of Martial Arts Training on Attentional Networks in Typical Adults.

    Science.gov (United States)

    Johnstone, Ashleigh; Marí-Beffa, Paloma

    2018-01-01

    There is substantial evidence that training in Martial Arts is associated with improvements in cognitive function in children; but little has been studied in healthy adults. Here, we studied the impact of extensive training in Martial Arts on cognitive control in adults. To do so, we used the Attention Network Test (ANT) to test two different groups of participants: with at least 2 years of Martial Arts experience, and with no experience with the sport. Participants were screened from a wider sample of over 500 participants who volunteered to participate. 48 participants were selected: 21 in the Martial Arts group (mean age = 19.68) and 27 in the Non-Martial Arts group (mean age = 19.63). The two groups were matched on a number of demographic variables that included Age and BMI, following the results of a previous pilot study where these factors were found to significantly impact the ANT measures. An effect of Martial Arts experience was found on the Alert network, but not the Orienting or Executive ones. More specifically, Martial Artists showed improved performance when alert had to be sustained endogenously, performing more like the control group when an exogenous cue was provided. This result was further confirmed by a negative correlation between number of years of Martial Arts experience and the costs due to the lack of an exogenous cue suggesting that the longer a person takes part in the sport, the better their endogenous alert is. Results are interpreted in the context of the impact of training a particular attentional state in specific neurocognitive pathways.

  12. The Effects of Martial Arts Training on Attentional Networks in Typical Adults

    Directory of Open Access Journals (Sweden)

    Ashleigh Johnstone

    2018-02-01

    Full Text Available There is substantial evidence that training in Martial Arts is associated with improvements in cognitive function in children; but little has been studied in healthy adults. Here, we studied the impact of extensive training in Martial Arts on cognitive control in adults. To do so, we used the Attention Network Test (ANT to test two different groups of participants: with at least 2 years of Martial Arts experience, and with no experience with the sport. Participants were screened from a wider sample of over 500 participants who volunteered to participate. 48 participants were selected: 21 in the Martial Arts group (mean age = 19.68 and 27 in the Non-Martial Arts group (mean age = 19.63. The two groups were matched on a number of demographic variables that included Age and BMI, following the results of a previous pilot study where these factors were found to significantly impact the ANT measures. An effect of Martial Arts experience was found on the Alert network, but not the Orienting or Executive ones. More specifically, Martial Artists showed improved performance when alert had to be sustained endogenously, performing more like the control group when an exogenous cue was provided. This result was further confirmed by a negative correlation between number of years of Martial Arts experience and the costs due to the lack of an exogenous cue suggesting that the longer a person takes part in the sport, the better their endogenous alert is. Results are interpreted in the context of the impact of training a particular attentional state in specific neurocognitive pathways.

  13. One Step Closer to the Marketplace for State-of-the-Art Wind Turbine

    Science.gov (United States)

    Drivetrain | News | NREL One Step Closer to the Marketplace for State-of-the-Art Wind Turbine Drivetrain One Step Closer to the Marketplace for State-of-the-Art Wind Turbine Drivetrain April 1, 2016 modeling, and testing in state-of-the-art facilities designed to put the drivetrain through its paces

  14. Corrosion of X65 Pipeline Steel Under Deposit and Effect of Corrosion Inhibitor

    Directory of Open Access Journals (Sweden)

    XU Yun-ze

    2016-10-01

    Full Text Available Effect of the deposit on the electrochemical parameters of X65 pipeline steel in oxygen contained sodium chloride solution was studied by EIS and PDS methods. The galvanic corrosion behavior under deposit and effect of different concentration of corrosion inhibitor PBTCA were studied by electrical resistance (ER method combined with ZRA. The results show that the corrosion potential of X65 steel shifts negatively as SiO2 covering its surface and the corrosion rate becomes lower. When the galvanic couple specimen with deposit is electrically connected with the specimen without deposit, anodic polarization occurs on X65 steel under deposit and the galvanic current density decreases from 120μA/cm2 to 50μA/cm2 and keeps stable. As 5×10-5, 8×10-5 and 3×10-4 PBTCA were introduced into the solution, the galvanic current density reaches the highest 1300μA/cm2 and then decreases to 610μA/cm2 keeping stable around 610μA/cm2, corrosion rate of X65 steel under deposit reaches 6.11mm/a. PBTCA accelerates the corrosion of X65 steel under deposit in oxygen contained solution. Through the investigation on the surface of the specimens, serious local corrosion occurs on the X65 steel surface under deposit.

  15. Effect of flow on corrosion in catenary risers and its corrosion inhibitor performance

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pedro Altoe; Magalhaes, Alvaro Augusto Oliveira; Silva, Jussara de Mello [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Kang, Cheolho; More, Parimal P. [Det Norske Veritas (DNV), Oslo (Norway)

    2009-07-01

    In oil and gas production, multiphase flow is often encountered and a range of different flow patterns can be experienced in pipelines. The flow regime transition and flow characteristics can be changed with the change of pipeline topography, which affects the corrosion and the performance of corrosion inhibitor in these multiphase pipelines. This paper outlines on the effect of inclination on the flow characteristics and their subsequent effect on corrosion rates. Also, this paper presents on the performance of three candidate corrosion inhibitors under severe slugging conditions at low water cut. For the simulation of offshore flow lines and risers, the experiments were carried out in a 44 m long, 10 cm diameter, three different pipeline inclinations of 0, 3 and 45 degrees. Light condensate oil with a viscosity of 2.5 cP at room temperature was used and water cut was 20%. The results indicated that the baseline corrosion rate in 45 degrees showed higher than other inclinations. Each corrosion inhibitor showed a different inhibitor performance. (author)

  16. Galvanic corrosion -- Effect of environmental and experimental variables

    International Nuclear Information System (INIS)

    Roy, A.K.; Fleming, D.L.; Lum, B.Y.

    1999-01-01

    Galvanic corrosion behavior of A 516 steel (UNS K01800) coupled to UNS N06022 and UNS R53400, respectively was evaluated in an acidic brine (pH ∼ 2.75) at 30 C, 60 C and 80 C using zero resistance ammeter method. A limited number of experiments were also performed in a neutral brine involving A 516 steel/UNS N06022 couple. The steady-state galvanic current and galvanic potential were measured as functions of anode-to-cathode (A/C) area ratio and electrode distance. Results indicate that the galvanic current was gradually reduced as the A/C area ratio was increased. No systematic trend on the effect of A/C area ratio on the galvanic potential was observed. Also, no significant effect of electrode distance on the galvanic current and galvanic potential was evident. In general, increased galvanic current was noticed with increasing temperature. The limited data obtained in the neutral brine indicate that the galvanic current was reduced in this environment compared to that in the acidic brine. Optical microscopic examination was performed on all tested specimens to evaluate the extent of surface damage resulting from galvanic interaction. A 516 steel suffered from general corrosion and crevice corrosion in all environments tested. Very light crevice corrosion mark was observed with UNS N06022 and R53400 in the acidic brine at 60 C and 80 C. However, this mark appears to be a surface discoloration and no actual crevice was detected

  17. The anaerobic digestion of urban sludges: evaluation, state of the art; La digestion anaerobie des boues urbaines: etat des lieux, etat de l'art

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This presentation brings an evaluation and a state of the art of the sewage sludges channel, in terms of de-pollution efficiency as energy production. It gives also economical references which allow long dated arbitration. These data underline the necessity of taking into account the investments, the operating costs and also the induced profits: sludges volume reduction and the associated charges, complete or part energy autonomy... (A.L.B.)

  18. State of the art review of biofuels production from lignocellulose by thermophilic bacteria.

    Science.gov (United States)

    Jiang, Yujia; Xin, Fengxue; Lu, Jiasheng; Dong, Weiliang; Zhang, Wenming; Zhang, Min; Wu, Hao; Ma, Jiangfeng; Jiang, Min

    2017-12-01

    Biofuels, including ethanol and butanol, are mainly produced by mesophilic solventogenic yeasts and Clostridium species. However, these microorganisms cannot directly utilize lignocellulosic materials, which are abundant, renewable and non-compete with human demand. More recently, thermophilic bacteria show great potential for biofuels production, which could efficiently degrade lignocellulose through the cost effective consolidated bioprocessing. Especially, it could avoid contamination in the whole process owing to its relatively high fermentation temperature. However, wild types thermophiles generally produce low levels of biofuels, hindering their large scale production. This review comprehensively summarizes the state of the art development of biofuels production by reported thermophilic microorganisms, and also concludes strategies to improve biofuels production including the metabolic pathways construction, co-culturing systems and biofuels tolerance. In addition, strategies to further improve butanol production are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The State of Comic Art Bibliography in North America

    Directory of Open Access Journals (Sweden)

    Michael Rhode

    2010-08-01

    Full Text Available Within the past two decades, several American bibliographies of comic art have been published to aid in research on comics and cartooning. Professor John Lent’s ten-volume Comic Art Bibliographies is one of the largest such projects and he began it with a self-published volume in 1986. Librarian Randy Scott published The Comic Art Collection Catalog: An Author, Artist, Title and Subject Catalog Of The Comic Art Collection, Special Collections Division, Michigan State University Libraries, whi...

  20. Management of Reinforcement Corrosion

    DEFF Research Database (Denmark)

    Küter, André; Geiker, Mette Rica; Møller, Per

    Reinforcement corrosion is the most important cause for deterioration of reinforced concrete structures, both with regard to costs and consequences. Thermodynamically consistent descriptions of corrosion mechanisms are expected to allow the development of innovative concepts for the management...... of reinforcement corrosion....

  1. State of the art in microfabrication

    NARCIS (Netherlands)

    Schmitz, Jurriaan

    2014-01-01

    In this review paper the state of the art in microfabrication is presented. The focus is on trends in integrated circuit fabrication by mainstream industrial players. The article starts with Moore’s Law, describing its inception as well as the evolution of Moore’s metric of the number of components

  2. Effect of Ti3+ ion on the Corrosion Behavior of Alloy 600

    International Nuclear Information System (INIS)

    Lee, Chang Bong; Lim, Han Gwi; Kim, Bok Hee; Kim, Ki Ju

    1999-01-01

    Alloy 600 has been widely used as a steam generator tubing material in pressurized water reactors(PWRs) nuclear power plants. Corrosion of steam generator tubing mainly occurs on the secondary water side. The purpose of this work is primarily concerned with examining the effect of Ti 3+ ion concentrations on the corrosion behavior of the Alloy 600 steam generator tubing material. Corrosion behavior of the Alloy 600 steam generator tubing material was studied in aqueous solutions with varying Ti 3+ ion concentration at room temperature. Potentiodynamic and potentiostatic polarization techniques were used to determine the corrosion and pitting potentials for the Alloy 600 test material. The addition of Ti 3+ ion to 1000ppm, showed inhibition effect on the corrosion of Alloy 600. But the corrosion of Alloy 600 was accelerated when the concentration of Ti 3+ ion exceeded 1000ppm, it is assumed that the effect of general corrosion of Alloy 600 is more sensitive than pitting corrosion. It is considered that the passive film which was formed on the Alloy 600 surface in the 100ppm Ti 3+ ion containing solution is mainly consisted of TiO 2

  3. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  4. Chemical effects in the Corrosion of Aluminum and Aluminum Alloys. A Bibliography

    Science.gov (United States)

    1976-10-01

    tances.II. Effect Of Pomegranate Juice And The Aqueous Extract Of Pomegranate Fruits And Tea leaves On The Corrosion Of Aluminum" The effect of the juices...T7651 tempers to exfoliation and stress- corrosion cracking . 1968-8 D.P. Doyle and H.P. Godard ,a) Tr. Mezhdunar. Kongr. Korroz. Metal, 4, 439-48, (1968...Tapper Brit. Corros. J., 3, 285-87, (1968) "Corrosion Of Aluminum" Summary of the literature of Al corrosion which includes stress- corrosion cracking

  5. Effect of aging on the corrosion of aluminum alloy 6061

    International Nuclear Information System (INIS)

    EL-Bedawy, M.E.M.

    2010-01-01

    Not only alloying additions may affect the corrosion resistance of aluminum alloys, but also practices that result in a nonuniform microstructure may introduce susceptibility to some forms of corrosion, especially if the microstructural effect is localized. This work was intended to study the effect of aging time at 225, 185 and 140 degree C and the effect of constant aging time ( 24 hrs ) in the temperature range 100 - 450 degree C as well as the influence of the solution ph on the corrosion characteristics of 6061 aluminum alloy, (Al-Mg-Si alloy) containing 0.22 wt% Cu. The investigation was performed by standard immersion corrosion test according to the British Standard BS 11846 method B and by applying potentiodynamic polarization technique in neutral deaerated 0.5 % M NaCl solution as well as in alkaline NaOH solution (ph = 10). The susceptibility to corrosion and the dominant corrosion type was evaluated by examination of transverse cross sections of corroded samples after the immersion test and examination of the corroded surfaces after potentiodynamic polarization using optical microscope. Analysis of the polarization curves was used to determine the effect of different aging parameters on corrosion characteristics such as the corrosion current density I (corr), the corrosion potential E (corr), the cathodic current densities and the passivation behavior.Results of the immersion test showed susceptibility to intergranular corrosion in the under aged tempers while pitting was the dominant corrosion mode for the over aged tempers after aging at 225 and 185 degree C.Analysis of the potentiodynamic polarization curves showed similar dependence of I (corr) and cathodic current densities on the aging treatment in the neutral 0.5 %M NaCl solution and in the alkaline NaOH solution. It was observed that E(corr) values in the NaCl solution were shifted in the more noble direction for the specimens aged before peak aging while it decreased again with aging time for

  6. The effects of argon ion bombardment on the corrosion resistance of tantalum

    Science.gov (United States)

    Ramezani, A. H.; Sari, A. H.; Shokouhy, A.

    2017-02-01

    Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.

  7. Corrosion of materials for heat exchangers and the countermeasures

    International Nuclear Information System (INIS)

    Kawamoto, Teruaki

    1978-01-01

    When the materials for heat exchangers are selected, the heat transfer performance, mechanical strength, workability, cost, corrosion resistance and so on are taken in consideration. Most of the failure of heat exchangers is due to corrosion, and the corrosion failure on cooling water side occurs frequently, to which attention is not paid much usually. The rate of occurrence of corrosion failure is overwhelmingly high in heating tubes, and the failure owing to cooling water exceeds that owing to process fluid. The material of heating tubes is mostly aluminum brass, and local failure such as pitting corrosion or stress corrosion cracking holds a majority. The cause of corrosion failure due to cooling water is mostly the poor water quality. The mechanism of corrosion of metals can be explained by the electrochemical reaction between the metals and solutions. As for the factors affecting corrosion, dissolved oxygen, pH, Cl - ions, temperature, flow velocity, and foreign matters are enumerated. Copper alloys are sensitive to the effect of polluted sea water. Erosion corrosion is caused by eddies and bubbles owing to high flow velocity, and impingement attack is caused by scratching foreign matters. The quality of fresh water affects corrosion more than sea water in case of copper alloys. The preliminary examination of water quality is essential. (Kako, I.)

  8. State-of-the-art of home networking

    NARCIS (Netherlands)

    Koonen, A.M.J.; Popov, M.

    2012-01-01

    To introduce the Symposium on "Indoor Optical Networks: a Promising Way to a Converged Service Delivery", this presentation will give a brief overview of state-of-the-art home networking architectures, technologies and applications covering both technical and techno-economic aspects.

  9. Effect of sulfur on the SCC and corrosion fatigue performance of stainless steel

    International Nuclear Information System (INIS)

    West, E.; Nolan, T.; Lucente, A.; Morton, D.; Lewis, N.; Morris, R.; Mullen, J.; Newsome, G.

    2015-01-01

    Stress corrosion cracking and corrosion fatigue experiments were conducted on model heats of 304/304L stainless steel with systematically controlled sulfur content to isolate the influence of sulfur on crack growth behavior. The results of the SCC experiments conducted in 338 C. degrees deaerated water on 20% cold worked model heats with 0.006 and 0.012 wt% sulfur showed an order of magnitude or more reduction in the crack growth rate relative to a model heat with <0.001 wt% sulfur. Corrosion fatigue crack growth rates revealed a reduction in the crack growth rates of the elevated sulfur heats relative to model predicted steady state crack growth rates with increasing rise time for nominal loading conditions of a stress ratio of 0.7 and a stress intensity factor range of 6.6 MPa√m. At the longest rise time of 5.330 sec, the corrosion fatigue crack growth rate of the 0.006 wt% sulfur model heat was only 13% of model predictions and the crack growth of the 0.012 wt% sulfur heat completely stalled. Experiments conducted in anion faulted aerated water on stainless steel heats with moderate to high sulfur and variable carbon and boron contents showed that any detrimental effect of sulfur in this environment was secondary to the effect of sensitization in promoting SCC growth. (authors)

  10. The effect of the PWR secondary circuit water chemistry on erosion corrosion

    International Nuclear Information System (INIS)

    Kaplan, J.

    1993-07-01

    The secondary circuit of WWER-440 and WWER-1000 reactors is described. The causes of erosion corrosion are outlined, and the effects of the physical properties and chemical composition of water are discussed with emphasis on specific conductivity and concentrations of oxygen, ammonia, iron, sodium, silicon and organics. Described are corrective actions to eliminate the deviations from the normal state during reactor power reduction or reactor shutdown. (J.B.)

  11. 14 CFR 1203.403 - State-of-the-art and intelligence.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false State-of-the-art and intelligence. 1203.403... PROGRAM Guides for Original Classification § 1203.403 State-of-the-art and intelligence. A logical... available from intelligence sources is known or is available to others. It is also important to consider...

  12. Corrosion behavior of Zircaloy 4 cladding material. Evaluation of the hydriding effect

    International Nuclear Information System (INIS)

    Blat, M.

    1997-04-01

    In this work, particular attention has been paid to the hydriding effect in PIE and laboratory test to validate a detrimental hydrogen contribution on Zircaloy 4 corrosion behavior at high burnup. Laboratory corrosion tests results confirm that hydrides have a detrimental role on corrosion kinetics. This effect is particularly significant for cathodic charged samples with a massive hydride outer layer before corrosion test. PIE show that at high burnup a hydride layer is formed underneath the metal/oxide interface. The results of the metallurgical examinations are discussed with respect to the possible mechanisms involved in this detrimental effect of hydrogen. Therefore, according to the laboratory tests results and PIE, hydrogen could be a strong contributor to explain the increase in corrosion rate at high burnup. (author)

  13. Corrosion engineering in nuclear power industry

    International Nuclear Information System (INIS)

    Prazak, M.; Tlamsa, J.; Jirousova, D.; Silber, K.

    1990-01-01

    Corrosion problems in nuclear power industry are discussed from the point of view of anticorrosion measures, whose aim is not only increasing the lifetime of the equipment but, first of all, securing ecological safety. A brief description is given of causes of corrosion damage that occurred at Czechoslovak nuclear power plants and which could have been prevented. These involve the corrosion of large-volume radioactive waste tanks made of the CSN 17247 steel and of waste piping of an ion exchange station made of the same material, a crack in a steam generator collector, contamination of primary circuit water with iron, and corrosion of CrNi corrosion-resistant steel in a spent fuel store. It is concluded that if a sufficient insight into the corrosion relationships exists and a reasonable volume of data is available concerning the corrosion state during the nuclear facility performance, the required safety can be achieved without adopting extremely costly anticorrosion measures. (Z.M.)

  14. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    BOOMER, K.D.

    2007-01-01

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed

  15. How the United States Funds the Arts. Third Edition

    Science.gov (United States)

    National Endowment for the Arts, 2012

    2012-01-01

    The infrastructure for arts and cultural support in the United States is complex and adaptive. Citizens who enjoy the arts can choose from a wide array of drama, visual and media arts, dance, music, and literature available in formal and informal settings--theaters, museums, and concert halls, but also libraries, schools, places of worship,…

  16. Platelet kinetics: the state of the art

    International Nuclear Information System (INIS)

    Heyns, A. duP

    1984-01-01

    In this paper an overview of the state of the art of platelet kinetics 1982 is presented. The subjects considered include a discussion of the advantages and disadvantages of some of the many radionuclide platelet labels, viz 51 Cr, 111 In, focussing briefly on models for analysis of platelets survival. (Auth.)

  17. Statin cost effectiveness in primary prevention: A systematic review of the recent cost-effectiveness literature in the United States

    Directory of Open Access Journals (Sweden)

    Mitchell Aaron P

    2012-07-01

    Full Text Available Abstract Background The literature on the cost-effectiveness of statin drugs in primary prevention of coronary heart disease is complex. The objective of this study is to compare the disparate results of recent cost-effectiveness analyses of statins. Findings We conducted a systematic review of the literature on statin cost-effectiveness. The four studies that met inclusion criteria reported varying conclusions about the cost-effectiveness of statin treatment, without a clear consensus as to whether statins are cost-effective for primary prevention. However, after accounting for each study’s assumptions about statin costs, we found substantial agreement among the studies. Studies that assumed statins to be more expensive found them to be less cost-effective, and vice-versa. Furthermore, treatment of low-risk groups became cost-effective as statins became less expensive. Conclusions Drug price is the primary determinant of statin cost-effectiveness within a given risk group. As more statin drugs become generic, patients at low risk for coronary disease may be treated cost-effectively. Though many factors must be weighed in any medical decision, from a cost-effectiveness perspective, statins may now be considered an appropriate therapy for many patients at low risk for heart disease.

  18. EFFECT OF THE HEAT AND SURFACE LASER TREATMENT ON THE CORROSION DEGRADATION OF THE Mg-Al ALLOYS

    Directory of Open Access Journals (Sweden)

    Leszek A. Dobrzański

    2011-09-01

    Full Text Available In this paper there is presented the corrosion behavior of the cast magnesium alloys as cast state, after heat and laser treatment. Pitting corrosion resistance of the analyzed alloys was carried out using the potentiodynamic electrochemical method (direct current, based on a anodic polarization curve. On the basis of the achieved anodic polarization curves, using the Tefel extrapolation method near to the corrosion potential, the quantitative data were determined, which describe the electrochemical corrosion process of the investigated alloys: value of the corrosion potential Ecorr (mV, polarization resistance RP (kohm.cm2, corrosion current density icorr (10-6A/cm2, corrosion rate Vcorr (mm/year as well the mass loss Vc (g/m2<.

  19. Optimal inspection planning for onshore pipelines subject to external corrosion

    International Nuclear Information System (INIS)

    Gomes, Wellison J.S.; Beck, André T.; Haukaas, Terje

    2013-01-01

    Continuous operation of pipeline systems involves significant expenditures in inspection and maintenance activities. The cost-effective safety management of such systems involves allocating the optimal amount of resources to inspection and maintenance activities, in order to control risks (expected costs of failure). In this context, this article addresses the optimal inspection planning for onshore pipelines subject to external corrosion. The investigation addresses a challenging problem of practical relevance, and strives for using the best available models to describe random corrosion growth and the relevant limit state functions. A single pipeline segment is considered in this paper. Expected numbers of failures and repairs are evaluated by Monte Carlo sampling, and a novel procedure is employed to evaluate sensitivities of the objective function with respect to design parameters. This procedure is shown to be accurate and more efficient than finite differences. The optimum inspection interval is found for an example problem, and the robustness of this optimum to the assumed inspection and failure costs is investigated. It is shown that optimum total expected costs found herein are not highly sensitive to the assumed costs of inspection and failure. -- Highlights: • Inspection, repair and failure costs of pipeline systems considered. • Optimum inspection schedule (OIS) obtained by minimizing total expected life-cycle costs. • Robustness of OIS evaluated w.r.t. estimated costs of inspection and failure. • Accurate non-conservative models of corrosion growth employed

  20. The Arts and State Governments: At Arm's Length or Arm in Arm?

    Science.gov (United States)

    Lowell, Julia F.; Ondaatje, Elizabeth Heneghan

    2006-01-01

    Even though a majority of Americans claim to support public funding of the arts, state government spending on the arts is minimal--and may be losing ground relative to other types of state expenditures. Moreover, most state arts agencies, or SAAs, have not succeeded in convincing state government leaders that the arts should be integral to their…

  1. Clinical Trials of Blood Pressure Lowering and Antihypertensive Medication: is Cognitive Measurement State-Of-The-Art?

    Science.gov (United States)

    Elias, Merrill F; Torres, Rachael V; Davey, Adam

    2018-02-22

    Randomized controlled trials of blood pressure (BP) lowering and antihypertensive medication use on cognitive outcomes have often been disappointing, reporting mixed findings and small effect sizes. We evaluate the extent to which cognitive assessment protocols used in these trials approach state-of-the-art. Overall, we find that a primary focus on cognition and the systematic selection of cognitive outcomes across trials take a backseat to other trial goals. Twelve trials investigating change in cognitive functioning were examined and none met criteria for state-of-the-art assessment, including use of at least 4 tests indexing 2 cognitive domains. Four trials investigating incident dementia were also examined. Each trial used state-of-the-art diagnostic criteria to assess dementia, although follow-up periods were relatively short, with only 2 trials lasting for at least 3 years. Weaknesses in each trial may act to obscure or weaken the positive effects of BP lowering on cognitive functioning. Improving trial designs in terms of cognitive outcomes selected and length of follow-up periods employed could lead to more promising findings. We offer logical steps to achieve state-of-the-art assessment protocols, with examples, in hopes of improving future trials.

  2. Microencapsulation of Self Healing Agents for Corrosion Control Coatings

    Science.gov (United States)

    Jolley, S. T.; Li, W.; Buhrow, J. W.; Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, is a very costly problem that has a major impact on the global economy. Results from a 2-year breakthrough study released in 2002 by the U.S. Federal Highway Administration (FHWA) showed that the total annual estimated direct cost associated with metallic corrosion in nearly every U.S. industry sector was a staggering $276 billion, approximately 3.1% of the nation's Gross Domestic Product (GOP). Corrosion protective coatings are widely used to protect metallic structures from the detrimental effects of corrosion but their effectiveness can be seriously compromised by mechanical damage, such as a scratch, that exposes the metallic substrate. The incorporation of a self healing mechanism into a corrosion control coating would have the potential to significantly increase its effectiveness and useful lifetime. This paper describes work performed to incorporate a number of microcapsule-based self healing systems into corrosion control coatings. The work includes the preparation and evaluation of self-healing systems based on curable epoxy, acrylate, and siloxane resins, as well as, microencapsulated systems based on passive, solvent born, healing agent delivery. The synthesis and optimization of microcapsule-based self healing systems for thin coating (less than 100 micron) will be presented.

  3. Hurricane Loss Estimation Models: Opportunities for Improving the State of the Art.

    Science.gov (United States)

    Watson, Charles C., Jr.; Johnson, Mark E.

    2004-11-01

    The results of hurricane loss models are used regularly for multibillion dollar decisions in the insurance and financial services industries. These models are proprietary, and this “black box” nature hinders analysis. The proprietary models produce a wide range of results, often producing loss costs that differ by a ratio of three to one or more. In a study for the state of North Carolina, 324 combinations of loss models were analyzed, based on a combination of nine wind models, four surface friction models, and nine damage models drawn from the published literature in insurance, engineering, and meteorology. These combinations were tested against reported losses from Hurricanes Hugo and Andrew as reported by a major insurance company, as well as storm total losses for additional storms. Annual loss costs were then computed using these 324 combinations of models for both North Carolina and Florida, and compared with publicly available proprietary model results in Florida. The wide range of resulting loss costs for open, scientifically defensible models that perform well against observed losses mirrors the wide range of loss costs computed by the proprietary models currently in use. This outcome may be discouraging for governmental and corporate decision makers relying on this data for policy and investment guidance (due to the high variability across model results), but it also provides guidance for the efforts of future investigations to improve loss models. Although hurricane loss models are true multidisciplinary efforts, involving meteorology, engineering, statistics, and actuarial sciences, the field of meteorology offers the most promising opportunities for improvement of the state of the art.

  4. State of art in FE-based fuel performance codes

    International Nuclear Information System (INIS)

    Kim, Hyo Chan; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun

    2013-01-01

    Fuel performance codes approximate this complex behavior using an axisymmetric, axially-stacked, one-dimensional radial representation to save computation cost. However, the need for improved modeling of PCMI and, particularly, the importance of multidimensional capability for accurate fuel performance simulation has been identified as safety margin decreases. Finite element (FE) method that is reliable and proven solution in mechanical field has been introduced into fuel performance codes for multidimensional analysis. The present state of the art in numerical simulation of FE-based fuel performance predominantly involves 2-D axisymmetric model and 3-D volumetric model. The FRAPCON and FRAPTRAN own 1.5-D and 2-D FE model to simulate PCMI and cladding ballooning. In 2-D simulation, the FALCON code, developed by EPRI, is a 2-D (R-Z and R-θ) fully thermal-mechanically coupled steady-state and transient FE-based fuel behavior code. The French codes TOUTATIS and ALCYONE which are 3-D, and typically used to investigate localized behavior. In 2008, the Idaho National Laboratory (INL) has been developing multidimensional (2-D and 3-D) nuclear fuel performance code called BISON. In this paper, the current state of FE-based fuel performance code and their models are presented. Based on investigation into the codes, requirements and direction of development for new FE-based fuel performance code can be discussed. Based on comparison of models in FE-based fuel performance code, status of art in the codes can be discussed. A new FE-based fuel performance code should include typical pellet and cladding models which all codes own. In particular, specified pellet and cladding model such as gaseous swelling and high burnup structure (HBS) model should be developed to improve accuracy of code as well as consider AC condition. To reduce computation cost, the approximated gap and the optimized contact model should be also developed

  5. A parametric study on a humidification–dehumidification (HDH) desalination unit powered by solar air and water heaters

    International Nuclear Information System (INIS)

    Yıldırım, Cihan; Solmuş, İsmail

    2014-01-01

    Highlights: • A time dependent humidification–dehumidification desalination process is investigated. • Fourth-order Runge–Kutta method is used to simulate the problem. • Daily and annual performance are examined. • Various operational parameters are investigated. - Abstract: The performance of a solar powered humidification–dehumidification desalination system is theoretically investigated for various operating and design parameters of the system under climatological conditions of Antalya, Turkey. The primary components of the system are a flat plate solar water heater, a flat plate double pass solar air heater, a humidifier, a dehumidifier and a storage tank. The mathematical model of the system is developed and governing conservation equations are numerically solved by using the Fourth order Runge–Kutta method. Daily and annual yields are calculated for different configurations of the system such as only water heating, only air heating and water–air heating

  6. Cost-effectiveness of HIV prevention interventions in Andhra Pradesh state of India

    Directory of Open Access Journals (Sweden)

    Kumar G Anil

    2010-05-01

    Full Text Available Abstract Background Information on cost-effectiveness of the range of HIV prevention interventions is a useful contributor to decisions on the best use of resources to prevent HIV. We conducted this assessment for the state of Andhra Pradesh that has the highest HIV burden in India. Methods Based on data from a representative sample of 128 public-funded HIV prevention programs of 14 types in Andhra Pradesh, we have recently reported the number of HIV infections averted by each type of HIV prevention intervention and their cost. Using estimates of the age of onset of HIV infection, we used standard methods to calculate the cost per Disability Adjusted Life Year (DALY saved as a measure of cost-effectiveness of each type of HIV prevention intervention. Results The point estimates of the cost per DALY saved were less than US $50 for blood banks, men who have sex with men programmes, voluntary counselling and testing centres, prevention of parent to child transmission clinics, sexually transmitted infection clinics, and women sex worker programmes; between US $50 and 100 for truckers and migrant labourer programmes; more than US $100 and up to US $410 for composite, street children, condom promotion, prisoners and workplace programmes and mass media campaign for the general public. The uncertainty range around these estimates was very wide for several interventions, with the ratio of the high to the low estimates infinite for five interventions. Conclusions The point estimates for the cost per DALY saved from the averted HIV infections for all interventions was much lower than the per capita gross domestic product in this Indian state. While these indicative cost-effectiveness estimates can inform HIV control planning currently, the wide uncertainty range around estimates for several interventions suggest the need for more firm data for estimating cost-effectiveness of HIV prevention interventions in India.

  7. 77 FR 5281 - State-of-the-Art Reactor Consequence Analyses Reports

    Science.gov (United States)

    2012-02-02

    ... NUCLEAR REGULATORY COMMISSION [Docket ID: NRC-2012-0022] State-of-the-Art Reactor Consequence... release of Draft NUREG-1935, ``State-of-the-Art Reactor Consequence Analyses (SOARCA) Report,'' for public... offsite radiological health consequences for potential severe reactor accidents for the Peach Bottom...

  8. Effects of sulfur addition on pitting corrosion and machinability behavior of super duplex stainless steel containing rare earth metals: Part 2

    International Nuclear Information System (INIS)

    Jeon, Soon-Hyeok; Kim, Soon-Tae; Lee, In-Sung; Park, Yong-Soo

    2010-01-01

    Research highlights: → The mechanisms on the effects of rare earth metals (REM) and sulfur (S) additions on the initiation and propagation of pitting corrosion and machinabillity of a super duplex stainless steel (SDSS) were elucidated → It was found that, in consideration of the ratio of lifetime (the resistance to pitting corrosion) to cost (machining and raw material), a costly austenitic stainless steel with high Ni , medium Mo and low N can be replaced by the high S and REM added SDSS with 7 wt.% Ni-4 wt% Mo-0.3 wt.% N → The resistance to pitting corrosion of the tested super duplex stainless steel was affected by the type of inclusions, the preferential interface areas between inclusions and the substrate, and the PREN difference between the γ-phase and the α-phase for the initiation and propagation of the pitting corrosion. - Abstract: To elucidate the effects of sulfur addition on pitting corrosion and machinability behavior of alloys containing rare earth metals, a potentiostatic polarization test, a critical pitting temperature test, a SEM-EDS analysis of inclusions, and a tool life test were conducted. As sulfur content increased, the resistance to pitting corrosion decreased due to the formation of numerous manganese sulfides deteriorating the corrosion resistance and an increase in the preferential interface areas for the initiation of the pitting corrosion. With an increase in sulfur content, the tool life increased due to the lubricating films of manganese sulfides adhering to tool surface.

  9. An Experimental Investigation of the Effect of Corrosion on Dry Friction Noise

    International Nuclear Information System (INIS)

    Baek, Jongsu; Kang, Jaeyoung

    2015-01-01

    This study investigates the friction noise characteristic in relation to the corrosion of metal by using the frictional reciprocating and pin-on-disk system. From the experiments, it is found that the corrosion of metal advances the onset time and increases the magnitude of friction noise. Further, it is observed that the effect of corrosion on friction noise stems from the alteration of tribo-surface during repetitive frictional motion. The alteration of the corrosive contact surface induces a negative friction-velocity slope, by which the corrosion of metal can generate dynamic instability faster than non-corrosion of metal

  10. Corrosion control for low-cost reliability: Preceedings

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This book is Volume 6 of the preceedings from the 12th International Corrosion Congress. The electric power industry workshop dealt with water chemistry control; monitoring of chemical, electrochemical, and biological corrosion; corrosion product analyses; and nuclear and fossil-fuel power plants. All papers have been processed separately for inclusion on the data base

  11. The effect of conditioning agents on the corrosive properties of molten urea

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, D E; Nguyen, D T; Norton, M M; Parker, B R; Daniels, L E

    1991-01-01

    From the process case histories of the failure of several heat exchanger tube bundles, it was revealed that molten urea containing lignosulfonate as a granulation conditioning-hardening agent (Urea LS[trademark]) is corrosive to Types 304 and 316 stainless steel. The results of field and laboratory immersion corrosion tests indicated that the corrosivity of molten urea is strongly dependent on the process temperature rather than the conditioner composition. At temperatures below 295F, molten Urea LS[trademark] is not aggressive to these stainless steels. However, at temperatures above 300F, the corrosion of these stainless steels is extremely severe. The corrosion rate of Types 304, 304L, 316, and 316L is as high as hundreds of mils per year. The corrosion mechanism tends to be more general than localized. The results of the laboratory corrosion test also revealed that among alloying elements, copper is detrimental to corrosion resistance of stainless steel exposed to molten Urea LS[trademark], chromium is the most beneficial, and nickel has only a minor effect. Thus, copper-free and chromium stainless steels have superior corrosion resistance to the molten Urea LS[trademark] at a wide range of temperatures up to 345F.

  12. The effect of corrosion on the structural reliability of steel offshore structures

    International Nuclear Information System (INIS)

    Melchers, Robert E.

    2005-01-01

    This paper considers essential theoretical concepts and data requirements for engineering structural reliability assessment suitable for the estimation of the safety and reliability of corroding ships, offshore structures and pipelines. Such infrastructure operates in a harsh environment. Allowance must be made for structural deterioration since protective measures such as paint coatings, galvanizing or cathodic protection may be ineffective. Reliability analysis requires accurate engineering models for the description and prediction of material corrosion loss and for the maximum depth of pitting. New probability-based models for both these forms of corrosion have been proposed recently and calibrated against a wide range of data. The effects of water velocity and of water pollution are reviewed and compared with recently reported field data for a corrosion at an offshore oil platform. The data interpreted according to the model show good correlation when allowance is made for the season of first immersion and the adverse effects of seawater velocity and of water pollution. An example is given to illustrate the application of reliability analysis to a pipeline subject to pitting corrosion. An important outcome is that good quality estimation of the longer-term probability of loss of structural integrity requires good modelling of the longer-term corrosion behaviour. This is usually associated with anaerobic corrosion. As a result, it cannot be extrapolated from data for short-term corrosion as this is associated with aerobic corrosion conditions

  13. The effect of corrosion on the structural reliability of steel offshore structures

    Energy Technology Data Exchange (ETDEWEB)

    Melchers, Robert E. [Centre for Infrastructure Performance and Reliability, Department of Civil, Surveying and Environmental Engineering, School of Engineering, University of Newcastle, University Drive, Callaghan NSW 2300 (Australia)]. E-mail: rob.melchers@newcastle.edu.au

    2005-10-01

    This paper considers essential theoretical concepts and data requirements for engineering structural reliability assessment suitable for the estimation of the safety and reliability of corroding ships, offshore structures and pipelines. Such infrastructure operates in a harsh environment. Allowance must be made for structural deterioration since protective measures such as paint coatings, galvanizing or cathodic protection may be ineffective. Reliability analysis requires accurate engineering models for the description and prediction of material corrosion loss and for the maximum depth of pitting. New probability-based models for both these forms of corrosion have been proposed recently and calibrated against a wide range of data. The effects of water velocity and of water pollution are reviewed and compared with recently reported field data for a corrosion at an offshore oil platform. The data interpreted according to the model show good correlation when allowance is made for the season of first immersion and the adverse effects of seawater velocity and of water pollution. An example is given to illustrate the application of reliability analysis to a pipeline subject to pitting corrosion. An important outcome is that good quality estimation of the longer-term probability of loss of structural integrity requires good modelling of the longer-term corrosion behaviour. This is usually associated with anaerobic corrosion. As a result, it cannot be extrapolated from data for short-term corrosion as this is associated with aerobic corrosion conditions.

  14. Using cost-effectiveness analyses to inform policy: the case of antiretroviral therapy in Thailand

    Directory of Open Access Journals (Sweden)

    Walt Gill

    2006-12-01

    Full Text Available Abstract Background: Much emphasis is put on providing evidence to assist policymakers in priority setting and investment decisions. Assessing the cost-effectiveness of interventions is one technique used by policymakers in their decisions around the allocation of scarce resources. However, even where such evidence is available, other considerations may also be taken into account, and even over-ride technical evidence. Antiretroviral therapy (ART is the most effective intervention to reduce HIV-related morbidity and prolong mortality. However, treatment provision in the developing world has been hindered by the high costs of services and drugs, casting doubts on its cost-effectiveness. This paper looks at Thailand's publicly-funded antiretroviral initiative which was first introduced in 1992, and explores the extent to which cost-effectiveness evidence influenced policy. Methods: This article reviews the development of the national ART programme in Thailand between 1992 and 2004. It examines the roles of cost-effectiveness information in treatment policy decisions. Qualitative approaches including document analysis and interview of key informants were employed. Results: Two significant policy shifts have been observed in government-organised ART provision. In 1996, service-based therapy for a few was replaced by a research network to support clinical assessments of antiretroviral medication in public hospitals. This decision was taken after a domestic study illustrated the unaffordable fiscal burden and inefficient use of resources in provision of ART. The numbers of treatment recipients was maintained at 2,000 per year throughout the 1990s. It was not until 2001 that a new government pledged to extend the numbers receiving the service, as part of its commitment to universal coverage. Several elements played a role in this decision: new groups of dominant actors, drug price reductions, a pro-active civil society movement, lessons from experience

  15. Understanding the Effects of Sampling on Healthcare Risk Modeling for the Prediction of Future High-Cost Patients

    Science.gov (United States)

    Moturu, Sai T.; Liu, Huan; Johnson, William G.

    Rapidly rising healthcare costs represent one of the major issues plaguing the healthcare system. Data from the Arizona Health Care Cost Containment System, Arizona's Medicaid program provide a unique opportunity to exploit state-of-the-art machine learning and data mining algorithms to analyze data and provide actionable findings that can aid cost containment. Our work addresses specific challenges in this real-life healthcare application with respect to data imbalance in the process of building predictive risk models for forecasting high-cost patients. We survey the literature and propose novel data mining approaches customized for this compelling application with specific focus on non-random sampling. Our empirical study indicates that the proposed approach is highly effective and can benefit further research on cost containment in the healthcare industry.

  16. Effect of Bi on the corrosion resistance of zirconium alloys

    International Nuclear Information System (INIS)

    Yao Meiyi; Zhou Bangxin; Li Qiang; Zhang Weipeng; Zhu Li; Zou Linghong; Zhang Jinlong; Peng Jianchao

    2014-01-01

    In order to investigate systematically the effect of Bi addition on the corrosion resistance of zirconium alloys, different zirconium-based alloys, including Zr-4 (Zr-l.5Sn-0.2Fe-0.1Cr), S5 (Zr-0.8Sn-0.35Nb-0.4Fe-0.1Cr), T5 (Zr-0.7Sn-l.0Nb-0.3Fe-0.1Cr) and Zr-1Nb, were adopted to prepare the zirconium alloys containing Bi of 0∼0.5% in mass fraction. These alloys were denoted as Zr-4 + xBi, S5 + xBi, T5 + xBi and Zr-1Nb + xBi, respectively. The corrosion behavior of these specimens was investigated by autoclave testing in lithiated water with 0.01 M LiOH or deionized water at 360 ℃/18.6 MPa and in superheated steam at 400 ℃/10.3 MPa. The microstructure of the alloys was examined by TEM and the second phase particles (SPPs) were analyzed by EDS. Microstructure observation shows that the addition of Bi promotes the precipitation of Sn as second phase particles (SPPs) because Sn is in solid solution in α-Zr matrix in Zr-4, S5 and T5 alloys. The concentration of Bi dissolved in α-Zr matrix increase with the increase of Nb in the alloys, and the excess Bi precipitates as Bi-containing SPPs. The corrosion results show that the effect of Bi addition on the corrosion behavior of different zirconium-based alloys is very complicated, depending on their compositions and corrosion conditions. In the case of higher Bi concentration in α-Zr, the zirconium alloys exhibit better corrosion resistance. However, in the case of precipitation of Bi-containing SPPs, the corrosion resistance gets worse. This indicates that the solid solution of Bi in α-Zr matrix can improve the corrosion resistance, while the precipitation of the Bi-containing SPPs is harmful to the corrosion resistance. (authors)

  17. Effects of Alloyed Carbon on the General Corrosion and the Pitting Corrosion Behavior of FeCrMnN Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Heon-Young; Lee, Tae-Ho; Kim, Sung-Joon [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2011-10-15

    The effects of alloyed carbon on the pitting corrosion, the general corrosion, and the passivity behavior of Fe{sub 1}8Cr{sub 1}0Mn{sub 0}.4Nx{sub C} (x=0 ⁓ 0.38 wt%) alloys were investigated by various electrochemical methods and XPS analysis. The alloyed carbon increased the general corrosion resistance of the FeCrMnN matrix. Carbon enhanced the corrosion potential, reduced the metal dissolution rate, and accelerated the hydrogen evolution reaction rate in various acidic solutions. In addition, carbon promoted the pitting corrosion resistance of the matrix in a chloride solution. The alloyed carbon in the matrix increased the chromium content in the passive film, and thus the passive film became more protective.

  18. State Arts Policy: Trends and Future Prospects

    Science.gov (United States)

    Lowell, Julia F.

    2008-01-01

    State arts agencies (SAAs)--key players within the U.S. system of public support for the arts--face growing economic, political, and demographic challenges to the roles and missions they adopted when founded in the mid-1960s. This report, the fourth and final in a multiyear study, looks at state arts agencies' efforts to rethink their roles and…

  19. The effect of some metallurgical factors on the corrosion behaviour of austenitic stainless steels in 3% NaCl aqueous solutions

    International Nuclear Information System (INIS)

    El-Sayed, A.A.; Morsy, S.M.; El-Raghy, S.M.

    1979-01-01

    The effect of cold work and subsequent heat treatment on the corrosion behaviour of austenitic stainless steels in 3% NaCl aqueous solutions was studied. Cold work was found to increase the corrosion rate, and heat treatment at 1050 C followed by water-quenching was found reduce to the rate of attack. The increase in the corrosion rate accompanied with a shift in the less noble direction of the steady state potential, an increase in the exchange current density and a decrease in the value of the activation energy. The results indicated that the corrosion potentials are less noble than the critical potentials for pitting, and they are discussed in terms of a simple dissolution process. A correlation is made between the corrosion rate, as expresses in weight loss, and the electrode properties of the corroding material

  20. Fundamental Studies of the Role of Grain Boundaries on Uniform Corrosion of Advanced Nuclear Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Mitra [Drexel Univ., Philadelphia, PA (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Marquis, Emmanuelle [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-05-20

    The main objective of this proposal is to develop fundamental understanding of the role of grain boundaries in stable oxide growth. To understand the process of oxide layer destabilization, it is necessary to observe the early stages of corrosion. During conventional studies in which a sample is exposed and examined after removal from the autoclave, the destabilization process will normally have already taken place, and is only examined post facto. To capture the instants of oxide destabilization, it is necessary to observe it in situ; however, significant questions always arise as to the influence of the corrosion geometry and conditions on the corrosion process. Thus, a combination of post facto examinations and in situ studies is proposed, which also combines state-of-the-art characterization techniques to derive a complete understanding of the destabilization process and the role of grain boundaries.

  1. Fundamental Studies of the Role of Grain Boundaries on Uniform Corrosion of Advanced Nuclear Reactor Materials

    International Nuclear Information System (INIS)

    Taheri, Mitra; Motta, Arthur; Marquis, Emmanuelle

    2016-01-01

    The main objective of this proposal is to develop fundamental understanding of the role of grain boundaries in stable oxide growth. To understand the process of oxide layer destabilization, it is necessary to observe the early stages of corrosion. During conventional studies in which a sample is exposed and examined after removal from the autoclave, the destabilization process will normally have already taken place, and is only examined post facto. To capture the instants of oxide destabilization, it is necessary to observe it in situ; however, significant questions always arise as to the influence of the corrosion geometry and conditions on the corrosion process. Thus, a combination of post facto examinations and in situ studies is proposed, which also combines state-of-the-art characterization techniques to derive a complete understanding of the destabilization process and the role of grain boundaries.

  2. The effect of urea on the corrosion behavior of different dental alloys.

    Science.gov (United States)

    Geckili, Onur; Bilhan, Hakan; Bilgin, Tayfun; Anthony von Fraunhofer, J

    2012-01-01

    Intraoral corrosion of dental alloys has biological, functional, and esthetic consequences. Since it is well known that the salivary urea concentrations undergo changes with various diseases, the present study was undertaken to determine the effect of salivary urea concentrations on the corrosion behavior of commonly used dental casting alloys. Three casting alloys were subjected to polarization scans in synthetic saliva with three different urea concentrations. Cyclic polarization clearly showed that urea levels above 20 mg/100 ml decreased corrosion current densities, increased the corrosion potentials and, at much higher urea levels, the breakdown potentials. The data indicate that elevated urea levels reduced the corrosion susceptibility of all alloys, possibly through adsorption of organics onto the metal surface. This study indicates that corrosion testing performed in sterile saline or synthetic saliva without organic components could be misleading.

  3. Study of corrosion of aluminium alloys of nuclear purity in ordinary water, пart one

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2004-01-01

    Full Text Available Effects of corrosion of aluminum alloys of nuclear purity in ordinary water of the spent fuel storage pool of the RA research reactor at VINČA Institute of Nuclear Sciences has been examined in the frame work of the International Atomic Energy Agency Coordinated Research Project "Corrosion of Research Reactor Aluminum-Clad Spent Fuel in Water" since 2002. The study presented in this paper comprises activities on determination and monitoring of chemical parameters and radio activity of water and sludge in the RA spent fuel storage pool and results of the initial study of corrosion effects obtained by visual examinations of surfaces of various coupons made of aluminum alloys of nuclear purity of the test racks exposed to the pool water for a period from six months to six years.

  4. Influence of corrosion layers on quantitative analysis

    International Nuclear Information System (INIS)

    Denker, A.; Bohne, W.; Opitz-Coutureau, J.; Rauschenberg, J.; Roehrich, J.; Strub, E.

    2005-01-01

    Art historians and restorers in charge of ancient metal objects are often reluctant to remove the corrosion layer evolved over time, as this would change the appearance of the artefact dramatically. Therefore, when an elemental analysis of the objects is required, this has to be done by penetrating the corrosion layer. In this work the influence of corrosion was studied on Chinese and Roman coins, where removal of oxidized material was possible. Measurements on spots with and without corrosion are presented and the results discussed

  5. Experimental validation of a local dehumidification system based on cold water droplets and air-to-air heat exchanger

    NARCIS (Netherlands)

    Janssen, E.G.O.N.; Hammink, H.A.J.; Hendriksen, L.J.A.M.

    2015-01-01

    Excessive humidity is a problem in Dutch growing circumstances. A traditional solution is heating and natural ventilation. To save energy a number of energy efficient dehumidification methods are developed, like mechanical ventilation with dry outside air or a curtain of cold water droplets. In this

  6. Investigation on the thermographic detection of corrosion in RC structures

    Science.gov (United States)

    Tantele, Elia A.; Votsis, Renos A.; Kyriakides, Nicholas; Georgiou, Panagiota G.; Ioannou, Fotia G.

    2017-09-01

    Corrosion of the steel reinforcement is the main problem of reinforced concrete (RC) structures. Over the past decades, several methods have been developed aiming to detect the corrosion process early in order to minimise the structural damage and consequently the repairing costs. Emphasis was given in developing methods and techniques of non-destructive nature providing fast on-the-spot detection and covering large areas rather that concentrating on single locations. This study, investigates a non-destructive corrosion detection technique for reinforced concrete, which is based on infrared thermography and the difference in thermal characteristics of corroded and non-corroded steel rebars. The technique is based on the principle that corrosion products have poor heat conductivity, and they inhibit the diffusion of heat that is generated in the reinforcing bar due to heating. For the investigation RC specimens, have been constructed in the laboratory using embedded steel bars of different corrosion states. Afterward, one surface of the specimens was heated using an electric device while thermal images were captured at predefined time instants on the opposite surface with an IR camera. The test results showed a clear difference between the thermal characteristics of the corroded and the non-corroded samples, which demonstrates the potential of using thermography in corrosion detection in RC structures.

  7. Ascertaining the international state of the art of PSA methodology

    International Nuclear Information System (INIS)

    Linden, J. von

    1998-01-01

    Plant-specific PSAs, to be performed within the framework of the Periodic Safety Review of German Nuclear Power Plants require further development of the methodology. For that purpose foreign PSA-guidelines and PSA-reviewes as well as relevant literature are examined and appropriate insights are adopted within task A.2 of project SR 2096. The main goal of these activities is to achieve a comparison of the state of the art of PSA-methodologies applied abroad and in Germany. The German state of the art refers to the extent as is documented in the German PSA Guide (Leitfaden Probabilistische Sicherheitsanalyse /PSUe97/) which has to be used for the Periodic Safety Review of German Nuclear Power Plants. The structure for the evaluation is based on the working steps of a PSA. In total, according to the objectives of the Periodic Safety Review the German approach for plant-specific PSAs based on the German PSA Guide is conform to the state of the art abroad. Identified deviations in some details are evaluated reflecting the view of GRS. Particular aspects resulting from the evaluation should be considered for further development of the German PSA Guide. (orig.) [de

  8. Plastic heat exchangers: a state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D; Holtz, R E; Koopman, R N; Marciniak, T J; MacFarlane, D R

    1979-07-01

    Significant increases in energy utilization efficiency can be achieved through the recovery of low-temperature rejected heat. This energy conserving possibility provides incentive for the development of heat exchangers which could be employed in applications where conventional units cannot be used. Some unique anticorrosion and nonstick characteristics of plastics make this material very attractive for heat recovery where condensation, especially sulfuric acid, and fouling occur. Some of the unique characteristics of plastics led to the commercial success of DuPont's heat exchangers utilizing polytetrafluoroethylene (trade name Teflon) tubes. Attributes which were exploited in this application were the extreme chemical inertness of the material and its flexibility, which enabled utilization in odd-shaped spaces. The wide variety of polymeric materials available ensures chemical inertness for almost any application. Lower cost, compoundability with fillers to improve thermal/mechanical properties, and versatile fabrication methods are incentives for many uses. Also, since many plastics resist corrosion, they can be employed in lower temperature applications (< 436 K), where condensation can occur and metal units have been unable to function. It is clear that if application and design can be merged to produce a cost-effective alternate to present methods of handling low-temperature rejected heat, then there is significant incentive for plastic heat exchangers, to replace traditional metallic heat exchangers or to be used in services where metals are totally unsuited.

  9. The effect of heat treatments on the corrosion behavior of Zircaloy-4

    International Nuclear Information System (INIS)

    Zhou Bangxin; Zhao Wenjin; Miao Zhi; Pan Shufang; Li Cong; Jiang Yourong

    1996-06-01

    The effect of penultimate annealing temperature and cooling rate on the corrosion behavior of Zircaloy-4 cladding tube has been investigated. Both nodular corrosion and uniform corrosion resistance can be improved obviously after changing the heat treatment from the original annealing at 650 degree C to quenching from 830 degree C (upper temperature of alpha phase region or lower temperature of beta phase region). Although the nodular corrosion resistance can be improved obviously after quenching from beta phase, there was a second transition in the variation between weight gain and exposure time, which shows a poor uniform corrosion resistance after a long exposure time during the autoclave tests. The main factor of affecting corrosion behavior is the solid solution contents of Fe and Cr in alpha zirconium rather than the size of second phase particles. About 200 μg/g Fe and Cr super saturated solid solution in alpha zirconium could get good uniform and nodular corrosion resistance, but much more solid solution contents of Fe and Cr in alpha zirconium could bring about a trend toward poor uniform corrosion resistance for long-term exposure time. (14 refs., 10 figs., 1 tab.)

  10. Development of a novel rotary desiccant cooling cycle with isothermal dehumidification and regenerative evaporative cooling using thermodynamic analysis method

    International Nuclear Information System (INIS)

    La, D.; Li, Y.; Dai, Y.J.; Ge, T.S.; Wang, R.Z.

    2012-01-01

    A novel rotary desiccant cooling cycle is proposed and studied using thermodynamic analysis method. The proposed cycle integrates the technologies of isothermal dehumidification and regenerative evaporative cooling, which are beneficial for irreversibility reduction. Thermodynamic investigation on the basic rotary desiccant cooling cycle shows that the exergy efficiency of the basic cycle is only 8.6%. The processes of desiccant dehumidification and evaporative cooling, which are essentially the basis for rotary desiccant cooling, affect the exergy performance of the cycle greatly and account for about one third of the total exergy destruction. The proposed cycle has potential to improve rotary desiccant cooling technology. It is advantageous in terms of both heat source utilization rate and space cooling capacity. The exergy efficiency of the new cycle is enhanced significantly to 29.1%, which is about three times that of the ventilation cycle, and 60% higher than that of the two-stage rotary desiccant cooling cycle. Furthermore, the regeneration temperature is reduced from 80 °C to about 60 °C. The corresponding specific exergy of the supply air is increased by nearly 30% when compared with the conventional cycles. -- Highlights: ► A novel rotary desiccant cooling cycle is developed using thermodynamic analysis method. ► Isothermal dehumidification and regenerative evaporative cooling have been integrated. ► The cycle is advantageous in terms of both heat source utilization rate and space cooling capacity. ► Cascaded energy utilization is beneficial for cycle performance improvement. ► Upper limits, which will be helpful to practical design and optimization, are obtained.

  11. The "State of Art" of Organisational Blogging

    Science.gov (United States)

    Baxter, Gavin J.; Connolly, Thomas M.

    2013-01-01

    Purpose: The aim of this paper is to provide an overview of the "state of art" of organisational blogging. It also aims to provide a critical review of the literature on organisational blogging and propose recommendations on how to advance the subject area in terms of academic research. Design/methodology/approach: A systematic literature review…

  12. EFFECT OF RATIO OF SURFACE AREA ON THE CORROSION RATE

    OpenAIRE

    Dody Prayitno; M. Irsyad

    2018-01-01

    Aluminum and steel are used to be a construction for a building outdoor panel. Aluminum and steel are connected by bolt and nut. An atmosphere due to a corrosion of the aluminum. The corrosion possibly to cause the hole diameter of bolt and nut to become larger. Thus the bolt and nut can not enough strong to hold the panel. The panel may collapse. The aim of the research is first to answer a question where does the corrosion starts. The second is to know the effect of ratio surface area of st...

  13. Contemporary Romanian Art in the United States1

    Directory of Open Access Journals (Sweden)

    Altman Dana

    2014-08-01

    Full Text Available The article discusses the recent international interest in contemporary Romanian art and its growth in market share, with a focus on the United States. The theme is followed thorough in numerous museum exhibitions, increased collector following, art fair presence, gallery representation and auction activity initially in Europe and the United States. The phenomenon is discussed both in the context of the larger international movement conducive to the contemporary art price bubble, and in that of the local socio-economic changes. My chief interest lies in the factors leading up to the entry of post 1989 Romanian art in the global arena as a manifestation of market forces in the field. The analysis follows its grass roots local emergence through non-profit institutions, individual artists, small publications, low budget galleries, as well as the lack of contribution (with few notable exceptions of state institutions, while pointing out the national context of increasing deregulation of social support systems resulting in lack of focus on cultural manifestations. The conclusion is that the recent ascent of contemporary Romanian art (and coincidentally, the award winning contemporary Romanian cinematography is a fortuitous convergence of various factors, among which, increased international mobility and sharing. At the same time, it is also the result of the evolution of various individual artists that pursued a form of art rooted in Romanian artistic tradition but with a focus on the symbolic figurative. The result is a personal semiotics of raising the mundane to extraordinary levels that reconfigured the anxiety of entering a new system into an unmistakable and lasting visual language.

  14. Corrosion potential analysis system

    Science.gov (United States)

    Kiefer, Karl F.

    1998-03-01

    Many cities in the northeastern U.S. transport electrical power from place to place via underground cables, which utilize voltages from 68 kv to 348 kv. These cables are placed in seamless steel pipe to protect the conductors. These buried pipe-type-cables (PTCs) are carefully designed and constantly pressurized with transformer oil to prevent any possible contamination. A protective coating placed on the outside diameter of the pipe during manufacture protects the steel pipe from the soil environment. Notwithstanding the protection mechanisms available, the pipes remain vulnerable to electrochemical corrosion processes. If undetected, corrosion can cause the pipes to leak transformer oil into the environment. These leaks can assume serious proportions due to the constant pressure on the inside of the pipe. A need exists for a detection system that can dynamically monitor the corrosive potential on the length of the pipe and dynamically adjust cathodic protection to counter local and global changes in the cathodic environment surrounding the pipes. The northeastern United States contains approximately 1000 miles of this pipe. This milage is critical to the transportation and distribution of power. So critical, that each of the pipe runs has a redundant double running parallel to it. Invocon, Inc. proposed and tested a technically unique and cost effective solution to detect critical corrosion potential and to communicate that information to a central data collection and analysis location. Invocon's solution utilizes the steel of the casing pipe as a communication medium. Each data gathering station on the pipe can act as a relay for information gathered elsewhere on the pipe. These stations must have 'smart' network configuration algorithms that constantly test various communication paths and determine the best and most power efficient route through which information should flow. Each network station also performs data acquisition and analysis tasks that ultimately

  15. Effect of niobium element on the electrochemical corrosion behavior of depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanping, E-mail: wuyanping-2@126.com; Wu, Quanwen; Zhu, Shengfa, E-mail: zhushf-306@163.com; Pu, Zhen; Zhang, Yanzhi; Wang, Qinguo; Lang, Dingmu; Zhang, Yuping

    2016-09-15

    Depleted uranium (DU) has many military and civilian uses. However, its high chemical reactivity limits its application. The effect of Nb content on corrosion behavior of DU is evaluated by scanning Kelvin probe and electrochemical corrosion measurements. The Volta potential value of DU and U-2.5 wt% Nb is about the same level, the Volta potential value of U-5.7 wt% Nb has a rise of 370mV{sub SHE} in comparison with DU. The polarization current of U-5.7 wt% Nb alloy is about an order of magnitude of that of DU. The Nb{sub 2}O{sub 5} is the protective layer for the U-Nb alloys. The negative potential of Nb-depleted α phase is the main reason of the poor corrosion resistance of DU and U-2.5 wt% Nb alloy. - Highlights: • New method (scanning Kelvin probe) was used to study the corrosion property. • Three types of corrosion morphologies were found after potentiodynamic polarization. • The effect of impurity elements on corrosion property was mentioned. • The corrosion mechanism of DU and U-Nb alloys was discussed.

  16. Mission Accomplished: Working with State Arts Agencies

    Science.gov (United States)

    Boyer, Johanna Misey

    2005-01-01

    Most everyone involved professionally in the non-profit arts comes in contact with a state arts agency. A person may be on the Teaching Artist roster, works for a grantee organization, or has directly received a grant or fellowship. The work that one does in the school is probably funded by the state arts agency. Or, at a more basic level, the…

  17. Cost, affordability and cost-effectiveness of strategies to control tuberculosis in countries with high HIV prevalence

    Directory of Open Access Journals (Sweden)

    Williams Brian G

    2005-12-01

    Full Text Available Abstract Background The HIV epidemic has caused a dramatic increase in tuberculosis (TB in East and southern Africa. Several strategies have the potential to reduce the burden of TB in high HIV prevalence settings, and cost and cost-effectiveness analyses can help to prioritize them when budget constraints exist. However, published cost and cost-effectiveness studies are limited. Methods Our objective was to compare the cost, affordability and cost-effectiveness of seven strategies for reducing the burden of TB in countries with high HIV prevalence. A compartmental difference equation model of TB and HIV and recent cost data were used to assess the costs (year 2003 US$ prices and effects (TB cases averted, deaths averted, DALYs gained of these strategies in Kenya during the period 2004–2023. Results The three lowest cost and most cost-effective strategies were improving TB cure rates, improving TB case detection rates, and improving both together. The incremental cost of combined improvements to case detection and cure was below US$15 million per year (7.5% of year 2000 government health expenditure; the mean cost per DALY gained of these three strategies ranged from US$18 to US$34. Antiretroviral therapy (ART had the highest incremental costs, which by 2007 could be as large as total government health expenditures in year 2000. ART could also gain more DALYs than the other strategies, at a cost per DALY gained of around US$260 to US$530. Both the costs and effects of treatment for latent tuberculosis infection (TLTI for HIV+ individuals were low; the cost per DALY gained ranged from about US$85 to US$370. Averting one HIV infection for less than US$250 would be as cost-effective as improving TB case detection and cure rates to WHO target levels. Conclusion To reduce the burden of TB in high HIV prevalence settings, the immediate goal should be to increase TB case detection rates and, to the extent possible, improve TB cure rates, preferably

  18. Corrosion in marine atmospheres. Effect of distance from the coast

    International Nuclear Information System (INIS)

    Chico, B.; Otero, E.; Morcillos, M.; Mariaca, L.

    1998-01-01

    In marine atmospheres the deposition of saline particles on the surface of metals intensifies the metallic corrosion process. However, quantitative information about the effect of atmospheric salinity on metallic corrosion is very scarce. This paper reports the relationship between salinity and metallic corrosion, where a clear linear relation (r=0.97) has been found for a broad interval of salinities (4-500 mg Cl''-/m''2.d), as well as the relationship between salinity (or metallic corrosion) and distance from the coast. A hyperbolic function seems to be established both variables; there is an exponential drop in salinity (or corrosion) as shoreline distance increases tending towards and asymptotic value. The study has been based on information obtained from field research conducted at a marine atmosphere in Tarragona (Spain) and data compiled from the literature. (Author) 14 refs

  19. Magnetic resonance imaging of the cardiovascular system: present state of the art and future potential

    International Nuclear Information System (INIS)

    Jacobson, H.G.

    1988-01-01

    State-of-the-art magnetic resonance imaging (MRI) generates high-resolution images of the cardiovascular system. Conventional MRI techniques provide images in six to ten minutes per tomographic slice. New strategies have substantially improved the speed of imaging. The technology is relatively expensive, and its cost-effectiveness remains to be defined in relation to other effective, less expensive, and noninvasive technologies, such as echocardiography and nuclear medicine. The ultimate role of MRI will depend on several factors, including the development of specific applications such as (1) noninvasive angiography, especially of the coronary arteries;(2) noninvasive, high-resolution assessment of regional myocardial blood flow distribution (e.g., using paramagnetic contrast agents); (3) characterization of myocardial diseases using proton-relaxation property changes; and (4) evaluation of in vivo myocardial biochemistry. The three-dimensional imaging capability and the ability to image cardiovascular structures without contrast material give MRI a potential advantage over existing noninvasive diagnostic imaging techniques. This report analyzes current applications of MRI to the cardiovascular system and speculates on their future

  20. Study on corrosion of thermal power plant condenser tubes

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Abdolreza Rashidi; Zhaam, Ali Akbar [Niroo Research Institute, end of Poonak Bakhtari blvd., Shahrak Ghods, Tehran (Iran)

    2004-07-01

    The aim of this investigation is to study kinds of corrosion mechanisms in thermal power plant condenser tubes. Condenser is a shell and tube heat exchanger in which cooling water flows through its tubes. While the steam from low pressure turbine passes within condenser tubes, it is condensed by cooling water. The exhausted steam from low pressure turbine is condensed on external surface of condenser tubes and heat is transferred to cooling water which flow into tubes. Tubes composition is usually copper-based alloys, stainless steel or titanium. Annual damages due to corrosion cause much cost for replacement and repairing metallic equipment and installations in electric power industry. Because of existence of different contaminants in water and steam cycle, condenser tubes surfaces are exposed to corrosion. Contaminants like oxygen, carbon dioxide, chloride ion and ammonia in water and steam cycle originate several damages such as pitting and crevice corrosion, erosion, galvanic attack, SCC, condensed corrosion, de-alloying in thermal power plant condenser. The paper first states how corrosion damage takes place in condensers and then introduces types of usual alloys used in condensers and also their corrosion behavior. In continuation, a brief explanation is presented about kinds of condenser failures due to corrosion. Then, causes and locations of different mechanisms of corrosion events on condenser tubes and effects of different parameters such as composition, temperature, chloride and sulfide ion concentration, pH, water velocity and biological precipitation are examined and finally protection methods are indicated. Also some photos of tubes specimens related to power plants are studied and described in each case of mentioned mechanisms. (authors)

  1. The effectiveness and cost-effectiveness of community-based support for adolescents receiving antiretroviral treatment: an operational research study in South Africa.

    Science.gov (United States)

    Fatti, Geoffrey; Jackson, Debra; Goga, Ameena E; Shaikh, Najma; Eley, Brian; Nachega, Jean B; Grimwood, Ashraf

    2018-02-01

    Adolescents and youth receiving antiretroviral treatment (ART) in sub-Saharan Africa have high attrition and inadequate ART outcomes, and evaluations of interventions improving ART outcomes amongst adolescents are very limited. Sustainable Development Goal (SDG) target 3c is to substantially increase the health workforce in developing countries. We measured the effectiveness and cost-effectiveness of community-based support (CBS) provided by lay health workers for adolescents and youth receiving ART in South Africa. A retrospective cohort study including adolescents and youth who initiated ART at 47 facilities. Previously unemployed CBS-workers provided home-based ART-related education, psychosocial support, symptom screening for opportunistic infections and support to access government grants. Outcomes were compared between participants who received CBS plus standard clinic-based care versus participants who received standard care only. Cumulative incidences of all-cause mortality and loss to follow-up (LTFU), adherence measured using medication possession ratios (MPRs), CD4 count slope, and virological suppression were analysed using multivariable Cox, competing-risks regression, generalized estimating equations and mixed-effects models over five years of ART. An expenditure approach was used to determine the incremental cost of CBS to usual care from a provider perspective. Incremental cost-effectiveness ratios were calculated as annual cost per patient-loss (through death or LTFU) averted. Amongst 6706 participants included, 2100 (31.3%) received CBS. Participants who received CBS had reduced mortality, adjusted hazard ratio (aHR) = 0.52 (95% CI: 0.37 to 0.73; p effectiveness of CBS in reducing attrition ranged from 42.2% after one year to 35.9% after five years. Virological suppression was similar after three years, but after five years 18.8% CBS participants versus 37.2% non-CBS participants failed to achieve viral suppression, adjusted odds ratio = 0

  2. Development of an active solar humidification-dehumidification (HDH) desalination system integrated with geothermal energy

    International Nuclear Information System (INIS)

    Elminshawy, Nabil A.S.; Siddiqui, Farooq R.; Addas, Mohammad F.

    2016-01-01

    Highlights: • Productivity increases with increasing geothermal water flow rate up to 0.15 kg/s. • Geothermal energy increases productivity by 187–465% when used with solar energy. • Daytime experimental productivity (8AM-5PM) up to 104 L/m"2 was achieved. • Daily experimental productivity (24 h) up to 192 L/m"2 was achieved. • Fresh potable water can be produced at 0.003 USD/L using this desalination setup. - Abstract: This paper investigates the technical and economic feasibility of using a hybrid solar-geothermal energy source in a humidification-dehumidification (HDH) desalination system. The newly developed HDH system is a modified solar still with air blower and condenser used at its inlet and outlet respectively. A geothermal water tank in a temperature range 60–80 °C which imitates a low-grade geothermal energy source was used to supply heat to water inside the humidification chamber. The experiments were conducted in January 2015 under the climatological conditions of Madinah (latitude: 24°33′N, longitude: 39°36′0″E), Saudi Arabia to study the effect of geothermal water temperature and flow rate on the performance and productivity of proposed desalination system. Analytical model was also developed to compare the effect of solar energy and combined solar-geothermal energy on accumulated productivity. Daytime experimental accumulated productivity up to 104 L/m"2 and daily average gained output ratio (GOR) in the range 1.2–1.58 was achieved using the proposed desalination system. Cost of fresh water produced using the presented desalination system is 0.003 USD/L.

  3. Is Myomectomy Prior to Assisted Reproductive Technology Cost Effective in Women with Intramural Fibroids?

    Science.gov (United States)

    Ojo-Carons, Mary; Mumford, Sunni L; Armstrong, Alicia Y; DeCherney, Alan H; Devine, Kate

    2016-01-01

    To evaluate the cost effectiveness of surgery to remove intramural (IM) fibroids prior to assisted reproductive technology (ART). The decision tree mathematical model along with sensitivity analysis was performed to analyze cost effectiveness of: (1) myomectomy followed by ART or (2) ART with IM myoma(s) in situ. At the median ongoing pregnancy (OP) rate (OPR) reported in the literature for a fresh, autologous ART cycle with IM fibroids in situ vs. post-IM myomectomy, average cost per OP was $72,355 vs. 66,075, indicating a cost savings with myomectomy. Sensitivity analysis over the range of reported OPRs demonstrated that pre-ART IM myomectomy was always cost effective when OPR among women with in situ myomas was ART IM myomectomy was only cost effective if it increased OPR by at least 9.6%. At the high end of OPRs reported for patients with IM myomas in situ (31.4%), a 19.5% improvement in OPR was needed to justify IM myomectomy from a cost perspective. Myomectomy should be used sparingly in cases where the goal of surgery is to achieve improvement in the outcomes of ART. © 2016 S. Karger AG, Basel.

  4. For What Purpose the Arts? An Analysis of the Mission Statements of Urban Arts High Schools in Canada and the United States

    Science.gov (United States)

    Gaztambide-Fernández, Rubén; Nicholls, Rachael; Arráiz-Matute, Alexandra

    2016-01-01

    While general arts programs have declined in many schools across the United States and Canada, the number of specialized art programs in public secondary schools has swelled since the 1980s. While this increase is often celebrated by arts educators, questions about the justification of specialized arts programs are rarely raised, and their value…

  5. Investigation on the of effect of self assembling molecules on the corrosion resistance of the 1050 aluminium alloy

    International Nuclear Information System (INIS)

    Szurkalo, Margarida

    2009-01-01

    Surface treatments are widely used to increase the corrosion resistance of metallic materials. Specifically for aluminum and aluminum alloys, treatment with hexavalent chromium is one of the most used, due to its efficiency and ease of application. However, because of environmental restrictions and the high cost involved in the treatments of waste generated in this process, alternative methods for its replacement are necessary. In this context, this study investigated the effect of the surface treatment with self-assembling molecules (SAM) based on phosphonate compounds on the corrosion of the 1050 aluminum alloy. The conditions adopted for the SAM treatment were determined by conductivity and contact angle measurements, besides electrochemical experiments. Electrochemical techniques, specifically: measurement of the open circuit potential (OCP) variation with time, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves were used to evaluate the corrosion resistance of the 1050 aluminum alloy exposed to SAM treatment The experimental impedance diagrams were interpreted using equivalent electrical circuit models that simulate film that is formed on the alloy surface. The results of the samples treated with SAM were compared with those of samples either without any treatment or treated with chromatizing conversion coating with Cr(VI) and showed that the first treatment significantly increased the corrosion resistance of the aluminum alloy and approached that of chromatizing with Cr(VI) process. (author)

  6. Evaluation of the flow-accelerated corrosion downstream of an orifice. 2. Measurement of corrosion rate and evaluation on the effects of the flow field

    International Nuclear Information System (INIS)

    Nagaya, Yukinori; Utanohara, Yoichi; Nakamura, Akira; Murase, Michio

    2008-01-01

    In this study, in order to evaluate the effects of flow field on corrosion rate due to flow accelerated corrosion (FAC), a corrosion rate downstream of an orifice was measured using the electric resistance method. The diameter of the pipe is 50 mm and that of the orifice is 24.3 mm, and flow velocity of the experimental loop was set at 5m/s, and the temperature of water was controlled within ±1 at 150deg-C. There were no significant circumferential difference in measured corrosion rate, and the maximum corrosion rate was observed at 1D or 2D downstream from the orifice. The ratios of the measured corrosion rate and the calculated wall shear stress at the 1D downstream from the orifice to the value at upstream under well developed flow agreed well. (author)

  7. The Effect of Corrosion on the Seismic Behavior of Buried Pipelines and a Remedy for Their Seismic Retrofit

    International Nuclear Information System (INIS)

    Hosseini, Mahmood; Salek, Shamila; Moradi, Masoud

    2008-01-01

    The effect of corrosion phenomenon has been investigated by performing some sets of 3-Dimensional Nonlinear Time History Analysis (3-D NLTHA) in which soil structure interaction as well as wave propagation effects have been taken into consideration. The 3-D NLTHA has been performed by using a finite element computer program, and both states of overall and local corrosions have been considered for the study. The corrosion has been modeled in the computer program by introducing decreased values of either pipe wall thickness or modulus of elasticity and Poisson ratio. Three sets of 3-component accelerograms have been used in analyses, and some appropriate numbers of zeros have been added at the beginning of records to take into account the wave propagation in soil and its multi-support excitation effect. The soil has been modeled by nonlinear springs in longitudinal, lateral, and vertical directions. A relatively long segment of the pipeline has been considered for the study and the effect of end conditions has been investigated by assuming different kinds end supports for the segment. After studying the corroded pipeline, a remedy has been considered for the seismic retrofit of corroded pipe by using a kind of Fiber Reinforced Polymers (FRP) cover. The analyses have been repeated for the retrofitted pipeline to realize the adequacy of FRP cover. Numerical results show that if the length of the pipeline segment is large enough, comparing to the wave length of shear wave in the soil, the end conditions do not have any major effect on the maximum stress and strain values in the pipe. Results also show that corrosion can lead to the increase in plastic strain values in the pipe up to 4 times in the case of overall corrosion and up to 20 times in the case of local corrosion. The satisfactory effect of using FRP cover is also shown by the analyses results, which confirm the decrease of strain values to 1/3

  8. The Effect of Corrosion on the Seismic Behavior of Buried Pipelines and a Remedy for Their Seismic Retrofit

    Science.gov (United States)

    Hosseini, Mahmood; Salek, Shamila; Moradi, Masoud

    2008-07-01

    The effect of corrosion phenomenon has been investigated by performing some sets of 3-Dimensional Nonlinear Time History Analysis (3-D NLTHA) in which soil structure interaction as well as wave propagation effects have been taken into consideration. The 3-D NLTHA has been performed by using a finite element computer program, and both states of overall and local corrosions have been considered for the study. The corrosion has been modeled in the computer program by introducing decreased values of either pipe wall thickness or modulus of elasticity and Poisson ratio. Three sets of 3-component accelerograms have been used in analyses, and some appropriate numbers of zeros have been added at the beginning of records to take into account the wave propagation in soil and its multi-support excitation effect. The soil has been modeled by nonlinear springs in longitudinal, lateral, and vertical directions. A relatively long segment of the pipeline has been considered for the study and the effect of end conditions has been investigated by assuming different kinds end supports for the segment. After studying the corroded pipeline, a remedy has been considered for the seismic retrofit of corroded pipe by using a kind of Fiber Reinforced Polymers (FRP) cover. The analyses have been repeated for the retrofitted pipeline to realize the adequacy of FRP cover. Numerical results show that if the length of the pipeline segment is large enough, comparing to the wave length of shear wave in the soil, the end conditions do not have any major effect on the maximum stress and strain values in the pipe. Results also show that corrosion can lead to the increase in plastic strain values in the pipe up to 4 times in the case of overall corrosion and up to 20 times in the case of local corrosion. The satisfactory effect of using FRP cover is also shown by the analyses results, which confirm the decrease of strain values to 1/3.

  9. A new corrosion monitoring technique

    International Nuclear Information System (INIS)

    Brown, Gerald K.

    2000-01-01

    Internal Corrosion Monitoring has relied upon 5 basic techniques. Little improvement in performance has been achieved in any of these. Many newer internal corrosion monitoring techniques have proved of little value in the field although some have instances of success in the laboratory. Industry has many high value hydrocarbon applications requiring corrosion rate monitoring for real-time problem solving and control. The high value of assets and the cost of asset replacement makes it necessary to practice cost effective process and corrosion control with sensitivity beyond the 5 basic techniques. This new metal loss technology offers this sensitivity. Traditional metal loss technology today provides either high sensitivity with short life, or conversely, long life but with substantially reduced sensitivity. The new metal loss technology offers an improved working life of sensors without significantly compromising performance. The paper discusses the limitations of existing on-line technologies and describes the performance of a new technology. This new metal loss technology was introduced at NACE Corrosion 99'. Since that time several field projects have been completed or are ongoing. This paper will discuss the new metal loss technology and report on some of the data that has been obtained.(author)

  10. Effects of electrodeposition potential on the corrosion properties of bis-1,2-[triethoxysilyl] ethane films on aluminum alloy

    International Nuclear Information System (INIS)

    Hu Jiming; Liu Liang; Zhang Jianqing; Cao Chunan

    2006-01-01

    Bis-1,2-[triethoxysilyl] ethane (BTSE) films were prepared on 2024-T3 alloys by using potentiostatic method for corrosion protection. This work mainly investigated the effects of electrodeposition potential on the corrosion properties of silane films. Films prepared at cathodic potentials display an improvement in corrosion inhibition properties, while those prepared at anodic potentials present the deterioration of protectiveness. In the case of cathodic deposition, when the potential shifts negatively from the open-circuit potential (OCP), corrosion protection of the obtained films initially increases and then decreases, with the optimal deposition potential at -0.8 V/SCE. As indicated in scanning electron microscopy (SEM) images, films deposited at the optimum potential present the most uniform and compact morphologies. In addition, steady-state polarization and current-time curves have been also recorded on Al alloys in BTSE solutions during the deposition, respectively

  11. State of the social responsibility art

    OpenAIRE

    Varela López, Leidy Viviana; Universidad de San Buenaventura Cali.

    2015-01-01

    From the eighties, it has been addressing the issue of corporate social responsibility, specifically toward the defense of human rights and climate change. However, although they have applied corporate social responsibility principles in some of the existing institutions, it is still very small the work being done around the specific activity of solid waste management. Some works have been compiled to build a state of the art for understanding in depth the concept of corporate social responsi...

  12. Effects of chemical composition on the corrosion of dental alloys.

    Science.gov (United States)

    Galo, Rodrigo; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira; Rocha, Luís Augusto; de Mattos, Maria da Glória Chiarello

    2012-01-01

    The aim of this study was to determine the effect of the oral environment on the corrosion of dental alloys with different compositions, using electrochemical methods. The corrosion rates were obtained from the current-potential curves and electrochemical impedance spectroscopy (EIS). The effect of artificial saliva on the corrosion of dental alloys was dependent on alloy composition. Dissolution of the ions occurred in all tested dental alloys and the results were strongly dependent on the general alloy composition. Regarding the alloys containing nickel, the Ni-Cr and Ni-Cr-Ti alloys released 0.62 mg/L of Ni on average, while the Co-Cr dental alloy released ions between 0.01 and 0.03 mg/L of Co and Cr, respectively.The open-circuit potential stabilized at a higher level with lower deviation (standard deviation: Ni-Cr-6Ti = 32 mV/SCE and Co-Cr = 54 mV/SCE). The potenciodynamic curves of the dental alloys showed that the Ni-based dental alloy with >70 wt% of Ni had a similar curve and the Co-Cr dental alloy showed a low current density and hence a high resistance to corrosion compared with the Ni-based dental alloys. Some changes in microstructure were observed and this fact influenced the corrosion behavior for the alloys. The lower corrosion resistance also led to greater release of nickel ions to the medium. The quantity of Co ions released from the Co-Cr-Mo alloy was relatively small in the solutions. In addition, the quantity of Cr ions released into the artificial saliva from the Co-Cr alloy was lower than Cr release from the Ni-based dental alloys.

  13. Cost-effectiveness of early initiation of first-line combination antiretroviral therapy in Uganda

    Directory of Open Access Journals (Sweden)

    Sempa Joseph

    2012-09-01

    Full Text Available Abstract Background Ugandan national guidelines recommend initiation of combination antiretroviral therapy (cART at CD4+ T cell (CD4 count below 350 cell/μl, but the implementation of this is limited due to availability of medication. However, cART initiation at higher CD4 count increases survival, albeit at higher lifetime treatment cost. This analysis evaluates the cost-effectiveness of initiating cART at a CD4 count between 250–350 cell/μl (early versus Methods Life expectancy of cART-treated patients, conditional on baseline CD4 count, was modeled based on published literature. First-line cART costs $192 annually, with an additional $113 for patient monitoring. Delaying initiation of cART until the CD4 count falls below 250 cells/μl would incur the cost of the bi-annual CD4 count tests and routine maintenance care at $85 annually. We compared lifetime treatment costs and disability adjusted life-expectancy between early vs. delayed cART for ten baseline CD4 count ranges from 250-350 cell/μl. All costs and benefits were discounted at 3% annually. Results Treatment delay varied from 6–18 months. Early cART initiation increased life expectancy from 1.5-3.5 years and averted 1.33–3.10 disability adjusted life years (DALY’s per patient. Lifetime treatment costs were $4,300–$5,248 for early initiation and $3,940–$4,435 for delayed initiation. The cost/DALY averted of the early versus delayed start ranged from $260–$270. Conclusions In HIV-positive patients presenting with CD4 count between 250-350 cells/μl, immediate initiation of cART is a highly cost-effective strategy using the recommended one-time per capita GDP threshold of $490 reported for Uganda. This would constitute an efficient use of scarce health care funds.

  14. Corrosion fatigue of steels

    International Nuclear Information System (INIS)

    Spaehn, H.; Wagner, G.H.

    1976-01-01

    Corrosion fatigue phenomena can be classified into two main groups according to the electrochemical state of the metal surface in the presence of electrolytes: the active and the passive state with an important sub-group of corrosion fatigue in the unstable passive state. The allowable stress for structures exposed to the conjoint action of corrosion and fatigue is influenced by many factors: kind of media, number of cycles, frequency, mean stress, size, notches, loading mode, alloy composition and mechanical strength. A critical literature review shows contradictory results if a classification by the electrochemical surface state is not applied. Case histories and counter measures illustrate the practical importance of corrosion fatigue in many branches of industry as well as the urgent need for a better knowledge about the mutual influence of the phenomena to get rules by which the engineer can appraise the risk of corrosion fatigue. (orig.) [de

  15. State of the art report on design for X

    DEFF Research Database (Denmark)

    Papanikolaou, Apostolos; Andersen, Poul; Kristensen, Hans Otto Holmegaard

    2009-01-01

    The present State of the Art report aims at defining and reviewing the curent state of the ship design process in the frame of a holistic approach, accounting for various objectives and constraints. The report addresses mainly the design of transportation carriers, though some covered aspects...

  16. Effect of hydrogen on the corrosion behavior of the Mg–xZn alloys

    Directory of Open Access Journals (Sweden)

    Yingwei Song

    2014-09-01

    Full Text Available Hydrogen evolution reaction is inevitable during the corrosion of Mg alloys. The effect of hydrogen on the corrosion behavior of the Mg–2Zn and Mg–5Zn alloys is investigated by charging hydrogen treatment. The surface morphologies of the samples after charging hydrogen were observed using a scanning electron microscopy (SEM and the corrosion resistance was evaluated by polarization curves. It is found that there are oxide films formed on the surface of the charged hydrogen samples. The low hydrogen evolution rate is helpful to improve the corrosion resistance of Mg alloys, while the high hydrogen evolution rate can increases the defects in the films and further deteriorates their protection ability. Also, the charging hydrogen effect is greatly associated with the microstructure of Mg substrate.

  17. A State of the Art Overview

    DEFF Research Database (Denmark)

    Jahangiri, Tohid; Bak, Claus Leth; Silva, Filipe Miguel Faria da

    2015-01-01

    The first EHV composite cross-arms have been used since late 1990's in Switzerland. It was the first step to the compaction of towers sizes. Since then, significant advances have been made in composite cross-arms technology while the lattice construction technique has not been seriously challenged...... of EHV composite cross-arms and lightning protection methods are reviewed based on the state of the art review and subsequently some solutions are presented to overcome the two main challenges....

  18. State-of-the-Art Methods for Brain Tissue Segmentation: A Review.

    Science.gov (United States)

    Dora, Lingraj; Agrawal, Sanjay; Panda, Rutuparna; Abraham, Ajith

    2017-01-01

    Brain tissue segmentation is one of the most sought after research areas in medical image processing. It provides detailed quantitative brain analysis for accurate disease diagnosis, detection, and classification of abnormalities. It plays an essential role in discriminating healthy tissues from lesion tissues. Therefore, accurate disease diagnosis and treatment planning depend merely on the performance of the segmentation method used. In this review, we have studied the recent advances in brain tissue segmentation methods and their state-of-the-art in neuroscience research. The review also highlights the major challenges faced during tissue segmentation of the brain. An effective comparison is made among state-of-the-art brain tissue segmentation methods. Moreover, a study of some of the validation measures to evaluate different segmentation methods is also discussed. The brain tissue segmentation, content in terms of methodologies, and experiments presented in this review are encouraging enough to attract researchers working in this field.

  19. Meniscal Allograft Transplantation: State of the Art.

    Science.gov (United States)

    Trentacosta, Natasha; Graham, William C; Gersoff, Wayne K

    2016-06-01

    Meniscal allograft transplantation has evolved over the years to provide a state-of-the-art technique for the sports medicine surgeon to utilize in preserving contact mechanics and function of the knee in irreparable meniscal pathology. However, this procedure continues to spark considerable debate on proper tissue processing techniques, acceptable indications, methods of implantation, and potential long-term outcomes.

  20. Corrosion probe. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designed to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned

  1. Cost-effectiveness of human papillomavirus vaccination for adolescent girls in Punjab state: Implications for India's universal immunization program.

    Science.gov (United States)

    Prinja, Shankar; Bahuguna, Pankaj; Faujdar, Dharmjeet Singh; Jyani, Gaurav; Srinivasan, Radhika; Ghoshal, Sushmita; Suri, Vanita; Singh, Mini P; Kumar, Rajesh

    2017-09-01

    Introduction of human papillomavirus (HPV) vaccination for adolescent girls is being considered in the Punjab state of India. However, evidence regarding cost-effectiveness is sought by policy makers when making this decision. The current study was undertaken to evaluate the incremental cost per quality-adjusted life-years (QALYs) gained with introduction of the HPV vaccine compared with a no-vaccination scenario. A static progression model, using a combination of decision tree and Markov models, was populated using epidemiological, cost, coverage, and effectiveness data to determine the cost-effectiveness of HPV vaccination. Using a societal perspective, lifetime costs and consequences (in terms of QALYs) among a cohort of 11-year-old adolescent girls in Punjab state were modeled in 2 alternate scenarios with and without vaccination. All costs and consequences were discounted at a rate of 3%. Although immunizing 1 year's cohort of 11-year-old girls in Punjab state costs Indian National Rupees (INR) 135 million (US dollars [USD] 2.08 million and International dollars [Int$] 6.25 million) on an absolute basis, its net cost after accounting for treatment savings is INR 38 million (USD 0.58 million and Int$ 1.76 million). Incremental cost per QALY gained for HPV vaccination was found to be INR 73 (USD 1.12 and Int$ 3.38). Given all the data uncertainties, there is a 90% probability for the vaccination strategy to be cost-effective in Punjab state at a willingness-to-pay threshold of INR 10,000, which is less than one-tenth of the per capita gross domestic product. HPV vaccination appears to be a very cost-effective strategy for Punjab state, and is likely to be cost-effective for other Indian states. Cancer 2017;123:3253-60. © 2017 American Cancer Society. © 2017 American Cancer Society.

  2. State of the ART: clinical efficacy and improved quality of life in the public antiretroviral therapy program, Free State province, South Africa.

    Science.gov (United States)

    Wouters, E; Van Loon, F; Van Rensburg, D; Meulemans, H

    2009-11-01

    The South African public-sector antiretroviral treatment (ART) program has yielded promising early results. To extend and reinforce these preliminary findings, we undertook a detailed assessment of the clinical efficacy and outcomes over two years of ART. The primary objective was to assess the clinical outcomes and adverse effects of two years of ART, while identifying the possible effects of baseline health and patient characteristics. A secondary objective was to address the interplay between positive and negative outcomes (clinical benefits versus adverse effects) in terms of the patients' physical and emotional quality of life (QoL). Clinical outcome, baseline characteristics, health status, and physical and emotional QoL scores were determined from clinical files and interviews with 268 patients enrolled in the Free State ART program at three time points (6, 12, and 24 months of ART). Age, sex, education, and baseline health (CD4 cell count and viral load) were all independently associated with the ART outcome in the early stages of treatment, but their impact diminished as the treatment progressed. The number of patients classified as treatment successes increased over the first two years of ART, whereas the proportion of patients experiencing adverse effects diminished. Importantly, our findings show that ART had strong and stable positive effects on physical and emotional QoL. These favorable results demonstrate that a well-managed public-sector ART program can be very successful within a high-HIV-prevalence resource-limited setting. This finding emphasizes the need to adopt treatment scale-up as a key policy priority, while at the same time ensuring that the highest standards of healthcare provision are maintained. Healthcare services should also target vulnerable groups (males, less-educated patients, those with low baseline CD4 cell counts, and high baseline viral loads) who are most likely to experience treatment failure.

  3. Effect of Sn4+ Additives on the Microstructure and Corrosion Resistance of Anodic Coating Formed on AZ31 Magnesium Alloy in Alkaline Solution

    Science.gov (United States)

    Salman, S. A.; Kuroda, K.; Saito, N.; Okido, M.

    Magnesium is the lightest structural metal with high specific strength and good mechanical properties. However, poor corrosion resistance limits its widespread use in many applications. Magnesium is usually treated with Chromate conversion coatings. However, due to changing environmental regulations and pollution prevention requirements, a significant push exists to find new, alternative for poisonous Cr6+. Therefore, we aim to improve corrosion resistance of anodic coatings on AZ31 alloys using low cost non-chromate electrolyte. Anodizing was carried out in alkaline solutions with tin additives. The effect of tin additives on the coating film was characterized by SEM and XRD. The corrosion resistance was evaluated using anodic and cathodic polarizations and electrochemical impedance spectroscopy (EIS). Corrosion resistance property was improved with tin additives and the best anti-corrosion property was obtained with addition of 0.03 M Na2SnO3.3H2O to anodizing solution.

  4. State of the art report on aging reliability analysis

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Yang, Joon Eon; Han, Sang Hoon; Ha, Jae Joo

    2002-03-01

    The goal of this report is to describe the state of the art on aging analysis methods to calculate the effects of component aging quantitatively. In this report, we described some aging analysis methods which calculate the increase of Core Damage Frequency (CDF) due to aging by including the influence of aging into PSA. We also described several research topics required for aging analysis for components of domestic NPPs. We have described a statistical model and reliability physics model which calculate the effect of aging quantitatively by using PSA method. It is expected that the practical use of the reliability-physics model will be increased though the process with the reliability-physics model is more complicated than statistical model

  5. Structural Effects of Reinforced Concrete Beam Due to Corrosion

    Science.gov (United States)

    Noh, Hamidun Mohd; Idris, Nur'ain; Noor, Nurazuwa Md; Sarpin, Norliana; Zainal, Rozlin; Kasim, Narimah

    2018-03-01

    Corrosion of steel in reinforced concrete is one of the main issues among construction stakeholders. The main consequences of steel corrosion include loss of cross section of steel area, generation of expansive pressure which caused cracking of concrete, spalling and delaminating of the concrete cover. Thus, it reduces the bond strength between the steel reinforcing bar and concrete, and deteriorating the strength of the structure. The objective of this study is to investigate the structural effects of corrosion damage on the performance of reinforced concrete beam. A series of corroded reinforced concrete beam with a corrosion rate of 0%, 20% and 40% of rebar corrosion is used in parametric study to assess the influence of different level of corrosion rate to the structural performance. As a result, the used of interface element in the finite element modelling predicted the worst case of corrosion analysis since cracks is induced and generate at this surface. On the other hand, a positive linear relationship was sketched between the increase of expansive pressure and the corrosion rate. Meanwhile, the gradient of the graph is decreased with the increase of steel bar diameter. Furthermore, the analysis shows that there is a significant effect on the load bearing capacity of the structure where the higher corrosion rate generates a higher stress concentration at the mid span of the beam. This study could predict the residual strength of reinforced concrete beam under the corrosion using the finite element analysis. The experimental validation is needed on the next stage to investigate the quantitative relation between the corrosion rate and its influence on the mechanical properties.

  6. Bridge maintenance to enhance corrosion resistance and performance of steel girder bridges

    Science.gov (United States)

    Moran Yanez, Luis M.

    The integrity and efficiency of any national highway system relies on the condition of the various components. Bridges are fundamental elements of a highway system, representing an important investment and a strategic link that facilitates the transport of persons and goods. The cost to rehabilitate or replace a highway bridge represents an important expenditure to the owner, who needs to evaluate the correct time to assume that cost. Among the several factors that affect the condition of steel highway bridges, corrosion is identified as the main problem. In the USA corrosion is the primary cause of structurally deficient steel bridges. The benefit of regular high-pressure superstructure washing and spot painting were evaluated as effective maintenance activities to reduce the corrosion process. The effectiveness of steel girder washing was assessed by developing models of corrosion deterioration of composite steel girders and analyzing steel coupons at the laboratory under atmospheric corrosion for two alternatives: when high-pressure washing was performed and when washing was not considered. The effectiveness of spot painting was assessed by analyzing the corrosion on steel coupons, with small damages, unprotected and protected by spot painting. A parametric analysis of corroded steel girder bridges was considered. The emphasis was focused on the parametric analyses of corroded steel girder bridges under two alternatives: (a) when steel bridge girder washing is performed according to a particular frequency, and (b) when no bridge washing is performed to the girders. The reduction of structural capacity was observed for both alternatives along the structure service life, estimated at 100 years. An economic analysis, using the Life-Cycle Cost Analysis method, demonstrated that it is more cost-effective to perform steel girder washing as a scheduled maintenance activity in contrast to the no washing alternative.

  7. Effect of Al and Ce oxide layers electrodeposited on OC4004 stainless steel on its corrosion characteristics in acid media

    International Nuclear Information System (INIS)

    Stoyanova, E.; Nikolova, D.; Stoychev, D.; Stefanov, P.; Marinova, T.

    2006-01-01

    The changes in the corrosion characteristics of stainless steel OC4004 in 0.1 M HNO 3 after electrodeposition of thin Al and Ce oxide films on it has been investigated. The Ce 2 O 3 -CeO 2 layers have been found to possess a pronounced stabilizing effect on the steel passive state and on its corrosion resistance, respectively, whereas the Al 2 O 3 layers do not improve considerably the corrosion behaviour of the SS/Al 2 O 3 system. A twice-lower corrosion current was observed with a ternary SS/Al 2 O 3 /Ce 2 O 3 -CeO 2 system in the passive region, while the zones of potentials, where the steel is in a stable passive state, are not changed. The obtained results permit the assumption that the cerium oxides layer acts as an effective cathode playing a determining role with respect to the improvement of the corrosion behavior of the steel. It has been concluded that when the SS/Al 2 O 3 /Ce 2 O 3 -CeO 2 system is used in media containing nitric acid, the corrosion will proceed at potentials where the passive state of steel would not be disturbed

  8. Multi-Country Analysis of Treatment Costs for HIV/AIDS (MATCH): Facility-Level ART Unit Cost Analysis in Ethiopia, Malawi, Rwanda, South Africa and Zambia

    Science.gov (United States)

    Tagar, Elya; Sundaram, Maaya; Condliffe, Kate; Matatiyo, Blackson; Chimbwandira, Frank; Chilima, Ben; Mwanamanga, Robert; Moyo, Crispin; Chitah, Bona Mukosha; Nyemazi, Jean Pierre; Assefa, Yibeltal; Pillay, Yogan; Mayer, Sam; Shear, Lauren; Dain, Mary; Hurley, Raphael; Kumar, Ritu; McCarthy, Thomas; Batra, Parul; Gwinnell, Dan; Diamond, Samantha; Over, Mead

    2014-01-01

    Background Today's uncertain HIV funding landscape threatens to slow progress towards treatment goals. Understanding the costs of antiretroviral therapy (ART) will be essential for governments to make informed policy decisions about the pace of scale-up under the 2013 WHO HIV Treatment Guidelines, which increase the number of people eligible for treatment from 17.6 million to 28.6 million. The study presented here is one of the largest of its kind and the first to describe the facility-level cost of ART in a random sample of facilities in Ethiopia, Malawi, Rwanda, South Africa and Zambia. Methods & Findings In 2010–2011, comprehensive data on one year of facility-level ART costs and patient outcomes were collected from 161 facilities, selected using stratified random sampling. Overall, facility-level ART costs were significantly lower than expected in four of the five countries, with a simple average of $208 per patient-year (ppy) across Ethiopia, Malawi, Rwanda and Zambia. Costs were higher in South Africa, at $682 ppy. This included medications, laboratory services, direct and indirect personnel, patient support, equipment and administrative services. Facilities demonstrated the ability to retain patients alive and on treatment at these costs, although outcomes for established patients (2–8% annual loss to follow-up or death) were better than outcomes for new patients in their first year of ART (77–95% alive and on treatment). Conclusions This study illustrated that the facility-level costs of ART are lower than previously understood in these five countries. While limitations must be considered, and costs will vary across countries, this suggests that expanded treatment coverage may be affordable. Further research is needed to understand investment costs of treatment scale-up, non-facility costs and opportunities for more efficient resource allocation. PMID:25389777

  9. [Analysis of costs and cost-effectiveness of preferred GESIDA/National AIDS Plan regimens for initial antiretroviral therapy in human immunodeficiency virus infected adult patients in 2013].

    Science.gov (United States)

    Blasco, Antonio Javier; Llibre, Josep M; Arribas, José Ramón; Boix, Vicente; Clotet, Bonaventura; Domingo, Pere; González-García, Juan; Knobel, Hernando; López, Juan Carlos; Lozano, Fernando; Miró, José M; Podzamczer, Daniel; Santamaría, Juan Miguel; Tuset, Montserrat; Zamora, Laura; Lázaro, Pablo; Gatell, Josep M

    2013-11-01

    The GESIDA and National AIDS Plan panel of experts have proposed "preferred regimens" of antiretroviral treatment (ART) as initial therapy in HIV infected patients for 2013. The objective of this study is to evaluate the costs and effectiveness of initiating treatment with these "preferred regimens". An economic assessment of costs and effectiveness (cost/effectiveness) was performed using decision tree analysis models. Effectiveness was defined as the probability of having viral load <50copies/mL at week48, in an intention-to-treat analysis. Cost of initiating treatment with an ART regime was defined as the costs of ART and its consequences (adverse effects, changes of ART regime and drug resistance analyses) during the first 48weeks. The perspective of the analysis is that of the National Health System was applied, only taking into account differential direct costs: ART (official prices), management of adverse effects, resistance studies, and determination of HLA B*5701. The setting is Spain and the costs are those of 2013. A sensitivity deterministic analysis was performed, constructing three scenarios for each regimen: baseline, most favourable, and most unfavourable cases. In the baseline case scenario, the cost of initiating treatment ranges from 6,747euros for TDF/FTC+NVP to 12,059euros for TDF/FTC+RAL. The effectiveness ranges between 0.66 for ABC/3TC+LPV/r and ABC/3TC+ATV/r, and 0.87 for TDF/FTC+RAL and ABC/3TC+RAL. Effectiveness, in terms of cost/effectiveness, varies between 8,396euros and 13,930euros per responder at 48weeks, for TDF/FTC/RPV and TDF/FTC+RAL, respectively. Taking ART at official prices, the most effective regimen was TDF/FTC/RPV, followed by the rest of non-nucleoside containing regimens. The sensitivity analysis confirms the robustness of these findings. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  10. [Health professionals facing hand hygiene improvement: state-of-the-art strategies versus extended strategies].

    Science.gov (United States)

    Herrera-Usagre, Manuel; Pérez-Pérez, Pastora; Vázquez-Vázquez, Marta; Santana-López, Vicente

    2014-10-01

    The hand hygiene (HH) is one of the preventive practices more .widely and effectively implemented in the control of healthcare associated infections. However, there are several barriers to compliance. To assess which strategy, state-of-the-art strategies (availability of alcohol-based preparations, posters, instructions and training) or extended strategies (feedbacks, formal and informal leadership), are seen as more effective to improve hand hygiene (HH) compliance. Analytical study using a self-completed questionnaire developed by the World Health Organization. 2,068 questionnaires, completed by healthcare professionals (HP) in Andalusia (Spain), were received from 2010 to 2012. Analytical technique: Structural equation modeling and multi group measurement invariance. Once the reliability of the proposed constructs was achieved (Cronbach α=0.73, 0.84, 0.70), it was found that those HP working in centers with the highest level of commitment with HH are those who see extended strategies as more effective (χ2=298.3, df=39, CFI=0.972, TLI=0.961, RMSEA=0.057, SRMR=0.028). Our results have shown that hospitals' HP, compared to primary care HP, see state-of-the-art strategies as more effective, as well as they give less importance to HH, meanwhile nurses, compared to physicians, see effective both strategies. HP contemplate the combination of state-of-the-art and extended strategies as an effective way to improve the HH compliance. In addition, extended strategies are considered more effective amongst the most "advanced" healthcare settings in terms of their commitment to HH. The results highlight the need for commitment at management, collective and individual level in order to maintain patient safety.

  11. State of the art in semiconductor detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1990-01-01

    The state of the art in semiconductor detectors for elementary particle physics and X-ray astronomy is briefly reviewed. Semiconductor detectors are divided into two groups; i) classical semiconductor diode detectors and ii) semiconductor memory detectors. Principles of signal formation for both groups of detectors are described and their performance is compared. New developments of silicon detectors are reported here. (orig.)

  12. State of the art in semiconductor detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1989-01-01

    The state of the art in semiconductor detectors for elementary particle physics and x-ray astronomy is briefly reviewed. Semiconductor detectors are divided into two groups; classical semiconductor diode detectors; and semiconductor memory detectors. Principles of signal formation for both groups of detectors are described and their performance is compared. New developments of silicon detectors are reported here. 13 refs., 8 figs

  13. The state-of-the-art of HSR in Europe.

    NARCIS (Netherlands)

    Hansen, J.

    2009-01-01

    In this section of the workshop we present an overview based on mapping the current state-of-the-art concerning various fields of health services research, addressing the different levels of analysis in HSR. (1) HSR at the level of health care systems, being national or sometimes regional entities,

  14. RodPilotR - The Innovative and Cost-Effective Digital Control Rod Drive Control System for PWRs

    International Nuclear Information System (INIS)

    Baron, Clemens

    2008-01-01

    With RodPilot, AREVA NP offers an innovative and cost-effective system for controlling control rods in Pressurized Water Reactors. RodPilot controls the three operating coils of the control rod drive mechanism (lift, moveable gripper and stationary gripper coil). The rods are inserted into or withdrawn from the core as required by the Reactor Control System. The system combines modern components, state-of-the-art logic and a proven electronic control rod drive control principle to provide enhanced reliability and lower maintenance costs. (author)

  15. Pharmacoeconomy in ART: The importance of the gonadotrophin choice

    Directory of Open Access Journals (Sweden)

    Sandro Gerli

    2010-04-01

    Full Text Available Assisted Reproductive Technologies (ART have created a number of relevant economic implications. Results deriving from cost-effectiveness studies have had some important medical and social consequences. The costs of ART are specific to the healthcare system in each of the countries were the procedure is performed, reflecting the varying degrees of public and private responsibility for purchasing healthcare and total healthcare expenditure. The analysis of different cost components per treatment cycle demonstrates that the hormonal stimulation stage is the most expensive part of IVF/ICSI cycles. The use of a more costly preparation could be justified only in case of a significantly higher live birth rate. Currently, human gonadotrophins seem to be more cost-effective than recombinant preparations.

  16. Cost-effectiveness analysis of infant feeding strategies to prevent ...

    African Journals Online (AJOL)

    Changing feeding practices is beneficial, depending on context. Breastfeeding is dominant (less costly, more effective) in rural settings, whilst formula feeding is a dominant strategy in urban settings. Cost-effectiveness was most sensitive to proportion of women on lifelong antiretroviral therapy (ART) and infant mortality rate ...

  17. Future and benefits of corrosion research

    International Nuclear Information System (INIS)

    Staehle, Roger W.

    2002-01-01

    The subject of corrosion is a design science. The subject of stress analysis is a design science as is the subject of heat transfer. When the subject of corrosion is considered in the framework design a clear framework of the priorities and objectives becomes apparent. Further, corrosion becomes a more explicit and important subject in the overall design, manufacturing, and operation phases of equipment: in this framework, the funding and support of corrosion work is necessary to the designers and users of equipment. The subject of corrosion is usually less important in the early stages of operation of equipment: in these early stages, the subjects. Corrosion becomes important to the longer term reliability and safety of equipment. Corrosion is often a principal determiner of design life. Corrosion is often more important after the manufacturing warranty is expired: therefore the subject is often more important to the user than to the manufacturer. In order that the subject of corrosion is considered and incorporated in the design as well as in user specifications, there must be a language and means of easily understood communication between the design-operation community and the corrosion community. For example, the designers do not understand the language of 'pitting potential': rather, they understand design life and permissible stress. Thus, corrosion must be put into terms that can be understood and utilized by designers and operators. Two methodologies have been developed for communicating effectively between the corrosion and the design communities: these are the 'Corrosion Based Design Approach' and the 'Location for Analysis Matrix.' These provide simple check off lists to designers for asking questions and assuring that credible answers have been obtained on issues that affect reliable and economic performance. Both of these subject are discussed in this presentation. The future of corrosion research is its effective linkage with design and operation of

  18. Quantitative assessment of the effect of corrosion product buildup on occupational exposure

    International Nuclear Information System (INIS)

    Divine, J.R.

    1982-10-01

    The program was developed to provide a method for predicting occupational exposures caused by the deposition of radioactive corrosion products outside the core of the primary system of an operating power reactor. This predictive capability will be useful in forecasting total occupational doses during maintenance, inspection, decontamination, waste treatment, and disposal. In developing a reliable predictive model, a better understanding of the parameters important to corrosion product film formation, corrosion product transport, and corrosion product film removal will be developed. This understanding can lead to new concepts in reactor design to minimize the buildup and transport of radioactive corrosion products or to improve methods of operation. To achieve this goal, three objectives were established to provide: (1) criteria for acceptable coolant sampling procedures and sampling equipment that will provide data which will be used in the model development; (2) a quantitative assessment of the effect of corrosion product deposits on occupational exposure; and (3) a model which describes the influence of flow, temperature, coolant chemistry, construction materials, radiation, and other operating parameters on the transport and buildup of corrosion products

  19. State of the art in cosmology

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1983-01-01

    The present state of the art in cosmology is under discussion. The general picture of the Universe evolution is presented, and its main stages are outlined. The prooess of formation of the large scale Universe structure is considered. The possibility of investigation into the ''inflation'' period of the ''very-very early Universe'' from the view point of theoretical physics is sown. It is noted that cosmology will become a complete science only when physics gives an exhaustive answer to all issues raised by cosmology

  20. The Effects of Corrosive Chemicals on Corrosion Rate of Steel Reinforcement Bars: II. Swamp Sludges

    Directory of Open Access Journals (Sweden)

    Henki Ashadi

    2010-10-01

    Full Text Available A polluted environment will influence the building age. The objective of this research was to find out the influence of corrosive chemicals within the sludge swamp area with the corrosion rate of steel concrete. Corrosion in steel concrete usually occur in acid area which contain of SO42-, Cl- and NO3-. The research treatment used by emerging ST 37 andST 60 within 60 days in 'polluted' sludge swamp area. Three variation of 'polluted' swamp sludge were made by increasing the concentration a corrosive unsure up to 1X, 5X and 10X. The corrosion rate measured by using an Immersion Method. The result of Immersion test showed that sulphate had a greatest influence to corrosion rate of ST 37 and ST 60 and followed by chloride and nitrate. Corrosion rate value for ST 37 was 17.58 mpy and for ST 60 was 12.47 mpy.

  1. The Effects of Alloy Chemistry on Localized Corrosion of Austenitic Stainless Steels

    Science.gov (United States)

    Sapiro, David O.

    This study investigated localized corrosion behavior of austenitic stainless steels under stressed and unstressed conditions, as well as corrosion of metallic thin films. While austenitic stainless steels are widely used in corrosive environments, they are vulnerable to pitting and stress corrosion cracking (SCC), particularly in chloride-containing environments. The corrosion resistance of austenitic stainless steels is closely tied to the alloying elements chromium, nickel, and molybdenum. Polarization curves were measured for five commercially available austenitic stainless steels of varying chromium, nickel, and molybdenum content in 3.5 wt.% and 25 wt.% NaCl solutions. The alloys were also tested in tension at slow strain rates in air and in a chloride environment under different polarization conditions to explore the relationship between the extent of pitting corrosion and SCC over a range of alloy content and environment. The influence of alloy composition on corrosion resistance was found to be consistent with the pitting resistance equivalent number (PREN) under some conditions, but there were also conditions under which the model did not hold for certain commercial alloy compositions. Monotonic loading was used to generate SCC in in 300 series stainless steels, and it was possible to control the failure mode through adjusting environmental and polarization conditions. Metallic thin film systems of thickness 10-200 nm are being investigated for use as corrosion sensors and protective coatings, however the corrosion properties of ferrous thin films have not been widely studied. The effects of film thickness and substrate conductivity were examined using potentiodynamic polarization and scanning vibrating electrode technique (SVET) on iron thin films. Thicker films undergo more corrosion than thinner films in the same environment, though the corrosion mechanism is the same. Conductive substrates encourage general corrosion, similar to that of bulk iron

  2. The Effect of Fly Ash on the Corrosion Behaviour of Galvanised Steel Rebarsin Concrete

    Science.gov (United States)

    Tittarelli, Francesca; Mobili, Alessandra; Bellezze, Tiziano

    2017-08-01

    The effect of fly ash on the corrosion behaviour of galvanised steel rebars in cracked concrete specimens exposed to wet-dry cycles in a chloride solution has been investigated. The obtained results show that the use of fly ash, replacing either cement or aggregate, always improves the corrosion behaviour of galvanised steel reinforcements. In particular, the addition of fly ash, even in the presence of concrete cracks, decreases the corrosion rate monitored in very porous concretes, as those with w/c = 0.80, to values comparable with those obtained in good quality concretes, as those with w/c = 0.45. Therefore, fly ash cancels the negative effect, at least from the corrosion point of view, of a great porosity of the cement matrix.

  3. Aircraft wake vortices : a state-of-the-art review of the United States R&D program

    Science.gov (United States)

    1977-02-28

    The report summarizes the current state-of-the-art understanding : of the aircraft wake vortex phenomenon and the results of the United : States program to minimize the restrictions caused by aircraft wake : vortices in the terminal environment. The ...

  4. Socioeconomic disparities in access to ART treatment and the differential impact of a policy that increased consumer costs.

    Science.gov (United States)

    Chambers, G M; Hoang, V P; Illingworth, P J

    2013-11-01

    What was the impact on access to assisted reproductive technology (ART) treatment by different socioeconomic status (SES) groups after the introduction of a policy that increased patient out-of-pocket costs? After the introduction of a policy that increased out-of-pocket costs in Australia, all SES groups experienced a similar percentage reduction in fresh ART cycles per 1000 women of reproductive age. Higher SES groups experienced a progressively greater reduction in absolute numbers of fresh ART cycles due to existing higher levels of utilization. Australia has supportive public funding arrangements for ARTs. Policies that substantially increase out-of-pocket costs for ART treatment create financial barriers to access and an overall reduction in utilization. Data from the USA suggests that disparities exist in access to ART treatment based on ethnicity, education level and income. Time series analysis of utilization of ART, intrauterine insemination (IUI) and clomiphene citrate by women from varying SES groups before and after the introduction of a change in the level of public funding for ART. Women undertaking fertility treatment in Australia between 2007 and 2010. Women from higher SES quintiles use more ART treatment than those in lower SES quintiles, which likely reflects a greater ability to pay for treatment and a greater need for ART treatment as indicated by the trend to later childbearing. In 2009, 10.13 and 5.17 fresh ART cycles per 1000 women of reproductive age were performed in women in the highest and lowest SES quintiles respectively. In the 12 months after the introduction of a policy that increased out-of-pocket costs from ∼$1500 Australian dollars (€1000) to ∼$2500 (€1670) for a fresh IVF cycle, there was a 21-25% reduction in fresh ART cycles across all SES quintiles. The absolute reduction in fresh ART cycles in the highest SES quintile was double that in the lowest SES quintile. In this study, SES was based on the average relative

  5. Chernobyl - state of the art

    International Nuclear Information System (INIS)

    Souza, Daiane C.B. de; Vicente, Roberto; Rostelato, Maria Elisa C.M.; Borges, Jessica F.; Tiezzi, Rodrigo; Peleias Junior, Fernando S.; Souza, Carla D.; Rodrigues, Bruna T.; Benega, Marcos A.G.; Souza, Anderson S. de; Silva, Thais H. da

    2014-01-01

    This article aims to analyze what has been done so far in relation to damage caused by the accident and the state of art in Chernobyl, as well as the impact on radiation protection applied safety nuclear power plants. In the first part of the work a data survey was done through a bibliographic review and the in the second part data was collected during a visit, in June 2013 at the crash site, when was observed dose values in the affected areas and the works of repairs that have been made in the sarcophagus and surroundings as well as in official reports available through active international bodies. The main results indicate significant improvements in radiation protection systems

  6. Effect of dissolved oxygen, hydrazine and pH outside the crevice on the galvanic corrosion of support plate alloys

    International Nuclear Information System (INIS)

    McKubre, M.C.H.

    1985-01-01

    A study has been performed of the initial corrosion of support structure alloys in crevices of various geometries, when galvanically coupled to alloy 600. Corrosion rates were monitored continuously by measuring the galvanic current flowing in each couple, transduced by a zero impedance ammeter. Experiments were performed in a single-pass flowing electrolyte system, with AVT water pumped through alloy 600 tubing past the orifice of each crevice. Fourteen crevices were studied simultaneously in two parallel flow arms containing seven specimens each. The steady state AVT water pH/hydrazine/oxygen concentrations were controlled by microcomputer, allowing the effect of secondary water chemistry on the corrosion rate to be studied easily. Control of the crevice electrolyte composition was achieved by separately pumping electrolyte, at a low rate, directly into the crevices of the seven specimens in the lower flow arm. In addition, a high pressure syringe was used to introduce chemicals directly into the secondary or crevice electrolyte flow streams, in order to rapidly evaluate the influence of potential corrodent or corrosion control agents on the galvanic corrosion rates. Specimens were studied in the five basic geometries

  7. The effect of zinc addition on PWR corrosion product deposition on zircaloy-4

    International Nuclear Information System (INIS)

    Walters, W.S.; Page, J.D.; Gaffka, A.P.; Kingsbury, A.F.; Foster, J.; Anderson, A.; Wickenden, D.; Henshaw, J.; Zmitko, M.; Masarik, V.; Svarc, V.

    2002-01-01

    During the period 1995 to 2001 a programme of loop irradiation tests have been performed to confirm the effectiveness of zinc additions on PWR circuit chemistry and corrosion. The programme included two loop irradiation experiments, and subsequent PIE; the experiments were a baseline test (no added zinc) and a test with added zinc (10 ppb). This paper addresses the findings regarding corrosion product deposition and activation on irradiated Zircaloy-4 surfaces. The findings are relevant to overall corrosion of the reactor primary circuit, the use of zinc as a corrosion inhibitor, and activation and transport of corrosion products. The irradiation experience provides information on the equilibration of the loop chemistry, with deliberate injection of zinc. The PIE used novel and innovative techniques (described below) to obtain samples of the oxide from the irradiated Zircaloy. The results of the PIE, under normal chemistry and zinc chemistry, indicate the effect of zinc on the deposition and activation of corrosion products on Zircaloy. It was found that corrosion product deposition on Zircaloy is enhanced by the addition of zinc (but corrosion product deposition on other materials was reduced in the presence of zinc). Chemical analysis and radioisotope gamma counting results are presented, to interpret the findings. A computer model has also been used to simulate the corrosion product deposition and activation, to assist in the interpretation of the results. (authors)

  8. Reinforcement steel corrosion in passive state and by carbonation: Consideration of galvanic currents and interface steel - concrete defaults

    International Nuclear Information System (INIS)

    Nasser, A.

    2010-01-01

    This thesis aims to study the durability of nuclear waste deep storage structures. The work carried out is essentially an experimental study, and focuses on the corrosion of steel in the passive state with aerated or non-aerated conditions on the one hand, and the corrosion of steel in carbonated concrete during the propagation phase on the other hand. Indeed, the pore solution of concrete in contact with the metal is alkaline (pH between 12 and 13). Under these conditions, steel reinforced concrete remains passive by forming a stable and protective oxide layer (corrosion of steel in the passive state). This passive layer limits the steel corrosion rate at very low values (negligible on a short life time) but not null. For the nuclear waste storage structures due to a very long life time (up to several hundred years), this low corrosion rate can become a risk. Therefore, it is necessary to study the evolution of the oxide layer growth over time. The objectives of the thesis are to study the influence of the steel-concrete interface quality on reinforcement corrosion in passive and active state, and the possible occurrence of galvanic corrosion currents between different reinforcement steel areas. (author)

  9. State of the art, to protect lines that transport hydrocarbons

    International Nuclear Information System (INIS)

    Carta Petrolera

    1998-01-01

    Personnel's periodic and forced displacement for monitoring the buried pipe and to obtain reports on the state of the lines, it will no longer be necessary in some tracts of the pipeline in Colombia, now the remote supervision exists for the control of the systems of cathodic protection, a technology that ECOPETROL is applying in its lines of transport. This technique facilitates the preventive maintenance to the systems to the corrosion protection

  10. Marine Atmospheric Corrosion of Carbon Steel: A Review.

    Science.gov (United States)

    Alcántara, Jenifer; Fuente, Daniel de la; Chico, Belén; Simancas, Joaquín; Díaz, Iván; Morcillo, Manuel

    2017-04-13

    The atmospheric corrosion of carbon steel is an extensive topic that has been studied over the years by many researchers. However, until relatively recently, surprisingly little attention has been paid to the action of marine chlorides. Corrosion in coastal regions is a particularly relevant issue due the latter's great importance to human society. About half of the world's population lives in coastal regions and the industrialisation of developing countries tends to concentrate production plants close to the sea. Until the start of the 21st century, research on the basic mechanisms of rust formation in Cl - -rich atmospheres was limited to just a small number of studies. However, in recent years, scientific understanding of marine atmospheric corrosion has advanced greatly, and in the authors' opinion a sufficient body of knowledge has been built up in published scientific papers to warrant an up-to-date review of the current state-of-the-art and to assess what issues still need to be addressed. That is the purpose of the present review. After a preliminary section devoted to basic concepts on atmospheric corrosion, the marine atmosphere, and experimentation on marine atmospheric corrosion, the paper addresses key aspects such as the most significant corrosion products, the characteristics of the rust layers formed, and the mechanisms of steel corrosion in marine atmospheres. Special attention is then paid to important matters such as coastal-industrial atmospheres and long-term behaviour of carbon steel exposed to marine atmospheres. The work ends with a section dedicated to issues pending, noting a series of questions in relation with which greater research efforts would seem to be necessary.

  11. Marine Atmospheric Corrosion of Carbon Steel: A Review

    Science.gov (United States)

    Alcántara, Jenifer; de la Fuente, Daniel; Chico, Belén; Simancas, Joaquín; Díaz, Iván; Morcillo, Manuel

    2017-01-01

    The atmospheric corrosion of carbon steel is an extensive topic that has been studied over the years by many researchers. However, until relatively recently, surprisingly little attention has been paid to the action of marine chlorides. Corrosion in coastal regions is a particularly relevant issue due the latter’s great importance to human society. About half of the world’s population lives in coastal regions and the industrialisation of developing countries tends to concentrate production plants close to the sea. Until the start of the 21st century, research on the basic mechanisms of rust formation in Cl−-rich atmospheres was limited to just a small number of studies. However, in recent years, scientific understanding of marine atmospheric corrosion has advanced greatly, and in the authors’ opinion a sufficient body of knowledge has been built up in published scientific papers to warrant an up-to-date review of the current state-of-the-art and to assess what issues still need to be addressed. That is the purpose of the present review. After a preliminary section devoted to basic concepts on atmospheric corrosion, the marine atmosphere, and experimentation on marine atmospheric corrosion, the paper addresses key aspects such as the most significant corrosion products, the characteristics of the rust layers formed, and the mechanisms of steel corrosion in marine atmospheres. Special attention is then paid to important matters such as coastal-industrial atmospheres and long-term behaviour of carbon steel exposed to marine atmospheres. The work ends with a section dedicated to issues pending, noting a series of questions in relation with which greater research efforts would seem to be necessary. PMID:28772766

  12. Improving Maternal Care through a State-Wide Health Insurance Program: A Cost and Cost-Effectiveness Study in Rural Nigeria.

    Science.gov (United States)

    Gomez, Gabriela B; Foster, Nicola; Brals, Daniella; Nelissen, Heleen E; Bolarinwa, Oladimeji A; Hendriks, Marleen E; Boers, Alexander C; van Eck, Diederik; Rosendaal, Nicole; Adenusi, Peju; Agbede, Kayode; Akande, Tanimola M; Boele van Hensbroek, Michael; Wit, Ferdinand W; Hankins, Catherine A; Schultsz, Constance

    2015-01-01

    While the Nigerian government has made progress towards the Millennium Development Goals, further investments are needed to achieve the targets of post-2015 Sustainable Development Goals, including Universal Health Coverage. Economic evaluations of innovative interventions can help inform investment decisions in resource-constrained settings. We aim to assess the cost and cost-effectiveness of maternal care provided within the new Kwara State Health Insurance program (KSHI) in rural Nigeria. We used a decision analytic model to simulate a cohort of pregnant women. The primary outcome is the incremental cost effectiveness ratio (ICER) of the KSHI scenario compared to the current standard of care. Intervention cost from a healthcare provider perspective included service delivery costs and above-service level costs; these were evaluated in a participating hospital and using financial records from the managing organisations, respectively. Standard of care costs from a provider perspective were derived from the literature using an ingredient approach. We generated 95% credibility intervals around the primary outcome through probabilistic sensitivity analysis (PSA) based on a Monte Carlo simulation. We conducted one-way sensitivity analyses across key model parameters and assessed the sensitivity of our results to the performance of the base case separately through a scenario analysis. Finally, we assessed the sustainability and feasibility of this program's scale up within the State's healthcare financing structure through a budget impact analysis. The KSHI scenario results in a health benefit to patients at a higher cost compared to the base case. The mean ICER (US$46.4/disability-adjusted life year averted) is considered very cost-effective compared to a willingness-to-pay threshold of one gross domestic product per capita (Nigeria, US$ 2012, 2,730). Our conclusion was robust to uncertainty in parameters estimates (PSA: median US$49.1, 95% credible interval 21

  13. Improving Maternal Care through a State-Wide Health Insurance Program: A Cost and Cost-Effectiveness Study in Rural Nigeria.

    Directory of Open Access Journals (Sweden)

    Gabriela B Gomez

    Full Text Available While the Nigerian government has made progress towards the Millennium Development Goals, further investments are needed to achieve the targets of post-2015 Sustainable Development Goals, including Universal Health Coverage. Economic evaluations of innovative interventions can help inform investment decisions in resource-constrained settings. We aim to assess the cost and cost-effectiveness of maternal care provided within the new Kwara State Health Insurance program (KSHI in rural Nigeria.We used a decision analytic model to simulate a cohort of pregnant women. The primary outcome is the incremental cost effectiveness ratio (ICER of the KSHI scenario compared to the current standard of care. Intervention cost from a healthcare provider perspective included service delivery costs and above-service level costs; these were evaluated in a participating hospital and using financial records from the managing organisations, respectively. Standard of care costs from a provider perspective were derived from the literature using an ingredient approach. We generated 95% credibility intervals around the primary outcome through probabilistic sensitivity analysis (PSA based on a Monte Carlo simulation. We conducted one-way sensitivity analyses across key model parameters and assessed the sensitivity of our results to the performance of the base case separately through a scenario analysis. Finally, we assessed the sustainability and feasibility of this program's scale up within the State's healthcare financing structure through a budget impact analysis. The KSHI scenario results in a health benefit to patients at a higher cost compared to the base case. The mean ICER (US$46.4/disability-adjusted life year averted is considered very cost-effective compared to a willingness-to-pay threshold of one gross domestic product per capita (Nigeria, US$ 2012, 2,730. Our conclusion was robust to uncertainty in parameters estimates (PSA: median US$49.1, 95% credible

  14. Corrosion effects on soda lime glass

    NARCIS (Netherlands)

    Veer, F.A.; Rodichev, Y.M.

    2010-01-01

    Although soda lime glass is the most common used transparent material in architecture, little is known about the corrosion effects on long term strength and the interaction between corrosion and defects. Extensive testing on soda lime bars under different environmental conditions and different

  15. As pesquisas denominadas "estado da arte" Research called "state of the art"

    Directory of Open Access Journals (Sweden)

    Norma Sandra de Almeida Ferreira

    2002-08-01

    Full Text Available Nos últimos quinze anos, no Brasil e em outros países, tem se produzido um conjunto significativo de pesquisas conhecidas pela denominação "estado da arte" ou "estado do conhecimento". Definidas como de caráter bibliográfico, elas parecem trazer em comum o desafio de mapear e de discutir uma certa produção acadêmica em diferentes campos do conhecimento, tentando responder que aspectos e dimensões vêm sendo destacados e privilegiados em diferentes épocas e lugares, de que formas e em que condições têm sido produzidas certas dissertações de mestrado, teses de doutorado, publicações em periódicos e comunicações em anais de congressos e de seminários. Neste artigo levanto e tento responder as seguintes questões: seria possível fazer um esforço de interrogar a história a produção acadêmica sobre determinada área do conhecimento, optando por ler apenas dados bibliográficos e resumos dos trabalhos? O que significa ler esse lugar (catálogos, instituição de divulgação dos trabalhos, tomando-o como fonte documental para um mapeamento da produção acadêmica, em pesquisas denominadas "estado da arte"?These last fifteen years, Brazil and other countries have seen the production of a significant set of research, known as "state of the art" or "state of knowledge". Defined as having a bibliographic feature, they seem to share the challenge of mapping and discussing a certain academic production in different fields of knowledge. They try to show which aspects and dimensions have been highlighted and privileged at different times and places. They also pinpoint how and in what conditions certain kinds of master's degree thesis and doctor's degree dissertations, publications in periodicals and communications in annals of congress and seminary were produced. In this article, I pose and try to answer the following questions: Is it worth making the effort of interrogating the history of the academic production about a given area

  16. The Effect of Severity of Illness on Spine Surgery Costs Across New York State Hospitals: An Analysis of 69,831 Cases.

    Science.gov (United States)

    Kaye, I David; Adrados, Murillo; Karia, Raj J; Protopsaltis, Themistocles S; Bosco, Joseph A

    2017-11-01

    Observational database review. To determine the effect of patient severity of illness (SOI) on the cost of spine surgery among New York state hospitals. National health care spending has risen at an unsustainable rate with musculoskeletal care, and spine surgery in particular, accounting for a significant portion of this expenditure. In an effort towards cost-containment, health care payers are exploring novel payment models some of which reward cost savings but penalize excessive spending. To mitigate risk to health care institutions, accurate cost forecasting is essential. No studies have evaluated the effect of SOI on costs within spine surgery. The New York State Hospital Inpatient Cost Transparency Database was reviewed to determine the costs of 69,831 hospital discharges between 2009 and 2011 comprising the 3 most commonly performed spine surgeries in the state. These costs were then analyzed in the context of the specific all patient refined diagnosis-related group (DRG) SOI modifier to determine this index's effect on overall costs. Overall, hospital-reported cost increases with the patient's SOI class and patients with worse baseline health incur greater hospital costs (Pcosts are increasingly variable for each worsening SOI class (Pcosts is persistent for all 3 DRGs across all 3 years studied (2009-2011), within each of the 7 New York state regions, and occurs irrespective of the hospital's teaching status or size. Using the 3M all patient refined-DRG SOI index as a measure of patient's health status, a significant increase in cost for spine surgery for patients with higher SOI index was found. This study confirms the greater cost and variability of spine surgery for sicker patients and illustrates the inherent unpredictability in cost forecasting and budgeting for these same patients.

  17. Cost effectiveness analysis of clinically driven versus routine laboratory monitoring of antiretroviral therapy in Uganda and Zimbabwe.

    Directory of Open Access Journals (Sweden)

    Antonieta Medina Lara

    Full Text Available Despite funding constraints for treatment programmes in Africa, the costs and economic consequences of routine laboratory monitoring for efficacy and toxicity of antiretroviral therapy (ART have rarely been evaluated.Cost-effectiveness analysis was conducted in the DART trial (ISRCTN13968779. Adults in Uganda/Zimbabwe starting ART were randomised to clinically-driven monitoring (CDM or laboratory and clinical monitoring (LCM; individual patient data on healthcare resource utilisation and outcomes were valued with primary economic costs and utilities. Total costs of first/second-line ART, routine 12-weekly CD4 and biochemistry/haematology tests, additional diagnostic investigations, clinic visits, concomitant medications and hospitalisations were considered from the public healthcare sector perspective. A Markov model was used to extrapolate costs and benefits 20 years beyond the trial.3316 (1660LCM;1656CDM symptomatic, immunosuppressed ART-naive adults (median (IQR age 37 (32,42; CD4 86 (31,139 cells/mm(3 were followed for median 4.9 years. LCM had a mean 0.112 year (41 days survival benefit at an additional mean cost of $765 [95%CI:685,845], translating into an adjusted incremental cost of $7386 [3277,dominated] per life-year gained and $7793 [4442,39179] per quality-adjusted life year gained. Routine toxicity tests were prominent cost-drivers and had no benefit. With 12-weekly CD4 monitoring from year 2 on ART, low-cost second-line ART, but without toxicity monitoring, CD4 test costs need to fall below $3.78 to become cost-effective (<3xper-capita GDP, following WHO benchmarks. CD4 monitoring at current costs as undertaken in DART was not cost-effective in the long-term.There is no rationale for routine toxicity monitoring, which did not affect outcomes and was costly. Even though beneficial, there is little justification for routine 12-weekly CD4 monitoring of ART at current test costs in low-income African countries. CD4 monitoring

  18. The Impact of ART on Live Birth Outcomes: Differing Experiences across Three States.

    Science.gov (United States)

    Luke, Sabrina; Sappenfield, William M; Kirby, Russell S; McKane, Patricia; Bernson, Dana; Zhang, Yujia; Chuong, Farah; Cohen, Bruce; Boulet, Sheree L; Kissin, Dmitry M

    2016-05-01

    Research has shown an association between assisted reproductive technology (ART) and adverse birth outcomes. We identified whether birth outcomes of ART-conceived pregnancies vary across states with different maternal characteristics, insurance coverage for ART services, and type of ART services provided. CDC's National ART Surveillance System data were linked to Massachusetts, Florida, and Michigan vital records from 2000 through 2006. Maternal characteristics in ART- and non-ART-conceived live births were compared between states using chi-square tests. We performed multivariable logistic regression analyses and calculated adjusted odds ratios (aOR) to assess associations between ART use and singleton preterm delivery (birth. ART use in Massachusetts was associated with significantly lower odds of twins as well as triplets and higher order births compared to Florida and Michigan (aOR 22.6 vs. 30.0 and 26.3, and aOR 37.6 vs. 92.8 and 99.2, respectively; Pinteraction order gestations per cycle was lower in Massachusetts, which may be due to the availability of insurance coverage for ART in Massachusetts. © 2016 John Wiley & Sons Ltd.

  19. A quick guide to wind power forecating : state-of-the-art 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, C.; Keko, H.; Bessa, R.; Miranda, V.; Botterud, A.; Wang, J.; Conzelmann, G.; Decision and Information Sciences; INESC Porto

    2009-11-20

    This document contains a summary of the main findings from our full report entitled 'Wind Power Forecasting: State-of-the-Art 2009'. The aims of this document are to provide guidelines and a quick overview of the current state-of-the-art in wind power forecasting (WPF) and to point out lines of research in the future development of forecasting systems.

  20. Cost-Effectiveness/Cost-Benefit Analysis of Newborn Screening for Severe Combined Immune Deficiency in Washington State.

    Science.gov (United States)

    Ding, Yao; Thompson, John D; Kobrynski, Lisa; Ojodu, Jelili; Zarbalian, Guisou; Grosse, Scott D

    2016-05-01

    To evaluate the expected cost-effectiveness and net benefit of the recent implementation of newborn screening (NBS) for severe combined immunodeficiency (SCID) in Washington State. We constructed a decision analysis model to estimate the costs and benefits of NBS in an annual birth cohort of 86 600 infants based on projections of avoided infant deaths. Point estimates and ranges for input variables, including the birth prevalence of SCID, proportion detected asymptomatically without screening through family history, screening test characteristics, survival rates, and costs of screening, diagnosis, and treatment were derived from published estimates, expert opinion, and the Washington NBS program. We estimated treatment costs stratified by age of identification and SCID type (with or without adenosine deaminase deficiency). Economic benefit was estimated using values of $4.2 and $9.0 million per death averted. We performed sensitivity analyses to evaluate the influence of key variables on the incremental cost-effectiveness ratio (ICER) of net direct cost per life-year saved. Our model predicts an additional 1.19 newborn infants with SCID detected preclinically through screening, in addition to those who would have been detected early through family history, and 0.40 deaths averted annually. Our base-case model suggests an ICER of $35 311 per life-year saved, and a benefit-cost ratio of either 5.31 or 2.71. Sensitivity analyses found ICER values <$100 000 and positive net benefit for plausible assumptions on all variables. Our model suggests that NBS for SCID in Washington is likely to be cost-effective and to show positive net economic benefit. Published by Elsevier Inc.

  1. The performance of a temperature cascaded cogeneration system producing steam, cooling and dehumidification

    KAUST Repository

    Myat, Aung

    2013-02-01

    This paper discusses the performance of a temperature-cascaded cogeneration plant (TCCP), equipped with an efficient waste heat recovery system. The TCCP, also called a cogeneration system, produces four types of useful energy-namely, (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification-by utilizing single fuel source. The TCCP comprises a Capstone C-30 micro-turbine that generates nominal capacity of 26 kW of electricity, a compact and efficient waste heat recovery system and a host of waste-heat-activated devices, namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The performance analysis was conducted under different operation conditions such as different exhaust gas temperatures. It was observed that energy utilization factor could be as high as 70% while fuel energy saving ratio was found to be 28%. © 2013 Desalination Publications.

  2. The LIFE Laser Design in Context: A Comparison to the State-of-the-Art

    International Nuclear Information System (INIS)

    Deri, R.J.; Bayramian, A.J.; Erlandson, A.C.

    2011-01-01

    The current point design for the LIFE laser leverages decades of solid-state laser development in order to achieve the performance and attributes required for inertial fusion energy. This document provides a brief comparison of the LIFE laser point design to other state-of-the-art solid-state lasers. Table I compares the attributes of the current LIFE laser point design to other systems. the state-of-the-art for single-shot performance at fusion-relevant beamline energies is exemplified by performance observed on the National Ignition Facility. The state-of-the-art for high average power is exemplified by the Northrup Grumman JHPSSL laser. Several items in Table I deal with the laser efficiency; a more detailed discussion of efficiency can be found in reference 5. The electrical-to-optical efficiency of the LIFE design exceeds that of reference 4 due to the availability of higher efficiency laser diode pumps (70% vs. ∼50% used in reference 4). LIFE diode pumps are discussed in greater detail in reference 6. The 'beam steering' state of the art is represented by the deflection device that will be used in the LIFE laser, not a laser system. Inspection of Table I shows that most LIFE laser attributes have already been experimentally demonstrated. The two cases where the LIFE design is somewhat better than prior experimental work do not involve the development of new concepts: beamline power is increased simply by increasing aperture (as demonstrated by the power/aperture comparison in Table I), and efficiency increases are achieved by employing state-of-the-art diode pumps. In conclusion, the attributes anticipated for the LIFE laser are consistent with the demonstrated performance of existing solid-state lasers.

  3. Achievments of corrosion science and corrosion protection technology

    International Nuclear Information System (INIS)

    Fontana, M.; Stehjl, R.

    1985-01-01

    Problems of corrosion-mechanical strength of metals, effect of corrosive media on creep characteristics are presented. New concepts of the mechanism of corrosion cracking and its relation to hydrogen embrittlement are described. Kinetics and mechanism of hydrogen embrittlement effect on the process of corrosion cracking of different steels and alloys are considered. The dependence of such types of failure on various structural factors is shown. Data on corrosion cracking of high-strength aluminium and titanium alloys, mechanism of the processes and protective methods are given

  4. Determining the Effect of Environmental Conditions on Iron Corrosion by Atomic Absorption

    Science.gov (United States)

    Malel, Esteban; Shalev, Deborah E.

    2013-01-01

    Iron corrosion is a complex process that occurs when iron is exposed to oxygen and humidity and is exacerbated by the presence of chloride ions. The deterioration of iron structures or other components can be costly to society and is usually evaluated by following the properties of the corroding material. Here, the iron ions released into solution…

  5. KCl-induced high temperature corrosion of selected commercial alloys. Part I: chromia-formers

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Dahl, Kristian Vinter; Montgomery, Melanie

    2015-01-01

    -grained), Sanicro 28 and the nickel-based alloys 625, 263 and C276. Exposure was performed at 600 °C for 168 h in flowing N2(g)+5%O2(g)+15% H2O(g) (vol.%). Samples were covered with KCl powder prior to exposure. A salt-free exposure was also performed for comparison. Corrosion morphology and products were studied......Laboratory testing of selected chromia-forming alloys was performed to rank the materials and gain further knowledge on the mechanism of KCl-induced high temperature corrosion. The investigated alloys were stainless steels EN1.4021, EN1.4057, EN1.4521, TP347H (coarse-grained), TP347HFG (fine....... In the presence of solid KCl, all the alloys showed significant corrosion. Measurement of corrosion extent indicated that alloys EN1.4057, Sanicro 28 and 625 show a better performance compared to the industrial state of the art material TP347HFG under laboratory conditions. An additional test was performed...

  6. Modeling and Simulation of Membrane-Based Dehumidification and Energy Recovery Process

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiming [ORNL; Abdelaziz, Omar [ORNL; Qu, Ming [ORNL

    2017-01-01

    This paper introduces a first-order physics-based model that accounts for the fundamental heat and mass transfer between a humid-air vapor stream on feed side to another flow stream on permeate side. The model comprises a few optional submodels for membrane mass transport; and it adopts a segment-by-segment method for discretizing heat and mass transfer governing equations for flow streams on feed and permeate sides. The model is able to simulate both dehumidifiers and energy recovery ventilators in parallel-flow, cross-flow, and counter-flow configurations. The predicted tresults are compared reasonably well with the measurements. The open-source codes are written in C++. The model and open-source codes are expected to become a fundament tool for the analysis of membrane-based dehumidification in the future.

  7. Effects of prior cold work on corrosion and corrosive wear of copper in HNO3 and NaCl solutions

    International Nuclear Information System (INIS)

    Yin Songbo; Li, D.Y.

    2005-01-01

    Effects of prior cold work on corrosion and corrosive wear behavior of copper in 0.1 M HNO 3 and 3.5% NaCl solutions, respectively, were investigated using electrochemical tests, electron work function measurements, and sliding corrosive wear tests with and without cathodic protection. Optical microscope and SEM were employed to examine the microstructure and worn surfaces. It was shown that, in general, the prior cold work raised the corrosion rate, but the effect differed in different corrosive media. In both the solutions, pure mechanical wear decreased with an increase in cold work. The prior cold work had a significant influence on the corrosive wear of copper, depending on the corrosive solution and the applied load. In the 0.1 M HNO 3 solution, the ratio of the wear loss caused by corrosion-wear synergism to the total wear loss increased with the cold work and became saturated when the cold work reached a certain level. In the 3.5% NaCl solution, however, this ratio decreased initially and then became relatively stable with respect to the cold work. It was observed that wear of copper in the 3.5% NaCl solution was larger than that in 0.1 M HNO 3 solution, although copper showed lower corrosion rate in the former solution. The experimental observations and the possible mechanisms involved are discussed

  8. Effects of climate and corrosion on concrete behaviour

    Science.gov (United States)

    Ismail, Mohammad; Egba, Ernest Ituma

    2017-11-01

    Corrosion of steel is a damaging agent that reduces the functional and structural responsibilities of reinforced concrete structures. Accordingly, reinforced concrete members in the environments that are prone to concrete carbonation or chloride attack coupled with high temperature and relative humidity suffer from accelerated corrosion of reinforcing material. Also, literature proves that climate influences corrosion of concrete, and suggests investigation of impact of corrosion on concrete based on climate zone. Therefore, this paper presents the effects of climate and corrosion on concrete behavior, using bond strength of concrete as a case study. Concrete specimens were prepared form concrete mix that was infested with 3.5 kgm-3 of sodium chloride to accelerate corrosion. The specimens were cured sodium chloride solution 3.5% by weight of water for 28 days before placing them in the exposure conditions. Pull-out tests were conducted at time intervals for one year to measure the impact of exposure condition and corrosion on bond strength of concrete. The results show reduction of bond strength of concrete by 32%, 28% and 8% after one year of subjection of the specimens to the unsheltered natural climate, sheltered natural climate, and laboratory ambient environment respectively. The findings indicate that the climate influences corrosion, which reduces the interlocking bond between the reinforcing bar and the adjacent concrete.

  9. The job demands-resources model : state of the art

    NARCIS (Netherlands)

    Bakker, A.B.; Demerouti, E.

    2007-01-01

    Purpose - The purpose of this paper is to give a state-of-the art overview of the Job Demands-Resources (JD-R) model Design/methodology/approach - The strengths and weaknesses of the demand-control model and the effort-reward imbalance model regarding their predictive value for employee well being

  10. Remote measurement of corrosion using ultrasonic techniques

    International Nuclear Information System (INIS)

    Garcia, K.M.; Porter, A.M.

    1995-02-01

    Supercritical water oxidation (SCWO) technology has the potential of meeting the US Department of Energy's treatment requirements for mixed radioactive waste. A major technical constraint of the SCWO process is corrosion. Safe operation of a pilot plant requires monitoring of the corrosion rate of the materials of construction. A method is needed for measurement of the corrosion rate taking place during operation. One approach is to directly measure the change in wall thickness or growth of oxide layer at critical points in the SCWO process. In FY-93, a brief survey of the industry was performed to evaluate nondestructive evaluation (NDE) methods for remote corrosion monitoring in supercritical vessels. As a result of this survey, it was determined that ultrasonic testing (UT) methods would be the most cost-effective and suitable method of achieving this. Therefore, the objective for FY-94 was to prove the feasibility of using UT to monitor corrosion of supercritical vessels remotely during operation without removal of the insulation

  11. Effect of Zr on the Corrosion Properties of Mg-Li-Al Alloy

    International Nuclear Information System (INIS)

    Kim, Soon Ho; Choi, Sang Hyun; Kim, In Bae; Kim, Kyung Hyun

    1994-01-01

    Effect of Zr on the electrochemical corrosion characteristics of Mg-Li-Al alloy has been investigated by means of potentiodynamic polarization study. The electrochemical behaviors were evaluated in 0.03% NaCl solution and the solution buffered with KH 2 PO 5 · NaOH at room temperature. It was found that the addition of very small quantity of Zr (0.03wt%) in Mg-Li-Al alloy increased corrosion rates and amount of corrosion products and decreased the pitting resistance of the alloy. From the results it was concluded that Zr which is added to increase the strength of Mg-Li-Al alloy is harmful to corrosion properties of the alloy

  12. RodPilot{sup R} - The Innovative and Cost-Effective Digital Control Rod Drive Control System for PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Baron, Clemens [AREVA NP GmbH, NLEE-G, Postfach 1199, 91001 Erlangen (Germany)

    2008-07-01

    With RodPilot, AREVA NP offers an innovative and cost-effective system for controlling control rods in Pressurized Water Reactors. RodPilot controls the three operating coils of the control rod drive mechanism (lift, moveable gripper and stationary gripper coil). The rods are inserted into or withdrawn from the core as required by the Reactor Control System. The system combines modern components, state-of-the-art logic and a proven electronic control rod drive control principle to provide enhanced reliability and lower maintenance costs. (author)

  13. Modelling and numerical simulation of the corrosion product transport in the pressurised water reactor primary circuit

    International Nuclear Information System (INIS)

    Marchetto, C.

    2002-05-01

    During operation of pressurised water reactor, corrosion of the primary circuit alloys leads to the release of metallic species such as iron, nickel and cobalt in the primary fluid. These corrosion products are implicated in different transport phenomena and are activated in the reactor core where they are submitted to neutron flux. The radioactive corrosion products are afterwards present in the out of flux parts of primary circuit where they generate a radiation field. The first part of this study deals with the modelling of the corrosion: product transport phenomena. In particular, considering the current state of the art, corrosion and release mechanisms are described empirically, which allows to take into account the material surface properties. New mass balance equations describing the corrosion product behaviour are thus obtained. The numerical resolution of these equations is implemented in the second part of this work. In order to obtain large time steps, we choose an implicit time scheme. The associated system is linearized from the Newton method and is solved by a preconditioned GMRES method. Moreover, a time step auto-adaptive management based on Newton iterations is performed. Consequently, an efficient resolution has been implemented, allowing to describe not only the quasi-steady evolutions but also the fast transients. In a last step, numerical simulations are carried out in order to validate the new corrosion product transport modelling and to illustrate the capabilities of this modelling. Notably, the numerical results obtained indicate that the code allows to restore the on-site observations underlining the influence of material surface properties on reactor contamination. (author)

  14. The effect of single overloading on stress corrosion cracking

    International Nuclear Information System (INIS)

    Ito, Yuzuru; Saito, Masahiro

    2008-01-01

    In the normal course of nuclear power plant operation in Japan, proof testing has been performed after periodic plant inspections. In this proof test procedure, the reactor pressure vessel and pipes of the primary coolant loop are subjected to a specified overload with a slightly higher hydraulic pressure than during normal operation. This specified overload is so called a single overload' in material testing. It is well known that the fatigue crack growth rate is decreased after a single overload has been applied to the specimen. However, it is not clear whether the stress corrosion cracking rate is also decreased after a single overload. In this study, the effect of a single overload on the stress corrosion cracking rate under simulated boiling water reactor environment was evaluated by examining a singly overloaded WOL (wedge opening load) specimen. The WOL specimen for the stress corrosion cracking test was machined from sensitized 304 type austenitic stainless steel. Since the crack extension length was 3.2% longer in the case of a more severely overloaded specimen, it was observed than the stress corrosion cracking rate is also decreased after the single overload has been applied to the specimen. (author)

  15. The state of the art of wind energy conversion systems and technologies: A review

    International Nuclear Information System (INIS)

    Cheng, Ming; Zhu, Ying

    2014-01-01

    Highlights: • This paper reviews the state of the art of wind energy conversion systems. • Different types of common wind energy conversion systems are classified and compared. • The four most popular MPPT control methods are reviewed and compared. • The latest development of wind energy conversion technologies is introduced. • Future trends of the wind energy conversion technologies are discussed. - Abstract: This paper gives a comprehensive review of the state of the art of wind energy conversion systems (WECS) and technologies, with an emphasis on wind power generator and control. First, different types of common WECSs are classified according to their features and drive train types. The WECSs are compared on the basis of the volume, weight, cost, efficiency, system reliability and fault ride through capability. The maximum power point tracking (MPPT) control, which aims to make the generator speed meet an optimum value to ensure the maximum energy yield, plays a key role in the variable speed WECSs. A comprehensive review and comparison of the four most popular MPPT control methods are carried out and improvements for each method are presented. Furthermore, the latest development of wind energy conversion technologies is introduced, such as the brushless doubly fed induction generator (BDFIG), the stator permanent magnet synchronous generators, the magnetic-geared generators, dual power flow WECS with the electrical variable transmission (EVT) machine, and direct grid-connected WECS. Finally, the future trends of the technologies are discussed

  16. Prediction of CRUD deposition on PWR fuel using a state-of-the-art CFD-based multi-physics computational tool

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Victor [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, 2355 Bonisteel Boulv, Ann Arbor, MI (United States); Kendrick, Brian K. [Theoretical Division (T-1, MS B221), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Walter, Daniel [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, 2355 Bonisteel Boulv, Ann Arbor, MI (United States); Manera, Annalisa, E-mail: manera@umich.edu [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, 2355 Bonisteel Boulv, Ann Arbor, MI (United States); Secker, Jeffrey [Westinghouse Electric Company Nuclear Fuel Division, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2016-04-01

    In the present paper we report about the first attempt to demonstrate and assess the ability of state-of-the-art high-fidelity computational tools to reproduce the complex patterns of CRUD deposits found on the surface of operating Pressurized Water Reactors (PWRs) fuel rods. A fuel assembly of the Seabrook Unit 1 PWR was selected as the test problem. During Seabrook Cycle 5, CRUD induced power shift (CIPS) and CRUD induced localized corrosion (CILC) failures were observed. Measurements of the clad oxide thickness on both failed and non-failed rods are available, together with visual observations and the results from CRUD scrapes of peripheral rods. Blind simulations were performed using the Computational Fluid Dynamics (CFD) code STAR-CCM+ coupled to an advanced chemistry code, MAMBA, developed at Los Alamos National Laboratory. The blind simulations were then compared to plant data, which were released after completion of the simulations.

  17. Metal surface corrosion grade estimation from single image

    Science.gov (United States)

    Chen, Yijun; Qi, Lin; Sun, Huyuan; Fan, Hao; Dong, Junyu

    2018-04-01

    Metal corrosion can cause many problems, how to quickly and effectively assess the grade of metal corrosion and timely remediation is a very important issue. Typically, this is done by trained surveyors at great cost. Assisting them in the inspection process by computer vision and artificial intelligence would decrease the inspection cost. In this paper, we propose a dataset of metal surface correction used for computer vision detection and present a comparison between standard computer vision techniques by using OpenCV and deep learning method for automatic metal surface corrosion grade estimation from single image on this dataset. The test has been performed by classifying images and calculating the accuracy for the two different approaches.

  18. Reliability-based management of buried pipelines considering external corrosion defects

    Science.gov (United States)

    Miran, Seyedeh Azadeh

    Corrosion is one of the main deteriorating mechanisms that degrade the energy pipeline integrity, due to transferring corrosive fluid or gas and interacting with corrosive environment. Corrosion defects are usually detected by periodical inspections using in-line inspection (ILI) methods. In order to ensure pipeline safety, this study develops a cost-effective maintenance strategy that consists of three aspects: corrosion growth model development using ILI data, time-dependent performance evaluation, and optimal inspection interval determination. In particular, the proposed study is applied to a cathodic protected buried steel pipeline located in Mexico. First, time-dependent power-law formulation is adopted to probabilistically characterize growth of the maximum depth and length of the external corrosion defects. Dependency between defect depth and length are considered in the model development and generation of the corrosion defects over time is characterized by the homogenous Poisson process. The growth models unknown parameters are evaluated based on the ILI data through the Bayesian updating method with Markov Chain Monte Carlo (MCMC) simulation technique. The proposed corrosion growth models can be used when either matched or non-matched defects are available, and have ability to consider newly generated defects since last inspection. Results of this part of study show that both depth and length growth models can predict damage quantities reasonably well and a strong correlation between defect depth and length is found. Next, time-dependent system failure probabilities are evaluated using developed corrosion growth models considering prevailing uncertainties where three failure modes, namely small leak, large leak and rupture are considered. Performance of the pipeline is evaluated through failure probability per km (or called a sub-system) where each subsystem is considered as a series system of detected and newly generated defects within that sub

  19. Effect of temperature, of oxygen content and the downstream effect on corrosion rate of structural materials in liquid sodium

    International Nuclear Information System (INIS)

    Ilincev, G.

    1988-01-01

    The effects were experimentally tested of temperature and of oxygen content on the corrosion rate of structural materials in liquid sodium and on reducing the corrosion rate down the sodium stream. The results of the experiments are shown in graphs and tables and are discussed in detail. The duration of all tests was standard 1,000 hours. The test parameters were set such as to determine the effect of temperature on corrosion of a quantity of various materials in sodium with a low oxygen content (1.2 to 2 ppm) at temperatures of 500 to 800 degC and in sodium with a high oxygen content (345 ppm) at temperatures of 500 to 700 degC. More experiments served the determination of the effect of a different oxygen content varying between 1.2 and 2 ppm at a constant temperature of 600 degC. The materials being tested included main structural materials used for fast reactor construction and materials allowing to establish the effect of main alloying elements on their corrosion in liquid sodium of different temperatures and purity grades. The relationships showing the effects of temperature and oxygen content in sodium on the rate of corrosion of various structural materials in hot parts of the installation and on the reduction in the rate of corrosion downstream due to sodium saturation with corrosion products were constructed using the experimental results. (Z.M.). 15 figs., 2 tabs., 7 refs

  20. The effect of notches and pits on corrosion fatigue strength

    Science.gov (United States)

    Tatner, Ian

    An investigation has been undertaken to examine the fatigue behaviour of two martensitic steels in air and aggressive environments. The steels studied are, 18% Ni marageing steel and FV520B, the later being a stainless steel turbine blade material and the former being a marageing steel that suffers general corrosion in mild environments. Both steels were heat treated to give similar tensile strength.The design and manufacture of an autoclave allowed push-pull fatigue tests to be conducted in aggressive environments at elevated temperatures.Corrosion potential was monitored using a three electrode cell and was controlled during testing. Base-line fatigue tests were conducted with a range of constant corrosion potentials, using both notched and plain FV520B specimens. In addition fatigue tests with pulsed corrosion potential were performed to asses the effect of transient corrosion conditions on the corrosion fatigue strength. The pulsed tests were designed to simulate service transients in the oxygen content and general chemical hostility in the condensing steam environment during start-up and shut down of the steam turbine.Post test examination of fractured samples was performed using Scanning Electron Microscopy (SEM) and optical microscope techniques. The fractography results were used to quantify microstructural and fracture features of the steels.A model based on the size and geometry of the initial corrosion pitting has been proposed to asses the fatigue life of FV520B in an aggressive environment.The effect of pitting on the corrosion fatigue strength of FV520B has been modelled using linear elastic fracture mechanics (LEFM) type approach. The model has shown a good correlation between predicted fatigue lives with experimental results.The results suggest that the fatigue life is governed by the mechanical stress concentrating effect of the pits rather than the electrochemical damage caused by the environment.Finite Element Analysis (FEA) of the notch allowed

  1. Energetics and biomechanics as determining factors of swimming performance: updating the state of the art.

    Science.gov (United States)

    Barbosa, Tiago M; Bragada, José A; Reis, Víctor M; Marinho, Daniel A; Carvalho, Carlos; Silva, António J

    2010-03-01

    The biophysical determinants related to swimming performance are one of the most attractive topics within swimming science. The aim of this paper was to do an update of the "state of art" about the interplay between performance, energetic and biomechanics in competitive swimming. Throughout the manuscript some recent highlights are described: (i) the relationship between swimmer's segmental kinematics (segmental velocities, stroke length, stroke frequency, stroke index and coordination index) and his center of mass kinematics (swimming velocity and speed fluctuation); (ii) the relationships between energetic (energy expenditure and energy cost) and swimmer's kinematics; and (iii) the prediction of swimming performance derived from above mentioned parameters. Copyright 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. Effect of Wall Shear Stress on Corrosion Inhibitor Film Performance

    Science.gov (United States)

    Canto Maya, Christian M.

    In oil and gas production, internal corrosion of pipelines causes the highest incidence of recurring failures. Ensuring the integrity of ageing pipeline infrastructure is an increasingly important requirement. One of the most widely applied methods to reduce internal corrosion rates is the continuous injection of chemicals in very small quantities, called corrosion inhibitors. These chemical substances form thin films at the pipeline internal surface that reduce the magnitude of the cathodic and/or anodic reactions. However, the efficacy of such corrosion inhibitor films can be reduced by different factors such as multiphase flow, due to enhanced shear stress and mass transfer effects, loss of inhibitor due to adsorption on other interfaces such as solid particles, bubbles and droplets entrained by the bulk phase, and due to chemical interaction with other incompatible substances present in the stream. The first part of the present project investigated the electrochemical behavior of two organic corrosion inhibitors (a TOFA/DETA imidazolinium, and an alkylbenzyl dimethyl ammonium chloride), with and without an inorganic salt (sodium thiosulfate), and the resulting enhancement. The second part of the work explored the performance of corrosion inhibitor under multiphase (gas/liquid, solid/liquid) flow. The effect of gas/liquid multiphase flow was investigated using small and large scale apparatus. The small scale tests were conducted using a glass cell and a submersed jet impingement attachment with three different hydrodynamic patterns (water jet, CO 2 bubbles impact, and water vapor cavitation). The large scale experiments were conducted applying different flow loops (hilly terrain and standing slug systems). Measurements of weight loss, linear polarization resistance (LPR), and adsorption mass (using an electrochemical quartz crystal microbalance, EQCM) were used to quantify the effect of wall shear stress on the performance and integrity of corrosion inhibitor

  3. State of the Art: Embedding Security in Vehicles

    Directory of Open Access Journals (Sweden)

    Weimerskirch André

    2007-01-01

    Full Text Available For new automotive applications and services, information technology (IT has gained central importance. IT-related costs in car manufacturing are already high and they will increase dramatically in the future. Yet whereas safety and reliability have become a relatively well-established field, the protection of vehicular IT systems against systematic manipulation or intrusion has only recently started to emerge. Nevertheless, IT security is already the base of some vehicular applications such as immobilizers or digital tachographs. To securely enable future automotive applications and business models, IT security will be one of the central technologies for the next generation of vehicles. After a state-of-the-art overview of IT security in vehicles, we give a short introduction into cryptographic terminology and functionality. This contribution will then identify the need for automotive IT security while presenting typical attacks, resulting security objectives, and characteristic constraints within the automotive area. We will introduce core security technologies and relevant security mechanisms followed by a detailed description of critical vehicular applications, business models, and components relying on IT security. We conclude our contribution with a detailed statement about challenges and opportunities for the automotive IT community for embedding IT security in vehicles.

  4. State of the Art: Embedding Security in Vehicles

    Directory of Open Access Journals (Sweden)

    André Weimerskirch

    2007-06-01

    Full Text Available For new automotive applications and services, information technology (IT has gained central importance. IT-related costs in car manufacturing are already high and they will increase dramatically in the future. Yet whereas safety and reliability have become a relatively well-established field, the protection of vehicular IT systems against systematic manipulation or intrusion has only recently started to emerge. Nevertheless, IT security is already the base of some vehicular applications such as immobilizers or digital tachographs. To securely enable future automotive applications and business models, IT security will be one of the central technologies for the next generation of vehicles. After a state-of-the-art overview of IT security in vehicles, we give a short introduction into cryptographic terminology and functionality. This contribution will then identify the need for automotive IT security while presenting typical attacks, resulting security objectives, and characteristic constraints within the automotive area. We will introduce core security technologies and relevant security mechanisms followed by a detailed description of critical vehicular applications, business models, and components relying on IT security. We conclude our contribution with a detailed statement about challenges and opportunities for the automotive IT community for embedding IT security in vehicles.

  5. States and transport of hydrogen in the corrosion process of an AZ91 magnesium alloy in aqueous solution

    International Nuclear Information System (INIS)

    Chen Jian; Wang Jianqiu; Han Enhou; Dong Junhua; Ke Wei

    2008-01-01

    Mott-Schottky measurement and secondary ion mass spectroscopy (SIMS) were used to investigate the states and transport of hydrogen during the corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution. The results showed that when samples were immersed or charged in solution, hydrogen atoms diffused into the film and reacted with vacancy to cause the increases of the carrier concentration (excess electron or hole carrier) and diffusion rate of hydrogen. Some hydrogen atoms diffused to interior of matrix and enriched in β phase while others resorted in the corrosive film. With the increase of immersion or charging time, magnesium hydride would be brittle fractured when the inner stress caused by hydrogen pressure and expansion stress of formation of magnesium hydride was above the fracture strength, which provided the direct experimental evidence of the hydrogen embrittlement (HE) mechanism of magnesium and its alloys. After immersion in solution, the transfer of excess electrons to the interfaces of corrosion film and solution would destroy the charge equilibrium in the film and stimulate the adsorption of SO 4 2- , which resulted in the initiation of localized corrosion; after cathodic charging and then immersion, the enrichment of hydrogen atoms at interior of corrosion film would combine into hydrogen gas to form high pressure and result in the rupture of corrosion film, and localized corrosion initiated and developed at surface. Therefore, localized corrosion nucleated earlier on the charged samples than on the uncharged samples. Hydrogen invasion accelerated the corrosion of matrix

  6. The Spread of Corrosion in Cast Iron and its Effect on the Life Cycle of Transportation Vehicles

    Directory of Open Access Journals (Sweden)

    Tomáš Binar

    2017-01-01

    Full Text Available This article deals with the spread of corrosion in material at different exposure times, and its effect on the measured brittle fracture and notch impact strength under different temperature conditions. To assess the degradational effect of corrosion on the material characteristics represented by the measured impact strength, we conducted a fractographic analysis of fracture surfaces, the aim of which was to evaluate the spread of corrosion in the material. In the first part of the experiment, two corrosion tests are simulated with a duration time of 432 and 648 hours, to compare the degradation effect of corrosion on the notch impact strength, depending on the duration of the corrosion tests. The following part shows the results of the impact bending test, where the experiment was conducted in an area of reduced and increased temperatures. The final part summarizes the results of the fractographic analysis of sample fracture surfaces from the impact bending tests. Based on the measured the length of the corrosion cracks, we analyzed the sample at the notch and from the material surface after the impact bending test.

  7. State-of-the-art report of spent fuel management technology

    International Nuclear Information System (INIS)

    Ro, S. G.; Park, S. W.; Shin, Y. J. and others

    1998-06-01

    Essential technologies for a long-term management of domestic nuclear fuel have been described in this report. The technologies of interest are advanced processes for spent fuel management, spent fuel examination technology, evaluation of radiation effect on equipment, chemical characterization of spent fuel, and hot cell-related technology state of the art for the above-mentioned technologies has been reviewed and analyzed in detail. As a result, a future R and D direction that seems to be appropriate for us is drawn up in due consideration of in- and out-circumstances encountered with. (author). 304 refs., 28 tabs., 43 figs

  8. Pipeline corrosion prevention by pH stabilization or corrosion inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Nyborg, Rolf [Institute for Energy Technology, Oslo (Norway)

    2009-07-01

    In many offshore oil and gas projects the pipeline costs are a considerable part of the investment and can become prohibitively high if the corrosivity of the fluid necessitates the use of corrosion resistant alloys instead of carbon steel. Development of more robust and reliable methods for internal corrosion control can increase the application range of carbon steel and therefore have a large economic impact. Corrosion control of carbon steel pipelines has traditionally often been managed by the use of corrosion inhibitors. The pH stabilization technique has been successfully used for corrosion control of several large wet gas pipelines in the last years. This method has advantages over film forming corrosion inhibitors when no or little formation water is produced. The use of corrosion inhibitors in multiphase pipelines implies several challenges which are not fully accounted for in traditional corrosion inhibitor testing procedures. Specialized test procedures have been developed to take account for the presence of emulsions dispersions and sand and clay particles in corrosion inhibitor testing. (author)

  9. Corrosion mapping in pipelines

    International Nuclear Information System (INIS)

    Zscherpel, U.; Alekseychuk, O.; Bellon, C.; Ewert, U.; Rost, P.; Schmid, M.

    2002-01-01

    In a joint research project, BASF AG and BAM analyzed the state of the art of tangential radiography of pipes and developed more efficient methods of evaluation. Various PC applications were developed and tested: 1. A program for routine evaluation of digital radiographic images. 2. 3D simulation of the tangential projection of pipes for common radiation sources and various different detectors. 3. Preliminary work on combined evaluation of digital projections and wall thickness changes in radiation direction resulted in a new manner of image display, i.e. the so-called 'corrosion mapping', in which the wall thickness is displayed as a 2D picture above the pipe surface [de

  10. The effects of bacteria on the corrosion behavior of carbon steel in compacted bentonite

    International Nuclear Information System (INIS)

    Nishimura, T.; Wada, R.; Nishimoto, H.; Fujiwara, K.; Taniguchi, N.; Honda, A.

    1999-10-01

    As a part of evaluation of corrosion life of carbon steel overpack, the experimental studies have been performed on the effects of bacteria on the corrosion behavior of carbon steel in compacted bentonite using iron bacteria (IB) as a representative oxidizing bacteria and sulphur reducing bacteria (SRB) as a representative reducing bacteria. The results of the experimental studies showed that; The activity of SRB was low in compacted bentonite in spite of applying suitable condition for the action of bacteria such as temperature and nutritious solution. Although the corrosion behavior of carbon steel was affected by the existence of bacteria in simple solution, the corrosion rates of carbon steel in compacted bentonite were several μ m/year -10 μ m/year irrespective of coexistence of bacteria and that the corrosion behavior was not affected by the existence of bacteria. According to these results, it was concluded that the bacteria would not affect the corrosion behavior of carbon steel overpack under repository condition. (author)

  11. Effect of zinc injection on BWR fuel cladding corrosion. Pt. 1. Study on an accelerated corrosion condition to evaluate corrosion resistance of zircaloy-2 fuel cladding

    International Nuclear Information System (INIS)

    Kawamura, Hirotaka; Kanbe, Hiromu; Furuya, Masahiro

    2002-01-01

    Japanese BWR utilities have a plan to apply zinc injection to the primary coolant in order to reduce radioactivity accumulation on the structure. Prior to applying the zinc injection to BWR plants, it is necessary to evaluate the effect of zinc injection on corrosion resistance of fuel cladding. The objective of this report was to examine the accelerated corrosion condition for evaluation of BWR fuel cladding corrosion resistance under non-irradiated conditions, as the first step of a zinc injection evaluation study. A heat transfer corrosion test facility, in which a two phase flow condition could be achieved, was designed and constructed. The effects of heat flux, void fraction and solution temperature on BWR fuel cladding corrosion resistance were quantitatively investigated. The main findings were as follows. (1) In situ measurements using high speed camera and a void sensor together with one dimensional two phase flow analysis results showed that a two phase flow simulated BWR core condition can be obtained in the corrosion test facility. (2) The heat transfer corrosion test results showed that the thickness of the zirconium oxide layer increased with increasing solution temperature and was independent of heat flux and void fraction. The corrosion accelerating factor was about 2.5 times in the case of a temperature increase from 288degC to 350degC. (author)

  12. The effect of recrystallization on corrosion and electrochemical behavior of 7150 Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Peng, G.S.; Chen, K.H.; Fang, H.C.; Chen, S.Y.; Chao, H. [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2011-01-15

    By weight loss, potentiodynamic polarization, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS) techniques complemented by optical and scanning electron microscopy observations, the effect of recrystallization on the corrosion, and electrochemical behavior of 7150 Al alloy was studied. The results indicated that the high recrystallization fraction 7150-1 was worse than the low recrystallization fraction 7150-2 on corrosion resistance. The analysis of EIS indicated that 7150-1 exhibited obvious pitting corrosion at 5 h immersion time, whereas 7150-2 showed no obvious pitting corrosion even at 33 h. The corrosion route developed along the grain boundary of recrystallization grains, not along the grain boundary of unrecrystallization grains. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Corrosion resistance of chromium-nickel steel containing rare earths

    International Nuclear Information System (INIS)

    Asatiani, G.N.; Mandzhgaladze, S.N.; Tavadze, L.F.; Chuvatina, S.N.; Saginadze, D.I.

    1983-01-01

    Effect of additional out-of-furnace treatment with complex alloy (foundry alloy) calcite-silicon-magnesium-rare earth metal on corrosion resistance of the 03Kh18N20M3D3C3B steel has been studied. It is shown that introduction of low additions of rare earths improves its corrosion resistance improves its corrosion resistance in agressive media (in 70% - sulfuric acid) in the range of transition from active to passive state. Effect of additional introduction of rare earth metals is not considerable, if potential of steel corrosion is in the range of stable passive state (32% - sulfuric acid). Additional out-of-furnace treatment with complex foundry alloy, containing rare earth metals, provides a possibility to use a steel with a lower content of Cr, Ni, Mo, than in conventional acid-resistant steels in highly agressive media

  14. Electrochemical characterisation speeds up prediction of corrosion behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Schuring, E.W.; Hooijmans, J.W. [ECN Environment and Energy Engineering, Petten (Netherlands)

    2013-04-15

    The contents of this presentation show the following elements: Introduction; Corrosion in real life; Why Electrochemical characterisation of corrosion; Applications (corrosion resistance coatings, corrosion behaviour (brazed) joints); Available electrochemical corrosion techniques; Standards; Conclusions. In the Conclusions the corrosion screening method is summarized: ECN method fast; within 1h -1 week results depending on test method; Fast pre-selection of promising materials/combinations (cost savings); Determining of corrosion initiation; Determination of corrosion mechanisms and propagation; Life time predictions possible; Strong combination with metallographic post-investigation; Ranking materials / constructions for corrosion performance.

  15. Nickel-base superalloy powder metallurgy: state-of-the-art

    International Nuclear Information System (INIS)

    Allen, M.M.; Athey, R.L.; Moore, J.B.

    1975-01-01

    Development of powder metallurgical methods for fabrication of Ni-base superalloy turbine engine disks is reviewed. Background studies are summarized and current state-of-art is discussed for the F100 jet engine, advanced applications, and forging processes

  16. Symposium Connects Government Problems with State of the Art Network Science Research

    Science.gov (United States)

    2015-10-16

    Symposium Connects Government Problems with State-of-the- Art Network Science Research By Rajmonda S. Caceres and Benjamin A. Miller Network...the US Gov- ernment, and match these with the state-of-the- art models and techniques developed in the network science research community. Since its... science has grown significantly in the last several years as a field at the intersec- tion of mathematics, computer science , social science , and engineering

  17. The effect of fatigue on the corrosion resistance of common medical alloys.

    Science.gov (United States)

    Di Prima, Matthew; Gutierrez, Erick; Weaver, Jason D

    2017-10-01

    The effect of mechanical fatigue on the corrosion resistance of medical devices has been a concern for devices that experience significant fatigue during their lifespan and devices made from metallic alloys. The Food and Drug Administration had recommended in some instances for corrosion testing to be performed on post-fatigued devices [Non-clinical tests and recommended labeling for intravascular stents and associated delivery systems: guidance for industry and FDA staff. 2005: Food and Drug Administration, Center for Devices and Radiological Health], although the need for this has been debated [Nagaraja S, et al., J Biomed Mater Res Part B: Appl Biomater 2016, 8.] This study seeks to evaluate the effect of fatigue on the corrosion resistance of 5 different materials commonly used in medical devices: 316 LVM stainless steel, MP35N cobalt chromium, electropolished nitinol, mechanically polished nitinol, and black oxide nitinol. Prior to corrosion testing per ASTM F2129, wires of each alloy were split into subgroups and subjected to either nothing (that is, as received); high strain fatigue for less than 8 min; short-term phosphate buffered saline (PBS) soak for less than 8 min; low strain fatigue for 8 days; or long-term PBS soak for 8 days. Results from corrosion testing showed that the rest potential trended to an equilibrium potential with increasing time in PBS and that there was no statistical (p > 0.05) difference in breakdown potential between the fatigued and matching PBS soak groups for 9 out of 10 test conditions. Our results suggest that under these nonfretting conditions, corrosion susceptibility as measured by breakdown potential per ASTM F2129 was unaffected by the fatigue condition. 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2019-2026, 2017. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  18. Effectiveness and cost effectiveness of oral pre-exposure prophylaxis in a portfolio of prevention programs for injection drug users in mixed HIV epidemics.

    Directory of Open Access Journals (Sweden)

    Sabina S Alistar

    Full Text Available BACKGROUND: Pre-exposure prophylaxis with oral antiretroviral treatment (oral PrEP for HIV-uninfected injection drug users (IDUs is potentially useful in controlling HIV epidemics with a significant injection drug use component. We estimated the effectiveness and cost effectiveness of strategies for using oral PrEP in various combinations with methadone maintenance treatment (MMT and antiretroviral treatment (ART in Ukraine, a representative case for mixed HIV epidemics. METHODS AND FINDINGS: We developed a dynamic compartmental model of the HIV epidemic in a population of non-IDUs, IDUs who inject opiates, and IDUs in MMT, adding an oral PrEP program (tenofovir/emtricitabine, 49% susceptibility reduction for uninfected IDUs. We analyzed intervention portfolios consisting of oral PrEP (25% or 50% of uninfected IDUs, MMT (25% of IDUs, and ART (80% of all eligible patients. We measured health care costs, quality-adjusted life years (QALYs, HIV prevalence, HIV infections averted, and incremental cost effectiveness. A combination of PrEP for 50% of IDUs and MMT lowered HIV prevalence the most in both IDUs and the general population. ART combined with MMT and PrEP (50% access averted the most infections (14,267. For a PrEP cost of $950, the most cost-effective strategy was MMT, at $520/QALY gained versus no intervention. The next most cost-effective strategy consisted of MMT and ART, costing $1,000/QALY gained compared to MMT alone. Further adding PrEP (25% access was also cost effective by World Health Organization standards, at $1,700/QALY gained. PrEP alone became as cost effective as MMT at a cost of $650, and cost saving at $370 or less. CONCLUSIONS: Oral PrEP for IDUs can be part of an effective and cost-effective strategy to control HIV in regions where injection drug use is a significant driver of the epidemic. Where budgets are limited, focusing on MMT and ART access should be the priority, unless PrEP has low cost.

  19. Effectiveness and Cost Effectiveness of Oral Pre-Exposure Prophylaxis in a Portfolio of Prevention Programs for Injection Drug Users in Mixed HIV Epidemics

    Science.gov (United States)

    Alistar, Sabina S.; Owens, Douglas K.; Brandeau, Margaret L.

    2014-01-01

    Background Pre-exposure prophylaxis with oral antiretroviral treatment (oral PrEP) for HIV-uninfected injection drug users (IDUs) is potentially useful in controlling HIV epidemics with a significant injection drug use component. We estimated the effectiveness and cost effectiveness of strategies for using oral PrEP in various combinations with methadone maintenance treatment (MMT) and antiretroviral treatment (ART) in Ukraine, a representative case for mixed HIV epidemics. Methods and Findings We developed a dynamic compartmental model of the HIV epidemic in a population of non-IDUs, IDUs who inject opiates, and IDUs in MMT, adding an oral PrEP program (tenofovir/emtricitabine, 49% susceptibility reduction) for uninfected IDUs. We analyzed intervention portfolios consisting of oral PrEP (25% or 50% of uninfected IDUs), MMT (25% of IDUs), and ART (80% of all eligible patients). We measured health care costs, quality-adjusted life years (QALYs), HIV prevalence, HIV infections averted, and incremental cost effectiveness. A combination of PrEP for 50% of IDUs and MMT lowered HIV prevalence the most in both IDUs and the general population. ART combined with MMT and PrEP (50% access) averted the most infections (14,267). For a PrEP cost of $950, the most cost-effective strategy was MMT, at $520/QALY gained versus no intervention. The next most cost-effective strategy consisted of MMT and ART, costing $1,000/QALY gained compared to MMT alone. Further adding PrEP (25% access) was also cost effective by World Health Organization standards, at $1,700/QALY gained. PrEP alone became as cost effective as MMT at a cost of $650, and cost saving at $370 or less. Conclusions Oral PrEP for IDUs can be part of an effective and cost-effective strategy to control HIV in regions where injection drug use is a significant driver of the epidemic. Where budgets are limited, focusing on MMT and ART access should be the priority, unless PrEP has low cost. PMID:24489747

  20. Effect of molybdate on phosphating of Nd-Fe-B magnets for corrosion protection

    Directory of Open Access Journals (Sweden)

    Adonis Marcelo Saliba-Silva

    2005-06-01

    Full Text Available Nd-Fe-B magnets are highly susceptible to corrosion and need protection against environment attack. The use of organic coatings is one of the main methods of corrosion protection of these materials. Data related to the effect of conversion coatings, such as phosphating, on corrosion performance of these magnets is still scarce. Studies about the effect of phosphating on the corrosion resistance of a commercial Nd-Fe-B sintered magnet indicated that it increases the corrosion resistance of these magnets, compared to non-phosphated magnets. In this study, the solution chemistry of a phosphating bath was altered with the addition of molybdate and its effect on the corrosion resistance of magnets investigated. Sintered magnet specimens were phosphated in solutions of 10 g/L NaH2PO4 (pH 3.8, either with or without molybdate [10-3 M MoO4(2-], to improve their corrosion resistance. The effect of phosphating time was also evaluated, and specimens were phosphated for 4 and 18 hours. To evaluate the corrosion performance of phosphated and unphosphated specimens, a corrosion test based on monitoring hydrogen evolution on the surface of the magnets was used. This technique revealed that the addition of molybdate to the phosphating solution improved the corrosion resistance of the magnets phosphated by immersion for short periods but had no beneficial effect if phosphated by immersion for longer periods.

  1. Effect of municipal liquid waste on corrosion susceptibility of ...

    African Journals Online (AJOL)

    This investigation studied the effect of municipal liquid waste discharged into the environment within Kano municipal area on the corrosion susceptibility of galvanized steel pipe burial underground. Six stagnant and six moving municipal liquid waste samples were used for the investigation. The corrosion rate of the ...

  2. The Effects of Corrosive Chemicals on Corrosion Rate of Steel Reinforcement Bars: I. Swamp Water

    Directory of Open Access Journals (Sweden)

    Sulistyoweni Widanarko

    2010-10-01

    Full Text Available Most of infrastructures using steel concrete to reinforce the strength of concrete. Steel concrete is so vulnerable to chemical compounds that can cause corrosion. It can happen due to the presence of chemical compounds in acid environment in low pH level. These chemical compounds are SO42-, Cl-, NO3-. There are many swamp area in Indonesia. The acid contents and the concentration of ion sulphate, chlorides, and nitrate are higher in the swamp water than in the ground water .The objective of this research was to find out the influence of corrosive chemicals in the swamp water to the steel concrete corrosion rate. There were two treatment used: (1 emerging ST 37 and ST 60 within 60 days in the 'polluted' swamp water, (2 moving the ST 37 up and down periodically in the ' polluted' swamp water. Three variation of 'polluted' swamp water were made by increasing the concentration of corrosive chemical up to 1X, 5X and 10X respectively. The corrosion rate was measured by using an Immersion Method. The result of Immersion test showed that chloride had the greatest influence to corrosion rate of ST 37 and ST 60 and followed by sulphate and Nitrate. Corrosion rate value for ST 37 is 24.29 mpy and for ST 60 is 22.76 mpy. By moving the sample up and down, the corrosion rate of ST 37 increase up to 37.59 mpy, and chloride still having the greatest influence, followed by sulphate and nitrate.

  3. Corrosion Challenges for the Oil and Gas Industry in the State of Qatar

    Science.gov (United States)

    Johnsen, Roy

    In Qatar oil and gas has been produced from onshore fields in more than 70 years, while the first offshore field delivered its first crude oil in 1965. Due to the atmospheric conditions in Qatar with periodically high humidity, high chloride content, dust/sand combined with the temperature variations, external corrosion is a big treat to the installations and connecting infrastructure. Internal corrosion in tubing, piping and process systems is also a challenge due to high H2S content in the hydrocarbon mixture and exposure to corrosive aquifer water. To avoid corrosion different type of mitigations like application of coating, chemical treatment and material selection are important elements. This presentation will review the experiences with corrosion challenges for oil & gas installations in Qatar including some examples of corrosion failures that have been seen.

  4. State of the Art of Cost and Benefit Models for Digital Curation

    DEFF Research Database (Denmark)

    Kejser, Ulla Bøgvad; Davidson, Joy; Wang, David

    2014-01-01

    , to support decision-making and for selecting the most efficient processes – all of which are critical for ensuring sustainability of digital curation investment. The evaluation revealed that the most prominent challenges are associated with the models’ usability, their inability to model quality and benefits......This paper presents the results of an evaluation carried out by the EU 4C project to assess how well current digital curation cost and benefit models meet a range of stakeholders’ needs. This work aims to elicit a means of modelling that enables comparing financial information across organisations...... of curation, and the lack of a clear terminology and conceptual description of costs and benefits. The paper provides recommendations on how these gaps in cost and benefit modelling can be bridged....

  5. USAF Corrosion Prevention and Control Enterprise - Sustainability Links

    Science.gov (United States)

    2014-11-18

    projects and $84M  Example of potential synergy: From FY05-14, the DoD Corrosion Program funded 21 projects on hexavalent chromium reduction  OSD...coatings, effects on structural integrity, environmental effects, etc  Some topics of interest  Inhibitor mechanisms for mg-rich primer (non- chrome ...approach  Financial and engineering resources are limited  Potential costs of corrosion are significant  Supporting replacements for hexavalent

  6. Effective flow-accelerated corrosion programs in nuclear facilities

    International Nuclear Information System (INIS)

    Esselman, Thomas C.; McBrine, William J.

    2004-01-01

    Piping Flow-Accelerated Corrosion Programs in nuclear power generation facilities are classically comprised of the selection of inspection locations with the assistance of a predictive methodology such as the Electric Power Research Institute computer codes CHECMATE or CHECWORKS, performing inspections, conducting structural evaluations on the inspected components, and implementing the appropriate sample expansion and corrective actions. Performing such a sequence of steps can be effective in identifying thinned components and implementing appropriate short term and long term actions necessary to resolve flow-accelerated corrosion related problems. A maximally effective flow-accelerated corrosion (FAC) program requires an understanding of many programmatic details. These include the procedural control of the program, effective use of historical information, managing the activities performed during a limited duration outage, allocating resources based on risk allocation, having an acute awareness of how the plant is operated, investigating components removed from the plant, and several others. This paper will describe such details and methods that will lead to a flow-accelerated corrosion program that effectively minimizes the risk of failure due to flow-accelerated corrosion and provide full and complete documentation of the program. (author)

  7. Cost-effectiveness Analysis in R Using a Multi-state Modeling Survival Analysis Framework: A Tutorial.

    Science.gov (United States)

    Williams, Claire; Lewsey, James D; Briggs, Andrew H; Mackay, Daniel F

    2017-05-01

    This tutorial provides a step-by-step guide to performing cost-effectiveness analysis using a multi-state modeling approach. Alongside the tutorial, we provide easy-to-use functions in the statistics package R. We argue that this multi-state modeling approach using a package such as R has advantages over approaches where models are built in a spreadsheet package. In particular, using a syntax-based approach means there is a written record of what was done and the calculations are transparent. Reproducing the analysis is straightforward as the syntax just needs to be run again. The approach can be thought of as an alternative way to build a Markov decision-analytic model, which also has the option to use a state-arrival extended approach. In the state-arrival extended multi-state model, a covariate that represents patients' history is included, allowing the Markov property to be tested. We illustrate the building of multi-state survival models, making predictions from the models and assessing fits. We then proceed to perform a cost-effectiveness analysis, including deterministic and probabilistic sensitivity analyses. Finally, we show how to create 2 common methods of visualizing the results-namely, cost-effectiveness planes and cost-effectiveness acceptability curves. The analysis is implemented entirely within R. It is based on adaptions to functions in the existing R package mstate to accommodate parametric multi-state modeling that facilitates extrapolation of survival curves.

  8. Measuring the State-of-the-Art in Laser Cut Quality

    OpenAIRE

    Pocorni, Jetro; Powell, John; Ilar, Torbjörn; Schwarz, A.; Kaplan, Alexander

    2013-01-01

    This paper discusses the strategy appropriate to investigating the state of the art of laser cutting from an industrial point of view. The importance of creating the samples in a high quality industrial environment is emphasised and preliminary results are presented.

  9. Effect of chlorides on the corrosion behaviour of mild steel

    International Nuclear Information System (INIS)

    Harada, Kazuyuki; Shimada, Minoru

    1980-01-01

    In PWR's steam generators, ''denting'' resulted from corrosion of support plate material, carbon steel is an important problem. The role of chlorides in corrosion acceleration of mild steel was studied. Corrosion tests were conducted at temperature from 100 0 C to 280 0 C in deaerated solutions of NaCl and MgCl 2 which are main content of sea water. 1) Solution of MgCl 2 was more corrosive than that of NaCl. The more increased in concentration of each chloride solution, the more corrosive in MgCl 2 soln. but the less corrosive in NaCl soln. 2) The rate of corrosion in the mixed solution of NaCl and MgCl 2 was governed by the concentration of MgCl 2 soln. The corrosion behaviour in sea water was suggested to be not controlled by NaCl but by MgCl 2 . 3) Acidification of MgCl 2 soln. could be evaluated by experiment at 100 0 C, the degree of acidification increased with increasing the concentration. However, the value of pH during corrosion was kept constant by the concentration of dissolved Fe 2+ ions. 4) The corrosion acceleration by MgCl 2 soln. was arised not only from acidification by the solution itself but from continuous supplementation of H + ions with the hydrolysis of dissolved Fe 2+ ions. This autocatalytic corrosion process not exhausting acid was characterized with the corrosion in closed system such as in crevice. In addition to acidification of MgCl 2 soln., the formation of non-protective magnetite film by Mg 2+ ion was estimated to be a reason of accelerated corrosion. (author)

  10. Effect of temperature and heat fluxes on the corrosion's damage nature for mild and stainless steels in neutral chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kaluzhina, S.A. [Voronezh State University, University Sq.1, 394006 Voronezh (Russian Federation); Malygin, A.V. [JSC Voronezhsynthezkauchuk, Leninsky Av. 2, 394014 Voronezh (Russian Federation); Vigdorovitch, V.V. [Derzhavin State University, International St. 33, 392622 Tambov (Russian Federation)

    2004-07-01

    The detail research of the corrosion-electrochemical behavior of two types steels - mild steel (0.1%C) and stainless steel 12FeCr18Ni10Ti in series chloride solutions under elevated temperature and heat flux on interface has been carried out in the present work using the special plant and the complex electrochemical and microscopic methods. The comparative data has shown that the temperature increase is stimulating as the active alloy's corrosion (mild steel), so the passive alloy's corrosion (12FeCr18Ni10Ti).However at the last case the temperature effect is being higher because the thermal de-passivation of the stainless steel which undergoes pit corrosion under t > 50 deg C. The heat-transfer role in the studied systems is ambiguous. The corrosion rate of heat-transferring electrode from mild steel exceeds the thermo-equilibrium with solution electrode's corrosion rate because of intensification of the oxygen reduction cathodic process. The opposite effect has been established for steel 12FeCr18Ni10Ti where the oxygen flux's strengthening from cold solution to the heated surface transfers the alloy to the most stable passive state and increases its resistance to general and local corrosion. The experimental results demonstrates that the thermal condition's influence on the nature and corrosion intensity of the investigated steels is being commensurable by effect's degree with their composition and showing strictly individually. (authors)

  11. Effectiveness and cost effectiveness of expanding harm reduction and antiretroviral therapy in a mixed HIV epidemic: a modeling analysis for Ukraine.

    Directory of Open Access Journals (Sweden)

    Sabina S Alistar

    2011-03-01

    Full Text Available Injection drug use (IDU and heterosexual virus transmission both contribute to the growing mixed HIV epidemics in Eastern Europe and Central Asia. In Ukraine-chosen in this study as a representative country-IDU-related risk behaviors cause half of new infections, but few injection drug users (IDUs receive methadone substitution therapy. Only 10% of eligible individuals receive antiretroviral therapy (ART. The appropriate resource allocation between these programs has not been studied. We estimated the effectiveness and cost-effectiveness of strategies for expanding methadone substitution therapy programs and ART in mixed HIV epidemics, using Ukraine as a case study.We developed a dynamic compartmental model of the HIV epidemic in a population of non-IDUs, IDUs using opiates, and IDUs on methadone substitution therapy, stratified by HIV status, and populated it with data from the Ukraine. We considered interventions expanding methadone substitution therapy, increasing access to ART, or both. We measured health care costs, quality-adjusted life years (QALYs, HIV prevalence, infections averted, and incremental cost-effectiveness. Without incremental interventions, HIV prevalence reached 67.2% (IDUs and 0.88% (non-IDUs after 20 years. Offering methadone substitution therapy to 25% of IDUs reduced prevalence most effectively (to 53.1% IDUs, 0.80% non-IDUs, and was most cost-effective, averting 4,700 infections and adding 76,000 QALYs compared with no intervention at US$530/QALY gained. Expanding both ART (80% coverage of those eligible for ART according to WHO criteria and methadone substitution therapy (25% coverage was the next most cost-effective strategy, adding 105,000 QALYs at US$1,120/QALY gained versus the methadone substitution therapy-only strategy and averting 8,300 infections versus no intervention. Expanding only ART (80% coverage added 38,000 QALYs at US$2,240/QALY gained versus the methadone substitution therapy-only strategy, and

  12. Effects of Chemical Treatments on Microbiologically Influenced Corrosion

    Science.gov (United States)

    Friedman, E. S.; Strom, M.; Dexter, S. C.

    2008-12-01

    Biofilms are known to have an effect on galvanic corrosion of alloys in seawater systems. In the Delaware Bay, biofilm formation on surface of cathodes has been shown to cause galvanic corrosion to occur up to 100 times more rapidly. Given the impacts that corrosion can have on structures, it is important to study how we can affect corrosion rates. One way of doing this is the application of chemical treatments to biofilms on metal samples. To investigate this, natural marine biofilms were grown on alloy 6XN stainless steel samples, and various chemical treatments were applied to discover their effects on open circuit potentials and corrosion currents. Another objective of this study was to determine if there was a threshold molecular weight above which molecules were unable to penetrate the biofilm. It was discovered that chemicals with molecular weights as high as 741.6 g/mol were able to penetrate at least some parts of the heterogeneous biofilm and reach the metal surface. No upper threshold value was found in this study. It was found that the reducing agents sodium L-ascorbate and NADH as well as the chelate ferizene caused a drop in open circuit potential of biofilmed 6XN samples. Also, glutaraldahyde, which is used as a fixative for bacteria, shifted the open circuit potential of biofilm samples in the noble direction but had no effect on the corrosion current. Sodium L- ascorbate was found to reach the metal surface, but in concentrations lower than those present in the bulk fluid. It was not determined in this study whether this was due to physical or chemical processes within the biofilm. A synergistic effect was observed when applying a mixture of ferizene and glutaraldahyde. It is thought that this was due to the death of the bacteria as well as the disruption of iron cycling in the biofilm. Finally, it was observed that NADH caused a reduction in current at potentials associated with iron reduction, leading us to believe that the iron was being reduced

  13. Development of a state-of-the-art solid waste characterisation facility at JRC ISPRA

    International Nuclear Information System (INIS)

    Huhtiniemi, I.; Anselmi, M.; Hubert, P.; Vassallo, G.

    2003-01-01

    This paper will review the development and construction of a state-of-the-art waste characterisation facility that represents a fundamental element in the JRC's strategy to characterise radioactive wastes originating from four decades of nuclear research activities conducted at the Ispra Site. The state-of-the-art NDA measurement solution selected by JRC-Ispra will be presented in the light of special requirements imposed by applicable Italian legislation, norms and the qualities of the waste packages. The intended plant combines the state-of-the-art-measurement solution with comprehensive process automation in an industrial environment and is therefore of significant interest to the radioactive waste management community. (orig.)

  14. Flexible AC transmission systems: the state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Edris, Abdel-Aty [Electric Power Research Inst., Palo Alto, CA (United States). Electric Systems Division

    1994-12-31

    Flexible AC transmission systems (FACTS) is a concept promoting the use of power electronic controllers to enhance the controllability and usable capacity of AC transmission. This paper presents the state of the art of FACTS and the status of the current projects for the application of the FACTS controllers in transmission systems. (author) 8 refs., 8 figs.

  15. The Effect of Crack Width on Chloride-Induced Corrosion of Steel in Concrete

    Directory of Open Access Journals (Sweden)

    Weiwei Li

    2017-01-01

    Full Text Available When subjected to loading or thermal shrinkage, reinforced concrete structures usually behave in a cracking state, which raises the risk of bar corrosion from the working environment. The influence of cover cracking on chloride-induced corrosion was experimentally investigated through a 654-day laboratory test on cracked reinforced concrete specimens exposed to chloride solution. The concrete specimens have a dimension of 100 mm × 100 mm × 400 mm and a single prefabricated crack at the midspan. When the percentage concentration of chloride ion (0.6%, 1.2%, 2.1%, 3.0%, and 6.0% and crack width (uncracked, 0.2, 0.3, 0.4, and 0.5 mm are taken as variables, the experimental results showed that the corrosion rates for cracked specimens increased with increasing percentage concentration of chloride and increasing crack width. This study also showed the interrelationship between crack width and percentage concentration of chloride on the corrosion rate. In addition, an empirical model, incorporating the influence of the cover cracking and chloride concentration, was developed to predict the corrosion rate. This model allows the prediction of the maximum allowable wcr based on the given percentage concentration of chloride in the exposure condition.

  16. Modelling the effects of porous and semi-permeable layers on corrosion processes

    International Nuclear Information System (INIS)

    King, F.; Kolar, M.; Shoesmith, D.W.

    1996-09-01

    Porous and semi-permeable layers play a role in many corrosion processes. Porous layers may simply affect the rate of corrosion by affecting the rate of mass transport of reactants and products to and from the corroding surface. Semi-permeable layers can further affect the corrosion process by reacting with products and/or reactants. Reactions in semi-permeable layers include redox processes involving electron transfer, adsorption, ion-exchange and complexation reactions and precipitation/dissolution processes. Examples of porous and semi-permeable layers include non-reactive salt films, precipitate layers consisting of redox-active species in multiple oxidation states (e.g., Fe oxide films), clay and soil layers and biofilms. Examples of these various types of processes will be discussed and modelling techniques developed from studies for the disposal of high-level nuclear waste presented. (author). 48 refs., 1 tab., 12 figs

  17. Effect of mechanical treatment on intergranular corrosion of 6064 alloy bars

    Science.gov (United States)

    Sláma, P.; Nacházel, J.

    2017-02-01

    Aluminium Al-Mg-Si-type alloys (6xxx-series) exhibit good mechanical properties, formability, weldability and good corrosion resistance in various environments. They often find use in automotive industry and other applications. Some alloys, however, particularly those with higher copper levels, show increased susceptibility to intergranular corrosion. Intergranular corrosion (IGC) is typically related to the formation of microgalvanic cells between cathodic, more noble phases and depleted (precipitate-free) zones along grain boundaries. It is encountered mainly in AlMgSi alloys containing Cu, where it is thought to be related to the formation Q-phase precipitates (Al4Mg8Si7Cu2) along grain boundaries. The present paper describes the effects of mechanical working (extrusion, drawing and straightening) and artificial aging on intergranular corrosion in rods of the 6064 alloy. The resistance to intergranular corrosion was mapped using corrosion tests according to EN ISO 11846, method B. Corrosion tests showed dependence of corrosion type on mechanical processing of the material. Intergranular, pitting and transgranular corrosion was observed. Artificial ageing influenced mainly the depth of the corrosion.

  18. The effects of Nitinol phases on corrosion and fatigue behavior

    Science.gov (United States)

    Denton, Melissa

    The purpose of these studies was to provide a detailed understanding of Nitinol phases and their effects on corrosion and fatigue life. The two primary phases, austenite and martensite, were carefully evaluated with respect to material geometry, corrosion behavior, wear, and fatigue life. Material characterization was performed using several techniques that include metallography, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray photoelectron spectrum (XPS), and Auger electron spectroscopy (AES). Uniaxial tensile tests were conducted to determine the mechanical properties such as elongation, ultimate tensile strength, modulus, transformation strain, and plateau stress. In addition, accelerated wear testing and four point bend fatigue testing were completed to study the fatigue life and durability of the material. The corrosion of Nitinol was found to be dependent on various surface conditions. Electrochemical corrosion behavior of each phase was investigated using cyclic potentiodyamic polarization testing. The corrosion response of electropolished Nitinol was found to be acceptable, even after durability testing. Stress-induced martensite had a lower breakdown potential due to a rougher surface morphology, while thermally induced martensite and austenite performed similarly well. The surface conditioning also had a significant effect on Nitinol mechanical properties. Electropolishing provided a smooth mirror finish that reduced localized texture and enhanced the ductility of the material. Quasi-static mechanical properties can be good indicators of fatigue life, but further fatigue testing revealed that phase transformations had an important role as well. The governing mechanisms for the fatigue life of Nitinol were determined to be both martesitic phase transformations and surface defects. A new ultimate dislocation strain model was proposed based on specific accelerated step-strain testing.

  19. Assessment of the State of the Art of Flight Control Technologies as Applicable to Adverse Conditions

    Science.gov (United States)

    Reveley, Mary s.; Briggs, Jeffrey L.; Leone, Karen M.; Kurtoglu, Tolga; Withrow, Colleen A.

    2010-01-01

    Literature from academia, industry, and other Government agencies was surveyed to assess the state of the art in current Integrated Resilient Aircraft Control (IRAC) aircraft technologies. Over 100 papers from 25 conferences from the time period 2004 to 2009 were reviewed. An assessment of the general state of the art in adaptive flight control is summarized first, followed by an assessment of the state of the art as applicable to 13 identified adverse conditions. Specific areas addressed in the general assessment include flight control when compensating for damage or reduced performance, retrofit software upgrades to flight controllers, flight control through engine response, and finally test and validation of new adaptive controllers. The state-of-the-art assessment applicable to the adverse conditions include technologies not specifically related to flight control, but may serve as inputs to a future flight control algorithm. This study illustrates existing gaps and opportunities for additional research by the NASA IRAC Project

  20. Electrochemical corrosion of grinding media and effect of anions present in industrial waters; Corrosion electroquimica de medios de molienda y efecto de aniones presentes en aguas industriales

    Energy Technology Data Exchange (ETDEWEB)

    Magne, L.; Navarro, P.; Vargas, C.; Carrasco, S.

    2001-07-01

    The steel used in the minerals processing as grinding media (balls or bars), is an important input in terms of cost of the process. Considering the importance of the steel consumption in these processes, this work is guided to evaluate to laboratory scale the effect of the anions present in the industrial waters on the electrochemical corrosion of grinding media. Tests in electrochemical cell, were accomplished measuring potential and corrosion current to four electrodes that were manufactured using sufficiently pure sample of chalcopyrite, bornite, enargite and steel ball. The ions used in the tests were chlorides, sulfates, nitrates and carbonates in concentrations from 1 to 180 ppm in individual form or in mixtures, according to the levels measurement of these in industrial waters. (Author) 10 refs.

  1. Cases of corrosion in power plant components at NTPC

    International Nuclear Information System (INIS)

    Sanyal, S.K.; Bhakta, U.C.; Sinha, Ashwini

    2000-01-01

    Power plants are one of the major industries suffering from severe corrosion problems resulting in substantial losses. The problem is becoming more prominent as the plants are getting older. NTPC as the leading power utility with very good performance track record, had been conscious of the menace of corrosion prevailing in the industry and had established a Research and Development Centre to cater to applied O and M needs of the plants. A specialized group has been involved in studying the corrosion related problems and recommending suitable cost effective solutions to such problems. The present paper aims at discussing various corrosion related analysis carried out at the Research and Development Centre of NTPC and the remedial measures suggested. The paper also describes some of the case studies of corrosion related failures with recommendations given for preventing such failures in future. (author)

  2. Three State-of-the-Art Methods for Condition Monitoring

    NARCIS (Netherlands)

    Grimmelius, H.T.; Meiler, P.P.; Maas, H.L.M.M.; Bonnier, B.; Grevink, J.S.; Kuilenburg, R.F. van

    1999-01-01

    This paper describes and compares three different state-of-the-art condition monitoring techniques: first principles, feature extraction, and neural networks. The focus of the paper is on the application of the techniques, not on the underlying theory. Each technique is described briefly and is

  3. A review on the effect of welding on the corrosion of magnesium alloys

    Science.gov (United States)

    Mohamed, N. S.; Alias, J.

    2017-10-01

    Welding is an important joining technique for lightweight alloys with their increasing applications in aerospace, aircraft, automotive, electronics and other industries. The applications of lightweight alloys particularly magnesium alloys increased rapidly due to their beneficial properties such as low density, high strength-to-mass ratio, good dimensional stability, electromagnetic shielding and good recyclability. The effect of welding on the corrosion of magnesium alloys are reviewed in this paper, which closely related to the developed microstructure by the welding process. The paper focuses particularly on friction stir and laser welding. The basic principles of friction stir and laser welding are discussed, to present the likelihood of defects which significantly affect the corrosion of magnesium alloy. The finding in corrosion demonstrated the morphology of corrosion occurrence on each welded region, and observation on the potential and current values are also included.

  4. The State of the Art of the Borehole Disposal Concept for High Level Radioactive Waste

    International Nuclear Information System (INIS)

    Ji, Sung Hoon; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    As an alternative of the high-level radioactive waste disposal in the subsurface repository, a deep borehole disposal is reviewed by several nuclear advanced countries. In this study, the state of the art on the borehole disposal researches was reviewed, and the possibility of borehole disposal in Korean peninsula was discussed. In the deep borehole disposal concept radioactive waste is disposed at the section of 3 - 5 km depth in a deep borehole, and it has known that it has advantages in performance and cost due to the layered structure of deep groundwater and small surface disposal facility. The results show that it is necessary to acquisite data on deep geologic conditions of Korean peninsula, and to research the engineering barrier system, numerical modeling tools and disposal techniques for deep borehole disposal.

  5. [The effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental casting alloys after electrochemical corrosion].

    Science.gov (United States)

    Qiao, Guang-yan; Zhang, Li-xia; Wang, Jue; Shen, Qing-ping; Su, Jian-sheng

    2014-08-01

    To investigate the effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental alloys after electrochemical corrosion. The surface morphology and surface structure of nickel-chromium dental alloys were examined by stereomicroscope and scanning electron microscopy before and after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. The surface element component and chemical states of nickel-chromium dental alloys were analyzed by X-ray photoelectron spectrograph after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. More serious corrosion happened on the surface of nickel-chromium alloy in 1.0 g/L EGCG artificial saliva than in 0 g/L EGCG. The diameters of corrosion pits were smaller, and the dendrite structure of the alloy surface was not affected in 0 g/L EGCG. While the diameters of corrosion pits were larger, the dendritic interval of the alloy surface began to merge, and the dendrite structure was fuzzy in 1.0 g/L EGCG. In addition, the O, Ni, Cr, Be, C and Mo elements were detected on the surface of nickel-chromium alloys after sputtered for 120 s in 0 g/L EGCG and 1.0 g/L EGCG artificial saliva after electrochemical corrosion, and the surface oxides were mainly NiO and Cr(2)O(3). Compared with 0 g/L EGCG artificial saliva, the content of O, NiO and Cr(2)O(3) were lower in 1.0 g/L EGCG. The results of surface morphology and the corrosion products both show that the corrosion resistance of nickel-chromium alloys become worse and the oxide content of corrosion products on the surface reduce in 1.0 g/L EGCG artificial saliva.

  6. Overview of Corrosion, Erosion, and Synergistic Effects of Erosion and Corrosion in the WTP Pre-treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Imrich, K. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-27

    Corrosion is an extremely complex process that is affected by numerous factors. Addition of a flowing multi-phase solution further complicates the analysis. The synergistic effects of the multiple corrosive species as well as the flow-induced synergistic effects from erosion and corrosion must be thoroughly evaluated in order to predict material degradation responses. Public domain data can help guide the analysis, but cannot reliably provide the design basis especially when the process is one-of-a-kind, designed for 40 plus years of service, and has no viable means for repair or replacement. Testing in representative simulants and environmental conditions with prototypic components will provide a stronger technical basis for design. This philosophy was exemplified by the Defense Waste Processing Facility (DWPF) at the Savannah River Site and only after 15 plus years of successful operation has it been validated. There have been “hiccups”, some identified during the cold commissioning phase and some during radioactive operations, but they were minor and overcome. In addition, the system is robust enough to tolerate most flowsheet changes and the DWPF design allows minor modifications and replacements – approaches not available with the Hanford Waste Treatment Plant (WTP) “Black Cell” design methodology. Based on the available data, the synergistic effect between erosion and corrosion is a credible – virtually certain – degradation mechanism and must be considered for the design of the WTP process systems. Testing is recommended due to the number of variables (e.g., material properties, process parameters, and component design) that can affect synergy between erosion and corrosion and because the available literature is of limited applicability for the complex process chemistries anticipated in the WTP. Applicable testing will provide a reasonable and defensible path forward for design of the WTP Black Cell and Hard-to-Reach process equipment. These

  7. A state of the art on metallic fuel technology development

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang, Hee Young; Nam, Cheol; Kim, Jong Oh

    1997-01-01

    Since worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved in the late 1960's, the development of metallic fuels continued throughout the 1970's at ANL's experimental breeder reactor II (EBR-II) because EBR-II continued to be fueled with the metallic uranium-fissium alloy, U-5Fs. During this decade the performance limitations of metallic fuel were satisfactorily resolved resolved at EBR-II. The concept of the IFR developed at ANL since 1984. The technical feasibility had been demonstrated and the technology database had been established to support its practicality. One key features of the IFR is that the fuel is metallic, which brings pronounced benefits over oxide in improved inherent safety and lower processing costs. At the outset of the 1980's, it appeared that metallic fuels are recognized as a professed viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last score and summarizes the state-of the art on metallic fuel technology development. (author). 29 refs., 1 tab

  8. Steam generator degradation: Current mitigation strategies for controlling corrosion

    International Nuclear Information System (INIS)

    Millett, P.

    1997-01-01

    Steam Generator degradation has caused substantial losses of power generation, resulted in large repair and maintenance costs, and contributed to significant personnel radiation exposures in Pressurized Water Reactors (PWRs) operating throughout the world. EPRI has just published the revised Steam Generator Reference Book, which reviews all of the major forms of SG degradation. This paper discusses the types of SG degradation that have been experienced with emphasis on the mitigation strategies that have been developed and implemented in the field. SG degradation is presented from a world wide perspective as all countries operating PWRs have been effected to one degree or another. The paper is written from a US. perspective where the utility industry is currently undergoing tremendous change as a result of deregulation of the electricity marketplace. Competitive pressures are causing utilities to strive to reduce Operations and Maintenance (O ampersand M) and capital costs. SG corrosion is a major contributor to the O ampersand M costs of PWR plants, and therefore US utilities are evaluating and implementing the most cost effective solutions to their corrosion problems. Mitigation strategies developed over the past few years reflect a trend towards plant specific solutions to SG corrosion problems. Since SG degradation is in most cases an economic problem and not a safety problem, utilities can focus their mitigation strategies on their unique financial situation. Accordingly, the focus of R ampersand D has shifted from the development of more expensive, prescriptive solutions (e.g. reduced impurity limits) to corrosion problems to providing the utilities with a number of cost effective mitigation options (e.g. molar ratio control, boric acid treatment)

  9. Additive manufacturing of titanium alloys state of the art, challenges and opportunities

    CERN Document Server

    Dutta, Bhaskar

    2016-01-01

    Additive Manufacturing of Titanium Alloys: State of the Art, Challenges and Opportunities provides alternative methods to the conventional approach for the fabrication of the majority of titanium components produced via the cast and wrought technique, a process which involves a considerable amount of expensive machining. In contrast, the Additive Manufacturing (AM) approach allows very close to final part configuration to be directly fabricated minimizing machining cost, while achieving mechanical properties at least at cast and wrought levels. In addition, the book offers the benefit of significant savings through better material utilization for parts with high buy-to-fly ratios (ratio of initial stock mass to final part mass before and after manufacturing). As titanium additive manufacturing has attracted considerable attention from both academicians and technologists, and has already led to many applications in aerospace and terrestrial systems, as well as in the medical industry, this book explores the un...

  10. Effect of menthol coated craft paper on corrosion of copper in HCl ...

    Indian Academy of Sciences (India)

    Administrator

    The effect of menthol on copper corrosion was studied by gravimetric and ... lable for temporary protection of metals and alloys from corrosion, the use of volatile .... The corrosion kinetic parameters were obtained from the anodic and cathodic.

  11. Nuclear Liability, State of the Art

    International Nuclear Information System (INIS)

    Reitsma, S. M. S.

    2010-01-01

    Over fifty years ago states started to introduce legislation protecting the public against the potential magnitude and peculiarity of risks arising from the nuclear energy production. They did so trough a specific liability and compensation regime. Whether legislation was based on national initiatives or, as more frequently, related to international nuclear liability conventions, it was based on a number of principles being applied universally. Furthermore, it at the same time strived for not preventing the development of the nuclear industry because of an unbearable liability. This paper aims at explaining the broad outline of the above legislation, its development since its early years, the state of the art as regards its modernisation as well as the (alleged) problems underlying the delay in its introduction in a number of countries. When dealing with those problems it will be inevitable to touch upon a number of insurance related matters, which, as an insurer I am happy to tell, will lead me to familiar territory.(author).

  12. State-of-the-art risk-based approach to spill contingency planning and risk management

    International Nuclear Information System (INIS)

    Schmidt Etkin, Dagmar; Reilly, Timothy; French McCay, Deborah

    2011-01-01

    The paper proposes incorporating a comprehensive examination of spill risk into risk management and contingency planning, and applying state-of-the-art modeling tools to evaluate various alternatives for appropriate spill response measures and optimize protective responses. The approach allows spill contingency planners and decision-makers to determine the types of spill scenarios that may occur in a particular location or from a particular source and calculate the probability distribution of the various scenarios. The spill probability information is useful in assessing and putting into perspective the various costs options for spill control systems that will be recommended ultimately. Using advanced modeling tools helps in estimating the potential environmental and socioeconomic consequences of each spill scenario based on location-specific factors over a range of stochastic possibilities, simulating spill scenarios and determining optimal responses and protection strategies. The benefits and costs of various response alternatives and variations in response time can be calculated and modeling tools for training and risk allocation/transfer purposes used.

  13. Clinical reappraisal and state of the art of nephropexy.

    Science.gov (United States)

    Mogorovich, Andrea; Selli, Cesare; De Maria, Maurizio; Manassero, Francesca; Durante, Jacopo; Urbani, Lucio

    2018-04-01

    The diffusion of minimally invasive techniques for renal surgery has prompted a renewed interest in nephropexy which is indicated to prevent nephroptosis in symptomatic patients and to mobilize the upper ureter downward in order to bridge a ureteral defect. Recent publications have been reviewed to present the state of the art of the diagnosis and management of these two challenging conditions and to try to foresee the next steps. The evaluation of patients with mobile kidney can be made relying on diagnostic criteria such as ultrasound with color Doppler and measurement of resistive index, conventional upright X-ray frames after a supine uro-computerized tomography scan and both static and dynamic nuclear medicine scans, always with evaluation in the sitting or erect position. Laparoscopic nephropexy emerges as the current treatment option combining both objectively controlled repositioning of the kidney and resolution of symptoms with minimal invasiveness, low morbidity, and short hospital stay. The use of robotics is presently limited by its higher cost, but may increase in the future. Downward renal mobilization and nephropexy is a safe and versatile technique which has been adopted as a unique strategy or more often in combination with other surgical maneuvers in order to cope with complex ureteral reconstruction.

  14. Investigations on the corrosion resistance of metallic bipolar plates (BPP) in proton exchange membrane fuel cells (PEMFC) - understanding the effects of material, coating and manufacturing

    Science.gov (United States)

    Dur, Ender

    Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems are promising technology for contributing to meet the deficiency of world`s clean and sustainable energy requirements in the near future. Metallic bipolar plate (BPP) as one of the most significant components of PEMFC device accounts for the largest part of the fuel cell`s stack. Corrosion for metallic bipolar plates is a critical issue, which influences the performance and durability of PEMFC. Corrosion causes adverse impacts on the PEMFC`s performance jeopardizing commercialization. This research is aimed at determining the corrosion resistance of metallic BPPs, particularly stainless steels, used in PEMFC from different aspects. Material selection, coating selection, manufacturing process development and cost considerations need to be addressed in terms of the corrosion behavior to justify the use of stainless steels as a BPP material in PEMFC and to make them commercially feasible in industrial applications. In this study, Ti, Ni, SS304, SS316L, and SS 430 blanks, and BPPs comprised of SS304 and SS316L were examined in terms of the corrosion behavior. SS316L plates were coated to investigate the effect of coatings on the corrosion resistance performance. Stamping and hydroforming as manufacturing processes, and three different coatings (TiN, CrN, ZrN) applied via the Physical Vapor Deposition (PVD) method in three different thicknesses were selected to observe the effects of manufacturing processes, coating types and coating thicknesses on the corrosion resistance of BPP, respectively. Uncoated-coated blank and formed BPP were subjected to two different corrosion tests: potentiostatic and potentiodynamic. Some of the substantial results: 1- Manufacturing processes have an adverse impact on the corrosion resistance. 2- Hydroformed plates have slightly higher corrosion resistance than stamped samples. 3- BPPs with higher channel size showed better corrosion resistance. 4- Since none of the uncoated samples

  15. Role and efforts of T3C in corrosion economics

    International Nuclear Information System (INIS)

    Perrigo, L.D.; Appleman, B.R.; Pamer, R.I.; Thompson, J.L.

    1979-11-01

    The basic purpose of T3C activity is to show how to acquire specific corrosion cost information so that overall costs for doing business can be reduced. The scope of T3C is to accumulate data, appraise methods, develop recommended practices, promote knowledge and communicate relative to the economic evaluation of corrosion and counter corrosion techniques

  16. Chernobyl - state of the art; Chernobyl - o estado da arte

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Daiane C.B. de; Vicente, Roberto; Rostelato, Maria Elisa C.M.; Borges, Jessica F.; Tiezzi, Rodrigo; Peleias Junior, Fernando S.; Souza, Carla D.; Rodrigues, Bruna T.; Benega, Marcos A.G.; Souza, Anderson S. de; Silva, Thais H. da, E-mail: dcsouza@ipen.br, E-mail: rvicente@ipen.br, E-mail: elisaros@ipen.br, E-mail: rtiezzi@ipen.br, E-mail: carladdsouza@yahoo.com.br, E-mail: marcosagbenega@ipen.br, E-mail: bteigarodrigues@gmail.com, E-mail: thaishunk@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    This article aims to analyze what has been done so far in relation to damage caused by the accident and the state of art in Chernobyl, as well as the impact on radiation protection applied safety nuclear power plants. In the first part of the work a data survey was done through a bibliographic review and the in the second part data was collected during a visit, in June 2013 at the crash site, when was observed dose values in the affected areas and the works of repairs that have been made in the sarcophagus and surroundings as well as in official reports available through active international bodies. The main results indicate significant improvements in radiation protection systems.

  17. Paediatric thoracoscopy: State of the art | Van Niekerk | South ...

    African Journals Online (AJOL)

    Many advanced procedures, including lobectomy, repair of tracheo-oesophageal fistula, excision of mediastinal tumours and diaphragmatic hernia repairs, are being done routinely in paediatric surgery centres around the world. This article reviews the state of the art of thoracoscopic surgery in children. The author selected ...

  18. The cost-effectiveness of cash versus lottery incentives for a web-based, stated-preference community survey.

    Science.gov (United States)

    Gajic, Aleksandra; Cameron, David; Hurley, Jeremiah

    2012-12-01

    We present the results of a randomized experiment to test the effectiveness and cost-effectiveness of response incentives for a stated-preference survey of a general community population. The survey was administered using a mixed-mode approach, in which community members were invited to participate using a traditional mailed letter using contact information for a representative sample of the community; but individuals completed the survey via the web, which exploited the advantages of electronic capture. Individuals were randomized to four incentive groups: (a) no incentive, (b) prepaid cash incentive ($2), (c) a low lottery (10 prizes of $25) and (d) a high lottery (2 prizes of $250). Letters of invitation were mailed to 3,000 individuals. In total, 405 individuals (14.4%) contacted the website and 277 (9.8%) provided complete responses. The prepaid cash incentive generated the highest contact and response rates (23.3 and 17.3%, respectively), and no incentive generated the lowest (9.1 and 5.7%, respectively). The high lottery, however, was the most cost-effective incentive for obtaining completed surveys: compared with no incentive, the incremental cost-effectiveness ratio (ICER) per completed survey for high lottery was $13.89; for prepaid cash, the ICER was $18.29. This finding suggests that the preferred response incentive for community-based, stated-preference surveys is a lottery with a small number of large prizes.

  19. State cost sharing of training

    International Nuclear Information System (INIS)

    Montgomery, J.M.; Flater, D.A.; Hughes, D.R. Sr.; Lubenau, J.O.; Merges, P.J.; Mobley, M.H.; Raglin, K.A.

    1989-08-01

    In March 1988, The Office of Governmental and Public Affairs (GPA) completed a report (NUREG-1311) entitled, ''Funding the NRC Training Program for States.'' This report responded to a Commission's request for study of NRC's long-standing practice of paying the travel and per diem of state personnel who attend NRC sponsored training. In May 1988, the Chairman endorsed the report in most respects but asked for further study of a cost sharing of travel and per diem costs. As a result, the Director of GPA's State, Local and Indian Tribe Programs (SLITP) established a Task Force comprised of representatives from the Conference of Radiation Control Program Directors, Inc., the Agreement States and the NRC to look at ways that the states can share the costs of NRC training, particularly travel and per diem. At the request of the Director, GPA, the Task Force also looked at related cost and quantity issues associated with the NRC training program for state personnel. This report includes a discussion of NRC and state perspectives on the issue of sharing travel and per diem costs, a discussion of options, and recommendations for likely cost savings and quality of training improvement. 1 ref., 3 figs., 2 tabs

  20. Fighting corrosion in India

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, K S; Rangaswamy, N S

    1979-03-01

    A survey covers the cost of corrosion in India; methods of preventing corrosion in industrial plants; some case histories, including the prevention of corrosion in pipes through which fuels are pumped to storage and the stress-corrosion cracking of evaporators in fertilizer plants; estimates of the increase in demand in 1979-89 for anticorrosion products and processes developed by the Central Electrochemical Research Institute (CECRI) at Karaikudi, India; industries that may face corrosion problems requiring assistance from CECRI, including the light and heavy engineering structural, and transport industries and the chemical industry; and some areas identified for major efforts, including the establishment of a Corrosion Advisory Board with regional centers and the expansion of the Tropical Corrosion Testing Station at Mandapam Camp, Tamil Nadu.

  1. Structurally Integrated Coatings for Wear and Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Beardsley, M. Brad; Sebright, Jason L.

    2008-11-18

    Wear and corrosion of structures cuts across industries and continues to challenge materials scientists and engineers to develop cost effective solutions. Industries typically seek mature technologies that can be implemented for production with rapid or minimal development and have little appetite for the longer-term materials research and development required to solve complex problems. The collaborative work performed in this project addressed the complexity of this problem in a multi-year program that industries would be reluctant to undertake without government partnership. This effort built upon the prior development of Advanced Abrasion Resistant Materials conduct by Caterpillar Inc. under DOE Cooperative Agreement No. DE-FC26-01NT41054. In this referenced work, coatings were developed that exhibited significant wear life improvements over standard carburized heat treated steel in abrasive wear applications. The technology used in this referenced work, arc lamp fusing of thermal spray coatings, was one of the primary technical paths in this work effort. In addition to extending the capability of the coating technology to address corrosion issues, additional competitive coating technologies were evaluated to insure that the best technology was developed to meet the goals of the program. From this, plasma transferred arc (PTA) welding was selected as the second primary technology that was investigated. Specifically, this project developed improved, cost effective surfacing materials and processes for wear and corrosion resistance in both sliding and abrasive wear applications. Materials with wear and corrosion performance improvements that are 4 to 5 times greater than heat treated steels were developed. The materials developed were based on low cost material systems utilizing ferrous substrates and stainless steel type matrix with hard particulates formed from borides and carbides. Affordability was assessed against other competing hard surfacing or coating

  2. The Effect of Phosphate on the Morphological and Spectroscopic Properties of Copper Pipes Experiencing Localized Corrosion

    Science.gov (United States)

    Extensive localized or pitting corrosion of copper pipes used in household drinking-water plumbing can eventually lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. A growing number of problems have been associated with high pH and low ...

  3. State of the art: alumina ceramics for energy applications

    International Nuclear Information System (INIS)

    Hauth, W.E.; Stoddard, S.D.

    1978-01-01

    Prominent ceramic raw materials and products manufacturers were surveyed to determine the state of the art for alumina ceramic fabrication. This survey emphasized current capabilities and limitations for fabrication of large, high-density, high-purity, complex shapes. Some directions are suggested for future needs and development

  4. An investigation into a laboratory scale bubble column humidification dehumidification desalination system powered by biomass energy

    International Nuclear Information System (INIS)

    Rajaseenivasan, T.; Srithar, K.

    2017-01-01

    Highlights: • A biomass based humidification dehumidification desalination system is tested. • System is analyzed with the direct and preheated air supply. • Highest distillate rate of 6.1 kg/h is collected with the preheated air supply. • The minimum fuel feed of 0.2 kg is needed to produce 1 kg of fresh water. - Abstract: This article describes a biomass powered bubble column humidification-dehumidification desalination system. This system mainly consists of a biomass stove, air heat exchanger, bubble column humidifier and dehumidifier. Saw dust briquettes are used as biomass fuel in the stove. First level of experiments are carried out in bubble column humidifier with ambient air supply to select the best water depth, bubble pipe hole diameter and water temperature. Experiments are conducted by integrating the humidifier with the dehumidifier. Air is sent to the humidifier with and without pre-heating. Preheating of air is carried out in the air heat exchanger by using the flue gas and flame from the combustion chamber. It is observed that the humidifier ability is augmented with the rise in water depth, water temperature, mass flow rate of air and cooling water flow rate, and reduction in bubble pipe hole diameter. It is found from Taguchi analysis that the water temperature dominates in controlling the humidifier performance compared to other parameters. Better specific humidity is recorded with a bubble pipe hole diameter of 1 mm, water depth of 170 mm and water temperature of 60 °C. Highest distillate of 6.1 kg/h and 3.5 kg/h is collected for the HDH desalination system with preheated air and direct air supply respectively. Recovery of waste heat using an air heat exchanger reduces the fuel consumption from 0.36 kg to 0.2 kg for producing 1 kg of distilled water. Lowest distilled water cost of 0.0133 US $/kg through preheated air supply and 0.0231 US $/kg through direct air supply is observed. A correlation is developed to estimate the mass transfer

  5. Nuclear power plant decommissioning: state-of-the-art review

    International Nuclear Information System (INIS)

    Williams, D.H.

    1984-01-01

    A brief orientation to the state-of-the-art of nuclear power plant decommissioning discusses the related areas of experience, tools and techniques, and planning. There have been 68 nuclear reactor decommissionings to date, including 9 power plants, some of which were mothballed. The picture suggests that the term art may be misapplied since decommissioning is now more of a mature commercial industrial than a research and development endeavor. It also suggests that the nuclear industry has shown foresight by preparing for it before a crisis situation developed. Some of this has already influenced operators of coal power plants, especially where hazardous materials may be involved. 33 references, 1 table

  6. Harvesting Robots for High-value Crops: State-of-the-art Review and Challenges Ahead

    NARCIS (Netherlands)

    Bac, C.W.; Henten, van E.; Hemming, J.; Edan, Y.

    2014-01-01

    This review article analyzes state-of-the-art and future perspectives for harvesting robots in high-value crops. The objectives were to characterize the crop environment relevant for robotic harvesting, to perform a literature review on the state-of-the-art of harvesting robots using quantitative

  7. THE SLOWING DOWN OF THE CORROSION OF ELEMENTS OF THE EQUIPMENT OF HEAVY MET-ALS AT ELEVATED TEMPERATURES

    OpenAIRE

    Носачова, Юлія Вікторівна; Ярошенко, М. М.; Корзун, А. О.; КОРОВЧЕНКО, К. С.

    2017-01-01

    In this article examined the heavy metals ions and their ability to slow down the corrosion process also the impact of ambient temperature on their effectiveness. Solving the problem of corrosion will reduce the impact of large industrial enterprises on the environment and minimize the economic costs. To do this, plants should create a system without a discharge of waste water that is closed recycling systems, which result is a significant reduction in intake of fresh water from natural sourc...

  8. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  9. Effect of Surface Precipitate on the Crevice Corrosion in HYBRID and Oxalic Acid Solution

    International Nuclear Information System (INIS)

    Park, S. Y.; Jung, J. Y.; Won, H. J.; Kim, S. B.; Choi, W. K.; Moon, J. K.; Park, S. J.

    2015-01-01

    In this study, we investigated the characteristics of the crevice corrosion for Inconel-600 and 304SS in OA solution according to the change in pH. The evaluation of the crevice corrosion with the chemical thermodynamic analysis identified the effect of the residual chemicals such as iron-oxalate and nickeloxalate to the crevice corrosion behavior. Test results were compared with those of HYBRID (HYdrizine Base Reductive metal Ion Decontamination). The crevice corrosion properties of 304 SS and Inconel-600 in HYBRID and oxalic acid solution were evaluated. In case of oxalic acid solution, the corrosion rate on 304SS was rapidly increased with a pH decrease of around 2, but there was no increase in the corrosion rate on Inconel-600

  10. The state of art of internal fire PSA in nuclear power plant

    International Nuclear Information System (INIS)

    Yu Xinli; Zhao Bo; Zheng Xiangyang

    2010-01-01

    The operational experiences of nuclear power plants (NPPs) show that the internal fires challenge effectively the nuclear safety of NPPs. Thus, the authorities having jurisdiction in the world have enhanced the supervision on fire safety in NPPs, asking the licensees to perform fire hazard analysis and evaluate the fire risk. This article mainly describes the state of art of internal fire probabilistic safety assessment (PSA) in the world, and compares the main methods and standards for internal fire PSA. (authors)

  11. Effect of Nitrite Inhibitor on the Macrocell Corrosion Behavior of Reinforcing Steel

    Directory of Open Access Journals (Sweden)

    Zhonglu Cao

    2015-01-01

    Full Text Available The effect of nitrite ions on the macrocell corrosion behavior of reinforcing steel embedded in cement mortar was investigated by comparing and analyzing the macrocell corrosion current, macrocell polarization ratios, and slopes of anodic and cathodic steels. Based on the experimental results, the relationship between macrocell potential difference and macrocell current density was analyzed, and the mechanism of macrocell corrosion affected by nitrite ions was proposed. The results indicated that nitrite ions had significant impact on the macrocell polarization ratios of cathode and anode. The presence of nitrite could reduce the macrocell current by decreasing the macrocell potential difference and increasing the macrocell polarization resistance of the anode.

  12. Fatigue of Nitinol: The state-of-the-art and ongoing challenges.

    Science.gov (United States)

    Mahtabi, M J; Shamsaei, Nima; Mitchell, M R

    2015-10-01

    Nitinol, a nearly equiatomic alloy of nickel and titanium, has been considered for a wide range of applications including medical and dental devices and implants as well as aerospace and automotive components and structures. The realistic loading condition in many of these applications is cyclic; therefore, fatigue is often the main failure mode for such components and structures. The fatigue behavior of Nitinol involves many more complexities compared with traditional metal alloys arising from its uniqueness in material properties such as superelasticity and shape memory effects. In this paper, a review of the present state-of-the-art on the fatigue behavior of superelastic Nitinol is presented. Various aspects of fatigue of Nitinol are discussed and microstructural effects are explained. Effects of material preparation and testing conditions are also reviewed. Finally, several conclusions are made and recommendations for future works are offered. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The state of the art in static and dynamic games

    NARCIS (Netherlands)

    De Giovanni, P.

    2009-01-01

    Purpose - The purpose of this paper is to investigate the state of the art in static and dynamic games (or inter-firm relationships). This research area has changed significantly over the last 25 years through the development of phenomena such as the supply chain and the progressive overcoming of

  14. The Beijing Olympics and the art of nation-state maintenance

    NARCIS (Netherlands)

    de Kloet, J.; Pak Lei Chong, G.; Liu, W.

    2008-01-01

    This article maps out how different actors are involved in the promotion and mediation of the Olympics. It looks at the roles of, first, the nation-state, through an analysis of the promotional materials; second, the art world and global companies, through an analysis of the touring exhibition

  15. Effect of H2O2 on the corrosion behavior of 304L stainless steel

    International Nuclear Information System (INIS)

    Song, Taek Hoh; Kim, In Sub; Noh, Sung Kee

    1995-01-01

    In connection with the safe storage of high level nuclear waste, effect of H 2 O 2 on the corrosion behavior of 304L stainless steel was examined. Open circuit potentials and polarization curves were measured with and without H 2 O 2 . The experimental results show that H 2 O 2 increased corrosion potential and decreased pitting potential. The passive range, therefore, decreased as H 2 O 2 concentration increased, indicating that pitting resistance was decreased by the existence of H 2 O 2 in the electrolyte. These effects of H 2 O 2 on corrosion of 304L stainless steel are considered to be similar to those of γ-irradiation. To compare the effects of H 2 O 2 with those of O 2 , cathodic and anodic polarization curves were made in three types of electrolyte such as aerated, deaerated, and stirred electrolyte. The experimental results show that the effects of H 2 O 2 on the corrosion behavior were very similar to those of O 2 such as increase of corrosion potential, decrease of pitting resistance, and increase of repassivation potential. In acid and alkaline media, the corrosion potential shifts by H 2 O 2 were restricted by the large current density of proton reduction and by the le Chatelier's principle respectively. 13 figs., 1 tabs., 17 refs. (Author)

  16. An overview of erosion corrosion models and reliability assessment for corrosion defects in piping system

    International Nuclear Information System (INIS)

    Srividya, A.; Suresh, H.N.; Verma, A.K.; Gopika, V.; Santosh

    2006-01-01

    Piping systems are part of passive structural elements in power plants. The analysis of the piping systems and their quantification in terms of failure probability is of utmost importance. The piping systems may fail due to various degradation mechanisms like thermal fatigue, erosion-corrosion, stress corrosion cracking and vibration fatigue. On examination of previous results, erosion corrosion was more prevalent and wall thinning is a time dependent phenomenon. The paper is intended to consolidate the work done by various investigators on erosion corrosion in estimating the erosion corrosion rate and reliability predictions. A comparison of various erosion corrosion models is made. The reliability predictions based on remaining strength of corroded pipelines by wall thinning is also attempted. Variables in the limit state functions are modelled using normal distributions and Reliability assessment is carried out using some of the existing failure pressure models. A steady state corrosion rate is assumed to estimate the corrosion defect and First Order Reliability Method (FORM) is used to find the probability of failure associated with corrosion defects over time using the software for Component Reliability evaluation (COMREL). (author)

  17. Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens solar concentrator

    International Nuclear Information System (INIS)

    Wu, Gang; Zheng, Hongfei; Ma, Xinglong; Kutlu, Cagri; Su, Yuehong

    2017-01-01

    Highlights: • A solar desalination system heated directly by curved Fresnel lens concentrator. • Desalination system is based on the humidification-dehumidification process. • Four-stage multi-effect desalination system is proposed. • Condensation latent heat and residual heat in the brine are recycled and reutilized. • The maximum yield and GOR of the unit can reach 3.4 kg/h and 2.1, respectively. - Abstract: This study demonstrates a multi-stage humidification-dehumidification (HDH) solar desalination system heated directly by a cylindrical Fresnel lens concentrator. In this novel system, the solar radiation is sent directly into desalination unit. That is to say, the solar receiver and the evaporator of the system are a whole in which the black fillers in seawater directly absorb the concentrated solar lights to heat the seawater film to produce the evaporation. The configuration and working processes of the proposed design are described in detail. In order to analyze its performance, a small solar desalination prototype unit incorporated with a cylindrical Fresnel lens concentrator was designed and built in our laboratory. Using three-stage isothermal tandem heating mode, the variation of the fresh water yield rate and the absorber temperature with time were measured experimentally and were compared with theoretical calculations. The experimental results show that the maximum yield of the unit is about 3.4 kg/h, the maximum gained output ratio (GOR) is about 2.1, when the average intensity of solar radiation is about 867 W/m"2. This study indicates that the proposed system has the characteristics of compact structure and GOR high. It still can be improved when the design and operation are optimized further.

  18. A Snapshot of State Policies for Arts Education

    Science.gov (United States)

    Arts Education Partnership, 2014

    2014-01-01

    It has been said that while history shapes the hand a state is dealt, public policy determines how the hand is played. State policy for K-12 education--and, by extension, for arts education--is shaped through the actions of various state governmental entities--governors, legislatures, courts, and commissioners and boards of education--in response…

  19. Corrosion and Protection of Metal in the Seawater Desalination

    Science.gov (United States)

    Hou, Xiangyu; Gao, Lili; Cui, Zhendong; Yin, Jianhua

    2018-01-01

    Seawater desalination develops rapid for it can solve water scarcity efficiently. However, corrosion problem in the seawater desalination system is more serious than that in normal water. So, it is important to pay attention to the corrosion and protection of metal in seawater desalination. The corrosion characteristics and corrosion types of metal in the seawater desalination system are introduced in this paper; In addition, corrosion protect methods and main influencing factors are stated, the latest new technologies about anti-corrosion with quantum energy assisted and magnetic inhibitor are presented.

  20. Solid State Inflation Balloon Active Deorbiter: Scalable Low-Cost Deorbit System for Small Satellites

    Science.gov (United States)

    Huang, Adam

    2016-01-01

    The goal of the Solid State Inflation Balloon Active Deorbiter project is to develop and demonstrate a scalable, simple, reliable, and low-cost active deorbiting system capable of controlling the downrange point of impact for the full-range of small satellites from 1 kg to 180 kg. The key enabling technology being developed is the Solid State Gas Generator (SSGG) chip, generating pure nitrogen gas from sodium azide (NaN3) micro-crystals. Coupled with a metalized nonelastic drag balloon, the complete Solid State Inflation Balloon (SSIB) system is capable of repeated inflation/deflation cycles. The SSGG minimizes size, weight, electrical power, and cost when compared to the current state of the art.