WorldWideScience

Sample records for state variable feedback

  1. A state variable approach to the BESSY II local beam-position-feedback system

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.; Khan, S.; Kraemer, D.

    1996-01-01

    At the BESSY II facility, stability of the electron beam position and angle near insertion devices (IDs) is of utmost importance. Disturbances due to ground motion could result in unwanted broad-bandwidth beam-jitter which decreases the electron (and resultant photon) beam's effective brightness. Therefore, feedback techniques must be used. Operating over a frequency range of 100-Hz, a local feedback system will correct these beam-trajectory errors using the four bumps around IDs. This paper reviews how the state-variable feedback approach can be applied to real-time correction of these beam position and angle errors. A frequency-domain solution showing beam jitter reduction is presented. Finally, this paper reports results of a beam-feedback test at BESSY I

  2. Global Control of the Furuta Pendulum Using Artificial Neural Networks and Feedback of State Variables

    Directory of Open Access Journals (Sweden)

    Luisa F. Escobar-Dávila

    2013-06-01

    Full Text Available This paper presents the mathematical modeling of the Furuta Pendu-lum by power functions, taking into account the non linear own dynamics of the physical systems and considering the existing couplings between the electric and mechanic devices. A control process based on feedback of state variables (FSV for the equilibrium point is developed and two topics for the non linear zone are addressed. First of all, functions are implemented to represent the energetic states of the plant in a global way and the operation regions are established (“Swing up” zone, and later Artificial Neural Networks (ANN are employed to simulate the behavior of the energy functions. Finally, it is presented the combination between the control techniques, considering the own constrains of the actuators and sensors used, besides of this, a study is done in a simulated environment of the physical phenomena that may disturb system behavior, and the capacity, sensitivity and robustness of the controller is verified.

  3. Functional observer and state feedback

    International Nuclear Information System (INIS)

    Zhang, S.Y.

    1986-01-01

    In this paper, we show the relation between state space approach and transfer function approach for functional observer and state feedback design. Two approaches can be transformed into each other, based on this result. More importantly, we find that the state space approach introduces some severe, unnecessary restrictions in solving the problem. The restrictions are, however, reduced to be a trivial condition in transfer function approach. It is believed that the result presented in this paper will be useful in developing both approaches, and motivate some new results for solving the problem

  4. Nonlinear H-ininity state feedback controllers:

    DEFF Research Database (Denmark)

    Cromme, Marc; Møller-Pedersen, Jens; Pagh Petersen, Martin

    1997-01-01

    From a general point of view the state feedback H∞ suboptimal control problem is reasonably well understood. Important problems remain with regard to a priori information of the size of the neighbourhood where the local state feedback H∞ problem is solvable. This problem is solved regionally (sem...... (semiglobally) in this paper, and the obtained control laws are implemented in MAPLE...

  5. Computer-based formative assessment: variables influencing feedback behaviour

    NARCIS (Netherlands)

    Timmers, C.F.

    2013-01-01

    Assessment can be used to stimulate and direct student learning. This refers to the formative function of assessment. Formative assessments contribute to learning by generating feedback. Here, feedback is conceptualised as information about learners actual state of performance intended to modify

  6. Semiglobal H-infinity State Feedback Control

    DEFF Research Database (Denmark)

    Cromme, Marc; Stoustrup, Jakob

    1996-01-01

    Semi-global set-stabilizing H-infinity controlis a local within some given compact set such that all statetrajectories are bounded inside the set, and are approaching an openloop invariant subset as time approaches infinity. Sufficientconditions for the existence of a continuous state feedback law...

  7. Performance Measure as Feedback Variable in Image Processing

    Directory of Open Access Journals (Sweden)

    Ristić Danijela

    2006-01-01

    Full Text Available This paper extends the view of image processing performance measure presenting the use of this measure as an actual value in a feedback structure. The idea behind is that the control loop, which is built in that way, drives the actual feedback value to a given set point. Since the performance measure depends explicitly on the application, the inclusion of feedback structures and choice of appropriate feedback variables are presented on example of optical character recognition in industrial application. Metrics for quantification of performance at different image processing levels are discussed. The issues that those metrics should address from both image processing and control point of view are considered. The performance measures of individual processing algorithms that form a character recognition system are determined with respect to the overall system performance.

  8. Who wants feedback? An investigation of the variables influencing residents' feedback-seeking behavior in relation to night shifts.

    Science.gov (United States)

    Teunissen, Pim W; Stapel, Diederik A; van der Vleuten, Cees; Scherpbier, Albert; Boor, Klarke; Scheele, Fedde

    2009-07-01

    The literature on feedback in clinical medical education has predominantly treated trainees as passive recipients. Past research has focused on how clinical supervisors can use feedback to improve a trainee's performance. On the basis of research in social and organizational psychology, the authors reconceptualized residents as active seekers of feedback. They investigated what individual and situational variables influence residents' feedback-seeking behavior on night shifts. Early in 2008, the authors sent obstetrics-gynecology residents in the Netherlands--both those in their first two years of graduate training and those gaining experience between undergraduate and graduate training--a questionnaire that assessed four predictor variables (learning and performance goal orientation, and instrumental and supportive leadership), two mediator variables (perceived feedback benefits and costs), and two outcome variables (frequency of feedback inquiry and monitoring). They used structural equation modeling software to test a hypothesized model of relationships between variables. The response rate was 76.5%. Results showed that residents who perceive more feedback benefits report a higher frequency of feedback inquiry and monitoring. More perceived feedback costs result mainly in more feedback monitoring. Residents with a higher learning goal orientation perceive more feedback benefits and fewer costs. Residents with a higher performance goal orientation perceive more feedback costs. Supportive physicians lead residents to perceive more feedback benefits and fewer costs. This study showed that some residents actively seek feedback. Residents' feedback-seeking behavior partially depends on attending physicians' supervisory style. Residents' goal orientations influence their perceptions of the benefits and costs of feedback-seeking.

  9. Forcing, feedback and internal variability in global temperature trends.

    Science.gov (United States)

    Marotzke, Jochem; Forster, Piers M

    2015-01-29

    Most present-generation climate models simulate an increase in global-mean surface temperature (GMST) since 1998, whereas observations suggest a warming hiatus. It is unclear to what extent this mismatch is caused by incorrect model forcing, by incorrect model response to forcing or by random factors. Here we analyse simulations and observations of GMST from 1900 to 2012, and show that the distribution of simulated 15-year trends shows no systematic bias against the observations. Using a multiple regression approach that is physically motivated by surface energy balance, we isolate the impact of radiative forcing, climate feedback and ocean heat uptake on GMST--with the regression residual interpreted as internal variability--and assess all possible 15- and 62-year trends. The differences between simulated and observed trends are dominated by random internal variability over the shorter timescale and by variations in the radiative forcings used to drive models over the longer timescale. For either trend length, spread in simulated climate feedback leaves no traceable imprint on GMST trends or, consequently, on the difference between simulations and observations. The claim that climate models systematically overestimate the response to radiative forcing from increasing greenhouse gas concentrations therefore seems to be unfounded.

  10. Animal personality and state-behaviour feedbacks: a review and guide for empiricists.

    Science.gov (United States)

    Sih, Andrew; Mathot, Kimberley J; Moirón, María; Montiglio, Pierre-Olivier; Wolf, Max; Dingemanse, Niels J

    2015-01-01

    An exciting area in behavioural ecology focuses on understanding why animals exhibit consistent among-individual differences in behaviour (animal personalities). Animal personality has been proposed to emerge as an adaptation to individual differences in state variables, leading to the question of why individuals differ consistently in state. Recent theory emphasizes the role that positive feedbacks between state and behaviour can play in producing consistent among-individual covariance between state and behaviour, hence state-dependent personality. We review the role of feedbacks in recent models of adaptive personalities, and provide guidelines for empirical testing of model assumptions and predictions. We discuss the importance of the mediating effects of ecology on these feedbacks, and provide a roadmap for including state-behaviour feedbacks in behavioural ecology research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Multidecadal Variability in Surface Albedo Feedback Across CMIP5 Models

    Science.gov (United States)

    Schneider, Adam; Flanner, Mark; Perket, Justin

    2018-02-01

    Previous studies quantify surface albedo feedback (SAF) in climate change, but few assess its variability on decadal time scales. Using the Coupled Model Intercomparison Project Version 5 (CMIP5) multimodel ensemble data set, we calculate time evolving SAF in multiple decades from surface albedo and temperature linear regressions. Results are meaningful when temperature change exceeds 0.5 K. Decadal-scale SAF is strongly correlated with century-scale SAF during the 21st century. Throughout the 21st century, multimodel ensemble mean SAF increases from 0.37 to 0.42 W m-2 K-1. These results suggest that models' mean decadal-scale SAFs are good estimates of their century-scale SAFs if there is at least 0.5 K temperature change. Persistent SAF into the late 21st century indicates ongoing capacity for Arctic albedo decline despite there being less sea ice. If the CMIP5 multimodel ensemble results are representative of the Earth, we cannot expect decreasing Arctic sea ice extent to suppress SAF in the 21st century.

  12. Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion.

    Science.gov (United States)

    Leving, Marika T; Vegter, Riemer J K; Hartog, Johanneke; Lamoth, Claudine J C; de Groot, Sonja; van der Woude, Lucas H V

    2015-01-01

    It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process. 17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability. The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group. These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear

  13. Evaluation of feedforward and feedback contributions to hand stiffness and variability in multijoint arm control.

    Science.gov (United States)

    He, Xin; Du, Yu-Fan; Lan, Ning

    2013-07-01

    The purpose of this study is to validate a neuromechanical model of the virtual arm (VA) by comparing emerging behaviors of the model to those of experimental observations. Hand stiffness of the VA model was obtained by either theoretical computation or simulated perturbations. Variability in hand position of the VA was generated by adding signal dependent noise (SDN) to the motoneuron pools of muscles. Reflex circuits of Ia, Ib and Renshaw cells were included to regulate the motoneuron pool outputs. Evaluation of hand stiffness and variability was conducted in simulations with and without afferent feedback under different patterns of muscle activations during postural maintenance. The simulated hand stiffness and variability ellipses captured the experimentally observed features in shape, magnitude and orientation. Steady state afferent feedback contributed significantly to the increase in hand stiffness by 35.75±16.99% in area, 18.37±7.80% and 16.15±7.15% in major and minor axes; and to the reduction of hand variability by 49.41±21.19% in area, 36.89±12.78% and 18.87±23.32% in major and minor axes. The VA model reproduced the neuromechanical behaviors that were consistent with experimental data, and it could be a useful tool for study of neural control of posture and movement, as well as for application to rehabilitation.

  14. Atmospheric radiative feedbacks associated with transient climate change and climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Colman, Robert A.; Power, Scott B. [Bureau of Meteorology, Centre for Australian Weather and Climate Research, GPO Box 1289, Melbourne, VIC (Australia)

    2010-06-15

    This study examines in detail the 'atmospheric' radiative feedbacks operating in a coupled General Circulation Model (GCM). These feedbacks (defined as the change in top of atmosphere radiation per degree of global surface temperature change) are due to responses in water vapour, lapse rate, clouds and surface albedo. Two types of radiative feedback in particular are considered: those arising from century scale 'transient' warming (from a 1% per annum compounded CO{sub 2} increase), and those operating under the model's own unforced 'natural' variability. The time evolution of the transient (or 'secular') feedbacks is first examined. It is found that both the global strength and the latitudinal distributions of these feedbacks are established within the first two or three decades of warming, and thereafter change relatively little out to 100 years. They also closely approximate those found under equilibrium warming from a 'mixed layer' ocean version of the same model forced by a doubling of CO{sub 2}. These secular feedbacks are then compared with those operating under unforced (interannual) variability. For water vapour, the interannual feedback is only around two-thirds the strength of the secular feedback. The pattern reveals widespread regions of negative feedback in the interannual case, in turn resulting from patterns of circulation change and regions of decreasing as well as increasing surface temperature. Considering the vertical structure of the two, it is found that although positive net mid to upper tropospheric contributions dominate both, they are weaker (and occur lower) under interannual variability than under secular change and are more narrowly confined to the tropics. Lapse rate feedback from variability shows weak negative feedback over low latitudes combined with strong positive feedback in mid-to-high latitudes resulting in no net global feedback - in contrast to the dominant negative low

  15. Semiglobal H-infty state feedback control

    DEFF Research Database (Denmark)

    Cromme, Marc

    1997-01-01

    semi-global set-stabilizing H-infty control is local H-infty control within some given compact set O such that all state trajectories are bounded inside O, and are approaching an open loop invariant set S subset O as t -> infinity. Sufficient conditions for the existance of a continuous statefeed...

  16. Asymptotic stabilization of nonlinear systems using state feedback

    International Nuclear Information System (INIS)

    D'Attellis, Carlos

    1990-01-01

    This paper studies the design of state-feedback controllers for the stabilization of single-input single-output nonlinear systems x = f(x) + g(x)u, y = h(x). Two approaches for the stabilization problem are given; the asymptotic stability is achieved by means of: a) nonlinear state feedback: two nonlinear feedbacks are used; the first separates the system in a controllable linear part and in the zeros-dynamic part. The second feedback generates an asymptotically stable equilibrium on the manifold where this dynamics evolves; b) nonlinear dynamic feedback: conditions are established under which the system can follow the output of a completely controllable bilinear system which uses bounded controls. This fact enables the system to reach, using bounded controls too, a desired output value in finite time. As this value corresponds to a state that lays in the attraction basin of a stable equilibrium with the same output, the system evolves to that point. The two methods are illustrated by examples. (Author) [es

  17. Persistent disturbance rejection via state feedback for networked control systems

    Energy Technology Data Exchange (ETDEWEB)

    Yue Dong [Institute of Information and Control Engineering Technology, Nanjing Normal University, 78 Bancang Street, Nanjing, Jiangsu 210042 (China)], E-mail: medongy@njnu.edu.cn; Lam, James [Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road (Hong Kong); Wang Zidong [Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom)], E-mail: Zidong.Wang@brunel.ac.uk

    2009-04-15

    The problem of persistent disturbance rejection via state feedback for networked control systems is concerned based on the Lyapunov function method. The effect of the network conditions, such as network-induced delay and data dropout, is considered in the modeling of the system. It is assumed that the state and the control signals are individually quantized by quantizers on the sensor side and the controller side. The feedback gain and the quantizer parameters that guarantee the internal stability and the disturbance rejection performance of the closed-loop system are obtained by solving some linear matrix inequalities. To illustrate the effectiveness of the proposed method, a numerical example is provided for the design of the feedback gain and the quantizer parameters.

  18. Persistent disturbance rejection via state feedback for networked control systems

    International Nuclear Information System (INIS)

    Yue Dong; Lam, James; Wang Zidong

    2009-01-01

    The problem of persistent disturbance rejection via state feedback for networked control systems is concerned based on the Lyapunov function method. The effect of the network conditions, such as network-induced delay and data dropout, is considered in the modeling of the system. It is assumed that the state and the control signals are individually quantized by quantizers on the sensor side and the controller side. The feedback gain and the quantizer parameters that guarantee the internal stability and the disturbance rejection performance of the closed-loop system are obtained by solving some linear matrix inequalities. To illustrate the effectiveness of the proposed method, a numerical example is provided for the design of the feedback gain and the quantizer parameters.

  19. Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion.

    Directory of Open Access Journals (Sweden)

    Marika T Leving

    Full Text Available It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process.17 Participants received visual feedback-based practice (feedback group and 15 participants received regular practice (natural learning group. Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block and optimize it in the prescribed direction (2nd 4-min block. To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability.The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group.These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not

  20. Transient eddy feedback and low-frequency variability

    International Nuclear Information System (INIS)

    Robinson, W.A.

    1994-01-01

    Superposed on any externally driven secular climatic change are fluctuations that arise from the internal nonlinear dynamics of the climate system. These internally generated variations may involve interactions between the atmosphere and the ocean, as in the case of El Nino, or they may arise from the dynamics of the atmosphere alone. Here we discuss the dynamics of interactions between transient eddies and lower-frequency motions in the atmosphere. The interactions between more transient and more persistent motions can be divided into two types. Nonlinear interactions among the transient motions can act as an essentially random source of low-frequency motion. The idea that the low-frequencies respond in a linear way to stochastic forcing from higher frequencies has been applied to the generation of planetary waves and to the forcing of changes in global angular momentum. In addition to stochastic coupling, there are systematic interactions, denoted feedbacks, through which the persistent motions modulate their own forcing by the transient eddies. This paper discusses the dynamics of these feedbacks

  1. Full State Feedback Control for Virtual Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay Tillay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This report presents an object-oriented implementation of full state feedback control for virtual power plants (VPP). The components of the VPP full state feedback control are (1) objectoriented high-fidelity modeling for all devices in the VPP; (2) Distribution System Distributed Quasi-Dynamic State Estimation (DS-DQSE) that enables full observability of the VPP by augmenting actual measurements with virtual, derived and pseudo measurements and performing the Quasi-Dynamic State Estimation (QSE) in a distributed manner, and (3) automated formulation of the Optimal Power Flow (OPF) in real time using the output of the DS-DQSE, and solving the distributed OPF to provide the optimal control commands to the DERs of the VPP.

  2. Uncertainty of feedback and state estimation determines the speed of motor adaptation

    Directory of Open Access Journals (Sweden)

    Kunlin Wei

    2010-05-01

    Full Text Available Humans can adapt their motor behaviors to deal with ongoing changes. To achieve this, the nervous system needs to estimate central variables for our movement based on past knowledge and new feedback, both of which are uncertain. In the Bayesian framework, rates of adaptation characterize how noisy feedback is in comparison to the uncertainty of the state estimate. The predictions of Bayesian models are intuitive: the nervous system should adapt slower when sensory feedback is more noisy and faster when its state estimate is more uncertain. Here we want to quantitatively understand how uncertainty in these two factors affects motor adaptation. In a hand reaching experiment we measured trial-by-trial adaptation to a randomly changing visual perturbation to characterize the way the nervous system handles uncertainty in state estimation and feedback. We found both qualitative predictions of Bayesian models confirmed. Our study provides evidence that the nervous system represents and uses uncertainty in state estimate and feedback during motor adaptation.

  3. Alpha-contingent EEG feedback reduces SPECT rCBF variability

    DEFF Research Database (Denmark)

    McLaughlin, Thomas; Steinberg, Bruce; Mulholland, Thomas

    2005-01-01

    EEG feedback methods, which link the occurrence of alpha to the presentation of repeated visual stimuli, reduce the relative variability of subsequent, alpha-blocking event durations. The temporal association between electro-cortical field activation and regional cerebral blood flow (rCBF) led us...... to investigate whether the reduced variability of alpha-blocking durations with feedback is associated with a reduction in rCBF variability. Reduced variability in the rCBF response domain under EEG feedback control might have methodological implications for future brain-imaging studies. Visual stimuli were...... to quantify the variance-reducing effects of ACS across multiple, distributed areas of the brain. Both EEG and rCBF measures demonstrated decreased variability under ACS. This improved control was seen for localized as well as anatomically distributed rCBF measures....

  4. Chaos synchronization using single variable feedback based on backstepping method

    International Nuclear Information System (INIS)

    Zhang Jian; Li Chunguang; Zhang Hongbin; Yu Juebang

    2004-01-01

    In recent years, backstepping method has been developed in the field of nonlinear control, such as controller, observer and output regulation. In this paper, an effective backstepping design is applied to chaos synchronization. There are some advantages in this method for synchronizing chaotic systems, such as (a) the synchronization error is exponential convergent; (b) only one variable information of the master system is needed; (c) it presents a systematic procedure for selecting a proper controller. Numerical simulations for the Chua's circuit and the Roessler system demonstrate that this method is very effective

  5. State-feedback control of fuzzy discrete-event systems.

    Science.gov (United States)

    Lin, Feng; Ying, Hao

    2010-06-01

    In a 2002 paper, we combined fuzzy logic with discrete-event systems (DESs) and established an automaton model of fuzzy DESs (FDESs). The model can effectively represent deterministic uncertainties and vagueness, as well as human subjective observation and judgment inherent to many real-world problems, particularly those in biomedicine. We also investigated optimal control of FDESs and applied the results to optimize HIV/AIDS treatments for individual patients. Since then, other researchers have investigated supervisory control problems in FDESs, and several results have been obtained. These results are mostly derived by extending the traditional supervisory control of (crisp) DESs, which are string based. In this paper, we develop state-feedback control of FDESs that is different from the supervisory control extensions. We use state space to describe the system behaviors and use state feedback in control. Both disablement and enforcement are allowed. Furthermore, we study controllability based on the state space and prove that a controller exists if and only if the controlled system behavior is (state-based) controllable. We discuss various properties of the state-based controllability. Aside from novelty, the proposed new framework has the advantages of being able to address a wide range of practical problems that cannot be effectively dealt with by existing approaches. We use the diabetes treatment as an example to illustrate some key aspects of our theoretical results.

  6. Data-Driven User Feedback: An Improved Neurofeedback Strategy considering the Interindividual Variability of EEG Features

    Directory of Open Access Journals (Sweden)

    Chang-Hee Han

    2016-01-01

    Full Text Available It has frequently been reported that some users of conventional neurofeedback systems can experience only a small portion of the total feedback range due to the large interindividual variability of EEG features. In this study, we proposed a data-driven neurofeedback strategy considering the individual variability of electroencephalography (EEG features to permit users of the neurofeedback system to experience a wider range of auditory or visual feedback without a customization process. The main idea of the proposed strategy is to adjust the ranges of each feedback level using the density in the offline EEG database acquired from a group of individuals. Twenty-two healthy subjects participated in offline experiments to construct an EEG database, and five subjects participated in online experiments to validate the performance of the proposed data-driven user feedback strategy. Using the optimized bin sizes, the number of feedback levels that each individual experienced was significantly increased to 139% and 144% of the original results with uniform bin sizes in the offline and online experiments, respectively. Our results demonstrated that the use of our data-driven neurofeedback strategy could effectively increase the overall range of feedback levels that each individual experienced during neurofeedback training.

  7. Data-Driven User Feedback: An Improved Neurofeedback Strategy considering the Interindividual Variability of EEG Features.

    Science.gov (United States)

    Han, Chang-Hee; Lim, Jeong-Hwan; Lee, Jun-Hak; Kim, Kangsan; Im, Chang-Hwan

    2016-01-01

    It has frequently been reported that some users of conventional neurofeedback systems can experience only a small portion of the total feedback range due to the large interindividual variability of EEG features. In this study, we proposed a data-driven neurofeedback strategy considering the individual variability of electroencephalography (EEG) features to permit users of the neurofeedback system to experience a wider range of auditory or visual feedback without a customization process. The main idea of the proposed strategy is to adjust the ranges of each feedback level using the density in the offline EEG database acquired from a group of individuals. Twenty-two healthy subjects participated in offline experiments to construct an EEG database, and five subjects participated in online experiments to validate the performance of the proposed data-driven user feedback strategy. Using the optimized bin sizes, the number of feedback levels that each individual experienced was significantly increased to 139% and 144% of the original results with uniform bin sizes in the offline and online experiments, respectively. Our results demonstrated that the use of our data-driven neurofeedback strategy could effectively increase the overall range of feedback levels that each individual experienced during neurofeedback training.

  8. State-PID Feedback for Pole Placement of LTI Systems

    Directory of Open Access Journals (Sweden)

    Sarawut Sujitjorn

    2011-01-01

    Full Text Available Pole placement problems are especially important for disturbance rejection and stabilization of dynamical systems and regarded as algebraic inverse eigenvalue problems. In this paper, we propose gain formulae of state feedback through PID-elements to achieve desired pole placement for a delay-free LTI system with single input. Real and complex stable poles can be assigned with the proposed compact gain formulae. Numerical examples show that our proposed gain formulae can be used effectively resulting in very satisfactory responses.

  9. Impedance modulation and feedback corrections in tracking targets of variable size and frequency

    NARCIS (Netherlands)

    Selen, L.P.J.; van Dieen, J.H.; Beek, P.J.

    2006-01-01

    Humans are able to adjust the accuracy of their movements to the demands posed by the task at hand. The variability in task execution caused by the inherent noisiness of the neuromuscular system can be tuned to task demands by both feedforward (e.g., impedance modulation) and feedback mechanisms. In

  10. Design of Gain Scheduling Control Using State Derivative Feedback

    Directory of Open Access Journals (Sweden)

    Lázaro Ismael Hardy Llins

    2017-01-01

    Full Text Available In recent years, the study of systems subject to time-varying parameters has awakened the interest of many researchers. The gain scheduling control strategy guarantees a good performance for systems of this type and also is considered as the simplest to deal with problems of this nature. Moreover, the class of systems in which the state derivative signals are easier to obtain than the state signals, such as in the control for reducing vibrations in a mechanical system, has gained an important hole in control theory. Considering those ideas, we propose sufficient conditions via LMI for designing a gain scheduling controller using state derivative feedback. The D-stability methodology was used for improving the performance of the transitory response. Practical implementation in an active suspension system and comparison with other methods validates the efficiency of the proposed strategy.

  11. Synthesis of state observer and nonlinear output feedback controller design of AC machines

    International Nuclear Information System (INIS)

    Al-Tahir, Ali Abdul Razzaq

    2016-01-01

    The research work developed in this thesis has been mainly devoted to the observation and sensor-less control problems of electrical systems. Three major contributions have been carried out using the high - gain concept and output feedback adaptive nonlinear control for online UPS. In this thesis, we dealt with synthesis of sampled high - gain observers for nonlinear systems application to PMSMs and DFIGs. We particularly focus on two constraints: sampling effect and tracking unmeasured mechanical and magnetic state variables. The first contribution consists in a high gain observer design that performs a relatively accurate estimation of both mechanical and magnetic state variable using the available measurements on stator currents and voltages of PMSM. We propose a global exponential observer having state predictor for a class of nonlinear globally Lipschitz system. In second contribution, we proposed a novel non - standard HGO design for non-injective feedback relation application to variable speed DFIG based WPGS. Meanwhile, a reduced system model is analyzed, provided by observability test to check is it possible synthesis state observer for sensor-less control. In last contribution, an adaptive observer for states and parameters estimation are designed for a class of state - affine systems application to output feedback adaptive nonlinear control of three-phase AC/DC boost power converter for online UPS systems. Basically, the problem focused on cascade nonlinear adaptive controller that is developed making use Lyapunov theory. The parameters uncertainties are processed by the practical control laws under back-stepping design techniques with capacity of adaptation. (author)

  12. Parameter identification technique for uncertain chaotic systems using state feedback and steady-state analysis.

    Science.gov (United States)

    Zaher, Ashraf A

    2008-03-01

    A technique is introduced for identifying uncertain and/or unknown parameters of chaotic dynamical systems via using simple state feedback. The proposed technique is based on bringing the system into a stable steady state and then solving for the unknown parameters using a simple algebraic method that requires access to the complete or partial states of the system depending on the dynamical model of the chaotic system. The choice of the state feedback is optimized in terms of practicality and causality via employing a single feedback signal and tuning the feedback gain to ensure both stability and identifiability. The case when only a single scalar time series of one of the states is available is also considered and it is demonstrated that a synchronization-based state observer can be augmented to the state feedback to address this problem. A detailed case study using the Lorenz system is used to exemplify the suggested technique. In addition, both the Rössler and Chua systems are examined as possible candidates for utilizing the proposed methodology when partial identification of the unknown parameters is considered. Finally, the dependence of the proposed technique on the structure of the chaotic dynamical model and the operating conditions is discussed and its advantages and limitations are highlighted via comparing it with other methods reported in the literature.

  13. Perturbed cooperative-state feedback strategy for model predictive networked control of interconnected systems.

    Science.gov (United States)

    Tran, Tri; Ha, Q P

    2018-01-01

    A perturbed cooperative-state feedback (PSF) strategy is presented for the control of interconnected systems in this paper. The subsystems of an interconnected system can exchange data via the communication network that has multiple connection topologies. The PSF strategy can resolve both issues, the sensor data losses and the communication network breaks, thanks to the two components of the control including a cooperative-state feedback and a perturbation variable, e.g., u i =K ij x j +w i . The PSF is implemented in a decentralized model predictive control scheme with a stability constraint and a non-monotonic storage function (ΔV(x(k))≥0), derived from the dissipative systems theory. Numerical simulation for the automatic generation control problem in power systems is studied to illustrate the effectiveness of the presented PSF strategy. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Feedback linearization based control of a variable air volume air conditioning system for cooling applications.

    Science.gov (United States)

    Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik

    2008-07-01

    Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.

  15. Parallel arrangements of positive feedback loops limit cell-to-cell variability in differentiation.

    Directory of Open Access Journals (Sweden)

    Anupam Dey

    Full Text Available Cellular differentiations are often regulated by bistable switches resulting from specific arrangements of multiple positive feedback loops (PFL fused to one another. Although bistability generates digital responses at the cellular level, stochasticity in chemical reactions causes population heterogeneity in terms of its differentiated states. We hypothesized that the specific arrangements of PFLs may have evolved to minimize the cellular heterogeneity in differentiation. In order to test this we investigated variability in cellular differentiation controlled either by parallel or serial arrangements of multiple PFLs having similar average properties under extrinsic and intrinsic noises. We find that motifs with PFLs fused in parallel to one another around a central regulator are less susceptible to noise as compared to the motifs with PFLs arranged serially. Our calculations suggest that the increased resistance to noise in parallel motifs originate from the less sensitivity of bifurcation points to the extrinsic noise. Whereas estimation of mean residence times indicate that stable branches of bifurcations are robust to intrinsic noise in parallel motifs as compared to serial motifs. Model conclusions are consistent both in AND- and OR-gate input signal configurations and also with two different modeling strategies. Our investigations provide some insight into recent findings that differentiation of preadipocyte to mature adipocyte is controlled by network of parallel PFLs.

  16. Parallel arrangements of positive feedback loops limit cell-to-cell variability in differentiation.

    Science.gov (United States)

    Dey, Anupam; Barik, Debashis

    2017-01-01

    Cellular differentiations are often regulated by bistable switches resulting from specific arrangements of multiple positive feedback loops (PFL) fused to one another. Although bistability generates digital responses at the cellular level, stochasticity in chemical reactions causes population heterogeneity in terms of its differentiated states. We hypothesized that the specific arrangements of PFLs may have evolved to minimize the cellular heterogeneity in differentiation. In order to test this we investigated variability in cellular differentiation controlled either by parallel or serial arrangements of multiple PFLs having similar average properties under extrinsic and intrinsic noises. We find that motifs with PFLs fused in parallel to one another around a central regulator are less susceptible to noise as compared to the motifs with PFLs arranged serially. Our calculations suggest that the increased resistance to noise in parallel motifs originate from the less sensitivity of bifurcation points to the extrinsic noise. Whereas estimation of mean residence times indicate that stable branches of bifurcations are robust to intrinsic noise in parallel motifs as compared to serial motifs. Model conclusions are consistent both in AND- and OR-gate input signal configurations and also with two different modeling strategies. Our investigations provide some insight into recent findings that differentiation of preadipocyte to mature adipocyte is controlled by network of parallel PFLs.

  17. Broadcasting a Common Message with Variable-Length Stop-Feedback codes

    DEFF Research Database (Denmark)

    Trillingsgaard, Kasper Fløe; Yang, Wei; Durisi, Giuseppe

    2015-01-01

    We investigate the maximum coding rate achievable over a two-user broadcast channel for the scenario where a common message is transmitted using variable-length stop-feedback codes. Specifically, upon decoding the common message, each decoder sends a stop signal to the encoder, which transmits...... itself in the absence of a square-root penalty in the asymptotic expansion of the maximum coding rate for large blocklengths, a result also known as zero dispersion. In this paper, we show that this speed-up does not necessarily occur for the broadcast channel with common message. Specifically...... continuously until it receives both stop signals. For the point-to-point case, Polyanskiy, Poor, and Verdú (2011) recently demonstrated that variable-length coding combined with stop feedback significantly increases the speed at which the maximum coding rate converges to capacity. This speed-up manifests...

  18. Projective Synchronization of Chaotic Discrete Dynamical Systems via Linear State Error Feedback Control

    Directory of Open Access Journals (Sweden)

    Baogui Xin

    2015-04-01

    Full Text Available A projective synchronization scheme for a kind of n-dimensional discrete dynamical system is proposed by means of a linear feedback control technique. The scheme consists of master and slave discrete dynamical systems coupled by linear state error variables. A kind of novel 3-D chaotic discrete system is constructed, to which the test for chaos is applied. By using the stability principles of an upper or lower triangular matrix, two controllers for achieving projective synchronization are designed and illustrated with the novel systems. Lastly some numerical simulations are employed to validate the effectiveness of the proposed projective synchronization scheme.

  19. Observations of Local Positive Low Cloud Feedback Patterns and Their Role in Internal Variability and Climate Sensitivity

    Science.gov (United States)

    Yuan, Tianle; Oreopoulos, Lazaros; Platnick, Steven E.; Meyer, Kerry

    2018-05-01

    Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the magnitude of SST anomalies. Observational counterparts to such patterned interactions are still needed. Here we show that distinct large-scale patterns of SST and low-cloud cover (LCC) emerge naturally from objective analyses of observations and demonstrate their close coupling in a positive local SST-LCC feedback loop that may be important for both internal variability and climate change. The two patterns that explain the maximum amount of covariance between SST and LCC correspond to the Interdecadal Pacific Oscillation and the Atlantic Multidecadal Oscillation, leading modes of multidecadal internal variability. Spatial patterns and time series of SST and LCC anomalies associated with both modes point to a strong positive local SST-LCC feedback. In many current climate models, our analyses suggest that SST-LCC feedback strength is too weak compared to observations. Modeled local SST-LCC feedback strength affects simulated internal variability so that stronger feedback produces more intense and more realistic patterns of internal variability. To the extent that the physics of the local positive SST-LCC feedback inferred from observed climate variability applies to future greenhouse warming, we anticipate significant amount of delayed warming because of SST-LCC feedback when anthropogenic SST warming eventually overwhelm the effects of internal variability that may mute anthropogenic warming over parts of the ocean. We postulate that many climate models may be underestimating both future warming and the magnitude of modeled internal variability because of their weak SST-LCC feedback.

  20. Impedance modulation and feedback corrections in tracking targets of variable size and frequency.

    Science.gov (United States)

    Selen, Luc P J; van Dieën, Jaap H; Beek, Peter J

    2006-11-01

    Humans are able to adjust the accuracy of their movements to the demands posed by the task at hand. The variability in task execution caused by the inherent noisiness of the neuromuscular system can be tuned to task demands by both feedforward (e.g., impedance modulation) and feedback mechanisms. In this experiment, we studied both mechanisms, using mechanical perturbations to estimate stiffness and damping as indices of impedance modulation and submovement scaling as an index of feedback driven corrections. Eight subjects tracked three differently sized targets (0.0135, 0.0270, and 0.0405 rad) moving at three different frequencies (0.20, 0.25, and 0.33 Hz). Movement variability decreased with both decreasing target size and movement frequency, whereas stiffness and damping increased with decreasing target size, independent of movement frequency. These results are consistent with the theory that mechanical impedance acts as a filter of noisy neuromuscular signals but challenge stochastic theories of motor control that do not account for impedance modulation and only partially for feedback control. Submovements during unperturbed cycles were quantified in terms of their gain, i.e., the slope between their duration and amplitude in the speed profile. Submovement gain decreased with decreasing movement frequency and increasing target size. The results were interpreted to imply that submovement gain is related to observed tracking errors and that those tracking errors are expressed in units of target size. We conclude that impedance and submovement gain modulation contribute additively to tracking accuracy.

  1. Quantum engineering of continuous variable quantum states

    International Nuclear Information System (INIS)

    Sabuncu, Metin

    2009-01-01

    Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)

  2. Quantum engineering of continuous variable quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Sabuncu, Metin

    2009-10-29

    Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)

  3. Quantum feedback for rapid state preparation in the presence of control imperfections

    International Nuclear Information System (INIS)

    Combes, Joshua; Wiseman, Howard M

    2011-01-01

    Quantum feedback control protocols can improve the operation of quantum devices. Here we examine the performance of a purification protocol when there are imperfections in the controls. The ideal feedback protocol produces an x-eigenstate from a mixed state in the minimum time, and is known as rapid state preparation. The imperfections we examine include time delays in the feedback loop, finite strength feedback, calibration errors and inefficient detection. We analyse these imperfections using the Wiseman-Milburn feedback master equation and related formalism. We find that the protocol is most sensitive to time delays in the feedback loop. For systems with slow dynamics, however, our analysis suggests that inefficient detection would be the bigger problem. We also show how system imperfections, such as dephasing and damping, can be included in a model via the feedback master equation.

  4. Differential effects of absent visual feedback control on gait variability during different locomotion speeds.

    Science.gov (United States)

    Wuehr, M; Schniepp, R; Pradhan, C; Ilmberger, J; Strupp, M; Brandt, T; Jahn, K

    2013-01-01

    Healthy persons exhibit relatively small temporal and spatial gait variability when walking unimpeded. In contrast, patients with a sensory deficit (e.g., polyneuropathy) show an increased gait variability that depends on speed and is associated with an increased fall risk. The purpose of this study was to investigate the role of vision in gait stabilization by determining the effects of withdrawing visual information (eyes closed) on gait variability at different locomotion speeds. Ten healthy subjects (32.2 ± 7.9 years, 5 women) walked on a treadmill for 5-min periods at their preferred walking speed and at 20, 40, 70, and 80 % of maximal walking speed during the conditions of walking with eyes open (EO) and with eyes closed (EC). The coefficient of variation (CV) and fractal dimension (α) of the fluctuations in stride time, stride length, and base width were computed and analyzed. Withdrawing visual information increased the base width CV for all walking velocities (p < 0.001). The effects of absent visual information on CV and α of stride time and stride length were most pronounced during slow locomotion (p < 0.001) and declined during fast walking speeds. The results indicate that visual feedback control is used to stabilize the medio-lateral (i.e., base width) gait parameters at all speed sections. In contrast, sensory feedback control in the fore-aft direction (i.e., stride time and stride length) depends on speed. Sensory feedback contributes most to fore-aft gait stabilization during slow locomotion, whereas passive biomechanical mechanisms and an automated central pattern generation appear to control fast locomotion.

  5. Feedback Control of a Solid-State Qubit Using High-Fidelity Projective Measurement

    NARCIS (Netherlands)

    Riste, D.; Bultink, C.C.; Lehnert, K.W.; DiCarlo, L.

    2012-01-01

    We demonstrate feedback control of a superconducting transmon qubit using discrete, projective measurement and conditional coherent driving. Feedback realizes a fast and deterministic qubit reset to a target state with 2.4% error averaged over input superposition states, and allows concatenating

  6. Nonlinear H-infinity State Feedback Controllers: Computation of Valid Region

    DEFF Research Database (Denmark)

    Pedersen, Michael; Møller-Pedersen, J.; Pagh Petersen, M.

    1996-01-01

    "From a general point of view the state feedback QTR H-infinitysuboptimal control probelm is reasonable well-understood. Inportantproblems remain with regard to a priori information of the size of theneighbourhood where the local state feedback QTR H-infinityproblem is solvable, and with regard t...

  7. Inter-annual variabilities in biogeophysical feedback of terrestrial ecosystem to atmosphere using a land surface model

    Science.gov (United States)

    Seo, C.; Hong, S.; Jeong, H. M.; Jeon, J.

    2017-12-01

    Biogeophysical processes of terrestrial ecosystem such as water vapor and energy flux are the key features to understand ecological feedback to atmospheric processes and thus role of terrestrial ecosystem in climate system. For example, it has been recently known that the ecological feedback through water vapor and energy flux results in regulating regional weathers and climates which is one of the fundamental functions of terrestrial ecosystem. In regional scale, water vapor flux has been known to give negative feedback to atmospheric warming, while energy flux from the surface has been known to positive feedback. In this study, we explored the inter-annual variabilities in these two biogeophysical features to see how the climate regulating functions of terrestrial ecosystem have been changed with climate change. We selected a land surface model involving vegetation dynamics that is forced by atmospheric data from NASA including precipitation, temperature, wind, surface pressure, humidity, and incoming radiations. From the land surface model, we simulated 60-year water vapor and energy fluxes from 1961 to 2010, and calculates feedbacks of terrestrial ecosystem as in radiation amount into atmosphere. Then, we analyzed the inter-annual variabilities in the feedbacks. The results showed that some mid-latitude areas showing very high variabilities in precipitation showed higher positive feedback and/or lower negative feedback. These results suggest deterioration of the biogeophyisical factor of climate regulating function over those regions.

  8. Block backstepping design of nonlinear state feedback control law for underactuated mechanical systems

    CERN Document Server

    Rudra, Shubhobrata; Maitra, Madhubanti

    2017-01-01

    This book presents a novel, generalized approach to the design of nonlinear state feedback control laws for a large class of underactuated mechanical systems based on application of the block backstepping method. The control law proposed here is robust against the effects of model uncertainty in dynamic and steady-state performance and addresses the issue of asymptotic stabilization for the class of underactuated mechanical systems. An underactuated system is defined as one for which the dimension of space spanned by the configuration vector is greater than that of the space spanned by the control variables. Control problems concerning underactuated systems currently represent an active field of research due to their broad range of applications in robotics, aerospace, and marine contexts. The book derives a generalized theory of block backstepping control design for underactuated mechanical systems, and examines several case studies that cover interesting examples of underactuated mechanical systems. The math...

  9. The electoral feedback effects of welfare reform in mature European welfare states

    DEFF Research Database (Denmark)

    Arndt, Christoph

    2012-01-01

    The electoral hazard of welfare state reforms in mature welfare states has been a widely acknowledged feedback effect in the literature. However, the literature does typically no distinct between party families when it comes to the electoral consequences of welfare state reforms and treats...... electorates as unity. This paper analysis the feedback effects of social policy retrenchment under Third Way social democracy since 1994. The paper argues that Third Way reforms resulted in lasting electoral setback for social democracy since these reforms went against the social policy preferences of social....... The restructuring of mature Western welfare states thus accounts for changing patterns of political behaviour as a consequence of policy feedback....

  10. ℋ∞ constant gain state feedback stabilization of stochastic hybrid systems with Wiener process

    Directory of Open Access Journals (Sweden)

    E. K. Boukas

    2004-01-01

    Full Text Available This paper considers the stabilization problem of the class of continuous-time linear stochastic hybrid systems with Wiener process. The ℋ∞ state feedback stabilization problem is treated. A state feedback controller with constant gain that does not require access to the system mode is designed. LMI-based conditions are developed to design the state feedback controller with constant gain that stochastically stabilizes the studied class of systems and, at the same time, achieve the disturbance rejection of a desired level. The minimum disturbance rejection is also determined. Numerical examples are given to show the usefulness of the proposed results.

  11. Bipartite entanglement in continuous variable cluster states

    Energy Technology Data Exchange (ETDEWEB)

    Cable, Hugo; Browne, Daniel E, E-mail: cqthvc@nus.edu.s, E-mail: d.browne@ucl.ac.u [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)

    2010-11-15

    A study of the entanglement properties of Gaussian cluster states, proposed as a universal resource for continuous variable (CV) quantum computing is presented in this paper. The central aim is to compare mathematically idealized cluster states defined using quadrature eigenstates, which have infinite squeezing and cannot exist in nature, with Gaussian approximations that are experimentally accessible. Adopting widely used definitions, we first review the key concepts, by analysing a process of teleportation along a CV quantum wire in the language of matrix product states. Next we consider the bipartite entanglement properties of the wire, providing analytic results. We proceed to grid cluster states, which are universal for the qubit case. To extend our analysis of the bipartite entanglement, we adopt the entropic-entanglement width, a specialized entanglement measure introduced recently by Van den Nest et al (2006 Phys. Rev. Lett. 97 150504), adapting their definition to the CV context. Finally, we consider the effects of photonic loss, extending our arguments to mixed states. Cumulatively our results point to key differences in the properties of idealized and Gaussian cluster states. Even modest loss rates are found to strongly limit the amount of entanglement. We discuss the implications for the potential of CV analogues for measurement-based quantum computation.

  12. Variable-Length Coding with Stop-Feedback for the Common-Message Broadcast Channel

    DEFF Research Database (Denmark)

    Trillingsgaard, Kasper Fløe; Yang, Wei; Durisi, Giuseppe

    2016-01-01

    This paper investigates the maximum coding rate over a K-user discrete memoryless broadcast channel for the scenario where a common message is transmitted using variable-length stop-feedback codes. Specifically, upon decoding the common message, each decoder sends a stop signal to the encoder...... of these bounds reveal that---contrary to the point-to-point case---the second-order term in the asymptotic expansion of the maximum coding rate decays inversely proportional to the square root of the average blocklength. This holds for certain nontrivial common-message broadcast channels, such as the binary......, which transmits continuously until it receives all K stop signals. We present nonasymptotic achievability and converse bounds for the maximum coding rate, which strengthen and generalize the bounds previously reported in Trillingsgaard et al. (2015) for the two-user case. An asymptotic analysis...

  13. State dependent arrival in bulk retrial queueing system with immediate Bernoulli feedback, multiple vacations and threshold

    Science.gov (United States)

    Niranjan, S. P.; Chandrasekaran, V. M.; Indhira, K.

    2017-11-01

    The objective of this paper is to analyse state dependent arrival in bulk retrial queueing system with immediate Bernoulli feedback, multiple vacations, threshold and constant retrial policy. Primary customers are arriving into the system in bulk with different arrival rates λ a and λ b . If arriving customers find the server is busy then the entire batch will join to orbit. Customer from orbit request service one by one with constant retrial rate γ. On the other hand if an arrival of customers finds the server is idle then customers will be served in batches according to general bulk service rule. After service completion, customers may request service again with probability δ as feedback or leave from the system with probability 1 - δ. In the service completion epoch, if the orbit size is zero then the server leaves for multiple vacations. The server continues the vacation until the orbit size reaches the value ‘N’ (N > b). At the vacation completion, if the orbit size is ‘N’ then the server becomes ready to provide service for customers from the main pool or from the orbit. For the designed queueing model, probability generating function of the queue size at an arbitrary time will be obtained by using supplementary variable technique. Various performance measures will be derived with suitable numerical illustrations.

  14. Effect of state feedback coupling on the transient performance of voltage source inverters with LC filter

    DEFF Research Database (Denmark)

    Federico, de Bosio; Pastorelli, Michele; Antonio DeSouza Ribeiro, Luiz

    2016-01-01

    State feedback coupling between the capacitor voltage and inductor current deteriorates notably the performance during transients of voltage and current regulators in stand-alone systems based on voltage source inverters. A decoupling technique is proposed, considering the limitations introduced...

  15. Numerical investigation of the nonlinear dynamics of a hybrid acousto-optic Bragg cell with a variable feedback gain

    Science.gov (United States)

    Chatterjee, Monish R.; Zhou, Hao

    2014-09-01

    Since around 1979, the operation of an acousto-optic Bragg cell under positive first-order feedback via amplification and delay in the loop has been studied extensively by several groups [1-3]. In recent work, the analysis of the nonlinear dynamics (NLD) of the system was extended to include bistable maps and Lyapunov exponents, and application of the chaos for signal encryption and decryption for uniform plane waves. The present work originated with the problem of a variable photodetector aperture opening relative to the first-order light. This potentially complex problem is simplified by assuming instead a variable feedback gain ( β ~ (t)), which leads to considerably different NLD. This paper examines initially the NLD versus the (DC) bias voltage for different variable- β ~ conditions, including slow and fast rates of change of the gain with time in relation to the feedback delay. It is found that the response depends critically on the rate of rise of the feedback gain, and also that the resulting chaotic regimes are generally significantly different from those for fixed values of β ~ . We have generated constant feedback gain and the variable feedback gain (t) chaos characteristics of the hybrid A-O network. Chaos as an equivalent carrier has been used to encrypt messages for both fixed and variable β ~ . The transmitted signal is detected from the encrypted carrier using a heterodyne method, using a slave Bragg cell with matched keys to generate local chaos followed by a low pass filter and a phase inverter. Results between variable- and fixed-gain systems are compared in terms of advantages and disadvantages.

  16. A Systematic Controller Design for a Grid-Connected Inverter with LCL Filter Using a Discrete-Time Integral State Feedback Control and State Observer

    Directory of Open Access Journals (Sweden)

    Seung-Jin Yoon

    2018-02-01

    Full Text Available Inductive-capacitive-inductive (LCL-type filters are currently preferred as a replacement for L-type filters in distributed generation (DG power systems, due to their superior harmonic attenuation capability. However, the third-order dynamics introduced by LCL filters pose a challenge to design a satisfactory controller for such a system. Conventionally, an LCL-filtered grid-connected inverter can be effectively controlled by using a full-state feedback control. However, this control approach requires the measurement of all system state variables, which brings about more complexity for the inverter system. To address this issue, this paper presents a systematic procedure to design an observer-based integral state feedback control for a LCL-filtered grid-connected inverter in the discrete-time domain. The proposed control scheme consists of an integral state feedback controller and a full-state observer which uses the control input, grid-side currents, and grid voltages to predict all the system state variables. Therefore, only the grid-side current sensors and grid voltage sensors are required to implement the proposed control scheme. Due to the discrete-time integrator incorporated in the state feedback controller, the proposed control scheme ensures both the reference tracking and disturbance rejection performance of the inverter system in a practical and simple way. As a result, superior control performance can be achieved by using the reduced number of sensors, which significantly reduces the cost and complexity of the LCL-filtered grid-connected inverter system in DG applications. To verify the practical usefulness of the proposed control scheme, a 2 kW three-phase prototype grid-connected inverter has been constructed, and the proposed control system has been implemented based on 32-bit floating-point digital signal processor (DSP TMS320F28335. The effectiveness of the proposed scheme is demonstrated through the comprehensive simulation

  17. Projective Synchronization of N-Dimensional Chaotic Fractional-Order Systems via Linear State Error Feedback Control

    Directory of Open Access Journals (Sweden)

    Baogui Xin

    2012-01-01

    Full Text Available Based on linear feedback control technique, a projective synchronization scheme of N-dimensional chaotic fractional-order systems is proposed, which consists of master and slave fractional-order financial systems coupled by linear state error variables. It is shown that the slave system can be projectively synchronized with the master system constructed by state transformation. Based on the stability theory of linear fractional order systems, a suitable controller for achieving synchronization is designed. The given scheme is applied to achieve projective synchronization of chaotic fractional-order financial systems. Numerical simulations are given to verify the effectiveness of the proposed projective synchronization scheme.

  18. Adaptive optimal stochastic state feedback control of resistive wall modes in tokamaks

    International Nuclear Information System (INIS)

    Sun, Z.; Sen, A.K.; Longman, R.W.

    2006-01-01

    An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least-square method with exponential forgetting factor and covariance resetting is used to identify (experimentally determine) the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time-dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used

  19. How mechanical context and feedback jointly determine the use of mechanical variables in length perception by dynamic touch

    NARCIS (Netherlands)

    Menger, Rudmer; Withagen, Rob

    Earlier studies have revealed that both mechanical context and feedback determine what mechanical invariant is used to perceive length by dynamic touch. In the present article, the authors examined how these two factors jointly constrain the informational variable that is relied upon. Participants

  20. How mechanical context and feedback jointly determine the use of mechanical variables in length perception by dynamic touch

    NARCIS (Netherlands)

    Menger, Rudmer; Withagen, Rob

    2009-01-01

    Earlier studies have revealed that both mechanical context and feedback determine what mechanical invariant is used to perceive length by dynamic touch. In the present article, the authors examined how these two factors jointly constrain the informational variable that is relied upon. Participants

  1. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?

    Science.gov (United States)

    Ninu, Andrei; Dosen, Strahinja; Muceli, Silvia; Rattay, Frank; Dietl, Hans; Farina, Dario

    2014-09-01

    In closed-loop control of grasping by hand prostheses, the feedback information sent to the user is usually the actual controlled variable, i.e., the grasp force. Although this choice is intuitive and logical, the force production is only the last step in the process of grasping. Therefore, this study evaluated the performance in controlling grasp strength using a hand prosthesis operated through a complete grasping sequence while varying the feedback variables (e.g., closing velocity, grasping force), which were provided to the user visually or through vibrotactile stimulation. The experiments were conducted on 13 volunteers who controlled the Otto Bock Sensor Hand Speed prosthesis. Results showed that vibrotactile patterns were able to replace the visual feedback. Interestingly, the experiments demonstrated that direct force feedback was not essential for the control of grasping force. The subjects were indeed able to control the grip strength, predictively, by estimating the grasping force from the prosthesis velocity of closing. Therefore, grasping without explicit force feedback is not completely blind, contrary to what is usually assumed. In our study we analyzed grasping with a specific prosthetic device, but the outcomes are also applicable for other devices, with one or more degrees-of-freedom. The necessary condition is that the electromyography (EMG) signal directly and proportionally controls the velocity/grasp force of the hand, which is a common approach among EMG controlled prosthetic devices. The results provide important indications on the design of closed-loop EMG controlled prosthetic systems.

  2. Voltage and Current Regulators Design of Power Converters in Islanded Microgrids based on State Feedback Decoupling

    DEFF Research Database (Denmark)

    Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    In stand-alone microgrids based on voltage source inverters state feedback coupling between the capacitor voltage and inductor current degrades significantly the dynamics performance of voltage and current regulators. The decoupling of the controlled states is proposed, considering the limitations...

  3. Complex dynamics of a Holling type II prey-predator system with state feedback control

    International Nuclear Information System (INIS)

    Jiang Guirong; Lu Qishao; Qian Linning

    2007-01-01

    The complex dynamics of a Holling type II prey-predator system with impulsive state feedback control is studied in both theoretical and numerical ways. The sufficient conditions for the existence and stability of semi-trivial and positive periodic solutions are obtained by using the Poincare map and the analogue of the Poincare criterion. The qualitative analysis shows that the positive periodic solution bifurcates from the semi-trivial solution through a fold bifurcation. The bifurcation diagrams, Lyapunov exponents, and phase portraits are illustrated by an example, in which the chaotic solutions appear via a cascade of period-doubling bifurcations. The superiority of the state feedback control strategy is also discussed

  4. Variable flavor scheme for final state jets

    International Nuclear Information System (INIS)

    Pietrulewicz, P.

    2014-01-01

    In this thesis I describe a setup to treat mass effects from secondary radiation of heavy quark pairs in inclusive hard scattering processes with various dynamical scales. The resulting variable flavor number scheme (VFNS) generalizes a well-known scheme for massive initial state quarks which has been developed for deep inelastic scattering (DIS) in the classical region 1 - x ⁓ O(1) and which will be also discussed here. The setup incorporated in the formalism of Soft-Collinear Effective Theory (SCET) consistently takes into account the effects of massive quark loops and allows to deal with all hierarchies between the mass scale and the involved kinematic scales corresponding to collinear and soft radiation. It resums all large logarithms due to flavor number dependent evolution, achieves both decoupling for very large masses and the correct massless behavior for very small masses, and provides a continuous description in between. In the bulk of this work I will concentrate on DIS in the endpoint region x → 1 serving mainly as a showcase for the concepts and on the thrust distribution for e + e - -collisions in the dijet limit as a phenomenologically relevant example for an event shape. The computations of the corrections to the structures in the factorization theorems are described explicitly for the singular terms at O(α s 2 C F T F ) arising from secondary radiation of massive quarks through gluon splitting. Apart from the soft function for thrust, which requires a dedicated calculation, these results are directly obtained from the corresponding results for the radiation of a massive gauge boson with vector coupling at O(α s ) with the help of dispersion relations, and most of the relevant conceptual and technical issues can be dealt with already at this level. Finally, to estimate the impact of the corrections I carry out a numerical analysis for secondary massive bottom and top quarks on thrust distributions at different center-of-mass energies

  5. Deterministic and stochastic control of chimera states in delayed feedback oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, V. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Zakharova, A.; Schöll, E. [Institut für Theoretische Physik, TU Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Maistrenko, Y. [Institute of Mathematics and Center for Medical and Biotechnical Research, NAS of Ukraine, Tereschenkivska Str. 3, 01601 Kyiv (Ukraine)

    2016-06-08

    Chimera states, characterized by the coexistence of regular and chaotic dynamics, are found in a nonlinear oscillator model with negative time-delayed feedback. The control of these chimera states by external periodic forcing is demonstrated by numerical simulations. Both deterministic and stochastic external periodic forcing are considered. It is shown that multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. The constructive role of noise in the formation of a chimera states is shown.

  6. Theoretical and experimental studies of optical feedback on solid-state lasers

    International Nuclear Information System (INIS)

    Kervevan, L.

    2006-12-01

    The main objective of this Phd thesis was to implement solid-state lasers based on codoped Yb 3+ :Er 3+ phosphate glasses pumped by laser diode and to study their behavior when submitted to an optical feedback. This kind of lasers presents as main advantages a very high sensibility to the optical feedback due to the optical properties of the Er 3+ ion enhancing the relaxation oscillations. Moreover, the emission wavelength around 1,535 μm belongs to the eye safe spectral domain. First, we have established the rate equations of the population inversion and the electric field for a three-level laser (Yb:Er) submitted to an optical feedback. We have done a comparative study of the influence of the amplifying medium (three-level system Yb:Er or four-level system LNA:Nd) and cavity parameters on the sensitivity due to the optical feedback. The home-made lasers were implemented in optical feedback experiments allowing original measurement of speed, absolute distance or vibration for optical detection of sound restitution. The fourth part of this thesis deals with the behavior a dual frequency laser submitted to a optical feedback. Such a laser oscillates simultaneously on two polarization eigenstates whose optical frequencies are slightly different. The beating mode between these two eigenstates allows self-heterodyne detection. (author)

  7. Variability in modeled cloud feedback tied to differences in the climatological spatial pattern of clouds

    Science.gov (United States)

    Siler, Nicholas; Po-Chedley, Stephen; Bretherton, Christopher S.

    2018-02-01

    Despite the increasing sophistication of climate models, the amount of surface warming expected from a doubling of atmospheric CO_2 (equilibrium climate sensitivity) remains stubbornly uncertain, in part because of differences in how models simulate the change in global albedo due to clouds (the shortwave cloud feedback). Here, model differences in the shortwave cloud feedback are found to be closely related to the spatial pattern of the cloud contribution to albedo (α) in simulations of the current climate: high-feedback models exhibit lower (higher) α in regions of warm (cool) sea-surface temperatures, and therefore predict a larger reduction in global-mean α as temperatures rise and warm regions expand. The spatial pattern of α is found to be strongly predictive (r=0.84) of a model's global cloud feedback, with satellite observations indicating a most-likely value of 0.58± 0.31 Wm^{-2} K^{-1} (90% confidence). This estimate is higher than the model-average cloud feedback of 0.43 Wm^{-2} K^{-1}, with half the range of uncertainty. The observational constraint on climate sensitivity is weaker but still significant, suggesting a likely value of 3.68 ± 1.30 K (90% confidence), which also favors the upper range of model estimates. These results suggest that uncertainty in model estimates of the global cloud feedback may be substantially reduced by ensuring a realistic distribution of clouds between regions of warm and cool SSTs in simulations of the current climate.

  8. Fundamental and Subharmonic Resonances of Harmonically Oscillation with Time Delay State Feedback

    Directory of Open Access Journals (Sweden)

    A.F. EL-Bassiouny

    2006-01-01

    Full Text Available Time delays occur in many physical systems. In particular, when automatic control is used with structural or mechanical systems, there exists a delay between measurement of the system state and corrective action. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. We investigate the fundamental resonance and subharmonic resonance of order one-half of a harmonically oscillation under state feedback control with a time delay. By using the multiple scale perturbation technique, the first order approximation of the resonances are derived and the effect of time delay on the resonances is investigated. The fixed points correspond to a periodic motion for the starting system and we show the external excitation-response and frequency-response curves. We analyze the effect of time delay and the other different parameters on these oscillations.

  9. A Complete Parametric Solutions of Eigenstructure Assignment by State-Derivative Feedback for Linear Control Systems

    Directory of Open Access Journals (Sweden)

    T. H. S. Abdelaziz

    2005-01-01

    Full Text Available In this paper we introduce a complete parametric approach for solving the problem of eigenstructure assignment via state-derivative feedback for linear systems. This problem is always solvable for any controllable systems iff the open-loop system matrix is nonsingular. In this work, two parametric solutions to the feedback gain matrix are introduced that describe the available degrees of freedom offered by the state-derivative feedback in selecting the associated eigenvectors from an admissible class. These freedoms can be utilized to improve robustness of the closed-loop system. Accordingly, the sensitivity of the assigned eigenvalues to perturbations in the system and gain matrix is minimized. Numerical examples are included to show the effectiveness of the proposed approach. 

  10. Theory and Applications of Discontinuous State Feedback Generating Chaos for Linear Systems

    International Nuclear Information System (INIS)

    Xiao-Dan, Zhang; Zhen, Wang; Pin-Dong, Zhao

    2008-01-01

    We investigate a kind of chaos generating technique on a type of n-dimensional linear differential systems by adding feedback control items under a discontinuous state. This method is checked with some examples of numeric simulation. A constructive theorem is proposed for generalized synchronization related to the above chaotic system

  11. Quasideterministic generation of maximally entangled states of two mesoscopic atomic ensembles by adiabatic quantum feedback

    International Nuclear Information System (INIS)

    Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio; Vitali, David

    2005-01-01

    We introduce an efficient, quasideterministic scheme to generate maximally entangled states of two atomic ensembles. The scheme is based on quantum nondemolition measurements of total atomic populations and on adiabatic quantum feedback conditioned by the measurements outputs. The high efficiency of the scheme is tested and confirmed numerically for ideal photodetection as well as in the presence of losses

  12. Constrained state-feedback control of an externally excited synchronous machine

    NARCIS (Netherlands)

    Carpiuc, S.C.; Lazar, M.

    2013-01-01

    State-feedback control of externally excited synchronous machines employed in applications such as hybrid electric vehicles and full electric vehicles is a challenging problem. Indeed, these applications are characterized by fast dynamics that are subject to hard physical and control constraints.

  13. State-Feedback Control for Fractional-Order Nonlinear Systems Subject to Input Saturation

    Directory of Open Access Journals (Sweden)

    Junhai Luo

    2014-01-01

    Full Text Available We give a state-feedback control method for fractional-order nonlinear systems subject to input saturation. First, a sufficient condition is derived for the asymptotical stability of a class of fractional-order nonlinear systems. Then based on Gronwall-Bellman lemma and a sector bounded condition of the saturation function, a linear state-feed back controller is designed. Finally, two simulation examples are presented to show the validity of the proposed method.

  14. Delayed coherent quantum feedback from a scattering theory and a matrix product state perspective

    Science.gov (United States)

    Guimond, P.-O.; Pletyukhov, M.; Pichler, H.; Zoller, P.

    2017-12-01

    We study the scattering of photons propagating in a semi-infinite waveguide terminated by a mirror and interacting with a quantum emitter. This paradigm constitutes an example of coherent quantum feedback, where light emitted towards the mirror gets redirected back to the emitter. We derive an analytical solution for the scattering of two-photon states, which is based on an exact resummation of the perturbative expansion of the scattering matrix, in a regime where the time delay of the coherent feedback is comparable to the timescale of the quantum emitter’s dynamics. We compare the results with numerical simulations based on matrix product state techniques simulating the full dynamics of the system, and extend the study to the scattering of coherent states beyond the low-power limit.

  15. State feedback integral control for a rotary direct drive servo valve using a Lyapunov function approach.

    Science.gov (United States)

    Yu, Jue; Zhuang, Jian; Yu, Dehong

    2015-01-01

    This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Model-Based State Feedback Controller Design for a Turbocharged Diesel Engine with an EGR System

    Directory of Open Access Journals (Sweden)

    Tianpu Dong

    2015-05-01

    Full Text Available This paper describes a method for the control of transient exhaust gas recirculation (EGR systems. Firstly, a state space model of the air system is developed by simplifying a mean value model. The state space model is linearized by using linearization theory and validated by the GT-Power data with an operating point of the diesel engine. Secondly, a state feedback controller based on the intake oxygen mass fraction is designed for EGR control. Since direct measurement of the intake oxygen mass fraction is unavailable on the engine, the estimation method for intake oxygen mass fraction has been proposed in this paper. The control strategy is analyzed by using co-simulation with the Matlab/Simulink and GT-Powers software. Finally, the whole control system is experimentally validated against experimental data of a turbocharged diesel engine. The control effect of the state feedback controller compared with PID controller proved to be further verify the feasibility and advantages of the proposed state feedback controller.

  17. A switched state feedback law for the stabilization of LTI systems.

    Energy Technology Data Exchange (ETDEWEB)

    Santarelli, Keith R.

    2009-09-01

    Inspired by prior work in the design of switched feedback controllers for second order systems, we develop a switched state feedback control law for the stabilization of LTI systems of arbitrary dimension. The control law operates by switching between two static gain vectors in such a way that the state trajectory is driven onto a stable n - 1 dimensional hyperplane (where n represents the system dimension). We begin by briefly examining relevant geometric properties of the phase portraits in the case of two-dimensional systems to develop intuition, and we then show how these geometric properties can be expressed as algebraic constraints on the switched vector fields that are applicable to LTI systems of arbitrary dimension. We then derive necessary and sufficient conditions to ensure stabilizability of the resulting switched system (characterized primarily by simple conditions on eigenvalues), and describe an explicit procedure for designing stabilizing controllers. We then show how the newly developed control law can be applied to the problem of minimizing the maximal Lyapunov exponent of the corresponding closed-loop state trajectories, and we illustrate the closed-loop transient performance of these switched state feedback controllers via multiple examples.

  18. Feedback-driven response to multidecadal climatic variability at an alpine treeline

    Science.gov (United States)

    Alftine, K.J.; Malanson, G.P.; Fagre, D.B.

    2003-01-01

    The Pacific Decadal Oscillation (PDO) has significant climatological and ecological effects in northwestern North America. Its possible effects and their modification by feedbacks are examined in the forest-tundra ecotone in Glacier National Park, Montana, USA. Tree ring samples were collected to estimate establishment dates in 10 quadrats. Age-diameter regressions were used to estimate the ages of uncored trees. The temporal pattern of establishment and survival was compared to the pattern of the PDO. A wave of establishment began in the mid-1940s, rose to a peak rate in the mid-1970s, and dropped precipitously beginning ca. 1980 to near zero for the 1990s. The period of establishment primarily coincided with the negative phase of the PDO, but the establishment and survival pattern is not correlated with the PDO index. The pattern indicates a period during which establishment was possible and was augmented by positive feedback from surviving trees. Snow may be the most important factor in the feedback, but studies indicate that its effects vary locally. Spatially differentiated analyses of decadal or longer periodicity may elucidate responses to climatic variation. ?? 2003 by V. H. Winston and Son, Inc. All rights reserved.

  19. Dynamic analysis of the ethanol fermentation with the impulsive state feedback control

    International Nuclear Information System (INIS)

    Zhao, Zhong; Kong, Yinchang; Chen, Ying

    2016-01-01

    Highlights: • Ethanol fermentation model with the impulsive state feedback control is proposed. • Existence and stability of the order-1 or order-2 periodic solution are investigated. • The complete expression of the order-1 periodic solution is obtained. • Fermentation process can be effectively controlled by monitoring the impulsive period. - Abstract: To keep a sustainable and steady output of ethanol, ethanol fermentation in a bio-reactor with impulsive state feedback control is formulated. The sufficient conditions for existences of order-1 periodic solution and order-2 periodic solution are obtained by using the properties of the periodic solution. The results imply that ethanol fermentation tends to an order-1 periodic solution or order-2 periodic solution. At the same time, we also give the complete expression of the period of the positive period-1 solution. Finally, discussions and numerical simulations are given.

  20. To Stabilize Power Systems from Various Kind of Oscillations using a State Feedback Controller

    International Nuclear Information System (INIS)

    Afridi, M. A.

    2012-01-01

    Damping of electromechanical oscillations in power systems is one of the major concerns in the operation of power system since many years. These oscillations cause improper of the power system incorporating losses. This thesis work presents the coordinated AVR+PSS structure, called the Desensitized four loops Regulator, designed to damp these oscillations in the power system. It is shown here that it is possible to transform the structure of this controller into any standard IEEE AVR+PSS structure. The AVR+PSS structure obtained through this structure is efficient to damp out many types of oscillations present in the Power system. These models are to be incorporated with the generator models to get a power system model with state feedback control. On simulating the system in Simulink with the controllers we have obtained the power system model with state feedback control and observed that how these controllers are helpful in damping the oscillations. (author)

  1. Further results on global state feedback stabilization of nonlinear high-order feedforward systems.

    Science.gov (United States)

    Xie, Xue-Jun; Zhang, Xing-Hui

    2014-03-01

    In this paper, by introducing a combined method of sign function, homogeneous domination and adding a power integrator, and overcoming several troublesome obstacles in the design and analysis, the problem of state feedback control for a class of nonlinear high-order feedforward systems with the nonlinearity's order being relaxed to an interval rather than a fixed point is solved. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Stability and oscillation of two coupled Duffing equations with time delay state feedback

    International Nuclear Information System (INIS)

    El-Bassiouny, A F

    2006-01-01

    This paper presents an analytical study of the simultaneous principal parametric resonances of two coupled Duffing equations with time delay state feedback. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. The method of multiple scales is used to determine a set of ordinary differential equations governing the modulation of the amplitudes and phases of the two modes. The first order approximation of the resonances are derived and the effect of time delay on the resonances is investigated. The fixed points correspond to a periodic motion for the starting system and we show the frequency-response curves. We analyse the effect of time delay and the other different parameters on these oscillations. The stability of the fixed points is examined by using the variational method. Numerical solutions are carried out and graphical representations of the results are presented and discussed. Increasing in the time delay τ given decreasing and increasing in the regions of definition and stability respectively and the first mode has decreased magnitudes. The multivalued solutions disappear when decreasing the coefficients of cubic nonlinearities of the second mode α 3 and the detuning parameter σ 2 respectively. Both modes shift to the left for increasing linear feedback gain v 1 and the coefficient of parametric excitation f 1 respectively

  3. Global control of reaction wheel pendulum through energy regulation and extended linearization of the state variables

    Directory of Open Access Journals (Sweden)

    Oscar D. Montoya-Giraldo

    2014-01-01

    Full Text Available This paper presents the design and simulation of a global controller for the Reaction Wheel Pendulum system using energy regulation and extended linearization methods for the state feedback. The proposed energy regulation is based on the gradual reduction of the energy of the system to reach the unstable equilibrium point. The signal input for this task is obtained from the Lyapunov stability theory. The extended state feedback controller design is used to get a smooth nonlinear function that extends the region of operation to a bigger range, in contrast with the static linear state feedback obtained through the method of approximate linearization around an operating point. The general designed controller operates with a switching between the two control signals depending upon the region of operation; perturbations are applied in the control signal and the (simulated measured variables to verify the robustness and efficiency of the controller. Finally, simulations and tests using the model of the reaction wheel pendulum system, allow to observe the versatility and functionality of the proposed controller in the entire operation region of the pendulum.

  4. Homogeneous Stabilizer by State Feedback for Switched Nonlinear Systems Using Multiple Lyapunov Functions’ Approach

    Directory of Open Access Journals (Sweden)

    Hui Ye

    2017-01-01

    Full Text Available This paper investigates the problem of global stabilization for a class of switched nonlinear systems using multiple Lyapunov functions (MLFs. The restrictions on nonlinearities are neither linear growth condition nor Lipschitz condition with respect to system states. Based on adding a power integrator technique, we design homogeneous state feedback controllers of all subsystems and a switching law to guarantee that the closed-loop system is globally asymptotically stable. Finally, an example is given to illustrate the validity of the proposed control scheme.

  5. Chimeralike states in networks of bistable time-delayed feedback oscillators coupled via the mean field.

    Science.gov (United States)

    Ponomarenko, V I; Kulminskiy, D D; Prokhorov, M D

    2017-08-01

    We study the collective dynamics of oscillators in a network of identical bistable time-delayed feedback systems globally coupled via the mean field. The influence of delay and inertial properties of the mean field on the collective behavior of globally coupled oscillators is investigated. A variety of oscillation regimes in the network results from the presence of bistable states with substantially different frequencies in coupled oscillators. In the physical experiment and numerical simulation we demonstrate the existence of chimeralike states, in which some of the oscillators in the network exhibit synchronous oscillations, while all other oscillators remain asynchronous.

  6. Evaluation of State-of-the-Art Acoustic Feedback Cancellation Systems for Hearing Aids

    DEFF Research Database (Denmark)

    Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper

    2013-01-01

    This research evaluates four state-of-the-art acoustic feedback cancellation systems in hearing aids in terms of the cancellation performance, sound quality degradation, and computational complexity. The authors compared a traditional full-band system to a system with a prediction error method...... in a full band, a subband system, a subband system with frequency shifting, and a recently proposed subband system with a novel probe noise deployment. All systems outperformed the traditional full-band system in cancellation performance, especially the subband system with probe noise is most effective...... for cancellation. However, in all cases there was a trade-off between performance and computational cost. With a 3-times increase in computation load, the probe noise based cancellation system can be realized that functions even in the most challenging feedback situation....

  7. Improved State Feedback H∞ Control for Flexible Air-Breathing Hypersonic Vehicles on LMI Approach

    Directory of Open Access Journals (Sweden)

    Zhang Xue

    2017-01-01

    Full Text Available Focusing on a nonlinear longitudinal dynamical model for Air-breathing Hypersonic Flight Vehicles (AHFV, a linearized model on a nominal trim condition is proposed. To stabilize the flight of an AHFV in the presence of external disturbances and actuator uncertainties, a state feedback H∞ control is designed. With bounds on the uncertainties, a feedback stabilization problem is converted to an optimal control problem and the cost function is minimized by solving a set of linear matrix inequalities. Since uncertainties in the design of AHFV are inevitable, to make a comparison, a general H∞ robust controller is constructed by only considering the disturbances firstly. Then the results are extended by incorporating the actual existing uncertainties as well as the external disturbances in the AHFV system. Numerical simulation shows that the controller, which takes both disturbances and uncertainties into account, can effectively stabilize the AHFV system.

  8. State variable participation in the limit cycle of induction motor

    Indian Academy of Sciences (India)

    State variable participation in the limit cycle of induction ... 2National Institute of Technical Teachers' Training and Research, Kolkata 700 106, India ..... the phase plot shown in figure 10 would be very useful as it shows infinite loops, meaning.

  9. Method for signal conditioning and data acquisition system, based on variable amplification and feedback technique

    Energy Technology Data Exchange (ETDEWEB)

    Conti, Livio, E-mail: livio.conti@uninettunouniversity.net [Facoltà di Ingegneria, Università Telematica Internazionale Uninettuno, Corso Vittorio Emanuele II 39, 00186 Rome, Italy INFN Sezione Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Sgrigna, Vittorio [Dipartimento di Matematica e Fisica, Università Roma Tre, 84 Via della Vasca Navale, I-00146 Rome (Italy); Zilpimiani, David [National Institute of Geophysics, Georgian Academy of Sciences, 1 M. Alexidze St., 009 Tbilisi, Georgia (United States); Assante, Dario [Facoltà di Ingegneria, Università Telematica Internazionale Uninettuno, Corso Vittorio Emanuele II 39, 00186 Rome, Italy INFN Sezione Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy)

    2014-08-21

    An original method of signal conditioning and adaptive amplification is proposed for data acquisition systems of analog signals, conceived to obtain a high resolution spectrum of any input signal. The procedure is based on a feedback scheme of the signal amplification with aim at maximizing the dynamic range and resolution of the data acquisition system. The paper describes the signal conditioning, digitization, and data processing procedures applied to an a priori unknown signal in order to enucleate its amplitude and frequency content for applications in different environments: on the ground, in space, or in the laboratory. An electronic board of the conditioning module has also been constructed and described. In the paper are also discussed the main fields of application and advantages of the method with respect to those known today.

  10. Method for signal conditioning and data acquisition system, based on variable amplification and feedback technique

    International Nuclear Information System (INIS)

    Conti, Livio; Sgrigna, Vittorio; Zilpimiani, David; Assante, Dario

    2014-01-01

    An original method of signal conditioning and adaptive amplification is proposed for data acquisition systems of analog signals, conceived to obtain a high resolution spectrum of any input signal. The procedure is based on a feedback scheme of the signal amplification with aim at maximizing the dynamic range and resolution of the data acquisition system. The paper describes the signal conditioning, digitization, and data processing procedures applied to an a priori unknown signal in order to enucleate its amplitude and frequency content for applications in different environments: on the ground, in space, or in the laboratory. An electronic board of the conditioning module has also been constructed and described. In the paper are also discussed the main fields of application and advantages of the method with respect to those known today

  11. Adaptive Disturbance Tracking Theory with State Estimation and State Feedback for Region II Control of Large Wind Turbines

    Science.gov (United States)

    Balas, Mark J.; Thapa Magar, Kaman S.; Frost, Susan A.

    2013-01-01

    A theory called Adaptive Disturbance Tracking Control (ADTC) is introduced and used to track the Tip Speed Ratio (TSR) of 5 MW Horizontal Axis Wind Turbine (HAWT). Since ADTC theory requires wind speed information, a wind disturbance generator model is combined with lower order plant model to estimate the wind speed as well as partial states of the wind turbine. In this paper, we present a proof of stability and convergence of ADTC theory with lower order estimator and show that the state feedback can be adaptive.

  12. Use of digital control theory state space formalism for feedback at SLC

    International Nuclear Information System (INIS)

    Himel, T.; Hendrickson, L.; Rouse, F.; Shoaee, H.

    1991-05-01

    The algorithms used in the database-driven SLC fast-feedback system are based on the state space formalism of digital control theory. These are implemented as a set of matrix equations which use a Kalman filter to estimate a vector of states from a vector of measurements, and then apply a gain matrix to determine the actuator settings from the state vector. The matrices used in the calculation are derived offline using Linear Quadratic Gaussian minimization. For a given noise spectrum, this procedure minimizes the rms of the states (e.g., the position or energy of the beam). The offline program also allows simulation of the loop's response to arbitrary inputs, and calculates its frequency response. 3 refs., 3 figs

  13. Do state-of-the-art CMIP5 ESMs accurately represent observed vegetation-rainfall feedbacks? Focus on the Sahel

    Science.gov (United States)

    Notaro, M.; Wang, F.; Yu, Y.; Mao, J.; Shi, X.; Wei, Y.

    2017-12-01

    The semi-arid Sahel ecoregion is an established hotspot of land-atmosphere coupling. Ocean-land-atmosphere interactions received considerable attention by modeling studies in response to the devastating 1970s-90s Sahel drought, which models suggest was driven by sea-surface temperature (SST) anomalies and amplified by local vegetation-atmosphere feedbacks. Vegetation affects the atmosphere through biophysical feedbacks by altering the albedo, roughness, and transpiration and thereby modifying exchanges of energy, momentum, and moisture with the atmosphere. The current understanding of these potentially competing processes is primarily based on modeling studies, with biophysical feedbacks serving as a key uncertainty source in regional climate change projections among Earth System Models (ESMs). In order to reduce this uncertainty, it is critical to rigorously evaluate the representation of vegetation feedbacks in ESMs against an observational benchmark in order to diagnose systematic biases and their sources. However, it is challenging to successfully isolate vegetation's feedbacks on the atmosphere, since the atmospheric control on vegetation growth dominates the atmospheric feedback response to vegetation anomalies and the atmosphere is simultaneously influenced by oceanic and terrestrial anomalies. In response to this challenge, a model-validated multivariate statistical method, Stepwise Generalized Equilibrium Feedback Assessment (SGEFA), is developed, which extracts the forcing of a slowly-evolving environmental variable [e.g. SST or leaf area index (LAI)] on the rapidly-evolving atmosphere. By applying SGEFA to observational and remotely-sensed data, an observational benchmark is established for Sahel vegetation feedbacks. In this work, the simulated responses in key atmospheric variables, including evapotranspiration, albedo, wind speed, vertical motion, temperature, stability, and rainfall, to Sahel LAI anomalies are statistically assessed in Coupled Model

  14. Stabilization of wave equations with variable coefficient and delay in the dynamical boundary feedback

    Directory of Open Access Journals (Sweden)

    Dandan Guo

    2017-08-01

    Full Text Available In this article we consider the boundary stabilization of a wave equation with variable coefficients. This equation has an acceleration term and a delayed velocity term on the boundary. Under suitable geometric conditions, we obtain the exponential decay for the solutions. Our proof relies on the geometric multiplier method and the Lyapunov approach.

  15. A stage structure pest management model with impulsive state feedback control

    Science.gov (United States)

    Pang, Guoping; Chen, Lansun; Xu, Weijian; Fu, Gang

    2015-06-01

    A stage structure pest management model with impulsive state feedback control is investigated. We get the sufficient condition for the existence of the order-1 periodic solution by differential equation geometry theory and successor function. Further, we obtain a new judgement method for the stability of the order-1 periodic solution of the semi-continuous systems by referencing the stability analysis for limit cycles of continuous systems, which is different from the previous method of analog of Poincarè criterion. Finally, we analyze numerically the theoretical results obtained.

  16. Multiobjective Output Feedback Control of a Class of Stochastic Hybrid Systems with State-Dependent Noise

    Directory of Open Access Journals (Sweden)

    S. Aberkane

    2007-01-01

    Full Text Available This paper deals with dynamic output feedback control of continuous-time active fault tolerant control systems with Markovian parameters (AFTCSMP and state-dependent noise. The main contribution is to formulate conditions for multiperformance design, related to this class of stochastic hybrid systems, that take into account the problematic resulting from the fact that the controller only depends on the fault detection and isolation (FDI process. The specifications and objectives under consideration include stochastic stability, ℋ2 and ℋ∞ (or more generally, stochastic integral quadratic constraints performances. Results are formulated as matrix inequalities. The theoretical results are illustrated using a classical example from literature.

  17. Controlling Unknown Saddle Type Steady States of Dynamical Systems with Latency in the Feedback Loop

    DEFF Research Database (Denmark)

    Tamasevicius, Arunas; Bumeliene, Skaidra; Tamaseviciute, Elena

    2009-01-01

    We suggest an adaptive control technique for stabilizing saddle type unstable steady states of dynamical systems. The controller is composed of an unstable and a stable high-pass filters operating in parallel. The mathematical model is considered analytically and numerically. The conjoint...... controller is sufficiently robust to time latencies in the feedback loop. In addition, it is not sensitive to the damping parameters of the system and is relatively fast. Experiments have been performed using a simplified version of the electronic Young-Silva circuit imitating behavior of the Duffing...

  18. Partial state feedback control of chaotic neural network and its application

    International Nuclear Information System (INIS)

    He Guoguang; Shrimali, Manish Dev; Aihara, Kazuyuki

    2007-01-01

    The chaos control in the chaotic neural network is studied using the partial state feedback with a control signal from a few control neurons. The controlled CNN converges to one of the stored patterns with a period which depends on the initial conditions, i.e., the set of control neurons and other control parameters. We show that the controlled CNN can distinguish between two initial patterns even if they have a small difference. This implies that such a controlled CNN can be feasibly applied to information processing such as pattern recognition

  19. Memory State Feedback RMPC for Multiple Time-Delayed Uncertain Linear Systems with Input Constraints

    Directory of Open Access Journals (Sweden)

    Wei-Wei Qin

    2014-01-01

    Full Text Available This paper focuses on the problem of asymptotic stabilization for a class of discrete-time multiple time-delayed uncertain linear systems with input constraints. Then, based on the predictive control principle of receding horizon optimization, a delayed state dependent quadratic function is considered for incorporating MPC problem formulation. By developing a memory state feedback controller, the information of the delayed plant states can be taken into full consideration. The MPC problem is formulated to minimize the upper bound of infinite horizon cost that satisfies the sufficient conditions. Then, based on the Lyapunov-Krasovskii function, a delay-dependent sufficient condition in terms of linear matrix inequality (LMI can be derived to design a robust MPC algorithm. Finally, the digital simulation results prove availability of the proposed method.

  20. Analysis of reactor power behaviour using estimation of period for the gain adaptation in a state feedback controller

    International Nuclear Information System (INIS)

    Benitez R, J.S.; Perez C, J.H.; Rivero G, T.

    2008-01-01

    In this paper a novel procedure for power regulation in a TRIGA Mark III nuclear reactor is presented. The control scheme combines state variable feedback with a first order predictor, which is incorporated to speed up the power response of the reactor without exceeding the safety requirement imposed by the reactor period. The simulation results using the proposed control strategy attains different values of steady-state power from different values of initial power in short time, complying at all times with the safety restriction imposed on the reactor period. The predictor, derived from the theory of first order numerical integration, produces very good results during the ascent of power. These results include a fast response and independence of the wide variety of potential operating conditions something not easy and even impossible to obtain with other procedures. By using this control scheme, the reactor period is maintained within safety limits during the start up of the reactor, which is normally the operating condition where an occurrence of a period scram is common. However, the predictor can not be used when the power is reaching the desired power level because the instantaneous power increases far above the desired level. Thus, when the power increases above certain power level, the state feedback gain is set constant to a predefined value. This causes some oscillations that decrease in a few seconds. Afterwards, the power response smoothly approaches, with a small overshoot, the desired power. This constraint on the use of the predictor prevents the unbounded increase of the neutron power. The control law proposed requires all the system's state variables. Since only the neutron power is available, it is necessary the estimation of the non measurable states. The key issue of the existence of a solution to this problem has been previously considered. One of the conclusions is that the point kinetic equations are observable under certain restrictions on

  1. Continuous variable quantum key distribution with modulated entangled states

    DEFF Research Database (Denmark)

    Madsen, Lars S; Usenko, Vladyslav C.; Lassen, Mikael

    2012-01-01

    Quantum key distribution enables two remote parties to grow a shared key, which they can use for unconditionally secure communication over a certain distance. The maximal distance depends on the loss and the excess noise of the connecting quantum channel. Several quantum key distribution schemes...... based on coherent states and continuous variable measurements are resilient to high loss in the channel, but are strongly affected by small amounts of channel excess noise. Here we propose and experimentally address a continuous variable quantum key distribution protocol that uses modulated fragile...... entangled states of light to greatly enhance the robustness to channel noise. We experimentally demonstrate that the resulting quantum key distribution protocol can tolerate more noise than the benchmark set by the ideal continuous variable coherent state protocol. Our scheme represents a very promising...

  2. The utility of affine variables and affine coherent states

    International Nuclear Information System (INIS)

    Klauder, John R

    2012-01-01

    Affine coherent states are generated by affine kinematical variables much like canonical coherent states are generated by canonical kinematical variables. Although all classical and quantum formalisms normally entail canonical variables, it is shown that affine variables can serve equally well for many classical and quantum studies. This general purpose analysis provides tools to discuss two major applications: (1) the completely successful quantization of a nonrenormalizable scalar quantum field theory by affine techniques, in complete contrast to canonical techniques which only offer triviality; and (2) a formulation of the kinematical portion of quantum gravity that favors affine kinematical variables over canonical kinematical variables, and which generates a framework in which a favorable analysis of the constrained dynamical issues can take place. All this is possible because of the close connection between the affine and the canonical stories, while the few distinctions can be used to advantage when appropriate. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (review)

  3. Bio-geomorphic feedback causes alternative stable landscape states: insights from coastal marshes and tidal flats

    Science.gov (United States)

    Temmerman, Stijn; Wang, Chen

    2014-05-01

    Many bio-geomorphic systems, such as hill slopes, river floodplains, tidal floodplains and dune areas, seem to be vulnerable to shifts between alternative bare and vegetated landscape states, and these shifts seem to be driven by bio-geomorphic feedbacks. Here we search for empirical evidence for alternative stable state behavior in intertidal flats and marshes, where bio-geomorphic interactions are known to be intense. Large-scale transitions have been reported worldwide between high-elevation vegetated marshes and low-elevation bare flats in intertidal zones of deltas, estuaries, and coastal embayments. It is of significant importance to understand and predict such transitions, because vegetated marshes provide significant services to coastal societies. Previous modeling studies suggest that the ecological theory of catastrophic shifts between alternative stable ecosystem states potentially explains the transition between bare flats and vegetated marshes. However, up to now only few empirical evidence exists. In our study, the hypothesis is empirically tested that vegetated marshes and bare tidal flats can be considered as alternative stable landscape states with rapid shifts between them. We studied historical records (1930s - 2000s) of intertidal elevation surveys and aerial pictures from the Westerschelde estuary (SW Netherlands). Our results demonstrated the existence of: (1) bimodality in the intertidal elevation distribution, i.e., the presence of two peaks in the elevation frequency distribution corresponding to a completely bare state and a densely vegetated state; (2) the relatively rapid transition in elevation when intertidal flats evolve from bare to vegetated states, with sedimentation rates that are 2 to 8 times faster than during the stable states; (3) a threshold elevation above which the shift from bare to vegetated state has a high chance to occur. Our observations demonstrate the abrupt non-linear shift between low-elevation bare flats and high

  4. Non-equilibrium steady state of a driven levitated particle with feedback cooling

    International Nuclear Information System (INIS)

    Gieseler, Jan; Novotny, Lukas; Moritz, Clemens; Dellago, Christoph

    2015-01-01

    Laser trapped nanoparticles have been recently used as model systems to study fundamental relations holding far from equilibrium. Here we study a nanoscale silica sphere levitated by a laser in a low density gas. The center of mass motion of the particle is subjected, at the same time, to feedback cooling and a parametric modulation driving the system into a non-equilibrium steady state. Based on the Langevin equation of motion of the particle, we derive an analytical expression for the energy distribution of this steady state showing that the average and variance of the energy distribution can be controlled separately by appropriate choice of the friction, cooling and modulation parameters. Energy distributions determined in computer simulations and measured in a laboratory experiment agree well with the analytical predictions. We analyze the particle motion also in terms of the quadratures and find thermal squeezing depending on the degree of detuning. (paper)

  5. Modeling of low frequency dynamics of a smart system and its state feedback based active control

    Science.gov (United States)

    Kant, Mohit; Parameswaran, Arun P.

    2018-01-01

    Major physical systems/structures suffer from unwanted vibrations. For efficient working of such systems, these vibrations have to be controlled. In this paper, mathematical modeling of an aluminum cantilever beam with bonded multiple piezoelectric patches which act as the disturbance generator, sensor as well as control actuator has been presented. This piezoelectric laminate cantilever beam is assumed to be vibrating in a single degree of freedom i.e. in the flexural mode only and the corresponding state space models have been derived analytically using the finite element technique. Dominant modes of flexural vibration are identified from the frequency response of the developed model of the system and finally a state feedback controller based on pole placement technique is designed to actively suppress the vibrations. Through numerous simulations as well as experimental validation, the effectiveness of the active controller in damping the vibrations at various excitation frequencies as well as frequency ranges along the flexural mode is established.

  6. Coexisting synchronous and asynchronous states in locally coupled array of oscillators by partial self-feedback control

    Science.gov (United States)

    Bera, Bidesh K.; Ghosh, Dibakar; Parmananda, Punit; Osipov, G. V.; Dana, Syamal K.

    2017-07-01

    We report the emergence of coexisting synchronous and asynchronous subpopulations of oscillators in one dimensional arrays of identical oscillators by applying a self-feedback control. When a self-feedback is applied to a subpopulation of the array, similar to chimera states, it splits into two/more sub-subpopulations coexisting in coherent and incoherent states for a range of self-feedback strength. By tuning the coupling between the nearest neighbors and the amount of self-feedback in the perturbed subpopulation, the size of the coherent and the incoherent sub-subpopulations in the array can be controlled, although the exact size of them is unpredictable. We present numerical evidence using the Landau-Stuart system and the Kuramoto-Sakaguchi phase model.

  7. Continuous Variable Quantum Key Distribution Using Polarized Coherent States

    Science.gov (United States)

    Vidiella-Barranco, A.; Borelli, L. F. M.

    We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.

  8. Research on Utilizing a Multivariate Feedback Algorithm to Maintain Stable Operation of Variable Energy Electron Accelerators

    International Nuclear Information System (INIS)

    Van Ausdeln, L.A.; Cordes, G.A.; Haskell, K.J.; Jones, J.L.

    2002-01-01

    Measurements performed utilizing particle accelerators rely on the stability and reproducibility of the accelerator operation, most notably for beam flux (beam current) and beam energy. This can be vital when the measurements rely on previous calibrations performed to establish a standard on which to base the end result of the measurement. The authors have designed a monitoring and control virtual instrument (VI) based on National Instruments LabVIEW TM which calls external modeling code that is written in a standard programming language. The LabVIEWTM virtual instrument allows the user to monitor multiple accelerator parameters while permitting user control of the most important four of these parameters which determine machine operation. The external modeling code, the Advanced Data Validation and Verification System (ADVVS), incorporates as a kernel the Universal Process Model (UPM) software from Triant Technologies, Inc. The kernel executes the accelerator modeling function based on previously acquired history data of the relevant parameters for accelerator operation for conditions of interest. This history data is stored as a reference set prior to subsequent operation. During accelerator operation, 11 accelerator parameters are input to ADVVS from the LabVIEW TM virtual instrument. The ADVVS uses the reference files to predict the eleven parameter values that would normally be expected for optimal accelerator operation. The set of 11 model values is the nearest model state. This multivariate modeling approach presented two principal advantages: 1. The ADVVS allowed rapid detection of anomalous accelerator behavior variant from normal accelerator behavior recorded in the reference set of the kernel. 2. The ADVVS presented a methodology to incrementally tune the accelerator back to optimal operation, thus maintaining highly stable and reproducible operation. In the future, this methodology may also be utilized to tune the accelerator initially or move

  9. Automatic Welding Control Using a State Variable Model.

    Science.gov (United States)

    1979-06-01

    A-A10 610 NAVEAL POSTGRADUATE SCH4O.M CEAY CA0/ 13/ SAUTOMATIC WELDING CONTROL USING A STATE VARIABLE MODEL.W()JUN 79 W V "my UNCLASSIFIED...taverse Drive Unit // Jbint Path /Fixed Track 34 (servomotor positioning). Additional controls of heave (vertical), roll (angular rotation about the

  10. Work hardening correlation for monotonic loading based on state variables

    International Nuclear Information System (INIS)

    Huang, F.H.; Li, C.Y.

    1977-01-01

    An absolute work hardening correlation in terms of the hardness parameter and the internal stress based on the state variable approach was developed. It was found applicable to a variety of metals and alloys. This correlation predicts strain rate insensitive work hardening properties at low homologous temperatures and produces strain rate effects at higher homologous temperatures without involving thermally induced recovery processes

  11. Continuous Variable Entanglement and Squeezing of Orbital Angular Momentum States

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Leuchs, Gerd; Andersen, Ulrik Lund

    2009-01-01

    We report the first experimental characterization of the first-order continuous variable orbital angular momentum states. Using a spatially nondegenerate optical parametric oscillator (OPO) we produce quadrature entanglement between the two first-order Laguerre-Gauss modes. The family of orbital...

  12. Action–angle variables, ladder operators and coherent states

    International Nuclear Information System (INIS)

    Campoamor-Stursberg, R.; Gadella, M.; Kuru, Ş.; Negro, J.

    2012-01-01

    This Letter is devoted to the building of coherent states from arguments based on classical action–angle variables. First, we show how these classical variables are associated to an algebraic structure in terms of Poisson brackets. In the quantum context these considerations are implemented by ladder type operators and a structure known as spectrum generating algebra. All this allows to generate coherent states and thereby the correspondence of classical–quantum properties by means of the aforementioned underlying structure. This approach is illustrated with the example of the one-dimensional Pöschl–Teller potential system. -- Highlights: ► We study the building of coherent states from classical action–angle variables arguments. ► The classical variables are associated to an algebraic structure in terms of Poisson brackets. ► In the quantum context these considerations are implemented by ladder type operators. ► All this allows to formulate coherent states and the correspondence of classical–quantum properties.

  13. Robust state feedback controller design of STATCOM using chaotic optimization algorithm

    Directory of Open Access Journals (Sweden)

    Safari Amin

    2010-01-01

    Full Text Available In this paper, a new design technique for the design of robust state feedback controller for static synchronous compensator (STATCOM using Chaotic Optimization Algorithm (COA is presented. The design is formulated as an optimization problem which is solved by the COA. Since chaotic planning enjoys reliability, ergodicity and stochastic feature, the proposed technique presents chaos mapping using Lozi map chaotic sequences which increases its convergence rate. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The simulation results reveal that the proposed controller has an excellent capability in damping power system low frequency oscillations and enhances greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions shows that the phase based controller is superior compare to the magnitude based controller.

  14. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    Science.gov (United States)

    Barik, Debashis; Ball, David A; Peccoud, Jean; Tyson, John J

    2016-12-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  15. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    Directory of Open Access Journals (Sweden)

    Debashis Barik

    2016-12-01

    Full Text Available The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  16. Chaotic Dynamical State Variables Selection Procedure Based Image Encryption Scheme

    Directory of Open Access Journals (Sweden)

    Zia Bashir

    2017-12-01

    Full Text Available Nowadays, in the modern digital era, the use of computer technologies such as smartphones, tablets and the Internet, as well as the enormous quantity of confidential information being converted into digital form have resulted in raised security issues. This, in turn, has led to rapid developments in cryptography, due to the imminent need for system security. Low-dimensional chaotic systems have low complexity and key space, yet they achieve high encryption speed. An image encryption scheme is proposed that, without compromising the security, uses reasonable resources. We introduced a chaotic dynamic state variables selection procedure (CDSVSP to use all state variables of a hyper-chaotic four-dimensional dynamical system. As a result, less iterations of the dynamical system are required, and resources are saved, thus making the algorithm fast and suitable for practical use. The simulation results of security and other miscellaneous tests demonstrate that the suggested algorithm excels at robustness, security and high speed encryption.

  17. State variable theories based on Hart's formulation

    Energy Technology Data Exchange (ETDEWEB)

    Korhonen, M.A.; Hannula, S.P.; Li, C.Y.

    1985-01-01

    In this paper a review of the development of a state variable theory for nonelastic deformation is given. The physical and phenomenological basis of the theory and the constitutive equations describing macroplastic, microplastic, anelastic and grain boundary sliding enhanced deformation are presented. The experimental and analytical evaluation of different parameters in the constitutive equations are described in detail followed by a review of the extensive experimental work on different materials. The technological aspects of the state variable approach are highlighted by examples of the simulative and predictive capabilities of the theory. Finally, a discussion of general capabilities, limitations and future developments of the theory and particularly the possible extensions to cover an even wider range of deformation or deformation-related phenomena is presented.

  18. Squeezed states and Hermite polynomials in a complex variable

    International Nuclear Information System (INIS)

    Ali, S. Twareque; Górska, K.; Horzela, A.; Szafraniec, F. H.

    2014-01-01

    Following the lines of the recent paper of J.-P. Gazeau and F. H. Szafraniec [J. Phys. A: Math. Theor. 44, 495201 (2011)], we construct here three types of coherent states, related to the Hermite polynomials in a complex variable which are orthogonal with respect to a non-rotationally invariant measure. We investigate relations between these coherent states and obtain the relationship between them and the squeezed states of quantum optics. We also obtain a second realization of the canonical coherent states in the Bargmann space of analytic functions, in terms of a squeezed basis. All this is done in the flavor of the classical approach of V. Bargmann [Commun. Pure Appl. Math. 14, 187 (1961)

  19. Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Illuminati, Fabrizio

    2006-01-01

    For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed

  20. Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

    Energy Technology Data Exchange (ETDEWEB)

    Adesso, Gerardo; Illuminati, Fabrizio [Dipartimento di Fisica ' E R Caianiello' , Universita degli Studi di Salerno (Italy); CNISM and CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno (Italy); Via S Allende, 84081 Baronissi, SA (Italy)

    2006-01-15

    For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed.

  1. Fuzzy combination of fuzzy and switching state-feedback controllers for nonlinear systems subject to parameter uncertainties.

    Science.gov (United States)

    Lam, H K; Leung, Frank H F

    2005-04-01

    This paper presents a fuzzy controller, which involves a fuzzy combination of local fuzzy and global switching state-feedback controllers, for nonlinear systems subject to parameter uncertainties with known bounds. The nonlinear system is represented by a fuzzy combined Takagi-Sugeno-Kang model, which is a fuzzy combination of the global and local fuzzy plant models. By combining the local fuzzy and global switching state-feedback controllers using fuzzy logic techniques, the advantages of both controllers can be retained and the undesirable chattering effect introduced by the global switching state-feedback controller can be eliminated. The steady-state error introduced by the global switching state-feedback controller when a saturation function is used can also be removed. Stability conditions, which are related to the system matrices of the local and global closed-loop systems, are derived to guarantee the closed-loop system stability. An application example will be given to demonstrate the merits of the proposed approach.

  2. State Feedback Decoupling with In-Loop Lead Compensator in Stand-Alone VSIs

    DEFF Research Database (Denmark)

    Federico, de Bosio; Pastorelli, Michele; de Sousa Ribeiro, Luiz Antonio

    2016-01-01

    The performance of current and voltage regulators during transients and steady-state is of primary concern for power converters intended for stand-alone applications. Dynamics performance and command tracking capability are enhanced by actively decoupling the controlled states variables. To further...... widen the current loop bandwidth while still preserving a well-damped system a lead compensator structure on the forward loop is proposed. A 3 kHz bandwidth with 0.707 damping factor is achieved for the inner current controller. Accordingly, also the voltage regulator bandwidth can be widen, thus...

  3. Natural equilibria in steady-state neutron diffusion with temperature feedback

    International Nuclear Information System (INIS)

    Pounders, J. M.; Ingram, R.

    2013-01-01

    The critical diffusion equation with feedback is investigated within the context of steady-state multiphysics. It is proposed that for critical configurations there is no need to include the multiplication factor k in the formulation of the diffusion equation. This is notable because exclusion of k from the coupled system of equations precludes the mathematically tenuous notion of a nonlinear eigenvalue problem. On the other hand, it is shown that if the factor k is retained in the diffusion equation, as is currently common practice, then the resulting problem is equivalent to the constrained minimization of a functional representing the critical equilibrium of neutron and temperature distributions. The unconstrained solution corresponding to k = 1 represents the natural equilibrium of a critical system at steady-state. Computational methods for solving the constrained problem (with k) are briefly reviewed from the literature and a method for the unconstrained problem (without k) is outlined. A numerical example is studied to examine the effects of the constraint in the nonlinear system. (authors)

  4. Feedback control of plasma density and heating power for steady state operation in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Kamio, Shuji, E-mail: kamio@nifs.ac.jp; Kasahara, Hiroshi; Seki, Tetsuo; Saito, Kenji; Seki, Ryosuke; Nomura, Goro; Mutoh, Takashi

    2015-12-15

    Highlights: • We upgraded a control system for steady state operation in LHD. • This system contains gas fueling system and ICRF power control system. • Automatic power boost system is also attached for stable operation. • As a result, we achieved the long pulse up to 48 min in the electron density of more than 1 × 10{sup 19} m{sup −3}. - Abstract: For steady state operation, the feedback control of plasma density and heating power system was developed in the Large Helical Device (LHD). In order to achieve a record of the long pulse discharge, stable plasma density and heating power are needed. This system contains the radio frequency (RF) heating power control, interlocks, gas fueling, automatic RF phase control, ion cyclotron range of frequency (ICRF) antenna position control, and graphical user interface (GUI). Using the density control system, the electron density was controlled to the target density and using the RF heating power control system, the RF power injection could be stable. As a result of using this system, we achieved the long pulse up to 48 min in the electron density of more than 1 × 10{sup 19} m{sup −3}. Further, the ICRF hardware experienced no critical accidents during the 17th LHD experiment campaign in 2013.

  5. An Active Seat Controller with Vehicle Suspension Feedforward and Feedback States: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Abdulaziz Alfadhli

    2018-04-01

    Full Text Available Active seat suspensions can be used to reduce the harmful vertical vibration of a vehicle’s seat by applying an external force using a closed loop controller. Many of the controllers found in the literature are difficult to implement practically, because they are based on using unavailable or difficult and costly measurements. This paper presents both simulation and experimental studies of five novel, simple, and cost-effective control strategies to be used for an active seat suspension in order to improve ride comfort at low frequencies below 20 Hz. These strategies use available and measurable feedforward (preview information states from the vehicle secondary suspension, as well as feedback states from the seat suspension, together with gains optimised to minimise the occupant vibration. The gains were optimised using a genetic algorithm (GA, with a fitness function based on the seat effective amplitude transmissibility (SEAT factor. Constraints on the control force and the seat suspension stroke were also included in the optimisation algorithm. Simulation and laboratory experimental tests were carried out to assess the performance of the proposed controllers according to the ISO 2631-1 standard, in both the frequency and time domains with a range of different road profiles. The experimental tests were performed using a multi-axis simulation table (MAST and a physical active seat suspension configured as a hardware-in-loop (HIL simulation with a virtual linear quarter vehicle model (QvM. The results demonstrate that the proposed controllers substantially attenuate the vertical vibration at the driver’s seat compared with both a passive and a proportional-integral-derivative (PID active seat suspension and thus improve ride comfort together with reducing vibration-linked health risks. Moreover, experimental results show that employing both feedforward information and feedback vehicle body and seat acceleration signals in the controller

  6. Comment on "Synchronization of chaotic systems with delay using intermittent linear state feedback" [Chaos 18, 033122 (2008)].

    Science.gov (United States)

    Zhang, Yinping; Wang, Qing-Guo

    2008-12-01

    In the referenced paper, there is technical carelessness in the third lemma and in the main result. Hence, it is a possible failure when the result is used to design the intermittent linear state feedback controller for exponential synchronization of two chaotic delayed systems.

  7. Combined Audience and Video Feedback With Cognitive Review Improves State Anxiety and Self-Perceptions During Speech Tasks in Socially Anxious Individuals.

    Science.gov (United States)

    Chen, Junwen; McLean, Jordan E; Kemps, Eva

    2018-03-01

    This study investigated the effects of combined audience feedback with video feedback plus cognitive preparation, and cognitive review (enabling deeper processing of feedback) on state anxiety and self-perceptions including perception of performance and perceived probability of negative evaluation in socially anxious individuals during a speech performance. One hundred and forty socially anxious students were randomly assigned to four conditions: Cognitive Preparation + Video Feedback + Audience Feedback + Cognitive Review (CP+VF+AF+CR), Cognitive Preparation + Video Feedback + Cognitive Review (CP+VF+CR), Cognitive Preparation + Video Feedback only (CP+VF), and Control. They were asked to deliver two impromptu speeches that were evaluated by confederates. Participants' levels of anxiety and self-perceptions pertaining to the speech task were assessed before and after feedback, and after the second speech. Compared to participants in the other conditions, participants in the CP+VF+AF+CR condition reported a significant decrease in their state anxiety and perceived probability of negative evaluation scores, and a significant increase in their positive perception of speech performance from before to after the feedback. These effects generalized to the second speech. Our results suggest that adding audience feedback to video feedback plus cognitive preparation and cognitive review may improve the effects of existing video feedback procedures in reducing anxiety symptoms and distorted self-representations in socially anxious individuals. Copyright © 2017. Published by Elsevier Ltd.

  8. Representing delayed force feedback as a combination of current and delayed states.

    Science.gov (United States)

    Avraham, Guy; Mawase, Firas; Karniel, Amir; Shmuelof, Lior; Donchin, Opher; Mussa-Ivaldi, Ferdinando A; Nisky, Ilana

    2017-10-01

    To adapt to deterministic force perturbations that depend on the current state of the hand, internal representations are formed to capture the relationships between forces experienced and motion. However, information from multiple modalities travels at different rates, resulting in intermodal delays that require compensation for these internal representations to develop. To understand how these delays are represented by the brain, we presented participants with delayed velocity-dependent force fields, i.e., forces that depend on hand velocity either 70 or 100 ms beforehand. We probed the internal representation of these delayed forces by examining the forces the participants applied to cope with the perturbations. The findings showed that for both delayed forces, the best model of internal representation consisted of a delayed velocity and current position and velocity. We show that participants relied initially on the current state, but with adaptation, the contribution of the delayed representation to adaptation increased. After adaptation, when the participants were asked to make movements with a higher velocity for which they had not previously experienced with the delayed force field, they applied forces that were consistent with current position and velocity as well as delayed velocity representations. This suggests that the sensorimotor system represents delayed force feedback using current and delayed state information and that it uses this representation when generalizing to faster movements. NEW & NOTEWORTHY The brain compensates for forces in the body and the environment to control movements, but it is unclear how it does so given the inherent delays in information transmission and processing. We examined how participants cope with delayed forces that depend on their arm velocity 70 or 100 ms beforehand. After adaptation, participants applied opposing forces that revealed a partially correct representation of the perturbation using the current and the

  9. Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.

    Science.gov (United States)

    Aprasoff, Jonathan; Donchin, Opher

    2012-04-01

    Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to 're-tune' the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.

  10. Increased variability of tornado occurrence in the United States.

    Science.gov (United States)

    Brooks, Harold E; Carbin, Gregory W; Marsh, Patrick T

    2014-10-17

    Whether or not climate change has had an impact on the occurrence of tornadoes in the United States has become a question of high public and scientific interest, but changes in how tornadoes are reported have made it difficult to answer it convincingly. We show that, excluding the weakest tornadoes, the mean annual number of tornadoes has remained relatively constant, but their variability of occurrence has increased since the 1970s. This is due to a decrease in the number of days per year with tornadoes combined with an increase in days with many tornadoes, leading to greater variability on annual and monthly time scales and changes in the timing of the start of the tornado season. Copyright © 2014, American Association for the Advancement of Science.

  11. Relatively slow stochastic gene-state switching in the presence of positive feedback significantly broadens the region of bimodality through stabilizing the uninduced phenotypic state.

    Science.gov (United States)

    Ge, Hao; Wu, Pingping; Qian, Hong; Xie, Xiaoliang Sunney

    2018-03-01

    Within an isogenic population, even in the same extracellular environment, individual cells can exhibit various phenotypic states. The exact role of stochastic gene-state switching regulating the transition among these phenotypic states in a single cell is not fully understood, especially in the presence of positive feedback. Recent high-precision single-cell measurements showed that, at least in bacteria, switching in gene states is slow relative to the typical rates of active transcription and translation. Hence using the lac operon as an archetype, in such a region of operon-state switching, we present a fluctuating-rate model for this classical gene regulation module, incorporating the more realistic operon-state switching mechanism that was recently elucidated. We found that the positive feedback mechanism induces bistability (referred to as deterministic bistability), and that the parameter range for its occurrence is significantly broadened by stochastic operon-state switching. We further show that in the absence of positive feedback, operon-state switching must be extremely slow to trigger bistability by itself. However, in the presence of positive feedback, which stabilizes the induced state, the relatively slow operon-state switching kinetics within the physiological region are sufficient to stabilize the uninduced state, together generating a broadened parameter region of bistability (referred to as stochastic bistability). We illustrate the opposite phenotype-transition rate dependence upon the operon-state switching rates in the two types of bistability, with the aid of a recently proposed rate formula for fluctuating-rate models. The rate formula also predicts a maximal transition rate in the intermediate region of operon-state switching, which is validated by numerical simulations in our model. Overall, our findings suggest a biological function of transcriptional "variations" among genetically identical cells, for the emergence of bistability and

  12. IBIS, FBR 3-D Steady-State and Kinetics with Thermohydraulic Feedback

    International Nuclear Information System (INIS)

    Konomura, Mamoru; Tada, Nobuo; Oka, Yoshiaki; An, Shigehiro

    1987-01-01

    1 - Description of program or function: The IBIS code performs steady state and kinetics calculations based on a three-dimensional nuclear diffusion kinetics with thermal hydraulic feedback. It can calculate the following values in hexagonal-Z geometry of a fast breeder reactor core through the progress of transient: (1) Net reactivity; (2) Total and group-wise delayed neutron fraction; (3) Group-wise delayed neutron precursor concentration; (4) Total power and energy; (5) Space dependent neutron flux in each energy group; (6) Space dependent temperature of each material; (7) Maximum temperature of each material and its location. 2 - Method of solution: The quasi-static method is adopted to solve the three-dimensional nuclear diffusion kinetics problem. The method is the same as employed in the code QX1. The shape function equation is solved with the finite difference treatment as used in the codes CITATION and HONEYCOMB. One-dimensional thermo-hydraulics is solved with a model similar to that given in the code SASLA. Sodium boiling can be taken into account. 3 - Restrictions on the complexity of the problem: The number of neutron energy groups is fixed to 3 groups in the present version of the code

  13. Thermodynamic approach to the inelastic state variable theories

    International Nuclear Information System (INIS)

    Dashner, P.A.

    1978-06-01

    A continuum model is proposed as a theoretical foundation for the inelastic state variable theory of Hart. The model is based on the existence of a free energy function and the assumption that a strained material element recalls two other local configurations which are, in some specified manner, descriptive of prior deformation. A precise formulation of these material hypotheses within the classical thermodynamical framework leads to the recovery of a generalized elastic law and the specification of evolutionary laws for the remembered configurations which are frame invariant and formally valid for finite strains. Moreover, the precise structure of Hart's theory is recovered when strains are assumed to be small

  14. Positive and negative feedback in the earthquake cycIe: the role of pore fluids on states of criticality in the crust

    Directory of Open Access Journals (Sweden)

    P. R. Sammonds

    1994-06-01

    Full Text Available Fluids exert a strong physical and chemical control on local processes of rock fracture and friction. For example they may accelerate fracture by stress corrosion reactions or the development of overpressure (a form of positive feedback, or retard fracture by time-dependent stress relaxation or dilatant hardening (negative feed-back, thereby introducing a variable degree of local force conservation into the process. In particular the valve action of dynamic faulting may be important in tuning the Earth to a metastable state of incipient failure on all scales over several cycles, similar to current models of Self-Organised Criticality (SOC as a paradigm for eartiquakes However laboratory results suggest that ordered fluctuations about this state may occur in a single cycle due to non conservative processes involving fluids which have the potential to be recognised, at least in the short term, in the scaling properties of earthquake statistics. Here we describe a 2-D cellular automaton which uses local rules of positive and negative feedback to model the effect of fluids on failure in a heterogeneous medium in a single earthquake cycle. The model successfully predicts the observed fractal distribution of fractures, with a negative correlation between the predicted seismic b-value and the local crack extension force G. Such a negative correlation is found in laboratory tests involving (a fluid-assisted crack growth in tension (b water-saturated compressional deformation, and (c in field results on an intermediate scale from hydraulic mining-induced seismicity all cases where G can be determined independently, and where the physical and chemical action of pore fluids is to varying degrees a controlled variable. For a finite local hardening mechanism (negative feedback, the model exhibits a systematic increase followed by a decrease in the seismic b-value as macroscopic failure is approached, similar to that found in water-saturated laboratory tests

  15. Constrained quadratic stabilization of discrete-time uncertain nonlinear multi-model systems using piecewise affine state-feedback

    Directory of Open Access Journals (Sweden)

    Olav Slupphaug

    1999-07-01

    Full Text Available In this paper a method for nonlinear robust stabilization based on solving a bilinear matrix inequality (BMI feasibility problem is developed. Robustness against model uncertainty is handled. In different non-overlapping regions of the state-space called clusters the plant is assumed to be an element in a polytope which vertices (local models are affine systems. In the clusters containing the origin in their closure, the local models are restricted to be linear systems. The clusters cover the region of interest in the state-space. An affine state-feedback is associated with each cluster. By utilizing the affinity of the local models and the state-feedback, a set of linear matrix inequalities (LMIs combined with a single nonconvex BMI are obtained which, if feasible, guarantee quadratic stability of the origin of the closed-loop. The feasibility problem is attacked by a branch-and-bound based global approach. If the feasibility check is successful, the Liapunov matrix and the piecewise affine state-feedback are given directly by the feasible solution. Control constraints are shown to be representable by LMIs or BMIs, and an application of the control design method to robustify constrained nonlinear model predictive control is presented. Also, the control design method is applied to a simple example.

  16. Nonclassical state generation for linear quantum systems via nonlinear feedback control

    International Nuclear Information System (INIS)

    Ohki, Kentaro; Tsumura, Koji; Takeuchi, Reiji

    2017-01-01

    In this paper, we propose a measurement nonlinear feedback control scheme to generate Wigner-function negativity in an optical cavity having dynamics described as a linear quantum system. In general, linear optical quantum systems can be easily constructed with reliable devices; therefore, the idea of constructing the entire system with such an optical system and nonlinear feedback is reasonable for generating Wigner-function negativity. However, existing studies have insufficiently examined the realizability or actual implementation of feedback control, which essentially requires fast responses from the sensors and actuators. In order to solve this problem, we consider the realizable feedback control of the optical phase of a pumping beam supplied to a cavity by using electro-optical modulation, which can be utilized as a fast control actuator. Then, we introduce mathematical models of the feedback-controlled system and evaluate its effect on the generation of the Wigner-function negativity by using numerical simulation. Through various numerical simulations, we show that the proposed feedback control can effectively generate the negativity of the Wigner function. (paper)

  17. Feedback Control in Quantum Optics: An Overview of Experimental Breakthroughs and Areas of Application

    OpenAIRE

    Alessio Serafini

    2012-01-01

    We present a broad summary of research involving the application of quantum feedback control techniques to optical set-ups, from the early enhancement of optical amplitude squeezing to the recent stabilisation of photon number states in a microwave cavity, dwelling mostly on the latest experimental advances. Feedback control of quantum optical continuous variables, quantum non-demolition memories, feedback cooling, quantum state control, adaptive quantum measurements and coherent feedback str...

  18. A Direct Algorithm for Pole Placement by State-derivative Feedback for Single-input Linear Systems

    Directory of Open Access Journals (Sweden)

    Taha H. S. Abdelaziz

    2003-01-01

    Full Text Available This paper deals with the direct solution of the pole placement problem for single-input linear systems using state-derivative feedback. This pole placement problem is always solvable for any controllable systems if all eigenvalues of the original system are nonzero. Then any arbitrary closed-loop poles can be placed in order to achieve the desired system performance. The solving procedure results in a formula similar to the Ackermann formula. Its derivation is based on the transformation of a linear single-input system into Frobenius canonical form by a special coordinate transformation, then solving the pole placement problem by state derivative feedback. Finally the solution is extended also for single-input time-varying control systems. The simulation results are included to show the effectiveness of the proposed approach.

  19. Synchronizing tracking control for flexible joint robots via estimated state feedback

    NARCIS (Netherlands)

    Rodriguez Angeles, A.; Nijmeijer, H.

    2004-01-01

    In this paper, we propose a synchronization controller for flexible joint robots, which are interconnected in a master-slave scheme. The synchronization controller is based on feedback linearization and only requires measurements of the master and slave link positions, since the velocities and

  20. Variability in United States Allopathic Medical School Tuition.

    Science.gov (United States)

    Gil, Joseph A; Park, Sarah H; Daniels, Alan H

    2015-11-01

    Over the course of the last generation, the cost of medical school attendance and medical student debt has increased drastically. Medical student debt has been reported as high as $350,000, and the Association of American Medical Colleges (AAMC) reports that medical school tuition continues to increase annually. The increasing cost of medical education and associated financial burden is now beginning to deter potential applicants from pursuing a career in medicine. In this study we aimed to assess medical school tuition across the US. We hypothesized that the cost of medical school attendance is variable across all regions of the US, and as a result, the financial burden on medical students is inconsistent. All 123 allopathic medical schools accredited by the AAMC were assessed in this investigation. In-state and out-of-state tuitions for the year 2016 were obtained from U.S. News and World Report. Additionally, medical school size was collected. Regions were defined according to the US Census Bureau definition, with the US being divided into 4 regions: Northeast, Midwest, South, and West. There was no difference in average medical school size among the 4 regions (P > .05). Average in-state tuition was $38,291.56 ± $9801.38 (95% confidence interval [CI], $34,658.07-$41,513.46) in the Midwest, $45,923.04 ± $9178.87 (95% CI, $42,566.28-$49,216.78) in the Northeast, $32,287.78 ± $12,277.53 (95% CI, $28,581.90-$35,378.68) in the South, and $37,745.40 ± $11,414.37 (95% CI, $30,063.28-$40,458.99) in the West. In-state tuition in the South was significantly lower than in the Northeast, West, and Midwest (P tuition in the Northeast was significantly higher than in the South, West, and Midwest (P tuition is $54,104.04 ± $8227.65 (95% CI, $51,207.6-$57,000.39) in the Midwest, $53,180.10 ± $3963.71 (95% CI, $51,761.71-$54,598.50) in the Northeast, $48,191.86 ± $12,578.13 (95% CI, $44,595.84-$51,787.89) in the South, and $52,920.47 ± $7400.83 (95% CI, $49

  1. Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states.

    Science.gov (United States)

    Lin, Lyu-Chih; Chen, Chih-Ying; Huang, Heming; Arsenijević, Dejan; Bimberg, Dieter; Grillot, Frédéric; Lin, Fan-Yi

    2018-01-15

    We experimentally compare the dynamics of InAs/GaAs quantum dot lasers under optical feedback emitting exclusively on ground states (GSs) or excited states (ESs). By varying the feedback parameters and putting focus either on their short or long cavity regions, various periodic and chaotic oscillatory states are found. The GS laser is shown to be more resistant to feedback, benefiting from its strong relaxation oscillation damping. In contrast, the ES laser can easily be driven into complex dynamics. While the GS laser is of importance for the development of isolator-free transmitters, the ES laser is essential for applications taking advantages of chaos.

  2. Audio Feedback -- Better Feedback?

    Science.gov (United States)

    Voelkel, Susanne; Mello, Luciane V.

    2014-01-01

    National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…

  3. Multivariable Feedback Control of Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Rune Moen

    1982-07-01

    Full Text Available Multivariable feedback control has been adapted for optimal control of the spatial power distribution in nuclear reactor cores. Two design techniques, based on the theory of automatic control, were developed: the State Variable Feedback (SVF is an application of the linear optimal control theory, and the Multivariable Frequency Response (MFR is based on a generalization of the traditional frequency response approach to control system design.

  4. Influences of State and Trait Affect on Behavior, Feedback-Related Negativity, and P3b in the Ultimatum Game.

    Directory of Open Access Journals (Sweden)

    Korbinian Riepl

    Full Text Available The present study investigates how different emotions can alter social bargaining behavior. An important paradigm to study social bargaining is the Ultimatum Game. There, a proposer gets a pot of money and has to offer part of it to a responder. If the responder accepts, both players get the money as proposed by the proposer. If he rejects, none of the players gets anything. Rational choice models would predict that responders accept all offers above 0. However, evidence shows that responders typically reject a large proportion of all unfair offers. We analyzed participants' behavior when they played the Ultimatum Game as responders and simultaneously collected electroencephalogram data in order to quantify the feedback-related negativity and P3b components. We induced state affect (momentarily emotions unrelated to the task via short movie clips and measured trait affect (longer-lasting emotional dispositions via questionnaires. State happiness led to increased acceptance rates of very unfair offers. Regarding neurophysiology, we found that unfair offers elicited larger feedback-related negativity amplitudes than fair offers. Additionally, an interaction of state and trait affect occurred: high trait negative affect (subsuming a variety of aversive mood states led to increased feedback-related negativity amplitudes when participants were in an angry mood, but not if they currently experienced fear or happiness. We discuss that increased rumination might be responsible for this result, which might not occur, however, when people experience happiness or fear. Apart from that, we found that fair offers elicited larger P3b components than unfair offers, which might reflect increased pleasure in response to fair offers. Moreover, high trait negative affect was associated with decreased P3b amplitudes, potentially reflecting decreased motivation to engage in activities. We discuss implications of our results in the light of theories and research on

  5. Influences of State and Trait Affect on Behavior, Feedback-Related Negativity, and P3b in the Ultimatum Game.

    Science.gov (United States)

    Riepl, Korbinian; Mussel, Patrick; Osinsky, Roman; Hewig, Johannes

    2016-01-01

    The present study investigates how different emotions can alter social bargaining behavior. An important paradigm to study social bargaining is the Ultimatum Game. There, a proposer gets a pot of money and has to offer part of it to a responder. If the responder accepts, both players get the money as proposed by the proposer. If he rejects, none of the players gets anything. Rational choice models would predict that responders accept all offers above 0. However, evidence shows that responders typically reject a large proportion of all unfair offers. We analyzed participants' behavior when they played the Ultimatum Game as responders and simultaneously collected electroencephalogram data in order to quantify the feedback-related negativity and P3b components. We induced state affect (momentarily emotions unrelated to the task) via short movie clips and measured trait affect (longer-lasting emotional dispositions) via questionnaires. State happiness led to increased acceptance rates of very unfair offers. Regarding neurophysiology, we found that unfair offers elicited larger feedback-related negativity amplitudes than fair offers. Additionally, an interaction of state and trait affect occurred: high trait negative affect (subsuming a variety of aversive mood states) led to increased feedback-related negativity amplitudes when participants were in an angry mood, but not if they currently experienced fear or happiness. We discuss that increased rumination might be responsible for this result, which might not occur, however, when people experience happiness or fear. Apart from that, we found that fair offers elicited larger P3b components than unfair offers, which might reflect increased pleasure in response to fair offers. Moreover, high trait negative affect was associated with decreased P3b amplitudes, potentially reflecting decreased motivation to engage in activities. We discuss implications of our results in the light of theories and research on depression and

  6. An integrated probabilistic risk analysis decision support methodology for systems with multiple state variables

    International Nuclear Information System (INIS)

    Sen, P.; Tan, John K.G.; Spencer, David

    1999-01-01

    Probabilistic risk analysis (PRA) methods have been proven to be valuable in risk and reliability analysis. However, a weak link seems to exist between methods for analysing risks and those for making rational decisions. The integrated decision support system (IDSS) methodology presented in this paper attempts to address this issue in a practical manner. In consists of three phases: a PRA phase, a risk sensitivity analysis (SA) phase and an optimisation phase, which are implemented through an integrated computer software system. In the risk analysis phase the problem is analysed by the Boolean representation method (BRM), a PRA method that can deal with systems with multiple state variables and feedback loops. In the second phase the results obtained from the BRM are utilised directly to perform importance and risk SA. In the third phase, the problem is formulated as a multiple objective decision making problem in the form of multiple objective reliability optimisation. An industrial example is included. The resultant solutions of a five objective reliability optimisation are presented, on the basis of which rational decision making can be explored

  7. The Pattern Across the Continental United States of Evapotranspiration Variability Associated with Water Availability

    Science.gov (United States)

    Koster, Randal D.; Salvucci, Guido D.; Rigden, Angela J.; Jung, Martin; Collatz, G. James; Schubert, Siegfried D.

    2015-01-01

    The spatial pattern across the continental United States of the interannual variance of warm season water-dependent evapotranspiration, a pattern of relevance to land-atmosphere feedback, cannot be measured directly. Alternative and indirect approaches to estimating the pattern, however, do exist, and given the uncertainty of each, we use several such approaches here. We first quantify the water dependent evapotranspiration variance pattern inherent in two derived evapotranspiration datasets available from the literature. We then search for the pattern in proxy geophysical variables (air temperature, stream flow, and NDVI) known to have strong ties to evapotranspiration. The variances inherent in all of the different (and mostly independent) data sources show some differences but are generally strongly consistent they all show a large variance signal down the center of the U.S., with lower variances toward the east and (for the most part) toward the west. The robustness of the pattern across the datasets suggests that it indeed represents the pattern operating in nature. Using Budykos hydroclimatic framework, we show that the pattern can largely be explained by the relative strength of water and energy controls on evapotranspiration across the continent.

  8. Active measurement-based quantum feedback for preparing and stabilizing superpositions of two cavity photon number states

    Science.gov (United States)

    Berube-Lauziere, Yves

    The measurement-based quantum feedback scheme developed and implemented by Haroche and collaborators to actively prepare and stabilize specific photon number states in cavity quantum electrodynamics (CQED) is a milestone achievement in the active protection of quantum states from decoherence. This feat was achieved by injecting, after each weak dispersive measurement of the cavity state via Rydberg atoms serving as cavity sensors, a low average number classical field (coherent state) to steer the cavity towards the targeted number state. This talk will present the generalization of the theory developed for targeting number states in order to prepare and stabilize desired superpositions of two cavity photon number states. Results from realistic simulations taking into account decoherence and imperfections in a CQED set-up will be presented. These demonstrate the validity of the generalized theory and points to the experimental feasibility of preparing and stabilizing such superpositions. This is a further step towards the active protection of more complex quantum states than number states. This work, cast in the context of CQED, is also almost readily applicable to circuit QED. YBL acknowledges financial support from the Institut Quantique through a Canada First Research Excellence Fund.

  9. Modal space three-state feedback control for electro-hydraulic servo plane redundant driving mechanism with eccentric load decoupling.

    Science.gov (United States)

    Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining

    2018-06-01

    The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Continuous variable entanglement distillation of non-Gaussian states

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Dong, Ruifang; Heersink, Joel

    2009-01-01

    We experimentally demonstrate distillation of continuous variable entangled light that has undergone non-Gaussian attenuation loss. The continuous variable entanglement is generated with optical fibers and sent through a lossy channel, where the transmission is varying in time. By employing simple...

  11. Analysis of reactor power behaviour using estimation of period for the gain adaptation in a state feedback controller; Atomos para el desarrollo de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Benitez R, J.S. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Perez C, J.H. [CINVESTAV, IPN, A.P. 14740 07000 Mexico D.F. (Mexico); Rivero G, T. [ITT, 50140 Metepec, Estado de Mexico (Mexico)

    2008-07-01

    In this paper a novel procedure for power regulation in a TRIGA Mark III nuclear reactor is presented. The control scheme combines state variable feedback with a first order predictor, which is incorporated to speed up the power response of the reactor without exceeding the safety requirement imposed by the reactor period. The simulation results using the proposed control strategy attains different values of steady-state power from different values of initial power in short time, complying at all times with the safety restriction imposed on the reactor period. The predictor, derived from the theory of first order numerical integration, produces very good results during the ascent of power. These results include a fast response and independence of the wide variety of potential operating conditions something not easy and even impossible to obtain with other procedures. By using this control scheme, the reactor period is maintained within safety limits during the start up of the reactor, which is normally the operating condition where an occurrence of a period scram is common. However, the predictor can not be used when the power is reaching the desired power level because the instantaneous power increases far above the desired level. Thus, when the power increases above certain power level, the state feedback gain is set constant to a predefined value. This causes some oscillations that decrease in a few seconds. Afterwards, the power response smoothly approaches, with a small overshoot, the desired power. This constraint on the use of the predictor prevents the unbounded increase of the neutron power. The control law proposed requires all the system's state variables. Since only the neutron power is available, it is necessary the estimation of the non measurable states. The key issue of the existence of a solution to this problem has been previously considered. One of the conclusions is that the point kinetic equations are observable under certain restrictions

  12. The evolutionary state of the Beta Canis Majoris variables

    International Nuclear Information System (INIS)

    Shobbrook, R.R.

    1978-01-01

    New β photometry is presented for all the known β Canis Majoris variables and for other bright early B stars observable from the southern hemisphere which were close to the β CMa stars in a β/[c 1 ] diagram published earlier. The new β values are accurate to +- 0.002 or 0.003 mag and enable the 'instability strip' along which the variables lie to be defined much more precisely. Several of the other B stars also lie in the strip; most of these have already been found to be non-variable in a subsidiary observing programme. (author)

  13. iHeartLift: a closed loop system with bio-feedback that uses music tempo variability to improve heart rate variability.

    Science.gov (United States)

    Ho, Thomas C T; Chen, Xiang

    2011-01-01

    "Musica delenit bestiam feram" translates into "Music soothes the savage beast". There is a hidden truth in this ancient quip passed down from generations. Besides soothing the heart, it also incites the heart to a healthier level of heart rate variability (HRV). In this paper, an approach to use and test music and biofeedback to increase the heart rate variability for people facing daily stress is discussed. By determining the music tempo variability (MTV) of a piece of music and current heart rate variability, iHeartLift is able to compare the 2 trends and locate a musical piece that is suited to increase the user's heart rate variability to a healthier level. With biofeedback, the 2 trends are continuously compared in real-time and the musical piece is changed in accordance with the current comparisons. A study was conducted and it was generally found that HRV can be uplifted by music regardless of language and meaning of musical lyrics but with limitations to musical genre.

  14. Experimental verification of quantum discord in continuous-variable states

    International Nuclear Information System (INIS)

    Hosseini, S; Haw, J Y; Assad, S M; Chrzanowski, H M; Janousek, J; Symul, T; Lam, P K; Rahimi-Keshari, S; Ralph, T C

    2014-01-01

    We introduce a simple and efficient technique to verify quantum discord in unknown Gaussian states and a certain class of non-Gaussian states. We show that any separation in the peaks of the marginal distributions of one subsystem conditioned on two different outcomes of homodyne measurements performed on the other subsystem indicates correlation between the corresponding quadratures, and hence nonzero discord. We also apply this method to non-Gaussian states that are prepared by overlapping a statistical mixture of coherent and vacuum states on a beam splitter. We experimentally demonstrate this technique by verifying nonzero quantum discord in a bipartite Gaussian and certain non-Gaussian states. (paper)

  15. Soil frost-induced soil moisture precipitation feedback and effects on atmospheric states

    Science.gov (United States)

    Hagemann, Stefan; Blome, Tanja; Ekici, Altug; Beer, Christian

    2016-04-01

    Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. As it is a thermal phenomenon, its characteristics are highly dependent on climatic factors. The impact of the currently observed warming, which is projected to persist during the coming decades due to anthropogenic CO2 input, certainly has effects for the vast permafrost areas of the high northern latitudes. The quantification of these effects, however, is scientifically still an open question. This is partly due to the complexity of the system, where several feedbacks are interacting between land and atmosphere, sometimes counterbalancing each other. Moreover, until recently, many global circulation models (GCMs) and Earth system models (ESMs) lacked the sufficient representation of permafrost physics in their land surface schemes. Within the European Union FP7 project PAGE21, the land surface scheme JSBACH of the Max-Planck-Institute for Meteorology ESM (MPI-ESM) has been equipped with the representation of relevant physical processes for permafrost studies. These processes include the effects of freezing and thawing of soil water for both energy and water cycles, thermal properties depending on soil water and ice contents, and soil moisture movement being influenced by the presence of soil ice. In the present study, it will be analysed how these permafrost relevant processes impact large-scale hydrology and climate over northern hemisphere high latitude land areas. For this analysis, the atmosphere-land part of MPI-ESM, ECHAM6-JSBACH, is driven by prescribed observed SST and sea ice in an AMIP2-type setup with and without the newly implemented permafrost processes. Results show a large improvement in the simulated discharge. On one hand this is related to an improved snowmelt peak of runoff due to frozen soil in spring. On the other hand a subsequent reduction of soil moisture leads to a positive

  16. Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator

    Science.gov (United States)

    Shao, Xingling; Liu, Jun; Wang, Honglun

    2018-05-01

    In this paper, a robust back-stepping output feedback trajectory tracking controller is proposed for quadrotors subject to parametric uncertainties and external disturbances. Based on the hierarchical control principle, the quadrotor dynamics is decomposed into translational and rotational subsystems to facilitate the back-stepping control design. With given model information incorporated into observer design, a high-order extended state observer (ESO) that relies only on position measurements is developed to estimate the remaining unmeasurable states and the lumped disturbances in rotational subsystem simultaneously. To overcome the problem of "explosion of complexity" in the back-stepping design, the sigmoid tracking differentiator (STD) is introduced to compute the derivative of virtual control laws. The advantage is that the proposed controller via output-feedback scheme not only can ensure good tracking performance using very limited information of quadrotors, but also has the ability of handling the undesired uncertainties. The stability analysis is established using the Lyapunov theory. Simulation results demonstrate the effectiveness of the proposed control scheme in achieving a guaranteed tracking performance with respect to an 8-shaped reference trajectory.

  17. A New Approach to HVDC Grid Voltage Control Based on Generalized State Feedback

    DEFF Research Database (Denmark)

    Beerten, Jef; Eriksson, Robert; Van Hertem, Dirk

    2014-01-01

    in the system hamper a straight-forward definition of the power sharing. The use of a common DC voltage signal for the control can solve some of the problems. However, it disregards some of the benefits that are associated with the use of a local voltage control, such as the tendency of a controller using local...... by combining the local voltage signal available at the converter terminals with remote voltage signals at different locations in the DC system by means of communication. The local voltage feedback control is used for a fast, reliable system response. The introduction of the remote voltage signals...... in the control allows to differentiate the system response for different converter outages. Simulation results show the validity of the proposed control scheme....

  18. Observer-based adaptive control of chaos in nonlinear discrete-time systems using time-delayed state feedback

    International Nuclear Information System (INIS)

    Goharrizi, Amin Yazdanpanah; Khaki-Sedigh, Ali; Sepehri, Nariman

    2009-01-01

    A new approach to adaptive control of chaos in a class of nonlinear discrete-time-varying systems, using a delayed state feedback scheme, is presented. It is discussed that such systems can show chaotic behavior as their parameters change. A strategy is employed for on-line calculation of the Lyapunov exponents that will be used within an adaptive scheme that decides on the control effort to suppress the chaotic behavior once detected. The scheme is further augmented with a nonlinear observer for estimation of the states that are required by the controller but are hard to measure. Simulation results for chaotic control problem of Jin map are provided to show the effectiveness of the proposed scheme.

  19. The effects of autogenic-feedback training on motion sickness severity and heart rate variability in astronauts

    Science.gov (United States)

    Toscano, William B.; Cowings, Patricia S.

    1994-01-01

    Space motion sickness (SMS) affects 50 percent of all people during early days of spaceflight. This study describes the results of two Shuttle flight experiments in which autogenic-feedback training (AFT), a physiological conditioning method, was tested as a treatment for this disorder. Of the six who were designated as flight subjects (two women and four men), three were given treatment and three served as controls (i.e., no AFT). Treatment subjects were given 6 hours of preflight AFT. Preflight results showed that AFT produced a significant increase in tolerance to rotating chair motion sickness tests. Further, this increased tolerance was associated with changes in specific physiological responses and reports of reduced malaise. Flight results showed that two of the three control subjects experienced repeated vomiting on the first mission day, while one subject experienced only moderate malaise. Of the three treatment subjects, one experienced mild discomfort, one moderate discomfort, and one severe motion sickness. Only the three control subjects took medication for symptom suppression. Measures of cardiac function reflective of vagal control were shown to be affected especially strongly on the first day of space flight. AFT given for control of heart rate, respiration, and other autonomic activity influenced both the vagal control measures and SMS. These data suggest that AFT may be an effective treatment for space motion sickness; however, this cannot be demonstrated conclusively with the small number of subjects described.

  20. The evolutionary state of the β Canis Majoris variables

    International Nuclear Information System (INIS)

    Shobbrook, R.R.

    1978-01-01

    It is found from accurate β photometry of bright stars in the region of the β CMa instability strip that about three-quarters of the stars in the strip, to a distance modulus of 8.0, are β CMa variables. The strip is not resolved by the data so that its intrinsic width is uncertain, but the conclusion from a consideration of theoretical evolutionary rates is that the variables must be very near the end of core hydrogen burning. Comparison of the relative positions of the empirical and theoretical instability strip and zero age main sequence indicates that the observationally located upper ZAMS is too bright. (author)

  1. Characterization of Nighttime Light Variability Over the Southeastern United States

    Science.gov (United States)

    Cole, Tony A.; Molthan, Andrew L.; Schultz, Lori A.

    2016-01-01

    City lights provide indications of human activity at night. Nighttime satellite imagery offers daily snapshots of this activity. With calibrated, science-quality imagery, long-term monitoring can also be achieved. The degree to which city lights fluctuate, however, is not well known. For the application of detecting power outages, this degree of variability is crucial for assessing reductions to city lights based on historical trends. Eight southeastern U.S. cities are analyzed to understand the relationship between emission variability and several population centers. A preliminary, example case power outage study is also discussed as a transition into future work.

  2. The Variable Transition State in Polar Additions to Pi Bonds

    Science.gov (United States)

    Weiss, Hilton M.

    2010-01-01

    A vast majority of polar additions of Bronsted acids to alkynes involve a termolecular transition state. With strong acids, considerable positive charge is developed on carbon and Markovnikov addition predominates. In less acidic solutions, however, the reaction is much slower and the transition state more closely resembles the olefinic product.…

  3. State-independent quantum contextuality for continuous variables

    International Nuclear Information System (INIS)

    Plastino, Angel R.; Cabello, Adan

    2010-01-01

    Recent experiments have shown that nature violates noncontextual inequalities regardless of the state of the physical system. So far, all these inequalities involve measurements of dichotomic observables. We show that state-independent quantum contextuality can also be observed in the correlations between measurements of observables with genuinely continuous spectra, highlighting the universal character of the effect.

  4. EL FEEDBACK COMO VARIABLE DEL APRENDIZAJE EN EL TENIS. DIFERENCIAS EN SU APLICACION ENTRE ENTRENADORES JUGADORES Y ENTRENADORES NO JUGADORES

    Directory of Open Access Journals (Sweden)

    Virginia Tejada Medina

    2003-06-01

    Full Text Available El entrenador/a es un elemento importante a considerar en el entrenamiento deportivo. Las conductas, comportamientos y actitudes que desarrolla durante el entrenamiento, así como los conocimientos y creencias que posee acerca de una modalidad deportiva pueden y deben ser analizados, con la intención de mejorar la formación general de los entrenadores y su competencia didáctica durante el desarrollo de las sesiones de entrenamiento. El objeto de estudio de esta inve.stigación se centra en el análisis del conocimiento y aplicación del feedback de los entrenadores de tenis durante las sesiones de entrenamiento, atendiendo a las experiencias y creencias que poseen sobre la enseñanza de este deporte y a las diferencias en cuanto a su formación inicial. En dicha investigación han participado un total de 1 O entrenadores de tenis (6 que fueron jugadores profesionales y 4 que no lo fueron. Para la recogida de datos se utilizó un cuestionario que se pasó a todos los participantes, empleando para el tratamiento de los datos el paquete estadístico "SPSS 1 0.0", mediante el cual se efectuó un análisis estadístico descriptivo y una comparación intergrupos. Por otro lado se llevaron a cabo dos entrevistas a un representante de cada grupo de estudio, realizando el proceso de análisis de las mismas a través de un análisis del contenido tomando como referencia la estructura del cuestionario.

  5. Analysis of Pilot Feedback Regarding the Use of State Awareness Technologies During Complex Situations

    Science.gov (United States)

    Evans, Emory; Young, Steven D.; Daniels, Taumi; Santiago-Espada, Yamira; Etherington, Tim

    2016-01-01

    A flight simulation study was conducted at NASA Langley Research Center to evaluate flight deck systems that (1) predict aircraft energy state and/or autoflight configuration, (2) present the current state and expected future state of automated systems, and/or (3) show the state of flight-critical data systems in use by automated systems and primary flight instruments. Four new technology concepts were evaluated vis-à-vis current state-of-the-art flight deck systems and indicators. This human-in-the-loop study was conducted using commercial airline crews. Scenarios spanned a range of complex conditions and several emulated causal factors and complexity in recent accidents involving loss of state awareness by pilots (e.g. energy state, automation state, and/or system state). Data were collected via questionnaires administered after each flight, audio/video recordings, physiological data, head and eye tracking data, pilot control inputs, and researcher observations. This paper strictly focuses on findings derived from the questionnaire responses. It includes analysis of pilot subjective measures of complexity, decision making, workload, situation awareness, usability, and acceptability.

  6. Synchronization of coupled nonidentical multidelay feedback systems

    International Nuclear Information System (INIS)

    Hoang, Thang Manh; Nakagawa, Masahiro

    2007-01-01

    We present the lag synchronization of coupled nonidentical multidelay feedback systems, in which the synchronization signal is the sum of nonlinearly transformed components of delayed state variable. The sufficient condition for synchronization is considered by the Krasovskii-Lyapunov theory. The specific examples will demonstrate and verify the effectiveness of the proposed model

  7. Self-excited vibration control for axially fast excited beam by a time delay state feedback

    International Nuclear Information System (INIS)

    Hamdi, Mustapha; Belhaq, Mohamed

    2009-01-01

    This work examines the control of self-excited vibration of a simply-supported beam subjected to an axially high-frequency excitation. The investigation of the resonant cases are not considered in this paper. The control is implemented via a corrective position feedback with time delay. The objective of this control is to eliminate the undesirable self-excited vibrations with an appropriate choice of parameters. The issue of stability is also addressed in this paper. Using the technique of direct partition of motion, the dynamic of discretized equations is separated into slow and fast components. The multiple scales method is then performed on the slow dynamic to obtain a slow flow for the amplitude and phase. Analysis of this slow flow provides analytical approximations locating regions in parameters space where undesirable self-excited vibration can be eliminated. A numerical study of these regions is performed on the original discretized system and compared to the analytical prediction showing a good agreement.

  8. Pattern recognition of state variables by neural networks

    International Nuclear Information System (INIS)

    Faria, Eduardo Fernandes; Pereira, Claubia

    1996-01-01

    An artificial intelligence system based on artificial neural networks can be used to classify predefined events and emergency procedures. These systems are being used in different areas. In the nuclear reactors safety, the goal is the classification of events whose data can be processed and recognized by neural networks. In this works we present a preliminary simple system, using neural networks in the recognition of patterns the recognition of variables which define a situation. (author)

  9. Among-tree variability and feedback effects result in different growth responses to climate change at the upper treeline in the Swiss Alps.

    Science.gov (United States)

    Jochner, Matthias; Bugmann, Harald; Nötzli, Magdalena; Bigler, Christof

    2017-10-01

    Upper treeline ecotones are important life form boundaries and particularly sensitive to a warming climate. Changes in growth conditions at these ecotones have wide-ranging implications for the provision of ecosystem services in densely populated mountain regions like the European Alps. We quantify climate effects on short- and long-term tree growth responses, focusing on among-tree variability and potential feedback effects. Although among-tree variability is thought to be substantial, it has not been considered systematically yet in studies on growth-climate relationships. We compiled tree-ring data including almost 600 trees of major treeline species ( Larix decidua , Picea abies , Pinus cembra , and Pinus mugo ) from three climate regions of the Swiss Alps. We further acquired tree size distribution data using unmanned aerial vehicles. To account for among-tree variability, we employed information-theoretic model selections based on linear mixed-effects models (LMMs) with flexible choice of monthly temperature effects on growth. We isolated long-term trends in ring-width indices (RWI) in interaction with elevation. The LMMs revealed substantial amounts of previously unquantified among-tree variability, indicating different strategies of single trees regarding when and to what extent to invest assimilates into growth. Furthermore, the LMMs indicated strongly positive temperature effects on growth during short summer periods across all species, and significant contributions of fall ( L. decidua ) and current year's spring ( L. decidua , P. abies ). In the longer term, all species showed consistently positive RWI trends at highest elevations, but different patterns with decreasing elevation. L. decidua exhibited even negative RWI trends compared to the highest treeline sites, whereas P. abies , P. cembra , and P. mugo showed steeper or flatter trends with decreasing elevation. This does not only reflect effects of ameliorated climate conditions on tree

  10. Computation of the target state and feedback controls for time optimal consensus in multi-agent systems

    Science.gov (United States)

    Mulla, Ameer K.; Patil, Deepak U.; Chakraborty, Debraj

    2018-02-01

    N identical agents with bounded inputs aim to reach a common target state (consensus) in the minimum possible time. Algorithms for computing this time-optimal consensus point, the control law to be used by each agent and the time taken for the consensus to occur, are proposed. Two types of multi-agent systems are considered, namely (1) coupled single-integrator agents on a plane and, (2) double-integrator agents on a line. At the initial time instant, each agent is assumed to have access to the state information of all the other agents. An algorithm, using convexity of attainable sets and Helly's theorem, is proposed, to compute the final consensus target state and the minimum time to achieve this consensus. Further, parts of the computation are parallelised amongst the agents such that each agent has to perform computations of O(N2) run time complexity. Finally, local feedback time-optimal control laws are synthesised to drive each agent to the target point in minimum time. During this part of the operation, the controller for each agent uses measurements of only its own states and does not need to communicate with any neighbouring agents.

  11. When non-Gaussian states are Gaussian: Generalization of nonseparability criterion for continuous variables

    International Nuclear Information System (INIS)

    McHugh, Derek; Buzek, Vladimir; Ziman, Mario

    2006-01-01

    We present a class of non-Gaussian two-mode continuous-variable states for which the separability criterion for Gaussian states can be employed to detect whether they are separable or not. These states reduce to the two-mode Gaussian states as a special case

  12. Continuous Variable Entanglement of Orbital Angular Momentum States

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Leuchs, G.; Andersen, Ulrik Lund

    2009-01-01

    We have generated a new quantum state of light composed of quadrature entangled Laguerre-Gaussian (LG) modes. For the generation we used an OPO operating in a new regime where all field parameters are degenerate except for its spatial degree of freedom for which it is two-fold degenerate. The ent...

  13. Modeling Selected Climatic Variables in Ibadan, Oyo State, Nigeria ...

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-09-01

    Sep 1, 2013 ... The aim of this study was fitting the modified generalized burr density function to total rainfall and temperature data obtained from the meteorological unit in the Department of. Environmental Modelling and Management of the Forestry Research Institute of Nigeria. (FRIN) in Ibadan, Oyo State, Nigeria.

  14. State variable participation in the limit cycle of induction motor

    Indian Academy of Sciences (India)

    2015-02-21

    Feb 21, 2015 ... The paper presents bifurcation behaviour of a single-phase induction motor. Study of bifurcation of a system gives the complete picture of its dynamical behaviour with the change in system's parameters. The system is mathematically described by a set of differential equations in the state space. Induction ...

  15. Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback

    Science.gov (United States)

    Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing

    2017-04-01

    ) ''hot spots'', it is generally admitted that the variability of the surface temperature is explained by the soil moisture trough its control on the evaporation. This work suggests that the impact of the soil moisture on the temperature through its impact on the thermal inertia can be as important as its direct impact on the evaporation. Contrarily to the evaporation related soil-moisture temperature negative feedback, the thermal inertia soil-moisture related feedback newly identified by this work is a positive feedback which limits the cooling when the soil moisture increases. These results suggest that uncertainties in the representation of the soil and snow thermal properties can be responsible of significant biases in numerical simulations and emphasize the need to carefully document and evaluate these quantities in the Land Surface Modules implemented in the climate models.

  16. Possible generalization of Yang variables for the study of many particle final states

    International Nuclear Information System (INIS)

    Becker, L.; Schiller, H.

    1976-01-01

    Starting from a discussion of constraints on invariant variables a generalization of the so called Yang-variables is discussed for the case of 5 and 6 particles in the final states. The obtained Lorentz-invariant variables are ''quasi permutation invariant'' with respect to the final state particles. The influence of Gram determinants is discussed in the context of the application of a cluster algorithm. (author)

  17. Teleportation of a Kind of Three-Mode Entangled States of Continuous Variables

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A quantum teleportation scheme to teleport a kind of tripartite entangled states of continuous variables by using a quantum channel composed of three bipartite entangled states is proposed. The joint Bell measurement is feasible because the bipartite entangled states are complete and the squeezed state has a natural representation in the entangled state basis. The calculation is greatly simplified by using the Schmidt decomposition of the entangled states.

  18. Effect of State Feedback Coupling and System Delays on the Transient Performance of Stand-Alone VSI with LC Output Filter

    DEFF Research Database (Denmark)

    Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    The influence of state feedback coupling in the dynamics performance of power converters for stand-alone microgrids is investigated. Computation and PWM delays are the main factors that limit the achievable bandwidth of current regulators in digital implementations. In particular, the performance...... of state feedback decoupling is degraded because of these delays. Two decoupling techniques to improve the transient response of the system are investigated, named non-ideal and ideal capacitor voltage decoupling respectively. In particular, the latter solution consists in leading the capacitor voltage...... on the state feedback decoupling path in order to compensate for system delays. Practical implementation issues are discussed with reference to both the decoupling techniques. A design methodology for the voltage loop, that considers the closed loop transfer functions developed for the inner loop, is also...

  19. Fractional State Feedback Control of Undamped and Viscoelastically-Damped Structures

    Science.gov (United States)

    1990-03-01

    and apply the inverse transform to Eq (99) then 0 DaO zt z In t (n -a ) (1)te = r(n-as+) n=O Eq (101) is the fractional derivative of a complex...s)] 2 ( [F(s)] es t d (110) the inverse transform of Eq (109) may be expressed as 40 D a e t ] =13 e at.. s z do t L 7-ZJ 27i = iW 1-i j and Eq...Il) can be evaluated using the residue theorem from the calculus of complex variables. The closed contour of integration for the inverse transform , in

  20. Generating continuous variable optical quantum states and entanglement

    International Nuclear Information System (INIS)

    Lam, P.K.; Bowen, W.P.; Schnabel, R.; Treps, N.; Buchler, B.C.; Bachor, H.-A.; Ralph, T.C.

    2002-01-01

    Full text: Quantum information research has recently been shown to have many applications in the field of communication and information processing. Quantum states and entanglement play a central role to almost all quantum information protocols, and form the basic building blocks for larger quantum information networks. We present an overview of the research activities at the quantum optics group at the ANU relating to this area. In particular, we demonstrate technology to suppress the noise on a coherent laser beam to below that of even vacuum. This quantum state of light is called 'squeezed light'. We show experimentally that by mixing two squeezed beams on a beam splitter, a pair of Einstein-Podolsky-Rosen (EPR) entangled beams can be created. This kind of entanglement exhibits below shot noise correlations between both the phase and amplitude quandratures of two beams. Our experimental results show conclusively that our entangled beams demonstrate the famous EPR paradox

  1. Competing feedbacks drive state transitions during initial catchment evolution: Examples from post-mining landscape and ecosystems evolution

    Science.gov (United States)

    Hinz, Christoph; Wolfgang, Schaaf; Werner, Gerwin

    2014-05-01

    Within the context of severely disturbed landscapes with little or no ecological memory, such as post-mining landscapes, we propose a simple framework that explains the catchment evolution as a result of competing feedbacks influenced by the initial conditions and the atmospheric drivers such as rainfall intermittency and intensity. The first stage of the evolution is dominated by abiotic feedbacks triggered by rainfall and subsequent fluid flow causing particle mobilisation on the surface and in the subsurface leading to flow concentration or in some instances to densification of surface and subsurface substrates. Subsequently, abiotic-biotic feedbacks start to compete in the sense that biological activity generally stabilizes substrate by preventing particle mobilisation and hence contribute to converting the substrate to a habitat. We suggest that these competing feedbacks may generate alternative stable states in particular under semi-arid and arid climatic conditions, while in temperate often energy limited environments biological process "outcompete" abiotic processes leading to a stable state, in particular from the water balance point of view for comparable geomorphic situations. To illustrate this framework, we provide examples from post-mining landscapes, in which soil, water and vegetation was monitored. In case of arid regions in Australia, we provide evidence that the initial conditions of a mine waste disposal "locked" the system into a state that was limited by water and nutrient storage capacity while at the same time it was stable from a geomorphic point of view for the observation period. The cause of the system to be locked in, is the very high hydraulic conductivity of the substrate, that has not undergone any changes during the first years. In contrast to this case study, we illustrate how this framework explains the evolution of an artificial catchment (Hühnerwasser Catchment) in Lusatia (150 km southeast of Berlin, Germany). During the

  2. The Relation of College Student Self-Efficacy toward Writing and Writing Self-Regulation Aptitude: Writing Feedback Perceptions as a Mediating Variable

    Science.gov (United States)

    Ekholm, Eric; Zumbrunn, Sharon; Conklin, Sarah

    2015-01-01

    Despite the powerful effect feedback often has on student writing success more research is needed on how students emotionally react to the feedback they receive. This study tested the predictive and mediational roles of college student writing self-efficacy beliefs and feedback perceptions on writing self-regulation aptitude. Results suggested…

  3. Automatic feedback on cognitive load and emotional state of traffic controllers

    NARCIS (Netherlands)

    Neerincx, M.A.; Harbers, M.; Lim, D.; Tas, V. van der

    2014-01-01

    Workload research in command, information and process-control centers, resulted in a modular and formal Cognitive Load and Emotional State (CLES) model with transparent and easy-to-modify classification and assessment techniques. The model distinguishes three representation and analysis layers with

  4. Numerical static state feedback laws for closed-loop singular optimal control

    NARCIS (Netherlands)

    Graaf, de S.C.; Stigter, J.D.; Straten, van G.

    2005-01-01

    Singular and non-singular control trajectories of agricultural and (bio) chemical processes may need to be recalculated from time to time for use in closed-loop optimal control, because of unforeseen changes in state values and noise. This is time consuming. As an alternative, in this paper,

  5. Investigation, development and application of optimal output feedback theory. Volume 2: Development of an optimal, limited state feedback outer-loop digital flight control system for 3-D terminal area operation

    Science.gov (United States)

    Broussard, J. R.; Halyo, N.

    1984-01-01

    This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.

  6. Correlations in state space can cause sub-optimal adaptation of optimal feedback control models

    OpenAIRE

    Aprasoff, Jonathan; Donchin, Opher

    2011-01-01

    Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedb...

  7. Present state and perspectives of variable renewable energies in Spain

    Science.gov (United States)

    Gómez-Calvet, Roberto; Martínez-Duart, José Manuel; Serrano Calle, Silvia

    2018-03-01

    In accordance with the Paris Climate Agreement (2015) and the more recent European Union Winter Package of November 2016, the European nations have committed to drastically cut CO2 emissions during the next decades, especially in the power sector. To this end, Spain as well as many other European countries are initiating plans for a large deployment of variable renewable energy sources (VRES), especially motivated by the huge lowering in prices of solar and wind installations. In the first part of this work, a detailed analysis of the current Spanish electricity mix is carried out, especially of the present generation by VRES. To this end, we present hourly and daily fan charts, for the different days of the week as well as months or seasons of the year. These studies show that the current power system is quite varied and presents a large installed capacity in relation to peak demand. Other aspects, that will surely assist the transition to lower emission targets are the following: the recent adjudication of 9000MW of VRES, which will be operational within the next 2-3 years; a large overcapacity of Combined Cycle Gas Turbines (CCGT) plants, which could be used during the transition as backup plants; and the relatively large hydro-pump potential for the storage of possible VRES surpluses. Finally, the possibility of decommissioning several nuclear plants in a few years is also discussed.

  8. A Best-Estimate Reactor Core Monitor Using State Feedback Strategies to Reduce Uncertainties

    International Nuclear Information System (INIS)

    Martin, Robert P.; Edwards, Robert M.

    2000-01-01

    The development and demonstration of a new algorithm to reduce modeling and state-estimation uncertainty in best-estimate simulation codes has been investigated. Demonstration is given by way of a prototype reactor core monitor. The architecture of this monitor integrates a control-theory-based, distributed-parameter estimation technique into a production-grade best-estimate simulation code. The Kalman Filter-Sequential Least-Squares (KFSLS) parameter estimation algorithm has been extended for application into the computational environment of the best-estimate simulation code RELAP5-3D. In control system terminology, this configuration can be thought of as a 'best-estimate' observer. The application to a distributed-parameter reactor system involves a unique modal model that approximates physical components, such as the reactor, by describing both states and parameters by an orthogonal expansion. The basic KFSLS parameter estimation is used to dynamically refine a spatially varying (distributed) parameter. The application of the distributed-parameter estimator is expected to complement a traditional nonlinear best-estimate simulation code by providing a mechanism for reducing both code input (modeling) and output (state-estimation) uncertainty in complex, distributed-parameter systems

  9. Latent variable method for automatic adaptation to background states in motor imagery BCI

    Science.gov (United States)

    Dagaev, Nikolay; Volkova, Ksenia; Ossadtchi, Alexei

    2018-02-01

    Objective. Brain-computer interface (BCI) systems are known to be vulnerable to variabilities in background states of a user. Usually, no detailed information on these states is available even during the training stage. Thus there is a need in a method which is capable of taking background states into account in an unsupervised way. Approach. We propose a latent variable method that is based on a probabilistic model with a discrete latent variable. In order to estimate the model’s parameters, we suggest to use the expectation maximization algorithm. The proposed method is aimed at assessing characteristics of background states without any corresponding data labeling. In the context of asynchronous motor imagery paradigm, we applied this method to the real data from twelve able-bodied subjects with open/closed eyes serving as background states. Main results. We found that the latent variable method improved classification of target states compared to the baseline method (in seven of twelve subjects). In addition, we found that our method was also capable of background states recognition (in six of twelve subjects). Significance. Without any supervised information on background states, the latent variable method provides a way to improve classification in BCI by taking background states into account at the training stage and then by making decisions on target states weighted by posterior probabilities of background states at the prediction stage.

  10. Recent state report: Groundwater programmes of variable density

    International Nuclear Information System (INIS)

    Fein, E.

    1991-12-01

    This report summarises basic facts and data that may be helpful in decisions about the development of a groundwater programme for the calculation of saline groundwater movements. Generally accepted requirements of a rapid groundwater programme for the assessment of flow mechanisms above salt domes are defined. It also describes the possibilities offered by similar programmes already in progress on a national and international basis and discusses state-of-the-art numerical methods and hardware in respect of speed and efficiency of the relevant computer programmes. The availability of a rapid groundwater programme would make it possible for model calculations in connection with long-term safety analyses to take account of the influence of salinity on groundwater movements in extended and complex model regions. (orig./DG) [de

  11. Application of Bipartite and Tripartite Entangled State Representations in Quantum Teleportation of Continuous Variables

    Institute of Scientific and Technical Information of China (English)

    YUAN Hong-Chun; QI Kai-Guo

    2005-01-01

    We mostly investigate two schemes. One is to teleport a multi-mode W-type entangled coherent state using a peculiar bipartite entangled state as the quantum channel different from other proposals. Based on our formalism,teleporting multi-mode coherent state or squeezed state is also possible. Another is that the tripartite entangled state is used as the quantum channel of controlled teleportation of an arbitrary and unknown continuous variable in the case of three participators.

  12. High-fidelity teleportation of continuous-variable quantum States using delocalized single photons

    DEFF Research Database (Denmark)

    Andersen, Ulrik L; Ralph, Timothy C

    2013-01-01

    Traditional continuous-variable teleportation can only approach unit fidelity in the limit of an infinite (and unphysical) amount of squeezing. We describe a new method for continuous-variable teleportation that approaches unit fidelity with finite resources. The protocol is not based on squeezed...... states as in traditional teleportation but on an ensemble of single photon entangled states. We characterize the teleportation scheme with coherent states, mesoscopic superposition states, and two-mode squeezed states and we find several situations in which near-unity teleportation fidelity can...

  13. Subseasonal climate variability for North Carolina, United States

    Science.gov (United States)

    Sayemuzzaman, Mohammad; Jha, Manoj K.; Mekonnen, Ademe; Schimmel, Keith A.

    2014-08-01

    Subseasonal trends in climate variability for maximum temperature (Tmax), minimum temperature (Tmin) and precipitation were evaluated for 249 ground-based stations in North Carolina for 1950-2009. The magnitude and significance of the trends at all stations were determined using the non-parametric Theil-Sen Approach (TSA) and the Mann-Kendall (MK) test, respectively. The Sequential Mann-Kendall (SQMK) test was also applied to find the initiation of abrupt trend changes. The lag-1 serial correlation and double mass curve were employed to address the data independency and homogeneity. Using the MK trend test, statistically significant (confidence level ≥ 95% in two-tailed test) decreasing (increasing) trends by 44% (45%) of stations were found in May (June). In general, trends were decreased in Tmax and increased in Tmin data series in subseasonal scale. Using the TSA method, the magnitude of lowest (highest) decreasing (increasing) trend in Tmax is - 0.050 °C/year (+ 0.052 °C/year) in the monthly series for May (March) and for Tmin is - 0.055 °C/year (+ 0.075 °C/year) in February (December). For the precipitation time series using the TSA method, it was found that the highest (lowest) magnitude of 1.00 mm/year (- 1.20 mm/year) is in September (February). The overall trends in precipitation data series were not significant at the 95% confidence level except that 17% of stations were found to have significant (confidence level ≥ 95% in two-tailed test) decreasing trends in February. The statistically significant trend test results were used to develop a spatial distribution of trends: May for Tmax, June for Tmin, and February for precipitation. A correlative analysis of significant temperature and precipitation trend results was examined with respect to large scale circulation modes (North Atlantic Oscillation (NAO) and Southern Oscillation Index (SOI). A negative NAO index (positive-El Niño Southern Oscillation (ENSO) index) was found to be associated with

  14. Crisis and adjustment variables of Mediterranean oil states

    International Nuclear Information System (INIS)

    Beraud, Philippe; Jablanczy, Adrienne

    2010-01-01

    This paper deals with the performance of the Mediterranean and the other Arabian oil exporting countries. As far as the resource-based industry is concerned, it could be interesting to notice that the performance of these countries is linked to sectoral mix, nature of industry, type of enterprise, nature of joint-venture contracts and obviously macro-economic policies. The studies on the relationship between oil resources, oil production and valorization and global growth show that oil sector is not reliable, especially if we take into account the gap between low and high absorbing countries in the Arab world. In the first group of countries, oil revenues have a positive and significant effect on economic growth and development. In the second group of countries, oil revenues often copy with the Dutch-disease type resource reallocation process and have a negative effect on growth and development. Three alternative ways seem to be opened for these countries. And we study each of them: growing influence of profit sharing contracts between the state-owned companies and the international oil companies linked to technology transfers agreements, entrepreneurial and managerial trajectories coping with the influence of small and medium enterprises, effects of the regional integration in the framework of the Euro-Mediterranean trade agreements

  15. SYNTH-C, Steady-State and Time-Dependent 3-D Neutron Diffusion with Thermohydraulic Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Brega, E [ENEL-CRTN, Bastioni di Porta Volta 10, Milan (Italy); Salina, E [A.R.S. Spa, Viale Maino 35, Milan (Italy)

    1980-04-01

    1 - Description of problem or function: SYNTH-C-STEADY and SYNTH-C- TRANS solve respectively the steady-state and time-dependent few- group neutron diffusion equations in three dimensions x,y,z in the presence of fuel temperature and thermal-hydraulic feedback. The neutron diffusion and delayed precursor equations are approximated by a space-time (z,t) synthesis method with axially discontinuous trial functions. Three thermal-hydraulic and fuel heat transfer models are available viz. COBRA-3C/MIT model, lumped parameter (WIGL) model and adiabatic fuel heat-up model. 2 - Method of solution: The steady-state and time-dependent synthesis equations are solved respectively by the Wielandt's power method and by the theta-difference method (in time), both coupled with a block factorization technique and double precision arithmetic. The thermal-hydraulic model equations are solved by fully implicit finite differences (WIGL) or explicit-implicit difference techniques with iterations (COBRA-EC/MIT). 3 - Restrictions on the complexity of the problem: Except for the few- group limitation, the programs have no other fixed limitation so the ability to run a problem depends only on the available computer storage.

  16. Feedback stabilization initiative

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes.

  17. Feedback stabilization initiative

    International Nuclear Information System (INIS)

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes

  18. Interação de variáveis biomecânicas na composição de "feedback" visual aumentado para o ensino do ciclismo Interacción de variables biomecánicas en la composición de feedback visual aumentado para el enseñanza del ciclismo Interaction of biomechanical variables in the composition of visual augmented feedback for learning cycling

    Directory of Open Access Journals (Sweden)

    Guilherme Garcia Holderbaum

    2012-12-01

    Full Text Available O objetivo deste estudo foi testar uma metodologia para o ensino da técnica da pedalada do ciclismo utilizando variáveis biomecánicas para desenvolver um sistema de "feedback" visual aumentado (FVA. Participaram do estudo 19 indivíduos, sem experiência no ciclismo , divididos em grupo experimental (n = 10 e controle (n = 9. Inicialmente foi realizado um pré-teste para determinar o consumo máximo de oxigênio (VO2máx bem como a carga de trabalho utilizada nas sessões práticas que correspondeu a 60% do VO2máx. Em seguida foram realizadas sete sessões de prática. O grupo experimental foi submetido ao FVA e o grupo controle ao "feedback" aumentado (FA. O teste de retenção mostrou um aumento de 21 % na média do índice de efetividade (IE do grupo experimental quando comparado ao grupo controle. Os resultados mostraram que variáveis biomecánicas são apropriadas para o desenvolvimento de FVA e podem contribuir no processo de ensino-aprendizagem da técnica da pedalada do ciclismo.El objetivo de este estudio fue probar una metodología para enseñar la técnica de el ciclismo mediante la utilización de variables biomecánicas para desarrollar un sistema de feedback visual aumentado (FVA. Fue aplicado en 19 personas sin experiencia en el ciclismo, divididos en dos grupos (experimental = 10 y control = 9. Inicialmente se realizó un pre-test para determinar el consumo máximo de oxígeno (VO2max y la carga de trabajo utilizada en las sesiones de práctica que correspondía al 60% del VO2máx. El grupo experimental fue sometido a la FVA y el control a la feedback aumentado (FA. El ensayo de retención mostró un aumento del 21% en la media del índice de eficacia (IE en el grupo experimental en comparación con el grupo control. Los resultados mostraron que las variables biomecánicas son apropiadas para el desarrollo de la FVA y puede contribuir al proceso de enseñanza y aprendizaje del ciclismo.The aim of this study was to test a

  19. Quantification of climatic feedbacks on the Caspian Sea level variability and impacts from the Caspian Sea on the large-scale atmospheric circulation

    Science.gov (United States)

    Arpe, Klaus; Tsuang, Ben-Jei; Tseng, Yu-Heng; Liu, Xin-Yu; Leroy, Suzanne A. G.

    2018-05-01

    With a fall of the Caspian Sea level (CSL), its size gets smaller and therefore the total evaporation over the sea is reduced. With a reduced evaporation from the sea, the fall of the CSL is weakened. This creates a negative feedback as less evaporation leads to less water losses of the Caspian Sea (CS). On the other hand, less evaporation reduces the water in the atmosphere, which may lead to less precipitation in the catchment area of the CS. The two opposite feedbacks are estimated by using an atmospheric climate model coupled with an ocean model only for the CS with different CS sizes while keeping all other forcings like oceanic sea surface temperatures (SSTs) and leaf area index the same from a global climate simulation. The investigation is concentrated on the medieval period because at that time the CSL changed dramatically from about - 30 to - 19 m below the mean ocean sea level, partly man-made. Models used for simulating the last millennium are not able to change the size of the CS dynamically so far. When results from such simulations are used to investigate the CSL variability and its causes, the present study should help to parameterize its feedbacks. A first assumption that the total evaporation from the CS will vary with the size of the CS (number of grid points representing the sea) is generally confirmed with the model simulations. The decrease of grid points from 15 to 14, 10, 8 or 7 leads to a decrease of evaporation to 96, 77, 70 and 54%. The lower decrease than initially expected from the number of grid points (93, 67, 53 and 47%) is probably due to the fact that there would also be some evaporation at grid points that run dry with a lower CSL but a cooling of the CS SST with increasing CS size in summer may be more important. The reduction of evaporation over the CS means more water for the budget of the whole catchment of the CS (an increase of the CSL) but from the gain through reduced evaporation over the CS, only 70% is found to remain in

  20. Continuous-variable quantum teleportation of even and odd coherent states through varied gain channels

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Zhang Jing; Zhang Jun-Xiang; Zhang Tian-Cai

    2006-01-01

    This paper has investigated quantum teleportation of even and odd coherent states in terms of the EPR entanglement states for continuous variables. It discusses the relationship between the fidelity and the entanglement of EPR states, which is characterized by the degree of squeezing and the gain of classical channels. It shows that the quality of teleporting quantum states also depends on the characteristics of the states themselves. The properties of teleporting even and odd coherent states at different intensities are investigated. The difference of teleporting two such kinds of quantum states are analysed based on the quantum distance function.

  1. Single mode solid state distributed feedback dye laser fabricated by grey scale electron beam lithography on dye doped SU-8 resist

    DEFF Research Database (Denmark)

    Balslev, Søren; Rasmussen, Torben; Shi, Peixiong

    2005-01-01

    We demonstrate grey scale electron beam lithography on functionalized SU-8 resist for fabrication of single mode solid state dye laser devices. The resist is doped with Rhodamine 6G perchlorate and the lasers are based on a first order Bragg grating distributed feedback resonator. The lasers...

  2. A steady state analysis indicates that negative feedback regulation of PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation

    Directory of Open Access Journals (Sweden)

    Giri Lopamudra

    2004-08-01

    Full Text Available Abstract Background The phenomenon of switch-like response to graded input signal is the theme involved in various signaling pathways in living systems. Positive feedback loops or double negative feedback loops embedded with nonlinearity exhibit these switch-like bistable responses. Such feedback regulations exist in insulin signaling pathway as well. Methods In the current manuscript, a steady state analysis of the metabolic insulin-signaling pathway is presented. The threshold concentration of insulin required for glucose transporter GLUT4 translocation was studied with variation in system parameters and component concentrations. The dose response curves of GLUT4 translocation at various concentration of insulin obtained by steady state analysis were quantified in-terms of half saturation constant. Results We show that, insulin-stimulated GLUT4 translocation can operate as a bistable switch, which ensures that GLUT4 settles between two discrete, but mutually exclusive stable steady states. The threshold concentration of insulin required for GLUT4 translocation changes with variation in system parameters and component concentrations, thus providing insights into possible pathological conditions. Conclusion A steady state analysis indicates that negative feedback regulation of phosphatase PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation. The threshold concentration of insulin required for GLUT4 translocation and the corresponding bistable response at different system parameters and component concentrations was compared with reported experimental observations on specific defects in regulation of the system.

  3. Climate change/variability science and adaptive strategies for state and regional transportation decision making.

    Science.gov (United States)

    2010-04-01

    The objective of this study was to generate a baseline understanding of current policy responses to climate : change/variability at the state and regional transportation-planning and -decision levels. Specifically, : researchers were interested in th...

  4. A Novel Flood Forecasting Method Based on Initial State Variable Correction

    Directory of Open Access Journals (Sweden)

    Kuang Li

    2017-12-01

    Full Text Available The influence of initial state variables on flood forecasting accuracy by using conceptual hydrological models is analyzed in this paper and a novel flood forecasting method based on correction of initial state variables is proposed. The new method is abbreviated as ISVC (Initial State Variable Correction. The ISVC takes the residual between the measured and forecasted flows during the initial period of the flood event as the objective function, and it uses a particle swarm optimization algorithm to correct the initial state variables, which are then used to drive the flood forecasting model. The historical flood events of 11 watersheds in south China are forecasted and verified, and important issues concerning the ISVC application are then discussed. The study results show that the ISVC is effective and applicable in flood forecasting tasks. It can significantly improve the flood forecasting accuracy in most cases.

  5. Genuine tripartite entangled states with a local hidden-variable model

    International Nuclear Information System (INIS)

    Toth, Geza; Acin, Antonio

    2006-01-01

    We present a family of three-qubit quantum states with a basic local hidden-variable model. Any von Neumann measurement can be described by a local model for these states. We show that some of these states are genuine three-partite entangled and also distillable. The generalization for larger dimensions or higher number of parties is also discussed. As a by-product, we present symmetric extensions of two-qubit Werner states

  6. Variability common to first leaf dates and snowpack in the western conterminous United States

    Science.gov (United States)

    McCabe, Gregory J.; Betancourt, Julio L.; Pederson, Gregory T.; Schwartz, Mark D.

    2013-01-01

    Singular value decomposition is used to identify the common variability in first leaf dates (FLDs) and 1 April snow water equivalent (SWE) for the western United States during the period 1900–2012. Results indicate two modes of joint variability that explain 57% of the variability in FLD and 69% of the variability in SWE. The first mode of joint variability is related to widespread late winter–spring warming or cooling across the entire west. The second mode can be described as a north–south dipole in temperature for FLD, as well as in cool season temperature and precipitation for SWE, that is closely correlated to the El Niño–Southern Oscillation. Additionally, both modes of variability indicate a relation with the Pacific–North American atmospheric pattern. These results indicate that there is a substantial amount of common variance in FLD and SWE that is related to large-scale modes of climate variability.

  7. Resistive wall mode feedback control in EXTRAP T2R with improved steady-state error and transient response

    Science.gov (United States)

    Brunsell, P. R.; Olofsson, K. E. J.; Frassinetti, L.; Drake, J. R.

    2007-10-01

    Experiments in the EXTRAP T2R reversed field pinch [P. R. Brunsell, H. Bergsåker, M. Cecconello et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] on feedback control of m =1 resistive wall modes (RWMs) are compared with simulations using the cylindrical linear magnetohydrodynamic model, including the dynamics of the active coils and power amplifiers. Stabilization of the main RWMs (n=-11,-10,-9,-8,+5,+6) is shown using modest loop gains of the order G ˜1. However, other marginally unstable RWMs (n=-2,-1,+1,+2) driven by external field errors are only partially canceled at these gains. The experimental system stability limit is confirmed by simulations showing that the latency of the digital controller ˜50μs is degrading the system gain margin. The transient response is improved with a proportional-plus-derivative controller, and steady-state error is improved with a proportional-plus-integral controller. Suppression of all modes is obtained at high gain G ˜10 using a proportional-plus-integral-plus-derivative controller.

  8. Using periodic modulation to control coexisting attractors induced by delayed feedback

    International Nuclear Information System (INIS)

    Martinez-Zerega, B.E.; Pisarchik, A.N.; Tsimring, L.S.

    2003-01-01

    A delay in feedback can stabilize simultaneously several unstable periodic orbits embedded in a chaotic attractor. We show that by modulating the feedback variable it is possible to lock one of these states and eliminate other coexisting periodic attractors. The method is demonstrated with both a logistic map and a CO 2 laser model

  9. Generating entangled states of continuous variables via cross-Kerr nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiming [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Khosa, Ashfaq H [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Ikram, Manzoor [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Zubairy, M Suhail [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2007-05-28

    We propose a scheme for generating entanglement of quantum states with continuous variables (coherent states and squeezed vacuum states) of electromagnetical fields. The scheme involves cross-Kerr nonlinearity. It was shown that the cross-Kerr nonlinearity required for generating the superposition and entanglement of squeezed vacuum states is smaller than that required for coherent states. It was also found that the fidelity monotonously decreases with both the increase of the amplitude of the input coherent field and the increase of the deviation of the nonlinear phase shift from {pi}.

  10. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  11. Variability of Photovoltaic Power in the State of Gujarat Using High Resolution Solar Data

    Energy Technology Data Exchange (ETDEWEB)

    Hummon, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cochran, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Weekley, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stoltenberg, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Parsons, B. [Evergreen Renewable Consulting, CO (United States); Batra, P. [Central Electricity Authority, New Delhi (India); Mehta, B. [Gujarat Energy Transmission Corporation Ltd., Vadodara (India); Patel, D. [Gujarat Energy Transmission Corporation Ltd., Vadodara (India)

    2014-03-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  12. Recent trends in the variability of halogenated trace gases over the United States

    Science.gov (United States)

    Hurst, Dale F.; Bakwin, Peter S.; Elkins, James W.

    1998-10-01

    Recent trends in the atmospheric variability of seven halogenated trace gases are determined from three years (November 1994 through October 1997) of hourly gas chromatographic measurements at a 610 m tower in North Carolina and 17 months (June 1996 through October 1997) of similar measurements at a 450 m tower in Wisconsin. Production of five of these gases, CCl3F (CFC-11), CCl2F2 (CFC-12), CCl2FCClF2 (CFC-113), CH3CCl3 (methyl chloroform), and CCl4 (carbon tetrachloride), is now strictly regulated in the United States and other developed countries under international legislation. C2Cl4 (tetrachloroethene) and SF6 (sulfur hexafluoride) are currently produced without restriction, but requests for voluntary cutbacks in C2Cl4 emissions have been made, at least in the United States. Atmospheric variability of these gases is examined at several sampling heights on the towers, but trends are deduced using only nighttime data at the top sampling level of each tower to minimize variability driven by local emissions and the diurnal cycle of the planetary boundary layer, leaving regional emissions as the main source of day-to-day variability. Significant downward trends are determined for CFC-12, CFC-113, CH3CCl3, and C2Cl4 variability at both towers, reflecting decreased emissions of these gases in two regions of the United States. Trends in CFC-11, CCl4, and SF6 variability at both towers are not significantly different from zero.

  13. Formativ Feedback

    DEFF Research Database (Denmark)

    Hyldahl, Kirsten Kofod

    Denne bog undersøger, hvordan lærere kan anvende feedback til at forbedre undervisningen i klasselokalet. I denne sammenhæng har John Hattie, professor ved Melbourne Universitet, udviklet en model for feedback, hvilken er baseret på synteser af meta-analyser. I 2009 udgav han bogen "Visible...

  14. Evidence for increasingly variable Palmer Drought Severity Index in the United States since 1895.

    Science.gov (United States)

    Rayne, Sierra; Forest, Kaya

    2016-02-15

    Annual and summertime trends towards increasingly variable values of the Palmer Drought Severity Index (PDSI) over a sub-decadal period (five years) were investigated within the contiguous United States between 1895 and the present. For the contiguous United States as a whole, there is a significant increasing trend in the five-year running minimum-maximum ranges for the annual PDSI (aPDSI5 yr(min|max, range)). During this time frame, the average aPDSI5 yr(min|max, range) has increased by about one full unit, indicating a substantial increase in drought variability over short time scales across the United States. The end members of the running aPDSI5 yr(min|max, range) highlight even more rapid changes in the drought index variability within the past 120 years. This increasing variability in the aPDSI5 yr(min|max, range) is driven primarily by changes taking place in the Pacific and Atlantic Ocean coastal climate regions, climate regions which collectively comprise one-third the area of the contiguous United States. Similar trends were found for the annual and summertime Palmer Hydrological Drought Index (PHDI), the Palmer Modified Drought Index (PMDI), and the Palmer Z Index (PZI). Overall, interannual drought patterns in the contiguous United States are becoming more extreme and difficult to predict, posing a challenge to agricultural and other water-resource related planning efforts. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. One-step generation of continuous-variable quadripartite cluster states in a circuit QED system

    Science.gov (United States)

    Yang, Zhi-peng; Li, Zhen; Ma, Sheng-li; Li, Fu-li

    2017-07-01

    We propose a dissipative scheme for one-step generation of continuous-variable quadripartite cluster states in a circuit QED setup consisting of four superconducting coplanar waveguide resonators and a gap-tunable superconducting flux qubit. With external driving fields to adjust the desired qubit-resonator and resonator-resonator interactions, we show that continuous-variable quadripartite cluster states of the four resonators can be generated with the assistance of energy relaxation of the qubit. By comparison with the previous proposals, the distinct advantage of our scheme is that only one step of quantum operation is needed to realize the quantum state engineering. This makes our scheme simpler and more feasible in experiment. Our result may have useful application for implementing quantum computation in solid-state circuit QED systems.

  16. Anomalous Low States and Long Term Variability in the Black Hole Binary LMC X-3

    Science.gov (United States)

    Smale, Alan P.; Boyd, Patricia T.

    2012-01-01

    Rossi X-my Timing Explorer observations of the black hole binary LMC X-3 reveal an extended very low X-ray state lasting from 2003 December 13 until 2004 March 18, unprecedented both in terms of its low luminosity (>15 times fainter than ever before seen in this source) and long duration (approx 3 times longer than a typical low/hard state excursion). During this event little to no source variability is observed on timescales of approx hours-weeks, and the X-ray spectrum implies an upper limit of 1.2 x 10(exp 35) erg/s, Five years later another extended low state occurs, lasting from 2008 December 11 until 2009 June 17. This event lasts nearly twice as long as the first, and while significant variability is observed, the source remains reliably in the low/hard spectral state for the approx 188 day duration. These episodes share some characteristics with the "anomalous low states" in the neutron star binary Her X-I. The average period and amplitude of the Variability of LMC X-3 have different values between these episodes. We characterize the long-term variability of LMC X-3 before and after the two events using conventional and nonlinear time series analysis methods, and show that, as is the case in Her X-I, the characteristic amplitude of the variability is related to its characteristic timescale. Furthermore, the relation is in the same direction in both systems. This suggests that a similar mechanism gives rise to the long-term variability, which in the case of Her X-I is reliably modeled with a tilted, warped precessing accretion disk.

  17. Intraspecific Variability of Rotylenchulus reniformis from Cotton-growing Regions in the United States

    OpenAIRE

    Agudelo, Paula; Robbins, Robert T.; Stewart, James McD.; Szalanski, Allen L.

    2005-01-01

    Reniform nematode (Rotylenchulus reniformis) is a major pest of cotton in the southeastern United States. The objective of this study was to examine the variation of reniform nematode populations from cotton-growing locations in the United States where it is prevalent. Multivariate analysis of variance and discriminant analysis were used to determine the variability of morphology in males and immature females. Reproduction indices of populations were measured on selected soybean and cotton ge...

  18. Uncovering state-dependent relationships in shallow lakes using Bayesian latent variable regression.

    Science.gov (United States)

    Vitense, Kelsey; Hanson, Mark A; Herwig, Brian R; Zimmer, Kyle D; Fieberg, John

    2018-03-01

    Ecosystems sometimes undergo dramatic shifts between contrasting regimes. Shallow lakes, for instance, can transition between two alternative stable states: a clear state dominated by submerged aquatic vegetation and a turbid state dominated by phytoplankton. Theoretical models suggest that critical nutrient thresholds differentiate three lake types: highly resilient clear lakes, lakes that may switch between clear and turbid states following perturbations, and highly resilient turbid lakes. For effective and efficient management of shallow lakes and other systems, managers need tools to identify critical thresholds and state-dependent relationships between driving variables and key system features. Using shallow lakes as a model system for which alternative stable states have been demonstrated, we developed an integrated framework using Bayesian latent variable regression (BLR) to classify lake states, identify critical total phosphorus (TP) thresholds, and estimate steady state relationships between TP and chlorophyll a (chl a) using cross-sectional data. We evaluated the method using data simulated from a stochastic differential equation model and compared its performance to k-means clustering with regression (KMR). We also applied the framework to data comprising 130 shallow lakes. For simulated data sets, BLR had high state classification rates (median/mean accuracy >97%) and accurately estimated TP thresholds and state-dependent TP-chl a relationships. Classification and estimation improved with increasing sample size and decreasing noise levels. Compared to KMR, BLR had higher classification rates and better approximated the TP-chl a steady state relationships and TP thresholds. We fit the BLR model to three different years of empirical shallow lake data, and managers can use the estimated bifurcation diagrams to prioritize lakes for management according to their proximity to thresholds and chance of successful rehabilitation. Our model improves upon

  19. An Energy-Based State Observer for Dynamical Subsystems with Inaccessible State Variables

    NARCIS (Netherlands)

    Khalil, I.S.M.; Sabanovic, Asif; Misra, Sarthak

    2012-01-01

    This work presents an energy-based state estimation formalism for a class of dynamical systems with inaccessible/unknown outputs, and systems at which sensor utilization is impractical, or when measurements can not be taken. The power-conserving physical interconnections among most of the dynamical

  20. An Integrated Loop Model of Corrective Feedback and Oral English Learning: A Case of International Students in the United States

    Science.gov (United States)

    Lee, Eun Jeong

    2017-01-01

    The author in this study introduces an integrated corrective feedback (CF) loop to schematize the interplay between CF and independent practice in L2 oral English learning among advanced-level adult ESL students. The CF loop integrates insights from the Interaction, Output, and Noticing Hypotheses to show how CF can help or harm L2 learners'…

  1. Accurate determination of process variables in a solid-state fermentation system

    NARCIS (Netherlands)

    Smits, J.P.; Rinzema, A.; Tramper, J.; Schlösser, E.E.; Knol, W.

    1996-01-01

    The solid-state fermentation (SSF) method described enabled accurate determination of variables related to biological activity. Growth, respiratory activity and production of carboxymethyl-cellulose-hydrolysing enzyme (CMC-ase) activity by Trichoderma reesei QM9414 on wheat bran was used as a model

  2. Quantum error correction of continuous-variable states against Gaussian noise

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, T. C. [Centre for Quantum Computation and Communication Technology, School of Mathematics and Physics, University of Queensland, St Lucia, Queensland 4072 (Australia)

    2011-08-15

    We describe a continuous-variable error correction protocol that can correct the Gaussian noise induced by linear loss on Gaussian states. The protocol can be implemented using linear optics and photon counting. We explore the theoretical bounds of the protocol as well as the expected performance given current knowledge and technology.

  3. A Proposal for Testing Local Realism Without Using Assumptions Related to Hidden Variable States

    Science.gov (United States)

    Ryff, Luiz Carlos

    1996-01-01

    A feasible experiment is discussed which allows us to prove a Bell's theorem for two particles without using an inequality. The experiment could be used to test local realism against quantum mechanics without the introduction of additional assumptions related to hidden variables states. Only assumptions based on direct experimental observation are needed.

  4. State-related differences in heart rate variability in bipolar disorder

    DEFF Research Database (Denmark)

    Faurholt-Jepsen, Maria; Brage, Søren; Kessing, Lars Vedel

    2017-01-01

    Heart rate variability (HRV) is a validated measure of sympato-vagal balance in the autonomic nervous system. HRV appears decreased in patients with bipolar disorder (BD) compared with healthy individuals, but the extent of state-related alterations has been sparingly investigated. The present...... bipolar disorder and could...

  5. Changes in sleep polygraphic variables and clinical state in depressed patients during treatment with citalopram

    NARCIS (Netherlands)

    Bemmel, Alex L. van; Hoofdakker, Rutger H. van den; Beersma, Domien G.M.; Bouhuys, Antoinette L.

    1993-01-01

    Drug-induced improvement of depression may be mediated by changes in sleep physiology. The aim of this study was to relate changes in sleep polygraphic variables to clinical state during treatment with citalopram, a highly specific serotonin uptake inhibitor. Sixteen patients took part. The study

  6. Regularized tripartite continuous variable EPR-type states with Wigner functions and CHSH violations

    International Nuclear Information System (INIS)

    Jacobsen, Sol H; Jarvis, P D

    2008-01-01

    We consider tripartite entangled states for continuous variable systems of EPR type, which generalize the famous bipartite CV EPR states (eigenvectors of conjugate choices X 1 - X 2 , P 1 + P 2 , of the systems' relative position and total momentum variables). We give the regularized forms of such tripartite EPR states in second-quantized formulation, and derive their Wigner functions. This is directly compared with the established NOPA-like states from quantum optics. Whereas the multipartite entangled states of NOPA type have singular Wigner functions in the limit of large squeezing, r → ∞, or tanh r → 1 - (approaching the EPR states in the bipartite case), our regularized tripartite EPR states show singular behaviour not only in the approach to the EPR-type region (s → 1 in our notation), but also for an additional, auxiliary regime of the regulator (s→√2). While the s → 1 limit pertains to tripartite CV states with singular eigenstates of the relative coordinates and remaining squeezed in the total momentum, the (s→√2) limit yields singular eigenstates of the total momentum, but squeezed in the relative coordinates. Regarded as expectation values of displaced parity measurements, the tripartite Wigner functions provide the ingredients for generalized CHSH inequalities. Violations of the tripartite CHSH bound (B 3 ≤ 2) are established, with B 3 ≅2.09 in the canonical regime (s → 1 + ), as well as B 3 ≅2.32 in the auxiliary regime (s→√2 + )

  7. Quantum key distribution using continuous-variable non-Gaussian states

    Science.gov (United States)

    Borelli, L. F. M.; Aguiar, L. S.; Roversi, J. A.; Vidiella-Barranco, A.

    2016-02-01

    In this work, we present a quantum key distribution protocol using continuous-variable non-Gaussian states, homodyne detection and post-selection. The employed signal states are the photon added then subtracted coherent states (PASCS) in which one photon is added and subsequently one photon is subtracted from the field. We analyze the performance of our protocol, compared with a coherent state-based protocol, for two different attacks that could be carried out by the eavesdropper (Eve). We calculate the secret key rate transmission in a lossy line for a superior channel (beam-splitter) attack, and we show that we may increase the secret key generation rate by using the non-Gaussian PASCS rather than coherent states. We also consider the simultaneous quadrature measurement (intercept-resend) attack, and we show that the efficiency of Eve's attack is substantially reduced if PASCS are used as signal states.

  8. Glacier variability in the conterminous United States during the twentieth century

    Science.gov (United States)

    McCabe, Gregory J.; Fountain, Andrew G.

    2013-01-01

    Glaciers of the conterminous United States have been receding for the past century. Since 1900 the recession has varied from a 24 % loss in area (Mt. Rainier, Washington) to a 66 % loss in the Lewis Range of Montana. The rates of retreat are generally similar with a rapid loss in the early decades of the 20th century, slowing in the 1950s–1970s, and a resumption of rapid retreat starting in the 1990s. Decadal estimates of changes in glacier area for a subset of 31 glaciers from 1900 to 2000 are used to test a snow water equivalent model that is subsequently employed to examine the effects of temperature and precipitation variability on annual glacier area changes for these glaciers. Model results indicate that both winter precipitation and winter temperature have been important climatic factors affecting the variability of glacier variability during the 20th Century. Most of the glaciers analyzed appear to be more sensitive to temperature variability than to precipitation variability. However, precipitation variability is important, especially for high elevation glaciers. Additionally, glaciers with areas greater than 1 km2 are highly sensitive to variability in temperature.

  9. a Latent Variable Path Analysis Model of Secondary Physics Enrollments in New York State.

    Science.gov (United States)

    Sobolewski, Stanley John

    The Percentage of Enrollment in Physics (PEP) at the secondary level nationally has been approximately 20% for the past few decades. For a more scientifically literate citizenry as well as specialists to continue scientific research and development, it is desirable that more students enroll in physics. Some of the predictor variables for physics enrollment and physics achievement that have been identified previously includes a community's socioeconomic status, the availability of physics, the sex of the student, the curriculum, as well as teacher and student data. This study isolated and identified predictor variables for PEP of secondary schools in New York. Data gathered by the State Education Department for the 1990-1991 school year was used. The source of this data included surveys completed by teachers and administrators on student characteristics and school facilities. A data analysis similar to that done by Bryant (1974) was conducted to determine if the relationships between a set of predictor variables related to physics enrollment had changed in the past 20 years. Variables which were isolated included: community, facilities, teacher experience, number of type of science courses, school size and school science facilities. When these variables were isolated, latent variable path diagrams were proposed and verified by the Linear Structural Relations computer modeling program (LISREL). These diagrams differed from those developed by Bryant in that there were more manifest variables used which included achievement scores in the form of Regents exam results. Two criterion variables were used, percentage of students enrolled in physics (PEP) and percent of students enrolled passing the Regents physics exam (PPP). The first model treated school and community level variables as exogenous while the second model treated only the community level variables as exogenous. The goodness of fit indices for the models was 0.77 for the first model and 0.83 for the second

  10. Uplink Contention-based CSI Feedback with Prioritized Layers for a Multi-Carrier System

    DEFF Research Database (Denmark)

    Kaneko, Megumi; Hayashi, Kazunori; Popovski, Petar

    2012-01-01

    , several works have considered contention-based CSI feedback in the UL control channel. We propose such a feedback scheme for a generic MC system, based on the idea of variable collision protection, where the probability that a feedback information experiences a collision depends on its importance......Optimized resource allocation of the Downlink (DL) in wireless systems utilizing Multi-Carrier (MC) transmission requires Channel State Information (CSI) feedback for each user/subchannel to the Base Station (BS), consuming a high amount of Uplink (UL) radio resources. To alleviate this problem...

  11. Use of state variables in the description of irradiation creep and deformation of metals

    International Nuclear Information System (INIS)

    Hart, E.W.; Li, C.Y.

    1976-01-01

    The understanding of the effects of irradiation on metal creep and deformation are not yet satisfactory, owing in part to the limitations on experimentation in radiation environment. Because of such limitations, theoretical considerations must play a strong role. Virtually all of the theoretical considerations currently employed are based on micro-mechanical models for the deformation behavior. The recent theoretical and experimental development of a plastic equation of state for metal deformation has led to the identification of some of the principal micro-mechanisms in phenomenological terms. The role of the individual mechanisms can be related to the state variables of the description, and those variables are directly accessible measurable quantities. This paper explores how irradiation might affect this description. It is shown that the radiation flux and the radiation fluence are expected to affect different components of the equation of state. The resultant description makes considerable use of the information developed in radiation-free environment. 5 fig

  12. Mixed H2/Hinfinity output-feedback control of second-order neutral systems with time-varying state and input delays.

    Science.gov (United States)

    Karimi, Hamid Reza; Gao, Huijun

    2008-07-01

    A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.

  13. Comparison of heart rate variability between resting state and external-cuff-inflation-and-deflation state: a pilot study.

    Science.gov (United States)

    Ji, Lizhen; Liu, Chengyu; Li, Peng; Wang, Xinpei; Yan, Chang; Liu, Changchun

    2015-10-01

    Heart rate variability (HRV) has been widely used in clinical research to provide an insight into the autonomic control of the cardiovascular system. Measurement of HRV is generally performed under a relaxed resting state. The effects of other conditions on HRV measurement, such as running, mountaineering, head-up tilt, etc, have also been investigated. This study aimed to explore whether an inflation-and-deflation process applied to a unilateral upper arm cuff would influence the HRV measurement. Fifty healthy young volunteers aged between 21 and 30 were enrolled in this study. Electrocardiogram (ECG) signals were recorded for each subject over a five minute resting state followed by a five minute external-cuff-inflation-and-deflation state (ECID state). A one minute gap was scheduled between the two measurements. Consecutive RR intervals in the ECG were extracted automatically to form the HRV data for each of the two states. Time domain (SDNN, RMSSD and PNN50), frequency domain (LFn, HFn and LF/HF) and nonlinear (VLI, VAI and SampEn) HRV indices were analyzed and compared between the two states. In addition, the effects of mean artery pressure (MAP) and heart rate (HR) on the aforementioned HRV indices were assessed for the two states, respectively, by Pearson correlation analysis. The results showed no significant difference in all aforementioned HRV indices between the resting and the ECID states (all p  >  0.05). The corresponding HRV indices had significant positive correlation (all p    0.05) for either state. Besides, none of the indices showed HR-related change (all p  >  0.05) for either state except the index of VLI in the resting state. To conclude, this pilot study suggested that the applied ECID process hardly influenced those commonly used HRV indices. It would thus be applicable to simultaneously measure both blood pressure and HRV indices in clinical practice.

  14. Feedback Networks

    OpenAIRE

    Zamir, Amir R.; Wu, Te-Lin; Sun, Lin; Shen, William; Malik, Jitendra; Savarese, Silvio

    2016-01-01

    Currently, the most successful learning models in computer vision are based on learning successive representations followed by a decision layer. This is usually actualized through feedforward multilayer neural networks, e.g. ConvNets, where each layer forms one of such successive representations. However, an alternative that can achieve the same goal is a feedback based approach in which the representation is formed in an iterative manner based on a feedback received from previous iteration's...

  15. Wiener variable step size and gradient spectral variance smoothing for double-talk-robust acoustic echo cancellation and acoustic feedback cancellation

    DEFF Research Database (Denmark)

    Gil-Cacho, Jose M.; Van Waterschoot, Toon; Moonen, Marc

    2014-01-01

    Double-talk (DT)-robust acoustic echo cancellation (AEC) and acoustic feedback cancellation (AFC) are needed in speech communication systems, e.g., in hands-free communication systems and hearing aids. In this paper, we derive a practical and computationally efficient algorithm based...... model and in colored non-stationary noise....

  16. VALUE OF HEART RATE VARIABILITY ANALYSIS IN DIAGNOSTICS OF THE EMOTIONAL STATE

    Directory of Open Access Journals (Sweden)

    І. Chaykovskyi

    2012-11-01

    Full Text Available The is presented the development of method for evaluation of emotional state of man, what suitable for use at the workplace based on analysis of heart rate (HR variability. 28 healthy volunteers were examined. 3 audiovisual clips were consistently presented on the display of the personal computer for each of them. One clip contained information originating the positive emotions, the second one – negative emotions, the third one – neutral. All possible pairs of the emotional states were analysed with help of one- and multi-dimensional linear discriminant analysis based on HR variability. Showing the emotional video-clips (of both signs causes reliable slowing of HR frequency and also some decreasing of HR variability. In addition, negative emotions cause regularizing and simplification of structural organization of heart rhythm. Accuracy of discrimination for pair “emotional – neutral” video clips was 98 %, for pair “rest – neutral” was 74 %, for pair “positive – negative” was 91 %. Analysis of HR variability enables to determine the emotional state of observed person at the workplace with high reliability.

  17. Coherent states of quantum systems. [Hamiltonians, variable magnetic field, adiabatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, D A

    1975-01-01

    Time-evolution of coherent states and uncertainty relations for quantum systems are considered as well as the relation between the various types of coherent states. The most general form of the Hamiltonians that keep the uncertainty products at a minimum is found using the coherent states. The minimum uncertainty packets are shown to be coherent states of the type nonstationary-system coherent states. Two specific systems, namely that of a generalized N-dimensional oscillator and that of a charged particle moving in a variable magnetic field, are treated as examples. The adiabatic approximation to the uncertainty products for these systems is also discussed and the minimality is found to be retained with an exponential accuracy.

  18. Puffed-up but shaky selves: State self-esteem level and variability in narcissists.

    Science.gov (United States)

    Geukes, Katharina; Nestler, Steffen; Hutteman, Roos; Dufner, Michael; Küfner, Albrecht C P; Egloff, Boris; Denissen, Jaap J A; Back, Mitja D

    2017-05-01

    Different theoretical conceptualizations characterize grandiose narcissists by high, yet fragile self-esteem. Empirical evidence, however, has been inconsistent, particularly regarding the relationship between narcissism and self-esteem fragility (i.e., self-esteem variability). Here, we aim at unraveling this inconsistency by disentangling the effects of two theoretically distinct facets of narcissism (i.e., admiration and rivalry) on the two aspects of state self-esteem (i.e., level and variability). We report on data from a laboratory-based and two field-based studies (total N = 596) in realistic social contexts, capturing momentary, daily, and weekly fluctuations of state self-esteem. To estimate unbiased effects of narcissism on the level and variability of self-esteem within one model, we applied mixed-effects location scale models. Results of the three studies and their meta-analytical integration indicated that narcissism is positively linked to self-esteem level and variability. When distinguishing between admiration and rivalry, however, an important dissociation was identified: Admiration was related to high (and rather stable) levels of state self-esteem, whereas rivalry was related to (rather low and) fragile self-esteem. Analyses on underlying processes suggest that effects of rivalry on self-esteem variability are based on stronger decreases in self-esteem from one assessment to the next, particularly after a perceived lack of social inclusion. The revealed differentiated effects of admiration and rivalry explain why the analysis of narcissism as a unitary concept has led to the inconsistent past findings and provide deeper insights into the intrapersonal dynamics of grandiose narcissism governing state self-esteem. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. A continuous variable quantum deterministic key distribution based on two-mode squeezed states

    International Nuclear Information System (INIS)

    Gong, Li-Hua; Song, Han-Chong; Liu, Ye; Zhou, Nan-Run; He, Chao-Sheng

    2014-01-01

    The distribution of deterministic keys is of significance in personal communications, but the existing continuous variable quantum key distribution protocols can only generate random keys. By exploiting the entanglement properties of two-mode squeezed states, a continuous variable quantum deterministic key distribution (CVQDKD) scheme is presented for handing over the pre-determined key to the intended receiver. The security of the CVQDKD scheme is analyzed in detail from the perspective of information theory. It shows that the scheme can securely and effectively transfer pre-determined keys under ideal conditions. The proposed scheme can resist both the entanglement and beam splitter attacks under a relatively high channel transmission efficiency. (paper)

  20. Teleportation of continuous variable multimode Greeberger-Horne-Zeilinger entangled states

    International Nuclear Information System (INIS)

    He Guangqiang; Zhang Jingtao; Zeng Guihua

    2008-01-01

    Quantum teleportation protocols of continuous variable (CV) Greeberger-Horne-Zeilinger (GHZ) and Einstein-Podolsky-Rosen (EPR) entangled states are proposed, and are generalized to teleportation of arbitrary multimode GHZ entangled states described by Van Loock and Braunstein (2000 Phys. Rev. Lett. 84 3482). Each mode of a multimode entangled state is teleported using a CV EPR entangled pair and classical communication. The analytical expression of fidelity for the multimode Gaussian states which evaluates the teleportation quality is presented. The analytical results show that the fidelity is a function of both the squeezing parameter r, which characterizes the multimode entangled state to be teleported, and the channel parameter p, which characterizes the EPR pairs shared by Alice and Bob. The fidelity increases with increasing p, but decreases with increasing r, i.e., it is more difficult to teleport the more perfect multimode entangled states. The entanglement degree of the teleported multimode entangled states increases with increasing both r and p. In addition, the fact is proved that our teleportation protocol of EPR entangled states using parallel EPR pairs as quantum channels is the best case of the protocol using four-mode entangled states (Adhikari et al 2008 Phys. Rev. A 77 012337).

  1. Cloud CCN feedback

    International Nuclear Information System (INIS)

    Hudson, J.G.

    1992-01-01

    Cloud microphysics affects cloud albedo precipitation efficiency and the extent of cloud feedback in response to global warming. Compared to other cloud parameters, microphysics is unique in its large range of variability and the fact that much of the variability is anthropogenic. Probably the most important determinant of cloud microphysics is the spectra of cloud condensation nuclei (CCN) which display considerable variability and have a large anthropogenic component. When analyzed in combination three field observation projects display the interrelationship between CCN and cloud microphysics. CCN were measured with the Desert Research Institute (DRI) instantaneous CCN spectrometer. Cloud microphysical measurements were obtained with the National Center for Atmospheric Research Lockheed Electra. Since CCN and cloud microphysics each affect the other a positive feedback mechanism can result

  2. Lake variability: Key factors controlling mercury concentrations in New York State fish

    International Nuclear Information System (INIS)

    Simonin, Howard A.; Loukmas, Jefferey J.; Skinner, Lawrence C.; Roy, Karen M.

    2008-01-01

    A 4 year study surveyed 131 lakes across New York State beginning in 2003 to improve our understanding of mercury and gather information from previously untested waters. Our study focused on largemouth and smallmouth bass, walleye and yellow perch, common piscivorous fish shown to accumulate high mercury concentrations and species important to local fisheries. Fish from Adirondack and Catskill Forest Preserve lakes generally had higher mercury concentrations than those from lakes in other areas of the state. Variability between nearby individual lakes was observed, and could be due to differences in water chemistry, lake productivity or the abundance of wetlands in the watershed. We found the following factors impact mercury bioaccumulation: fish length, lake pH, specific conductivity, chlorophyll a, mercury concentration in the water, presence of an outlet dam and amount of contiguous wetlands. - Lake water chemistry variables, dams, and wetlands play major roles in determining fish mercury concentrations

  3. State-space dimensionality in short-memory hidden-variable theories

    International Nuclear Information System (INIS)

    Montina, Alberto

    2011-01-01

    Recently we have presented a hidden-variable model of measurements for a qubit where the hidden-variable state-space dimension is one-half the quantum-state manifold dimension. The absence of a short memory (Markov) dynamics is the price paid for this dimensional reduction. The conflict between having the Markov property and achieving the dimensional reduction was proved by Montina [A. Montina, Phys. Rev. A 77, 022104 (2008)] using an additional hypothesis of trajectory relaxation. Here we analyze in more detail this hypothesis introducing the concept of invertible process and report a proof that makes clearer the role played by the topology of the hidden-variable space. This is accomplished by requiring suitable properties of regularity of the conditional probability governing the dynamics. In the case of minimal dimension the set of continuous hidden variables is identified with an object living an N-dimensional Hilbert space whose dynamics is described by the Schroedinger equation. A method for generating the economical non-Markovian model for the qubit is also presented.

  4. Security bound of continuous-variable quantum key distribution with noisy coherent states and channel

    International Nuclear Information System (INIS)

    Shen Yong; Yang Jian; Guo Hong

    2009-01-01

    Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.

  5. Failure mode analysis using state variables derived from fault trees with application

    International Nuclear Information System (INIS)

    Bartholomew, R.J.

    1982-01-01

    Fault Tree Analysis (FTA) is used extensively to assess both the qualitative and quantitative reliability of engineered nuclear power systems employing many subsystems and components. FTA is very useful, but the method is limited by its inability to account for failure mode rate-of-change interdependencies (coupling) of statistically independent failure modes. The state variable approach (using FTA-derived failure modes as states) overcomes these difficulties and is applied to the determination of the lifetime distribution function for a heat pipe-thermoelectric nuclear power subsystem. Analyses are made using both Monte Carlo and deterministic methods and compared with a Markov model of the same subsystem

  6. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states.

    Science.gov (United States)

    Menicucci, Nicolas C

    2014-03-28

    A long-standing open question about Gaussian continuous-variable cluster states is whether they enable fault-tolerant measurement-based quantum computation. The answer is yes. Initial squeezing in the cluster above a threshold value of 20.5 dB ensures that errors from finite squeezing acting on encoded qubits are below the fault-tolerance threshold of known qubit-based error-correcting codes. By concatenating with one of these codes and using ancilla-based error correction, fault-tolerant measurement-based quantum computation of theoretically indefinite length is possible with finitely squeezed cluster states.

  7. Security bound of continuous-variable quantum key distribution with noisy coherent states and channel

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yong; Yang Jian; Guo Hong, E-mail: hongguo@pku.edu.c [CREAM Group, State Key Laboratory of Advanced Optical Communication Systems and Networks (Peking University) and Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)

    2009-12-14

    Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.

  8. Security of continuous-variable quantum cryptography using coherent states: Decline of postselection advantage

    International Nuclear Information System (INIS)

    Namiki, Ryo; Hirano, Takuya

    2005-01-01

    We investigate the security of continuous-variable (CV) quantum key distribution (QKD) using coherent states in the presence of quadrature excess noise. We consider an eavesdropping attack that uses a linear amplifier and a beam splitter. This attack makes a link between the beam-splitting attack and the intercept-resend attack (classical teleportation attack). We also show how postselection loses its efficiency in a realistic channel

  9. A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism

    Science.gov (United States)

    Chen, Jun-xin; Zhu, Zhi-liang; Fu, Chong; Yu, Hai; Zhang, Li-bo

    2015-03-01

    In recent years, a variety of chaos-based image cryptosystems have been investigated to meet the increasing demand for real-time secure image transmission. Most of them are based on permutation-diffusion architecture, in which permutation and diffusion are two independent procedures with fixed control parameters. This property results in two flaws. (1) At least two chaotic state variables are required for encrypting one plain pixel, in permutation and diffusion stages respectively. Chaotic state variables produced with high computation complexity are not sufficiently used. (2) The key stream solely depends on the secret key, and hence the cryptosystem is vulnerable against known/chosen-plaintext attacks. In this paper, a fast chaos-based image encryption scheme with a dynamic state variables selection mechanism is proposed to enhance the security and promote the efficiency of chaos-based image cryptosystems. Experimental simulations and extensive cryptanalysis have been carried out and the results prove the superior security and high efficiency of the scheme.

  10. Variability and trends in dry day frequency and dry event length in the southwestern United States

    Science.gov (United States)

    McCabe, Gregory J.; Legates, David R.; Lins, Harry F.

    2010-01-01

    Daily precipitation from 22 National Weather Service first-order weather stations in the southwestern United States for water years 1951 through 2006 are used to examine variability and trends in the frequency of dry days and dry event length. Dry events with minimum thresholds of 10 and 20 consecutive days of precipitation with less than 2.54 mm are analyzed. For water years and cool seasons (October through March), most sites indicate negative trends in dry event length (i.e., dry event durations are becoming shorter). For the warm season (April through September), most sites also indicate negative trends; however, more sites indicate positive trends in dry event length for the warm season than for water years or cool seasons. The larger number of sites indicating positive trends in dry event length during the warm season is due to a series of dry warm seasons near the end of the 20th century and the beginning of the 21st century. Overall, a large portion of the variability in dry event length is attributable to variability of the El Niño–Southern Oscillation, especially for water years and cool seasons. Our results are consistent with analyses of trends in discharge for sites in the southwestern United States, an increased frequency in El Niño events, and positive trends in precipitation in the southwestern United States.

  11. Mittag-Leffler synchronization of delayed fractional-order bidirectional associative memory neural networks with discontinuous activations: state feedback control and impulsive control schemes.

    Science.gov (United States)

    Ding, Xiaoshuai; Cao, Jinde; Zhao, Xuan; Alsaadi, Fuad E

    2017-08-01

    This paper is concerned with the drive-response synchronization for a class of fractional-order bidirectional associative memory neural networks with time delays, as well as in the presence of discontinuous activation functions. The global existence of solution under the framework of Filippov for such networks is firstly obtained based on the fixed-point theorem for condensing map. Then the state feedback and impulsive controllers are, respectively, designed to ensure the Mittag-Leffler synchronization of these neural networks and two new synchronization criteria are obtained, which are expressed in terms of a fractional comparison principle and Razumikhin techniques. Numerical simulations are presented to validate the proposed methodologies.

  12. Distribution, morphological variability, ecology and the present state of Nitella from Lake Ohrid and its surroundings

    Directory of Open Access Journals (Sweden)

    Trajanovska Sonja

    2012-01-01

    Full Text Available Our research into 52 profiles of the littoral zone of the Macedonian part of Lake Ohrid and numerous samples taken from its surroundings has resulted in a detailed picture of the composition of the Charophyta vegetation in the lake. The results of the research also include data regarding the species composition and present state of Nitella. The dominant species of Nitella is Nitella opaca, which is characterized by a specific distribution, morphological variability and ecology. The present state of Nitella is not steady, especially in the watershed of the lake, since in this area there are some permanent changes in the hydrology of the terrain. Therefore, there is a need to establish long-term and complex monitoring which will result in the prompt detection of risk factors and influences, thereby enabling a rapid reaction to a possible newly emerged negative state.

  13. Analysis of a continuous-variable quadripartite cluster state from a single optical parametric oscillator

    International Nuclear Information System (INIS)

    Midgley, S. L. W.; Olsen, M. K.; Bradley, A. S.; Pfister, O.

    2010-01-01

    We examine the feasibility of generating continuous-variable multipartite entanglement in an intracavity concurrent downconversion scheme that has been proposed for the generation of cluster states by Menicucci et al. [Phys. Rev. Lett. 101, 130501 (2008)]. By calculating optimized versions of the van Loock-Furusawa correlations we demonstrate genuine quadripartite entanglement and investigate the degree of entanglement present. Above the oscillation threshold the basic cluster state geometry under consideration suffers from phase diffusion. We alleviate this problem by incorporating a small injected signal into our analysis. Finally, we investigate squeezed joint operators. While the squeezed joint operators approach zero in the undepleted regime, we find that this is not the case when we consider the full interaction Hamiltonian and the presence of a cavity. In fact, we find that the decay of these operators is minimal in a cavity, and even depletion alone inhibits cluster state formation.

  14. Variability in temperature, precipitation and river discharge in the Baltic States

    Energy Technology Data Exchange (ETDEWEB)

    Kriauciuniene, J.; Meilutyte-Barauskiene, D.; Sarauskiene, D. (Lithuanian Energy Inst., Kaunas (Lithuania), Lab. of Hydrology); Reihan, A. (Tallinn Univ. of Technology (Estonia), Inst. of Environmental Engineering); Koltsova, T.; Lizuma, L. (Latvian Hydrometeorological Agency, Riga (LV))

    2012-07-01

    The climate change impact on water resources is observed in all the Baltic States. These processes became more evident in the last decades. Although the territory of the Baltic States (Lithuania, Latvia, Estonia) is not large (175000 km2), the climatic differences are quite considerable. We performed a regionalization of the territory of the Baltic States depending on the conditions of river runoff formation which can be defined according to percentages of the river feeding sources (precipitation, snowmelt, groundwater). Long-term series of temperature (40 stations), precipitation (59 stations) and river discharge (77 stations) were used to compose ten regional series. This paper addresses: (1) variability in long-term regional series of temperature, precipitation and river discharge over a long period (1922-2007); (2) changes in regional series, comparing the periods 1991-2007 and 1931-1960 with the reference period (1961-1990), and (3) the impact of temperature and precipitation changes on regional river discharge. (orig.)

  15. Iterative Observer-based Estimation Algorithms for Steady-State Elliptic Partial Differential Equation Systems

    KAUST Repository

    Majeed, Muhammad Usman

    2017-01-01

    the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time

  16. The Relationship Between Posttraumatic Growth and Psychosocial Variables in Survivors of State Terrorism and Their Relatives.

    Science.gov (United States)

    Cárdenas-Castro, Manuel; Faúndez-Abarca, Ximena; Arancibia-Martini, Héctor; Ceruti-Mahn, Cristián

    2017-08-01

    The present study explores reports of growth in survivors and family members of victims of state terrorism ( N = 254) in Chile from 1973 to 1990. The results indicate the presence of reports of posttraumatic growth ( M = 4.69) and a positive and statistically significant correlation with variables related to the life impact of the stressful events ( r = .46), social sharing of emotions ( r = .32), deliberate rumination ( r = .37), positive reappraisal ( r = .35), reconciliation ( r = .39), spiritual practices ( r = .33), and meaning in life ( r = .51). The relationship between growth and forgiveness is not statistically significant. The variables that best predict posttraumatic growth are positive reappraisal (β = .28), life impact (β = .24), meaning in life β = .23), and reconciliation (β = .20). The forward-method hierarchical model indicates that these variables are significant predictors of growth levels, R 2 = .53, F(8, 210) = 30.08, p state terrorism manage to grow after these experiences, and the redefinition of meaning in life and the positive reappraisal of the traumatic experiences are the elements that make it possible to create a new narrative about the past.

  17. Analyzing Variability in Ebola-Related Controls Applied to Returned Travelers in the United States.

    Science.gov (United States)

    Kraemer, John D; Siedner, Mark J; Stoto, Michael A

    2015-01-01

    Public health authorities have adopted entry screening and subsequent restrictions on travelers from Ebola-affected West African countries as a strategy to prevent importation of Ebola virus disease (EVD) cases. We analyzed international, federal, and state policies-principally based on the policy documents themselves and media reports-to evaluate policy variability. We employed means-ends fit analysis to elucidate policy objectives. We found substantial variation in the specific approaches favored by WHO, CDC, and various American states. Several US states impose compulsory quarantine on a broader range of travelers or require more extensive monitoring than recommended by CDC or WHO. Observed differences likely partially resulted from different actors having different policy goals-particularly the federal government having to balance foreign policy objectives less salient to states. Further, some state-level variation appears to be motivated by short-term political goals. We propose recommendations to improve future policies, which include the following: (1) actors should explicitly clarify their objectives, (2) legal authority should be modernized and clarified, and (3) the federal government should consider preempting state approaches that imperil its goals.

  18. Tropical interannual variability in a global coupled GCM: Sensitivity to mean climate state

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A.M. [Bureau of Meterology Research Centre, Melbourne, Victoria (Australia)

    1995-04-01

    A global coupled ocean-atmosphere-sea ice general circulation model is used to study interannual variability in the Tropics. Flux correction is used to control the mean climate of the coupled system, and in one configuration of the coupled model, interannual variability in the tropical Pacific is dominated by westward moving anomalies. Through a series of experiments in which the equatorial ocean wave speeds and ocean-atmosphere coupling strength are varied, it is demonstrated that these westward moving disturbances are probably some manifestation of what Neelin describes as an {open_quotes}SST mode.{close_quotes} By modifying the flux correction procedure, the mean climate of the coupled model can be changed. A fairly modest change in the mean climate is all that is required to excite eastward moving anomalies in place of the westward moving SST modes found previously. The apparent sensitivity of the nature of tropical interannual variability to the mean climate state in a coupled general circulation model such as that used here suggests that caution is advisable if we try to use such models to answer questions relating to changes in ENSO-like variability associated with global climate change. 41 refs., 23 figs., 1 tab.

  19. Tracking Architecture Based on Dual-Filter with State Feedback and Its Application in Ultra-Tight GPS/INS Integration.

    Science.gov (United States)

    Zhang, Xi; Miao, Lingjuan; Shao, Haijun

    2016-05-02

    If a Kalman Filter (KF) is applied to Global Positioning System (GPS) baseband signal preprocessing, the estimates of signal phase and frequency can have low variance, even in highly dynamic situations. This paper presents a novel preprocessing scheme based on a dual-filter structure. Compared with the traditional model utilizing a single KF, this structure avoids carrier tracking being subjected to code tracking errors. Meanwhile, as the loop filters are completely removed, state feedback values are adopted to generate local carrier and code. Although local carrier frequency has a wide fluctuation, the accuracy of Doppler shift estimation is improved. In the ultra-tight GPS/Inertial Navigation System (INS) integration, the carrier frequency derived from the external navigation information is not viewed as the local carrier frequency directly. That facilitates retaining the design principle of state feedback. However, under harsh conditions, the GPS outputs may still bear large errors which can destroy the estimation of INS errors. Thus, an innovative integrated navigation filter is constructed by modeling the non-negligible errors in the estimated Doppler shifts, to ensure INS is properly calibrated. Finally, field test and semi-physical simulation based on telemetered missile trajectory validate the effectiveness of methods proposed in this paper.

  20. A Comparison of State Space LQG, Wiener IMC and Polynomial LQG Discrete Time Feedback Control for Active Vibration Control Purposes

    DEFF Research Database (Denmark)

    Mørkholt, Jakob; Elliott, S.J.; Sors, T.C.

    1997-01-01

    with a piezoceramic patch control actuator and a point velocity sensor and excited by a point force driven by white noise acting as the primary source. The design objective has been to suppress the effect of the primary disturbance on the output by minimising the mean square value of the output. Apart from comparing......A comparison of three ways of designing optimal discrete time feedback controllers has been carried out via computer simulations. The three design methods are similar in that they are all based on the minimisation of a quadratic cost function under certain assumptions about the disturbance noise...... and sensor noise in the system to be controlled. They are also based on (different) models of the plant under control and the disturbance to be suppressed by the controllers. Controllers based on the three methods have been designed from a model of a lightly damped, rectangular plate fitted...

  1. Complex state variable- and disturbance observer-based current controllers for AC drives

    DEFF Research Database (Denmark)

    Dal, Mehmet; Teodorescu, Remus; Blaabjerg, Frede

    2013-01-01

    In vector-controlled AC drives, the design of current controller is usually based on a machine model defined in synchronous frame coordinate, where the drive performance may be degraded by both the variation of the machine parameters and the cross-coupling between the d- and q-axes components...... of the stator current. In order to improve the current control performance an alternative current control strategy was proposed previously aiming to avoid the undesired cross-coupling and non-linearities between the state variables. These effects are assumed as disturbances arisen in the closed-loop path...... of the parameter and the cross-coupling effect. Moreover, it provides a better performance, smooth and low noisy operation with respect to the complex variable controller....

  2. A state-and-transition simulation modeling approach for estimating the historical range of variability

    Directory of Open Access Journals (Sweden)

    Kori Blankenship

    2015-04-01

    Full Text Available Reference ecological conditions offer important context for land managers as they assess the condition of their landscapes and provide benchmarks for desired future conditions. State-and-transition simulation models (STSMs are commonly used to estimate reference conditions that can be used to evaluate current ecosystem conditions and to guide land management decisions and activities. The LANDFIRE program created more than 1,000 STSMs and used them to assess departure from a mean reference value for ecosystems in the United States. While the mean provides a useful benchmark, land managers and researchers are often interested in the range of variability around the mean. This range, frequently referred to as the historical range of variability (HRV, offers model users improved understanding of ecosystem function, more information with which to evaluate ecosystem change and potentially greater flexibility in management options. We developed a method for using LANDFIRE STSMs to estimate the HRV around the mean reference condition for each model state in ecosystems by varying the fire probabilities. The approach is flexible and can be adapted for use in a variety of ecosystems. HRV analysis can be combined with other information to help guide complex land management decisions.

  3. Achieving the quantum ground state of a mechanical oscillator using a Bose–Einstein condensate with back-action and cold damping feedback schemes

    International Nuclear Information System (INIS)

    Mahajan, Sonam; Aggarwal, Neha; ManMohan; Bhattacherjee, Aranya B

    2013-01-01

    We present a detailed study to show the possibility of approaching the quantum ground state of a hybrid optomechanical quantum device formed by a Bose–Einstein condensate (BEC) confined inside a high-finesse optical cavity with an oscillatory end mirror. Cooling is achieved using two experimentally realizable schemes: back-action cooling and cold damping quantum feedback cooling. In both the schemes, we found that increasing the two-body atom–atom interaction brings the mechanical oscillator to its quantum ground state. It has been observed that back-action cooling is more effective in the good cavity limit, while the cold damping cooling scheme is more relevant in the bad cavity limit. It is also shown that in the cold damping scheme, the device is more efficient in the presence of a BEC than in the absence of a BEC. (paper)

  4. Comparative Study of Monsoon Rainfall Variability over India and the Odisha State

    Directory of Open Access Journals (Sweden)

    K C Gouda

    2017-10-01

    Full Text Available Indian summer monsoon (ISM plays an important role in the weather and climate system over India. The rainfall during monsoon season controls many sectors from agriculture, food, energy, and water, to the management of disasters. Being a coastal province on the eastern side of India, Odisha is one of the most important states affected by the monsoon rainfall and associated hydro-meteorological systems. The variability of monsoon rainfall is highly unpredictable at multiple scales both in space and time. In this study, the monsoon variability over the state of Odisha is studied using the daily gridded rainfall data from India Meteorological Department (IMD. A comparative analysis of the behaviour of monsoon rainfall at a larger scale (India, regional scale (Odisha, and sub-regional scale (zones of Odisha is carried out in terms of the seasonal cycle of monsoon rainfall and its interannual variability. It is seen that there is no synchronization in the seasonal monsoon category (normal/excess/deficit when analysed over large (India and regional (Odisha scales. The impact of El Niño, La Niña, and the Indian Ocean Dipole (IOD on the monsoon rainfall at both scales (large scale and regional scale is analysed and compared. The results show that the impact is much more for rainfall over India, but it has no such relation with the rainfall over Odisha. It is also observed that there is a positive (negative relation of the IOD with the seasonal monsoon rainfall variability over Odisha (India. The correlation between the IAV of monsoon rainfall between the large scale and regional scale was found to be 0.46 with a phase synchronization of 63%. IAV on a sub-regional scale is also presented.

  5. A minimal model of fire-vegetation feedbacks and disturbance stochasticity generates alternative stable states in grassland–shrubland–woodland systems

    International Nuclear Information System (INIS)

    Batllori, Enric; Ackerly, David D; Moritz, Max A

    2015-01-01

    Altered disturbance regimes in the context of global change are likely to have profound consequences for ecosystems. Interactions between fire and vegetation are of particular interest, as fire is a major driver of vegetation change, and vegetation properties (e.g., amount, flammability) alter fire regimes. Mediterranean-type ecosystems (MTEs) constitute a paradigmatic example of temperate fire-prone vegetation. Although these ecosystems may be heavily impacted by global change, disturbance regime shifts and the implications of fire-vegetation feedbacks in the dynamics of such biomes are still poorly characterized. We developed a minimal modeling framework incorporating key aspects of fire ecology and successional processes to evaluate the relative influence of extrinsic and intrinsic factors on disturbance and vegetation dynamics in systems composed of grassland, shrubland, and woodland mosaics, which characterize many MTEs. In this theoretical investigation, we performed extensive simulations representing different background rates of vegetation succession and disturbance regime (fire frequency and severity) processes that reflect a broad range of MTE environmental conditions. Varying fire-vegetation feedbacks can lead to different critical points in underlying processes of disturbance and sudden shifts in the vegetation state of grassland–shrubland–woodland systems, despite gradual changes in ecosystem drivers as defined by the environment. Vegetation flammability and disturbance stochasticity effectively modify system behavior, determining its heterogeneity and the existence of alternative stable states in MTEs. Small variations in system flammability and fire recurrence induced by climate or vegetation changes may trigger sudden shifts in the state of such ecosystems. The existence of threshold dynamics, alternative stable states, and contrasting system responses to environmental change has broad implications for MTE management. (letter)

  6. Spatial Variability of Sources and Mixing State of Atmospheric Particles in a Metropolitan Area.

    Science.gov (United States)

    Ye, Qing; Gu, Peishi; Li, Hugh Z; Robinson, Ellis S; Lipsky, Eric; Kaltsonoudis, Christos; Lee, Alex K Y; Apte, Joshua S; Robinson, Allen L; Sullivan, Ryan C; Presto, Albert A; Donahue, Neil M

    2018-05-30

    Characterizing intracity variations of atmospheric particulate matter has mostly relied on fixed-site monitoring and quantifying variability in terms of different bulk aerosol species. In this study, we performed ground-based mobile measurements using a single-particle mass spectrometer to study spatial patterns of source-specific particles and the evolution of particle mixing state in 21 areas in the metropolitan area of Pittsburgh, PA. We selected sampling areas based on traffic density and restaurant density with each area ranging from 0.2 to 2 km 2 . Organics dominate particle composition in all of the areas we sampled while the sources of organics differ. The contribution of particles from traffic and restaurant cooking varies greatly on the neighborhood scale. We also investigate how primary and aged components in particles mix across the urban scale. Lastly we quantify and map the particle mixing state for all areas we sampled and discuss the overall pattern of mixing state evolution and its implications. We find that in the upwind and downwind of the urban areas, particles are more internally mixed while in the city center, particle mixing state shows large spatial heterogeneity that is mostly driven by emissions. This study is to our knowledge, the first study to perform fine spatial scale mapping of particle mixing state using ground-based mobile measurement and single-particle mass spectrometry.

  7. Four-State Continuous-Variable Quantum Key Distribution with Photon Subtraction

    Science.gov (United States)

    Li, Fei; Wang, Yijun; Liao, Qin; Guo, Ying

    2018-06-01

    Four-state continuous-variable quantum key distribution (CVQKD) is one of the discretely modulated CVQKD which generates four nonorthogonal coherent states and exploits the sign of the measured quadrature of each state to encode information rather than uses the quadrature \\hat {x} or \\hat {p} itself. It has been proven that four-state CVQKD is more suitable than Gaussian modulated CVQKD in terms of transmission distance. In this paper, we propose an improved four-state CVQKD using an non-Gaussian operation, photon subtraction. A suitable photon-subtraction operation can be exploited to improve the maximal transmission of CVQKD in point-to-point quantum communication since it provides a method to enhance the performance of entanglement-based (EB) CVQKD. Photon subtraction not only can lengthen the maximal transmission distance by increasing the signal-to-noise rate but also can be easily implemented with existing technologies. Security analysis shows that the proposed scheme can lengthen the maximum transmission distance. Furthermore, by taking finite-size effect into account we obtain a tighter bound of the secure distance, which is more practical than that obtained in the asymptotic limit.

  8. Variables of state and charateristics for isentropic discharge phenomena of water, starting with saturation

    Energy Technology Data Exchange (ETDEWEB)

    Baudisch, H.

    1968-03-15

    The tables presented in this report contain the thermodynamic values of isentropic change of state for water in the two-phase region starting from the saturation line down to 0.01 at. The variables have been computed in the pressure range from 5-100 at. in equal pressure intervals of 5 at. and in the range from 100-170 at. in intervals of 10 at. Assuming a one-dimensional flow and a known saturation pressure, the dimensions of a discharge nozzle may be determined by interpolation of the calculated values for an isentropic discharge. 4 figs., 29 tabs., 23 refs.

  9. Time-dependent inelastic analysis of metallic media using constitutive relations with state variables

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V; Mukherjee, S [Cornell Univ., Ithaca, N.Y. (USA)

    1977-03-01

    A computational technique in terms of stress, strain and displacement rates is presented for the solution of boundary value problems for metallic structural elements at uniform elevated temperatures subjected to time varying loads. This method can accommodate any number of constitutive relations with state variables recently proposed by other researchers to model the inelastic deformation of metallic media at elevated temperatures. Numerical solutions are obtained for several structural elements subjected to steady loads. The constitutive relations used for these numerical solutions are due to Hart. The solutions are discussed in the context of the computational scheme and Hart's theory.

  10. Feedback stabilization of MHD instabilities. Report on the Workshop held at Princeton Plasma Physics Lab., Princeton Univ., Princeton, New Jersey, United States of America, 11-13 December 1996

    International Nuclear Information System (INIS)

    McGuire, K.M.; Kugel, H.W.; La Haye, R.J.; Mauel, M.E.; Nevins, W.M.; Prager, S.C.

    1997-01-01

    The transient operating performance of magnetic confinement devices is often limited by one or two unstable MHD modes. The feedback stabilization of MHD instabilities is an area of research that is critical for improving the steady state performance and economic attractiveness of magnetic confinement devices. This growing realization motivated a Workshop dedicated to feedback stabilization of MHD instabilities, which was held from 11 to 13 December 1996 at Princeton Plasma Physics Laboratory. The resulting presentations, conclusions and recommendations are summarized. (author)

  11. [Evaluation of circulatory state using pulse oximeter: 2. PI (perfusion index) x PVI (pleth variability index)].

    Science.gov (United States)

    Kaneda, Toru; Suzuki, Toshiyasu

    2009-07-01

    Pulse oximeter expressed by SpO2 is used for monitoring respiratory state during operation and in ICU. Perfusion index (PI) and pleth variability index (PVI) as new indexes are calculated from pulse oximeter (Masimo SET Radical-7, Masimo Corp., USA, 1998) waveforms. And these indices were used as parameters to evaluate the circulatory state. For PI calculation, the pulsatile infrared signal is indexed against the nonpulsatile infrared signal and expressed as a percentage. It might thus be of future value in assessment of perioperative changes in peripheral perfusion. PVI is a measure of a dynamic change in PI that occurs during complete respiratory cycle. It might be thought that PVI, an index automatically derived from the pulse oximeter waveform analysis, had potentially clinical applications for noninvasive hypovolemia detection and fluid responsiveness monitoring.

  12. State control of discrete-time linear systems to be bound in state variables by equality constraints

    International Nuclear Information System (INIS)

    Filasová, Anna; Krokavec, Dušan; Serbák, Vladimír

    2014-01-01

    The paper is concerned with the problem of designing the discrete-time equivalent PI controller to control the discrete-time linear systems in such a way that the closed-loop state variables satisfy the prescribed equality constraints. Since the problem is generally singular, using standard form of the Lyapunov function and a symmetric positive definite slack matrix, the design conditions are proposed in the form of the enhanced Lyapunov inequality. The results, offering the conditions of the control existence and the optimal performance with respect to the prescribed equality constraints for square discrete-time linear systems, are illustrated with the numerical example to note effectiveness and applicability of the considered approach

  13. Impact of climate variability on runoff in the north-central United States

    Science.gov (United States)

    Ryberg, Karen R.; Lin, Wei; Vecchia, Aldo V.

    2014-01-01

    Large changes in runoff in the north-central United States have occurred during the past century, with larger floods and increases in runoff tending to occur from the 1970s to the present. The attribution of these changes is a subject of much interest. Long-term precipitation, temperature, and streamflow records were used to compare changes in precipitation and potential evapotranspiration (PET) to changes in runoff within 25 stream basins. The basins studied were organized into four groups, each one representing basins similar in topography, climate, and historic patterns of runoff. Precipitation, PET, and runoff data were adjusted for near-decadal scale variability to examine longer-term changes. A nonlinear water-balance analysis shows that changes in precipitation and PET explain the majority of multidecadal spatial/temporal variability of runoff and flood magnitudes, with precipitation being the dominant driver. Historical changes in climate and runoff in the region appear to be more consistent with complex transient shifts in seasonal climatic conditions than with gradual climate change. A portion of the unexplained variability likely stems from land-use change.

  14. A Meta-analysis on Resting State High-frequency Heart Rate Variability in Bulimia Nervosa.

    Science.gov (United States)

    Peschel, Stephanie K V; Feeling, Nicole R; Vögele, Claus; Kaess, Michael; Thayer, Julian F; Koenig, Julian

    2016-09-01

    Autonomic nervous system function is altered in eating disorders. We aimed to quantify differences in resting state vagal activity, indexed by high-frequency heart rate variability comparing patients with bulimia nervosa (BN) and healthy controls. A systematic search of the literature to identify studies eligible for inclusion and meta-analytical methods were applied. Meta-regression was used to identify potential covariates. Eight studies reporting measures of resting high-frequency heart rate variability in individuals with BN (n = 137) and controls (n = 190) were included. Random-effects meta-analysis revealed a sizeable main effect (Z = 2.22, p = .03; Hedge's g = 0.52, 95% CI [0.06;0.98]) indicating higher resting state vagal activity in individuals with BN. Meta-regression showed that body mass index and medication intake are significant covariates. Findings suggest higher vagal activity in BN at rest, particularly in unmedicated samples with lower body mass index. Potential mechanisms underlying these findings and implications for routine clinical care are discussed. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  15. Elevated temperature inelastic analysis of metallic media under time varying loads using state variable theories

    International Nuclear Information System (INIS)

    Kumar, V.; Mukherjee, S.

    1977-01-01

    In the present paper a general time-dependent inelastic analysis procedure for three-dimensional bodies subjected to arbitrary time varying mechanical and thermal loads using these state variable theories is presented. For the purpose of illustrations, the problems of hollow spheres, cylinders and solid circular shafts subjected to various combinations of internal and external pressures, axial force (or constraint) and torque are analyzed using the proposed solution procedure. Various cyclic thermal and mechanical loading histories with rectangular or sawtooth type waves with or without hold-time are considered. Numerical results for these geometrical shapes for various such loading histories are presented using Hart's theory (Journal of Engineering Materials and Technology 1976). The calculations are performed for nickel in the temperature range of 25 0 C to 400 0 C. For integrating forward in time, a method of solving a stiff system of ordinary differential equations is employed which corrects the step size and order of the method automatically. The limit loads for hollow spheres and cylinders are calculated using the proposed method and Hart's theory, and comparisons are made against the known theoretical results. The numerical results for other loading histories are discussed in the context of Hart's state variable type constitutive relations. The significance of phenomena such as strain rate sensitivity, Bauschinger's effect, crep recovery, history dependence and material softening with regard to these multiaxial problems are discussed in the context of Hart's theory

  16. Continuous-variable entanglement distillation of non-Gaussian mixed states

    International Nuclear Information System (INIS)

    Dong Ruifang; Lassen, Mikael; Heersink, Joel; Marquardt, Christoph; Leuchs, Gerd; Filip, Radim; Andersen, Ulrik L.

    2010-01-01

    Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is, however, hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variable entangled states are generated by exploiting the third order nonlinearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements, and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.

  17. Pre-performance Physiological State: Heart Rate Variability as a Predictor of Shooting Performance.

    Science.gov (United States)

    Ortega, E; Wang, C J K

    2018-03-01

    Heart rate variability (HRV) is commonly used in sport science for monitoring the physiology of athletes but not as an indicator of physiological state from a psychological perspective. Since HRV is established to be an indicator of emotional responding, it could be an objective means of quantifying an athlete's subjective physiological state before competition. A total of 61 sport shooters participated in this study, of which 21 were novice shooters, 19 were intermediate shooters, and 21 were advanced level shooters. HRV, self-efficacy, and use of mental skills were assessed before they completed a standard shooting performance task of 40 shots, as in a competition qualifying round. The results showed that HRV was significantly positively correlated with self-efficacy and performance and was a significant predictor of shooting performance. In addition, advanced shooters were found to have significantly lower average heart rate before shooting and used more self-talk, relaxation, imagery, and automaticity compared to novice and intermediate shooters. HRV was found to be useful in identifying the physiological state of an athlete before competing, and as such, coaches and athletes can adopt practical strategies to improve the pre-performance physiological state as a means to optimize performance.

  18. State of the art vs biological variability: Comparison on hematology parameters using Spanish EQAS data.

    Science.gov (United States)

    Molina, A; Guiñon, L; Perez, A; Segurana, A; Bedini, J L; Reverter, J C; Merino, A

    2018-02-05

    It is important for clinical laboratories to maintain under control the possible sources of error in its analytical determinations. The objective of this work is to perform an analysis of the total error committed by laboratories using the data extracted from the Spanish External Quality Assessment Program in Hematology and to compare them with the specifications based on the biological variability proposed by the Ricós group. We analyzed a total of 3 89 000 results during the period 2015-2016 from the following quantitative schemes of Spanish External Quality Assessment Program: complete blood count, blood coagulation tests, differential leukocyte count, reticulocytes, hemoglobin A 2 , antithrombin, factor VIII, protein C, and von Willebrand factor. It has been considered as an indicator of the current performance the value of total error that 90% of laboratories are able to achieve, taking into account 75% of their results. We found some magnitudes whose biological variability specifications are achievable by most of the laboratories for either minimum, desirable, or optimum criteria: white blood cells, red blood cells, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, platelets, fibrinogen, neutrophils, lymphocytes, eosinophils, von Willebrand factor, and protein C. However, current performance for mean corpuscular hemoglobin concentration and hemoglobin A 2 only allows to meet the specifications based on the state of the art. Our results reflect the feasibility of establishing specifications based on biological variability criteria or the state of the art, which may help to select the proper criteria for each parameter. © 2018 John Wiley & Sons Ltd.

  19. ENERGY-DEPENDENT POWER SPECTRAL STATES AND ORIGIN OF APERIODIC VARIABILITY IN BLACK HOLE BINARIES

    International Nuclear Information System (INIS)

    Yu Wenfei; Zhang Wenda

    2013-01-01

    We found that the black hole candidate MAXI J1659–152 showed distinct power spectra, i.e., power-law noise (PLN) versus band-limited noise (BLN) plus quasi-periodic oscillations (QPOs) below and above about 2 keV, respectively, in observations with Swift and the Rossi X-ray Timing Explorer during the 2010 outburst, indicating a high energy cutoff of the PLN and a low energy cutoff of the BLN and QPOs around 2 keV. The emergence of the PLN and the fading of the BLN and QPOs initially took place below 2 keV when the source entered the hard intermediate state and settled in the soft state three weeks later. The evolution was accompanied by the emergence of the disk spectral component and decreases in the amplitudes of variability in the soft and hard X-ray bands. Our results indicate that the PLN is associated with an optically thick disk in both hard and intermediate states, and the power spectral state is independent of the X-ray energy spectral state in a broadband view. We suggest that in the hard or intermediate state, the BLN and QPOs emerge from the innermost hot flow subjected to Comptonization, while the PLN originates from the optically thick disk farther out. The energy cutoffs of the PLN and the BLN or QPOs then follow the temperature of the seed photons from the inner edge of the optically thick disk, while the high frequency cutoff of the PLN follows the orbital frequency of the inner edge of the optically thick disk as well.

  20. The association between mood state and chronobiological characteristics in bipolar I disorder: a naturalistic, variable cluster analysis-based study.

    Science.gov (United States)

    Gonzalez, Robert; Suppes, Trisha; Zeitzer, Jamie; McClung, Colleen; Tamminga, Carol; Tohen, Mauricio; Forero, Angelica; Dwivedi, Alok; Alvarado, Andres

    2018-02-19

    Multiple types of chronobiological disturbances have been reported in bipolar disorder, including characteristics associated with general activity levels, sleep, and rhythmicity. Previous studies have focused on examining the individual relationships between affective state and chronobiological characteristics. The aim of this study was to conduct a variable cluster analysis in order to ascertain how mood states are associated with chronobiological traits in bipolar I disorder (BDI). We hypothesized that manic symptomatology would be associated with disturbances of rhythm. Variable cluster analysis identified five chronobiological clusters in 105 BDI subjects. Cluster 1, comprising subjective sleep quality was associated with both mania and depression. Cluster 2, which comprised variables describing the degree of rhythmicity, was associated with mania. Significant associations between mood state and cluster analysis-identified chronobiological variables were noted. Disturbances of mood were associated with subjectively assessed sleep disturbances as opposed to objectively determined, actigraphy-based sleep variables. No associations with general activity variables were noted. Relationships between gender and medication classes in use and cluster analysis-identified chronobiological characteristics were noted. Exploratory analyses noted that medication class had a larger impact on these relationships than the number of psychiatric medications in use. In a BDI sample, variable cluster analysis was able to group related chronobiological variables. The results support our primary hypothesis that mood state, particularly mania, is associated with chronobiological disturbances. Further research is required in order to define these relationships and to determine the directionality of the associations between mood state and chronobiological characteristics.

  1. Seasonal, Spatial, and Long-term Variability of Fine Mineral Dust in the United States

    Science.gov (United States)

    Hand, J. L.; White, W. H.; Gebhart, K. A.; Hyslop, N. P.; Gill, T. E.; Schichtel, B. A.

    2017-12-01

    Characterizing the seasonal, spatial, and long-term variability of fine mineral dust (FD) is important to assess its environmental and climate impacts. FD concentrations (mineral particles with aerodynamic diameters less than 2.5 µm) were estimated using ambient, ground-based PM2.5 elemental chemistry data from over 160 remote and rural Interagency Monitoring of Protected Visual Environments (IMPROVE) sites from 2011 through 2015. FD concentrations were highest and contributed over 50% of PM2.5 mass at southwestern sites in spring and across the central and southeastern United States in summer (20-30% of PM2.5). The highest seasonal variability in FD occurred at sites in the Southeast during summer, likely associated with impacts from North African transport, which was also evidenced in the elemental ratios of calcium, iron, and aluminum. Long-term trend analyses (2000-2015) indicated widespread, regional increases in FD concentrations during spring in the West, especially in March in the Southwest. This increase was associated with an early onset of the spring dust season and correlated with the Pacific Decadal Oscillation and the El Niño Southern Oscillation. The Southeast and central United States also experienced increased FD concentrations during summer and fall, respectively. Contributions of FD to PM2.5 mass have increased in regions across the United States during all seasons, in part due to increased FD concentrations but also as a result of reductions in secondary aerosols (e.g., sulfates, nitrates, and organic carbon). Increased levels of FD have important implications for its environmental and climate impacts; mitigating these impacts will require identifying and characterizing source regions and underlying mechanisms for dust episodes.

  2. Pareto design of state feedback tracking control of a biped robot via multiobjective PSO in comparison with sigma method and genetic algorithms: modified NSGAII and MATLAB's toolbox.

    Science.gov (United States)

    Mahmoodabadi, M J; Taherkhorsandi, M; Bagheri, A

    2014-01-01

    An optimal robust state feedback tracking controller is introduced to control a biped robot. In the literature, the parameters of the controller are usually determined by a tedious trial and error process. To eliminate this process and design the parameters of the proposed controller, the multiobjective evolutionary algorithms, that is, the proposed method, modified NSGAII, Sigma method, and MATLAB's Toolbox MOGA, are employed in this study. Among the used evolutionary optimization algorithms to design the controller for biped robots, the proposed method operates better in the aspect of designing the controller since it provides ample opportunities for designers to choose the most appropriate point based upon the design criteria. Three points are chosen from the nondominated solutions of the obtained Pareto front based on two conflicting objective functions, that is, the normalized summation of angle errors and normalized summation of control effort. Obtained results elucidate the efficiency of the proposed controller in order to control a biped robot.

  3. Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores

    KAUST Repository

    Cekli, Seda; Winkel, Russell W.; Alarousu, Erkki; Mohammed, Omar F.; Schanze, Kirk S.

    2016-01-01

    A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.

  4. Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores

    KAUST Repository

    Cekli, Seda

    2016-02-12

    A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.

  5. Variable-State-Dimension Kalman-based Filter for orientation determination using inertial and magnetic sensors.

    Science.gov (United States)

    Sabatini, Angelo Maria

    2012-01-01

    In this paper a quaternion-based Variable-State-Dimension Extended Kalman Filter (VSD-EKF) is developed for estimating the three-dimensional orientation of a rigid body using the measurements from an Inertial Measurement Unit (IMU) integrated with a triaxial magnetic sensor. Gyro bias and magnetic disturbances are modeled and compensated by including them in the filter state vector. The VSD-EKF switches between a quiescent EKF, where the magnetic disturbance is modeled as a first-order Gauss-Markov stochastic process (GM-1), and a higher-order EKF where extra state components are introduced to model the time-rate of change of the magnetic field as a GM-1 stochastic process, namely the magnetic disturbance is modeled as a second-order Gauss-Markov stochastic process (GM-2). Experimental validation tests show the effectiveness of the VSD-EKF, as compared to either the quiescent EKF or the higher-order EKF when they run separately.

  6. Variable-State-Dimension Kalman-Based Filter for Orientation Determination Using Inertial and Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Angelo Maria Sabatini

    2012-06-01

    Full Text Available In this paper a quaternion-based Variable-State-Dimension Extended Kalman Filter (VSD-EKF is developed for estimating the three-dimensional orientation of a rigid body using the measurements from an Inertial Measurement Unit (IMU integrated with a triaxial magnetic sensor. Gyro bias and magnetic disturbances are modeled and compensated by including them in the filter state vector. The VSD-EKF switches between a quiescent EKF, where the magnetic disturbance is modeled as a first-order Gauss-Markov stochastic process (GM-1, and a higher-order EKF where extra state components are introduced to model the time-rate of change of the magnetic field as a GM-1 stochastic process, namely the magnetic disturbance is modeled as a second-order Gauss-Markov stochastic process (GM-2. Experimental validation tests show the effectiveness of the VSD-EKF, as compared to either the quiescent EKF or the higher-order EKF when they run separately.

  7. One size does not fit all: Establishing the need for targeted eco-feedback

    International Nuclear Information System (INIS)

    Khosrowpour, Ardalan; Xie, Yimeng; Taylor, John E.; Hong, Yili

    2016-01-01

    Highlights: • We examined occupants’ responses to an eco-feedback system in a commercial building. • We analyzed the impact of notifications on the level of engagement of participants. • We found notification effectiveness to be highly dependent on the type of feedback. • Occupant response to uniform normative comparison eco-feedback varied substantially. • This highlights the need for targeted eco-feedback based on consumption patterns. - Abstract: Despite all improvements in buildings shell, equipment, and design, CO_2 emissions from buildings are increasing. Since occupants spend more than 87% of their time indoors, they are inseparable and significant elements of building system dynamics. Hence, there is a great potential for energy efficiency in buildings using a wide range of programs such as intervention and eco-feedback. Despite the high level of individual differences and intra-class variability of occupants’ behaviors, the current state-of-the-art eco-feedback programs treat all the occupants uniformly and do not target and tailor the feedback. Therefore, it leaves an opportunity to increase the efficacy of eco-feedback systems through the designing of tailored and targeted programs. In this paper, we conducted a comprehensive analysis and tested hypotheses on occupants’ behavioral responses to a normative comparison feedback program, in addition to the impact of notifications on the level of engagement of each group of occupants. We categorized occupants who participated in the normative comparison feedback program into three groups (i.e. low, medium, and high energy consumers) based on their baseline energy consumption, and tested 9 hypotheses. A mixed-effect regression model (MRM) and a paired t-test was implemented to evaluate the proposed hypotheses. The hypotheses examine the variability of occupants’ responses under the same eco-feedback program, and the effectiveness of notifications on reinforcing occupants’ engagement in

  8. Temporal and spatial variability of wind resources in the United States as derived from the Climate Forecast System Reanalysis

    Science.gov (United States)

    Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman

    2015-01-01

    This study examines the spatial and temporal variability of wind speed at 80m above ground (the average hub height of most modern wind turbines) in the contiguous United States using Climate Forecast System Reanalysis (CFSR) data from 1979 to 2011. The mean 80-m wind exhibits strong seasonality and large spatial variability, with higher (lower) wind speeds in the...

  9. Personality Traits and Socio-Demographic Variables as Correlates of Counselling Effectiveness of Counsellors in Enugu State, Nigeria

    Science.gov (United States)

    Onyekuru, Bruno U.; Ibegbunam, Josephat

    2015-01-01

    Quality personality traits and socio-demographic variables are essential elements of effective counselling. This correlational study investigated personality traits and socio-demographic variables as predictors of counselling effectiveness of counsellors in Enugu State. The instruments for data collection were Personality Traits Assessment Scale…

  10. The Temporal Structure of State Self-Esteem Variability During Parent-Adolescent Interactions : More Than Random Fluctuations

    NARCIS (Netherlands)

    De Ruiter, Naomi M. P.; Den Hartigh, Ruud J. R.; Cox, Ralf F. A.; Van Geert, Paul L. C.; Kunnen, E. Saskia

    2015-01-01

    Research regarding the variability of state self-esteem (SSE) commonly focuses on the magnitude of variability. In this article we provide the first empirical test of the temporalstructure of SSE as a real-time process during parent-adolescent interactions. We adopt a qualitative phenomenological

  11. Variability of apparently homogeneous soilscapes in São Paulo state, Brazil: I. spatial analysis

    Directory of Open Access Journals (Sweden)

    M. van Den Berg

    2000-06-01

    Full Text Available The spatial variability of strongly weathered soils under sugarcane and soybean/wheat rotation was quantitatively assessed on 33 fields in two regions in São Paulo State, Brazil: Araras (15 fields with sugarcane and Assis (11 fields with sugarcane and seven fields with soybean/wheat rotation. Statistical methods used were: nested analysis of variance (for 11 fields, semivariance analysis and analysis of variance within and between fields. Spatial levels from 50 m to several km were analyzed. Results are discussed with reference to a previously published study carried out in the surroundings of Passo Fundo (RS. Similar variability patterns were found for clay content, organic C content and cation exchange capacity. The fields studied are quite homogeneous with respect to these relatively stable soil characteristics. Spatial variability of other characteristics (resin extractable P, pH, base- and Al-saturation and also soil colour, varies with region and, or land use management. Soil management for sugarcane seems to have induced modifications to greater depths than for soybean/wheat rotation. Surface layers of soils under soybean/wheat present relatively little variation, apparently as a result of very intensive soil management. The major part of within-field variation occurs at short distances (< 50 m in all study areas. Hence, little extra information would be gained by increasing sampling density from, say, 1/km² to 1/50 m². For many purposes, the soils in the study regions can be mapped with the same observation density, but residual variance will not be the same in all areas. Bulk sampling may help to reveal spatial patterns between 50 and 1.000 m.

  12. Relative spatial soil geochemical variability along two transects across the United States and Canada

    Science.gov (United States)

    Garrett, Robert G.

    2009-01-01

    To support the development of protocols for the proposed North American Soil Geochemical Landscapes project, whose objective is to establish baselines for the geochemistry of North American soils, two continental-scale transects across the United States and Canada were sampled in 2004. The sampling employed a spatially stratified random sampling design in order to estimate the variability between 40-km linear sampling units, within them, at sample sites, and due to sample preparation and analytical chemical procedures. The 40-km scale was chosen to be consistent with the density proposed for the continental-scale project. The two transects, north–south (N–S) from northern Manitoba to the USA–Mexico border near El Paso, Texas, and east–west (E–W) from the Virginia shore north of Washington, DC, to north of San Francisco, California, closely following the 38th parallel, have been studied individually. The purpose of this study was to determine if statistically significant systematic spatial variation occurred along the transects. Data for 38 major, minor and trace elements in A- and C-horizon soils where less than 5% of the data were below the detection limit were investigated by Analysis of Variance (ANOVA). A total of 15 elements (K, Na, As, Ba, Be, Ce, La, Mn, Nb, P, Rb, Sb, Th, Tl and W) demonstrated statistically significant (p<0.05) variability at the between-40-km scale for both horizons along both transects. Only Cu failed to demonstrate significant variability at the between-40-km scale for both soil horizons along both transects.

  13. Variability of soil fertility properties in areas planted to sugarcane in the State of Goias, Brazil

    Directory of Open Access Journals (Sweden)

    José Avelino Cardoso

    2014-04-01

    Full Text Available Soil sampling should provide an accurate representation of a given area so that recommendations for amendments of soil acidity, fertilization and soil conservation may be drafted to increase yield and improve the use of inputs. The aim of this study was to evaluate the variability of soil fertility properties of Oxisols in areas planted to sugarcane in the State of Goias, Brazil. Two areas of approximately 8,100 m² each were selected, representing two fields of the Goiasa sugarcane mill in Goiatuba. The sugarcane crop had a row spacing of 1.5 m and subsamples were taken from 49 points in the row and 49 between the row with a Dutch auger at depths of 0.0-0.2 and 0.2-0.4 m, for a total of 196 subsamples for each area. The samples were individually subjected to chemical analyses of soil fertility (pH in CaCl2, potential acidity, organic matter, P, K, Ca and Mg and particle size analysis. The number of subsamples required to compose a sample within the acceptable ranges of error of 5, 10, 20 and 40 % of each property were computed from the coefficients of variation and the Student t-value for 95 % confidence. The soil properties under analysis exhibited different variabilities: high (P and K, medium (potential acidity, Ca and Mg and low (pH, organic matter and clay content. Most of the properties analyzed showed an error of less than 20 % for a group of 20 subsamples, except for P and K, which were capable of showing an error greater than 40 % around the mean. The extreme variability in phosphorus, particularly at the depth of 0.2-0.4 m, attributed to banded application of high rates of P fertilizers at planting, places limitations on assessment of its availability due to the high number of subsamples required for a composite sample.

  14. Building the nodal nuclear data dependences in a many-dimensional state-variable space

    International Nuclear Information System (INIS)

    Dufek, Jan

    2011-01-01

    Highlights: → The Abstract and Introduction are revised to reflect reviewers' comments. → Section is revised and simplified. → The third paragraph in Section is revised. → All typos are fixed. - Abstract: We present new methods for building the polynomial-regression based nodal nuclear data models. The data models can reflect dependences on a large number of state variables, and they can consider various history effects. Suitable multivariate polynomials that approximate the nodal data dependences are identified efficiently in an iterative manner. The history effects are analysed using a new sampling scheme for lattice calculations where the traditional base burnup and branch calculations are replaced by a large number of diverse burnup histories. The total number of lattice calculations is controlled so that the data models are built to a required accuracy.

  15. Characterization of polymorphic solid-state changes using variable temperature X-ray powder diffraction

    DEFF Research Database (Denmark)

    Karjalainen, Milja; Airaksinen, Sari; Rantanen, Jukka

    2005-01-01

    The aim of this study was to use variable temperature X-ray powder diffraction (VT-XRPD) to understand the solid-state changes in the pharmaceutical materials during heating. The model compounds studied were sulfathiazole, theophylline and nitrofurantoin. This study showed that the polymorph form...... of sulfathiazole SUTHAZ01 was very stable and SUTHAZ02 changed as a function of temperature to SUTHAZ01. Theophylline monohydrate changed via its metastable form to its anhydrous form during heating and nitrofurantoin monohydrate changed via amorphous form to its anhydrous form during heating. The crystallinity...... to the anhydrous form. The average crystallite size of sulfathiazole samples varied only a little during heating. The average crystallite size of both theophylline and nitrofurantoin monohydrate decreased during heating. However, the average crystallite size of nitrofurantoin monohydrate returned back to starting...

  16. Effect of normal impurities on anisotropic superconductors with variable density of states

    Science.gov (United States)

    Whitmore, M. D.; Carbotte, J. P.

    1982-06-01

    We develop a generalized BCS theory of impure superconductors with an anisotropic electron-electron interaction represented by the factorizable model introduced by Markowitz and Kadanoff, and a variable electronic density of states N(ɛ), assumed to peak at the Fermi energy, which is modeled by a Lorentzian superimposed on a uniform background. As the impurity scattering is increased, the enhancement of T c by both the anisotropy and the peak in N(ɛ) is washed out. The reduction is investigated for different values of the anisotropy and different peak heights and widths. It is concluded that the effects of anisotropy and the peak are reduced together in such a way that any effect due to anisotropy is not easily distinguishable from that due to the peak.

  17. Effect of normal impurities on anisotropic superconductors with variable density of states

    International Nuclear Information System (INIS)

    Whitmore, M.D.; Carbotte, J.P.

    1982-01-01

    We develop a generalized BCS theory of impure superconductors with an anisotropic electron--electron interaction represented by the factorizable model introduced by Markowitz and Kadanoff, and a variable electronic density of states N(epsilon-c), assumed to peak at the Fermi energy, which is modeled by a Lorentzian superimposed on a uniform background. As the impurity scattering is increased, the enhancement of T/sub c/ by both the anisotropy and the peak in N(epsilon-c) is washed out. The reduction is investigated for different values of the anisotropy and different peak heights and widths. It is concluded that the effects of anisotropy and the peak are reduced together in such a way that any effect due to anisotropy is not easily distinguishable from that due to the peak

  18. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation.

    Science.gov (United States)

    Curie, Thomas; Mongrain, Valérie; Dorsaz, Stéphane; Mang, Géraldine M; Emmenegger, Yann; Franken, Paul

    2013-03-01

    Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. Mouse sleep laboratory. Male mice. Sleep deprivation. The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. SLEEP 2013;36(3):311-323.

  19. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    Science.gov (United States)

    Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.

    1993-01-01

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.

  20. Origin of the OFF state variability in ReRAM cells

    International Nuclear Information System (INIS)

    Salaoru, Iulia; Khiat, Ali; Li, Qingjiang; Prodromakis, Themistoklis; Berdan, Radu; Papavassiliou, Christos

    2014-01-01

    This work exploits the switching dynamics of nanoscale resistive random access memory (ReRAM) cells with particular emphasis on the origin of the observed variability when cells are consecutively cycled/programmed at distinct memory states. It is demonstrated that this variance is a common feature of all ReRAM elements and is ascribed to the formation and rupture of conductive filaments that expand across the active core, independently of the material employed as the active switching core, the causal physical switching mechanism, the switching mode (bipolar/unipolar) or even the unit cells' dimensions. Our hypothesis is supported through both experimental and theoretical studies on TiO 2 and In 2 O 3  : SnO 2 (ITO) based ReRAM cells programmed at three distinct resistive states. Our prototypes employed TiO 2 or ITO active cores over 5 × 5 µm 2 and 100 × 100 µm 2 cell areas, with all tested devices demonstrating both unipolar and bipolar switching modalities. In the case of TiO 2 -based cells, the underlying switching mechanism is based on the non-uniform displacement of ionic species that foster the formation of conductive filaments. On the other hand, the resistive switching observed in the ITO-based devices is considered to be due to a phase change mechanism. The selected experimental parameters allowed us to demonstrate that the observed programming variance is a common feature of all ReRAM devices, proving that its origin is dependent upon randomly oriented local disorders within the active core that have a substantial impact on the overall state variance, particularly for high-resistive states. (paper)

  1. Interannual and Decadal Variability of Landfalling Tropical Cyclones in the Southeast Coastal States of the United States

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The interannual variability of the At lantic tropical cyclone (TC) frequency is well known. Separately,recent studies have also suggested that a much longer, multidecadal (40-60 year) trend might be emerging from the recent increase in Atlantic TC activity. However, the overall structure of the intrinsic frequencies (or temporal modes) of Atlantic TC activity is not yet known. The focus of this study is to systematically analyze the intrinsic frequencies of Atlantic TC activity using hurricane and tropical storm landfall data collected along the southeast coast (SEC) of the United States. Based on an Empirical Mode Decomposition (EMD) analysis of the frequency of landfall TCs along the SEC from 1887-1999, we have found that Atlantic TC activity has four primary, temporal modes. The interannual and multidecadal modes reported in the published literature are two such modes. After identifying all primary modes, the relative importance of each mode and its physical cause can be analyzed. For example, the most energetic mode is the interannual mode (2-7 year period). This mode is known to be associated with the 2-7 year El Nino / La Ni na cycle. The average number of annual landfalling TCs along the SEC decreased by 24% during El Nino years, but did not show significant increase during weak and moderate La Nina years. However, intense La Nina years were generally associated with more than average landfalling TCs along the SEC. The effects of El Nino and La Nina also became more significant when only hurricanes were considered. The significance of the effects of El Nino and La Nina on landfalling TCs and hurricanes in different US southeast coastal states showed significant differences.

  2. Recent changes in county-level corn yield variability in the United States from observations and crop models

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Guoyong

    2017-12-01

    The United States is responsible for 35% and 60% of global corn supply and exports. Enhanced supply stability through a reduction in the year-to-year variability of US corn yield would greatly benefit global food security. Important in this regard is to understand how corn yield variability has evolved geographically in the history and how it relates to climatic and non-climatic factors. Results showed that year-to-year variation of US corn yield has decreased significantly during 1980-2010, mainly in Midwest Corn Belt, Nebraska and western arid regions. Despite the country-scale decreasing variability, corn yield variability exhibited an increasing trend in South Dakota, Texas and Southeast growing regions, indicating the importance of considering spatial scales in estimating yield variability. The observed pattern is partly reproduced by process-based crop models, simulating larger areas experiencing increasing variability and underestimating the magnitude of decreasing variability. And 3 out of 11 models even produced a differing sign of change from observations. Hence, statistical model which produces closer agreement with observations is used to explore the contribution of climatic and non-climatic factors to the changes in yield variability. It is found that climate variability dominate the change trends of corn yield variability in the Midwest Corn Belt, while the ability of climate variability in controlling yield variability is low in southeastern and western arid regions. Irrigation has largely reduced the corn yield variability in regions (e.g. Nebraska) where separate estimates of irrigated and rain-fed corn yield exist, demonstrating the importance of non-climatic factors in governing the changes in corn yield variability. The results highlight the distinct spatial patterns of corn yield variability change as well as its influencing factors at the county scale. I also caution the use of process-based crop models, which have substantially underestimated

  3. Variability of United States Online Rehabilitation Protocols for Proximal Hamstring Tendon Repair

    Science.gov (United States)

    Lightsey, Harry M.; Kantrowitz, David E.; Swindell, Hasani W.; Trofa, David P.; Ahmad, Christopher S.; Lynch, T. Sean

    2018-01-01

    Background: The optimal postoperative rehabilitation protocol following repair of complete proximal hamstring tendon ruptures is the subject of ongoing investigation, with a need for more standardized regimens and evidence-based modalities. Purpose: To assess the variability across proximal hamstring tendon repair rehabilitation protocols published online by United States (US) orthopaedic teaching programs. Study Design: Cross-sectional study. Methods: Online proximal hamstring physical therapy protocols from US academic orthopaedic programs were reviewed. A web-based search using the search term complete proximal hamstring repair rehabilitation protocol provided an additional 14 protocols. A comprehensive scoring rubric was developed after review of all protocols and was used to assess each protocol for both the presence of various rehabilitation components and the point at which those components were introduced. Results: Of 50 rehabilitation protocols identified, 35 satisfied inclusion criteria and were analyzed. Twenty-five protocols (71%) recommended immediate postoperative bracing: 12 (34%) prescribed knee bracing, 8 (23%) prescribed hip bracing, and 5 (14%) did not specify the type of brace recommended. Fourteen protocols (40%) advised immediate nonweightbearing with crutches, while 16 protocols (46%) permitted immediate toe-touch weightbearing. Advancement to full weightbearing was allowed at a mean of 7.1 weeks (range, 4-12 weeks). Most protocols (80%) recommended gentle knee and hip passive range of motion and active range of motion, starting at a mean 1.4 weeks (range, 0-3 weeks) and 4.0 weeks (range, 0-6 weeks), respectively. However, only 6 protocols (17%) provided specific time points to initiate full hip and knee range of motion: a mean 8.0 weeks (range, 4-12 weeks) and 7.8 weeks (range, 0-12 weeks), respectively. Considerable variability was noted in the inclusion and timing of strengthening, stretching, proprioception, and cardiovascular exercises

  4. Variability of United States Online Rehabilitation Protocols for Proximal Hamstring Tendon Repair.

    Science.gov (United States)

    Lightsey, Harry M; Kantrowitz, David E; Swindell, Hasani W; Trofa, David P; Ahmad, Christopher S; Lynch, T Sean

    2018-02-01

    The optimal postoperative rehabilitation protocol following repair of complete proximal hamstring tendon ruptures is the subject of ongoing investigation, with a need for more standardized regimens and evidence-based modalities. To assess the variability across proximal hamstring tendon repair rehabilitation protocols published online by United States (US) orthopaedic teaching programs. Cross-sectional study. Online proximal hamstring physical therapy protocols from US academic orthopaedic programs were reviewed. A web-based search using the search term complete proximal hamstring repair rehabilitation protocol provided an additional 14 protocols. A comprehensive scoring rubric was developed after review of all protocols and was used to assess each protocol for both the presence of various rehabilitation components and the point at which those components were introduced. Of 50 rehabilitation protocols identified, 35 satisfied inclusion criteria and were analyzed. Twenty-five protocols (71%) recommended immediate postoperative bracing: 12 (34%) prescribed knee bracing, 8 (23%) prescribed hip bracing, and 5 (14%) did not specify the type of brace recommended. Fourteen protocols (40%) advised immediate nonweightbearing with crutches, while 16 protocols (46%) permitted immediate toe-touch weightbearing. Advancement to full weightbearing was allowed at a mean of 7.1 weeks (range, 4-12 weeks). Most protocols (80%) recommended gentle knee and hip passive range of motion and active range of motion, starting at a mean 1.4 weeks (range, 0-3 weeks) and 4.0 weeks (range, 0-6 weeks), respectively. However, only 6 protocols (17%) provided specific time points to initiate full hip and knee range of motion: a mean 8.0 weeks (range, 4-12 weeks) and 7.8 weeks (range, 0-12 weeks), respectively. Considerable variability was noted in the inclusion and timing of strengthening, stretching, proprioception, and cardiovascular exercises. Fifteen protocols (43%) required completion of

  5. Defining Autism: Variability in State Education Agency Definitions of and Evaluations for Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Malinda L. Pennington

    2014-01-01

    Full Text Available In light of the steady rise in the prevalence of students with autism, this study examined the definition of autism published by state education agencies (SEAs, as well as SEA-indicated evaluation procedures for determining student qualification for autism. We compared components of each SEA definition to aspects of autism from two authoritative sources: Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR and Individuals with Disabilities Education Improvement Act (IDEA-2004. We also compared SEA-indicated evaluation procedures across SEAs to evaluation procedures noted in IDEA-2004. Results indicated that many more SEA definitions incorporate IDEA-2004 features than DSM-IV-TR features. However, despite similar foundations, SEA definitions of autism displayed considerable variability. Evaluation procedures were found to vary even more across SEAs. Moreover, within any particular SEA there often was little concordance between the definition (what autism is and evaluation procedures (how autism is recognized. Recommendations for state and federal policy changes are discussed.

  6. Assessing positive emotional states in dogs using heart rate and heart rate variability.

    Science.gov (United States)

    Zupan, Manja; Buskas, Julia; Altimiras, Jordi; Keeling, Linda J

    2016-03-01

    Since most animal species have been recognized as sentient beings, emotional state may be a good indicator of welfare in animals. The goal of this study was to manipulate the environment of nine beagle research dogs to highlight physiological responses indicative of different emotional experiences. Stimuli were selected to be a more or a less positive food (meatball or food pellet) or social reward (familiar person or less familiar person). That all the stimuli were positive and of different reward value was confirmed in a runway motivation test. Dogs were tested individually while standing facing a display theatre where the different stimuli could be shown by lifting a shutter. The dogs approached and remained voluntarily in the test system. They were tested in four sessions (of 20s each) for each of the four stimuli. A test session consisted of four presentation phases (1st exposure to stimulus, post exposure, 2nd exposure, and access to reward). Heart rate (HR) and heart rate variability (HRV) responses were recorded during testing in the experimental room and also when lying resting in a quiet familiar room. A new method of 'stitching' short periods of HRV data together was used in the analysis. When testing different stimuli, no significant differences were observed in HR and LF:HF ratio (relative power in low frequency (LF) and the high-frequency (HF) range), implying that the sympathetic tone was activated similarly for all the stimuli and may suggest that dogs were in a state of positive arousal. A decrease of HF was associated with the meatball stimulus compared to the food pellet and the reward phase (interacting with the person or eating the food) was associated with a decrease in HF and RMSSD (root mean square of successive differences of inter-beat intervals) compared to the preceding phase (looking at the person or food). This suggests that parasympathetic deactivation is associated with a more positive emotional state in the dog. A similar reduction

  7. The modulation of EEG variability between internally- and externally-driven cognitive states varies with maturation and task performance.

    Directory of Open Access Journals (Sweden)

    Jessie M H Szostakiwskyj

    Full Text Available Increasing evidence suggests that brain signal variability is an important measure of brain function reflecting information processing capacity and functional integrity. In this study, we examined how maturation from childhood to adulthood affects the magnitude and spatial extent of state-to-state transitions in brain signal variability, and how this relates to cognitive performance. We looked at variability changes between resting-state and task (a symbol-matching task with three levels of difficulty, and within trial (fixation, post-stimulus, and post-response. We calculated variability with multiscale entropy (MSE, and additionally examined spectral power density (SPD from electroencephalography (EEG in children aged 8-14, and in adults aged 18-33. Our results suggest that maturation is characterized by increased local information processing (higher MSE at fine temporal scales and decreased long-range interactions with other neural populations (lower MSE at coarse temporal scales. Children show MSE changes that are similar in magnitude, but greater in spatial extent when transitioning between internally- and externally-driven brain states. Additionally, we found that in children, greater changes in task difficulty were associated with greater magnitude of modulation in MSE. Our results suggest that the interplay between maturational and state-to-state changes in brain signal variability manifest across different spatial and temporal scales, and influence information processing capacity in the brain.

  8. Direct Torque Control With Feedback Linearization for Induction Motor Drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.

    2017-01-01

    This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC-type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using SMC with proportional control in the vicinity of the sliding surface. SMC assures...... in simulations. The sliding controller is compared with a linear DTC scheme with and without feedback linearization. Extensive experimental results for a sensorless IM drive validate the proposed solution....

  9. Asynchronous anti-noise hyper chaotic secure communication system based on dynamic delay and state variables switching

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongjun [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Weifang Vocational College, Weifang 261041 (China); Wang, Xingyuan, E-mail: wangxy@dlut.edu.cn [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Zhu, Quanlong [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2011-07-18

    This Letter designs an asynchronous hyper chaotic secure communication system, which possesses high stability against noise, using dynamic delay and state variables switching to ensure the high security. The relationship between the bit error ratio (BER) and the signal-to-noise ratio (SNR) is analyzed by simulation tests, the results show that the BER can be ensured to reach zero by proportionally adjusting the amplitudes of the state variables and the noise figure. The modules of the transmitter and receiver are implemented, and numerical simulations demonstrate the effectiveness of the system. -- Highlights: → Asynchronous anti-noise hyper chaotic secure communication system. → Dynamic delay and state switching to ensure the high security. → BER can reach zero by adjusting the amplitudes of state variables and noise figure.

  10. High severity fires, positive fire feedbacks and alternative stable states in Athrotaxis rainforest ecosystems in western Tasmania.

    Science.gov (United States)

    Holz, A.; Wood, S.; Fletcher, M. S.; Ward, C.; Hopf, F.; Veblen, T. T.; Bowman, D. M. J. S.

    2016-12-01

    Recurrent landscape fires present a powerful selective force on plant regeneration strategies that form a continuum between vegetative resprouters and obligate seeders. In the latter case, reduction of the interval between fires, combined with factors that affect plant traits and regeneration dynamics can drive plant population to local extinction. Here we use Athrotaxis selaginoides, a relict fire-sensitive Gondwanan tree species that occurs in western Tasmania, as model system to investigate the putative impacts of climate change and variability and human management of fire. We integrate landscape ecology (island-wide scale), with field survey and dendrochronology (stand-scale) and sedimentary records (watershed and landscape-scales) to garner a better understanding of the timing and impact of landscape fire on the vegetation dynamics of Athrotaxis at multiple scales. Across the species range sedimentary charcoal and pollen concentrations indicate that the recovery time since the last fire has consistently lengthened over the last 10,000 yrs. Stand-scale tree-age and fire-scar reconstructions suggest that populations of the Athrotxis have survive very infrequent landscape fires over the last 4-6 centuries, but that fire severity has increased following European colonization causing population collapse of Athrotaxis and an associate shift in stand structure and composition that favor resprouter species over obligate seeders. Overall our findings suggest that the resistance to fires and postfire recovery of populations of A. selaginoides have gradually declined throughout the Holocene and rapidly declined after Europeans altered fire regimes, a trend that matches the fate other Gondwanan conifers in temperate rainforests elsewhere in the southern Hemisphere.

  11. Soil Carbon Variability and Change Detection in the Forest Inventory Analysis Database of the United States

    Science.gov (United States)

    Wu, A. M.; Nater, E. A.; Dalzell, B. J.; Perry, C. H.

    2014-12-01

    The USDA Forest Service's Forest Inventory Analysis (FIA) program is a national effort assessing current forest resources to ensure sustainable management practices, to assist planning activities, and to report critical status and trends. For example, estimates of carbon stocks and stock change in FIA are reported as the official United States submission to the United Nations Framework Convention on Climate Change. While the main effort in FIA has been focused on aboveground biomass, soil is a critical component of this system. FIA sampled forest soils in the early 2000s and has remeasurement now underway. However, soil sampling is repeated on a 10-year interval (or longer), and it is uncertain what magnitude of changes in soil organic carbon (SOC) may be detectable with the current sampling protocol. We aim to identify the sensitivity and variability of SOC in the FIA database, and to determine the amount of SOC change that can be detected with the current sampling scheme. For this analysis, we attempt to answer the following questions: 1) What is the sensitivity (power) of SOC data in the current FIA database? 2) How does the minimum detectable change in forest SOC respond to changes in sampling intervals and/or sample point density? Soil samples in the FIA database represent 0-10 cm and 10-20 cm depth increments with a 10-year sampling interval. We are investigating the variability of SOC and its change over time for composite soil data in each FIA region (Pacific Northwest, Interior West, Northern, and Southern). To guide future sampling efforts, we are employing statistical power analysis to examine the minimum detectable change in SOC storage. We are also investigating the sensitivity of SOC storage changes under various scenarios of sample size and/or sample frequency. This research will inform the design of future FIA soil sampling schemes and improve the information available to international policy makers, university and industry partners, and the public.

  12. Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence

    Science.gov (United States)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2006-03-01

    We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.

  13. Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2006-01-01

    We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise

  14. Seasonal Variability of Aragonite Saturation State in the North Pacific Ocean Predicted by Multiple Linear Regression

    Science.gov (United States)

    Kim, T. W.; Park, G. H.

    2014-12-01

    Seasonal variation of aragonite saturation state (Ωarag) in the North Pacific Ocean (NPO) was investigated, using multiple linear regression (MLR) models produced from the PACIFICA (Pacific Ocean interior carbon) dataset. Data within depth ranges of 50-1200m were used to derive MLR models, and three parameters (potential temperature, nitrate, and apparent oxygen utilization (AOU)) were chosen as predictor variables because these parameters are associated with vertical mixing, DIC (dissolved inorganic carbon) removal and release which all affect Ωarag in water column directly or indirectly. The PACIFICA dataset was divided into 5° × 5° grids, and a MLR model was produced in each grid, giving total 145 independent MLR models over the NPO. Mean RMSE (root mean square error) and r2 (coefficient of determination) of all derived MLR models were approximately 0.09 and 0.96, respectively. Then the obtained MLR coefficients for each of predictor variables and an intercept were interpolated over the study area, thereby making possible to allocate MLR coefficients to data-sparse ocean regions. Predictability from the interpolated coefficients was evaluated using Hawaiian time-series data, and as a result mean residual between measured and predicted Ωarag values was approximately 0.08, which is less than the mean RMSE of our MLR models. The interpolated MLR coefficients were combined with seasonal climatology of World Ocean Atlas 2013 (1° × 1°) to produce seasonal Ωarag distributions over various depths. Large seasonal variability in Ωarag was manifested in the mid-latitude Western NPO (24-40°N, 130-180°E) and low-latitude Eastern NPO (0-12°N, 115-150°W). In the Western NPO, seasonal fluctuations of water column stratification appeared to be responsible for the seasonal variation in Ωarag (~ 0.5 at 50 m) because it closely followed temperature variations in a layer of 0-75 m. In contrast, remineralization of organic matter was the main cause for the seasonal

  15. Synchronizing strict-feedback and general strict-feedback chaotic systems via a single controller

    International Nuclear Information System (INIS)

    Chen Shihua; Wang Feng; Wang Changping

    2004-01-01

    We present a systematic design procedure to synchronize a class of chaotic systems in a so-called strict-feedback form based on back-stepping procedure. This approach needs only a single controller to realize synchronization no matter how many dimensions the chaotic system contains. Furthermore, we point out that the method does not work for general strict-feedback chaotic systems, for instance, Lorenz system. Therefore, we propose three kinds of synchronization schemes for Lorenz system using the Lyapunov function method. All the three schemes avoid including divergence factor as in Ref. [Chaos, Solitons and Fractals 16 (2003) 37]. Especially in the last two schemes, we need only one state variable in controller, which has important significance in chaos synchronization used for communication purposes. Finally numerical simulations are provided to show the effectiveness and feasibility of the developed methods

  16. Homeostatic and Circadian Contribution to EEG and Molecular State Variables of Sleep Regulation

    Science.gov (United States)

    Curie, Thomas; Mongrain, Valérie; Dorsaz, Stéphane; Mang, Géraldine M.; Emmenegger, Yann; Franken, Paul

    2013-01-01

    Study Objectives: Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. Design: EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. Setting: Mouse sleep laboratory. Participants: Male mice. Interventions: Sleep deprivation. Results: The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. Conclusions: Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. Citation: Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state

  17. Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Analysis of local bifurcations via the hybrid Poincaré map

    International Nuclear Information System (INIS)

    Gritli, Hassène; Belghith, Safya

    2017-01-01

    Highlights: • We study the passive walking dynamics of the compass-gait model under OGY-based state-feedback control. • We analyze local bifurcations via a hybrid Poincaré map. • We show exhibition of the super(sub)-critical flip bifurcation, the saddle-node(saddle) bifurcation and a saddle-flip bifurcation. • An analysis via a two-parameter bifurcation diagram is presented. • Some new hidden attractors in the controlled passive walking dynamics are displayed. - Abstract: In our previous work, we have analyzed the passive dynamic walking of the compass-gait biped model under the OGY-based state-feedback control using the impulsive hybrid nonlinear dynamics. Such study was carried out through bifurcation diagrams. It was shown that the controlled bipedal gait exhibits attractive nonlinear phenomena such as the cyclic-fold (saddle-node) bifurcation, the period-doubling (flip) bifurcation and chaos. Moreover, we revealed that, using the controlled continuous-time dynamics, we encountered a problem in finding, identifying and hence following branches of (un)stable solutions in order to characterize local bifurcations. The present paper solves such problem and then provides a further investigation of the controlled bipedal walking dynamics using the developed analytical expression of the controlled hybrid Poincaré map. Thus, we show that analysis via such Poincaré map allows to follow branches of both stable and unstable fixed points in bifurcation diagrams and hence to explore the complete dynamics of the controlled compass-gait biped model. We demonstrate the generation, other than the conventional local bifurcations in bipedal walking, i.e. the flip bifurcation and the saddle-node bifurcation, of a saddle-saddle bifurcation, a subcritical flip bifurcation and a new type of a local bifurcation, the saddle-flip bifurcation. In addition, to further understand the occurrence of the local bifurcations, we present an analysis with a two-parameter bifurcation

  18. State Anxiety and Nonlinear Dynamics of Heart Rate Variability in Students.

    Science.gov (United States)

    Dimitriev, Dimitriy A; Saperova, Elena V; Dimitriev, Aleksey D

    2016-01-01

    Clinical and experimental research studies have demonstrated that the emotional experience of anxiety impairs heart rate variability (HRV) in humans. The present study investigated whether changes in state anxiety (SA) can also modulate nonlinear dynamics of heart rate. A group of 96 students volunteered to participate in the study. For each student, two 5-minute recordings of beat intervals (RR) were performed: one during a rest period and one just before a university examination, which was assumed to be a real-life stressor. Nonlinear analysis of HRV was performed. The Spielberger's State-Trait Anxiety Inventory was used to assess the level of SA. Before adjusting for heart rate, a Wilcoxon matched pairs test showed significant decreases in Poincaré plot measures, entropy, largest Lyapunov exponent (LLE), and pointwise correlation dimension (PD2), and an increase in the short-term fractal-like scaling exponent of detrended fluctuation analysis (α1) during the exam session, compared with the rest period. A Pearson analysis indicated significant negative correlations between the dynamics of SA and Poincaré plot axes ratio (SD1/SD2), and between changes in SA and changes in entropy measures. A strong negative correlation was found between the dynamics of SA and LLE. A significant positive correlation was found between the dynamics of SA and α1. The decreases in Poincaré plot measures (SD1, complex correlation measure), entropy measures, and LLE were still significant after adjusting for heart rate. Corrected α1 was increased during the exam session. As before, the dynamics of adjusted LLE was significantly correlated with the dynamics of SA. The qualitative increase in SA during academic examination was related to the decrease in the complexity and size of the Poincaré plot through a reduction of both the interbeat interval and its variation.

  19. Interest of analyses of heart rate variability in the prevention of fatigue states in senior runners.

    Science.gov (United States)

    Leti, Thomas; Bricout, Véronique A

    2013-01-01

    The use of heart rate variability (HRV) in the management of sport training is a practice which tends to spread, especially in order to prevent the occurrence of fatigue states. To estimate the HRV parameters obtained using a heart rate recording, according to different exercise impacts, and to make the link with the appearance of subjective fatigue. Ten senior runners, aged 51±5 years, were each monitored over a period of 12 weeks in different conditions: (i) after a resting period, (ii) after a day with training, (iii) after a day of competition and (iv) after a rest day. They also completed three questionnaires, to assess fatigue (SFMS), profile of mood states (POMS) and quality of sleep. The HRV indices (heart rate, LF (n.u.), HF (n.u.) and LF/HF) were significantly altered with the competitive impact, shifting toward a sympathetic predominance. After rest and recovery nights, the LF (n.u.) increased significantly with the competitive impact (62.1±15.2 and 66.9±11.6 vs. 76.0±10.7; p<0.05 respectively) whereas the HF (n.u.) decreased significantly (37.9±15.2 and 33.1±11.6 vs. 24.0±10.7; p<0.05 respectively). Positive correlations were found between fatigue and frequency domain indices and between fatigue and training impact. Autonomic nervous system modulation-fatigue relationships were significant, suggesting the potential use of HRV in follow-up and control of training. Furthermore, the addition of questionnaires constitutes complementary tools that allow to achieve a greater relevance and accuracy of the athletes' fitness and results. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. State Anxiety and Nonlinear Dynamics of Heart Rate Variability in Students.

    Directory of Open Access Journals (Sweden)

    Dimitriy A Dimitriev

    Full Text Available Clinical and experimental research studies have demonstrated that the emotional experience of anxiety impairs heart rate variability (HRV in humans. The present study investigated whether changes in state anxiety (SA can also modulate nonlinear dynamics of heart rate.A group of 96 students volunteered to participate in the study. For each student, two 5-minute recordings of beat intervals (RR were performed: one during a rest period and one just before a university examination, which was assumed to be a real-life stressor. Nonlinear analysis of HRV was performed. The Spielberger's State-Trait Anxiety Inventory was used to assess the level of SA.Before adjusting for heart rate, a Wilcoxon matched pairs test showed significant decreases in Poincaré plot measures, entropy, largest Lyapunov exponent (LLE, and pointwise correlation dimension (PD2, and an increase in the short-term fractal-like scaling exponent of detrended fluctuation analysis (α1 during the exam session, compared with the rest period. A Pearson analysis indicated significant negative correlations between the dynamics of SA and Poincaré plot axes ratio (SD1/SD2, and between changes in SA and changes in entropy measures. A strong negative correlation was found between the dynamics of SA and LLE. A significant positive correlation was found between the dynamics of SA and α1. The decreases in Poincaré plot measures (SD1, complex correlation measure, entropy measures, and LLE were still significant after adjusting for heart rate. Corrected α1 was increased during the exam session. As before, the dynamics of adjusted LLE was significantly correlated with the dynamics of SA.The qualitative increase in SA during academic examination was related to the decrease in the complexity and size of the Poincaré plot through a reduction of both the interbeat interval and its variation.

  1. Spatiotemporal predictions of soil properties and states in variably saturated landscapes

    Science.gov (United States)

    Franz, Trenton E.; Loecke, Terrance D.; Burgin, Amy J.; Zhou, Yuzhen; Le, Tri; Moscicki, David

    2017-07-01

    Understanding greenhouse gas (GHG) fluxes from landscapes with variably saturated soil conditions is challenging given the highly dynamic nature of GHG fluxes in both space and time, dubbed hot spots, and hot moments. On one hand, our ability to directly monitor these processes is limited by sparse in situ and surface chamber observational networks. On the other hand, remote sensing approaches provide spatial data sets but are limited by infrequent imaging over time. We use a robust statistical framework to merge sparse sensor network observations with reconnaissance style hydrogeophysical mapping at a well-characterized site in Ohio. We find that combining time-lapse electromagnetic induction surveys with empirical orthogonal functions provides additional environmental covariates related to soil properties and states at high spatial resolutions ( 5 m). A cross-validation experiment using eight different spatial interpolation methods versus 120 in situ soil cores indicated an 30% reduction in root-mean-square error for soil properties (clay weight percent and total soil carbon weight percent) using hydrogeophysical derived environmental covariates with regression kriging. In addition, the hydrogeophysical derived environmental covariates were found to be good predictors of soil states (soil temperature, soil water content, and soil oxygen). The presented framework allows for temporal gap filling of individual sensor data sets as well as provides flexible geometric interpolation to complex areas/volumes. We anticipate that the framework, with its flexible temporal and spatial monitoring options, will be useful in designing future monitoring networks as well as support the next generation of hyper-resolution hydrologic and biogeochemical models.

  2. Finding Positive Feedback Loops in Environmental Models: A Mathematical Investigation

    Science.gov (United States)

    Sheikholeslami, R.; Razavi, S.

    2016-12-01

    Dynamics of most earth and environmental systems are generally governed by interactions between several hydrological (e.g., soil moisture and precipitation), geological (e.g., and erosion), geochemical (e.g., nutrient loading), and atmospheric (e.g., temperature) processes which operate on a range of spatio-temporal scales. These interactions create numerous feedback mechanisms with complex behaviours, and their understanding and representation can vary depending on the scale in space and/or time at which the system is analyzed. One of the most crucial characteristics of such complex systems is the existence of positive feedback loops. The presence of positive feedbacks may increase complexity, accelerate change, or trigger multiple stable states in the underlying dynamical system. Furthermore, because of the inherent non-linearity, it is often very difficult to obtain a general idea of their complex dynamics. Feedback loops in environmental systems have been well recognized and qualitatively discussed. With a quantitative/mathematical view, in this presentation, we address the question of how the positive feedback loops can be identified/implemented in environmental models. We investigate the nature of different feedback mechanisms and dynamics of simple example case studies that underlie fundamental processes such as vegetation, precipitation and soil moisture. To do this, we apply the concept of "interaction graph" from mathematics which is built from the Jacobian matrix of the dynamical system. The Jacobian matrix contains information on how variations of one state variable depends on variations of other variables, and thus can be used to understand the dynamical possibilities of feedback mechanisms in the underlying system. Moreover, this study highlights that there are some situations where the existence of positive feedback loops can cause multiple stable states, and thereby regime shifts in environmental systems. Systems with multiple stable states are

  3. Inter-Annual Variability Of Rainfall In Some States Of Southern Nigeria

    Directory of Open Access Journals (Sweden)

    Egor

    2015-08-01

    Full Text Available Abstract The study inter-annual variability of rainfall in some states in Southern Nigeria focuses on analyzing the trends and fluctuations in annual rainfall over six states in Southern Nigeria covering a period of 1972 2012. In order to ascertain the variabilitys and to model the annual rainfall for future prediction to enhance policy implementation the quantitative and descriptive analysis techniques was employed. The rainfall series were analyzed for fluctuations using Standardized Anomaly Index SAI whereas the trends were examined using Statistical Package for Social Science Software SPSS 17.0. At 95 percent confidence level observations in the stations may be signals that the wetter period dominates the drier periods in this study. Each of the series contains two distinct periods when the rainfall anomalies negative and positive of a particular type were most significant. The period where the annual rainfall is above one standard deviation from the mean annual rainfall is considered Wet and the period below one standard deviation from the mean annual rainfall is considered Dry for each station. The results of the linear trend lines revealed an increase in rainfall supply over the period of study especially of recent. The annual rate of increase in rainfall over the period of investigation 1972 - 2012 were 15.21mmyear for Calabar 2.18mmyear for Port Harcourt 22.23mmyear for Owerri 3.25mmyear for Benin City 5.08mmyear for Enugu and 16.29mmyear for Uyo respectively. The variability in amount of annual rainfall revealed that in 2012 Calabar received the highest amount of rainfall of about 4062.70mm and the least value of 2099.4mm in 1973. In Porthacourt the highest amount of rainfall occurred in 1993 with a value of 3911.70mm and the least value in 1983 with a value of 1816.4mm. Owerri recorded the highest amount of rainfall of about 3064.0mm in 2011 and the least value occurred in 1986 with a value of 1228.4mm. In 1976 Benin received the

  4. Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor

    International Nuclear Information System (INIS)

    Jeong, YeonJoo; Kim, Sungho; Lu, Wei D.

    2015-01-01

    Memristors and memristive systems have been extensively studied for data storage and computing applications such as neuromorphic systems. To act as synapses in neuromorphic systems, the memristor needs to exhibit analog resistive switching (RS) behavior with incremental conductance change. In this study, we show that the dynamic range of the analog RS behavior can be significantly enhanced in a tantalum-oxide-based memristor. By controlling different state variables enabled by different physical effects during the RS process, the gradual filament expansion stage can be selectively enhanced without strongly affecting the abrupt filament length growth stage. Detailed physics-based modeling further verified the observed experimental effects and revealed the roles of oxygen vacancy drift and diffusion processes, and how the diffusion process can be selectively enhanced during the filament expansion stage. These findings lead to more desirable and reliable memristor behaviors for analog computing applications. Additionally, the ability to selectively control different internal physical processes demonstrated in the current study provides guidance for continued device optimization of memristor devices in general

  5. Coupling Strategies Investigation of Hybrid Atomistic-Continuum Method Based on State Variable Coupling

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2017-01-01

    Full Text Available Different configurations of coupling strategies influence greatly the accuracy and convergence of the simulation results in the hybrid atomistic-continuum method. This study aims to quantitatively investigate this effect and offer the guidance on how to choose the proper configuration of coupling strategies in the hybrid atomistic-continuum method. We first propose a hybrid molecular dynamics- (MD- continuum solver in LAMMPS and OpenFOAM that exchanges state variables between the atomistic region and the continuum region and evaluate different configurations of coupling strategies using the sudden start Couette flow, aiming to find the preferable configuration that delivers better accuracy and efficiency. The major findings are as follows: (1 the C→A region plays the most important role in the overlap region and the “4-layer-1” combination achieves the best precision with a fixed width of the overlap region; (2 the data exchanging operation only needs a few sampling points closer to the occasions of interactions and decreasing the coupling exchange operations can reduce the computational load with acceptable errors; (3 the nonperiodic boundary force model with a smoothing parameter of 0.1 and a finer parameter of 20 can not only achieve the minimum disturbance near the MD-continuum interface but also keep the simulation precision.

  6. Bound State Eigenvalues of the Schroedinger Eq. in two Spatial Variables.

    Science.gov (United States)

    Rawitscher, George H.; Koltracht, Israel

    2002-08-01

    An efficient spectral integral equation method (SIEM) has recently been developed for obtaining the scattering solution of a one-dimensional Schroedinger equation.(R.A. Gonzales, S.-Y. Kang, I. Koltracht and G. Rawitscher, J. of Comput. Phys. 153, 160 (1999).) The purpose of the present study is to extend this method to the case of bound-states in more than one dimension. Even though other methods have already been developed for this case, such as finite element methods, the application we have in mind is to solve the non-linear Bose-Einstein condensate case in the presence of an optical lattice. In the presence of a trapping potential alone, a B-E condensate solution has been obtained by a new iterative spectral method which solves the differential equation.(Y.-S. Choi, J. Javanainen, I. Koltracht, M. Koš)trun, P.J. McKenna and N. Savytska "A Fast Algorithm for the Solution of the Time-Independent Gross-Pitaevskii Equation," Submitted to Computational Physics. But this method becomes inadequate for the case that several potential barriers are also present. The reason that the SIEM is expected to be better suited is that it distributes the collocation points much more efficiently into partitions of variable size.

  7. A formal method for identifying distinct states of variability in time-varying sources: SGR A* as an example

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, L.; Witzel, G.; Ghez, A. M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Longstaff, F. A. [UCLA Anderson School of Management, University of California, Los Angeles, CA 90095-1481 (United States)

    2014-08-10

    Continuously time variable sources are often characterized by their power spectral density and flux distribution. These quantities can undergo dramatic changes over time if the underlying physical processes change. However, some changes can be subtle and not distinguishable using standard statistical approaches. Here, we report a methodology that aims to identify distinct but similar states of time variability. We apply this method to the Galactic supermassive black hole, where 2.2 μm flux is observed from a source associated with Sgr A* and where two distinct states have recently been suggested. Our approach is taken from mathematical finance and works with conditional flux density distributions that depend on the previous flux value. The discrete, unobserved (hidden) state variable is modeled as a stochastic process and the transition probabilities are inferred from the flux density time series. Using the most comprehensive data set to date, in which all Keck and a majority of the publicly available Very Large Telescope data have been merged, we show that Sgr A* is sufficiently described by a single intrinsic state. However, the observed flux densities exhibit two states: noise dominated and source dominated. Our methodology reported here will prove extremely useful to assess the effects of the putative gas cloud G2 that is on its way toward the black hole and might create a new state of variability.

  8. Relative roles of weather variables and change in human population in malaria: comparison over different states of India.

    Directory of Open Access Journals (Sweden)

    Prashant Goswami

    Full Text Available Pro-active and effective control as well as quantitative assessment of impact of climate change on malaria requires identification of the major drivers of the epidemic. Malaria depends on vector abundance which, in turn, depends on a combination of weather variables. However, there remain several gaps in our understanding and assessment of malaria in a changing climate. Most of the studies have considered weekly or even monthly mean values of weather variables, while the malaria vector is sensitive to daily variations. Secondly, rarely all the relevant meteorological variables have been considered together. An important question is the relative roles of weather variables (vector abundance and change in host (human population, in the change in disease load.We consider the 28 states of India, characterized by diverse climatic zones and changing population as well as complex variability in malaria, as a natural test bed. An annual vector load for each of the 28 states is defined based on the number of vector genesis days computed using daily values of temperature, rainfall and humidity from NCEP daily Reanalysis; a prediction of potential malaria load is defined by taking into consideration changes in the human population and compared with the reported number of malaria cases.For most states, the number of malaria cases is very well correlated with the vector load calculated with the combined conditions of daily values of temperature, rainfall and humidity; no single weather variable has any significant association with the observed disease prevalence.The association between vector-load and daily values of weather variables is robust and holds for different climatic regions (states of India. Thus use of all the three weather variables provides a reliable means of pro-active and efficient vector sanitation and control as well as assessment of impact of climate change on malaria.

  9. Can Performance Feedback during Instruction Boost Knowledge Acquisition? Contrasting Criterion-Based and Social Comparison Feedback

    Science.gov (United States)

    Kollöffel, Bas; de Jong, Ton

    2016-01-01

    Feedback indicating how well students are performing during a learning task can be very stimulating. In this study with a pre- and post-test design, the effects of two types of performance feedback on learning results were compared: feedback during a learning task was either stated in terms of how well the students were performing relative to…

  10. Can performance feedback during instruction boost knowledge acquisition? Contrasting criterion-based and social comparison feedback

    NARCIS (Netherlands)

    Kolloffel, Bas Jan; de Jong, Anthonius J.M.

    2016-01-01

    Feedback indicating how well students are performing during a learning task can be very stimulating. In this study with a pre- and post-test design, the effects of two types of performance feedback on learning results were compared: feedback during a learning task was either stated in terms of how

  11. Feedback and Incentives

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie Claire

    2009-01-01

    This paper experimentally investigates the impact of different pay schemes and relative performance feedback policies on employee effort. We explore three feedback rules: no feedback on relative performance, feedback given halfway through the production period, and continuously updated feedback. ...... behind, and front runners do not slack off. But in both pay schemes relative performance feedback reduces the quality of the low performers' work; we refer to this as a "negative quality peer effect"....

  12. Quantitative effects of composting state variables on C/N ratio through GA-aided multivariate analysis

    International Nuclear Information System (INIS)

    Sun Wei; Huang, Guo H.; Zeng Guangming; Qin Xiaosheng; Yu Hui

    2011-01-01

    It is widely known that variation of the C/N ratio is dependent on many state variables during composting processes. This study attempted to develop a genetic algorithm aided stepwise cluster analysis (GASCA) method to describe the nonlinear relationships between the selected state variables and the C/N ratio in food waste composting. The experimental data from six bench-scale composting reactors were used to demonstrate the applicability of GASCA. Within the GASCA framework, GA searched optimal sets of both specified state variables and SCA's internal parameters; SCA established statistical nonlinear relationships between state variables and the C/N ratio; to avoid unnecessary and time-consuming calculation, a proxy table was introduced to save around 70% computational efforts. The obtained GASCA cluster trees had smaller sizes and higher prediction accuracy than the conventional SCA trees. Based on the optimal GASCA tree, the effects of the GA-selected state variables on the C/N ratio were ranged in a descending order as: NH 4 + -N concentration > Moisture content > Ash Content > Mean Temperature > Mesophilic bacteria biomass. Such a rank implied that the variation of ammonium nitrogen concentration, the associated temperature and the moisture conditions, the total loss of both organic matters and available mineral constituents, and the mesophilic bacteria activity, were critical factors affecting the C/N ratio during the investigated food waste composting. This first application of GASCA to composting modelling indicated that more direct search algorithms could be coupled with SCA or other multivariate analysis methods to analyze complicated relationships during composting and many other environmental processes. - Research Highlights: → A genetic algorithm aided stepwise cluster analysis method in food waste composting. → Nonlinear relationships between the selected state variables and the C/N ratio. → Introduced proxy tables save around 70% computational

  13. Quantitative effects of composting state variables on C/N ratio through GA-aided multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sun Wei [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); Huang, Guo H., E-mail: huangg@iseis.org [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); MOE Key Laboratory of Regional Energy Systems Optimization, Sino-Canada Energy and Environmental Research Academy, North China Electric Power University, Beijing, 102206 (China); Zeng Guangming [MOE Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082 (China); Qin Xiaosheng [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yu Hui [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada)

    2011-03-01

    It is widely known that variation of the C/N ratio is dependent on many state variables during composting processes. This study attempted to develop a genetic algorithm aided stepwise cluster analysis (GASCA) method to describe the nonlinear relationships between the selected state variables and the C/N ratio in food waste composting. The experimental data from six bench-scale composting reactors were used to demonstrate the applicability of GASCA. Within the GASCA framework, GA searched optimal sets of both specified state variables and SCA's internal parameters; SCA established statistical nonlinear relationships between state variables and the C/N ratio; to avoid unnecessary and time-consuming calculation, a proxy table was introduced to save around 70% computational efforts. The obtained GASCA cluster trees had smaller sizes and higher prediction accuracy than the conventional SCA trees. Based on the optimal GASCA tree, the effects of the GA-selected state variables on the C/N ratio were ranged in a descending order as: NH{sub 4}{sup +}-N concentration > Moisture content > Ash Content > Mean Temperature > Mesophilic bacteria biomass. Such a rank implied that the variation of ammonium nitrogen concentration, the associated temperature and the moisture conditions, the total loss of both organic matters and available mineral constituents, and the mesophilic bacteria activity, were critical factors affecting the C/N ratio during the investigated food waste composting. This first application of GASCA to composting modelling indicated that more direct search algorithms could be coupled with SCA or other multivariate analysis methods to analyze complicated relationships during composting and many other environmental processes. - Research Highlights: {yields} A genetic algorithm aided stepwise cluster analysis method in food waste composting. {yields} Nonlinear relationships between the selected state variables and the C/N ratio. {yields} Introduced proxy tables

  14. State-variable analysis of inelastic deformation of thin-walled tubes. II. Data analysis and simulations

    International Nuclear Information System (INIS)

    Wire, G.L.; Duncan, D.R.; Cannon, N.S.; Johnson, G.D.; Alexopoulos, P.S.; Li, C.Y.

    Inelastic analysis is performed to calculate the deformation of thin-walled, internally pressurized, tube under a variety of loading modes. A state-variable approach was used to describe the material properties. The material parameters of the constitutive equations used were determined based on uniaxial, load relaxation, tensile tests, and internally pressurized tubes under creep and constant-displacement-rate modes of loading. The simulated results were compared with the experimental data. The significance of the comparison is discussed in terms of the validity of a state-variable approach used to describe the deformation properties in mechanical testing

  15. Interação de variáveis biomecânicas na composição de "feedback" visual aumentado para o ensino do ciclismo Interacción de variables biomecánicas en la composición de feedback visual aumentado para el enseñanza del ciclismo Interaction of biomechanical variables in the composition of visual augmented feedback for learning cycling

    OpenAIRE

    Guilherme Garcia Holderbaum; Ricardo Demétrio de Souza Petersen; Antônio Carlos Stringhini Guimarães

    2012-01-01

    O objetivo deste estudo foi testar uma metodologia para o ensino da técnica da pedalada do ciclismo utilizando variáveis biomecánicas para desenvolver um sistema de "feedback" visual aumentado (FVA). Participaram do estudo 19 indivíduos, sem experiência no ciclismo , divididos em grupo experimental (n = 10) e controle (n = 9). Inicialmente foi realizado um pré-teste para determinar o consumo máximo de oxigênio (VO2máx) bem como a carga de trabalho utilizada nas sessões práticas que correspond...

  16. Toward demonstrating controlled-X operation based on continuous-variable four-partite cluster states and quantum teleporters

    International Nuclear Information System (INIS)

    Wang Yu; Su Xiaolong; Shen Heng; Tan Aihong; Xie Changde; Peng Kunchi

    2010-01-01

    One-way quantum computation based on measurement and multipartite cluster entanglement offers the ability to perform a variety of unitary operations only through different choices of measurement bases. Here we present an experimental study toward demonstrating the controlled-X operation, a two-mode gate in which continuous variable (CV) four-partite cluster states of optical modes are utilized. Two quantum teleportation elements are used for achieving the gate operation of the quantum state transformation from input target and control states to output states. By means of the optical cluster state prepared off-line, the homodyne detection and electronic feeding forward, the information carried by the input control state is transformed to the output target state. The presented scheme of the controlled-X operation based on teleportation can be implemented nonlocally and deterministically. The distortion of the quantum information resulting from the imperfect cluster entanglement is estimated with the fidelity.

  17. Improving seasonal forecasts of hydroclimatic variables through the state of multiple large-scale climate signals

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.; Block, P. J.

    2017-12-01

    Increasingly uncertain hydrologic regimes combined with more frequent and intense extreme events are challenging water systems management worldwide, emphasizing the need of accurate medium- to long-term predictions to timely prompt anticipatory operations. Despite modern forecasts are skillful over short lead time (from hours to days), predictability generally tends to decrease on longer lead times. Global climate teleconnection, such as El Niño Southern Oscillation (ENSO), may contribute in extending forecast lead times. However, ENSO teleconnection is well defined in some locations, such as Western USA and Australia, while there is no consensus on how it can be detected and used in other regions, particularly in Europe, Africa, and Asia. In this work, we generalize the Niño Index Phase Analysis (NIPA) framework by contributing the Multi Variate Niño Index Phase Analysis (MV-NIPA), which allows capturing the state of multiple large-scale climate signals (i.e. ENSO, North Atlantic Oscillation, Pacific Decadal Oscillation, Atlantic Multi-decadal Oscillation, Indian Ocean Dipole) to forecast hydroclimatic variables on a seasonal time scale. Specifically, our approach distinguishes the different phases of the considered climate signals and, for each phase, identifies relevant anomalies in Sea Surface Temperature (SST) that influence the local hydrologic conditions. The potential of the MV-NIPA framework is demonstrated through an application to the Lake Como system, a regulated lake in northern Italy which is mainly operated for flood control and irrigation supply. Numerical results show high correlations between seasonal SST values and one season-ahead precipitation in the Lake Como basin. The skill of the resulting MV-NIPA forecast outperforms the one of ECMWF products. This information represents a valuable contribution to partially anticipate the summer water availability, especially during drought events, ultimately supporting the improvement of the Lake Como

  18. One- and Two-dimensional Solitary Wave States in the Nonlinear Kramers Equation with Movement Direction as a Variable

    Science.gov (United States)

    Sakaguchi, Hidetsugu; Ishibashi, Kazuya

    2018-06-01

    We study self-propelled particles by direct numerical simulation of the nonlinear Kramers equation for self-propelled particles. In our previous paper, we studied self-propelled particles with velocity variables in one dimension. In this paper, we consider another model in which each particle exhibits directional motion. The movement direction is expressed with a variable ϕ. We show that one-dimensional solitary wave states appear in direct numerical simulations of the nonlinear Kramers equation in one- and two-dimensional systems, which is a generalization of our previous result. Furthermore, we find two-dimensionally localized states in the case that each self-propelled particle exhibits rotational motion. The center of mass of the two-dimensionally localized state exhibits circular motion, which implies collective rotating motion. Finally, we consider a simple one-dimensional model equation to qualitatively understand the formation of the solitary wave state.

  19. Direct torque control with feedback linearization for induction motor drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.

    2015-01-01

    This paper describes a Direct Torque Controlled (DTC) Induction Machine (IM) drive that employs feedback linearization and sliding-mode control. A feedback linearization approach is investigated, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using Variable Structure Control (VSC) with proportional control in the vicinity...... robust stability analysis are presented. The sliding controller is compared with a linear DTC scheme, and experimental results for a sensorless IM drive validate the proposed solution....

  20. Investigating Einstein-Podolsky-Rosen steering of continuous-variable bipartite states by non-Gaussian pseudospin measurements

    Science.gov (United States)

    Xiang, Yu; Xu, Buqing; Mišta, Ladislav; Tufarelli, Tommaso; He, Qiongyi; Adesso, Gerardo

    2017-10-01

    Einstein-Podolsky-Rosen (EPR) steering is an asymmetric form of correlations which is intermediate between quantum entanglement and Bell nonlocality, and can be exploited as a resource for quantum communication with one untrusted party. In particular, steering of continuous-variable Gaussian states has been extensively studied theoretically and experimentally, as a fundamental manifestation of the EPR paradox. While most of these studies focused on quadrature measurements for steering detection, two recent works revealed that there exist Gaussian states which are only steerable by suitable non-Gaussian measurements. In this paper we perform a systematic investigation of EPR steering of bipartite Gaussian states by pseudospin measurements, complementing and extending previous findings. We first derive the density-matrix elements of two-mode squeezed thermal Gaussian states in the Fock basis, which may be of independent interest. We then use such a representation to investigate steering of these states as detected by a simple nonlinear criterion, based on second moments of the correlation matrix constructed from pseudospin operators. This analysis reveals previously unexplored regimes where non-Gaussian measurements are shown to be more effective than Gaussian ones to witness steering of Gaussian states in the presence of local noise. We further consider an alternative set of pseudospin observables, whose expectation value can be expressed more compactly in terms of Wigner functions for all two-mode Gaussian states. However, according to the adopted criterion, these observables are found to be always less sensitive than conventional Gaussian observables for steering detection. Finally, we investigate continuous-variable Werner states, which are non-Gaussian mixtures of Gaussian states, and find that pseudospin measurements are always more effective than Gaussian ones to reveal their steerability. Our results provide useful insights on the role of non

  1. Simultaneous Estimation of Model State Variables and Observation and Forecast Biases Using a Two-Stage Hybrid Kalman Filter

    Science.gov (United States)

    Pauwels, V. R. N.; DeLannoy, G. J. M.; Hendricks Franssen, H.-J.; Vereecken, H.

    2013-01-01

    In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.

  2. Simultaneous estimation of model state variables and observation and forecast biases using a two-stage hybrid Kalman filter

    Directory of Open Access Journals (Sweden)

    V. R. N. Pauwels

    2013-09-01

    Full Text Available In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.

  3. Teleported State and its Fidelity in Quantum Teleportation of Continuous Variables

    Institute of Scientific and Technical Information of China (English)

    LI Fu-Li; LI Hong-Rong; ZHANG Jun-Xiang; ZHU Shi-Yao

    2003-01-01

    When given an unknown quantum state which may be either a pure or a mixed state in the coherent state representation, we show that explicit expressions for the teleported state and its fidelity in the teleportation process (S. L. Braunstein and H. J. Kimble 1998 Phys. Rev. Lett. 80 869) can be obtained without explicit expansions for the two-mode squeezed vacuum state and the Bell basis in a specified representation.

  4. The Soft State of Cygnus X-1 Observed With NuSTAR: A Variable Corona and a Stable Inner Disk

    DEFF Research Database (Denmark)

    Walton, D. J.; Tomsick, J. A.; Madsen, K. K.

    2016-01-01

    We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variabilit...

  5. Climate and climate variability of the wind power resources in the Great Lakes region of the United States

    Science.gov (United States)

    X. Li; S. Zhong; X. Bian; W.E. Heilman

    2010-01-01

    The climate and climate variability of low-level winds over the Great Lakes region of the United States is examined using 30 year (1979-2008) wind records from the recently released North American Regional Reanalysis (NARR), a three-dimensional, high-spatial and temporal resolution, and dynamically consistent climate data set. The analyses focus on spatial distribution...

  6. Personality Variables as Predictors of Leadership Role Performance Effectiveness of Administrators of Public Secondary Schools in Cross River State, Nigeria

    Science.gov (United States)

    Akpan, Charles P.; Archibong, Ijeoma A.

    2012-01-01

    The study sought to find out the predictive effect of self-concept, self-efficacy, self-esteem and locus of control on the instructional and motivational leadership roles performance effectiveness of administrators of public secondary schools in Cross River State of Nigeria. The relative contribution of each of the independent variables to the…

  7. Bio-Social Variables as Predictors of Teacher Union Leaders' Adherence to Democratic Principles in Ogun State, Nigeria

    Science.gov (United States)

    Fejoh, Johnson

    2016-01-01

    This study investigated the influence of bio-social variables - educational status, age and family socio-economic background on teacher union leaders' adherence to democratic principles in Ogun State of Nigeria. The study employed the ex-post-facto research design. Five hypotheses were generated and tested using an instrument titled "union…

  8. Variability in State-Based Recommendations for Management of Alpha Thalassemia Trait and Silent Carrier Detected on the Newborn Screen.

    Science.gov (United States)

    Fogel, Benjamin N; Nguyen, Hong Loan T; Smink, Gayle; Sekhar, Deepa L

    2018-04-01

    We conducted an inventory of state-based recommendations for follow-up of alpha thalassemia silent carrier and trait identified on newborn screen. We found wide variability in the nature and timing of these recommendations. We recommend a standardized recommendation to guide pediatricians in evidenced-based care for this population. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Self Efficacy and Some Demographic Variables as Predictors of Occupational Stress among Primary School Teachers in Delta State of Nigeria

    Science.gov (United States)

    Akpochafo, G. O.

    2014-01-01

    This study investigated self efficacy and some demographic variables as predictors of occupational stress among primary school teachers in Delta State. Three hypotheses were formulated to guide the study. The study adopted a descriptive survey design that utilized an expost-facto research type. A sample of one hundred and twenty primary school…

  10. Abrupt millennial variability and interdecadal-interstadial oscillations in a global coupled model: sensitivity to the background climate state

    Energy Technology Data Exchange (ETDEWEB)

    Arzel, Olivier [The University of New South Wales, Climate Change Research Centre (CCRC), Sydney (Australia); Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans (LPO), Brest (France); England, Matthew H. [The University of New South Wales, Climate Change Research Centre (CCRC), Sydney (Australia); Verdiere, Alain Colin de; Huck, Thierry [Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans (LPO), Brest (France)

    2012-07-15

    The origin and bifurcation structure of abrupt millennial-scale climate transitions under steady external solar forcing and in the absence of atmospheric synoptic variability is studied by means of a global coupled model of intermediate complexity. We show that the origin of Dansgaard-Oeschger type oscillations in the model is caused by the weaker northward oceanic heat transport in the Atlantic basin. This is in agreement with previous studies realized with much simpler models, based on highly idealized geometries and simplified physics. The existence of abrupt millennial-scale climate transitions during glacial times can therefore be interpreted as a consequence of the weakening of the negative temperature-advection feedback. This is confirmed through a series of numerical experiments designed to explore the sensitivity of the bifurcation structure of the Atlantic meridional overturning circulation to increased atmospheric CO{sub 2} levels under glacial boundary conditions. Contrasting with the cold, stadial, phases of millennial oscillations, we also show the emergence of strong interdecadal variability in the North Atlantic sector during warm interstadials. The instability driving these interdecadal-interstadial oscillations is shown to be identical to that found in ocean-only models forced by fixed surface buoyancy fluxes, that is, a large-scale baroclinic instability developing in the vicinity of the western boundary current in the North Atlantic. Comparisons with modern observations further suggest a physical mechanism similar to that driving the 30-40 years time scale associated with the Atlantic multidecadal oscillation. (orig.)

  11. Skriftlig feedback i engelskundervisningen

    DEFF Research Database (Denmark)

    Kjærgaard, Hanne Wacher

    2017-01-01

    The article describes useful feedback strategies in language teaching and describes the feedback practices of lower-seconday teachers in Denmark. The article is aimed at language teahcers in secondary schools.......The article describes useful feedback strategies in language teaching and describes the feedback practices of lower-seconday teachers in Denmark. The article is aimed at language teahcers in secondary schools....

  12. Student Engagement with Feedback

    Science.gov (United States)

    Scott, Jon; Shields, Cathy; Gardner, James; Hancock, Alysoun; Nutt, Alex

    2011-01-01

    This report considers Biological Sciences students' perceptions of feedback, compared with those of the University as a whole, this includes what forms of feedback were considered most useful and how feedback used. Compared with data from previous studies, Biological Sciences students gave much greater recognition to oral feedback, placing it on a…

  13. Output Feedback Distributed Containment Control for High-Order Nonlinear Multiagent Systems.

    Science.gov (United States)

    Li, Yafeng; Hua, Changchun; Wu, Shuangshuang; Guan, Xinping

    2017-01-31

    In this paper, we study the problem of output feedback distributed containment control for a class of high-order nonlinear multiagent systems under a fixed undirected graph and a fixed directed graph, respectively. Only the output signals of the systems can be measured. The novel reduced order dynamic gain observer is constructed to estimate the unmeasured state variables of the system with the less conservative condition on nonlinear terms than traditional Lipschitz one. Via the backstepping method, output feedback distributed nonlinear controllers for the followers are designed. By means of the novel first virtual controllers, we separate the estimated state variables of different agents from each other. Consequently, the designed controllers show independence on the estimated state variables of neighbors except outputs information, and the dynamics of each agent can be greatly different, which make the design method have a wider class of applications. Finally, a numerical simulation is presented to illustrate the effectiveness of the proposed method.

  14. Quantitative effects of composting state variables on C/N ratio through GA-aided multivariate analysis.

    Science.gov (United States)

    Sun, Wei; Huang, Guo H; Zeng, Guangming; Qin, Xiaosheng; Yu, Hui

    2011-03-01

    It is widely known that variation of the C/N ratio is dependent on many state variables during composting processes. This study attempted to develop a genetic algorithm aided stepwise cluster analysis (GASCA) method to describe the nonlinear relationships between the selected state variables and the C/N ratio in food waste composting. The experimental data from six bench-scale composting reactors were used to demonstrate the applicability of GASCA. Within the GASCA framework, GA searched optimal sets of both specified state variables and SCA's internal parameters; SCA established statistical nonlinear relationships between state variables and the C/N ratio; to avoid unnecessary and time-consuming calculation, a proxy table was introduced to save around 70% computational efforts. The obtained GASCA cluster trees had smaller sizes and higher prediction accuracy than the conventional SCA trees. Based on the optimal GASCA tree, the effects of the GA-selected state variables on the C/N ratio were ranged in a descending order as: NH₄+-N concentration>Moisture content>Ash Content>Mean Temperature>Mesophilic bacteria biomass. Such a rank implied that the variation of ammonium nitrogen concentration, the associated temperature and the moisture conditions, the total loss of both organic matters and available mineral constituents, and the mesophilic bacteria activity, were critical factors affecting the C/N ratio during the investigated food waste composting. This first application of GASCA to composting modelling indicated that more direct search algorithms could be coupled with SCA or other multivariate analysis methods to analyze complicated relationships during composting and many other environmental processes. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Spatiotemporal Variability of Humidity Across the Contiguous United States and Southern Canada Using Regional Networks

    Science.gov (United States)

    Behnke, Ruben John

    The objective of this dissertation was to show that there is now enough observed humidity data available so that estimates of humidity, along with their necessary assumptions, can be replaced by measured humidity data. The range of applications that depend on humidity data is huge, ranging from water use efficiency of plants and plant stress to human health and agricultural practices. Biases due to the use of estimated humidity can be expected to have short and long impacts, decreasing the accuracy and precision of these, and many other, applications. Data from local, regional, and national observation networks was gathered, and custom quality control routines were written to remove bad data points from over 45000 stations, leaving 12533 usable stations. While still not at the same number of observations as temperature or precipitation, this number is nearly ten times as high as two decades ago. The work I performed consists of three major components, corresponding to the three main chapters of this dissertation. In chapter one, I describe data sources and quality control methods, along with some basic statistics of humidity, describing which geographic variables often used to predict temperature and precipitation can be used to do the same for humidity. Chapter two defines specific diurnal patterns (or "types") of dew point across the United States, including their attributes, causes, and potential influences. Chapter three analyzes biases in evapotranspiration, heat indices, and relative humidity levels that are a direct result of using estimated humidity data. Chapter four discusses contributions this work makes to the scientific community, and potential further research to build on what is presented here. While it may seem that the science of humidity should be well beyond data gathering and bias analysis, the fact remains that humidity is still very commonly estimated through the use of minimum temperature, and diurnal changes in dew point are often ignored

  16. Validation of the USGS Landsat Burned Area Essential Climate Variable (BAECV) across the conterminous United States

    Science.gov (United States)

    Vanderhoof, Melanie; Fairaux, Nicole; Beal, Yen-Ju G.; Hawbaker, Todd J.

    2017-01-01

    The Landsat Burned Area Essential Climate Variable (BAECV), developed by the U.S. Geological Survey (USGS), capitalizes on the long temporal availability of Landsat imagery to identify burned areas across the conterminous United States (CONUS) (1984–2015). Adequate validation of such products is critical for their proper usage and interpretation. Validation of coarse-resolution products often relies on independent data derived from moderate-resolution sensors (e.g., Landsat). Validation of Landsat products, in turn, is challenging because there is no corresponding source of high-resolution, multispectral imagery that has been systematically collected in space and time over the entire temporal extent of the Landsat archive. Because of this, comparison between high-resolution images and Landsat science products can help increase user's confidence in the Landsat science products, but may not, alone, be adequate. In this paper, we demonstrate an approach to systematically validate the Landsat-derived BAECV product. Burned area extent was mapped for Landsat image pairs using a manually trained semi-automated algorithm that was manually edited across 28 path/rows and five different years (1988, 1993, 1998, 2003, 2008). Three datasets were independently developed by three analysts and the datasets were integrated on a pixel by pixel basis in which at least one to all three analysts were required to agree a pixel was burned. We found that errors within our Landsat reference dataset could be minimized by using the rendition of the dataset in which pixels were mapped as burned if at least two of the three analysts agreed. BAECV errors of omission and commission for the detection of burned pixels averaged 42% and 33%, respectively for CONUS across all five validation years. Errors of omission and commission were lowest across the western CONUS, for example in the shrub and scrublands of the Arid West (31% and 24%, respectively), and highest in the grasslands and

  17. Quantum tele-amplification with a continuous-variable superposition state

    DEFF Research Database (Denmark)

    Neergaard-Nielsen, Jonas S.; Eto, Yujiro; Lee, Chang-Woo

    2013-01-01

    -enhanced functions such as coherent-state quantum computing (CSQC), quantum metrology and a quantum repeater could be realized in the networks. Optical cat states are now routinely generated in laboratories. An important next challenge is to use them for implementing the aforementioned functions. Here, we......Optical coherent states are classical light fields with high purity, and are essential carriers of information in optical networks. If these states could be controlled in the quantum regime, allowing for their quantum superposition (referred to as a Schrödinger-cat state), then novel quantum...... demonstrate a basic CSQC protocol, where a cat state is used as an entanglement resource for teleporting a coherent state with an amplitude gain. We also show how this can be extended to a loss-tolerant quantum relay of multi-ary phase-shift keyed coherent states. These protocols could be useful in both...

  18. Uncertain population dynamic and state variables of alfonsino (Beryx splendens Dinámica poblacional incierta y variables de estado en alfonsino (Beryx splendens

    Directory of Open Access Journals (Sweden)

    Rodrigo Wiff

    2012-03-01

    Full Text Available Alfonsino (Beryx splendens is a species associated with seamounts, with an important fishery in Juan Fernandez archipelago, Chile (33°40'S, 79°00'W. Since 2004, this resource has been managed by catch quotas estimated from stock assessment models. The alfonsino model involves high levels of uncertainty for several reasons including a lack of knowledge of aspects of the population dynamics and poorly informative time-series that feed the proposed evaluation models. This work evaluated three hypotheses regarding population dynamics and their influence on the main state variables (biomass, recruitment of the model using age-structured and dynamic biomass models. The hypotheses corresponded to de-recruitment of older individuals, non-linearity between standardized catch per unit effort, and population abundance as well as variations of the relative importance of length structures. According to the results, the depletion of the spawning biomass between 1998 and 2008 varied between 9 and 56%, depending on the combination of hypotheses used in the model. This indicates that state variables in alfonsino are not robust to the available information; rather, they depend strongly on the hypothesis of population dynamics. The discussion is focused on interpreting the causes of the changes in the state variables in light of a conceptual model for population dynamics in alfonsino and which pieces of information would be necessary to reduce the associated uncertainty.El alfonsino (Beryx splendens es una especie asociada a montes submarinos. En Chile sustenta una importante pesquería en el archipiélago de Juan Fernández (33°40'S, 79°00'W. Desde el año 2004, este recurso es administrado a través de cuotas anuales de capturas, las cuales son estimadas desde un modelo de evaluación de stock. La modelación de la población de alfonsino se caracteriza por una alta incertidumbre, debido a diversas fuentes, como son desconocimiento de aspectos de su din

  19. Drivers of Seasonal Variability in Marine Boundary Layer Aerosol Number Concentration Investigated Using a Steady State Approach

    Science.gov (United States)

    Mohrmann, Johannes; Wood, Robert; McGibbon, Jeremy; Eastman, Ryan; Luke, Edward

    2018-01-01

    Marine boundary layer (MBL) aerosol particles affect the climate through their interaction with MBL clouds. Although both MBL clouds and aerosol particles have pronounced seasonal cycles, the factors controlling seasonal variability of MBL aerosol particle concentration are not well constrained. In this paper an aerosol budget is constructed representing the effects of wet deposition, free-tropospheric entrainment, primary surface sources, and advection on the MBL accumulation mode aerosol number concentration (Na). These terms are then parameterized, and by assuming that on seasonal time scales Na is in steady state, the budget equation is rearranged to form a diagnostic equation for Na based on observable variables. Using data primarily collected in the subtropical northeast Pacific during the MAGIC campaign (Marine ARM (Atmospheric Radiation Measurement) GPCI (GCSS Pacific Cross-Section Intercomparison) Investigation of Clouds), estimates of both mean summer and winter Na concentrations are made using the simplified steady state model and seasonal mean observed variables. These are found to match well with the observed Na. To attribute the modeled difference between summer and winter aerosol concentrations to individual observed variables (e.g., precipitation rate and free-tropospheric aerosol number concentration), a local sensitivity analysis is combined with the seasonal difference in observed variables. This analysis shows that despite wintertime precipitation frequency being lower than summer, the higher winter precipitation rate accounted for approximately 60% of the modeled seasonal difference in Na, which emphasizes the importance of marine stratocumulus precipitation in determining MBL aerosol concentrations on longer time scales.

  20. Climatic and physiographic controls of spatial variability in surface water balance over the contiguous United States using the Budyko relationship

    Science.gov (United States)

    Abatzoglou, John T.; Ficklin, Darren L.

    2017-09-01

    The geographic variability in the partitioning of precipitation into surface runoff (Q) and evapotranspiration (ET) is fundamental to understanding regional water availability. The Budyko equation suggests this partitioning is strictly a function of aridity, yet observed deviations from this relationship for individual watersheds impede using the framework to model surface water balance in ungauged catchments and under future climate and land use scenarios. A set of climatic, physiographic, and vegetation metrics were used to model the spatial variability in the partitioning of precipitation for 211 watersheds across the contiguous United States (CONUS) within Budyko's framework through the free parameter ω. A generalized additive model found that four widely available variables, precipitation seasonality, the ratio of soil water holding capacity to precipitation, topographic slope, and the fraction of precipitation falling as snow, explained 81.2% of the variability in ω. The ω model applied to the Budyko equation explained 97% of the spatial variability in long-term Q for an independent set of watersheds. The ω model was also applied to estimate the long-term water balance across the CONUS for both contemporary and mid-21st century conditions. The modeled partitioning of observed precipitation to Q and ET compared favorably across the CONUS with estimates from more sophisticated land-surface modeling efforts. For mid-21st century conditions, the model simulated an increase in the fraction of precipitation used by ET across the CONUS with declines in Q for much of the eastern CONUS and mountainous watersheds across the western United States.

  1. Bifurcation Regulations Governed by Delay Self-Control Feedback in a Stochastic Birhythmic System

    Science.gov (United States)

    Ma, Zhidan; Ning, Lijuan

    2017-12-01

    We aim to investigate bifurcation behaviors in a stochastic birhythmic van der Pol (BVDP) system subjected to delay self-control feedback. First, the harmonic approximation is adopted to drive the delay self-control feedback to state variables without delay. Then, Fokker-Planck-Kolmogorov (FPK) equation and stationary probability density function (SPDF) for amplitude are obtained by applying stochastic averaging method. Finally, dynamical scenarios of the change of delay self-control feedback as well as noise that markedly influence bifurcation performance are observed. It is found that: the big feedback strength and delay will suppress the large amplitude limit cycle (LC) while the relatively big noise strength facilitates the large amplitude LC, which imply the proposed regulation strategies are feasible. Interestingly enough, the inner LC is never destroyed due to noise. Furthermore, the validity of analytical results was verified by Monte Carlo simulation of the dynamics.

  2. Beyond individualism: professional culture and its influence on feedback

    NARCIS (Netherlands)

    Watling, C.N.; Driessen, E.; Vleuten, C.P.M. van der; Vanstone, M.; Lingard, L.

    2013-01-01

    CONTEXT: Although feedback is widely considered essential to learning, its actual influence on learners is variable. Research on responsivity to feedback has tended to focus on individual rather than social or cultural influences on learning. In this study, we explored how feedback is handled within

  3. Drivers of Variability in Public-Supply Water Use Across the Contiguous United States

    Science.gov (United States)

    Worland, Scott C.; Steinschneider, Scott; Hornberger, George M.

    2018-03-01

    This study explores the relationship between municipal water use and an array of climate, economic, behavioral, and policy variables across the contiguous U.S. The relationship is explored using Bayesian-hierarchical regression models for over 2,500 counties, 18 covariates, and three higher-level grouping variables. Additionally, a second analysis is included for 83 cities where water price and water conservation policy information is available. A hierarchical model using the nine climate regions (product of National Oceanic and Atmospheric Administration) as the higher-level groups results in the best out-of-sample performance, as estimated by the Widely Available Information Criterion, compared to counties grouped by urban continuum classification or primary economic activity. The regression coefficients indicate that the controls on water use are not uniform across the nation: e.g., counties in the Northeast and Northwest climate regions are more sensitive to social variables, whereas counties in the Southwest and East North Central climate regions are more sensitive to environmental variables. For the national city-level model, it appears that arid cities with a high cost of living and relatively low water bills sell more water per customer, but as with the county-level model, the effect of each variable depends heavily on where a city is located.

  4. The Role of Self-Esteem and Self-Efficacy in Detecting Responses to Feedback

    National Research Council Canada - National Science Library

    Davis, Walter

    1998-01-01

    Our research on the relationships between individual differences, feedback seeking, and reactions to feedback sought to identify and clarify the existing state of knowledge concerning these relationships...

  5. Explaining state-to-state differences in seat belt use : an analysis of socio-demographic variables.

    Science.gov (United States)

    2011-02-01

    "Despite the extensive evidence about the benefits of seat belt use, there is a great deal of variation in use within the US. For example, the national average for seat belt use in 2009 was 84 percent while the state-level averages ranged from 68 per...

  6. Long term variability of Cygnus X-1. V. State definitions with all sky monitors

    Science.gov (United States)

    Grinberg, V.; Hell, N.; Pottschmidt, K.; Böck, M.; Nowak, M. A.; Rodriguez, J.; Bodaghee, A.; Cadolle Bel, M.; Case, G. L.; Hanke, M.; Kühnel, M.; Markoff, S. B.; Pooley, G. G.; Rothschild, R. E.; Tomsick, J. A.; Wilson-Hodge, C. A.; Wilms, J.

    2013-06-01

    We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different monitors, facilitating the determination of the state and its context for any observation of the source, potentially over the lifetimes of different individual monitors. A separation of the hard and the intermediate states, which strongly differ in their spectral shape and short-term timing behavior, is only possible when data in the soft X-rays (probability of Cyg X-1 remaining in a given state for at least one week to be larger than 85% in the hard state and larger than 75% in the soft state. Intermediate states are short lived, with a 50% probability that the source leaves the intermediate state within three days. Reliable detection of these potentially short-lived events is only possible with monitor data that have a time resolution better than 1 d.

  7. Delayed Auditory Feedback and Movement

    Science.gov (United States)

    Pfordresher, Peter Q.; Dalla Bella, Simone

    2011-01-01

    It is well known that timing of rhythm production is disrupted by delayed auditory feedback (DAF), and that disruption varies with delay length. We tested the hypothesis that disruption depends on the state of the movement trajectory at the onset of DAF. Participants tapped isochronous rhythms at a rate specified by a metronome while hearing DAF…

  8. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  9. Feedback on Feedback--Does It Work?

    Science.gov (United States)

    Speicher, Oranna; Stollhans, Sascha

    2015-01-01

    It is well documented that providing assessment feedback through the medium of screencasts is favourably received by students and encourages deeper engagement with the feedback given by the language teacher (inter alia Abdous & Yoshimura, 2010; Brick & Holmes, 2008; Cann, 2007; Stannard, 2007). In this short paper we will report the…

  10. Field Scale Studies on the Spatial Variability of Soil Quality Indicators in Washington State, USA

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Smith

    2011-01-01

    Full Text Available Arable lands are needed for sustainable agricultural systems to support an ever-growing human population. Soil quality needs to be defined to assure that new land brought into crop production is sustainable. To evaluate soil quality, a number of soil attributes will need to be measured, evaluated, and integrated into a soil-quality index using the multivariable indicator kriging (MVIK procedure. This study was conducted to determine the spatial variability and correlation of indicator parameters on a field scale with respect to soil quality and suitability for use with MVIK. The variability of the biological parameters decreased in the order of respiration > enzyme assays and qCO2 > microbial biomass C. The distribution frequency of all parameters except respiration were normal although the spatial distribution across the landscape was highly variable. The biological parameters showed little correlation with each other when all data points were considered; however, when grouped in smaller sections, the correlations were more consistent with observed patterns across the field. To accurately assess soil quality, and arable land use, consideration of spatial and temporal variability, soil conditions, and other controlling factors must be taken into account.

  11. The Matrix model, a driven state variables approach to non-equilibrium thermodynamics

    NARCIS (Netherlands)

    Jongschaap, R.J.J.

    2001-01-01

    One of the new approaches in non-equilibrium thermodynamics is the so-called matrix model of Jongschaap. In this paper some features of this model are discussed. We indicate the differences with the more common approach based upon internal variables and the more sophisticated Hamiltonian and GENERIC

  12. Trends in seasonal warm anomalies across the contiguous United States: Contributions from natural climate variability

    Science.gov (United States)

    Lejiang Yu; Shiyuan Zhong; Warren E. Heilman; Xindi. Bian

    2018-01-01

    Many studies have shown the importance of anthropogenic greenhouse gas emissions in contributing to observed upward trends in the occurrences of temperature extremes over the U.S. However, few studies have investigated the contributions of internal variability in the climate system to these observed trends. Here we use daily maximum temperature time series from the...

  13. Puffed-up but shaky selves : State self-esteem level and variability in narcissists

    NARCIS (Netherlands)

    Geukes, K.; Nestler, S.; Hutteman, R.; Dufner, M.; Küfner, A.C.P.; Egloff, B.; Denissen, J.J.A.; Back, M.D.

    2017-01-01

    Different theoretical conceptualizations characterize grandiose narcissists by high, yet fragile self-esteem. Empirical evidence, however, has been inconsistent, particularly regarding the relationship between narcissism and self-esteem fragility (i.e., self-esteem variability). Here, we aim at

  14. On the derivation of thermodynamic restrictions for materials with internal state variables

    International Nuclear Information System (INIS)

    Malmberg, T.

    1987-07-01

    Thermodynamic restrictions for the constitutive relations of an internal variable model are derived by evaluating the Clausius-Duhem entropy inequality with two different approaches. The classical Coleman-Noll argumentation of Rational Thermodynamics applied by Coleman and Gurtin to an internal variable model is summarized. This approach requires an arbitrary modulation of body forces and heat supply in the interior of the body which is subject to criticism. The second approach applied in this presentation is patterned after a concept of Mueller and Liu, originally developed within the context of a different entropy inequality and different classes of constitutive models. For the internal variable model the second approach requires only the modulation of initial values on the boundary of the body. In the course of the development of the second approach certain differences to the argumentation of Mueller and Liu become evident and are pointed out. Finally, the results demonstrate that the first and second approach give the same thermodynamic restrictions for the internal variable model. The derived residual entropy inequality requires further analysis. (orig.) [de

  15. Long term variability of Cygnus X-1. V. State definitions with all sky monitors

    NARCIS (Netherlands)

    Grinberg, V.; Hell, N.; Pottschmidt, K.; Böck, M.; Nowak, M.A.; Rodriguez, J.; Bodaghee, A.; Cadolle Bel, M.; Case, G.L.; Hanke, M.; Kühnel, M.; Markoff, S.; Pooley, G.G.; Rothschild, R.E.; Tomsick, J.A.; Wilson-Hodge, C.A.; Wilms, J.

    2013-01-01

    We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different

  16. [Variability patterns of nest construction, physiological state, and morphometric traits in honey bee].

    Science.gov (United States)

    Es'kov, E K; Es'kova, M D

    2014-01-01

    High variability of cells size is used selectively for reproduction of working bees and drones. A decrease in both distance between cells and cells size themselves causes similar effects to body mass and morphometric traits of developing individuals. Adaptation of honey bees to living in shelters has led to their becoming tolerant to hypoxia. Improvement of ethological and physiological mechanisms of thermal regulation is associated with limitation of ecological valence and acquiring of stenothermic features by breed. Optimal thermal conditions for breed are limited by the interval 33-34.5 degrees C. Deviations of temperature by 3-4 degrees C beyond this range have minimum lethal effect at embryonic stage of development and medium effect at the stage of pre-pupa and pupa. Developing at the low bound of the vital range leads to increasing, while developing at the upper bound--to decreasing of body mass, mandibular and hypopharyngeal glands, as well as other organs, which, later, affects the variability of these traits during the adult stage of development. Eliminative and teratogenic efficiency of ecological factors that affect a breed is most often manifested in underdevelopment of wings. However, their size (in case of wing laminas formation). is characterized by relatively low variability and size-dependent asymmetry. Asymmetry variability of wings and other pair organs is expressed through realignment of size excess from right- to left-side one with respect to their increase. Selective elimination by those traits whose emerging probability increases as developmental conditions deviate from the optimal ones promotes restrictions on individual variability. Physiological mechanisms that facilitate adaptability enhancement under conditions of increasing anthropogenic contamination of eivironment and trophic substrates consumed by honey bees, arrear to be toxicants accumulation in rectum and crops' ability to absorb contaminants from nectar in course of its

  17. Continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics

    International Nuclear Information System (INIS)

    Chen, Haixia; Zhang, Jing

    2007-01-01

    We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones and is regarded as irreversible quantum cloning

  18. Analytical study of bound states in graphene nanoribbons and carbon nanotubes: The variable phase method and the relativistic Levinson theorem

    Energy Technology Data Exchange (ETDEWEB)

    Miserev, D. S., E-mail: d.miserev@student.unsw.edu.au, E-mail: erazorheader@gmail.com [University of New South Wales, School of Physics (Australia)

    2016-06-15

    The problem of localized states in 1D systems with a relativistic spectrum, namely, graphene stripes and carbon nanotubes, is studied analytically. The bound state as a superposition of two chiral states is completely described by their relative phase, which is the foundation of the variable phase method (VPM) developed herein. Based on our VPM, we formulate and prove the relativistic Levinson theorem. The problem of bound states can be reduced to the analysis of closed trajectories of some vector field. Remarkably, the Levinson theorem appears as the Poincaré index theorem for these closed trajectories. The VPM equation is also reduced to the nonrelativistic and semiclassical limits. The limit of a small momentum p{sub y} of transverse quantization is applicable to an arbitrary integrable potential. In this case, a single confined mode is predicted.

  19. Improving the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states using a noiseless amplifier

    International Nuclear Information System (INIS)

    Wang, Tianyi; Yu, Song; Zhang, Yi-Chen; Gu, Wanyi; Guo, Hong

    2014-01-01

    By employing a nondeterministic noiseless linear amplifier, we propose to increase the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states. With the covariance matrix transformation, the expression of secret key rate under reverse reconciliation is derived against collective entangling cloner attacks. We show that the noiseless linear amplifier can compensate the detrimental effect of the preparation noise with an enhancement of the maximum transmission distance and the noise resistance. - Highlights: • Noiseless amplifier is applied in noisy coherent state quantum key distribution. • Negative effect of preparation noise is compensated by noiseless amplification. • Maximum transmission distance and noise resistance are both enhanced

  20. The evolution of the disc variability along the hard state of the black hole transient GX 339-4

    Science.gov (United States)

    De Marco, B.; Ponti, G.; Muñoz-Darias, T.; Nandra, K.

    2015-12-01

    We report on the analysis of hard-state power spectral density function (PSD) of GX 339-4 down to the soft X-ray band, where the disc significantly contributes to the total emission. At any luminosity probed, the disc in the hard state is intrinsically more variable than in the soft state. However, the fast decrease of disc variability as a function of luminosity, combined with the increase of disc intensity, causes a net drop of fractional variability at high luminosities and low energies, which reminds the well-known behaviour of disc-dominated energy bands in the soft state. The peak frequency of the high-frequency Lorentzian (likely corresponding to the high-frequency break seen in active galactic nuclei, AGN) scales with luminosity, but we do not find evidence for a linear scaling. In addition, we observe that this characteristic frequency is energy dependent. We find that the normalization of the PSD at the peak of the high-frequency Lorentzian decreases with luminosity at all energies, though in the soft band this trend is steeper. Together with the frequency shift, this yields quasi-constant high-frequency (5-20 Hz) fractional rms at high energies, with less than 10 per cent scatter. This reinforces previous claims suggesting that the high-frequency PSD solely scales with black hole mass. On the other hand, this constancy breaks down in the soft band (where the scatter increases to ˜30 per cent). This is a consequence of the additional contribution from the disc component, and resembles the behaviour of optical variability in AGN.

  1. Gaussian anamorphosis in the analysis step of the EnKF: a joint state-variable/observation approach

    Directory of Open Access Journals (Sweden)

    Javier Amezcua

    2014-09-01

    Full Text Available The analysis step of the (ensemble Kalman filter is optimal when (1 the distribution of the background is Gaussian, (2 state variables and observations are related via a linear operator, and (3 the observational error is of additive nature and has Gaussian distribution. When these conditions are largely violated, a pre-processing step known as Gaussian anamorphosis (GA can be applied. The objective of this procedure is to obtain state variables and observations that better fulfil the Gaussianity conditions in some sense. In this work we analyse GA from a joint perspective, paying attention to the effects of transformations in the joint state-variable/observation space. First, we study transformations for state variables and observations that are independent from each other. Then, we introduce a targeted joint transformation with the objective to obtain joint Gaussianity in the transformed space. We focus primarily in the univariate case, and briefly comment on the multivariate one. A key point of this paper is that, when (1–(3 are violated, using the analysis step of the EnKF will not recover the exact posterior density in spite of any transformations one may perform. These transformations, however, provide approximations of different quality to the Bayesian solution of the problem. Using an example in which the Bayesian posterior can be analytically computed, we assess the quality of the analysis distributions generated after applying the EnKF analysis step in conjunction with different GA options. The value of the targeted joint transformation is particularly clear for the case when the prior is Gaussian, the marginal density for the observations is close to Gaussian, and the likelihood is a Gaussian mixture.

  2. Synchronization states and multistability in a ring of periodic oscillators: Experimentally variable coupling delays

    Science.gov (United States)

    Williams, Caitlin R. S.; Sorrentino, Francesco; Murphy, Thomas E.; Roy, Rajarshi

    2013-12-01

    We experimentally study the complex dynamics of a unidirectionally coupled ring of four identical optoelectronic oscillators. The coupling between these systems is time-delayed in the experiment and can be varied over a wide range of delays. We observe that as the coupling delay is varied, the system may show different synchronization states, including complete isochronal synchrony, cluster synchrony, and two splay-phase states. We analyze the stability of these solutions through a master stability function approach, which we show can be effectively applied to all the different states observed in the experiment. Our analysis supports the experimentally observed multistability in the system.

  3. Variable Structure Disturbance Rejection Control for Nonlinear Uncertain Systems with State and Control Delays via Optimal Sliding Mode Surface Approach

    Directory of Open Access Journals (Sweden)

    Jing Lei

    2013-01-01

    Full Text Available The paper considers the problem of variable structure control for nonlinear systems with uncertainty and time delays under persistent disturbance by using the optimal sliding mode surface approach. Through functional transformation, the original time-delay system is transformed into a delay-free one. The approximating sequence method is applied to solve the nonlinear optimal sliding mode surface problem which is reduced to a linear two-point boundary value problem of approximating sequences. The optimal sliding mode surface is obtained from the convergent solutions by solving a Riccati equation, a Sylvester equation, and the state and adjoint vector differential equations of approximating sequences. Then, the variable structure disturbance rejection control is presented by adopting an exponential trending law, where the state and control memory terms are designed to compensate the state and control delays, a feedforward control term is designed to reject the disturbance, and an adjoint compensator is designed to compensate the effects generated by the nonlinearity and the uncertainty. Furthermore, an observer is constructed to make the feedforward term physically realizable, and thus the dynamical observer-based dynamical variable structure disturbance rejection control law is produced. Finally, simulations are demonstrated to verify the effectiveness of the presented controller and the simplicity of the proposed approach.

  4. Sensitivity Analysis of Weather Variables on Offsite Consequence Analysis Tools in South Korea and the United States.

    Science.gov (United States)

    Kim, Min-Uk; Moon, Kyong Whan; Sohn, Jong-Ryeul; Byeon, Sang-Hoon

    2018-05-18

    We studied sensitive weather variables for consequence analysis, in the case of chemical leaks on the user side of offsite consequence analysis (OCA) tools. We used OCA tools Korea Offsite Risk Assessment (KORA) and Areal Location of Hazardous Atmospheres (ALOHA) in South Korea and the United States, respectively. The chemicals used for this analysis were 28% ammonia (NH₃), 35% hydrogen chloride (HCl), 50% hydrofluoric acid (HF), and 69% nitric acid (HNO₃). The accident scenarios were based on leakage accidents in storage tanks. The weather variables were air temperature, wind speed, humidity, and atmospheric stability. Sensitivity analysis was performed using the Statistical Package for the Social Sciences (SPSS) program for dummy regression analysis. Sensitivity analysis showed that impact distance was not sensitive to humidity. Impact distance was most sensitive to atmospheric stability, and was also more sensitive to air temperature than wind speed, according to both the KORA and ALOHA tools. Moreover, the weather variables were more sensitive in rural conditions than in urban conditions, with the ALOHA tool being more influenced by weather variables than the KORA tool. Therefore, if using the ALOHA tool instead of the KORA tool in rural conditions, users should be careful not to cause any differences in impact distance due to input errors of weather variables, with the most sensitive one being atmospheric stability.

  5. Sensitivity Analysis of Weather Variables on Offsite Consequence Analysis Tools in South Korea and the United States

    Directory of Open Access Journals (Sweden)

    Min-Uk Kim

    2018-05-01

    Full Text Available We studied sensitive weather variables for consequence analysis, in the case of chemical leaks on the user side of offsite consequence analysis (OCA tools. We used OCA tools Korea Offsite Risk Assessment (KORA and Areal Location of Hazardous Atmospheres (ALOHA in South Korea and the United States, respectively. The chemicals used for this analysis were 28% ammonia (NH3, 35% hydrogen chloride (HCl, 50% hydrofluoric acid (HF, and 69% nitric acid (HNO3. The accident scenarios were based on leakage accidents in storage tanks. The weather variables were air temperature, wind speed, humidity, and atmospheric stability. Sensitivity analysis was performed using the Statistical Package for the Social Sciences (SPSS program for dummy regression analysis. Sensitivity analysis showed that impact distance was not sensitive to humidity. Impact distance was most sensitive to atmospheric stability, and was also more sensitive to air temperature than wind speed, according to both the KORA and ALOHA tools. Moreover, the weather variables were more sensitive in rural conditions than in urban conditions, with the ALOHA tool being more influenced by weather variables than the KORA tool. Therefore, if using the ALOHA tool instead of the KORA tool in rural conditions, users should be careful not to cause any differences in impact distance due to input errors of weather variables, with the most sensitive one being atmospheric stability.

  6. Formative feedback from the first-person perspective using Google Glass in a family medicine objective structured clinical examination station in the United States.

    Science.gov (United States)

    Youm, Julie; Wiechmann, Warren

    2018-01-01

    This case study explored the use of Google Glass in a clinical examination scenario to capture the first-person perspective of a standardized patient as a way to provide formative feedback on students' communication and empathy skills 'through the patient's eyes.' During a 3-year period between 2014 and 2017, third-year students enrolled in a family medicine clerkship participated in a Google Glass station during a summative clinical examination. At this station, standardized patients wore Google Glass to record an encounter focused on communication and empathy skills 'through the patient's eyes.' Students completed an online survey using a 4-point Likert scale about their perspectives on Google Glass as a feedback tool (N= 255). We found that the students' experiences with Google Glass 'through the patient's eyes' were largely positive and that students felt the feedback provided by the Google Glass recording to be helpful. Although a third of the students felt that Google Glass was a distraction, the majority believed that the first-person perspective recordings provided an opportunity for feedback that did not exist before. Continuing exploration of first-person perspective recordings using Google Glass to improve education on communication and empathy skills is warranted.

  7. Highway Safety Information System guidebook for the Maine state data files. Volume 2 : single variable tabulations

    Science.gov (United States)

    2012-10-01

    The United States and European Union (EU) share many of the same transportation research issues, challenges, and goals. They also share a belief that cooperative vehicle (also termed connected vehicle) systems, based on vehicle-to-vehicle and vehicle...

  8. Security proof of continuous-variable quantum key distribution using three coherent states

    Science.gov (United States)

    Brádler, Kamil; Weedbrook, Christian

    2018-02-01

    We introduce a ternary quantum key distribution (QKD) protocol and asymptotic security proof based on three coherent states and homodyne detection. Previous work had considered the binary case of two coherent states and here we nontrivially extend this to three. Our motivation is to leverage the practical benefits of both discrete and continuous (Gaussian) encoding schemes creating a best-of-both-worlds approach; namely, the postprocessing of discrete encodings and the hardware benefits of continuous ones. We present a thorough and detailed security proof in the limit of infinite signal states which allows us to lower bound the secret key rate. We calculate this is in the context of collective eavesdropping attacks and reverse reconciliation postprocessing. Finally, we compare the ternary coherent state protocol to other well-known QKD schemes (and fundamental repeaterless limits) in terms of secret key rates and loss.

  9. Interhospital Variability in Perioperative Red Blood Cell Ordering Patterns in United States Pediatric Surgical Patients.

    Science.gov (United States)

    Thompson, Rachel M; Thurm, Cary W; Rothstein, David H

    2016-10-01

    To evaluate perioperative red blood cell (RBC) ordering and interhospital variability patterns in pediatric patients undergoing surgical interventions at US children's hospitals. This is a multicenter cross-sectional study of children aged blood type and crossmatch were included when done on the day before or the day of the surgical procedure. The RBC transfusions included were those given on the day of or the day after surgery. The type and crossmatch-to-transfusion ratio (TCTR) was calculated for each surgical procedure. An adjusted model for interhospital variability was created to account for variation in patient population by age, sex, race/ethnicity, payer type, and presence/number of complex chronic conditions (CCCs) per patient. A total of 357 007 surgical interventions were identified across all participating hospitals. Blood type and crossmatch was performed 55 632 times, and 13 736 transfusions were provided, for a TCTR of 4:1. There was an association between increasing age and TCTR (R(2) = 0.43). Patients with multiple CCCs had lower TCTRs, with a stronger relationship (R(2) = 0.77). There was broad variability in adjusted TCTRs among hospitals (range, 2.5-25). The average TCTR in US children's hospitals was double that of adult surgical data, and was associated with wide interhospital variability. Age and the presence of CCCs markedly influenced this ratio. Studies to evaluate optimal preoperative RBC ordering and standardization of practices could potentially decrease unnecessary costs and wasted blood. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Dynamics of nonlinear feedback control.

    Science.gov (United States)

    Snippe, H P; van Hateren, J H

    2007-05-01

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input steps, the dynamics of gain and attenuation can be very different, depending on the mathematical form of the nonlinearity and the ordering of the nonlinearity and the filtering in the feedback loop. Further, the dynamics of feedback control can be strongly asymmetrical for increment versus decrement steps of the input. Nevertheless, for each of the models studied, the nonlinearity in the feedback loop can be chosen such that immediately after an input step, the dynamics of feedback control is symmetric with respect to increments versus decrements. Finally, we study the dynamics of the output of the control loops and find conditions under which overshoots and undershoots of the output relative to the steady-state output occur when the models are stimulated with low-pass filtered steps. For small steps at the input, overshoots and undershoots of the output do not occur when the filtering in the control path is faster than the low-pass filtering at the input. For large steps at the input, however, results depend on the model, and for some of the models, multiple overshoots and undershoots can occur even with a fast control path.

  11. Water-mediated variability in the structure of relaxed-state haemoglobin

    International Nuclear Information System (INIS)

    Kaushal, Prem Singh; Sankaranarayanan, R.; Vijayan, M.

    2008-01-01

    Partial dehydration of high-salt horse methaemoglobin crystals tends to shift the structure from the R state to the R2 state, in agreement with previous observations that movements in the molecule resulting from changes in water content mimic those involved in protein action. The crystal structure of high-salt horse methaemoglobin has been determined at environmental relative humidities (r.h.) of 88, 79, 75 and 66%. The molecule is in the R state in the native and the r.h. 88% crystals. At r.h. 79%, the water content of the crystal is reduced and the molecule appears to move towards the R2 state. The crystals undergo a water-mediated transformation involving a doubling of one of the unit-cell parameters and an increase in water content when the environmental humidity is further reduced to r.h. 75%. The water content is now similar to that in the native crystals and the molecules are in the R state. The crystal structure at r.h. 66% is similar, but not identical, to that at r.h. 75%, but the solvent content is substantially reduced and the molecules have a quaternary structure that is in between those corresponding to the R and R2 states. Thus, variation in hydration leads to variation in the quaternary structure. Furthermore, partial dehydration appears to shift the structure from the R state to the R2 state. This observation is in agreement with the earlier conclusion that the changes in protein structure that accompany partial dehydration are similar to those that occur during protein action

  12. Rateless feedback codes

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Koike-Akino, Toshiaki; Orlik, Philip

    2012-01-01

    This paper proposes a concept called rateless feedback coding. We redesign the existing LT and Raptor codes, by introducing new degree distributions for the case when a few feedback opportunities are available. We show that incorporating feedback to LT codes can significantly decrease both...... the coding overhead and the encoding/decoding complexity. Moreover, we show that, at the price of a slight increase in the coding overhead, linear complexity is achieved with Raptor feedback coding....

  13. The Mythology of Feedback

    Science.gov (United States)

    Adcroft, Andy

    2011-01-01

    Much of the general education and discipline-specific literature on feedback suggests that it is a central and important element of student learning. This paper examines feedback from a social process perspective and suggests that feedback is best understood through an analysis of the interactions between academics and students. The paper argues…

  14. Lithium-ion battery state of function estimation based on fuzzy logic algorithm with associated variables

    Science.gov (United States)

    Gan, L.; Yang, F.; Shi, Y. F.; He, H. L.

    2017-11-01

    Many occasions related to batteries demand to know how much continuous and instantaneous power can batteries provide such as the rapidly developing electric vehicles. As the large-scale applications of lithium-ion batteries, lithium-ion batteries are used to be our research object. Many experiments are designed to get the lithium-ion battery parameters to ensure the relevance and reliability of the estimation. To evaluate the continuous and instantaneous load capability of a battery called state-of-function (SOF), this paper proposes a fuzzy logic algorithm based on battery state-of-charge(SOC), state-of-health(SOH) and C-rate parameters. Simulation and experimental results indicate that the proposed approach is suitable for battery SOF estimation.

  15. Dependence of isobar-analog state properties on variable part of Coulomb potential

    International Nuclear Information System (INIS)

    Dzhafarov, I.G.; Kuliev, A.A.; Salamov, D.I.

    1986-01-01

    Within the framework of the self-consistent approach and with the method of strength functions the fragmentation of isobar-analog state (IAS) properties for all isobarie 0 + -states is investigated. Microscopic values of IAS energy, matrix elements of allowed and forbidden Fermi transitions as well as isospin impurity values in ground states of parent nuclei are obtained. Numerical calculations carried out for 42 Ca 42 Sc, 48 Ca 48 Sc, 64 Zn 64 Ga, 66 Zn 66 Ga, 90 Zr 90 Nb, 208 Pb 208 Bi isobaric nuclei with Woods-Saxon potential, are compared with predictions of different approches and experiment. The developed model by the authors permits to describe sufficiently well the experimental data

  16. Disturbance attenuation of nonlinear control systems using an observer-based fuzzy feedback linearization control

    International Nuclear Information System (INIS)

    Chen, C.-C.; Hsu, C.-H.; Chen, Y.-J.; Lin, Y.-F.

    2007-01-01

    The almost disturbance decoupling and trajectory tracking of nonlinear control systems using an observer-based fuzzy feedback linearization control (FLC) is developed. Because not all of the state variables of the nonlinear dynamic equations are available, a nonlinear state observer is employed to estimate the state variables. The feedback linearization control guarantees the almost disturbance decoupling performance and the uniform ultimate bounded stability of the tracking error system. Once the tracking errors are driven to touch the global final attractor with the desired radius, the fuzzy logic control is immediately applied via human expert's knowledge to improve the convergence rate. One example, which cannot be solved by the first paper on the almost disturbance decoupling problem, is proposed in this paper to exploit the fact that the tracking and the almost disturbance decoupling performances are easily achieved by our proposed approach. In order to demonstrate the practical applicability, the study has investigated a pendulum control system

  17. Controlled dense coding for continuous variables using three-particle entangled states

    CERN Document Server

    Jing Zhang; Kun Chi Peng; 10.1103/PhysRevA.66.032318

    2002-01-01

    A simple scheme to realize quantum controlled dense coding with a bright tripartite entangled state light generated from nondegenerate optical parametric amplifiers is proposed in this paper. The quantum channel between Alice and Bob is controlled by Claire. As a local oscillator and balanced homodyne detector are not needed, the proposed protocol is easy to be realized experimentally. (15 refs)

  18. Quantitative Analysis of Variables Affecting Nursing Program Completion at Arizona State University

    Science.gov (United States)

    Herrera, Cheryl

    2013-01-01

    This study is designed to understand the patterns of selection, preparation, retention and graduation of undergraduate pre-licensure clinical nursing students in the College of Nursing and Health Innovation at Arizona State University enrolled in 2007 and 2008. The resulting patterns may guide policy decision making regarding future cohorts in…

  19. Regional changes and global connections: monitoring climate variability and change in the western United States

    Science.gov (United States)

    Henry F. Diaz

    2004-01-01

    Mountain ecosystems of the Western United States are complex and include cold desert biomes, such as those found in Nevada; subpolar biomes found in the upper treeline zone; and tundra ecosystems, occurring above timberline. Many studies (for example, Thompson 2000) suggest that high-elevation environments, comprising glaciers, snow, permafrost, water, and the...

  20. Trap density of states in n-channel organic transistors: variable temperature characteristics and band transport

    International Nuclear Information System (INIS)

    Cho, Joung-min; Akiyama, Yuto; Kakinuma, Tomoyuki; Mori, Takehiko

    2013-01-01

    We have investigated trap density of states (trap DOS) in n-channel organic field-effect transistors based on N,N ’-bis(cyclohexyl)naphthalene diimide (Cy-NDI) and dimethyldicyanoquinonediimine (DMDCNQI). A new method is proposed to extract trap DOS from the Arrhenius plot of the temperature-dependent transconductance. Double exponential trap DOS are observed, in which Cy-NDI has considerable deep states, by contrast, DMDCNQI has substantial tail states. In addition, numerical simulation of the transistor characteristics has been conducted by assuming an exponential trap distribution and the interface approximation. Temperature dependence of transfer characteristics are well reproduced only using several parameters, and the trap DOS obtained from the simulated characteristics are in good agreement with the assumed trap DOS, indicating that our analysis is self-consistent. Although the experimentally obtained Meyer-Neldel temperature is related to the trap distribution width, the simulation satisfies the Meyer-Neldel rule only very phenomenologically. The simulation also reveals that the subthreshold swing is not always a good indicator of the total trap amount, because it also largely depends on the trap distribution width. Finally, band transport is explored from the simulation having a small number of traps. A crossing point of the transfer curves and negative activation energy above a certain gate voltage are observed in the simulated characteristics, where the critical V G above which band transport is realized is determined by the sum of the trapped and free charge states below the conduction band edge

  1. Investigation of the Motivation Level of Teachers Working at State Schools in Relation to Some Variables

    Science.gov (United States)

    Can, Süleyman

    2015-01-01

    In order to give the best and accurate orientation to teachers working in school organizations, it seems to be necessary to determine their motivation level. Thus, the purpose of the current study is to determine the motivation level of teachers working in state elementary and secondary schools. Moreover, the study also looks at the relationships…

  2. Influence of winter season climate variability on snow-precipitation ratio in the western United States

    Science.gov (United States)

    Mohammad Safeeq; Shraddhanand Shukla; Ivan Arismendi; Gordon E. Grant; Sarah L. Lewis; Anne Nolin

    2015-01-01

    In the western United States, climate warming poses a unique threat to water and snow hydrology because much of the snowpack accumulates at temperatures near 0 °C. As the climate continues to warm, much of the region's precipitation is expected to switch from snow to rain, causing flashier hydrographs, earlier inflow to reservoirs, and reduced spring and summer...

  3. Understanding constructive feedback: a commitment between teachers and students for academic and professional development.

    Science.gov (United States)

    Hamid, Yasir; Mahmood, Sajid

    2010-03-01

    This review highlights the need in the Pakistani medical education system for teachers and students to be able to: define constructive feedback; provide constructive feedback; identify standards for constructive feedback; identify a suitable model for the provision of constructive feedback and evaluate the use of constructive feedback. For the purpose of literature review we had defined the key word glossary as: feedback, constructive feedback, teaching constructive feedback, models for feedback, models for constructive feedback and giving and receiving feedback. The data bases for the search include: Medline (EBSCO), Web of Knowledge, SCOPUS, TRIP, ScienceDirect, Pubmed, U.K. Pubmed Central, ZETOC, University of Dundee Library catalogue, SCIRUS (Elsevier) and Google Scholar. This article states that the Pakistani medical schools do not reflect on or use the benefits of the constructive feedback process. The discussion about constructive feedback suggests that in the context of Pakistan, constructive feedback will facilitate the teaching and learning activities.

  4. Study on the performances of handling and stability influenced by the differential terms in the state variables; Soansei ni okeru jotai hensunai no bibun yoso ga seino ni oyobosu eikyo no kento

    Energy Technology Data Exchange (ETDEWEB)

    Sugasawa, F [Tamagawa University, Tokyo (Japan); Mori, H [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    The analysis method using the system matrix for state variables can not be applied to the analysis for the system has Complex Cornering Stiffness. The reason is there are differential terms in the state variables. It is found that the differential terms m the state variables can be changed to the constant terms in another state variables. 4 refs., 9 figs.

  5. Opportunistic Relay Selection With Limited Feedback

    KAUST Repository

    Eltayeb, Mohammed E.; Elkhalil, Khalil; Bahrami, Hamid Reza; Al-Naffouri, Tareq Y.

    2015-01-01

    Relay selection is a simple technique that achieves spatial diversity in cooperative relay networks. Generally, relay selection algorithms require channel state information (CSI) feedback from all cooperating relays to make a selection decision

  6. Climate variability and change in the United States: potential impacts on water- and foodborne diseases caused by microbiologic agents.

    Science.gov (United States)

    Rose, J B; Epstein, P R; Lipp, E K; Sherman, B H; Bernard, S M; Patz, J A

    2001-05-01

    Exposure to waterborne and foodborne pathogens can occur via drinking water (associated with fecal contamination), seafood (due to natural microbial hazards, toxins, or wastewater disposal) or fresh produce (irrigated or processed with contaminated water). Weather influences the transport and dissemination of these microbial agents via rainfall and runoff and the survival and/or growth through such factors as temperature. Federal and state laws and regulatory programs protect much of the U.S. population from waterborne disease; however, if climate variability increases, current and future deficiencies in areas such as watershed protection, infrastructure, and storm drainage systems will probably increase the risk of contamination events. Knowledge about transport processes and the fate of microbial pollutants associated with rainfall and snowmelt is key to predicting risks from a change in weather variability. Although recent studies identified links between climate variability and occurrence of microbial agents in water, the relationships need further quantification in the context of other stresses. In the marine environment as well, there are few studies that adequately address the potential health effects of climate variability in combination with other stresses such as overfishing, introduced species, and rise in sea level. Advances in monitoring are necessary to enhance early-warning and prevention capabilities. Application of existing technologies, such as molecular fingerprinting to track contaminant sources or satellite remote sensing to detect coastal algal blooms, could be expanded. This assessment recommends incorporating a range of future scenarios of improvement plans for current deficiencies in the public health infrastructure to achieve more realistic risk assessments.

  7. Variability of Cloud Cover and Its Relation to Snowmelt and Runoff in the Mountainous Western United States

    Science.gov (United States)

    Sumargo, E.; Cayan, D. R.; Iacobellis, S.

    2014-12-01

    Obtaining accurate solar radiation input to snowmelt runoff models remains a fundamental challenge for water supply forecasters in the mountainous western U.S. The variability of cloud cover is a primary source of uncertainty in estimating surface radiation, especially given that ground-based radiometer networks in mountain terrains are sparse. Thus, remote sensed cloud properties provide a way to extend in situ observations and more importantly, to understand cloud variability in montane environment. We utilize 17 years of NASA/NOAA GOES visible albedo product with 4 km spatial and half-hour temporal resolutions to investigate daytime cloud variability in the western U.S. at elevations above 800 m. REOF/PC analysis finds that the 5 leading modes account for about two-thirds of the total daily cloud albedo variability during the whole year (ALL) and snowmelt season (AMJJ). The AMJJ PCs are significantly correlated with de-seasonalized snowmelt derived from CDWR CDEC and NRCS SNOTEL SWE data and USGS stream discharge across the western conterminous states. The sum of R2 from 7 days prior to the day of snowmelt/discharge amounts to as much as ~52% on snowmelt and ~44% on discharge variation. Spatially, the correlation patterns take on broad footprints, with strongest signals in regions of highest REOF weightings. That the response of snowmelt and streamflow to cloud variation is spread across several days indicates the cumulative effect of cloud variation on the energy budget in mountain catchments.

  8. Search for new physics in the all-hadronic final state with the MT2 variable

    CERN Document Server

    CMS Collaboration

    2017-01-01

    A search for new physics is performed using events with jets and a large transverse momentum imbalance, as measured through the $M_{T2}$ variable. The results are based on a sample of proton-proton collisions collected in 2016 at a center-of-mass energy of 13 TeV with the CMS detector and corresponding to an integrated luminosity of $35.9~\\mathrm{fb}^{-1}$. No excess above the standard model background is observed. The results are interpreted as limits on the masses of potential new particles in a variety of simplified models of R-parity conserving supersymmetry. Depending on the details of the model, $95\\%$ CL lower limits on the gluino and light-flavor squark masses are placed up to $2025$ and $1550~\\mathrm{GeV}$, respectively. In the case of top (bottom) squarks, the mass limits are as high as $1070~(1175)~\\mathrm{GeV}$.

  9. Steady state performance evaluation of variable geometry twin-entry turbine

    International Nuclear Information System (INIS)

    Romagnoli, A.; Martinez-Botas, R.F.; Rajoo, S.

    2011-01-01

    This paper presents the results from an experimental investigation conducted on different turbine designs for an automotive turbocharger. The design progression was based on a commercial nozzleless unit that was modified into a variable geometry single and twin-entry turbine. The main geometrical parameters were kept constant for all the configurations and the turbine was tested under steady flow conditions. A significant depreciation in efficiency was measured between the single and twin-entry configuration due to the mixing effects. The nozzleless unit provides the best compromise in terms of performance at different speeds. The twin-entry turbine was also tested under partial and unequal admissions. Based on the test results a method to determine the swallowing capacity under partial admission given the full admission map is presented. The test results also showed that the turbine swallowing capacity under unequal admission is linked to the full admission case.

  10. Modeling of water and solute transport under variably saturated conditions: state of the art

    International Nuclear Information System (INIS)

    Lappala, E.G.

    1980-01-01

    This paper reviews the equations used in deterministic models of mass and energy transport in variably saturated porous media. Analytic, quasi-analytic, and numerical solution methods to the nonlinear forms of transport equations are discussed with respect to their advantages and limitations. The factors that influence the selection of a modeling method are discussed in this paper; they include the following: (1) the degree of coupling required among the equations describing the transport of liquids, gases, solutes, and energy; (2) the inclusion of an advection term in the equations; (3) the existence of sharp fronts; (4) the degree of nonlinearity and hysteresis in the transport coefficients and boundary conditions; (5) the existence of complex boundaries; and (6) the availability and reliability of data required by the models

  11. Saddlepoint expansions for sums of Markov dependent variables on a continuous state space

    DEFF Research Database (Denmark)

    Jensen, J.L.

    1991-01-01

    Based on the conjugate kernel studied in Iscoe et al. (1985) we derive saddlepoint expansions for either the density or distribution function of a sum f(X1)+...+f(Xn), where the Xi's constitute a Markov chain. The chain is assumed to satisfy a strong recurrence condition which makes the results...... here very similar to the classical results for i.i.d. variables. In particular we establish also conditions under which the expansions hold uniformly over the range of the saddlepoint. Expansions are also derived for sums of the form f(X1, X0)+f(X2, X1)+...+f(Xn, Xn-1) although the uniformity result...

  12. Observational constraints on variable equation of state parameters of dark matter and dark energy after Planck

    Directory of Open Access Journals (Sweden)

    Suresh Kumar

    2014-10-01

    Full Text Available In this paper, we study a cosmological model in general relativity within the framework of spatially flat Friedmann–Robertson–Walker space–time filled with ordinary matter (baryonic, radiation, dark matter and dark energy, where the latter two components are described by Chevallier–Polarski–Linder equation of state parameters. We utilize the observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements of matter power spectrum to constrain the model parameters. We find that the current observational data offer tight constraints on the equation of state parameter of dark matter. We consider the perturbations and study the behavior of dark matter by observing its effects on CMB and matter power spectra. We find that the current observational data favor the cold dark matter scenario with the cosmological constant type dark energy at the present epoch.

  13. Observational constraints on variable equation of state parameters of dark matter and dark energy after Planck

    International Nuclear Information System (INIS)

    Kumar, Suresh; Xu, Lixin

    2014-01-01

    In this paper, we study a cosmological model in general relativity within the framework of spatially flat Friedmann–Robertson–Walker space–time filled with ordinary matter (baryonic), radiation, dark matter and dark energy, where the latter two components are described by Chevallier–Polarski–Linder equation of state parameters. We utilize the observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements of matter power spectrum to constrain the model parameters. We find that the current observational data offer tight constraints on the equation of state parameter of dark matter. We consider the perturbations and study the behavior of dark matter by observing its effects on CMB and matter power spectra. We find that the current observational data favor the cold dark matter scenario with the cosmological constant type dark energy at the present epoch

  14. Opportunistic Relay Selection With Limited Feedback

    KAUST Repository

    Eltayeb, Mohammed E.

    2015-08-01

    Relay selection is a simple technique that achieves spatial diversity in cooperative relay networks. Generally, relay selection algorithms require channel state information (CSI) feedback from all cooperating relays to make a selection decision. This requirement poses two important challenges, which are often neglected in the literature. Firstly, the fed back channel information is usually corrupted by additive noise. Secondly, CSI feedback generates a great deal of feedback overhead (air-time) that could result in significant performance hits. In this paper, we propose a compressive sensing (CS) based relay selection algorithm that reduces the feedback overhead of relay networks under the assumption of noisy feedback channels. The proposed algorithm exploits CS to first obtain the identity of a set of relays with favorable channel conditions. Following that, the CSI of the identified relays is estimated using least squares estimation without any additional feedback. Both single and multiple relay selection cases are considered. After deriving closed-form expressions for the asymptotic end-to-end SNR at the destination and the feedback load for different relaying protocols, we show that CS-based selection drastically reduces the feedback load and achieves a rate close to that obtained by selection algorithms with dedicated error-free feedback. © 1972-2012 IEEE.

  15. Global desertification: Drivers and feedbacks

    Science.gov (United States)

    D'Odorico, Paolo; Bhattachan, Abinash; Davis, Kyle F.; Ravi, Sujith; Runyan, Christiane W.

    2013-01-01

    Desertification is a change in soil properties, vegetation or climate, which results in a persistent loss of ecosystem services that are fundamental to sustaining life. Desertification affects large dryland areas around the world and is a major cause of stress in human societies. Here we review recent research on the drivers, feedbacks, and impacts of desertification. A multidisciplinary approach to understanding the drivers and feedbacks of global desertification is motivated by our increasing need to improve global food production and to sustainably manage ecosystems in the context of climate change. Classic desertification theories look at this process as a transition between stable states in bistable ecosystem dynamics. Climate change (i.e., aridification) and land use dynamics are the major drivers of an ecosystem shift to a “desertified” (or “degraded”) state. This shift is typically sustained by positive feedbacks, which stabilize the system in the new state. Desertification feedbacks may involve land degradation processes (e.g., nutrient loss or salinization), changes in rainfall regime resulting from land-atmosphere interactions (e.g., precipitation recycling, dust emissions), or changes in plant community composition (e.g., shrub encroachment, decrease in vegetation cover). We analyze each of these feedback mechanisms and discuss their possible enhancement by interactions with socio-economic drivers. Large scale effects of desertification include the emigration of “environmental refugees” displaced from degraded areas, climatic changes, and the alteration of global biogeochemical cycles resulting from the emission and long-range transport of fine mineral dust. Recent research has identified some possible early warning signs of desertification, which can be used as indicators of resilience loss and imminent shift to desert-like conditions. We conclude with a brief discussion on some desertification control strategies implemented in different

  16. Spatial variability of soil carbon across Mexico and the United States

    Science.gov (United States)

    Vargas, R.; Guevara, M.; Cruz Gaistardo, C.; Paz, F.; de Jong, B.; Etchevers, J.

    2015-12-01

    Soil organic carbon (SOC) is directly linked to soil quality, food security, and land use/global environmental change. We use publicly available information on SOC and couple it with digital elevation models and derived terrain attributes using a machine learning approach. We found a strong spatial dependency of SOC across the United States, but less spatial dependency of SOC across Mexico. Using High Performance Computing (HPC) we derived a 1 km resolution map of SOC across Mexico and the United States. We tested different machine learning methods (e.g., kernel based, tree based and/or Geo-statistics approaches) for computational efficiency and statistical accuracy. Using random forest combined with geo-statistics we were able to explain >70% of SOC variance for Mexico and >40% in the case of the United States via cross validation. These results compare with other published estimates of SOC at 1km resolution that only explain <30% of SOC variance across the world. Topographic attributes derived from digital elevation models are freely available globally at fine spatial resolution (<100 m), and this information allowed us to make predictions of SOC at fine scales. We further tested this approach using SOC information from the International Soil Carbon Network to predict SOC in other regions of the world. We conclude that this approach (using public information and open source platforms for data analysis) could be implemented to predict detailed explicit information of SOC across different spatial scales.

  17. [Deaths due to motorcycle accidents and their association with variables related to social reproduction in a northeastern Brazilian state].

    Science.gov (United States)

    Silva, Paul Hindenburg Nobre de Vasconcelos; Lima, Maria Luiza Carvalho; Souza, Wayner Vieira; Moreira, Rafael da Silveira; Oliveira, Fernando José Moreira

    2015-09-01

    The objective of this article was to identify the association between motorcycle deaths and variables related to Samaja's theory of social reproduction in the period 2000-2005 in the state of Pernambuco. An ecological, case-control study was carried out, with municipalities as the unit of analysis. Cases were defined as the 20% of municipalities with the highest local empirical Bayesian coefficients for mortality due to motorcycle accidents, and controls as the 40% with the lowest coefficients. The municipalities with the greatest chances of high coefficients for mortality due to motorcycle accidents showed high population growth factors and increases in the total fleet of motorcycles, with low population densities, low GDP per capita, and more than 20 motorcycles per thousand inhabitants. We conclude that the variables related to macro-policies proved to have greater force in explaining higher chances of motorcycle death.

  18. Generalized fast feedback system in the SLC

    International Nuclear Information System (INIS)

    Hendrickson, L.; Allison, S.; Gromme, T.; Himel, T.; Krauter, K.; Rouse, F.; Sass, R.; Shoaee, H.

    1992-01-01

    A generalized fast feedback system has been developed to stabilize beams at various locations in the SLC. The system is designed to perform measurements and change actuator settings to control beam states such as position, angle and energy on a pulse to pulse basis. The software design is based on the state space formalism of digital control theory. The system is database-driven, facilitating the addition of new loops without requiring additional software. A communications system, KISNet, provides fast communications links between microprocessors for feedback loops which involve multiple micros. Feedback loops have been installed in seventeen locations throughout the SLC and have proven to be invaluable in stabilizing the machine. (author)

  19. Generalized fast feedback system in the SLC

    International Nuclear Information System (INIS)

    Hendrickson, L.; Allison, S.; Gromme, T.; Himel, T.; Krauter, K.; Rouse, F.; Sass, R.; Shoaee, H.

    1991-11-01

    A generalized fast feedback system has been developed to stabilize beams at various locations in the SLC. The system is designed to perform measurements and change actuator settings to control beam states such as position, angle and energy on a pulse to pulse basis. The software design is based on the state space formalism of digital control theory. The system is database-driven, facilitating the addition of new loops without requiring additional software. A communications system, KISNet, provides fast communications links between microprocessors for feedback loops which involve multiple micros. Feedback loops have been installed in seventeen locations throughout the SLC and have proven to be invaluable in stabilizing the machine

  20. Control and diagnostic uses of feedback

    International Nuclear Information System (INIS)

    Sen, A. K.

    2000-01-01

    Recent results on multimode feedback control of magnetohydrodynamic (MHD) modes and a variety of diagnostic uses of feedback are summarized. First, is the report on reduction and scaling of transport under feedback. By controlling the fluctuation amplitudes and consequently the transport via feedback, it is found that the scaling of the diffusion coefficient is linear with root-mean-square rms fluctuation level. The scaling appears not to agree with any generic theory. A variety of other diagnostic uses of feedback have been developed. The primary goal is an experimental methodology for the determination of dynamic models of plasma turbulence, both for better transport understanding and more credible feedback controller designs. A specific motivation is to search for a low-order dynamic model, suitable for the convenient study of both transport and feedback. First, the time series analysis method is used for the determination of chaotic attractor dimension of plasma fluctuations. For ExB rotational flute modes it is found to be close to three, indicating that a low-order dynamic model may be adequate for transport prediction and feedback controller design. Second, a new method for direct experimental determination of nonlinear dynamical models of plasma turbulence using feedback has been developed. Specifically, the process begins with a standard three-wave coupling model and introduces a variable feedback gain. The power spectrum, delayed power spectrum, and bispectrum of fluctuations are then experimentally obtained. By varying the feedback gain continuously, an arbitrary number of numerical equations for a fixed number of unknowns can be generated. Their numerical solution yields the linear dispersion, as well as nonlinear coupling coefficients. This method has been successfully applied for ExB rotationally driven flute modes. (c) 2000 American Institute of Physics

  1. THE LONGEST TIMESCALE X-RAY VARIABILITY REVEALS EVIDENCE FOR ACTIVE GALACTIC NUCLEI IN THE HIGH ACCRETION STATE

    International Nuclear Information System (INIS)

    Zhang Youhong

    2011-01-01

    The All Sky Monitor (ASM) on board the Rossi X-ray Timing Explorer has continuously monitored a number of active galactic nuclei (AGNs) with similar sampling rates for 14 years, from 1996 January to 2009 December. Utilizing the archival ASM data of 27 AGNs, we calculate the normalized excess variances of the 300-day binned X-ray light curves on the longest timescale (between 300 days and 14 years) explored so far. The observed variance appears to be independent of AGN black-hole mass and bolometric luminosity. According to the scaling relation of black-hole mass (and bolometric luminosity) from galactic black hole X-ray binaries (GBHs) to AGNs, the break timescales that correspond to the break frequencies detected in the power spectral density (PSD) of our AGNs are larger than the binsize (300 days) of the ASM light curves. As a result, the singly broken power-law (soft-state) PSD predicts the variance to be independent of mass and luminosity. Nevertheless, the doubly broken power-law (hard-state) PSD predicts, with the widely accepted ratio of the two break frequencies, that the variance increases with increasing mass and decreases with increasing luminosity. Therefore, the independence of the observed variance on mass and luminosity suggests that AGNs should have soft-state PSDs. Taking into account the scaling of the break timescale with mass and luminosity synchronously, the observed variances are also more consistent with the soft-state than the hard-state PSD predictions. With the averaged variance of AGNs and the soft-state PSD assumption, we obtain a universal PSD amplitude of 0.030 ± 0.022. By analogy with the GBH PSDs in the high/soft state, the longest timescale variability supports the standpoint that AGNs are scaled-up GBHs in the high accretion state, as already implied by the direct PSD analysis.

  2. Fatigue Behavior under Multiaxial Stress States Including Notch Effects and Variable Amplitude Loading

    Science.gov (United States)

    Gates, Nicholas R.

    The central objective of the research performed in this study was to be able to better understand and predict fatigue crack initiation and growth from stress concentrations subjected to complex service loading histories. As such, major areas of focus were related to the understanding and modeling of material deformation behavior, fatigue damage quantification, notch effects, cycle counting, damage accumulation, and crack growth behavior under multiaxial nominal loading conditions. To support the analytical work, a wide variety of deformation and fatigue tests were also performed using tubular and plate specimens made from 2024-T3 aluminum alloy, with and without the inclusion of a circular through-thickness hole. However, the analysis procedures implemented were meant to be general in nature, and applicable to a wide variety of materials and component geometries. As a result, experimental data from literature were also used, when appropriate, to supplement the findings of various analyses. Popular approaches currently used for multiaxial fatigue life analysis are based on the idea of computing an equivalent stress/strain quantity through the extension of static yield criteria. This equivalent stress/strain is then considered to be equal, in terms of fatigue damage, to a uniaxial loading of the same magnitude. However, it has often been shown, and was shown again in this study, that although equivalent stress- and strain-based analysis approaches may work well in certain situations, they lack a general robustness and offer little room for improvement. More advanced analysis techniques, on the other hand, provide an opportunity to more accurately account for various aspects of the fatigue failure process under both constant and variable amplitude loading conditions. As a result, such techniques were of primary interest in the investigations performed. By implementing more advanced life prediction methodologies, both the overall accuracy and the correlation of fatigue

  3. Resting State BOLD Variability in Alzheimer’s Disease: A Marker of Cognitive Decline or Cerebrovascular Status?

    Directory of Open Access Journals (Sweden)

    Vanessa Scarapicchia

    2018-02-01

    Full Text Available Background: Alzheimer’s disease (AD is a neurodegenerative disorder that may benefit from early diagnosis and intervention. Therefore, there is a need to identify early biomarkers of AD using non-invasive techniques such as functional magnetic resonance imaging (fMRI. Recently, novel approaches to the analysis of resting-state fMRI data have been developed that focus on the moment-to-moment variability in the blood oxygen level dependent (BOLD signal. The objective of the current study was to investigate BOLD variability as a novel early biomarker of AD and its associated psychophysiological correlates.Method: Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI 2 database from 19 participants with AD and 19 similarly aged controls. For each participant, a map of BOLD signal variability (SDBOLD was computed as the standard deviation of the BOLD timeseries at each voxel. Group comparisons were performed to examine global differences in resting state SDBOLD in AD versus healthy controls. Correlations were then examined between participant SDBOLD maps and (1 ADNI-derived composite scores of memory and executive function and (2 neuroimaging markers of cerebrovascular status.Results: Between-group comparisons revealed significant (p < 0.05 increases in SDBOLD in patients with AD relative to healthy controls in right-lateralized frontal regions. Lower memory scores and higher WMH burden were associated with greater SDBOLD in the healthy control group (p < 0.1, but not individuals with AD.Conclusion: The current study provides proof of concept of a novel resting state fMRI analysis technique that is non-invasive, easily accessible, and clinically compatible. To further explore the potential of SDBOLD as a biomarker of AD, additional studies in larger, longitudinal samples are needed to better understand the changes in SDBOLD that characterize earlier stages of disease progression and their underlying psychophysiological

  4. Bayesian feedback versus Markovian feedback in a two-level atom

    International Nuclear Information System (INIS)

    Wiseman, H.M.; Mancini, Stefano; Wang Jin

    2002-01-01

    We compare two different approaches to the control of the dynamics of a continuously monitored open quantum system. The first is Markovian feedback, as introduced in quantum optics by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)]. The second is feedback based on an estimate of the system state, developed recently by Doherty and Jacobs [Phys. Rev. A 60, 2700 (1999)]. Here we choose to call it, for brevity, Bayesian feedback. For systems with nonlinear dynamics, we expect these two methods of feedback control to give markedly different results. The simplest possible nonlinear system is a driven and damped two-level atom, so we choose this as our model system. The monitoring is taken to be homodyne detection of the atomic fluorescence, and the control is by modulating the driving. The aim of the feedback in both cases is to stabilize the internal state of the atom as close as possible to an arbitrarily chosen pure state, in the presence of inefficient detection and other forms of decoherence. Our results (obtained without recourse to stochastic simulations) prove that Bayesian feedback is never inferior, and is usually superior, to Markovian feedback. However, it would be far more difficult to implement than Markovian feedback and it loses its superiority when obvious simplifying approximations are made. It is thus not clear which form of feedback would be better in the face of inevitable experimental imperfections

  5. Coherent feedback control of multipartite quantum entanglement for optical fields

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006 (China)

    2011-12-15

    Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.

  6. Variability of Ecosystem State in Rivers Containing Natural Dams: A Chemical Analysis

    Science.gov (United States)

    Reynolds, Z. A.

    2015-12-01

    Flooding, and the resulting economic damage to roads and property, is associated with natural dams such as beaver dams or log jams. For this reason, humans often remove natural dams; however, river reaches with natural dams provide very different ecosystem services in comparison with free-flowing river reaches. Therefore, the goal of this project is to assess the differences in ecosystem state between these different river reach types in the northeastern United States. We focused on differences in basic chemistry (e.g., dissolved oxygen, pH, temperature, and organic carbon) to assess the impact of natural dams on river ecosystem state. Study sites include rivers in the White Mountains and southeastern New Hampshire at locations with beaver dams, beaver ponds, beaver meadows, log jams, and free-flowing reaches. Dissolved oxygen, ORP, pH, temperature, and conductivity were measured in the field with a YSI Professional Plus meter. Water samples were collected for subsequent laboratory analysis of total organic carbon with a Shimadzu TOC-L. Preliminary results show that the chemistry of river water varies with feature type. Most significantly, dissolved oxygen concentrations are highest in free-flowing reaches and lowest in beaver ponds. Although beaver ponds are often associated with lower pH, due the increased concentration of organic acids, some beaver ponds can increase pH when compared to free-flowing reaches on the same river. Early results also show that water chemistry returns quickly to the chemistry typical of the free-flowing river reaches after being altered by a natural dam. Overall, natural dams create a river system that has more heterogeneity, and therefore has opportunities to provide more ecosystem functions, than a purely free-flowing river; this can increase the number of supported instream and riparian species. By increasing the understanding of how natural dams affect the chemistry of river water, river engineers can improve their decisions on how

  7. Genetic variability and health of Norway spruce stands in the Regional Directorate of the State Forests in Krosno

    Directory of Open Access Journals (Sweden)

    Gutkowska Justyna

    2017-03-01

    Full Text Available The study was conducted in 2015 in six spruce stands situated in different forest districts administratively belonging to the Regional Directorate of State Forests in Krosno. Each spruce population was represented by 30 trees and assessed in terms of their current health status. Genetic analyses were performed on shoot samples from each tree using nine nuclear DNA markers and one mitochondrial DNA marker (nad1. The health status of the trees was described according to the classification developed by Szczepkowski and Tarasiuk (2005 and the correlation between health classes and the level of genetic variability was computed with STATISTICA (α = 0.05.

  8. Efficient estimation of feedback effects with application to climate models

    International Nuclear Information System (INIS)

    Cacugi, D.G.; Hall, M.C.G.

    1984-01-01

    This work presents an efficient method for calculating the sensitivity of a mathematical model's result to feedback. Feedback is defined in terms of an operator acting on the model's dependent variables. The sensitivity to feedback is defined as a functional derivative, and a method is presented to evaluate this derivative using adjoint functions. Typically, this method allows the individual effect of many different feedbacks to be estimated with a total additional computing time comparable to only one recalculation. The effects on a CO 2 -doubling experiment of actually incorporating surface albedo and water vapor feedbacks in radiative-convective model are compared with sensivities calculated using adjoint functions. These sensitivities predict the actual effects of feedback with at least the correct sign and order of magnitude. It is anticipated that this method of estimation the effect of feedback will be useful for more complex models where extensive recalculations for each of a variety of different feedbacks is impractical

  9. Spatial and temporal variability in the temperature and precipitation records of MEXICO state (1978-2000

    Directory of Open Access Journals (Sweden)

    X. Antonio-Némiga

    2017-07-01

    Full Text Available Comprender la naturaleza y magnitud de las variaciones climáticas regionales es fundamental para el desarrollo de políticas de adaptación y mitigación. Por ello, se evalúan los registros de temperatura máxima y mínima y precipitación en 92 estaciones meteorológicas del estado de México durante el periodo comprendido entre 1978 y 2000. Para hacerlo se calcularon los valores promedio y los coeficientes de variación de los registros. En ellos se buscan tendencias lineales de comportamiento y se calcula para cada estación el coeficiente de variación para encontrar aquellas estaciones que presentan mayor variabilidad. La misma variabilidad es expresada cartográfi- camente para para entender su distribución en el espacio y buscar relación con otras variables. Se encontró una tendencia estadísticamente significativa de creciente variabilidad en los registros de temperatura máxima de los meses de enero, abril y mayo y en los registros de temperatura mínima de mayo, junio y septiembre; así como una posible correlación entre la ubicación de las estaciones donde se registran mayores variaciones de temperatura máxima y los frentes de deforestación.

  10. Condition Monitoring for Roller Bearings of Wind Turbines Based on Health Evaluation under Variable Operating States

    Directory of Open Access Journals (Sweden)

    Lei Fu

    2017-10-01

    Full Text Available Condition monitoring (CM is used to assess the health status of wind turbines (WT by detecting turbine failure and predicting maintenance needs. However, fluctuating operating conditions cause variations in monitored features, therefore increasing the difficulty of CM, for example, the frequency-domain analysis may lead to an inaccurate or even incorrect prediction when evaluating the health of the WT components. In light of this challenge, this paper proposed a method for the health evaluation of WT components based on vibration signals. The proposed approach aimed to reduce the evaluation error caused by the impact of the variable operating condition. First, the vibration signal was decomposed into a set of sub-signals using variational mode decomposition (VMD. Next, the sub-signal energy and the probability distribution were obtained and normalized. Finally, the concept of entropy was introduced to evaluate the health condition of a monitored object to provide an effective guide for maintenance. In particular, the health evaluation for CM was based on a performance review over a range of operating conditions, rather than at a certain single operating condition. Experimental investigations were performed which verified the efficiency of the evaluation method, as well as a comparison with the previous method.

  11. Common-Message Broadcast Channels with Feedback in the Nonasymptotic Regime: Full Feedback

    DEFF Research Database (Denmark)

    Trillingsgaard, Kasper Fløe; Yang, Wei; Durisi, Giuseppe

    2018-01-01

    We investigate the maximum coding rate achievable on a two-user broadcast channel for the case where a common message is transmitted with feedback using either fixed-blocklength codes or variable-length codes. For the fixed-blocklength-code setup, we establish nonasymptotic converse and achievabi......We investigate the maximum coding rate achievable on a two-user broadcast channel for the case where a common message is transmitted with feedback using either fixed-blocklength codes or variable-length codes. For the fixed-blocklength-code setup, we establish nonasymptotic converse...... and achievability bounds. An asymptotic analysis of these bounds reveals that feedback improves the second-order term compared to the no-feedback case. In particular, for a certain class of anti-symmetric broadcast channels, we show that the dispersion is halved. For the variable-length-code setup, we demonstrate...

  12. Does source matter? Nurses' and Physicians' perceptions of interprofessional feedback.

    Science.gov (United States)

    van Schaik, Sandrijn M; O'Sullivan, Patricia S; Eva, Kevin W; Irby, David M; Regehr, Glenn

    2016-02-01

    Receptiveness to interprofessional feedback, which is important for optimal collaboration, may be influenced by 'in-group or out-group' categorisation, as suggested by social identity theory. We used an experimental design to explore how nurses and resident physicians perceive feedback from people within and outside their own professional group. Paediatric residents and nurses participated in a simulation-based team exercise. Two nurses and two physicians wrote anonymous performance feedback for each participant. Participants each received a survey containing these feedback comments with prompts to rate (i) the usefulness (ii) the positivity and (iii) their agreement with each comment. Half of the participants received feedback labelled with the feedback provider's profession (two comments correctly labelled and two incorrectly labelled). Half received unlabelled feedback and were asked to guess the provider's profession. For each group, we performed separate three-way anovas on usefulness, positivity and agreement ratings to examine interactions between the recipient's profession, actual provider profession and perceived provider profession. Forty-five out of 50 participants completed the survey. There were no significant interactions between profession of the recipient and the actual profession of the feedback provider for any of the 3 variables. Among participants who guessed the source of the feedback, we found significant interactions between the profession of the feedback recipient and the guessed source of the feedback for both usefulness (F1,48 = 25.6; p feedback they guessed to be from nurses were higher than ratings of feedback they guessed to be from physicians, and vice versa. Among participants who received labelled feedback, we noted a similar interaction between the profession of the feedback recipient and labelled source of feedback for usefulness ratings (F1,92 = 4.72; p feedback to the in-group than to the out-group. This finding has potential

  13. Framing of Feedback Impacts Student's Satisfaction, Self-Efficacy and Performance

    Science.gov (United States)

    van de Ridder, J. M. Monica; Peters, Claudia M. M.; Stokking, Karel M.; de Ru, J. Alexander; ten Cate, Olle Th. J.

    2015-01-01

    Feedback is considered important to acquire clinical skills. Research evidence shows that feedback does not always improve learning and its effects may be small. In many studies, a variety of variables involved in feedback provision may mask either one of their effects. E.g., there is reason to believe that the way oral feedback is framed may…

  14. Follower-Centered Perspective on Feedback: Effects of Feedback Seeking on Identification and Feedback Environment

    OpenAIRE

    Gong, Zhenxing; Li, Miaomiao; Qi, Yaoyuan; Zhang, Na

    2017-01-01

    In the formation mechanism of the feedback environment, the existing research pays attention to external feedback sources and regards individuals as objects passively accepting feedback. Thus, the external source fails to realize the individuals’ need for feedback, and the feedback environment cannot provide them with useful information, leading to a feedback vacuum. The aim of this study is to examine the effect of feedback-seeking by different strategies on the supervisor-feedback environme...

  15. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.

    Science.gov (United States)

    Tamayao, Mili-Ann M; Michalek, Jeremy J; Hendrickson, Chris; Azevedo, Inês M L

    2015-07-21

    We characterize regionally specific life cycle CO2 emissions per mile traveled for plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) across the United States under alternative assumptions for regional electricity emission factors, regional boundaries, and charging schemes. We find that estimates based on marginal vs average grid emission factors differ by as much as 50% (using National Electricity Reliability Commission (NERC) regional boundaries). Use of state boundaries versus NERC region boundaries results in estimates that differ by as much as 120% for the same location (using average emission factors). We argue that consumption-based marginal emission factors are conceptually appropriate for evaluating the emissions implications of policies that increase electric vehicle sales or use in a region. We also examine generation-based marginal emission factors to assess robustness. Using these two estimates of NERC region marginal emission factors, we find the following: (1) delayed charging (i.e., starting at midnight) leads to higher emissions in most cases due largely to increased coal in the marginal generation mix at night; (2) the Chevrolet Volt has higher expected life cycle emissions than the Toyota Prius hybrid electric vehicle (the most efficient U.S. gasoline vehicle) across the U.S. in nearly all scenarios; (3) the Nissan Leaf BEV has lower life cycle emissions than the Prius in the western U.S. and in Texas, but the Prius has lower emissions in the northern Midwest regardless of assumed charging scheme and marginal emissions estimation method; (4) in other regions the lowest emitting vehicle depends on charge timing and emission factor estimation assumptions.

  16. Anticipating and projective-anticipating synchronization of coupled multidelay feedback systems

    International Nuclear Information System (INIS)

    Hoang, Thang Manh; Nakagawa, Masahiro

    2007-01-01

    In this Letter, the model of coupled multidelay feedback systems is investigated with the schemes of anticipating and projective-anticipating synchronizations. Under these synchronization schemes, the slave anticipates the master's trajectory. Moreover, with projective-anticipating synchronization there exists a scale factor in the amplitudes of the master's and slave's state variables. In the both cases, the driving signals are in the form of multiple nonlinear transformations of delayed state variable. The Krasovskii-Lyapunov theory is used to consider the sufficient condition for synchronization. The effectiveness of the proposed schemes is confirmed by the numerical simulation of specific examples with modified Ikeda and Mackey-Glass systems

  17. State-Space Modeling and Performance Analysis of Variable-Speed Wind Turbine Based on a Model Predictive Control Approach

    Directory of Open Access Journals (Sweden)

    H. Bassi

    2017-04-01

    Full Text Available Advancements in wind energy technologies have led wind turbines from fixed speed to variable speed operation. This paper introduces an innovative version of a variable-speed wind turbine based on a model predictive control (MPC approach. The proposed approach provides maximum power point tracking (MPPT, whose main objective is to capture the maximum wind energy in spite of the variable nature of the wind’s speed. The proposed MPC approach also reduces the constraints of the two main functional parts of the wind turbine: the full load and partial load segments. The pitch angle for full load and the rotating force for the partial load have been fixed concurrently in order to balance power generation as well as to reduce the operations of the pitch angle. A mathematical analysis of the proposed system using state-space approach is introduced. The simulation results using MATLAB/SIMULINK show that the performance of the wind turbine with the MPC approach is improved compared to the traditional PID controller in both low and high wind speeds.

  18. Spatial variability of maximum annual daily rain under different return periods at the Rio de Janeiro state, Brazil

    Directory of Open Access Journals (Sweden)

    Roriz Luciano Machado

    2010-01-01

    Full Text Available Knowledge of maximum daily rain and its return period in a region is an important tool to soil conservation, hydraulic engineering and preservation of road projects. The objective of this work was to evaluate the spatial variability of maximum annual daily rain considering different return periods, at the Rio de Janeiro State. The data set was composed by historical series of 119 rain gauges, for 36 years of observation. The return periods, estimated by Gumbel distribution, were 2, 5, 10, 25, 50 and 100 years. The spatial variability of the return periods was evaluated by semivariograms. All the return periods presented spatial dependence, with exponential and spherical model fitted to the experimental semivariograms. The parameters of the fitted semivariogram model were very similar; however, it was observed the presence of higher nugget effects for semivariograms of longer return periods. The values of maximum annual daily average rain in all the return periods increased from north to south and from countryside to the coast. In the region between the Serra do Mar range and the coast, besides increasing in magnitude, an increase in the spatial variability of the studied values with increasing return periods was also noticed. This behavior is probably caused by the orographic effect. The interpolated maps were more erratic for higher return periods and at the North, Northeast and Coastal Plain regions, in which the installation of new pluviometric stations are recommended.

  19. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  20. Neural cryptography with feedback.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  1. Feedback and Incentives:

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie-Claire

    This paper experimentally investigates the impact of different pay and relative performance information policies on employee effort. We explore three information policies: No feedback about relative performance, feedback given halfway through the production period, and continuously updated feedba...... of positive peer effects since the underdogs almost never quit the competition even when lagging significantly behind, and frontrunners do not slack off. Moreover, in both pay schemes information feedback reduces the quality of the low performers' work....

  2. The application of an internal state variable model to the viscoplastic behavior of irradiated ASTM 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    McAnulty, Michael J., E-mail: mcanulmj@id.doe.gov [Department of Energy, 1955 Fremont Avenue, Idaho Falls, ID 83402 (United States); Potirniche, Gabriel P. [Mechanical Engineering Department, University of Idaho, Moscow, ID 83844 (United States); Tokuhiro, Akira [Mechanical Engineering Department, University of Idaho, Idaho Falls, ID 83402 (United States)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer An internal state variable approach is used to predict the plastic behavior of irradiated metals. Black-Right-Pointing-Pointer The model predicts uniaxial tensile test data for irradiated 304L stainless steel. Black-Right-Pointing-Pointer The model is implemented as a user-defined material subroutine in the finite element code ABAQUS. Black-Right-Pointing-Pointer Results are compared for the unirradiated and irradiated specimens loaded in uniaxial tension. - Abstract: Neutron irradiation of metals results in decreased fracture toughness, decreased ductility, increased yield strength and increased ductile-to-brittle transition temperature. Designers use the most limiting material properties throughout the reactor vessel lifetime to determine acceptable safety margins. To reduce analysis conservatism, a new model is proposed based on an internal state variable approach for the plastic behavior of unirradiated ductile materials to support its use for analyzing irradiated materials. The proposed modeling addresses low temperature irradiation of 304L stainless steel, and predicts uniaxial tensile test data of irradiated experimental specimens. The model was implemented as a user-defined material subroutine (UMAT) in the finite element software ABAQUS. Results are compared between the unirradiated and irradiated specimens subjected to tension tests.

  3. Non-suicidal Self-Injury in Eating Disordered Patients: Associations with Heart Rate Variability and State-Trait Anxiety

    Directory of Open Access Journals (Sweden)

    Cristina Giner-Bartolome

    2017-07-01

    Full Text Available Background: Non-suicidal self-injury (NSSI is commonly present in individuals with eating disorders (EDs and is often employed as a maladaptive emotion regulation strategy to avoid or abate negative emotions. One of the most prevalent negative emotions experienced by self-injurers is anxiety; however, this emotion has not been extensively studied in this population. Thus, the aim of our study was to investigate the influence of anxiety on NSSI in patients with ED from two different dimensions: state anxiety and trait anxiety.Methods: The study comprised a total of 66 females: 12 ED patients with NSSI, 32 ED patients without a history of NSSI, and 22 healthy controls. State and trait anxiety were assessed by means of State-Trait Anxiety Inventory (STAI-S-T and physiological data [i.e., heart rate variability (HRV] were collected.Results: STAI-trait scores were significantly higher in ED patients with NSSI than ED patients without NSSI. Furthermore, when conducting logistic regression analyses higher STAI-trait scores were associated with NSSI in ED patients. However, no differences in STAI-state scores and HRV were found between ED patients with and without NSSI.Discussion: The present findings suggest that anxiety as a trait is associated with the use of maladaptive strategies (i.e., NSSI in ED patients. These results uphold the need to target trait anxiety in ED treatment in order to prevent possible NSSI behaviors.

  4. Controlling the taxonomic variable: Taxonomic concept resolution for a southeastern United States herbarium portal

    Directory of Open Access Journals (Sweden)

    Nico Franz

    2016-09-01

    Full Text Available Overview. Taxonomic names are imperfect identifiers of specific and sometimes conflicting taxonomic perspectives in aggregated biodiversity data environments. The inherent ambiguities of names can be mitigated using syntactic and semantic conventions developed under the taxonomic concept approach. These include: (1 representation of taxonomic concept labels (TCLs: name sec. source to precisely identify name usages and meanings, (2 use of parent/child relationships to assemble separate taxonomic perspectives, and (3 expert provision of Region Connection Calculus articulations (RCC–5: congruence, [inverse] inclusion, overlap, exclusion that specify how data identified to different-sourced TCLs can be integrated. Application of these conventions greatly increases trust in biodiversity data networks, most of which promote unitary taxonomic 'syntheses' that obscure the actual diversity of expert-held views. Better design solutions allow users to control the taxonomic variable and thereby assess the robustness of their biological inferences under different perspectives. A unique constellation of prior efforts – including the powerful Symbiota collections software platform, the Euler/X multi-taxonomy alignment toolkit, and the "Weakley Flora" which entails 7,000 concepts and more than 75,000 RCC–5 articulations – provides the opportunity to build a first full-scale concept resolution service for SERNEC, the SouthEast Regional Network of Expertise and Collections, currently with 60 member herbaria and 2 million occurrence records. Intellectual merit. We have developed a multi-dimensional, step-wise plan to transition SERNEC's data culture from name- to concept-based practices. (1 We will engage SERNEC experts through annual, regional workshops and follow-up interactions that will foster buy-in and ultimately the completion of 12 community-identified use cases. (2. We will leverage RCC–5 data from the Weakley Flora and further development of

  5. Study of magnetized accretion flow with variable Γ equation of state

    Science.gov (United States)

    Singh, Kuldeep; Chattopadhyay, Indranil

    2018-05-01

    We present here the solutions of magnetized accretion flow on to a compact object with hard surface such as neutron stars. The magnetic field of the central star is assumed dipolar and the magnetic axis is assumed to be aligned with the rotation axis of the star. We have used an equation of state for the accreting fluid in which the adiabatic index is dependent on temperature and composition of the flow. We have also included cooling processes like bremsstrahlung and cyclotron processes in the accretion flow. We found all possible accretion solutions. All accretion solutions terminate with a shock very near to the star surface and the height of this primary shock does not vary much with either the spin period or the Bernoulli parameter of the flow, although the strength of the shock may vary with the period. For moderately rotating central star, there is possible formation of multiple sonic points in the flow and therefore, a second shock far away from the star surface may also form. However, the second shock is much weaker than the primary one near the surface. We found that if rotation period is below a certain value (P*), then multiple critical points or multiple shocks are not possible and P* depends upon the composition of the flow. We also found that cooling effect dominates after the shock and that the cyclotron and the bremsstrahlung cooling processes should be considered to obtain a consistent accretion solution.

  6. Monitoring multiple species: Estimating state variables and exploring the efficacy of a monitoring program

    Science.gov (United States)

    Mattfeldt, S.D.; Bailey, L.L.; Grant, E.H.C.

    2009-01-01

    Monitoring programs have the potential to identify population declines and differentiate among the possible cause(s) of these declines. Recent criticisms regarding the design of monitoring programs have highlighted a failure to clearly state objectives and to address detectability and spatial sampling issues. Here, we incorporate these criticisms to design an efficient monitoring program whose goals are to determine environmental factors which influence the current distribution and measure change in distributions over time for a suite of amphibians. In designing the study we (1) specified a priori factors that may relate to occupancy, extinction, and colonization probabilities and (2) used the data collected (incorporating detectability) to address our scientific questions and adjust our sampling protocols. Our results highlight the role of wetland hydroperiod and other local covariates in the probability of amphibian occupancy. There was a change in overall occupancy probabilities for most species over the first three years of monitoring. Most colonization and extinction estimates were constant over time (years) and space (among wetlands), with one notable exception: local extinction probabilities for Rana clamitans were lower for wetlands with longer hydroperiods. We used information from the target system to generate scenarios of population change and gauge the ability of the current sampling to meet monitoring goals. Our results highlight the limitations of the current sampling design, emphasizing the need for long-term efforts, with periodic re-evaluation of the program in a framework that can inform management decisions.

  7. Genetic variability of populations of Nyssomyia neivai in the Northern State of Paraná, Brazil

    Science.gov (United States)

    Gasparotto, Jaqueline de Carvalho; da Costa-Ribeiro, Magda Clara Vieira; Thomaz-Soccol, Vanete; Liebel, Sandra Mara Rodrigues da Silva; Neitzke-Abreu, Herintha Coeto; Reinhold-Castro, Kárin Rosi; Cristovão, Edilson Colhera; Teodoro, Ueslei

    2017-01-01

    ABSTRACT The genetic study of sandfly populations needs to be further explored given the importance of these insects for public health. Were sequenced the NDH4 mitochondrial gene from populations of Nyssomyia neivai from Doutor Camargo, Lobato, Japira, and Porto Rico, municipalities in the State of Paraná, Brazil, to understand the genetic structure and gene flow. Eighty specimens of Ny. Neivai were sequenced, 20 from each municipality, and 269 base pairs were obtained. A total of 27 haplotypes and 28 polymorphic sites were found, along with a haplotypic diversity of 0.80696 and a nucleotide diversity of 0.00567. Haplotype H5, with 33 specimens, was the most common among the four populations. Only haplotypes H5 and H7 were present in all four populations. The population from Doutor Camargo showed the highest genetic diversity, and only this population shared haplotypes with those from the other municipalities. The highest number of haplotypes was sheared with Lobato which also had the highest number of unique haplotypes. This probably occurred because of constant anthropic changes that happened in the environment during the first half of the twentieth century, mainly after 1998. There was no significant correlation between genetic and geographical distances regarding these populations. However, the highest genetic and geographical distances, and the lowest gene flow were observed between Japira and Porto Rico. Geographical distance is a possible barrier between these municipalities through the blocking of haplotype sharing. PMID:28380111

  8. Genetic variability of populations of Nyssomyia neivai in the Northern State of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Jaqueline de Carvalho Gasparotto

    Full Text Available ABSTRACT The genetic study of sandfly populations needs to be further explored given the importance of these insects for public health. Were sequenced the NDH4 mitochondrial gene from populations of Nyssomyia neivai from Doutor Camargo, Lobato, Japira, and Porto Rico, municipalities in the State of Paraná, Brazil, to understand the genetic structure and gene flow. Eighty specimens of Ny. Neivai were sequenced, 20 from each municipality, and 269 base pairs were obtained. A total of 27 haplotypes and 28 polymorphic sites were found, along with a haplotypic diversity of 0.80696 and a nucleotide diversity of 0.00567. Haplotype H5, with 33 specimens, was the most common among the four populations. Only haplotypes H5 and H7 were present in all four populations. The population from Doutor Camargo showed the highest genetic diversity, and only this population shared haplotypes with those from the other municipalities. The highest number of haplotypes was sheared with Lobato which also had the highest number of unique haplotypes. This probably occurred because of constant anthropic changes that happened in the environment during the first half of the twentieth century, mainly after 1998. There was no significant correlation between genetic and geographical distances regarding these populations. However, the highest genetic and geographical distances, and the lowest gene flow were observed between Japira and Porto Rico. Geographical distance is a possible barrier between these municipalities through the blocking of haplotype sharing.

  9. Policy Feedback System (PFS)

    Data.gov (United States)

    Social Security Administration — The Policy Feedback System (PFS) is a web application developed by the Office of Disability Policy Management Information (ODPMI) team that gathers empirical data...

  10. Feedback Loop Gains and Feedback Behavior (1996)

    DEFF Research Database (Denmark)

    Kampmann, Christian Erik

    2012-01-01

    Linking feedback loops and system behavior is part of the foundation of system dynamics, yet the lack of formal tools has so far prevented a systematic application of the concept, except for very simple systems. Having such tools at their disposal would be a great help to analysts in understanding...... large, complicated simulation models. The paper applies tools from graph theory formally linking individual feedback loop strengths to the system eigenvalues. The significance of a link or a loop gain and an eigenvalue can be expressed in the eigenvalue elasticity, i.e., the relative change...... of an eigenvalue resulting from a relative change in the gain. The elasticities of individual links and loops may be found through simple matrix operations on the linearized system. Even though the number of feedback loops can grow rapidly with system size, reaching astronomical proportions even for modest systems...

  11. Genetic variability in the human cannabinoid receptor 1 is associated with resting state EEG theta power in humans.

    Science.gov (United States)

    Heitland, I; Kenemans, J L; Böcker, K B E; Baas, J M P

    2014-11-01

    It has long been postulated that exogenous cannabinoids have a profound effect on human cognitive functioning. These cannabinoid effects are thought to depend, at least in parts, on alterations of phase-locking of local field potential neuronal firing. The latter can be measured as activity in the theta frequency band (4-7Hz) by electroencephalogram. Theta oscillations are supposed to serve as a mechanism in neural representations of behaviorally relevant information. However, it remains unknown whether variability in endogenous cannabinoid activity is involved in theta rhythms and therefore, may serve as an individual differences index of human cognitive functioning. To clarify this issue, we recorded resting state EEG activity in 164 healthy human subjects and extracted EEG power across frequency bands (δ, θ, α, and β). To assess variability in the endocannabinoid system, two genetic polymorphisms (rs1049353, rs2180619) within the cannabinoid receptor 1 (CB1) were determined in all participants. As expected, we observed significant effects of rs1049353 on EEG power in the theta band at frontal, central and parietal electrode regions. Crucially, these effects were specific for the theta band, with no effects on activity in the other frequency bands. Rs2180619 showed no significant associations with theta power after Bonferroni correction. Taken together, we provide novel evidence in humans showing that genetic variability in the cannabinoid receptor 1 is associated with resting state EEG power in the theta frequency band. This extends prior findings of exogenous cannabinoid effects on theta power to the endogenous cannabinoid system. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes

    Science.gov (United States)

    Kinner, D.A.; Moody, J.A.

    2010-01-01

    Rainfall-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m2 north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the plots consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h-1) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h-1 for north-facing and from 17.9 to 36.0 mm h-1 for south-facing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h-1) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h-1). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. ?? 2010 Elsevier B.V.

  13. Theoretical study on a multivariate feedback control of a sodium-heated steam generator

    International Nuclear Information System (INIS)

    Takahashi, R.; Maruyama, Y.; Oikawa, T.

    1984-01-01

    This paper applies the connection of a multivariate feedback controller with a state estimator to a 1-MW sodium-heated steam generator for LMFBR theoretically, to obtain a control strategy which emphasizes, from the view point of safety and availability of the FBR plant, that a superheat of 30 0 C should be required for the evaporator steam. This involves a trial to study the feasibility for the estimation of such an inaccessible variable as the dry-out location of tubes and utilize the state estimate to design a feedback controller of steam generators. The Kalman filter tested was found to generate reasonable estimates of the transient process variables of the steam generator and can provide a major advantage of regulating steam condition of the system even in the presence of contamination by a rather high level of measurement noise in the view point of economic uses of micro- and/or minicomputers. (orig.)

  14. Mental models of audit and feedback in primary care settings.

    Science.gov (United States)

    Hysong, Sylvia J; Smitham, Kristen; SoRelle, Richard; Amspoker, Amber; Hughes, Ashley M; Haidet, Paul

    2018-05-30

    Audit and feedback has been shown to be instrumental in improving quality of care, particularly in outpatient settings. The mental model individuals and organizations hold regarding audit and feedback can moderate its effectiveness, yet this has received limited study in the quality improvement literature. In this study we sought to uncover patterns in mental models of current feedback practices within high- and low-performing healthcare facilities. We purposively sampled 16 geographically dispersed VA hospitals based on high and low performance on a set of chronic and preventive care measures. We interviewed up to 4 personnel from each location (n = 48) to determine the facility's receptivity to audit and feedback practices. Interview transcripts were analyzed via content and framework analysis to identify emergent themes. We found high variability in the mental models of audit and feedback, which we organized into positive and negative themes. We were unable to associate mental models of audit and feedback with clinical performance due to high variance in facility performance over time. Positive mental models exhibit perceived utility of audit and feedback practices in improving performance; whereas, negative mental models did not. Results speak to the variability of mental models of feedback, highlighting how facilities perceive current audit and feedback practices. Findings are consistent with prior research  in that variability in feedback mental models is associated with lower performance.; Future research should seek to empirically link mental models revealed in this paper to high and low levels of clinical performance.

  15. The Effect of Combination of Video Feedback and Audience Feedback on Social Anxiety: Preliminary Findings.

    Science.gov (United States)

    Chen, Junwen; Mak, Rebecca; Fujita, Satoko

    2015-09-01

    Although video feedback (VF) is shown to improve appraisals of social performance in socially anxious individuals, its impact on state anxiety during a social situation is mixed. The current study investigated the effect of combined video feedback and audience feedback (AF) on self-perceptions of performance and bodily sensations as well as state anxiety pertaining to a speech task. Forty-one socially anxious students were randomly allocated to combined video feedback with audience feedback (VF + AF), video feedback only (VF), audience feedback only (AF), or a control condition. Following a 3-min speech, participants in the VF + AF, VF, and AF conditions watched the videotape of their speech with cognitive preparation in the presence of three confederates who served as audience, and/or received feedback from the confederates, while the control group watched their videotaped speech without cognitive preparation. Both VF + AF and AF conditions improved distorted appraisal of performance and bodily sensations as well as state anxiety. The clinical implications of these findings are discussed. © The Author(s) 2015.

  16. Effects of feedback reliability on feedback-related brain activity: A feedback valuation account.

    Science.gov (United States)

    Ernst, Benjamin; Steinhauser, Marco

    2018-04-06

    Adaptive decision making relies on learning from feedback. Because feedback sometimes can be misleading, optimal learning requires that knowledge about the feedback's reliability be utilized to adjust feedback processing. Although previous research has shown that feedback reliability indeed influences feedback processing, the underlying mechanisms through which this is accomplished remain unclear. Here we propose that feedback processing is adjusted by the adaptive, top-down valuation of feedback. We assume that unreliable feedback is devalued relative to reliable feedback, thus reducing the reward prediction errors that underlie feedback-related brain activity and learning. A crucial prediction of this account is that the effects of feedback reliability are susceptible to contrast effects. That is, the effects of feedback reliability should be enhanced when both reliable and unreliable feedback are experienced within the same context, as compared to when only one level of feedback reliability is experienced. To evaluate this prediction, we measured the event-related potentials elicited by feedback in two experiments in which feedback reliability was varied either within or between blocks. We found that the fronto-central valence effect, a correlate of reward prediction errors during reinforcement learning, was reduced for unreliable feedback. But this result was obtained only when feedback reliability was varied within blocks, thus indicating a contrast effect. This suggests that the adaptive valuation of feedback is one mechanism underlying the effects of feedback reliability on feedback processing.

  17. The potential impacts of climate variability and change on health impacts of extreme weather events in the United States.

    Science.gov (United States)

    Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D

    2001-05-01

    Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation.

  18. Feedback For Helpers

    Science.gov (United States)

    Stromer, Walter F.

    1975-01-01

    The author offers some feedback to those in the helping professions in three areas: (1) forms and letters; (2) jumping to conclusions; and (3) blaming and belittling, in hopes of stimulating more feedback as well as more positive ways of performing their services. (HMV)

  19. 'Peer feedback' voor huisartsopleiders

    NARCIS (Netherlands)

    Damoiseaux, R A M J; Truijens, L

    2016-01-01

    In medical specialist training programmes it is common practice for residents to provide feedback to their medical trainers. The problem is that due to its anonymous nature, the feedback often lacks the specificity necessary to improve the performance of trainers. If anonymity is to be abolished,

  20. Feedback og interpersonel kommunikation

    DEFF Research Database (Denmark)

    Dindler, Camilla

    2016-01-01

    Som interpersonel kommunikationsform handler feedback om at observere, mærke og italesætte det, som handler om relationen mellem samtaleparterne mere end om samtaleemnet. Her er fokus på, hvad der siges og hvordan der kommunikeres sammen. Feedback er her ikke en korrigerende tilbagemelding til...

  1. Influence of optical feedback on laser frequency spectrum and threshold conditions

    DEFF Research Database (Denmark)

    Osmundsen, Jens Henrik; Gade, Niels

    1983-01-01

    The steady state behavior of the external cavity operated laser has been analyzed, taking into account multiple reflections. The effect of optical feedback is included in the phase- and gain-conditions by a factor which is shown to have a simple geometrical representation. From this representation...... it is easily seen how the laser frequency spectrum and the threshold gain depend on external parameters such as distance to the reflection point and the amount of optical feedback. Furthermore, by inserting a variable attenuator in the external cavity and measuring the threshold current versus transmittance we...... have simultaneously determined the photon lifetime and the absolute amount of optical feedback. For the laser considered we found the photon lifetimetau_{p} = 1.55ps....

  2. Assessing the adequacy of water storage infrastructure capacity under hydroclimatic variability and water demands in the United States

    Science.gov (United States)

    Ho, M. W.; Devineni, N.; Cook, E. R.; Lall, U.

    2017-12-01

    As populations and associated economic activity in the US evolve, regional demands for water likewise change. For regions dependent on surface water, dams and reservoirs are critical to storing and managing releases of water and regulating the temporal and spatial availability of water in order to meet these demands. Storage capacities typically range from seasonal storage in the east to multi-annual and decadal-scale storage in the drier west. However, most dams in the US were designed with limited knowledge regarding the range, frequency, and persistence of hydroclimatic extremes. Demands for water supplied by these dams have likewise changed. Furthermore, many dams in the US are now reaching or have already exceeded their economic design life. The converging issues of aging dams, improved knowledge of hydroclimatic variability, and evolving demands for dam services result in a pressing need to evaluate existing reservoir capacities with respect to contemporary water demands, long term hydroclimatic variability, and service reliability into the future. Such an effort is possible given the recent development of two datasets that respectively address hydroclimatic variability in the conterminous United States over the past 555 years and human water demand related water stress over the same region. The first data set is a paleoclimate reconstruction of streamflow variability across the CONUS region based on a tree-ring informed reconstruction of the Palmer Drought Severity Index. This streamflow reconstruction suggested that wet spells with shorter drier spells were a key feature of 20th century streamflow compared with the preceding 450 years. The second data set in an annual cumulative drought index that is a measure of water balance based on water supplied through precipitation and water demands based on evaporative demands, agricultural, urban, and industrial demands. This index identified urban and regional hotspots that were particularly dependent on water

  3. Velocity Feedback Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2017-02-01

    Full Text Available Transient response such as ringing in a control system can be reduced or removed by velocity feedback. It is a useful control technique that should be covered in the relevant engineering laboratory courses. We developed velocity feedback experiments using two different low cost technologies, viz., operational amplifiers and microcontrollers. These experiments can be easily integrated into laboratory courses on feedback control systems or microcontroller applications. The intent of developing these experiments was to illustrate the ringing problem and to offer effective, low cost solutions for removing such problem. In this paper the pedagogical approach for these velocity feedback experiments was described. The advantages and disadvantages of the two different implementation of velocity feedback were discussed also.

  4. Feedback i matematik

    DEFF Research Database (Denmark)

    Sortkær, Bent

    2017-01-01

    Feedback bliver i litteraturen igen og igen fremhævet som et af de mest effektive midler til at fremme elevers præstationer i skolen (Hartberg, Dobson, & Gran, 2012; Hattie & Timperley, 2007; Wiliam, 2015). Dette på trods af, at flere forskere påpeger, at feedback ikke altid er læringsfremmende...... (Hattie & Gan, 2011), og nogle endda viser, at feedback kan have en negativ virkning i forhold til præstationer (Kluger & DeNisi, 1996). Artiklen vil undersøge disse tilsyneladende modstridende resultater ved at stille spørgsmålet: Under hvilke forudsætninger virker feedback i matematik læringsfremmende......? Dette gøres ved at dykke ned i forskningslitteraturen omhandlende feedback ud fra en række temaer for på den måde at besvare ovenstående spørgsmål....

  5. Failure of delayed feedback deep brain stimulation for intermittent pathological synchronization in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Andrey Dovzhenok

    Full Text Available Suppression of excessively synchronous beta-band oscillatory activity in the brain is believed to suppress hypokinetic motor symptoms of Parkinson's disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS. This type of synchrony control was shown to destabilize the synchronized state in networks of simple model oscillators as well as in networks of coupled model neurons. However, the dynamics of the neural activity in Parkinson's disease exhibits complex intermittent synchronous patterns, far from the idealized synchronous dynamics used to study the delayed feedback stimulation. This study explores the action of delayed feedback stimulation on partially synchronized oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. We employ a computational model of the basal ganglia networks which reproduces experimentally observed fine temporal structure of the synchronous dynamics. When the parameters of our model are such that the synchrony is unphysiologically strong, the feedback exerts a desynchronizing action. However, when the network is tuned to reproduce the highly variable temporal patterns observed experimentally, the same kind of delayed feedback may actually increase the synchrony. As network parameters are changed from the range which produces complete synchrony to those favoring less synchronous dynamics, desynchronizing delayed feedback may gradually turn into synchronizing stimulation. This suggests that delayed feedback DBS in Parkinson's disease may boost rather than suppress synchronization and is unlikely to be clinically successful. The study also indicates that delayed feedback stimulation may not necessarily exhibit a desynchronization effect when acting on a physiologically realistic partially synchronous dynamics, and provides an example of how to estimate the stimulation effect.

  6. Feedback Linearization Controller for a Wind Energy Power System

    Directory of Open Access Journals (Sweden)

    Muthana Alrifai

    2016-09-01

    Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.

  7. Augmented feedback in autistic disorder

    Directory of Open Access Journals (Sweden)

    Salome Geertsema

    2017-10-01

    Full Text Available Children with autistic disorder (AD display atypical eye contact and struggle with the social imitation of eye contact. Impaired social imitation may be indicative of disruptions in motor learning processes. The application of specific motor learning principles, such as external feedback, may suggest which variables will result in positive change in eye contact. The study aimed to determine the effects of knowledge of performance (KP and knowledge of results (KR as types of feedback on the frequency and duration of elicited and spontaneous eye contact in children with AD. A two-phase multiple-probe, multi-treatment (cross-over, singleparticipant design with a withdrawal component was used. Mixed treatment effects were obtained. Overall effects suggest that KR results in the greatest positive change over a short period of time regarding frequency and duration for both elicited and spontaneous eye contact. This type of feedback seems to be the most effective for spontaneous eye contact. The provision of KP, after elicited and spontaneous eye contact, produced positive effects for duration only. The current Phase 1 evidence suggests that KR (which is goal-directed with fewer additional instructions may be more beneficial to children with AD. These findings are in accordance with the limb motor learning literature and may therefore support preliminary evidence for disrupted motor learning during eye contact imitation in children with AD.

  8. Contribution to the application of the random vibration theory to the seismic analysis of structures via state variables

    International Nuclear Information System (INIS)

    Maestrini, A.P.

    1979-04-01

    Several problems related to the application of the theory of random by means of state variables are studied. The well-known equations that define the propagation of the mean and the variance for linear and non-linear systems are first presented. The Monte Carlo method is next resorted to in order to determine the applicability of the hypothesis of a normally distributed output in case of linear systems subjected to non-Gaussian excitations. Finally, attention is focused on the properties of linear filters and modulation functions proposed to simulate seismic excitations as non stationary random processes. Acceleration spectra obtained by multiplying rms spectra by a constant factor are compared with design spectra suggested by several authors for various soil conditions. In every case, filter properties are given. (Author) [pt

  9. Soft Sensing of Key State Variables in Fermentation Process Based on Relevance Vector Machine with Hybrid Kernel Function

    Directory of Open Access Journals (Sweden)

    Xianglin ZHU

    2014-06-01

    Full Text Available To resolve the online detection difficulty of some important state variables in fermentation process with traditional instruments, a soft sensing modeling method based on relevance vector machine (RVM with a hybrid kernel function is presented. Based on the characteristic analysis of two commonly-used kernel functions, that is, local Gaussian kernel function and global polynomial kernel function, a hybrid kernel function combing merits of Gaussian kernel function and polynomial kernel function is constructed. To design optimal parameters of this kernel function, the particle swarm optimization (PSO algorithm is applied. The proposed modeling method is used to predict the value of cell concentration in the Lysine fermentation process. Simulation results show that the presented hybrid-kernel RVM model has a better accuracy and performance than the single kernel RVM model.

  10. Preparation and characterization of nano fluids: Influence of variables on its stability, agglomeration state and physical properties

    International Nuclear Information System (INIS)

    Mondragon, R.; Julia, J. E.; Barba, A.; Jarque, J. C.

    2014-01-01

    In recent years it has spread the use of suspensions containing nano metre sized particles, known as nano fluids, in many applications owing the good properties having nanocrystalline materials. One of the main advantages of using nano fluids is its high stability, which causes the particles do not settle over long periods of time. This stability depends on the preparation conditions such as pH, the presence of electrolytes or the solids content. Moreover, there are a number of physical properties which are influenced and altered by agglomeration of the particles. This article will analyze all the variables that affect agglomeration of the particles, nano fluids stability and properties from which it can obtain information on the state of suspension. It then lays out the different methods of dispersion of nanoparticles and their effectiveness. (Author)

  11. The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries

    Science.gov (United States)

    Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.

    2010-01-01

    We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.

  12. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate*

    Energy Technology Data Exchange (ETDEWEB)

    Bonfils, Céline J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-12-01

    The El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. Most climate models project an increase in the frequency of extreme El Niño events under increased greenhouse-gas (GHG) forcing. However, it is unclear how other aspects of ENSO and ENSO-driven teleconnections will evolve in the future. Here, we identify in 20th century sea-surface temperature (SST) observations a time-invariant ENSO-like (ENSOL) pattern that is largely uncontaminated by GHG forcing. We use this pattern to investigate the future precipitation (P) response to ENSO-like SST anomalies. Models that better capture observed ENSOL characteristics produce P teleconnection patterns that are in better accord with observations and more stationary in the 21st century. We decompose the future P response to ENSOL into the sum of three terms: (1) the change in P mean state, (2) the historical P response to ENSOL, and (3) a future enhancement in the P response to ENSOL. In many regions, this last term can aggravate the P extremes associated with ENSO variability. This simple decomposition allows us to identify regions likely to experience ENSOL-induced P changes that are without precedent in the current climate.

  13. Climate drives inter-annual variability in probability of high severity fire occurrence in the western United States

    Science.gov (United States)

    Keyser, Alisa; Westerling, Anthony LeRoy

    2017-05-01

    A long history of fire suppression in the western United States has significantly changed forest structure and ecological function, leading to increasingly uncharacteristic fires in terms of size and severity. Prior analyses of fire severity in California forests showed that time since last fire and fire weather conditions predicted fire severity very well, while a larger regional analysis showed that topography and climate were important predictors of high severity fire. There has not yet been a large-scale study that incorporates topography, vegetation and fire-year climate to determine regional scale high severity fire occurrence. We developed models to predict the probability of high severity fire occurrence for the western US. We predict high severity fire occurrence with some accuracy, and identify the relative importance of predictor classes in determining the probability of high severity fire. The inclusion of both vegetation and fire-year climate predictors was critical for model skill in identifying fires with high fractional fire severity. The inclusion of fire-year climate variables allows this model to forecast inter-annual variability in areas at future risk of high severity fire, beyond what slower-changing fuel conditions alone can accomplish. This allows for more targeted land management, including resource allocation for fuels reduction treatments to decrease the risk of high severity fire.

  14. MULTIWAVELENGTH VARIABILITY OF THE BLAZARS Mrk 421 AND 3C 454.3 IN THE HIGH STATE

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Haritma; Gupta, Alok C. [Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital 263129 (India); Wiita, Paul J., E-mail: haritma@aries.res.in [Department of Physics, College of New Jersey, P.O. Box 7718, Ewing, NJ 08628 (United States)

    2012-01-15

    We report the results of photometric observations of the blazars Mrk 421 and 3C 454.3 designed to search for intraday variability (IDV) and short-term variability (STV). Optical photometric observations were spread over 18 nights for Mrk 421 and 7 nights for 3C 454.3 during our observing run in 2009-2010 at the 1.04 m telescope at Aryabhatta Research Institute of Observational Sciences, India. Genuine IDV is found for the source 3C 454.3 but not for Mrk 421. Genuine STV is found for both sources. Mrk 421 was revealed by the Monitor of All-sky X-ray Image (MAXI) X-ray detector on the International Space Station to be in an exceptionally high flux state in 2010 January-February. We performed a correlation between the X-ray and optical bands to search for time delays and found a weak correlation with higher frequencies leading the lower frequencies by about 10 days. The blazar 3C 454.3 was found to be in a high flux state in 2009 November-December. We performed correlations in optical observations made at three telescopes, along with X-ray data from the MAXI camera and public release {gamma}-ray data from the Fermi space telescope. We found strong correlations between the {gamma}-ray and optical bands at a time lag of about four days, but the X-ray flux is not correlated with either. We briefly discuss the possible reasons for the time delays between these bands within the framework of existing models for X-ray and {gamma}-ray emission mechanisms.

  15. Carbon–climate feedbacks accelerate ocean acidification

    Directory of Open Access Journals (Sweden)

    R. J. Matear

    2018-03-01

    Full Text Available Carbon–climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al. 2010. By modifying the future atmospheric CO2 concentrations, the carbon–climate feedbacks will also influence the future ocean acidification trajectory. Here, we use the CO2 emissions scenarios from four representative concentration pathways (RCPs with an Earth system model to project the future trajectories of ocean acidification with the inclusion of carbon–climate feedbacks. We show that simulated carbon–climate feedbacks can significantly impact the onset of undersaturated aragonite conditions in the Southern and Arctic oceans, the suitable habitat for tropical coral and the deepwater saturation states. Under the high-emissions scenarios (RCP8.5 and RCP6, the carbon–climate feedbacks advance the onset of surface water under saturation and the decline in suitable coral reef habitat by a decade or more. The impacts of the carbon–climate feedbacks are most significant for the medium- (RCP4.5 and low-emissions (RCP2.6 scenarios. For the RCP4.5 scenario, by 2100 the carbon–climate feedbacks nearly double the area of surface water undersaturated with respect to aragonite and reduce by 50 % the surface water suitable for coral reefs. For the RCP2.6 scenario, by 2100 the carbon–climate feedbacks reduce the area suitable for coral reefs by 40 % and increase the area of undersaturated surface water by 20 %. The sensitivity of ocean acidification to the carbon–climate feedbacks in the low to medium emission scenarios is important because recent CO2 emission reduction commitments are trying to transition emissions to such a scenario. Our study highlights the need to better characterise the carbon–climate feedbacks and ensure we do not underestimate the projected ocean acidification.

  16. Carbon-climate feedbacks accelerate ocean acidification

    Science.gov (United States)

    Matear, Richard J.; Lenton, Andrew

    2018-03-01

    Carbon-climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al. 2010). By modifying the future atmospheric CO2 concentrations, the carbon-climate feedbacks will also influence the future ocean acidification trajectory. Here, we use the CO2 emissions scenarios from four representative concentration pathways (RCPs) with an Earth system model to project the future trajectories of ocean acidification with the inclusion of carbon-climate feedbacks. We show that simulated carbon-climate feedbacks can significantly impact the onset of undersaturated aragonite conditions in the Southern and Arctic oceans, the suitable habitat for tropical coral and the deepwater saturation states. Under the high-emissions scenarios (RCP8.5 and RCP6), the carbon-climate feedbacks advance the onset of surface water under saturation and the decline in suitable coral reef habitat by a decade or more. The impacts of the carbon-climate feedbacks are most significant for the medium- (RCP4.5) and low-emissions (RCP2.6) scenarios. For the RCP4.5 scenario, by 2100 the carbon-climate feedbacks nearly double the area of surface water undersaturated with respect to aragonite and reduce by 50 % the surface water suitable for coral reefs. For the RCP2.6 scenario, by 2100 the carbon-climate feedbacks reduce the area suitable for coral reefs by 40 % and increase the area of undersaturated surface water by 20 %. The sensitivity of ocean acidification to the carbon-climate feedbacks in the low to medium emission scenarios is important because recent CO2 emission reduction commitments are trying to transition emissions to such a scenario. Our study highlights the need to better characterise the carbon-climate feedbacks and ensure we do not underestimate the projected ocean acidification.

  17. Quantifying the relative contributions of divisive and subtractive feedback to rhythm generation.

    Directory of Open Access Journals (Sweden)

    Joël Tabak

    2011-04-01

    Full Text Available Biological systems are characterized by a high number of interacting components. Determining the role of each component is difficult, addressed here in the context of biological oscillations. Rhythmic behavior can result from the interplay of positive feedback that promotes bistability between high and low activity, and slow negative feedback that switches the system between the high and low activity states. Many biological oscillators include two types of negative feedback processes: divisive (decreases the gain of the positive feedback loop and subtractive (increases the input threshold that both contribute to slowly move the system between the high- and low-activity states. Can we determine the relative contribution of each type of negative feedback process to the rhythmic activity? Does one dominate? Do they control the active and silent phase equally? To answer these questions we use a neural network model with excitatory coupling, regulated by synaptic depression (divisive and cellular adaptation (subtractive feedback. We first attempt to apply standard experimental methodologies: either passive observation to correlate the variations of a variable of interest to system behavior, or deletion of a component to establish whether a component is critical for the system. We find that these two strategies can lead to contradictory conclusions, and at best their interpretive power is limited. We instead develop a computational measure of the contribution of a process, by evaluating the sensitivity of the active (high activity and silent (low activity phase durations to the time constant of the process. The measure shows that both processes control the active phase, in proportion to their speed and relative weight. However, only the subtractive process plays a major role in setting the duration of the silent phase. This computational method can be used to analyze the role of negative feedback processes in a wide range of biological rhythms.

  18. Feedback and efficient behavior.

    Directory of Open Access Journals (Sweden)

    Sandro Casal

    Full Text Available Feedback is an effective tool for promoting efficient behavior: it enhances individuals' awareness of choice consequences in complex settings. Our study aims to isolate the mechanisms underlying the effects of feedback on achieving efficient behavior in a controlled environment. We design a laboratory experiment in which individuals are not aware of the consequences of different alternatives and, thus, cannot easily identify the efficient ones. We introduce feedback as a mechanism to enhance the awareness of consequences and to stimulate exploration and search for efficient alternatives. We assess the efficacy of three different types of intervention: provision of social information, manipulation of the frequency, and framing of feedback. We find that feedback is most effective when it is framed in terms of losses, that it reduces efficiency when it includes information about inefficient peers' behavior, and that a lower frequency of feedback does not disrupt efficiency. By quantifying the effect of different types of feedback, our study suggests useful insights for policymakers.

  19. Feedback - fra et elevperspektiv

    DEFF Research Database (Denmark)

    Petersen, Benedikte Vilslev; Pedersen, Bent Sortkær

    Feedback bliver i litteraturen igen og igen fremhævet som et af de mest effektive midler til at fremme elevers præstationer i skolen (Hattie og Timperley, 2007). Andre studier er dog inde på at feedback ikke altid er læringsfremmende og nogle viser endda at feedback kan have en negativ virkning i...... forhold til præstationer (Kluger & DeNisi, 1996). I forsøget på at forklare hvordan og hvorfor feedback virker (forskelligt), er der undersøgt flere dimensioner og forhold omkring feedback (se bl.a. Black og Wiliam, 1998; Hattie og Timperley, 2007; Shute, 2008). Dog er der få studier der undersøger...... hvordan feedback opleves fra et elevperspektiv (Ruiz-Primo og Li, 2013). Samtidig er der i feedbacklitteraturen en mangel på kvalitative studier, der kommer tæt på fænomenet feedback, som det viser sig i klasserummet (Ruiz-Primo og Li, 2013) i naturlige omgivelser (Black og Wiliam, 1998), og hvordan...

  20. Identification of solid state fermentation degree with FT-NIR spectroscopy: Comparison of wavelength variable selection methods of CARS and SCARS

    Science.gov (United States)

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-10-01

    The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree.

  1. Relevance Feedback in Content Based Image Retrieval: A Review

    Directory of Open Access Journals (Sweden)

    Manesh B. Kokare

    2011-01-01

    Full Text Available This paper provides an overview of the technical achievements in the research area of relevance feedback (RF in content-based image retrieval (CBIR. Relevance feedback is a powerful technique in CBIR systems, in order to improve the performance of CBIR effectively. It is an open research area to the researcher to reduce the semantic gap between low-level features and high level concepts. The paper covers the current state of art of the research in relevance feedback in CBIR, various relevance feedback techniques and issues in relevance feedback are discussed in detail.

  2. Rapid Estimation Method for State of Charge of Lithium-Ion Battery Based on Fractional Continual Variable Order Model

    Directory of Open Access Journals (Sweden)

    Xin Lu

    2018-03-01

    Full Text Available In recent years, the fractional order model has been employed to state of charge (SOC estimation. The non integer differentiation order being expressed as a function of recursive factors defining the fractality of charge distribution on porous electrodes. The battery SOC affects the fractal dimension of charge distribution, therefore the order of the fractional order model varies with the SOC at the same condition. This paper proposes a new method to estimate the SOC. A fractional continuous variable order model is used to characterize the fractal morphology of charge distribution. The order identification results showed that there is a stable monotonic relationship between the fractional order and the SOC after the battery inner electrochemical reaction reaches balanced. This feature makes the proposed model particularly suitable for SOC estimation when the battery is in the resting state. Moreover, a fast iterative method based on the proposed model is introduced for SOC estimation. The experimental results showed that the proposed iterative method can quickly estimate the SOC by several iterations while maintaining high estimation accuracy.

  3. Adaptive disengagement buffers self-esteem from negative social feedback.

    Science.gov (United States)

    Leitner, Jordan B; Hehman, Eric; Deegan, Matthew P; Jones, James M

    2014-11-01

    The degree to which self-esteem hinges on feedback in a domain is known as a contingency of self-worth, or engagement. Although previous research has conceptualized engagement as stable, it would be advantageous for individuals to dynamically regulate engagement. The current research examined whether the tendency to disengage from negative feedback accounts for variability in self-esteem. We created the Adaptive Disengagement Scale (ADS) to capture individual differences in the tendency to disengage self-esteem from negative outcomes. Results demonstrated that the ADS is reliable and valid (Studies 1 and 2). Furthermore, in response to negative social feedback, higher scores on the ADS predicted greater state self-esteem (Study 3), and this relationship was mediated by disengagement (Study 4). These findings demonstrate that adaptive disengagement protects self-esteem from negative outcomes and that the ADS is a valid measure of individual differences in the implementation of this process. © 2014 by the Society for Personality and Social Psychology, Inc.

  4. Training effectiveness feedback

    International Nuclear Information System (INIS)

    Wiggin, N.A.

    1987-01-01

    A formal method of getting feedback about the job performance of employees is a necessary part of all the authors training programs. The formal process may prove to be inadequate if it is the only process in use. There are many ways and many opportunities to get good feedback about employee performance. It is important to document these methods and specific instances to supplement the more formalized process. The key is to identify them, encourage them, use them, and document the training actions that result from them. This paper describes one plant's method of getting feedback about performance of technicians in the field

  5. Feedback System Theory

    Science.gov (United States)

    1978-11-01

    R 2. GOVT A $ SION NO. 3 RIEqLPýIVT’S.;TALOG NUMBER r/ 4. TITLE (and wbiFflT, -L M4 1 , FEEDBACK SYSTEM THEORY ~r Inter in- 6. PERFORMING ORG. REPORT...ANNUAL REPORT FEEDBACK SYSTEM THEORY AFOSR GRANT NO. 76-2946B Air Force Office of Scientific Research for year ending October 31, 1978 79 02 08 L|I...re less stringent than in other synthesis techniques which cannot handle significant parameter uncertainty. _I FEEDBACK SYSTEM THEORY 1. Introduction

  6. Brugbar peer feedback

    DEFF Research Database (Denmark)

    Hvass, Helle; Heger, Stine

    Studerende kan være medskabere af undervisning i akademisk skrivning, når de modtager og giver feedback til hinandens ufærdige akademiske tekster. Det ser vi i et udviklingsprojekt, hvor vi afprøver kollektive vejledningsformater. Vi har dog erfaret: 1. at studerende mangler træning i at give og ...... modtage feedback 2. at den manglende træning kan stå i vejen for realiseringen af læringspotentialet ved peer feedback....

  7. Analysis of within subjects variability in mouse ultrasonic vocalization: pups exhibit inconsistent, state-like patterns of call production

    Directory of Open Access Journals (Sweden)

    Michael Adam Rieger

    2016-09-01

    Full Text Available Mice produce ultrasonic vocalizations (USV in multiple communicative contexts, including adult social interaction (e.g., male to female courtship, as well as pup calls when separated from the dam. Assessment of pup USV has been widely applied in models of social and communicative disorders, dozens of which have shown alterations to this conserved behavior. However, features such as call production rate can vary substantially even within experimental groups and it is unclear to what extent aspects of USV represent stable trait-like influences or are vulnerable to an animal's state. To address this question, we have employed a mixed modeling approach to describe consistency in USV features across time, leveraging multiple large cohorts recorded from two strains, and across ages/times. We find that most features of pup USV show consistent patterns within a recording session, but inconsistent patterns across postnatal development. This supports the conclusion that pup USV is most strongly influenced by state-like variables. In contrast, adult USV call rate and call duration show higher consistency across sessions and may reflect a stable trait. However, spectral features of adult song such as the presence of pitch jumps do not show this level of consistency, suggesting that pitch modulation is more susceptible to factors affecting the animal's state at the time of recording. Overall, the utility of this work is threefold. First, as variability necessarily affects the sensitivity of the assay to detect experimental perturbation, we hope the information provided here will be used to help researchers plan sufficiently powered experiments, as well as prioritize specific ages to study USV behavior and to decide which features to consider most strongly in analysis. Second, via the mouseTube platform, we have provided these hundreds of recordings and associated data to serve as a shared resource for other researchers interested in either benchmark data for

  8. Relay Selection with Limited and Noisy Feedback

    KAUST Repository

    Eltayeb, Mohammed E.

    2016-01-28

    Relay selection is a simple technique that achieves spatial diversity in cooperative relay networks. Nonetheless, relay selection algorithms generally require error-free channel state information (CSI) from all cooperating relays. Practically, CSI acquisition generates a great deal of feedback overhead that could result in significant transmission delays. In addition to this, the fed back channel information is usually corrupted by additive noise. This could lead to transmission outages if the central node selects the set of cooperating relays based on inaccurate feedback information. In this paper, we propose a relay selection algorithm that tackles the above challenges. Instead of allocating each relay a dedicated channel for feedback, all relays share a pool of feedback channels. Following that, each relay feeds back its identity only if its effective channel (source-relay-destination) exceeds a threshold. After deriving closed-form expressions for the feedback load and the achievable rate, we show that the proposed algorithm drastically reduces the feedback overhead and achieves a rate close to that obtained by selection algorithms with dedicated error-free feedback from all relays. © 2015 IEEE.

  9. Sensorless State-Space Control of Elastic Two-Inertia Drive System Using a Minimum State Order Observer

    Directory of Open Access Journals (Sweden)

    V. Comnac

    2009-12-01

    Full Text Available The paper presents sensorless state-space control of two-inertia drive system with resilient coupling. The control structure contains an I+PI controller for load speed regulation and a state feedback controller for effective vibration suppression of the elastic coupling. Mechanical state variable of two-inertia drive are obtained by using a linear minimum-order (Gopinath state observer. The design of the combined (I+PI and state feedback controller is achieved with the extended version of the modulus criterion [5]. The dynamic behavior of presented control structure has been examined, for different conditions, using MATLAB/SIMULINK simulation.

  10. Global Stability in Dynamical Systems with Multiple Feedback Mechanisms

    DEFF Research Database (Denmark)

    Andersen, Morten; Vinther, Frank; Ottesen, Johnny T.

    2016-01-01

    A class of n-dimensional ODEs with up to n feedbacks from the n’th variable is analysed. The feedbacks are represented by non-specific, bounded, non-negative C1 functions. The main result is the formulation and proof of an easily applicable criterion for existence of a globally stable fixed point...

  11. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    Science.gov (United States)

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173

  12. Ambulatory Feedback System

    Science.gov (United States)

    Finger, Herbert; Weeks, Bill

    1985-01-01

    This presentation discusses instrumentation that will be used for a specific event, which we hope will carry on to future events within the Space Shuttle program. The experiment is the Autogenic Feedback Training Experiment (AFTE) scheduled for Spacelab 3, currently scheduled to be launched in November, 1984. The objectives of the AFTE are to determine the effectiveness of autogenic feedback in preventing or reducing space adaptation syndrome (SAS), to monitor and record in-flight data from the crew, to determine if prediction criteria for SAS can be established, and, finally, to develop an ambulatory instrument package to mount the crew throughout the mission. The purpose of the Ambulatory Feedback System (AFS) is to record the responses of the subject during a provocative event in space and provide a real-time feedback display to reinforce the training.

  13. NAIP 2015 Imagery Feedback

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The NAIP 2015 Imagery Feedback web application allows users to make comments and observations about the quality of the 2015 National Agriculture Imagery Program...

  14. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  15. Control de velocidad del motor de indución empleando linealización por realimentación de estados Speed control of induction motor using state feedback linearization

    Directory of Open Access Journals (Sweden)

    Eduardo Giraldo Suárez

    2009-01-01

    Full Text Available Este documento presenta la aplicación de la técnica de control no lineal clásica llamada linealización por realimentación de variables de estado. Se hace una aplicación en el motor de inducción, la variable a controlar es la velocidad del eje del motor, el sistema emplea el esquema de control vectorial para máquinas de corriente alterna desarrollado en las últimas décadas; este método es análogo a la técnica de control del motor de corriente directa. El modelo del motor de inducción se describe en el sistema de coordenadas de campo orientado del flujo de rotor y se muestra una introducción al producto y la derivada de Lie, empleados en el diseño del controlador no lineal.This articles shows the application of a classic non-linear control technique called "linearization by feedback of status variables." An application on the induction engine is made. Variable to be controlled is speed of the engine shaft. The system employs a vectorial control scheme for AC engines developed during the last decades. This is a method analogous to the DC engine control technique. Induction engine model is described in the guided field coordinate system of rotor flow. Introduction to the product and Lie derivative used for designing the non-linear controller are shown.

  16. The Theory of Thermodynamic Systems with Internal Variables of State: Necessary and Sufficient Conditions for Compliance with the Second Law of Thermodynamics

    Science.gov (United States)

    Shnip, A. I.

    2018-01-01

    Based on the entropy-free thermodynamic approach, a generalized theory of thermodynamic systems with internal variables of state is being developed. For the case of nonlinear thermodynamic systems with internal variables of state and linear relaxation, the necessary and sufficient conditions have been proved for fulfillment of the second law of thermodynamics in entropy-free formulation which, according to the basic theorem of the theory, are also necessary and sufficient for the existence of a thermodynamic potential. Moreover, relations of correspondence between thermodynamic systems with memory and systems with internal variables of state have been established, as well as some useful relations in the spaces of states of both types of systems.

  17. Regional regression models of percentile flows for the contiguous United States: Expert versus data-driven independent variable selection

    Directory of Open Access Journals (Sweden)

    Geoffrey Fouad

    2018-06-01

    New hydrological insights for the region: A set of three variables selected based on an expert assessment of factors that influence percentile flows performed similarly to larger sets of variables selected using a data-driven method. Expert assessment variables included mean annual precipitation, potential evapotranspiration, and baseflow index. Larger sets of up to 37 variables contributed little, if any, additional predictive information. Variables used to describe the distribution of basin data (e.g. standard deviation were not useful, and average values were sufficient to characterize physical and climatic basin conditions. Effectiveness of the expert assessment variables may be due to the high degree of multicollinearity (i.e. cross-correlation among additional variables. A tool is provided in the Supplementary material to predict percentile flows based on the three expert assessment variables. Future work should develop new variables with a strong understanding of the processes related to percentile flows.

  18. New operator-ordering identities and associative integration formulas of two-variable Hermite polynomials for constructing non-Gaussian states

    International Nuclear Information System (INIS)

    Fan Hong-Yi; Wang Zhen

    2014-01-01

    For directly normalizing the photon non-Gaussian states (e.g., photon added and subtracted squeezed states), we use the method of integration within an ordered product (IWOP) of operators to derive some new bosonic operator-ordering identities. We also derive some new integration transformation formulas about one- and two-variable Hermite polynomials in complex function space. These operator identities and associative integration formulas provide much convenience for constructing non-Gaussian states in quantum engineering. (general)

  19. The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis.

    Science.gov (United States)

    Markovic, Marko; Schweisfurth, Meike A; Engels, Leonard F; Bentz, Tashina; Wüstefeld, Daniela; Farina, Dario; Dosen, Strahinja

    2018-03-27

    To effectively replace the human hand, a prosthesis should seamlessly respond to user intentions but also convey sensory information back to the user. Restoration of sensory feedback is rated highly by the prosthesis users, and feedback is critical for grasping in able-bodied subjects. Nonetheless, the benefits of feedback in prosthetics are still debated. The lack of consensus is likely due to the complex nature of sensory feedback during prosthesis control, so that its effectiveness depends on multiple factors (e.g., task complexity, user learning). We evaluated the impact of these factors with a longitudinal assessment in six amputee subjects, using a clinical setup (socket, embedded control) and a range of tasks (box and blocks, block turn, clothespin and cups relocation). To provide feedback, we have proposed a novel vibrotactile stimulation scheme capable of transmitting multiple variables from a multifunction prosthesis. The subjects wore a bracelet with four by two uniformly placed vibro-tactors providing information on contact, prosthesis state (active function), and grasping force. The subjects also completed a questionnaire for the subjective evaluation of the feedback. The tests demonstrated that feedback was beneficial only in the complex tasks (block turn, clothespin and cups relocation), and that the training had an important, task-dependent impact. In the clothespin relocation and block turn tasks, training allowed the subjects to establish successful feedforward control, and therefore, the feedback became redundant. In the cups relocation task, however, the subjects needed some training to learn how to properly exploit the feedback. The subjective evaluation of the feedback was consistently positive, regardless of the objective benefits. These results underline the multifaceted nature of closed-loop prosthesis control as, depending on the context, the same feedback interface can have different impact on performance. Finally, even if the closed

  20. A Combination of Outcome and Process Feedback Enhances Performance in Simulations of Child Sexual Abuse Interviews Using Avatars

    Directory of Open Access Journals (Sweden)

    Francesco Pompedda

    2017-09-01

    Full Text Available Simulated interviews in alleged child sexual abuse (CSA cases with computer-generated avatars paired with feedback improve interview quality. In the current study, we aimed to understand better the effect of different types of feedback in this context. Feedback was divided into feedback regarding conclusions about what happened to the avatar (outcome feedback and feedback regarding the appropriateness of question-types used by the interviewer (process feedback. Forty-eight participants each interviewed four different avatars. Participants were divided into four groups (no feedback, outcome feedback, process feedback, and a combination of both feedback types. Compared to the control group, interview quality was generally improved in all the feedback groups on all outcome variables included. Combined feedback produced the strongest effect on increasing recommended questions and correct conclusions. For relevant and neutral details elicited by the interviewers, no statistically significant differences were found between feedback types. For wrong details, the combination of feedback produced the strongest effect, but this did not differ from the other two feedback groups. Nevertheless, process feedback produced a better result compared to outcome feedback. The present study replicated previous findings regarding the effect of feedback in improving interview quality, and provided new knowledge on feedback characteristics that maximize training effects. A combination of process and outcome feedback showed the strongest effect in enhancing training in simulated CSA interviews. Further research is, however, needed.