Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems
International Nuclear Information System (INIS)
Van Tassle, Aaron Justin
2006-01-01
This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting
Structural and dynamic properties of solid state ionics
International Nuclear Information System (INIS)
Sakuma, T.
1995-01-01
The structural and dynamic properties of solid state ionics are reviewed. The low temperature phase transition of the copper halide-chalcogen compounds by specific heat measurements, electrical conductivity measurements and x-ray diffraction measurements are explained. The structures of solid state ionics investigated by the usual x-ray diffraction method and the anomalous x-ray scattering (AXS) measurement are discussed. The expression of the diffuse scattering intensity including the correlations among the thermal displacements of atoms has been given and applied to α-AgI type solid state ionics and lithium sulphate. The presence of low-energy excitations in crystalline copper ion conductors and the superionic conducting glass is investigated by neutron inelastic scattering measurements. The relation between the excitation energy and the mass of the cations is discussed. (author). 141 refs., 21 figs., 7 tabs
Structural Influence on Excited State Dynamics in Simple Amines
DEFF Research Database (Denmark)
Klein, Liv Bærenholdt
experiments with calculations, provides new insight into the nature of the internal conversion processes that mediate the dynamical evolution between Rydberg states, and how structural variations in simple amine system have a large impact on the non-adiabatic processes. The experimental method of choice...... is femtosecond time-resolved photoelectron velocity map imaging (VMI), which is a newtechnique in the Copenhagen lab. The design, building and implementation of the VMI spectrometer has been a very substantial part of the thesis work. This techniques oers enhanced information content in the form of ecient...... and sensitive collection of photoelectron spectra. In particular, the angleresolved data available from the VMI approach provides highly detailed mechanistic insight about the relaxation pathways. One striking novel nding is that for tertiary amines, the critical factor driving the non-adiabatic dynamics...
The effect of pure state structure on nonequilibrium dynamics
International Nuclear Information System (INIS)
Newman, C M; Stein, D L
2008-01-01
Motivated by short-range Ising spin glasses, we review some rigorous results and their consequences for the relation between the number/nature of equilibrium pure states and nonequilibrium dynamics. Two of the consequences for spin glass dynamics following an instantaneous deep quench to a temperature with broken spin flip symmetry are: (1) almost all initial configurations lie on the boundary between the basins of attraction of multiple pure states; (2) unless there are uncountably many pure states with almost all pairs having zero overlap, there can be no equilibration to a pure state as time t → ∞. We discuss the relevance of these results to the difficulty of equilibration of spin glasses. We also review some results concerning the 'nature versus nurture' problem of whether the large-t behavior of both ferromagnets and spin glasses following a deep quench is determined more by the initial configuration (nature) or by the dynamics realization (nurture)
Robinson, Lucy F; Atlas, Lauren Y; Wager, Tor D
2015-03-01
We present a new method, State-based Dynamic Community Structure, that detects time-dependent community structure in networks of brain regions. Most analyses of functional connectivity assume that network behavior is static in time, or differs between task conditions with known timing. Our goal is to determine whether brain network topology remains stationary over time, or if changes in network organization occur at unknown time points. Changes in network organization may be related to shifts in neurological state, such as those associated with learning, drug uptake or experimental conditions. Using a hidden Markov stochastic blockmodel, we define a time-dependent community structure. We apply this approach to data from a functional magnetic resonance imaging experiment examining how contextual factors influence drug-induced analgesia. Results reveal that networks involved in pain, working memory, and emotion show distinct profiles of time-varying connectivity. Copyright © 2014 Elsevier Inc. All rights reserved.
Kasatkin, D. V.; Yanchuk, S.; Schöll, E.; Nekorkin, V. I.
2017-12-01
We report the phenomenon of self-organized emergence of hierarchical multilayered structures and chimera states in dynamical networks with adaptive couplings. This process is characterized by a sequential formation of subnetworks (layers) of densely coupled elements, the size of which is ordered in a hierarchical way, and which are weakly coupled between each other. We show that the hierarchical structure causes the decoupling of the subnetworks. Each layer can exhibit either a two-cluster state, a periodic traveling wave, or an incoherent state, and these states can coexist on different scales of subnetwork sizes.
International Nuclear Information System (INIS)
Kim, Du Gi
2005-08-01
This book introduces summary of structural dynamics, the reason of learning of structural dynamics, single-degree of freedom system, simple harmonic vibration and application, numerical analysis method, such as time domain and frequency domain and nonlinear system, multi-degree of freedom system random vibration over discrete distribution, continuous distribution and extreme value distribution, circumstance vibration, earth quake vibration, including input earthquake, and earthquake-resistant design and capacity spectrum method, wind oscillation wave vibration, vibration control and maintenance control.
Structure of transition nuclei states in fermion dynamic-symmetry model
International Nuclear Information System (INIS)
Baktybaev, K.; Kojlyk, N.O.; Romankulov, K.
2007-01-01
In the paper collective structures of osmium heavy isotopes nucleons are studied. Results of diagonalization of SO(6) symmetric Hamiltonian of fermion-dynamical symmetry-model are comparing with results of other phenomenological methods such as Bohr-Mottelson model and interacting bosons model. For heavy osmium isotopes not only collective excitations spectral bands but also for probability of E2-electromagnet transition are which are compared with existing experimental data. It is revealed, that complexity of state structure for examined nuclei is related with competition and interweaving of rotation and vibration states and also more complicated states of γ instable nature
International Nuclear Information System (INIS)
Cao, Jun; Xie, Zhi-Zhong; Yu, Xiaodong
2016-01-01
In the present work, the combined electronic structure calculations and surface hopping simulations have been performed to investigate the excited-state decay of the parent oxazole in the gas phase. Our calculations show that the S_2 state decay of oxazole is an ultrafast process characterized by the ring-opening and ring-closure of the five-membered oxazole ring, in which the triplet contribution is minor. The ring-opening involves the O−C bond cleavage affording the nitrile ylide and airine intermediates, while the ring-closure gives rise to a bicyclic species through a 2−5 bond formation. The azirine and bicyclic intermediates in the S_0 state are very likely involved in the phototranspositions of oxazoles. This is different from the previous mechanism in which these intermediates in the T_1 state have been proposed for these phototranspositions.
Energy Technology Data Exchange (ETDEWEB)
Cao, Jun [Guizhou Provincial Key Laboratory of Computational Nano-material Science, Guizhou Education University, Guiyang, Guizhou 550018 (China); Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Education University, Guiyang 550018 (China); Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Xie, Zhi-Zhong [Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070 (China); Yu, Xiaodong, E-mail: yuxdhy@163.com [Department of Architecture and Chemical Engineering, Tangshan Polytechnic College, Tangshan 063020 (China)
2016-08-02
In the present work, the combined electronic structure calculations and surface hopping simulations have been performed to investigate the excited-state decay of the parent oxazole in the gas phase. Our calculations show that the S{sub 2} state decay of oxazole is an ultrafast process characterized by the ring-opening and ring-closure of the five-membered oxazole ring, in which the triplet contribution is minor. The ring-opening involves the O−C bond cleavage affording the nitrile ylide and airine intermediates, while the ring-closure gives rise to a bicyclic species through a 2−5 bond formation. The azirine and bicyclic intermediates in the S{sub 0} state are very likely involved in the phototranspositions of oxazoles. This is different from the previous mechanism in which these intermediates in the T{sub 1} state have been proposed for these phototranspositions.
Strømmen, Einar N
2014-01-01
This book introduces to the theory of structural dynamics, with focus on civil engineering structures that may be described by line-like beam or beam-column type of systems, or by a system of rectangular plates. Throughout this book the mathematical presentation contains a classical analytical description as well as a description in a discrete finite element format, covering the mathematical development from basic assumptions to the final equations ready for practical dynamic response predictions. Solutions are presented in time domain as well as in frequency domain. Structural Dynamics starts off at a basic level and step by step brings the reader up to a level where the necessary safety considerations to wind or horizontal ground motion induced dynamic design problems can be performed. The special theory of the tuned mass damper has been given a comprehensive treatment, as this is a theory not fully covered elsewhere. For the same reason a chapter on the problem of moving loads on beams has been included.
Ground state structure of U2Mo: static and lattice dynamics study
International Nuclear Information System (INIS)
Mukherjee, D.; Sahoo, B.D.; Joshi, K.D.; Kaushik, T.C.
2016-01-01
According to experimental reports, the ground state stable structure of U 2 Mo is tetragonal. However, various theoretical studies performed in past do not get tetragonal phase as the stable structure at ambient conditions. Therefore, the ground state structure of U 2 Mo is still unresolved. In an attempt to understand the ground state properties of this system, we have carried out first principle electronic band structure calculations. The structural stability analysis carried out using evolutionary structure search algorithm in conjunction with ab-inito method shows that a hexagonal structure (space group P6/mmm) is the lowest enthalpy structure at ambient condition and remains stable upto 200 GPa. The elastic and lattice dynamical stability further supports the stability of this phase at ambient condition. Further, using the 0 K calculations in conjunction with finite temperature corrections, we have derived the isotherm and shock adiabat (Hugoniot) of this material. Various equilibrium properties such as ambient pressure volume, bulk modulus, pressure derivative of bulk modulus etc. are derived from equation of state. (author)
Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems
Energy Technology Data Exchange (ETDEWEB)
Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)
2006-01-01
This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.
The World Bank and Fragile States: Dynamics of Cooperation and Aid Structure
Directory of Open Access Journals (Sweden)
Solomatin A.
2018-03-01
Full Text Available The eradication of extreme poverty in fragile states is one of the central problems of global governance at the present time. Development of these states is hindered by instability, weak public and social institutions or ongoing conflicts and violence. The World Bank is a key partner of fragile states, which account for almost a third of the world’s population. This article is a continuation of research exploring the evolution of conceptual and practical approaches by the World Bank to cooperation with fragile states. Its methodology is based on a multilevel analysis of the securitization of foreign aid as proposed by J. Lind and J. Howell of the London School of Economics. The main focus of this examination is on the dynamics of the change of scale and structure of the World Bank’s aid to fragile states in comparison with global armed trends of providing aid to fragile states as well. This article concludes that statements about the priority of the Bank’s work in fragile states have not yet been realized in practice. The Bank remains committed to the standard approach to working with this group of recipients, which involves serious risks. The World Bank leans toward supporting projects in fragile states which increases volatility and reduces aid predictability. This trend undermines the development potentials of recipient states. Attention is drawn to political factors influencing aid flows to fragile states and particularly to the tendency of increasing the share of aid provided to fragile states through multi donor trust funds rather than through the mechanisms of the International Development Association (IDA. This trend indicates that the Bank is no longer a central point of aid distribution to the recipients, pointing to the lack of trust of donor states in the existing mechanisms and rules of aid distribution. It also reveals the expanding role of donors’ strategic interests in the process of choosing recipients of World Bank aid.
Directory of Open Access Journals (Sweden)
Lipi Thukral
2011-09-01
Full Text Available Small globular proteins and peptides commonly exhibit two-state folding kinetics in which the rate limiting step of folding is the surmounting of a single free energy barrier at the transition state (TS separating the folded and the unfolded states. An intriguing question is whether the polypeptide chain reaches, and leaves, the TS by completely random fluctuations, or whether there is a directed, stepwise process. Here, the folding TS of a 15-residue β-hairpin peptide, Peptide 1, is characterized using independent 2.5 μs-long unbiased atomistic molecular dynamics (MD simulations (a total of 15 μs. The trajectories were started from fully unfolded structures. Multiple (spontaneous folding events to the NMR-derived conformation are observed, allowing both structural and dynamical characterization of the folding TS. A common loop-like topology is observed in all the TS structures with native end-to-end and turn contacts, while the central segments of the strands are not in contact. Non-native sidechain contacts are present in the TS between the only tryptophan (W11 and the turn region (P7-G9. Prior to the TS the turn is found to be already locked by the W11 sidechain, while the ends are apart. Once the ends have also come into contact, the TS is reached. Finally, along the reactive folding paths the cooperative loss of the W11 non-native contacts and the formation of the central inter-strand native contacts lead to the peptide rapidly proceeding from the TS to the native state. The present results indicate a directed stepwise process to folding the peptide.
Theory and Applications of Solid-State NMR Spectroscopy to Biomembrane Structure and Dynamics
Xu, Xiaolin
Solid-state Nuclear Magnetic Resonance (NMR) is one of the premiere biophysical methods that can be applied for addressing the structure and dynamics of biomolecules, including proteins, lipids, and nucleic acids. It illustrates the general problem of determining the average biomolecular structure, including the motional mean-square amplitudes and rates of the fluctuations. Lineshape and relaxtion studies give us a view into the molecular properties under different environments. To help the understanding of NMR theory, both lineshape and relaxation experiments are conducted with hexamethylbezene (HMB). This chemical compound with a simple structure serves as a perfect test molecule. Because of its highly symmetric structure, its motions are not very difficult to understand. The results for HMB set benchmarks for other more complicated systems like membrane proteins. After accumulating a large data set on HMB, we also proceed to develop a completely new method of data analysis, which yields the spectral densities in a body-fixed frame revealing internal motions of the system. Among the possible applications of solid-state NMR spectroscopy, we study the light activation mechanism of visual rhodopsin in lipid membranes. As a prototype of G-protein-coupled receptors, which are a large class of membrane proteins, the cofactor isomerization is triggered by photon absorption, and the local structural change is then propagated to a large-scale conformational change of the protein. Facilitation of the binding of transducin then passes along the visual signal to downstream effector proteins like transducin. To study this process, we introduce 2H labels into the rhodopsin chromophore retinal and the C-terminal peptide of transducin to probe the local structure and dynamics of these two hotspots of the rhodopsin activation process. In addition to the examination of local sites with solid-state 2H NMR spectroscopy, wide angle X-ray scattering (WAXS) provides us the chance of
Vollmayr-Lee, Katharina; Zippelius, Annette; Aspelmeier, Timo
2011-03-01
We study the dynamic structure factor of a granular fluid of hard spheres, driven into a stationary nonequilibrium state by balancing the energy loss due to inelastic collisions with the energy input due to driving. The driving is chosen to conserve momentum, so that fluctuating hydrodynamics predicts the existence of sound modes. We present results of computer simulations which are based on an event driven algorithm. The dynamic structure factor F (q , ω) is determined for volume fractions 0.05, 0.1 and 0.2 and coefficients of normal restitution 0.8 and 0.9. We observe sound waves, and compare our results for F (q , ω) with the predictions of generalized fluctuating hydrodynamics which takes into account that temperature fluctuations decay either diffusively or with a finite relaxation rate, depending on wave number and inelasticity. We determine the speed of sound and the transport coefficients and compare them to the results of kinetic theory. K.V.L. thanks the Institute of Theoretical Physics, University of Goettingen, for financial support and hospitality.
Energy Technology Data Exchange (ETDEWEB)
Stehr, D.
2007-12-28
This thesis deals with infrared studies of impurity states, ultrafast carrier dynamics as well as coherent intersubband polarizations in semiconductor quantum structures such as quantum wells and superlattices, based on the GaAs/AlGaAs material system. In the first part it is shown that the 2p{sub z} confined impurity state of a semiconductor quantum well develops into an excited impurity band in the case of a superlattice. This is studied by following theoretically the transition from a single to a multiple quantum well or superlattice by exactly diagonalizing the three-dimensional Hamiltonian for a quantum well system with random impurities. These results also require reinterpretation of previous experimental data. The relaxation dynamics of interminiband transitions in doped GaAs/AlGaAs superlattices in the mid-IR are studied. This involves single-color pump-probe measurements to explore the dynamics at different wavelengths, which is performed with the Rossendorf freeelectron laser (FEL), providing picosecond pulses in a range from 3-200 {mu}m and are used for the first time within this thesis. In these experiments, a fast bleaching of the interminiband transition is observed followed by thermalization and subsequent relaxation, whose time constants are determined to be 1-2 picoseconds. This is followed by an additional component due to carrier cooling in the lower miniband. In the second part, two-color pump-probe measurements are performed, involving the FEL as the pump source and a table-top broad-band tunable THz source for probing the transmission changes. In addition, the dynamics of excited electrons within the minibands is explored and their contribution quantitatively extracted from the measurements. Intersubband absorption experiments of photoexcited carriers in single quantum well structures, measured directly in the time-domain, i.e. probing coherently the polarization between the first and the second subband, are presented. By varying the carrier
DEFF Research Database (Denmark)
Nielsen, Søren R.K.
The present textbook has been written for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M.Sc. students in structural engineering.......The present textbook has been written for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M.Sc. students in structural engineering....
Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR
Hong, Mei; Su, Yongchao
2011-01-01
Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the lipid membrane, we have used solid-state NMR spectroscopy to determine the membrane-bound topology of these peptides. A versatile array of solid-state NMR experiments now readily yields the conformation, dynamics, orientation, depth of insertion, and site-specific protein–lipid interactions of these molecules. We summarize key findings of several Arg-rich membrane peptides, including β-sheet antimicrobial peptides, unstructured cell-penetrating peptides, and the voltage-sensing helix of voltage-gated potassium channels. Our results indicate the central role of guanidinium-phosphate and guanidinium-water interactions in dictating the structural topology of these cationic molecules in the lipid membrane, which in turn account for the mechanisms of this functionally diverse class of membrane peptides. PMID:21344534
Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids
Czech Academy of Sciences Publication Activity Database
Chábera, P.; Fuciman, M.; Hříbek, P.; Polívka, Tomáš
2009-01-01
Roč. 11, - (2009), s. 8795-8703 ISSN 1463-9076 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : excited-state dynamics * carbonyl carotenoids * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 4.116, year: 2009
Fundamentals of structural dynamics
Craig, Roy R
2006-01-01
From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics.This edition updates Professor Craig's classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element-based computational methods, and dynamic testing methods, this Second Edition includes new and e
Liang, J M; Xayamongkhon, H; Broz, K; Dong, Y; McCormick, S P; Abramova, S; Ward, T J; Ma, Z H; Kistler, H C
2014-12-01
Fusarium graminearum sensu stricto causes Fusarium head blight (FHB) in wheat and barley, and contaminates grains with several trichothecene mycotoxins, causing destructive yield losses and economic impact in the United States. Recently, a F. graminearum strain collected from Minnesota (MN) was determined to produce a novel trichothecene toxin, called NX-2. In order to determine the spatial and temporal dynamics of NX-2 producing strains in MN, North Dakota (ND) and South Dakota (SD), a total of 463 F. graminearum strains were collected from three sampling periods, 1999-2000, 2006-2007 and 2011-2013. A PCR-RFLP based diagnostic test was developed and validated for NX-2 producing strains based on polymorphisms in the Tri1 gene. Trichothecene biosynthesis gene (Tri gene)-based polymerase chain reaction (PCR) assays and ten PCR-restriction fragment length polymorphism (RFLP) markers were used to genotype all strains. NX-2 strains were detected in each sampling period but with a very low overall frequency (2.8%) and were mainly collected near the borders of MN, ND and SD. Strains with the 3ADON chemotype were relatively infrequent in 1999-2000 (4.5%) but increased to 29.4% in 2006-2007 and 17.2% in 2011-2013. The distribution of 3ADON producing strains also expanded from a few border counties between ND and MN in 1999-2000, southward toward the border between SD and MN in 2006-2007 and westward in 2011-2013. Genetic differentiation between 2006-2007 and 2011-2013 populations (3%) was much lower than that between 1999-2000 and 2006-2007 (22%) or 1999-2000 and 2011-2013 (20%) suggesting that most change to population genetic structure of F. graminearum occurred between 1999-2000 and 2006-2007. This change was associated with the emergence of a new population consisting largely of individuals with a 3ADON chemotype. A Bayesian clustering analysis suggested that NX-2 chemotype strains are part of a previously described Upper Midwestern population. However, these analyses
International Nuclear Information System (INIS)
Ohashi, Yuji
2010-01-01
It was found that a chiral alkyl group bonded to the cobalt atom in a cobalt complex crystal was racemized with retention of the single crystal form on exposure to visible light. Such reactions, which are called crystalline-state reactions, have been found in a variety of cobalt complex crystals. The concept of reaction cavity was introduced to explain the reaction rate quantitatively and the chirality of the photo-product. The new diffractometers and detectors were made for rapid data collection. The reaction mechanism was also elucidated using neutron diffraction analysis. The unstable reaction intermediates were analyzed using cryo-trapping method. The excited-state structures were obtained at the equilibrium state between ground and excited states. (author)
Energy Technology Data Exchange (ETDEWEB)
Robinson H.; Mage, M.; Dolan, M.; Wang, R.; Boyd, L.; Revilleza, M.; Natarajan, K.; Myers, N.; Hansen, T.; Margulies, D.
2012-05-01
MHC class I (MHC-I) proteins of the adaptive immune system require antigenic peptides for maintenance of mature conformation and immune function via specific recognition by MHC-I-restricted CD8(+) T lymphocytes. New MHC-I molecules in the endoplasmic reticulum are held by chaperones in a peptide-receptive (PR) transition state pending release by tightly binding peptides. In this study, we show, by crystallographic, docking, and molecular dynamics methods, dramatic movement of a hinged unit containing a conserved 3(10) helix that flips from an exposed 'open' position in the PR transition state to a 'closed' position with buried hydrophobic side chains in the peptide-loaded mature molecule. Crystallography of hinged unit residues 46-53 of murine H-2L(d) MHC-I H chain, complexed with mAb 64-3-7, demonstrates solvent exposure of these residues in the PR conformation. Docking and molecular dynamics predict how this segment moves to help form the A and B pockets crucial for the tight peptide binding needed for stability of the mature peptide-loaded conformation, chaperone dissociation, and Ag presentation.
Chronic motivational state interacts with task reward structure in dynamic decision-making.
Cooper, Jessica A; Worthy, Darrell A; Maddox, W Todd
2015-12-01
Research distinguishes between a habitual, model-free system motivated toward immediately rewarding actions, and a goal-directed, model-based system motivated toward actions that improve future state. We examined the balance of processing in these two systems during state-based decision-making. We tested a regulatory fit hypothesis (Maddox & Markman, 2010) that predicts that global trait motivation affects the balance of habitual- vs. goal-directed processing but only through its interaction with the task framing as gain-maximization or loss-minimization. We found support for the hypothesis that a match between an individual's chronic motivational state and the task framing enhances goal-directed processing, and thus state-based decision-making. Specifically, chronic promotion-focused individuals under gain-maximization and chronic prevention-focused individuals under loss-minimization both showed enhanced state-based decision-making. Computational modeling indicates that individuals in a match between global chronic motivational state and local task reward structure engaged more goal-directed processing, whereas those in a mismatch engaged more habitual processing. Copyright © 2015 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Godunov, I.A.; Bataev, V.A.; Maslov, D.V.; Yakovlev, N.N.
2017-01-01
The structure of conformational non-rigid molecules in the excited electronic states are investigated by joint theoretical and experimental methods. The theoretical part of work consist of two stages. In first stage the ab initio quantum-chemical calculations are carried out using high level methods. In second stage the vibrational problems of the various dimensions are solved by variational method for vibrations of large amplitude. In experimental part of work the vibronic spectra are investigated: gas-phase absorption and also, fluorescence excitation spectra of jet-cooled molecules. Some examples are considered.
Harbour, L.; Förster, G. D.; Dharma-wardana, M. W. C.; Lewis, Laurent J.
2018-04-01
The ion-ion dynamical structure factor and the equation of state of warm dense aluminum in a two-temperature quasiequilibrium state, with the electron temperature higher than the ion temperature, are investigated using molecular-dynamics simulations based on ion-ion pair potentials constructed from a neutral pseudoatom model. Such pair potentials based on density functional theory are parameter-free and depend directly on the electron temperature and indirectly on the ion temperature, enabling efficient computation of two-temperature properties. Comparison with ab initio simulations and with other average-atom calculations for equilibrium aluminum shows good agreement, justifying a study of quasiequilibrium situations. Analyzing the van Hove function, we find that ion-ion correlations vanish in a time significantly smaller than the electron-ion relaxation time so that dynamical properties have a physical meaning for the quasiequilibrium state. A significant increase in the speed of sound is predicted from the modification of the dispersion relation of the ion acoustic mode as the electron temperature is increased. The two-temperature equation of state including the free energy, internal energy, and pressure is also presented.
Structure, Reactivity and Dynamics
Indian Academy of Sciences (India)
Understanding structure, reactivity and dynamics is the core issue in chemical ... functional theory (DFT) calculations, molecular dynamics (MD) simulations, light- ... between water and protein oxygen atoms, the superionic conductors which ...
Structural Dynamics Laboratory (SDL)
Federal Laboratory Consortium — Structural dynamic testing is performed to verify the survivability of a component or assembly when exposed to vibration stress screening, or a controlled simulation...
Lerch, Michael T.; Horwitz, Joseph; McCoy, John; Hubbell, Wayne L.
2013-01-01
Excited states of proteins may play important roles in function, yet are difficult to study spectroscopically because of their sparse population. High hydrostatic pressure increases the equilibrium population of excited states, enabling their characterization [Akasaka K (2003) Biochemistry 42:10875–85]. High-pressure site-directed spin-labeling EPR (SDSL-EPR) was developed recently to map the site-specific structure and dynamics of excited states populated by pressure. To monitor global secondary structure content by circular dichroism (CD) at high pressure, a modified optical cell using a custom MgF2 window with a reduced aperture is introduced. Here, a combination of SDSL-EPR and CD is used to map reversible structural transitions in holomyoglobin and apomyoglobin (apoMb) as a function of applied pressure up to 2 kbar. CD shows that the high-pressure excited state of apoMb at pH 6 has helical content identical to that of native apoMb, but reversible changes reflecting the appearance of a conformational ensemble are observed by SDSL-EPR, suggesting a helical topology that fluctuates slowly on the EPR time scale. Although the high-pressure state of apoMb at pH 6 has been referred to as a molten globule, the data presented here reveal significant differences from the well-characterized pH 4.1 molten globule of apoMb. Pressure-populated states of both holomyoglobin and apoMb at pH 4.1 have significantly less helical structure, and for the latter, that may correspond to a transient folding intermediate. PMID:24248390
Anderson, James C
2012-01-01
A concise introduction to structural dynamics and earthquake engineering Basic Structural Dynamics serves as a fundamental introduction to the topic of structural dynamics. Covering single and multiple-degree-of-freedom systems while providing an introduction to earthquake engineering, the book keeps the coverage succinct and on topic at a level that is appropriate for undergraduate and graduate students. Through dozens of worked examples based on actual structures, it also introduces readers to MATLAB, a powerful software for solving both simple and complex structural d
Akimenko, Vitalii; Anguelov, Roumen
2017-12-01
In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.
DEFF Research Database (Denmark)
Nielsen, Søren R.K.
This book has been prepared for the course on Computational Dynamics given at the 8th semester at the structural program in civil engineering at Aalborg University.......This book has been prepared for the course on Computational Dynamics given at the 8th semester at the structural program in civil engineering at Aalborg University....
Nonlinear dynamics of structures
Oller, Sergio
2014-01-01
This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics. This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects. Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution are studied, and the theoretical concepts and its programming algorithms are presented.
Sugiyama, K.; Nakajima, K.; Odaka, M.; Kuramoto, K.; Hayashi, Y.-Y.
2014-02-01
A series of long-term numerical simulations of moist convection in Jupiter’s atmosphere is performed in order to investigate the idealized characteristics of the vertical structure of multi-composition clouds and the convective motions associated with them, varying the deep abundances of condensable gases and the autoconversion time scale, the latter being one of the most questionable parameters in cloud microphysical parameterization. The simulations are conducted using a two-dimensional cloud resolving model that explicitly represents the convective motion and microphysics of the three cloud components, H2O, NH3, and NH4SH imposing a body cooling that substitutes the net radiative cooling. The results are qualitatively similar to those reported in Sugiyama et al. (Sugiyama, K. et al. [2011]. Intermittent cumulonimbus activity breaking the three-layer cloud structure of Jupiter. Geophys. Res. Lett. 38, L13201. doi:10.1029/2011GL047878): stable layers associated with condensation and chemical reaction act as effective dynamical and compositional boundaries, intense cumulonimbus clouds develop with distinct temporal intermittency, and the active transport associated with these clouds results in the establishment of mean vertical profiles of condensates and condensable gases that are distinctly different from the hitherto accepted three-layered structure (e.g., Atreya, S.K., Romani, P.N. [1985]. Photochemistry and clouds of Jupiter, Saturn and Uranus. In: Recent Advances in Planetary Meteorology. Cambridge Univ. Press, London, pp. 17-68). Our results also demonstrate that the period of intermittent cloud activity is roughly proportional to the deep abundance of H2O gas. The autoconversion time scale does not strongly affect the results, except for the vertical profiles of the condensates. Changing the autoconversion time scale by a factor of 100 changes the intermittency period by a factor of less than two, although it causes a dramatic increase in the amount of
Directory of Open Access Journals (Sweden)
Becka M Warfield
Full Text Available RNA aptamers are oligonucleotides that bind with high specificity and affinity to target ligands. In the absence of bound ligand, secondary structures of RNA aptamers are generally stable, but single-stranded and loop regions, including ligand binding sites, lack defined structures and exist as ensembles of conformations. For example, the well-characterized theophylline-binding aptamer forms a highly stable binding site when bound to theophylline, but the binding site is unstable and disordered when theophylline is absent. Experimental methods have not revealed at atomic resolution the conformations that the theophylline aptamer explores in its unbound state. Consequently, in the present study we applied 21 microseconds of molecular dynamics simulations to structurally characterize the ensemble of conformations that the aptamer adopts in the absence of theophylline. Moreover, we apply Markov state modeling to predict the kinetics of transitions between unbound conformational states. Our simulation results agree with experimental observations that the theophylline binding site is found in many distinct binding-incompetent states and show that these states lack a binding pocket that can accommodate theophylline. The binding-incompetent states interconvert with binding-competent states through structural rearrangement of the binding site on the nanosecond to microsecond timescale. Moreover, we have simulated the complete theophylline binding pathway. Our binding simulations supplement prior experimental observations of slow theophylline binding kinetics by showing that the binding site must undergo a large conformational rearrangement after the aptamer and theophylline form an initial complex, most notably, a major rearrangement of the C27 base from a buried to solvent-exposed orientation. Theophylline appears to bind by a combination of conformational selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+ ions are
Di, Xin; Biswal, Bharat B
2014-02-01
The default mode network is part of the brain structure that shows higher neural activity and energy consumption when one is at rest. The key regions in the default mode network are highly interconnected as conveyed by both the white matter fiber tracing and the synchrony of resting-state functional magnetic resonance imaging signals. However, the causal information flow within the default mode network is still poorly understood. The current study used the dynamic causal modeling on a resting-state fMRI data set to identify the network structure underlying the default mode network. The endogenous brain fluctuations were explicitly modeled by Fourier series at the low frequency band of 0.01-0.08Hz, and those Fourier series were set as driving inputs of the DCM models. Model comparison procedures favored a model wherein the MPFC sends information to the PCC and the bilateral inferior parietal lobule sends information to both the PCC and MPFC. Further analyses provide evidence that the endogenous connectivity might be higher in the right hemisphere than in the left hemisphere. These data provided insight into the functions of each node in the DMN, and also validate the usage of DCM on resting-state fMRI data. © 2013.
Solution and solid state NMR studies of the structure and dynamics of C60 and C70
International Nuclear Information System (INIS)
Johnson, R.D.; Yannoni, C.S.; Salem, J.; Meijer, G.; Bethune, D.S.
1991-01-01
This paper investigates the structure and dynamics of C 60 and C 70 with 13 C NMR spectroscopy. In solution, high-resolution spectra reveal that C 60 has a single resonance at 143 ppm, indicating a strained, aromatic system with high symmetry. This is strong evidence for a C 60 soccer ball geometry. A 2D NMR INADEQUATE experiment on 13 C-enriched C 70 reveals the bonding connectivity to be a linear string, in firm support of the proposed rugby ball structure with D 5h symmetry, and furnishes resonance assignments. Solid state NMR spectra of C 60 at ambient temperatures yield a narrow resonance, indicative of rapid molecular reorientation. Variable temperature T 1 measurements show that the rotational correlation time is ∼ 10 - 9 s at 230 K. At 77 K, this time increases to more than 1 ms, and the 13 C NMR spectrum of C 60 is a powder pattern due to chemical shift anisotropy (tensor components 220, 186, 40 ppm). At intermediate temperatures a narrow peak is superimposed on the powder pattern, suggesting a distribution of barriers to molecular motion in the sample, or the presence of an additional phase in the solid state. A Carr-Purcell dipolar experiment on C 60 in the solid state allows the first precise determination of the C 60 bond lengths: 1.45 and 1.40 Angstrom
Shell structure of the A = 6 ground states from three-body dynamics
International Nuclear Information System (INIS)
Lehman, D.R.; Parke, W.C.
1983-01-01
Three-body (αNN) models of the 6 He and 6 Li ground states are used to investigate their shell structure. Three models for each nucleus are considered: simple, full (nn), and full (np) for 6 He, and simple, full (0%), and full (4%) for 6 Li. The full models in both cases are obtained by including the S/sub 1/2/, P/sub 1/2/, and P/sub 3/2/ partial waves of the αN interaction, whereas the simple model truncates to only the strongly resonant P/sub 3/2/ wave. The 6 He full models distinguish between use of the nn or np parameters for the 1 S 0 NN interaction, while the 6 Li full models have either a pure 3 S 1 NN interaction (0%) or a 3 S 1 - 3 D 1 interaction that leads to a 4% d-wave component in the deuteron (4%). These models are used to calculate the probabilities of the orbital components of the wave functions, the configuration-space single-particle orbital densities, and the configuration-space two-particle wave function amplitudes in j-j coupling with the nucleon coordinates referred to the alpha particle as the ''core'' or ''center of force.'' The results are then compared with those from phenomenological and realistic-interaction shell models. Major findings of the comparison are the following: None of the shell models considered have a distribution of orbital probabilities across shells like that predicted by three-body models; the orbital rms radii from three-body models indicate an ordering of the orbits within shells, i.e., p/sub 1/2/ outside p/sub 3/2/, unlike oscillator shell models with a single oscillator parameter where the p-shell orbitals have the same shape; and, as expected, three-body orbital densities decay at large radial distances as exponentials rather than the too compact Gaussian falling off of oscillator shell models
2015-07-01
entitled “Design guidelines for blast strengthening of concrete and masonry structures using Fiber - Reinforced Polymer (FRP).” Seismic provision...2 Reinforced Concrete Fiber Reinforced Polymers are frequently used to retrofit and repair reinforced concrete structures. Most of the work...tested 72 laboratory-size beams (3-in. by 3-in. cross-section and 30–in. long) of unreinforced and nylon fiber reinforced light-weight concrete that
DEFF Research Database (Denmark)
Andreasen, Martin Møller; Meldrum, Andrew
This paper studies whether dynamic term structure models for US nominal bond yields should enforce the zero lower bound by a quadratic policy rate or a shadow rate specification. We address the question by estimating quadratic term structure models (QTSMs) and shadow rate models with at most four...
International Nuclear Information System (INIS)
Bhoje, S.B.
2003-01-01
In view of thin walled large diameter shell structures with associated fluid effects, structural dynamics problems are very critical in a fast breeder reactor. Structural characteristics and consequent structural dynamics problems in typical pool type Fast Breeder Reactor are highlighted. A few important structural dynamics problems are pump induced as well as flow induced vibrations, seismic excitations, pressure transients in the intermediate heat exchangers and pipings due to a large sodium water reaction in the steam generator, and core disruptive accident loadings. The vibration problems which call for identification of excitation forces, formulation of special governing equations and detailed analysis with fluid structure interaction and sloshing effects, particularly for the components such as PSP, inner vessel, CP, CSRDM and TB are elaborated. Seismic design issues are presented in a comprehensive way. Other transient loadings which are specific to FBR, resulting from sodium-water reaction and core disruptive accident are highlighted. A few important results of theoretical as well as experimental works carried out for 500 MWe Prototype Fast Breeder Reactor (PFBR), in the domain of structural dynamics are presented. (author)
Electronic excited states as a probe of surface adsorbate structure and dynamics in liquid xenon
Energy Technology Data Exchange (ETDEWEB)
Peterson, E.S.
1992-08-01
A combination of second harmonic generation (SHG) and a simple dipole-dipole interaction model is presented as a new technique for determining adsorbate geometries on surfaces. The polarization dependence of SHG is used to define possible geometries of the adsorbate about the surface normal. Absorption band shifts using geometry constraints imposed by SHG data are derived for a dimer constructed from two arbitrarily placed monomers on the surface using the dipole-dipole interaction potential. These formulae can be used to determine the orientation of the two monomers relative to each other. A simplified version of this formalism is used to interpret absorption band shifts for rhodamine B adsorbed on fused silica. A brief history of the exciton is given with particular detail to Xe. Data are presented for transient absorption at RT in liquid xenon on the picosecond time scale. These are observations of both tunneling through the barrier that separates the free and trapped exciton states and the subsequent trapping of the exciton. In high densities both of these processes are found to occur within 2 to 6 picoseconds in agreement with theories of Kmiecik and Schreiber and of Martin. A threshold density is observed that separates relaxation via single binary collisions and relaxation that proceeds via Martin's resonant energy transfer hopping mechanism.
Electronic excited states as a probe of surface adsorbate structure and dynamics in liquid xenon
Energy Technology Data Exchange (ETDEWEB)
Peterson, Eric Scott [Univ. of California, Berkeley, CA (United States)
1992-08-01
A combination of second harmonic generation (SHG) and a simple dipole-dipole interaction model is presented as a new technique for determining adsorbate geometries on surfaces. The polarization dependence of SHG is used to define possible geometries of the adsorbate about the surface normal. Absorption band shifts using geometry constraints imposed by SHG data are derived for a dimer constructed from two arbitrarily placed monomers on the surface using the dipole-dipole interaction potential. These formulae can be used to determine the orientation of the two monomers relative to each other. A simplified version of this formalism is used to interpret absorption band shifts for rhodamine B adsorbed on fused silica. A brief history of the exciton is given with particular detail to Xe. Data are presented for transient absorption at RT in liquid xenon on the picosecond time scale. These are observations of both tunneling through the barrier that separates the free and trapped exciton states and the subsequent trapping of the exciton. In high densities both of these processes are found to occur within 2 to 6 picoseconds in agreement with theories of Kmiecik and Schreiber and of Martin. A threshold density is observed that separates relaxation via single binary collisions and relaxation that proceeds via Martin`s resonant energy transfer hopping mechanism.
Czech Academy of Sciences Publication Activity Database
Chábera, P.; Fuciman, M.; Naqvi, K.R.; Polívka, Tomáš
2010-01-01
Roč. 373, 1-2 (2010), s. 56-64 ISSN 0301-0104 Institutional research plan: CEZ:AV0Z50510513 Keywords : hydrophilic carotenoids * excited-state dynamics * charge-transfer state Subject RIV: BO - Biophysics Impact factor: 2.017, year: 2010
Investigation of new NMR methods for structural and dynamic studies in the liquid state
International Nuclear Information System (INIS)
Desvaux, H.
1993-01-01
After a short presentation of the NMR fundements, three new methods of spin -lattice relaxation in liquids are reported. (1) The method consists of measuring the steady-state nuclear magnetization under strong off-resonance rf irradiation as a function of the angle θ between external field and effective field. For purely dipolar relaxation between homonuclear spins under isotropic Brownian molecular rotation, this variation yields the value of the local correlation time. A departure from the theoretical shape reveals the existence of complex motions or complex relaxation mechanisms. These results have been verified by experimental illustrations. Some numerical simulations have been performed for studying the effects of the distribution of chemical shift and for studying the coherence of the local correlation time concept. (2) The improvements of a modified ROESY experiment are discussed. The use of a time-modulated strong off-resonances rf irradiation permits to suppress totally the problems of the NOESY (suppression of cross-relaxation peaks for molecules where ωτ c ≅ 1.1) and of the ROESY (HOHAHA transfer and angular dispersion due to the chemical shift distribution). The angle θ defined previously can be used as a constraint: either to obtain a ratio of the cross over direct dipolar relaxation rates independent on the correlation time value, or to observe the sole chemical exchange. (3) The difference of the relaxation rates of the coherences at zero and two quanta is always exactly the cross relaxation rates measured by the NOESY experiment. The experimental illustration is presented
Paultre, Patrick
2013-01-01
This book covers structural dynamics from a theoretical and algorithmic approach. It covers systems with both single and multiple degrees-of-freedom. Numerous case studies are given to provide the reader with a deeper insight into the practicalities of the area, and the solutions to these case studies are given in terms of real-time and frequency in both geometric and modal spaces. Emphasis is also given to the subject of seismic loading. The text is based on many lectures on the subject of structural dynamics given at numerous institutions and thus will be an accessible and practical aid to
Els-Heindl, Sylvia; Chollet, Constance; Scheidt, Holger A.; Beck-Sickinger, Annette G.; Meiler, Jens; Huster, Daniel
2015-01-01
The peptide hormone ghrelin activates the growth hormone secretagogue receptor 1a, also known as the ghrelin receptor. This 28-residue peptide is acylated at Ser3 and is the only peptide hormone in the human body that is lipid-modified by an octanoyl group. Little is known about the structure and dynamics of membrane-associated ghrelin. We carried out solid-state NMR studies of ghrelin in lipid vesicles, followed by computational modeling of the peptide using Rosetta. Isotropic chemical shift data of isotopically labeled ghrelin provide information about the peptide’s secondary structure. Spin diffusion experiments indicate that ghrelin binds to membranes via its lipidated Ser3. Further, Phe4, as well as electrostatics involving the peptide’s positively charged residues and lipid polar headgroups, contribute to the binding energy. Other than the lipid anchor, ghrelin is highly flexible and mobile at the membrane surface. This observation is supported by our predicted model ensemble, which is in good agreement with experimentally determined chemical shifts. In the final ensemble of models, residues 8–17 form an α-helix, while residues 21–23 and 26–27 often adopt a polyproline II helical conformation. These helices appear to assist the peptide in forming an amphipathic conformation so that it can bind to the membrane. PMID:25803439
Directory of Open Access Journals (Sweden)
Gerrit Vortmeier
Full Text Available The peptide hormone ghrelin activates the growth hormone secretagogue receptor 1a, also known as the ghrelin receptor. This 28-residue peptide is acylated at Ser3 and is the only peptide hormone in the human body that is lipid-modified by an octanoyl group. Little is known about the structure and dynamics of membrane-associated ghrelin. We carried out solid-state NMR studies of ghrelin in lipid vesicles, followed by computational modeling of the peptide using Rosetta. Isotropic chemical shift data of isotopically labeled ghrelin provide information about the peptide's secondary structure. Spin diffusion experiments indicate that ghrelin binds to membranes via its lipidated Ser3. Further, Phe4, as well as electrostatics involving the peptide's positively charged residues and lipid polar headgroups, contribute to the binding energy. Other than the lipid anchor, ghrelin is highly flexible and mobile at the membrane surface. This observation is supported by our predicted model ensemble, which is in good agreement with experimentally determined chemical shifts. In the final ensemble of models, residues 8-17 form an α-helix, while residues 21-23 and 26-27 often adopt a polyproline II helical conformation. These helices appear to assist the peptide in forming an amphipathic conformation so that it can bind to the membrane.
DEFF Research Database (Denmark)
Kejlberg-Rasmussen, Casper
statements about our data structure, which are based on the structure of the underlying problem, that we are trying to solve. We can rely on the properties of the invariants when performing queries, and in return we need to ensure that the invariants remain true after we perform updates. When designing data......In this thesis I will address three dynamic data structure problems using the concept of invariants. The first problem is maintaining a dynamically changing set of keys – a dictionary – where the queries we can ask are: does it contain a given key? and what is the preceding (or succeeding) key...... to a given key? The updates we can do are: inserting a new key or deleting a given key. Our dictionary has the working set property, which means that the running time of a query depends on the query distribution. Specifically the time to search for a key depends on when we last searched for it. Our data...
International Nuclear Information System (INIS)
Ouyang, Bing; Xue, Jia-Dan; Zheng, Xuming; Fang, Wei-Hai
2014-01-01
The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S 2 (A′), S 6 (A′), and S 7 (A′) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S 2 (A′), S 6 (A′), and S 7 (A′) excited states were very different. The conical intersection point CI(S 2 /S 1 ) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S 2 (A′) state: the radiative S 2,min → S 0 transition and the nonradiative S 2 → S 1 internal conversion via CI(S 2 /S 1 ). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S 1 /T 1 ) in the excited state decay dynamics of PITC is evaluated
Structural and dynamical characterization of the Miz-1 zinc fingers 5-8 by solution-state NMR
Energy Technology Data Exchange (ETDEWEB)
Bernard, David; Bedard, Mikaeel; Bilodeau, Josee; Lavigne, Pierre, E-mail: pierre.lavigne@usherbrooke.ca [Universite de Sherbrooke, Departement de Biochimie, Faculte de Medecine et des Sciences de la Sante, Institut de Pharmacologie de Sherbrooke (Canada)
2013-10-15
Myc-interacting zinc finger protein-1 (Miz-1) is a BTB/POZ transcription factor that activates the transcription of cytostatic genes, such as p15{sup INK4B} or p21{sup CIP1}. The C-terminus of Miz-1 contains 13 consensus C{sub 2}H{sub 2} zinc finger domains (ZF). ZFs 1-4 have been shown to interact with SMAD3/4, while the remaining ZFs are expected to bind the promoters of target genes. We have noted unusual features in ZF 5 and the linker between ZFs 5 and 6. Indeed, a glutamate is found instead of the conserved basic residue two positions before the second zinc-coordinating histidine on the ZF 5 helix, and the linker sequence is DTDKE in place of the classical TGEKP sequence. In a canonical {beta}{beta}{alpha} fold, such unusual primary structure elements should cause severe electrostatic repulsions. In this context, we have characterized the structure and the dynamics of a Miz-1 construct comprising ZFs 5-8 (Miz 5-8) by solution-state NMR. Whilst ZFs 5, 7 and 8 were shown to adopt the classical {beta}{beta}{alpha} fold for C{sub 2}H{sub 2} ZFs, the number of long-range NOEs was insufficient to define a classical fold for ZF 6. We show by using {sup 15}N-relaxation dispersion experiments that this lack of NOEs is due to the presence of extensive motions on the {mu}s-ms timescale. Since this negatively charged region would have to be located near the phosphodiester backbone in a DNA complex, we propose that in addition to promoting conformational searches, it could serve as a hinge region to keep ZFs 1-4 away from DNA.
International Nuclear Information System (INIS)
Wegner, S.; Van Wullen, L.; Tricot, G.; Tricot, G.
2010-01-01
In this contribution we present an in-depth study of the network structure of different phosphate based and borosilicate glasses and its evolution at high temperatures. Employing a range of advanced solid state NMR methodologies, complemented by the results of XPS, the structural motifs on short and intermediate length scales are identified. For the phosphate based glasses, at temperatures above the glass transition temperature Tg, structural relaxation processes and the devitrification of the glasses were monitored in situ employing MAS NMR spectroscopy and X-ray diffraction. Dynamic species exchange involving rapid P-O-P and P-O-Al bond breaking and reforming was observed employing in situ 27 Al and 31 P MAS NMR spectroscopy and could be linked to viscous flow. For the borosilicate glasses, an atomic scale investigation of the phase separation processes was possible in a combined effort of ex situ NMR studies on glass samples with different thermal histories and in situ NMR studies using high temperature MAS NMR spectroscopy including 11 B MAS, 29 Si MAS and in situ 29 Si{ 11 B} REAPDOR NMR spectroscopy. (authors)
Kwac, Kijeong; Geva, Eitan
2012-03-08
We present a mixed quantum-classical molecular dynamics study of the hydrogen-bonding structure and dynamics of a vibrationally excited hydroxyl stretch in methanol/carbon-tetrachloride mixtures. The adiabatic Hamiltonian of the quantum-mechanical hydroxyl is diagonalized on-the-fly to obtain the ground and first-excited adiabatic energy levels and wave functions which depend parametrically on the instantaneous configuration of the classical degrees of freedom. The dynamics of the classical degrees of freedom are determined by Hellmann-Feynman forces obtained by taking the expectation value of the force with respect to the ground or excited vibrational wave functions. Polarizable force fields are used which were previously shown to reproduce the experimental infrared absorption spectrum rather well, for different isotopomers and over a wide composition range [Kwac, K.; Geva, E. J. Phys. Chem. B 2011, 115, 9184]. We show that the agreement of the absorption spectra with experiment can be further improved by accounting for the dependence of the dipole moment derivatives on the configuration of the classical degrees of freedom. We find that the propensity of a methanol molecule to form hydrogen bonds increases upon photoexcitation of its hydroxyl stretch, thereby leading to a sizable red-shift of the corresponding emission spectrum relative to the absorption spectrum. Treating the relaxation from the first excited to the ground state as a nonadiabatic process, and calculating its rate within the framework of Fermi's golden rule and the harmonic-Schofield quantum correction factor, we were able to predict a lifetime which is of the same order of magnitude as the experimental value. The experimental dependence of the lifetime on the transition frequency is also reproduced. Nonlinear mapping relations between the hydroxyl transition frequency and bond length in the excited state and the electric field along the hydroxyl bond axis are established. These mapping relations
International Nuclear Information System (INIS)
Receveur, V.
1997-01-01
During a long time, the neutron scattering and X-rays techniques have not been used for the studies bearing on the folding of proteins. The compactness and the globularness of a protein are two structural characteristics describing the denatured states and the intermediate states of folding, and the neutrons and x-rays scattering are probably the two techniques the most appropriate to give this kind of information; they are sensible to the spatial extent and to the molecules compactness, and to their general shape. For these three or four last years, the works using these techniques are increasing, giving precious knowledge on the different steps of folding and on the interactions stabilizing the denatured or intermediate states. This thesis falls into this category. (N.C.)
Vogelsberg, Cortnie Sue
Amphidynamic crystals are an extremely promising platform for the development of artificial molecular machines and stimuli-responsive materials. In analogy to skeletal muscle, their function will rely upon the collective operation of many densely packed molecular machines (i.e. actin-bound myosin) that are self-assembled in a highly organized anisotropic medium. By choosing lattice-forming elements and moving "parts" with specific functionalities, individual molecular machines may be synthesized and self-assembled in order to carry out desirable functions. In recent years, efforts in the design of amphidynamic materials based on molecular gyroscopes and compasses have shown that a certain amount of free volume is essential to facilitate internal rotation and reorientation within a crystal. In order to further establish structure/function relationships to advance the development of increasingly complex molecular machinery, molecular rotors and a molecular "spinning" top were synthesized and incorporated into a variety of solid-state architectures with different degrees of periodicity, dimensionality, and free volume. Specifically, lamellar molecular crystals, hierarchically ordered periodic mesoporous organosilicas, and metal-organic frameworks were targeted for the development of solid-state molecular machines. Using an array of solid-state nuclear magnetic resonance spectroscopy techniques, the dynamic properties of these novel molecular machine assemblies were determined and correlated with their corresponding structural features. It was found that architecture type has a profound influence on functional dynamics. The study of layered molecular crystals, composed of either molecular rotors or "spinning" tops, probed functional dynamics within dense, highly organized environments. From their study, it was discovered that: 1) crystallographically distinct sites may be utilized to differentiate machine function, 2) halogen bonding interactions are sufficiently
Distributed Dynamic Condition Response Structures
DEFF Research Database (Denmark)
Hildebrandt, Thomas; Mukkamala, Raghava Rao
We present distributed dynamic condition response structures as a declarative process model inspired by the workflow language employed by our industrial partner and conservatively generalizing labelled event structures. The model adds to event structures the possibility to 1) finitely specify...... as a labelled transition system. Exploration of the relationship between dynamic condition response structures and traditional models for concurrency, application to more complex scenarios, and further extensions of the model is left to future work....
Schmitt, Hans-Christian; Flock, Marco; Welz, Eileen; Engels, Bernd; Schneider, Heidi; Radius, Udo; Fischer, Ingo
2017-03-02
We describe an investigation of the excited-state dynamics of isolated 1,3-di-tert-butyl-imidazoline-2-ylidene (tBu 2 Im, C 11 H 20 N 2 , m/z=180), an Arduengo-type carbene, by time- and frequency-resolved photoionization using a picosecond laser system. The energies of several singlet and triplet excited states were calculated by time-dependent density functional theory (TD-DFT). The S 1 state of the carbene deactivates on a 100 ps time scale possibly by intersystem crossing. In the experiments we observed an additional signal at m/z=196, that was assigned to the oxidation product 1,3-di-tert-butyl-imidazolone, tBu 2 ImO. It shows a well-resolved resonance-enhanced multiphoton ionization (REMPI) spectrum with an origin located at 36951 cm -1 . Several low-lying vibrational bands could be assigned, with a lifetime that depends strongly on the excitation energy. At the origin the lifetime is longer than 3 ns, but drops to 49 ps at higher excess energies. To confirm formation of the imidazolone we also performed experiments on benzimidazolone (BzImO) for comparison. Apart from a redshift for BzImO the spectra of the two compounds are very similar. The TD-DFT values display a very good agreement with the experimental data. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
Jennifer Scheidel
2015-12-01
Full Text Available The insulin-dependent activation and recycling of the insulin receptor play an essential role in the regulation of the energy metabolism, leading to a special interest for pharmaceutical applications. Thus, the recycling of the insulin receptor has been intensively investigated, experimentally as well as theoretically. We developed a time-resolved, discrete model to describe stochastic dynamics and study the approximation of non-linear dynamics in the context of timed Petri nets. Additionally, using a graph-theoretical approach, we analyzed the structure of the regulatory system and demonstrated the close interrelation of structural network properties with the kinetic behavior. The transition invariants decomposed the model into overlapping subnetworks of various sizes, which represent basic functional modules. Moreover, we computed the quasi-steady states of these subnetworks and demonstrated that they are fundamental to understand the dynamic behavior of the system. The Petri net approach confirms the experimental results of insulin-stimulated degradation of the insulin receptor, which represents a common feature of insulin-resistant, hyperinsulinaemic states.
Trachsel, Maria A.; Lobsiger, Simon; Schär, Tobias; Blancafort, Lluís; Leutwyler, Samuel
2017-06-01
We measure the S0 → S1 spectrum and time-resolved S1 state nonradiative dynamics of the "clamped" cytosine derivative 5,6-trimethylenecytosine (TMCyt) in a supersonic jet, using two-color resonant two-photon ionization (R2PI), UV/UV holeburning, and ns time-resolved pump/delayed ionization. The experiments are complemented with spin-component scaled second-order approximate coupled cluster (SCS-CC2), time-dependent density functional theory, and multi-state second-order perturbation-theory (MS-CASPT2) ab initio calculations. While the R2PI spectrum of cytosine breaks off ˜500 cm-1 above its 000 band, that of TMCyt extends up to +4400 cm-1 higher, with over a hundred resolved vibronic bands. Thus, clamping the cytosine C5-C6 bond allows us to explore the S1 state vibrations and S0 → S1 geometry changes in detail. The TMCyt S1 state out-of-plane vibrations ν1', ν3', and ν5' lie below 420 cm-1, and the in-plane ν11', ν12', and ν23' vibrational fundamentals appear at 450, 470, and 944 cm-1. S0 → S1 vibronic simulations based on SCS-CC2 calculations agree well with experiment if the calculated ν1', ν3', and ν5' frequencies are reduced by a factor of 2-3. MS-CASPT2 calculations predict that the ethylene-type S1 ⇝ S0 conical intersection (CI) increases from +366 cm-1 in cytosine to >6000 cm-1 in TMCyt, explaining the long lifetime and extended S0 → S1 spectrum. The lowest-energy S1 ⇝ S0 CI of TMCyt is the "amino out-of-plane" (OPX) intersection, calculated at +4190 cm-1. The experimental S1 ⇝ S0 internal conversion rate constant at the S1(v'=0 ) level is kI C=0.98 -2.2 ṡ1 08 s-1, which is ˜10 times smaller than in 1-methylcytosine and cytosine. The S1(v'=0 ) level relaxes into the T1(3π π *) state by intersystem crossing with kI S C=0.41 -1.6 ṡ1 08 s-1. The T1 state energy is measured to lie 24 580 ±560 cm-1 above the S0 state. The S1(v'=0 ) lifetime is τ =2.9 ns, resulting in an estimated fluorescence quantum yield of Φf l=24 %. Intense
Energy Technology Data Exchange (ETDEWEB)
Valencia-Balvin, Camilo, E-mail: cavalen@fisica.udea.edu.c [Instituto de Fisica, Universidad de Antioquia, A.A. 1226 Medellin (Colombia); ITM Institucion Universitaria, A.A 54959 Medellin (Colombia); Loyola, Claudia [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Osorio-Guillen, Jorge [Instituto de Fisica, Universidad de Antioquia, A.A. 1226 Medellin (Colombia); Gutierrez, Gonzalo [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile)
2010-12-15
Molecular dynamics simulations for the crystal, amorphous and liquid Cu{sub 46}Zr{sub 54} alloy were carried out on a system with up to 2000 particles, using a pairwise potential of the Rosato-Guillope-Legrand type. All simulations were done in the microcanonical ensemble, for a initial density of 5.76 g/cm{sup 3}, at different temperatures. A detailed analysis has been made by means of the pair-correlation function, coordination number, angle distribution, diffusion coefficient and vibrational density of states. We compared the main peaks of the amorphous phase with experimental data, obtaining a good agreement. The analysis of coordination number for the amorphous phase shows that the main building block of this phase are distorted icosahedron.
Structural dynamic modification
Indian Academy of Sciences (India)
and stiffness matrices) andaor modal parameters, in order to acquire some ... For the above reasons, another modification approach is presented here ... The data necessary to solve the direct problem are dynamic behaviour of the original.
Dynamic testing of cable structures
Directory of Open Access Journals (Sweden)
Caetano Elsa
2015-01-01
Full Text Available The paper discusses the role of dynamic testing in the study of cable structures. In this context, the identification of cable force based on vibration measurements is discussed. Vibration and damping assessment are then introduced as the focus of dynamic monitoring systems, and particular aspects of the structural behaviour under environmental loads are analysed. Diverse application results are presented to support the discussion centred on cable-stayed bridges, roof structures, a guyed mast and a transmission line.
Energy Technology Data Exchange (ETDEWEB)
Basak, Sandip [Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States; Schmandt, Nicolaus [Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, United States; Gicheru, Yvonne [Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States; Chakrapani, Sudha [Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States
2017-03-06
Desensitization in pentameric ligand-gated ion channels plays an important role in regulating neuronal excitability. Here, we show that docosahexaenoic acid (DHA), a key ω-3 polyunsaturated fatty acid in synaptic membranes, enhances the agonist-induced transition to the desensitized state in the prokaryotic channel GLIC. We determined a 3.25 Å crystal structure of the GLIC-DHA complex in a potentially desensitized conformation. The DHA molecule is bound at the channel-periphery near the M4 helix and exerts a long-range allosteric effect on the pore across domain-interfaces. In this previously unobserved conformation, the extracellular-half of the pore-lining M2 is splayed open, reminiscent of the open conformation, while the intracellular-half is constricted, leading to a loss of both water and permeant ions. These findings, in combination with spin-labeling/EPR spectroscopic measurements in reconstituted-membranes, provide novel mechanistic details of desensitization in pentameric channels.
Structural dynamic modifications via models
Indian Academy of Sciences (India)
The study shows that as many as half of the matrix ... the dynamicist's analytical modelling skill which would appear both in the numerator as. Figure 2. ..... Brandon J A 1990 Strategies for structural dynamic modification (New York: John Wiley).
International Nuclear Information System (INIS)
De Canio, G.; Ranieri, N.
2009-01-01
Shake table tests allow to assess the effectiveness of technologies for structures protection from natural events such as earthquakes. The article summarizes the remarkable results of the most significant projects. [it
DEFF Research Database (Denmark)
Nielsen, Søren R.K.
The present textbook has been written for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M.Sc. students in structural engineering.......The present textbook has been written for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M.Sc. students in structural engineering....
International Nuclear Information System (INIS)
Hagen, Sebastian; Wolf, Martin; Tegeder, Petra; Luo Ying; Haag, Rainer
2010-01-01
Time- and angle-resolved two-photon photoemission (2PPE) spectroscopies have been used to investigated the electronic structure, electron dynamics and localization at the interface between tetra-tert-butyl imine (TBI) and Au(111). At a TBI coverage of one monolayer (ML), the two highest occupied molecular orbitals, HOMO and HOMO-1, are observed at an energy of -1.9 and -2.6 eV below the Fermi level (E F ), respectively, and coincide with the d-band features of the Au substrate. In the unoccupied electronic structure, the lowest unoccupied molecular orbital (LUMO) has been observed at 1.6 eV with respect to E F . In addition, two delocalized states that arise from the modified image potential at the TBI/metal interface have been identified. Their binding energies depend strongly on the adsorption structure of the TBI adlayer, which is coverage dependent in the submonolayer (≤1 ML) regime. Thus the binding energy of the lower interface state (IS) shifts from 3.5 eV at 1.0 ML to 4.0 eV at 0.5 ML, which is accompanied by a pronounced decrease in its lifetime from 100 fs to below 10 fs. This is a result of differences in the wave function overlap with electronic states of the Au(111) substrate at different binding energies. This study shows that in order to fully understand the electronic structure of organic adsorbates at metal surfaces, not only adsorbate- and substrate-induced electronic states have to be considered but also ISs, which are the result of a potential formed by the interaction between the adsorbate and the substrate.
DEFF Research Database (Denmark)
Tsakalidis, Konstantinos
multi-versioned indexing database. We ﬁrst present a generic method for making data structures fully persistent in external memory. This method can render any database multi-versioned, as long as its implementation abides by our assumptions. We obtain the result by presenting an implementation of B...
International Nuclear Information System (INIS)
Russo, Daniela
2000-01-01
A structural and dynamic characterization of proteins denatured states is essential to the understanding of mechanisms which control proteins folding. It is in this framework that this study has been undertaken in taking as model the neocarzinostatin globular protein. It is formed with seven cell-layers which form a barrel pattern maintained by two bi-sulfur bonds. A full characterization of native and denatured states, both from structural and dynamic point of view, has been implemented with several techniques able to bring data at different levels. During the experiments, ncs has been stabilized by temperature and by the use of a chaotropic agent: the guanidinium chloride (gdmcl). Small angle x-ray and neutron scattering have allowed us to obtain data on the variation of the protein compactness in terms of gdmcl temperature and concentration. The diffusion spectra show that ncs loses completely its globular structure above 80 C or in presence of about 5 m of gdmcl. Temperature and concentration of half denaturation are tm= 70 C and cm=3.5 m (in heavy water), respectively. Spectra analysis of strongly denatured protein has allowed us to obtain values of its chain length and of its persistence length which are in agreement with those theoretically estimated. Experiments have been carried out too to measure the radius of gyration to zero concentration and the second virial coefficient of the solution in order to estimate the interactions between the molecules. A full characterization has been performed in terms of gdmcl temperature and concentration by fluorescence and circular dichroism. These two techniques reveal the variations of the local three-dimensional structure and secondary structure of the protein respectively. Microcalorimetry measurements have shown that thermal denaturation of ncs is completely reversible and has been used to measure the enthalpy variation during the transition. At last, it has been possible to study ncs intramolecular dynamics in
Cantat, Isabelle; Graner, François; Pitois, Olivier; Höhler, Reinard; Elias, Florence; Saint-Jalmes, Arnaud; Rouyer, Florence
2013-01-01
This book is the first to provide a thorough description of all aspects of the physico-chemical properties of foams. It sets out what is known about their structure, their stability, and their rheology. Engineers, researchers and students will find descriptions of all the key concepts, illustrated by numerous applications, as well as experiments and exercises for the reader. A solutions manual for lecturers is available via the publisher's web site.
Network structure shapes spontaneous functional connectivity dynamics.
Shen, Kelly; Hutchison, R Matthew; Bezgin, Gleb; Everling, Stefan; McIntosh, Anthony R
2015-04-08
The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination between brain regions, will be closely tied to the fiber pathways that form the underlying structural network. Here, we empirically examined the influence of network structure on FC dynamics by comparing resting-state FC (rsFC) obtained using BOLD-fMRI in macaques (Macaca fascicularis) to structural connectivity derived from macaque axonal tract tracing studies. Consistent with predictions from simulation studies, the correspondence between rsFC and structural connectivity increased as the sample duration increased. Regions with reciprocal structural connections showed the most stable rsFC across time. The data suggest that the transient nature of FC is in part dependent on direct underlying structural connections, but also that dynamic coordination can occur via polysynaptic pathways. Temporal stability was found to be dependent on structural topology, with functional connections within the rich-club core exhibiting the greatest stability over time. We discuss these findings in light of highly variable functional hubs. The results further elucidate how large-scale dynamic functional coordination exists within a fixed structural architecture. Copyright © 2015 the authors 0270-6474/15/355579-10$15.00/0.
Coherent structures and dynamical systems
Jimenez, Javier
1987-01-01
Any flow of a viscous fluid has a finite number of degrees of freedom, and can therefore be seen as a dynamical system. A coherent structure can be thought of as a lower dimensional manifold in whose neighborhood the dynamical system spends a substantial fraction of its time. If such a manifold exists, and if its dimensionality is substantially lower that that of the full flow, it is conceivable that the flow could be described in terms of the reduced set of degrees of freedom, and that such a description would be simpler than one in which the existence of structure was not recognized. Several examples are briefly summarized.
Czech Academy of Sciences Publication Activity Database
Brus, Jiří; Urbanová, Martina; Strachota, Adam
2008-01-01
Roč. 41, č. 2 (2008), s. 372-386 ISSN 0024-9297 R&D Projects: GA AV ČR IAA400500602 Institutional research plan: CEZ:AV0Z40500505 Keywords : solid-state NMR * polymer networks * polysilsequioxanes Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.407, year: 2008
Relating structure and dynamics in organisation models
Jonkers, C.M.; Treur, J.
2002-01-01
To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems,
International Nuclear Information System (INIS)
Shaw, Wendy J.; Ferris, Kim F.
2008-01-01
Amelogenin is the predominant protein found during enamel development and has been shown to be essential to proper enamel formation. LRAP is a naturally occurring splice variant that preserves the charged N- and C-termini of full length amelogenin, regions thought to be crucial in interacting with hydroxyapatite. Particularly, the highly charged C-terminal hexapeptide (KREEVD) is thought to be the region most intimately interacting with HAP. We investigated the structure of this charged region, as well as the proximity to the surface and the mobility of two of the residues. We found the structure to be consistent with a random coil or more extended structure, as has been found for more internalized residues in the C-terminus. The backbone K 54 ( 13 C(prime)), V 58 ( 13 C(prime)) and V 58 ( 15 N) were all found to be very close to the surface of HAP, ∼ 6.0 (angstrom), suggesting a strong interaction and emphasizing the importance of these residues in interacting with HAP. However, both ends of the hexapeptide, at residues K 54 and V 58 , experience significant mobility under hydrated conditions, implying that another portion of the protein helps to stabilize the strong LRAP-HAP interaction. Interestingly, the backbone of the C-terminal third of the protein is consistently 6.0 (angstrom) from the HAP surface, suggesting that this region of the protein is laying flat on the surface with no 3-dimensional folding. The combination of these features, i.e., a random coil structure, a significant mobility and a lack of three-dimensional folding in this region of the protein may be important in a functional role, allowing the C-terminus to effectively interact with HAP while at the same time allowing maximum crystal inhibition
Static and Dynamic Membrane Structures
Directory of Open Access Journals (Sweden)
Sergiu Ivanov
2012-10-01
Full Text Available While originally P systems were defined to contain multiset rewriting rules, it turned out that considering different types of rules may produce important results, such as increasing the computational power of the rules. This paper focuses on factoring out the concept of a membrane structure out of various P system models with the goal of providing useful formalisations. Both static and dynamic membrane structures are considered.
Structural system identification: Structural dynamics model validation
Energy Technology Data Exchange (ETDEWEB)
Red-Horse, J.R.
1997-04-01
Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.
Analysis of Nonlinear Dynamic Structures
African Journals Online (AJOL)
Bheema
work a two degrees of freedom nonlinear system with zero memory was ... FRF is the most widely used method in structural dynamics which gives information about the ..... 3.6, which is the waterfall diagram of the same response, as well.
Directory of Open Access Journals (Sweden)
Fernanda da Silva Mendes
2013-06-01
Full Text Available http://dx.doi.org/10.5902/198050989283The structure dynamics of an understorey vegetation influenced by gaps caused by reduced impact logging was analyzed during 12 years in a solid ground rain forest in the municipality of Moju, Pará state, eastern Brazilian Amazon forest. Angiosperm individuals from 10 cm height up to 5 cm DBH were surveyed in a 468 m² sample area in six occasions (1998, 1999, 2000, 2001, 2007 and 2010, they were analyzed considering their life-forms (trees, shrub, lianas, herbs and palms, abundance, frequency, size classes (CT1 = 10 cm ≤ HT < 50 cm; CT2 = 50 cm ≤ HT < 130 cm; CT3 = 130 cm < HT and DAP < 2 cm; and CT4 = 2 cm ≤ DAP < 5 cm and relative natural regeneration Burseraceae, Marantaceae, Violaceae and Lecythidaceae were the most important families in the study area in every occasions, while the most representative species were Monotagma sp1., Monotagma sp2., Rinorea guianensis, Lecythis idatimon e Protium pilosum. The most frequent life forms were trees, herbs and lianas in all occasions. The dynamics of life forms depended on light intensity. The establishment of commercial and potentially commercial species was favored by gaps, suggesting that natural regeneration of those species do not need to be assisted for guaranteeing timber stocks for future harvests.
Chemical structure and dynamics. Annual report 1995
Energy Technology Data Exchange (ETDEWEB)
Colson, S.D.; McDowell, R.S.
1996-05-01
The Chemical Structure and Dynamics program is a major component of Pacific Northwest National Laboratory`s Environmental Molecular Sciences Laboratory (EMSL), providing a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for the characterization of waste tanks and pollutant distributions, and for detection and monitoring of trace atmospheric species.
Chemical structure and dynamics: Annual report 1996
International Nuclear Information System (INIS)
Colson, S.D.; McDowell, R.S.
1997-03-01
The Chemical Structure and Dynamics (CS ampersand D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species
Chemical structure and dynamics: Annual report 1996
Energy Technology Data Exchange (ETDEWEB)
Colson, S.D.; McDowell, R.S.
1997-03-01
The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.
Dynamic Soil-Structure-Interaction
DEFF Research Database (Denmark)
Kellezi, Lindita
1998-01-01
The aim of this thesis is to investigate and develop alternative methods of analyzing problems in dynamic soil-structure-interaction. The main focus is the major difficulty posed by such an analysis - the phenomenon of waves which radiate outward from the excited structures towards infinity....... In numerical calculations, only a finite region of the foundation metium is analyzed and something is done to prevent the outgoing radiating waves to reflect from the regions's boundary. The prosent work concerns itself with the study of such effects, using the finite element method, and artificial...... transmitting boundary at the edges of the computational mesh. To start with, an investigation of the main effects of the interaction phenomena is carried out employing a widely used model, considering dynamic stiffness of the unbounded soil as frequency independent. Then a complete description...
DEFF Research Database (Denmark)
Bauer, R.; Danielsen, E.; Hemmingsen, L.
1997-01-01
are consistent with an intact scissile peptide bond in the enzyme-substrate complex of Bz-Gly-L-Phe and Bz-Gly-Gly-L-Phe. A single nuclear quadrupole interaction (NQI) is observed for the crystalline state of the enzyme between pH 5.7 and pH 9.4. This NQI agrees with calculations based on the metal coordination...... geometry for cadmium in crystalline CPD derived from X-ray diffraction studies. A single broad distribution of NQIs is observed for CPD in sucrose solutions and 0.1 M NaCl at pH values below 6.5. This NQI (NQI-1') has parameters very close to those for the crystalline state. The enzyme metal site......, characterized by this NQI, is converted into two new enzyme metal sites over the pH range of 6.5-8.3. The metal coordination sphere of one of these has a NQI (NQI-1) with parameters similar to those at lower pH values (NQI-1') while the other NQI (NQI-2) is characterized by markedly different NQI parameters...
Band structure dynamics in indium wires
Chávez-Cervantes, M.; Krause, R.; Aeschlimann, S.; Gierz, I.
2018-05-01
One-dimensional indium wires grown on Si(111) substrates, which are metallic at high temperatures, become insulating below ˜100 K due to the formation of a charge density wave (CDW). The physics of this transition is not conventional and involves a multiband Peierls instability with strong interband coupling. This CDW ground state is readily destroyed with femtosecond laser pulses resulting in a light-induced insulator-to-metal phase transition. The current understanding of this transition remains incomplete, requiring measurements of the transient electronic structure to complement previous investigations of the lattice dynamics. Time- and angle-resolved photoemission spectroscopy with extreme ultraviolet radiation is applied to this end. We find that the transition from the insulating to the metallic band structure occurs within ˜660 fs, which is a fraction of the amplitude mode period. The long lifetime of the transient state (>100 ps) is attributed to trapping in a metastable state in accordance with previous work.
International Nuclear Information System (INIS)
Chowdhury, P.; Gupta, S.K.; Prajapat, C.L.; Yashwant, G.; Singh, M.R.; Ravikumar, G.; Yakhmi, J.V.; Sahni, V.C.
2006-01-01
Current driven transition from a highly pinned metastable disordered phase (DP) to a more ordered equilibrium phase (EP) of vortex structure has been investigated in the peak effect regime of weakly pinned type-II superconductor 2H-NbSe 2 . Critical current density (J c ) in DP shows a maximum at the onset of the peak effect (i.e. for applied field H = H on ), where J c in the EP is observed to be minimum. Time needed for the transition depends exponentially on the transport current. A model to describe the kinetics of the transition is presented. Time dependence of voltage and the current dependence of relaxation time obtained from experiments are in good agreement with the model. Energy barrier (U ) characterizing the relaxation process extracted from the model also shows a peak at H on . Peaks in J c in the DP and U have been qualitatively understood in terms of the interplay between elastic and pinning forces
Fisher, Aaron J.; Newman, Michelle G.; Molenaar, Peter C. M.
2011-01-01
Objective: The present article aimed to demonstrate that the establishment of dynamic patterns during the course of psychotherapy can create attractor states for continued adaptive change following the conclusion of treatment. Method: This study is a secondary analysis of T. D. Borkovec and E. Costello (1993). Of the 55 participants in the…
Dynamics of Quantum Causal Structures
Castro-Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav
2018-01-01
It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, because of quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g., one cannot say whether operation in laboratory A occurs before or after operation in laboratory B ). Here, we develop a framework for "dynamics of causal structures," i.e., for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B , via superposition of causal orders, to a channel from B to A . We generalize our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.
Dynamics of Quantum Causal Structures
Directory of Open Access Journals (Sweden)
Esteban Castro-Ruiz
2018-03-01
Full Text Available It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, because of quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g., one cannot say whether operation in laboratory A occurs before or after operation in laboratory B. Here, we develop a framework for “dynamics of causal structures,” i.e., for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B, via superposition of causal orders, to a channel from B to A. We generalize our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.
Structure and dynamics of solutions
Ohtaki, H
2013-01-01
Recent advances in the study of structural and dynamic properties of solutions have provided a molecular picture of solute-solvent interactions. Although the study of thermodynamic as well as electronic properties of solutions have played a role in the development of research on the rate and mechanism of chemical reactions, such macroscopic and microscopic properties are insufficient for a deeper understanding of fast chemical and biological reactions. In order to fill the gap between the two extremes, it is necessary to know how molecules are arranged in solution and how they change their pos
Dynamics of a structured neuron population
International Nuclear Information System (INIS)
Pakdaman, Khashayar; Salort, Delphine; Perthame, Benoît
2010-01-01
We study the dynamics of assemblies of interacting neurons. For large fully connected networks, the dynamics of the system can be described by a partial differential equation reminiscent of age-structure models used in mathematical ecology, where the 'age' of a neuron represents the time elapsed since its last discharge. The nonlinearity arises from the connectivity J of the network. We prove some mathematical properties of the model that are directly related to qualitative properties. On the one hand, we prove that it is well-posed and that it admits stationary states which, depending upon the connectivity, can be unique or not. On the other hand, we study the long time behaviour of solutions; both for small and large J, we prove the relaxation to the steady state describing asynchronous firing of the neurons. In the middle range, numerical experiments show that periodic solutions appear expressing re-synchronization of the network and asynchronous firing
Structured population dynamics: continuous size and discontinuous stage structures.
Buffoni, Giuseppe; Pasquali, Sara
2007-04-01
A nonlinear stochastic model for the dynamics of a population with either a continuous size structure or a discontinuous stage structure is formulated in the Eulerian formalism. It takes into account dispersion effects due to stochastic variability of the development process of the individuals. The discrete equations of the numerical approximation are derived, and an analysis of the existence and stability of the equilibrium states is performed. An application to a copepod population is illustrated; numerical results of Eulerian and Lagrangian models are compared.
Annual Report 2000. Chemical Structure and Dynamics
Energy Technology Data Exchange (ETDEWEB)
Colson, Steven D.; McDowell, Robin S.
2001-04-15
This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS&D) program is meeting the need for a fundamental, molecular-level understanding by 1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; 2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and 3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.
Sierra Structural Dynamics Theory Manual
Energy Technology Data Exchange (ETDEWEB)
Reese, Garth M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-10-19
Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD , we refer the reader to Sierra/SD, User's Notes . Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature. This page intentionally left blank.
Dynamics and structure of stretched flames
Energy Technology Data Exchange (ETDEWEB)
Law, C.K. [Princeton Univ., NJ (United States)
1993-12-01
This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.
Changing state structures: Outside in
Krasner, Stephen D.
2011-01-01
In explaining the development of institutional structures within states, social science analysis has focused on autochthonous factors and paid less attention to the way in which external factors, especially purposive agent-directed as opposed to more general environmental factors, can influence domestic authority structures. For international relations scholarship, this lacunae is particularly troubling or perhaps, just weird. If the international system is anarchical, then political leaders can pursue any policy option. In some cases, the most attractive option would be conventional state to state interactions, diplomacy, or war. In other instances, however, changing the domestic authority structures of other states might be more appealing. In some cases, domestic authority structures have been influenced through bargaining, and in others through power. Power may reflect either explicit agent-oriented decisions or social processes that reflect the practices, values, and norms of more powerful entities. PMID:22198756
Structure and dynamics of molten salts
International Nuclear Information System (INIS)
Rovere, M.; Tosi, M.P.
1986-02-01
Modern techniques of liquid state physics have been successfully used over the last decade to probe the microscopic structure and dynamics of a variety of multicomponent liquids in which relative ordering of the species is present near freezing. The alkali halides are prototypes for this specific type of short range order in relation to the nature of bonding, but the systems in question include also other monovalent and polyvalent metal-ion halides, alkali-based intermetallic compounds, and chalcogen-based alloys. A viewpoint is taken in this review which gives attention to relations between liquid and solid phase properties across melting for compound systems at stoichiometric composition. In addition, large deviations from stoichiometry can be realized in the liquid phase, to display trends of evolution of structure, bonding and electronic states with composition. (author)
Dynamic analysis of embedded structures
International Nuclear Information System (INIS)
Kausel, E.; Whitman, R.V.; Morray, J.P.
1977-01-01
The paper presents simplified rules to account for embeddment and soil layering in the soil-structure interaction problem, to be used in dynamic analysis. The relationship between the spring method, and a direct solution (in which both soil and structure are modeled with finite elements and linear members) is first presented. It is shown that for consistency of the results with the two solution methods the spring method should be performed in the following three steps: 1. Determination of the motion of the massless foundation (having the same shape as the actual one) when subjected to the same input motion as the direct solution. 2. Determination of the frequency dependent subgrade stiffness for the relevant degrees of freedom. 3. Computations of the response of the real structure supported on frequency dependent soil springs and subjected at the base of these springs to the motion computed in step 1. The first two steps require, in general, finite element methods, which would make the procedure not attractive. It is shown in the paper, however, that excellent approximations can be obtained, on the basis of 1-dimensional wave propagation theory for the solution of step 1, and correction factors modifying for embeddment the corresponding springs of a surface footing on a layered stratum, for the solution of step 2. (Auth.)
Dynamic buckling of inelastic structures
International Nuclear Information System (INIS)
Pegon, P.; Guelin, P.
1983-01-01
The aim of this paper is to provide research engineers with a method of approach, qualitative feature and order of magnitude of the relevant parameters in the field of dynamic buckling of structures exhibiting constitutive irreversibility and geometrical, constitutive or loading imperfections. It is difficult to adjust some of the classical analysis of the quasi-static elastic case. There remain also some difficulties in justifying the choice of constitutive schemes and in dealing with general kinematic formulation. Moreover, the interpretation of dynamical experimental data is not an easy matter. Consequently, the attempts described here use a simple symbolic model including all essential physical aspects. This symbolic model, of discrete character, is an n-hinged strut with masses located at each n+1 joint. The constitutive properties of the strut and hinge are defined using the same method: a dash-pot is in parallel with a two fold element (spring and friction-slider in series). The intrinsic restrictions are: the two dimensionality assumption, however no additional hypothesis are made concerning the kinematic of the constitutive elements; the use of simple sources of intrinsic dissipation. The relevant question of the longitudinal-transverse coupling effects is studied. Then, after various validation, we verify that a Lagrange resolution of this n+1 body problem gives physical relevant qualitative results concerning rods and cylindrical shells subjected to impact loading. (orig./RW)
Relating structure and dynamics in organisation models
Jonker, C.M.; Treur, J.
2003-01-01
To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems, on
Non-linear wave packet dynamics of coherent states
Indian Academy of Sciences (India)
In recent years, the non-linear quantum dynamics of these states have revealed some striking features. It was found that under the action of a Hamil- tonian which is a non-linear function of the photon operator(s) only, an initial coherent state loses its coherent structure quickly due to quantum dephasing induced by the non-.
The structural dynamics of social class.
Kraus, Michael W; Park, Jun Won
2017-12-01
Individual agency accounts of social class persist in society and even in psychological science despite clear evidence for the role of social structures. This article argues that social class is defined by the structural dynamics of society. Specifically, access to powerful networks, groups, and institutions, and inequalities in wealth and other economic resources shape proximal social environments that influence how individuals express their internal states and motivations. An account of social class that highlights the means by which structures shape and are shaped by individuals guides our understanding of how people move up or down in the social class hierarchy, and provides a framework for interpreting neuroscience studies, experimental paradigms, and approaches that attempt to intervene on social class disparities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Abhinav, S.; Manohar, C. S.
2018-03-01
The problem of combined state and parameter estimation in nonlinear state space models, based on Bayesian filtering methods, is considered. A novel approach, which combines Rao-Blackwellized particle filters for state estimation with Markov chain Monte Carlo (MCMC) simulations for parameter identification, is proposed. In order to ensure successful performance of the MCMC samplers, in situations involving large amount of dynamic measurement data and (or) low measurement noise, the study employs a modified measurement model combined with an importance sampling based correction. The parameters of the process noise covariance matrix are also included as quantities to be identified. The study employs the Rao-Blackwellization step at two stages: one, associated with the state estimation problem in the particle filtering step, and, secondly, in the evaluation of the ratio of likelihoods in the MCMC run. The satisfactory performance of the proposed method is illustrated on three dynamical systems: (a) a computational model of a nonlinear beam-moving oscillator system, (b) a laboratory scale beam traversed by a loaded trolley, and (c) an earthquake shake table study on a bending-torsion coupled nonlinear frame subjected to uniaxial support motion.
Langevin dynamics for ramified structures
Méndez, Vicenç; Iomin, Alexander; Horsthemke, Werner; Campos, Daniel
2017-06-01
We propose a generalized Langevin formalism to describe transport in combs and similar ramified structures. Our approach consists of a Langevin equation without drift for the motion along the backbone. The motion along the secondary branches may be described either by a Langevin equation or by other types of random processes. The mean square displacement (MSD) along the backbone characterizes the transport through the ramified structure. We derive a general analytical expression for this observable in terms of the probability distribution function of the motion along the secondary branches. We apply our result to various types of motion along the secondary branches of finite or infinite length, such as subdiffusion, superdiffusion, and Langevin dynamics with colored Gaussian noise and with non-Gaussian white noise. Monte Carlo simulations show excellent agreement with the analytical results. The MSD for the case of Gaussian noise is shown to be independent of the noise color. We conclude by generalizing our analytical expression for the MSD to the case where each secondary branch is n dimensional.
Dynamic Failure of Composite and Sandwich Structures
Abrate, Serge; Rajapakse, Yapa D S
2013-01-01
This book presents a broad view of the current state of the art regarding the dynamic response of composite and sandwich structures subjected to impacts and explosions. Each chapter combines a thorough assessment of the literature with original contributions made by the authors. The first section deals with fluid-structure interactions in marine structures. The first chapter focuses on hull slamming and particularly cases in which the deformation of the structure affects the motion of the fluid during the water entry of flexible hulls. Chapter 2 presents an extensive series of tests underwater and in the air to determine the effects of explosions on composite and sandwich structures. Full-scale structures were subjected to significant explosive charges, and such results are extremely rare in the open literature. Chapter 3 describes a simple geometrical theory of diffraction for describing the interaction of an underwater blast wave with submerged structures. The second section addresses the problem of...
Dynamic polarizabilities for the low lying states of Ca+
International Nuclear Information System (INIS)
Tang, Yong-Bo; Shi, Ting-Yun; Qiao, Hao-Xue; Mitroy, J
2014-01-01
The dynamic polarizabilities of the 4s, 3d and 4p states of Ca + are calculated using a relativistic structure model. The wavelengths at which the Stark shifts between different pairs of transitions are zero are calculated. Experimental determination of the magic wavelengths could prove useful in developing better atomic structure models and in particular lead to improved values of the polarizabilities for the Ca + (3d) states
Excited-state molecular photoionization dynamics
International Nuclear Information System (INIS)
Pratt, S.T.
1995-01-01
This review presents a survey of work using resonance-enhanced multiphoton ionization and double-resonance techniques to study excited-state photoionization dynamics in molecules. These techniques routinely provide detail and precision that are difficult to achieve in single-photon ionization from the ground state. The review not only emphasizes new aspects of photoionization revealed in the excited-state experiments but also shows how the excited-state techniques can provide textbook illustrations of some fundamental mechanisms in molecular photoionization dynamics. Most of the examples are confined to diatomic molecules. (author)
Chemical Structure and Dynamics annual report 1997
International Nuclear Information System (INIS)
Colson, S.D.; McDowell, R.S.
1998-03-01
The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE's environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous
Chemical Structure and Dynamics annual report 1997
Energy Technology Data Exchange (ETDEWEB)
Colson, S.D.; McDowell, R.S.
1998-03-01
The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE`s environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous.
Dynamic analysis and design of offshore structures
Chandrasekaran, Srinivasan
2015-01-01
This book attempts to provide readers with an overall idea of various types of offshore platform geometries. It covers the various environmental loads encountered by these structures, a detailed description of the fundamentals of structural dynamics in a class-room style, estimate of damping in offshore structures and their applications in the preliminary analysis and design. Basic concepts of structural dynamics are emphasized through simple illustrative examples and exercises. Design methodologies and guidelines, which are FORM based concepts are explained through a few applied example structures. Each chapter also has tutorials and exercises for self-learning. A dedicated chapter on stochastic dynamics will help the students to extend the basic concepts of structural dynamics to this advanced domain of research. Hydrodynamic response of offshore structures with perforated members is one of the recent research applications, which is found to be one of the effective manner of retrofitting offshore structur...
Controlling the dynamics of multi-state neural networks
International Nuclear Information System (INIS)
Jin, Tao; Zhao, Hong
2008-01-01
In this paper, we first analyze the distribution of local fields (DLF) which is induced by the memory patterns in the Q-Ising model. It is found that the structure of the DLF is closely correlated with the network dynamics and the system performance. However, the design rule adopted in the Q-Ising model, like the other rules adopted for multi-state neural networks with associative memories, cannot be applied to directly control the DLF for a given set of memory patterns, and thus cannot be applied to further study the relationships between the structure of the DLF and the dynamics of the network. We then extend a design rule, which was presented recently for designing binary-state neural networks, to make it suitable for designing general multi-state neural networks. This rule is able to control the structure of the DLF as expected. We show that controlling the DLF not only can affect the dynamic behaviors of the multi-state neural networks for a given set of memory patterns, but also can improve the storage capacity. With the change of the DLF, the network shows very rich dynamic behaviors, such as the 'chaos phase', the 'memory phase', and the 'mixture phase'. These dynamic behaviors are also observed in the binary-state neural networks; therefore, our results imply that they may be the universal behaviors of feedback neural networks
State dynamics of a double sandbar system
Price, T.D.; Ruessink, B.G.
2011-01-01
A 9.3-year dataset of low-tide time-exposure images from Surfers Paradise, Northern Gold Coast, Australia was used to characterise the state dynamics of a double sandbar system. The morphology of the nearshore sandbars was described by means of the sequential bar state classification scheme of
State-to-state dynamics of molecular energy transfer
Energy Technology Data Exchange (ETDEWEB)
Gentry, W.R.; Giese, C.F. [Univ. of Minnesota, Minneapolis (United States)
1993-12-01
The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.
International Nuclear Information System (INIS)
Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D.
2001-01-01
55 Mn nuclear magnetic resonance (NMR) measurements have been carried out in an oriented powder sample of Mn12 acetate at low temperature (1.4--3 K) in order to investigate locally the static and dynamic magnetic properties of the molecule in its high-spin S=10 ground state. We report the observation of three 55 MnNMR lines under zero external magnetic field. From the resonance frequency and the width of the lines we derive the internal hyperfine field and the quadrupole coupling constant at each of the three nonequivalent Mn ion sites. From the field dependence of the spectrum we obtain a direct confirmation of the standard picture, in which spin moments of Mn 4+ ions (S=3/2) of the inner tetrahedron are polarized antiparallel to that of Mn 3+ ions (S=2) of the outer ring with no measurable canting from the easy axis up to an applied field of 6 T. It is found that the splitting of the 55 Mn-NMR lines when a magnetic field is applied at low temperature allows one to monitor the off-equilibrium population of the molecules in the different low lying magnetic states. The measured nuclear spin-lattice relaxation time T 1 strongly depends on temperature and magnetic field. The behavior could be fitted well by considering the local-field fluctuations at the nuclear 55 Mn site due to the thermal reorientation of the total S=10 spin of the molecule. From the fit of the data one can derive the product of the spin-phonon coupling constant times the mean-square value of the fluctuating hyperfine field. The two constants could be estimated separately by making some assumptions. The comparison of the mean-square fluctuation from relaxation with the static hyperfine field from the spectrum suggests that nonuniform terms (q≠0) are important in describing the spin dynamics of the local Mn moments in the ground state
Kowalewska, A; Nowacka, M; Włodarska, M; Zgardzińska, B; Zaleski, R; Oszajca, M; Krajenta, J; Kaźmierski, S
2017-10-18
Reactive octahedral silsesquioxanes of rod-like [octakis(3-chloropropyl)octasilsesquioxane - T 8 (CH 2 CH 2 CH 2 Cl) 8 ] and spherical [octavinyloctasilsesquioxane - T 8 (CH[double bond, length as m-dash]CH 2 ) 8 ] structure can undergo reversible thermally induced phase transitions in the solid state. The phase behaviour has been studied with differential scanning calorimetry (DSC, including temperature modulated DSC), X-ray diffraction, dielectric relaxation spectroscopy (DRS), and nuclear magnetic resonance spectroscopy in the solid state (SS NMR), as well as positron annihilation lifetime spectroscopy (PALS) and polarized optical microscopy (POM). The mechanisms involving fitting the molecules into most symmetrical crystal lattices vary for species of different structure. Thermal energy can be used to expand the crystal lattice leading to thermochromism in the case of T 8 (CH[double bond, length as m-dash]CH 2 ) 8 or conversely to an unusual negative thermal expansion of crystals of T 8 (CH 2 CH 2 CH 2 Cl) 8 that results in their self-actuation. The complex behaviour is reflected in unusual changes in the capacitance and fractional free volume of the material. These phenomena can be used for molecular design of advanced well-defined hybrid materials capable of reversible thermally induced structural transformations. The findings present a new perspective for POSS-based flexible metal-organic frameworks (MOF) of cooperative structural transformability via entropy-based translational sub-net sliding.
Structural and dynamical properties of Yukawa balls
International Nuclear Information System (INIS)
Block, D; Kroll, M; Arp, O; Piel, A; Kaeding, S; Ivanov, Y; Melzer, A; Henning, C; Baumgartner, H; Ludwig, P; Bonitz, M
2007-01-01
To study the structural and dynamical properties of finite 3D dust clouds (Yukawa balls) new diagnostic tools have been developed. This contribution describes the progress towards 3D diagnostics for measuring the particle positions. It is shown that these diagnostics are capable of investigating the structural and dynamical properties of Yukawa balls and gaining insight into their basic construction principles
Energy Technology Data Exchange (ETDEWEB)
Zhou, Linsen [Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093 (China); Xie, Daiqian, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Guo, Hua, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)
2015-03-28
A detailed quantum mechanical characterization of the photodissociation dynamics of H{sub 2}O at 121.6 nm is presented. The calculations were performed using a full-dimensional wave packet method on coupled potential energy surfaces of all relevant electronic states. Our state-to-state model permits a detailed analysis of the OH(X{sup ~}/A{sup ~}) product fine-structure populations as a probe of the non-adiabatic dissociation dynamics. The calculated rotational state distributions of the two Λ-doublet levels of OH(X{sup ~}, v = 0) exhibit very different characteristics. The A′ states, produced mostly via the B{sup ~}→X{sup ~} conical intersection pathway, have significantly higher populations than the A″ counterparts, which are primarily from the B{sup ~}→A{sup ~} Renner-Teller pathway. The former features a highly inverted and oscillatory rotational state distribution, while the latter has a smooth distribution with much less rotational excitation. In good agreement with experiment, the calculated total OH(X{sup ~}) rotational state distribution and anisotropy parameters show clear even-odd oscillations, which can be attributed to a quantum mechanical interference between waves emanating from the HOH and HHO conical intersections in the B{sup ~}→X{sup ~} non-adiabatic pathway. On the other hand, the experiment-theory agreement for the OH(A{sup ~}) fragment is also satisfactory, although some small quantitative differences suggest remaining imperfections of the ab initio based potential energy surfaces.
International Nuclear Information System (INIS)
Zhou, Linsen; Xie, Daiqian; Guo, Hua
2015-01-01
A detailed quantum mechanical characterization of the photodissociation dynamics of H 2 O at 121.6 nm is presented. The calculations were performed using a full-dimensional wave packet method on coupled potential energy surfaces of all relevant electronic states. Our state-to-state model permits a detailed analysis of the OH(X ~ /A ~ ) product fine-structure populations as a probe of the non-adiabatic dissociation dynamics. The calculated rotational state distributions of the two Λ-doublet levels of OH(X ~ , v = 0) exhibit very different characteristics. The A′ states, produced mostly via the B ~ →X ~ conical intersection pathway, have significantly higher populations than the A″ counterparts, which are primarily from the B ~ →A ~ Renner-Teller pathway. The former features a highly inverted and oscillatory rotational state distribution, while the latter has a smooth distribution with much less rotational excitation. In good agreement with experiment, the calculated total OH(X ~ ) rotational state distribution and anisotropy parameters show clear even-odd oscillations, which can be attributed to a quantum mechanical interference between waves emanating from the HOH and HHO conical intersections in the B ~ →X ~ non-adiabatic pathway. On the other hand, the experiment-theory agreement for the OH(A ~ ) fragment is also satisfactory, although some small quantitative differences suggest remaining imperfections of the ab initio based potential energy surfaces
Zhou, Linsen; Xie, Daiqian; Guo, Hua
2015-03-01
A detailed quantum mechanical characterization of the photodissociation dynamics of H2O at 121.6 nm is presented. The calculations were performed using a full-dimensional wave packet method on coupled potential energy surfaces of all relevant electronic states. Our state-to-state model permits a detailed analysis of the OH( X ˜ / A ˜ ) product fine-structure populations as a probe of the non-adiabatic dissociation dynamics. The calculated rotational state distributions of the two Λ-doublet levels of OH( X ˜ , v = 0) exhibit very different characteristics. The A' states, produced mostly via the B ˜ → X ˜ conical intersection pathway, have significantly higher populations than the A″ counterparts, which are primarily from the B ˜ → A ˜ Renner-Teller pathway. The former features a highly inverted and oscillatory rotational state distribution, while the latter has a smooth distribution with much less rotational excitation. In good agreement with experiment, the calculated total OH( X ˜ ) rotational state distribution and anisotropy parameters show clear even-odd oscillations, which can be attributed to a quantum mechanical interference between waves emanating from the HOH and HHO conical intersections in the B ˜ → X ˜ non-adiabatic pathway. On the other hand, the experiment-theory agreement for the OH( A ˜ ) fragment is also satisfactory, although some small quantitative differences suggest remaining imperfections of the ab initio based potential energy surfaces.
Zhou, Linsen; Xie, Daiqian; Guo, Hua
2015-03-28
A detailed quantum mechanical characterization of the photodissociation dynamics of H2O at 121.6 nm is presented. The calculations were performed using a full-dimensional wave packet method on coupled potential energy surfaces of all relevant electronic states. Our state-to-state model permits a detailed analysis of the OH(X̃/Ã) product fine-structure populations as a probe of the non-adiabatic dissociation dynamics. The calculated rotational state distributions of the two Λ-doublet levels of OH(X̃, v = 0) exhibit very different characteristics. The A' states, produced mostly via the B̃→X̃ conical intersection pathway, have significantly higher populations than the A″ counterparts, which are primarily from the B̃→Ã Renner-Teller pathway. The former features a highly inverted and oscillatory rotational state distribution, while the latter has a smooth distribution with much less rotational excitation. In good agreement with experiment, the calculated total OH(X̃) rotational state distribution and anisotropy parameters show clear even-odd oscillations, which can be attributed to a quantum mechanical interference between waves emanating from the HOH and HHO conical intersections in the B̃→X̃ non-adiabatic pathway. On the other hand, the experiment-theory agreement for the OH(Ã) fragment is also satisfactory, although some small quantitative differences suggest remaining imperfections of the ab initio based potential energy surfaces.
Nuclear structure with coherent states
Raduta, Apolodor Aristotel
2015-01-01
This book covers the essential features of a large variety of nuclear structure properties, both collective and microscopic in nature. Most of results are given in an analytical form thus giving deep insight into the relevant phenomena. Using coherent states as variational states, which allows a description in the classical phase space, or provides the generating function for a boson basis, is an efficient tool to account, in a realistic fashion, for many complex properties. A detailed comparison with all existing nuclear structure models provides readers with a proper framework and, at the same time, demonstrates the prospects for new developments. The topics addressed are very much of current concern in the field. The book will appeal to practicing researchers and, due to its self-contained account, can also be successfully read and used by new graduate students.
Phase space structure of generalized Gaussian cat states
International Nuclear Information System (INIS)
Nicacio, Fernando; Maia, Raphael N.P.; Toscano, Fabricio; Vallejos, Raul O.
2010-01-01
We analyze generalized Gaussian cat states obtained by superposing arbitrary Gaussian states. The structure of the interference term of the Wigner function is always hyperbolic, surviving the action of a thermal reservoir. We also consider certain superpositions of mixed Gaussian states. An application to semiclassical dynamics is discussed.
Papaioannou, A; Louis, M; Dhital, B; Ho, H P; Chang, E J; Boutis, G S
2015-05-01
Methods for isolating elastin from fat, collagen, and muscle, commonly used in the design of artificial elastin based biomaterials, rely on exposing tissue to harsh pH levels and temperatures that usually denature many proteins. At present, a quantitative measurement of the modifications to elastin following isolation from other extracellular matrix constituents has not been reported. Using magic angle spinning (13)C NMR spectroscopy and relaxation methodologies, we have measured the modification in structure and dynamics following three known purification protocols. Our experimental data reveal that the (13)C spectra of the hydrated samples appear remarkably similar across the various purification methods. Subtle differences in the half maximum widths were observed in the backbone carbonyl suggesting possible structural heterogeneity across the different methods of purification. Additionally, small differences in the relative signal intensities were observed between purified samples. Lyophilizing the samples results in a reduction of backbone motion and reveals additional differences across the purification methods studied. These differences were most notable in the alanine motifs indicating possible changes in cross-linking or structural rigidity. The measured correlation times of glycine and proline moieties are observed to also vary considerably across the different purification methods, which may be related to peptide bond cleavage. Lastly, the relative concentration of desmosine cross-links in the samples quantified by MALDI mass spectrometry is reported. Copyright © 2015 Elsevier B.V. All rights reserved.
Structural biology by NMR: structure, dynamics, and interactions.
Directory of Open Access Journals (Sweden)
Phineus R L Markwick
2008-09-01
Full Text Available The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time-scales from picoseconds to seconds. Nuclear Magnetic Resonance (NMR spectroscopy has emerged as the method of choice for studying both protein structure and dynamics in solution. Typically, NMR experiments are sensitive both to structural features and to dynamics, and hence the measured data contain information on both. Despite major progress in both experimental approaches and computational methods, obtaining a consistent view of structure and dynamics from experimental NMR data remains a challenge. Molecular dynamics simulations have emerged as an indispensable tool in the analysis of NMR data.
Energy Technology Data Exchange (ETDEWEB)
Lingerfelt, David B.; Lestrange, Patrick J.; Radler, Joseph J.; Brown-Xu, Samantha E.; Kim, Pyosang; Castellano, Felix N.; Chen, Lin X.; Li, Xiaosong
2017-02-24
Materials and molecular systems exhibiting long-lived electronic coherence can facilitate coherent transport, opening the door to efficient charge and energy transport beyond traditional methods. Recently, signatures of a possible coherent, recurrent electronic motion were identified in femtosecond pump-probe spectroscopy experiments on a binuclear platinum complex, where a persistent periodic beating in the transient absorption signal’s anisotropy was observed. In this study, we investigate the excitonic dynamics that underlie the suspected electronic coherence for a series of binuclear platinum complexes exhibiting a range of interplatinum distances. Results suggest that the long-lived coherence can only result when competitive electronic couplings are in balance. At longer Pt-Pt distances, the electronic couplings between the two halves of the binuclear system weaken, and exciton localization and recombination is favored on short time scales. For short Pt-Pt distances, electronic couplings between the states in the coherent superposition are stronger than the coupling with other excitonic states, leading to long-lived coherence.
Structural stability of nonlinear population dynamics.
Cenci, Simone; Saavedra, Serguei
2018-01-01
In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.
Structural stability of nonlinear population dynamics
Cenci, Simone; Saavedra, Serguei
2018-01-01
In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.
Extended Lagrangian Excited State Molecular Dynamics.
Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N
2018-02-13
An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).
Annual Report 1998: Chemical Structure and Dynamics
Energy Technology Data Exchange (ETDEWEB)
SD Colson; RS McDowell
1999-05-10
The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).
POSTER : Identifying dynamic data structures in Malware
Rupprecht, Thomas; Chen, Xi; White, David H.; Mühlberg, Jan Tobias; Bos, Herbert; Lüttgen, Gerald
2016-01-01
As the complexity of malware grows, so does the necessity of employing program structuring mechanisms during development. While control ow structuring is often obfuscated, the dynamic data structures employed by the program are typically untouched. We report on work in progress that exploits this
Transition state structures in solution
International Nuclear Information System (INIS)
Bertran, J.; Lluch, J. M.; Gonzalez-Lafont, A.; Dillet, V.; Perez, V.
1995-01-01
In the present paper the location of transition state structures for reactions in solution has been studied. Continuum model calculations have been carried out on the Friedel-Crafts alkylation reaction and a proton transfer through a water molecule between two oxygen atoms in formic acid. In this model the separation between the chemical system and the solvent has been introduced. On the other hand, the discrete Monte Carlo methodology has also been used to simulate the solvent effect on dissociative electron transfer processes. In this model, the hypothesis of separability is not assumed. Finally, the validity of both approaches is discussed
Tsutsumi, Atsushi; Javkhlantugs, Namsrai; Kira, Atsushi; Umeyama, Masako; Kawamura, Izuru; Nishimura, Katsuyuki; Ueda, Kazuyoshi; Naito, Akira
2012-01-01
Bovine lactoferrampin (LFampinB) is a newly discovered antimicrobial peptide found in the N1-domain of bovine lactoferrin (268–284), and consists of 17 amino-acid residues. It is important to determine the orientation and structure of LFampinB in bacterial membranes to reveal the antimicrobial mechanism. We therefore performed 13C and 31P NMR, 13C-31P rotational echo double resonance (REDOR), potassium ion-selective electrode, and quartz-crystal microbalance measurements for LFampinB with mimetic bacterial membrane and molecular-dynamics simulation in acidic membrane. 31P NMR results indicated that LFampinB caused a defect in mimetic bacterial membranes. Ion-selective electrode measurements showed that ion leakage occurred for the mimetic bacterial membrane containing cardiolipin. Quartz-crystal microbalance measurements revealed that LFampinB had greater affinity to acidic phospholipids than that to neutral phospholipids. 13C DD-MAS and static NMR spectra showed that LFampinB formed an α-helix in the N-terminus region and tilted 45° to the bilayer normal. REDOR dephasing patterns between carbonyl carbon nucleus in LFampinB and phosphorus nuclei in lipid phosphate groups were measured by 13C-31P REDOR and the results revealed that LFampinB is located in the interfacial region of the membrane. Molecular-dynamics simulation showed the tilt angle to be 42° and the rotation angle to be 92.5° for Leu3, which are in excellent agreement with the experimental values. PMID:23083717
State estimation for integrated vehicle dynamics control
Zuurbier, J.; Bremmer, P.
2002-01-01
This paper discusses a vehicle controller and a state estimator that was implemented and tested in a vehicle equipped with a combined braking and chassis control system to improve handling. The vehicle dynamics controller consists of a feed forward body roll compensation and a feedback stability
Dynamic analysis program for frame structure
International Nuclear Information System (INIS)
Ando, Kozo; Chiba, Toshio
1975-01-01
A general purpose computer program named ISTRAN/FD (Isub(HI) STRucture ANalysis/Frame structure, Dynamic analysis) has been developed for dynamic analysis of three-dimensional frame structures. This program has functions of free vibration analysis, seismic response analysis, graphic display by plotter and CRT, etc. This paper introduces ISTRAN/FD; examples of its application are shown with various problems : idealization of the cantilever, dynamic analysis of the main tower of the suspension bridge, three-dimensional vibration in the plate girder bridge, seismic response in the boiler steel structure, and dynamic properties of the underground LNG tank. In this last example, solid elements, in addition to beam elements, are especially used for the analysis. (auth.)
Structural Dynamic Behavior of Wind Turbines
Thresher, Robert W.; Mirandy, Louis P.; Carne, Thomas G.; Lobitz, Donald W.; James, George H. III
2009-01-01
The structural dynamicist s areas of responsibility require interaction with most other members of the wind turbine project team. These responsibilities are to predict structural loads and deflections that will occur over the lifetime of the machine, ensure favorable dynamic responses through appropriate design and operational procedures, evaluate potential design improvements for their impact on dynamic loads and stability, and correlate load and control test data with design predictions. Load prediction has been a major concern in wind turbine designs to date, and it is perhaps the single most important task faced by the structural dynamics engineer. However, even if we were able to predict all loads perfectly, this in itself would not lead to an economic system. Reduction of dynamic loads, not merely a "design to loads" policy, is required to achieve a cost-effective design. The two processes of load prediction and structural design are highly interactive: loads and deflections must be known before designers and stress analysts can perform structural sizing, which in turn influences the loads through changes in stiffness and mass. Structural design identifies "hot spots" (local areas of high stress) that would benefit most from dynamic load alleviation. Convergence of this cycle leads to a turbine structure that is neither under-designed (which may result in structural failure), nor over-designed (which will lead to excessive weight and cost).
Dynamics and acceleration in linear structures
International Nuclear Information System (INIS)
Le Duff, J.
1985-06-01
Basic methods of linear acceleration are reviewed. Both cases of non relativistic and ultra relativistic particles are considered. Induction linac, radiofrequency quadrupole are mentioned. Fundamental parameters of accelerating structures are recalled; they are transit time factor, shunt impedance, quality factor and stored energy, phase velocity and group velocity, filling time, space harmonics in loaded waveguides. Energy gain in linear accelerating structures is considered through standing wave structures and travelling wave structures. Then particle dynamics in linear accelerators is studied: longitudinal motion, transverse motion and dynamics in RFQ
International Nuclear Information System (INIS)
Nagasaki, Kazunobu; Takamura, Shuichi; Razzak, Md. Abdur; Uesugi, Yoshihiko; Yoshimura, Yasuo; Cappa, Alvaro
2008-01-01
The dynamics and structure of plasma production are stated by the results of two experiments such as the radio frequency thermal plasmas produced by inductively coupled plasma technique at atmospheric pressure and the second harmonic ECH. The first experiment results explained transition from the electrostatic discharge mode of forming streamer to the induced discharge mode after forming the discharge channel that the streamer connected to in the azimuth direction. The other experiment explained the dynamics which the initial plasma produced at the ECH resonance point spread in the direction of radius. The divergence and transition related to the nonlinear process were observed independently existing the magnetic field or incident power. The experiment devices, conditions, results, and modeling are reported. (S.Y.)
Photoionization dynamics of excited molecular states
International Nuclear Information System (INIS)
Dehmer, J.L.; O'Halloran, M.A.; Tomkins, F.S.; Dehmer, P.M.; Pratt, S.T.
1987-01-01
Resonance Enhanced Multiphoton Ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of opportunities for exploring excited state physics and chemistry at the quantum-state-specific level. Here we will first give a brief overview of the large variety of experimental approaches to excited state phenomena made possible by REMPI. Then we will examine in more detail, recent studies of the three photon resonant, four photon (3 + 1) ionization of H 2 via the C 'PI/sup u/ state. Strong non-Franck-Condon behavior in the photoelectron spectra of this nominally simple Rydberg state has led to the examination of a variety of dynamical mechanisms. Of these, the role of doubly excited autoionizing states now seems decisive. Progress on photoelectron studies of autoionizing states in H 2 , excited in a (2 + 1) REMPI process via the E, F 1 Σ/sub g/ + will also be briefly discussed. 26 refs., 7 figs
31st IMAC Conference on Structural Dynamics
Adams, Douglas; Carrella, Alex; Mayes, Randy; Rixen, Daniel; Allen, Matt; Cunha, Alvaro; Catbas, Fikret; Pakzad, Shamim; Racic, Vitomir; Pavic, Aleksandar; Reynolds, Paul; Simmermacher, Todd; Cogan, Scott; Moaveni, Babak; Papadimitriou, Costas; Allemang, Randall; Clerck, James; Niezrecki, Christopher; Wicks, Alfred
2013-01-01
Topics in Nonlinear Dynamics, Volume 1: Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013, the first volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Nonlinear Oscillations Nonlinearities In Practice Nonlinear System Identification: Methods Nonlinear System Identification: Friction & Contact Nonlinear Modal Analysis Nonlinear Modeling & Simulation Nonlinear Vibration Absorbers Constructive Utilization of Nonlinearity.
Chemical structure and dynamics. Annual report 1994
Energy Technology Data Exchange (ETDEWEB)
Colson, S.D.
1995-07-01
The Chemical Structure and Dynamics program was organized as a major component of Pacific Northwest Laboratory`s Environmental and Molecular Sciences Laboratory (EMSL), a state-of-the-art collaborative facility for studies of chemical structure and dynamics. Our program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces, and (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage. This research effort was initiated in 1989 and will continue to evolve over the next few years into a program of rigorous studies of fundamental molecular processes in model systems, such as well-characterized surfaces, single-component solutions, clusters, and biological molecules; and studies of complex systems found in the environment (multispecies, multiphase solutions; solid/liquid, liquid/liquid, and gas/surface interfaces; colloidal dispersions; ultrafine aerosols; and functioning biological systems). The success of this program will result in the achievement of a quantitative understanding of chemical reactions at interfaces, and more generally in condensed media, that is comparable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for predictions of macroscopic chemical behavior in condensed and heterogeneous media, adding significantly to the value of field-scale environmental models, the prediction of short- and long-term nuclear waste storage stabilities, and other problems related to the primary missions of the DOE.
MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES
International Nuclear Information System (INIS)
Uritsky, Vadim M.; Davila, Joseph M.
2012-01-01
Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.
Plasma turbulence. Structure formation, selection rule, dynamic response and dynamics transport
International Nuclear Information System (INIS)
Ito, Sanae I.
2010-01-01
The five-year project of Grant-in-Aid for Specially Promoted Research entitled general research on the structure formation and selection rule in plasma turbulence had brought many outcomes. Based on these outcomes, the Grant-in-Aid for Scientific Research (S) program entitled general research on dynamic response and dynamic transport in plasma turbulence has started. In the present paper, the state-of-the-art of the research activities on the structure formation, selection rule and dynamics in plasma turbulence are reviewed with reference to outcomes of these projects. (author)
Dynamic response of structures with uncertain parameters
International Nuclear Information System (INIS)
Cai, Z H; Liu, Y; Yang, Y
2010-01-01
In this paper, an interval method for the dynamic response of structures with uncertain parameters is presented. In the presented method, the structural physical and geometric parameters and loads can be considered as interval variables. The structural stiffness matrix, mass matrix and loading vectors are described as the sum of two parts corresponding to the deterministic matrix and the uncertainty of the interval parameters. The interval problem is then transformed into approximate deterministic one. The Laplace transform is used to transform the equations of the dynamic system into linear algebra equations. The Maclaurin series expansion is applied on the modified dynamic equation in order to deal with the linear algebra equations. Numerical examples are studied by the presented interval method for the cases with and without damping. The upper bound and lower bound of the dynamic responses of the examples are compared, and it shows that the presented method is effective.
Design optimization applied in structural dynamics
Akcay-Perdahcioglu, Didem; de Boer, Andries; van der Hoogt, Peter; Tiskarna, T
2007-01-01
This paper introduces the design optimization strategies, especially for structures which have dynamic constraints. Design optimization involves first the modeling and then the optimization of the problem. Utilizing the Finite Element (FE) model of a structure directly in an optimization process
Dynamical structure of space and time
International Nuclear Information System (INIS)
Sannikov-Proskuryakov, S.S.
2000-01-01
A mathematically correct solution of the problem of ultraviolet divergences requires a radical change of our ideas on space and matter. We show that the space is a discontinuum in small which is the carrier of a new dynamical structure. Taking into account this structure, a new theory of elementary particles can be suggested
The architecture of dynamic reservoir in the echo state network
Cui, Hongyan; Liu, Xiang; Li, Lixiang
2012-09-01
Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.
The Structure and Dynamics of GRB Jets
Energy Technology Data Exchange (ETDEWEB)
Granot, Jonathan; /KIPAC, Menlo Park
2006-10-25
There are several lines of evidence which suggest that the relativistic outflows in gamma-ray bursts (GRBs) are collimated into narrow jets. The jet structure has important implications for the true energy release and the event rate of GRBs, and can constrain the mechanism responsible for the acceleration and collimation of the jet. Nevertheless, the jet structure and its dynamics as it sweeps up the external medium and decelerates, are not well understood. In this review I discuss our current understanding of GRB jets, stressing their structure and dynamics.
The dynamic state monitoring of bearings system
Directory of Open Access Journals (Sweden)
Marek Krynke
2015-03-01
Full Text Available The article discusses the methods of dynamic state monitoring of bearings system. A vibration signal contains important technical information about the machine condition and is currently the most frequently used in diagnostic bearings systems. One of the main ad-vantages of machine condition monitoring is identifying the cause of failure of the bearings and taking preventative measures, otherwise the operation of such a machine will lead to frequent replacement of the bearings. Monitoring changes in the course of the operation of machin-ery repair strategies allows keeping the conditioned state of dynamic failure conditioned preventive repairs and repairs after-failure time. In addition, the paper also presents the fundamental causes of bearing failure and identifies mechanisms related to the creation of any type of damage.
Learning State Space Dynamics in Recurrent Networks
Simard, Patrice Yvon
Fully recurrent (asymmetrical) networks can be used to learn temporal trajectories. The network is unfolded in time, and backpropagation is used to train the weights. The presence of recurrent connections creates internal states in the system which vary as a function of time. The resulting dynamics can provide interesting additional computing power but learning is made more difficult by the existence of internal memories. This study first exhibits the properties of recurrent networks in terms of convergence when the internal states of the system are unknown. A new energy functional is provided to change the weights of the units in order to the control the stability of the fixed points of the network's dynamics. The power of the resultant algorithm is illustrated with the simulation of a content addressable memory. Next, the more general case of time trajectories on a recurrent network is studied. An application is proposed in which trajectories are generated to draw letters as a function of an input. In another application of recurrent systems, a neural network certain temporal properties observed in human callosally sectioned brains. Finally the proposed algorithm for stabilizing dynamics around fixed points is extended to one for stabilizing dynamics around time trajectories. Its effects are illustrated on a network which generates Lisajous curves.
The Fine Structure of Equity-Index Option Dynamics
DEFF Research Database (Denmark)
Andersen, Torben G.; Bondarenko, Oleg; Todorov, Viktor
We analyze the high-frequency dynamics of S&P 500 equity-index option prices by constructing an assortment of implied volatility measures. This allows us to infer the underlying fine structure behind the innovations in the latent state variables driving the movements of the volatility surface...
Nuclear visions enhanced: chromatin structure, organization and dynamics
Meshorer, Eran; Herrmann, Harald; Raška, Ivan
2011-01-01
The EMBO Workshop on ‘Chromatin Structure, Organization and Dynamics' took place in April 2011 in Prague, Czech Republic. Participants presented data on the generation of models of the genome, working to correlate changes in the organization of chromatin with the functional state of the genome.
On the dynamics of generalized coherent states
International Nuclear Information System (INIS)
Nikolov, B.A.; Trifonov, D.A.
1981-01-01
The exact and stable evolutions of generalized coherent states (GCS) for quantum system are considered by making use of the time- dependent integrals of motion method and of the Klauder approach to the relationship between quantum and classical mechanics. It is shown that one can construct for any quantum system overcomplete family of states, related to the unitary representations of the Lie group G by means of integral of motion generators, and the possibility of using this group as a dynamic symmetry group is pointed out. The relation of the GCS with quantum measurement theory is also established [ru
PDB2CD visualises dynamics within protein structures.
Janes, Robert W
2017-10-01
Proteins tend to have defined conformations, a key factor in enabling their function. Atomic resolution structures of proteins are predominantly obtained by either solution nuclear magnetic resonance (NMR) or crystal structure methods. However, when considering a protein whose structure has been determined by both these approaches, on many occasions, the resultant conformations are subtly different, as illustrated by the examples in this study. The solution NMR approach invariably results in a cluster of structures whose conformations satisfy the distance boundaries imposed by the data collected; it might be argued that this is evidence of the dynamics of proteins when in solution. In crystal structures, the proteins are often in an energy minimum state which can result in an increase in the extent of regular secondary structure present relative to the solution state depicted by NMR, because the more dynamic ends of alpha helices and beta strands can become ordered at the lower temperatures. This study examines a novel way to display the differences in conformations within an NMR ensemble and between these and a crystal structure of a protein. Circular dichroism (CD) spectroscopy can be used to characterise protein structures in solution. Using the new bioinformatics tool, PDB2CD, which generates CD spectra from atomic resolution protein structures, the differences between, and possible dynamic range of, conformations adopted by a protein can be visualised.
Modeling and identification in structural dynamics
Jayakumar, Paramsothy
1987-01-01
Analytical modeling of structures subjected to ground motions is an important aspect of fully dynamic earthquake-resistant design. In general, linear models are only sufficient to represent structural responses resulting from earthquake motions of small amplitudes. However, the response of structures during strong ground motions is highly nonlinear and hysteretic. System identification is an effective tool for developing analytical models from experimental data. Testing of full-scale prot...
Dynamic Response of a Floating Bridge Structure
Viuff, Thomas; Leira, Bernt Johan; Øiseth, Ole; Xiang, Xu
2016-01-01
A theoretical overview of the stochastic dynamic analysis of a floating bridge structure is presented. Emphasis is on the wave-induced response and the waves on the sea surface are idealized as a zero mean stationary Gaussian process. The first-order wave load processes are derived using linear potential theory and the structural idealization is based on the Finite Element Method. A frequency response calculation is presented for a simplified floating bridge structure example emphasising the ...
Metastable structures and size effects in small group dynamics.
Lauro Grotto, Rosapia; Guazzini, Andrea; Bagnoli, Franco
2014-01-01
In his seminal works on group dynamics Bion defined a specific therapeutic setting allowing psychoanalytic observations on group phenomena. In describing the setting he proposed that the group was where his voice arrived. This physical limit was later made operative by assuming that the natural dimension of a therapeutic group is around 12 people. Bion introduced a theory of the group aspects of the mind in which proto-mental individual states spontaneously evolve into shared psychological states that are characterized by a series of features: (1) they emerge as a consequence of the natural tendency of (both conscious and unconscious) emotions to combine into structured group patterns; (2) they have a certain degree of stability in time; (3) they tend to alternate so that the dissolution of one is rapidly followed by the emergence of another; (4) they can be described in qualitative terms according to the nature of the emotional mix that dominates the state, in structural terms by a kind of typical "leadership" pattern, and in "cognitive" terms by a set of implicit expectations that are helpful in explaining the group behavior (i.e., the group behaves "as if" it was assuming that). Here we adopt a formal approach derived from Socio-physics in order to explore some of the structural and dynamic properties of this small group dynamics. We will described data from an analytic DS model simulating small group interactions of agents endowed with a very simplified emotional and cognitive dynamic in order to assess the following main points: (1) are metastable collective states allowed to emerge in the model and if so, under which conditions in the parameter space? (2) can these states be differentiated in structural terms? (3) to what extent are the emergent dynamic features of the systems dependent of the system size? We will finally discuss possible future applications of the quantitative descriptions of the interaction structure in the small group clinical setting.
Metastable structures and size effects in small group dynamics
Directory of Open Access Journals (Sweden)
Rosapia eLauro Grotto
2014-07-01
Full Text Available In his seminal works on group dynamics Bion defined a specific therapeutic setting allowing psychoanalytic observations on group phenomena. In describing the setting he proposed that the group was where his voice arrived. This physical limit was later made operative by assuming that the natural dimension of a therapeutic group is around 12 people. Bion introduced a theory of the group aspects of the mind in which proto-mental individual states spontaneously evolve into shared psychological states that are characterized by a series of features: 1 they emerge as a consequence of the natural tendency of (both conscious and unconscious emotions to combine into structured group patterns; 2 they have a certain degree of stability in time; 3 they tend to alternate so that the dissolution of one is rapidly followed by the emergence of another; 4 they can be described in qualitative terms according to the nature of the emotional mix that dominates the state, in structural terms by a kind of typical 'leadership’ pattern, and in 'cognitive’ terms by a set of implicit expectations that are helpful in explaining the group behavior (i.e. the group behaves 'as if’ it was assuming that…. Here we adopt a formal approach derived from Socio-physics in order to explore some of the structural and dynamic properties of this small group dynamics. We will described data from an analytic DS model simulating small group interactions of agents endowed with a very simplified emotional and cognitive dynamic in order to assess the following main points: 1 are metastable collective states allowed to emerge in the model and if so, under which conditions in the parameter space? 3 can these states be differentiated in structural terms? 3 to what extent are the emergent dynamic features of the systems dependent of the system size? We will finally discuss possible future applications of the quantitative descriptions of the interaction structure in the small group clinical
Slope-scale dynamic states of rockfalls
Agliardi, F.; Crosta, G. B.
2009-04-01
Rockfalls are common earth surface phenomena characterised by complex dynamics at the slope scale, depending on local block kinematics and slope geometry. We investigated the nature of this slope-scale dynamics by parametric 3D numerical modelling of rockfalls over synthetic slopes with different inclination, roughness and spatial resolution. Simulations were performed through an original code specifically designed for rockfall modeling, incorporating kinematic and hybrid algorithms with different damping functions available to model local energy loss by impact and pure rolling. Modelling results in terms of average velocity profiles suggest that three dynamic regimes (i.e. decelerating, steady-state and accelerating), previously recognized in the literature through laboratory experiments on granular flows, can set up at the slope scale depending on slope average inclination and roughness. Sharp changes in rock fall kinematics, including motion type and lateral dispersion of trajectories, are associated to the transition among different regimes. Associated threshold conditions, portrayed in "phase diagrams" as slope-roughness critical lines, were analysed depending on block size, impact/rebound angles, velocity and energy, and model spatial resolution. Motion in regime B (i.e. steady state) is governed by a slope-scale "viscous friction" with average velocity linearly related to the sine of slope inclination. This suggest an analogy between rockfall motion in regime B and newtonian flow, whereas in regime C (i.e. accelerating) an analogy with a dilatant flow was observed. Thus, although local behavior of single falling blocks is well described by rigid body dynamics, the slope scale dynamics of rockfalls seem to statistically approach that of granular media. Possible outcomes of these findings include a discussion of the transition from rockfall to granular flow, the evaluation of the reliability of predictive models, and the implementation of criteria for a
State-to-state photodissociation dynamics of triatomic molecules: H2O in the B band
International Nuclear Information System (INIS)
Jiang Bin; Xie Daiqian; Guo Hua
2012-01-01
State-to-state photodissociation dynamics of H 2 O in its B band has been investigated quantum mechanically on a new set of non-adiabatically coupled potential energy surfaces for the lowest two 1 A' states of H 2 O, which are developed at the internally contracted multi-reference configuration interaction level with the aug-cc-pVQZ basis set. Quantum dynamical calculations carried out using the Chebyshev propagator yield absorption spectra, product state distributions, branching ratios, and differential cross sections, which are in reasonably good agreement with the latest experimental results. Particular focus is placed here on the dependence of various dynamical observables on the photon energy. Detailed analyses of the dynamics have assigned the diffuse structure in absorption spectrum to short-time recurring dynamics near the HOH conical intersection. The non-adiabatic dissociation to the ground state OH product via the HOH conical intersection is facile, direct, fast, and produces rotationally hot OH(X-tilde) products. On the other hand, the adiabatic channel on the excited state leading to the OH(A-tilde) product is dominated by long-lived resonances, which depend sensitively on the potential energy surfaces.
About the dynamics of structural phase transitions
International Nuclear Information System (INIS)
Medeiros, J.T.N.
1975-01-01
The dynamics of structural phase transitions with a fourth order interaction between the soft phonon fields is studied in the 1/n approximation, using many body methods at finite temperatures. Two limits are considered: high transition temperature T sub(c) (classical limit) and T sub(c) = 0 (quantum limit). The dynamical contribution to the critical coefficient eta of the correlation function is calculated in these limits. It is found that there is no dynamical contribution to eta in the classical limit, whereas in the quantum limit eta is non-zero only for dimensions of the system d [pt
Simultaneous determination of protein structure and dynamics
DEFF Research Database (Denmark)
Lindorff-Larsen, Kresten; Best, Robert B.; DePristo, M. A.
2005-01-01
at the atomic level about the structural and dynamical features of proteins-with the ability of molecular dynamics simulations to explore a wide range of protein conformations. We illustrate the method for human ubiquitin in solution and find that there is considerable conformational heterogeneity throughout......We present a protocol for the experimental determination of ensembles of protein conformations that represent simultaneously the native structure and its associated dynamics. The procedure combines the strengths of nuclear magnetic resonance spectroscopy-for obtaining experimental information...... the protein structure. The interior atoms of the protein are tightly packed in each individual conformation that contributes to the ensemble but their overall behaviour can be described as having a significant degree of liquid-like character. The protocol is completely general and should lead to significant...
Unifying dynamical and structural stability of equilibria
Arnoldi, Jean-François; Haegeman, Bart
2016-09-01
We exhibit a fundamental relationship between measures of dynamical and structural stability of linear dynamical systems-e.g. linearized models in the vicinity of equilibria. We show that dynamical stability, quantified via the response to external perturbations (i.e. perturbation of dynamical variables), coincides with the minimal internal perturbation (i.e. perturbations of interactions between variables) able to render the system unstable. First, by reformulating a result of control theory, we explain that harmonic external perturbations reflect the spectral sensitivity of the Jacobian matrix at the equilibrium, with respect to constant changes of its coefficients. However, for this equivalence to hold, imaginary changes of the Jacobian's coefficients have to be allowed. The connection with dynamical stability is thus lost for real dynamical systems. We show that this issue can be avoided, thus recovering the fundamental link between dynamical and structural stability, by considering stochastic noise as external and internal perturbations. More precisely, we demonstrate that a linear system's response to white-noise perturbations directly reflects the intensity of internal white-noise disturbance that it can accommodate before becoming stochastically unstable.
Structure and Dynamics of Negative Ions
International Nuclear Information System (INIS)
None
2000-01-01
This report describes progress made during the final three-year grant period 1997-2000. During this period, we experimentally investigated the structure and dynamics of negative ions by detaching the outermost electron in controlled processes induced by photon-, electron- and heavy particle-impact. In this manner we studied, at a fundamental level, the role of electron correlation in the structure and dynamics of simple, few-particle atomic systems. Our measurements have provided sensitive tests of the ability of theory to go beyond the independent electron model
Structural dynamics of electronic and photonic systems
Suhir, Ephraim; Steinberg, David S
2011-01-01
The proposed book will offer comprehensive and versatile methodologies and recommendations on how to determine dynamic characteristics of typical micro- and opto-electronic structural elements (printed circuit boards, solder joints, heavy devices, etc.) and how to design a viable and reliable structure that would be able to withstand high-level dynamic loading. Particular attention will be given to portable devices and systems designed for operation in harsh environments (such as automotive, aerospace, military, etc.) In-depth discussion from a mechanical engineer's viewpoint will be conducte
State Structure and Political Regime Structure
Directory of Open Access Journals (Sweden)
Paul – Iulian Nedelcu
2012-05-01
Full Text Available The political regime is the concrete form of organization and functioning of political system andtherefore, the regime means the concrete way of organize, institutionalize and function a political systemand of the exercise of political power by a social-political force in a social community or global socialistem. The political regime is not limited to institutions and state bodies, but it covers the entire politicalsystem. Form of expression in social practice plan is the result of balance of forces between classes ofcitizens, organizations, between them and civil society and politics.Designates the concrete form ofgovernment formation and organization, of state bodies, in aspect of their characteristics and principles, therelations between them and other state bodies, and also as the relationship between them and otherinstitutionalized forms of political systems. Instead, the political regime is an explicit realization ofaxiological operations, a specific hierarchy of values, in general and political values, in particular. Even ifsome elements of the political regime overlap to some extent and in some respects, those of form orstructure of guvernamnt state, thus they dissolve his identity, distinct quality of being specific traits of thepolitical regime.
Chemical structure and dynamics: Annual report 1993
Energy Technology Data Exchange (ETDEWEB)
Colson, S.D.
1994-07-01
The Chemical Structure and Dynamics program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally-important interfaces. The research program is built around the established relationship between structure, thermodynamics, and kinetics. This research effort continues to evolve into a program of rigorous studies of fundamental molecular processes in model systems (e.g., well-characterized surfaces, single-component solutions, clusters, and biological molecules), and studies of complex systems found in the environment. Experimental studies of molecular and supramolecular structures and thermodynamics are key to understanding the nature of matter, and lead to direct comparison with computational results. Kinetic and mechanistic measurements, combined with real-time dynamics measurements of atomic and molecular motions during chemical reactions, provide for a molecular-level description of chemical reactions. The anticipated results of this work are the achievement of a quantitative understanding of chemical processes at complex interfaces, the development of new techniques for the detection and measurement of species at such interfaces, and the interpretation and extrapolation of the observations in terms of models of interfacial chemistry. The Chemical Structure and Dynamics research program includes five areas described in detail in this report: Reaction mechanisms at solid interfaces; Solution and solution interfaces; Structure and dynamics of biological systems; Analytical methods development; and atmospheric chemistry. Extended abstracts are presented for 23 studies.
Multiscale structure in eco-evolutionary dynamics
Stacey, Blake C.
In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these complex interrelationships within a biological system affects the evolutionary dynamics of that system. I present a mathematical formalism for multiscale structure, grounded in information theory, which makes these intuitions quantitative, and I show how dynamics defined in terms of population genetics or evolutionary game theory can lead to multiscale organization. For complex systems, "more is different," and I address this from several perspectives. Spatial host--consumer models demonstrate the importance of the structures which can arise due to dynamical pattern formation. Evolutionary game theory reveals the novel effects which can result from multiplayer games, nonlinear payoffs and ecological stochasticity. Replicator dynamics in an environment with mesoscale structure relates to generalized conditionalization rules in probability theory. The idea of natural selection "acting at multiple levels" has been mathematized in a variety of ways, not all of which are equivalent. We will face down the confusion, using the experience developed over the course of this thesis to clarify the situation.
Causal relations among events and states in dynamic geographical phenomena
Huang, Zhaoqiang; Feng, Xuezhi; Xuan, Wenling; Chen, Xiuwan
2007-06-01
There is only a static state of the real world to be recorded in conventional geographical information systems. However, there is not only static information but also dynamic information in geographical phenomena. So that how to record the dynamic information and reveal the relations among dynamic information is an important issue in a spatio-temporal information system. From an ontological perspective, we can initially divide the spatio-temporal entities in the world into continuants and occurrents. Continuant entities endure through some extended (although possibly very short) interval of time (e.g., houses, roads, cities, and real-estate). Occurrent entities happen and are then gone (e.g., a house repair job, road construction project, urban expansion, real-estate transition). From an information system perspective, continuants and occurrents that have a unique identity in the system are referred to as objects and events, respectively. And the change is represented implicitly by static snapshots in current spatial temporal information systems. In the previous models, the objects can be considered as the fundamental components of the system, and the change is modeled by considering time-varying attributes of these objects. In the spatio-temporal database, the temporal information that is either interval or instant is involved and the underlying data structures and indexes for temporal are considerable investigated. However, there is the absence of explicit ways of considering events, which affect the attributes of objects or the state. So the research issue of this paper focuses on how to model events in conceptual models of dynamic geographical phenomena and how to represent the causal relations among events and the objects or states. Firstly, the paper reviews the conceptual modeling in a temporal GIS by researchers. Secondly, this paper discusses the spatio-temporal entities: objects and events. Thirdly, this paper investigates the causal relations amongst
Excited state dynamics of DNA bases
Czech Academy of Sciences Publication Activity Database
Kleinermanns, K.; Nachtigallová, Dana; de Vries, M. S.
2013-01-01
Roč. 32, č. 2 (2013), s. 308-342 ISSN 0144-235X R&D Projects: GA ČR GAP208/12/1318 Grant - others:National Science Foundation(US) CHE-0911564; NASA (US) NNX12AG77G; Deutsche Forschungsgemeinschaft(DE) SFB 663; Deutsche Forschungsgemeinschaft(DE) KI 531-29 Institutional support: RVO:61388963 Keywords : DNA bases * nucleobases * excited state * dynamics * computations * gas phase * conical intersections Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.920, year: 2013
Structure and dynamics of the solar chromosphere
Krijger, Johannes Mattheus
2002-01-01
The thesis "Structure and dynamics of the solar chromosphere" of J.M. Krijger is a study on the behavior of the solar chromosphere, the thin layer just above the solar surface (photosphere) visible in purple red light during a total solar eclipse. The most important result of this thesis is that the
Natural Poisson structures of nonlinear plasma dynamics
International Nuclear Information System (INIS)
Kaufman, A.N.
1982-01-01
Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering. (Auth.)
Natural Poisson structures of nonlinear plasma dynamics
International Nuclear Information System (INIS)
Kaufman, A.N.
1982-06-01
Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering
Structural dynamic modification using additive damping
Indian Academy of Sciences (India)
elements, FEM and perturbation methods for reanalysis or structural dynamic modification ... to a system changes its mass, stiffness and damping. Thus ... due to the phase difference between stress ' and strain or 'a И E1 З iE2 for direct strain.
Gao, Zilin; Wang, Yinhe; Zhang, Lili
2018-02-01
In the existing research results of the complex dynamical networks controlled, the controllers are mainly used to guarantee the synchronization or stabilization of the nodes’ state, and the terms coupled with connection relationships may affect the behaviors of nodes, this obviously ignores the dynamic common behavior of the connection relationships between the nodes. In fact, from the point of view of large-scale system, a complex dynamical network can be regarded to be composed of two time-varying dynamic subsystems, which can be called the nodes subsystem and the connection relationships subsystem, respectively. Similar to the synchronization or stabilization of the nodes subsystem, some characteristic phenomena can be also emerged in the connection relationships subsystem. For example, the structural balance in the social networks and the synaptic facilitation in the biological neural networks. This paper focuses on the structural balance in dynamic complex networks. Generally speaking, the state of the connection relationships subsystem is difficult to be measured accurately in practical applications, and thus it is not easy to implant the controller directly into the connection relationships subsystem. It is noted that the nodes subsystem and the relationships subsystem are mutually coupled, which implies that the state of the connection relationships subsystem can be affected by the controllable state of nodes subsystem. Inspired by this observation, by using the structural balance theory of triad, the controller with the parameter adaptive law is proposed for the nodes subsystem in this paper, which may ensure the connection relationship matrix to approximate a given structural balance matrix in the sense of the uniformly ultimately bounded (UUB). That is, the structural balance may be obtained by employing the controlling state of the nodes subsystem. Finally, the simulations are used to show the validity of the method in this paper.
Proteins with Novel Structure, Function and Dynamics
Pohorille, Andrew
2014-01-01
Recently, a small enzyme that ligates two RNA fragments with the rate of 10(exp 6) above background was evolved in vitro (Seelig and Szostak, Nature 448:828-831, 2007). This enzyme does not resemble any contemporary protein (Chao et al., Nature Chem. Biol. 9:81-83, 2013). It consists of a dynamic, catalytic loop, a small, rigid core containing two zinc ions coordinated by neighboring amino acids, and two highly flexible tails that might be unimportant for protein function. In contrast to other proteins, this enzyme does not contain ordered secondary structure elements, such as alpha-helix or beta-sheet. The loop is kept together by just two interactions of a charged residue and a histidine with a zinc ion, which they coordinate on the opposite side of the loop. Such structure appears to be very fragile. Surprisingly, computer simulations indicate otherwise. As the coordinating, charged residue is mutated to alanine, another, nearby charged residue takes its place, thus keeping the structure nearly intact. If this residue is also substituted by alanine a salt bridge involving two other, charged residues on the opposite sides of the loop keeps the loop in place. These adjustments are facilitated by high flexibility of the protein. Computational predictions have been confirmed experimentally, as both mutants retain full activity and overall structure. These results challenge our notions about what is required for protein activity and about the relationship between protein dynamics, stability and robustness. We hypothesize that small, highly dynamic proteins could be both active and fault tolerant in ways that many other proteins are not, i.e. they can adjust to retain their structure and activity even if subjected to mutations in structurally critical regions. This opens the doors for designing proteins with novel functions, structures and dynamics that have not been yet considered.
Dynamics and control of twisting bi-stable structures
Arrieta, Andres F.; van Gemmeren, Valentin; Anderson, Aaron J.; Weaver, Paul M.
2018-02-01
Compliance-based morphing structures have the potential to offer large shape adaptation, high stiffness and low weight, while reducing complexity, friction, and scalability problems of mechanism based systems. A promising class of structure that enables these characteristics are multi-stable structures given their ability to exhibit large deflections and rotations without the expensive need for continuous actuation, with the latter only required intermittently. Furthermore, multi-stable structures exhibit inherently fast response due to the snap-through instability governing changes between stable states, enabling rapid configuration switching between the discrete number of programmed shapes of the structure. In this paper, the design and utilisation of the inherent nonlinear dynamics of bi-stable twisting I-beam structures for actuation with low strain piezoelectric materials is presented. The I-beam structure consists of three compliant components assembled into a monolithic single element, free of moving parts, and showing large deflections between two stable states. Finite element analysis is utilised to uncover the distribution of strain across the width of the flange, guiding the choice of positioning for piezoelectric actuators. In addition, the actuation authority is maximised by calculating the generalised coupling coefficient for different positions of the piezoelectric actuators. The results obtained are employed to tailor and test I-beam designs exhibiting desired large deflection between stable states, while still enabling the activation of snap-through with the low strain piezoelectric actuators. To this end, the dynamic response of the I-beams to piezoelectric excitation is investigated, revealing that resonant excitations are insufficient to dynamically trigger snap-through. A novel bang-bang control strategy, which exploits the nonlinear dynamics of the structure successfully triggers both single and constant snap-through between the stable states
Component mode synthesis in structural dynamics
International Nuclear Information System (INIS)
Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.
1993-01-01
In seismic analysis of Nuclear Reactor Structures and equipments eigen solution requires large computer time. Component mode synthesis is an efficient technique with which one can evaluate dynamic characteristics of a large structure with minimum computer time. Due to this reason it is possible to do a coupled analysis of structure and equipment which takes into account the interaction effects. Basically in this the method large size structure is divided into small substructures and dynamic characteristics of individual substructure are determined. The dynamic characteristics of entire structure are evaluated by synthesising the individual substructure characteristics. Component mode synthesis has been applied in this paper to the analysis of a tall heavy water upgrading tower. Use of fixed interface normal modes, constrained modes, attachment modes in the component mode synthesis using energy principle and using Ritz vectors have been discussed. The validity of this method is established by solving fixed-fixed beam and comparing the results obtained by conventional and classical method. The eigen value problem has been solved using simultaneous iteration method. (author)
The dynamical conductance of graphene tunnelling structures
International Nuclear Information System (INIS)
Zhang Huan; Chan, K S; Lin Zijing
2011-01-01
The dynamical conductances of graphene tunnelling structures were numerically calculated using the scattering matrix method with the interaction effect included in a phenomenological approach. The overall single-barrier dynamical conductance is capacitative. Transmission resonances in the single-barrier structure lead to dips in the capacitative imaginary part of the response. This is different from the ac responses of typical semiconductor nanostructures, where transmission resonances usually lead to inductive peaks. The features of the dips depend on the Fermi energy. When the Fermi energy is below half of the barrier height, the dips are sharper. When the Fermi energy is higher than half of the barrier height, the dips are broader. Inductive behaviours can be observed in a double-barrier structure due to the resonances formed by reflection between the two barriers.
The dynamical conductance of graphene tunnelling structures.
Zhang, Huan; Chan, K S; Lin, Zijing
2011-12-16
The dynamical conductances of graphene tunnelling structures were numerically calculated using the scattering matrix method with the interaction effect included in a phenomenological approach. The overall single-barrier dynamical conductance is capacitative. Transmission resonances in the single-barrier structure lead to dips in the capacitative imaginary part of the response. This is different from the ac responses of typical semiconductor nanostructures, where transmission resonances usually lead to inductive peaks. The features of the dips depend on the Fermi energy. When the Fermi energy is below half of the barrier height, the dips are sharper. When the Fermi energy is higher than half of the barrier height, the dips are broader. Inductive behaviours can be observed in a double-barrier structure due to the resonances formed by reflection between the two barriers.
Dynamics of a bistable Miura-origami structure
Fang, Hongbin; Li, Suyi; Ji, Huimin; Wang, K. W.
2017-05-01
Origami-inspired structures and materials have shown extraordinary properties and performances originating from the intricate geometries of folding. However, current state of the art studies have mostly focused on static and quasistatic characteristics. This research performs a comprehensive experimental and analytical study on the dynamics of origami folding through investigating a stacked Miura-Ori (SMO) structure with intrinsic bistability. We fabricate and experimentally investigated a bistable SMO prototype with rigid facets and flexible crease lines. Under harmonic base excitation, the SMO exhibits both intrawell and interwell oscillations. Spectrum analyses reveal that the dominant nonlinearities of SMO are quadratic and cubic, which generate rich dynamics including subharmonic and chaotic oscillations. The identified nonlinearities indicate that a third-order polynomial can be employed to approximate the measured force-displacement relationship. Such an approximation is validated via numerical study by qualitatively reproducing the phenomena observed in the experiments. The dynamic characteristics of the bistable SMO resemble those of a Helmholtz-Duffing oscillator (HDO); this suggests the possibility of applying the established tools and insights of HDO to predict origami dynamics. We also show that the bistability of SMO can be programmed within a large design space via tailoring the crease stiffness and initial stress-free configurations. The results of this research offer a wealth of fundamental insights into the dynamics of origami folding, and provide a solid foundation for developing foldable and deployable structures and materials with embedded dynamic functionalities.
Dynamics of a bistable Miura-origami structure.
Fang, Hongbin; Li, Suyi; Ji, Huimin; Wang, K W
2017-05-01
Origami-inspired structures and materials have shown extraordinary properties and performances originating from the intricate geometries of folding. However, current state of the art studies have mostly focused on static and quasistatic characteristics. This research performs a comprehensive experimental and analytical study on the dynamics of origami folding through investigating a stacked Miura-Ori (SMO) structure with intrinsic bistability. We fabricate and experimentally investigated a bistable SMO prototype with rigid facets and flexible crease lines. Under harmonic base excitation, the SMO exhibits both intrawell and interwell oscillations. Spectrum analyses reveal that the dominant nonlinearities of SMO are quadratic and cubic, which generate rich dynamics including subharmonic and chaotic oscillations. The identified nonlinearities indicate that a third-order polynomial can be employed to approximate the measured force-displacement relationship. Such an approximation is validated via numerical study by qualitatively reproducing the phenomena observed in the experiments. The dynamic characteristics of the bistable SMO resemble those of a Helmholtz-Duffing oscillator (HDO); this suggests the possibility of applying the established tools and insights of HDO to predict origami dynamics. We also show that the bistability of SMO can be programmed within a large design space via tailoring the crease stiffness and initial stress-free configurations. The results of this research offer a wealth of fundamental insights into the dynamics of origami folding, and provide a solid foundation for developing foldable and deployable structures and materials with embedded dynamic functionalities.
Dynamic structural disorder in supported nanoscale catalysts
International Nuclear Information System (INIS)
Rehr, J. J.; Vila, F. D.
2014-01-01
We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale
Dynamic structural disorder in supported nanoscale catalysts
Energy Technology Data Exchange (ETDEWEB)
Rehr, J. J.; Vila, F. D. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States)
2014-04-07
We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.
Structural fluctuation governed dynamic diradical character in pentacene.
Yang, Hongfang; Chen, Mengzhen; Song, Xinyu; Bu, Yuxiang
2015-06-07
We unravel intriguing dynamical diradical behavior governed by structural fluctuation in pentacene using ab initio molecular dynamics simulation. In contrast to static equilibrium configuration of pentacene with a closed-shell ground state without diradical character, due to structural fluctuation, some of its dynamical snapshot configurations exhibit an open-shell broken-symmetry singlet ground state with diradical character, and such diradical character presents irregular pulsing behavior in time evolution. Not all structural changes can lead to diradical character, only those involving the shortening of cross-linking C-C bonds and variations of the C-C bonds in polyacetylene chains are the main contributors. This scenario about diradicalization is distinctly different from that in long acenes. The essence is that structural distortion cooperatively raises the HOMO and lowers the LUMO, efficiently reducing the HOMO-LUMO and singlet-triplet energy gaps, which facilitate the formation of a broken-symmetry open-shell singlet state. The irregular pulsing behavior originates from the mixing of normal vibrations in pentacene. This fascinating behavior suggests the potential application of pentacene as a suitable building block in the design of new electronic devices due to its magnetism-controllability through energy induction. This work provides new insight into inherent electronic property fluctuation in acenes.
Fundamental structures of dynamic social networks
DEFF Research Database (Denmark)
Sekara, Vedran; Stopczynski, Arkadiusz; Jørgensen, Sune Lehmann
2016-01-01
Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships...... and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection......, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals...
Dynamical stability in fluid-structure interaction
International Nuclear Information System (INIS)
Planchard, J.; Thomas, B.
1991-01-01
The aim of the paper is to investigate the dynamical stability of a group of elastic tubes placed in a cross-flow which obeys to the Navier-Stokes equations. The stability of this coupled system is deduced from the study of a quadratic eigenvalue problem arising in the linearized equations. The instability occurs when the real part of one of the eigenvalues becomes positive; the steady state is then replaced by a time-periodic state which is stable (Hopf bifurcation phenomenon). Some numerical methods for solving the quadratic eigenvalue problem are described [fr
Werner State Structure and Entanglement Classification
Directory of Open Access Journals (Sweden)
David W. Lyons
2012-01-01
Full Text Available We present applications of the representation theory of Lie groups to the analysis of structure and local unitary classification of Werner states, sometimes called the decoherence-free states, which are states of n quantum bits left unchanged by local transformations that are the same on each particle. We introduce a multiqubit generalization of the singlet state and a construction that assembles these qubits into Werner states.
Quench dynamics of topological maximally entangled states.
Chung, Ming-Chiang; Jhu, Yi-Hao; Chen, Pochung; Mou, Chung-Yu
2013-07-17
We investigate the quench dynamics of the one-particle entanglement spectra (OPES) for systems with topologically nontrivial phases. By using dimerized chains as an example, it is demonstrated that the evolution of OPES for the quenched bipartite systems is governed by an effective Hamiltonian which is characterized by a pseudospin in a time-dependent pseudomagnetic field S(k,t). The existence and evolution of the topological maximally entangled states (tMESs) are determined by the winding number of S(k,t) in the k-space. In particular, the tMESs survive only if nontrivial Berry phases are induced by the winding of S(k,t). In the infinite-time limit the equilibrium OPES can be determined by an effective time-independent pseudomagnetic field Seff(k). Furthermore, when tMESs are unstable, they are destroyed by quasiparticles within a characteristic timescale in proportion to the system size.
Dynamic state switching in nonlinear multiferroic cantilevers
Wang, Yi; Onuta, Tiberiu-Dan; Long, Christian J.; Lofland, Samuel E.; Takeuchi, Ichiro
2013-03-01
We demonstrate read-write-read-erase cyclical mechanical-memory properties of all-thin-film multiferroic heterostructured Pb(Zr0.52Ti0.48) O3 / Fe0.7Ga0.3 cantilevers when a high enough voltage around the resonant frequency of the device is applied on the Pb(Zr0.52Ti0.48) O3 piezo-film. The device state switching process occurs due to the presence of a hysteresis loop in the piezo-film frequency response, which comes from the nonlinear behavior of the cantilever. The reference frequency at which the strain-mediated Fe0.7Ga0.3 based multiferroic device switches can also be tuned by applying a DC magnetic field bias that contributes to the increase of the cantilever effective stiffness. The switching dynamics is mapped in the phase space of the device measured transfer function characteristic for such high piezo-film voltage excitation, providing additional information on the dynamical stability of the devices.
Spectroscopic Tools for Quantitative Studies of DNA Structure and Dynamics
DEFF Research Database (Denmark)
Preus, Søren
The main objective of this thesis is to develop quantitative fluorescence-based, spectroscopic tools for probing the 3D structure and dynamics of DNA and RNA. The thesis is founded on six peer-reviewed papers covering mainly the development, characterization and use of fluorescent nucleobase...... analogues. In addition, four software packages is presented for the simulation and quantitative analysis of time-resolved and steady-state UV-Vis absorption and fluorescence experiments....
On R factors for dynamic structure crystallography
DEFF Research Database (Denmark)
Coppens, Philip; Kaminski, Radoslaw; Schmøkel, Mette Stokkebro
2010-01-01
In studies of dynamic changes in crystals in which induced metastable species may have lifetimes of microseconds or less, refinements are most sensitive if based on the changes induced in the measured intensities. Agreement factors appropriate for such refinements, based on the ratios of the inte...... of the intensities before and after the external perturbation is applied, are discussed and compared with R factors commonly applied in static structure crystallography....
Feature Extraction for Structural Dynamics Model Validation
Energy Technology Data Exchange (ETDEWEB)
Farrar, Charles [Los Alamos National Laboratory; Nishio, Mayuko [Yokohama University; Hemez, Francois [Los Alamos National Laboratory; Stull, Chris [Los Alamos National Laboratory; Park, Gyuhae [Chonnam Univesity; Cornwell, Phil [Rose-Hulman Institute of Technology; Figueiredo, Eloi [Universidade Lusófona; Luscher, D. J. [Los Alamos National Laboratory; Worden, Keith [University of Sheffield
2016-01-13
As structural dynamics becomes increasingly non-modal, stochastic and nonlinear, finite element model-updating technology must adopt the broader notions of model validation and uncertainty quantification. For example, particular re-sampling procedures must be implemented to propagate uncertainty through a forward calculation, and non-modal features must be defined to analyze nonlinear data sets. The latter topic is the focus of this report, but first, some more general comments regarding the concept of model validation will be discussed.
Dynamics of Photoexcited State of Semiconductor Quantum Dots
Trivedi, Dhara J.
In this thesis, non-adiabatic molecular dynamics (NAMD) of excited states in semiconductor quantum dots are investigated. Nanoscale systems provide important opportunities for theory and computation for research because the experimental tools often provide an incomplete picture of the structure and/or function of nanomaterials, and theory can often fill in missing features crucial in understanding what is being measured. The simulation of NAMD is an indispensable tool for understanding complex ultrafast photoinduced processes such as charge and energy transfer, thermal relaxation, and charge recombination. Based on the state-of-the-art ab initio approaches in both the energy and time domains, the thesis presents a comprehensive discussion of the dynamical processes in quantum dots, ranging from the initial photon absorption to the final emission. We investigate the energy relaxation and transfer rates in pure and surface passivated quantum dots of different sizes. The study establishes the fundamental mechanisms of the electron and hole relaxation processes with and without hole traps. We develop and implement more accurate and efficient methods for NAMD. These methods are advantageous over the traditional ones when one encounters classically forbidden transitions. We also explore the effect of decoherence and non-adiabatic couplings on the dynamics. The results indicate significant influence on the accuracy and related computational cost of the simulated dynamics.
Handbook on dynamics of jointed structures.
Energy Technology Data Exchange (ETDEWEB)
Ames, Nicoli M.; Lauffer, James P.; Jew, Michael D.; Segalman, Daniel Joseph; Gregory, Danny Lynn; Starr, Michael James; Resor, Brian Ray
2009-07-01
The problem of understanding and modeling the complicated physics underlying the action and response of the interfaces in typical structures under dynamic loading conditions has occupied researchers for many decades. This handbook presents an integrated approach to the goal of dynamic modeling of typical jointed structures, beginning with a mathematical assessment of experimental or simulation data, development of constitutive models to account for load histories to deformation, establishment of kinematic models coupling to the continuum models, and application of finite element analysis leading to dynamic structural simulation. In addition, formulations are discussed to mitigate the very short simulation time steps that appear to be required in numerical simulation for problems such as this. This handbook satisfies the commitment to DOE that Sandia will develop the technical content and write a Joints Handbook. The content will include: (1) Methods for characterizing the nonlinear stiffness and energy dissipation for typical joints used in mechanical systems and components. (2) The methodology will include practical guidance on experiments, and reduced order models that can be used to characterize joint behavior. (3) Examples for typical bolted and screw joints will be provided.
Structural dynamic analysis of turbine blade
Antony, A. Daniel; Gopalsamy, M.; Viswanadh, Chaparala B. V.; Krishnaraj, R.
2017-10-01
In any gas turbine design cycle, blade design is a crucial element which needs maximum attention to meet the aerodynamic performance, structural safety margins, manufacturing feasibility, material availability etc. In present day gas turbine engines, most of the failures occur during engine development test and in-service, in rotor and stator blades due to fatigue and resonance failures. To address this issue, an extensive structural dynamic analysis is carried out to predict the natural frequencies and mode shapes using FE methods. Using the dynamics characteristics, the Campbell diagram is constructed to study the possibility of resonance at various operating speeds. In this work, the feasibility of using composite material in place of titanium alloy from the structural dynamics point of view. This is being attempted in a Low-pressure compressor where the temperatures are relatively low and fixed with the casings. The analysis will be carried out using FE method for different composite material with different lamina orientations chosen through the survey. This study will focus on the sensitivity of blade mode shapes to different laminae orientations, which will be used to alter the natural frequency and tailor the mode shapes. Campbell diagrams of existing titanium alloy are compared with the composite materials with different laminae at all critical operating conditions. The existing manufacturing methods and the proven techniques for blade profiles will also be discussed in this report.
Dynamic Hazards In Critical Infrastructure Of State
Directory of Open Access Journals (Sweden)
Ostrowska Teresa
2015-06-01
Full Text Available The authors are interested in some aspects of a development project entitled “The methodology of risk assessment for the purposes of crisis management system RP (ID 193751”. The project funded by the National Research and Development Centre under the Competition 3/2012 (security and defense. As part of the project the following items were reviewed and analyzed: materials related to the Government Security Centre, already completed and available products of the project ID 193751, and literature relating to, among other things, crisis management, critical infrastructure, business continuity, security, and threats. The basic emphasis of the article is focused on the resource-critical infrastructure interpretation of the state, whereby the state is perceived as a complex administrative structure in which, on the basis of external and internal interactions of resources, the risk of threats measurement is done.
DYNAMIC CINEMATIC TO A STRUCTURE 2R
Directory of Open Access Journals (Sweden)
Florian Ion Tiberiu Petrescu
2016-06-01
Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Flat structures 2R can solve all the problems posed by all the robotic anthropomorphic structures. The study of the anthropomorphic robots by the use of a flat structure 2R is a much easier method than classical used spatial methods. The paper outlines a method for the determination of dynamic to a robotic structure 2R balanced. 2R plane structures are used in practice only in the form balanced, for which in this paper will be made, initial, the total balance, and then the study cinematico-dynamic will only develop on the model already balanced. Dynamic relations presented then briefly without deduction will be explained and discussed with regard to their application. On the basis of the model presented and following calculations performed can be chosen correctly the two electric motors in the actuator. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}
Broadband spectrally dynamic solid state illumination source
Energy Technology Data Exchange (ETDEWEB)
Nicol, David B; Asghar, Ali; Gupta, Shalini; Kang, Hun; Pan, Ming [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Strassburg, Martin [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Georgia State University, Department of Physics and Astronomy, Atlanta, GA 30302-4106 (United States); Summers, Chris; Ferguson, Ian T [Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30332 (United States)
2006-06-15
Solid state lighting has done well recently in niche markets such as signage and displays, however, no available SSL technologies incorporate all the necessary attributes for general illumination. Development of a novel solid state general illumination source is discussed here. Two LEDs emitting at two distinct wavelengths can be monolithically grown and used to excite two or more phosphors with varied excitation spectra. The combined phosphorescence spectrum can then be controlled by adjusting the relative intensities of the two LED emissions. Preliminary phosphor analysis shows such a scheme to be viable for use in a spectrally dynamic broadband general illumination source. A tunnel junction is envisioned as a means of current spreading in a buried layer for three terminal operation. However, tunnel junction properties in GaN based materials are not well understood, and require further optimization to be practical devices. Preliminary results on GaN tunnel junctions are presented here as well. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Dynamic analysis of the BPX machine structure
International Nuclear Information System (INIS)
Dahlgen, F.; Citrolo, J.; Knutson, D.; Kalish, M.
1992-01-01
A preliminary analysis of the response of the BPX machine structure to a seismic input was performed. MSC/NASTRAN 5 , a general purpose XXX element computer code, has been used. The purpose of this paper is to assess the probable range of seismically induced stresses and deflections in the machine substructure which connects the machine to the test cell floor, with particular emphasis on the shear pins which will be used to attach the TF coil modules to the machine substructure (for a more detailed description of the shear pins and structure see ref. 4 in these proceedings). The model was developed with sufficient detail to be used subsequently to investigate the transient response to various dynamic loading conditions imposed on the structure by the PF, TF, and Vacuum Vessel, during normal and off-normal operations. The model does not include the mass and stiffness of the building or the building-soil interaction and as such can only be considered an interim assessment of the dynamic response of the machine to the S.S.E.(this is the Safe Shutdown Earthquake which is also the Design XXX Earthquake for all major structural components)
The SUSY oscillator from local geometry: Dynamics and coherent states
International Nuclear Information System (INIS)
Thienel, H.P.
1994-01-01
The choice of a coordinate chart on an analytical R n (R a n ) provides a representation of the n-dimensional SUSY oscillator. The corresponding Hilbert space is Cartan's exterior algebra endowed with a suitable scalar product. The exterior derivative gives rise to the algebra of the n-dimensional SUSY oscillator. Its euclidean dynamics is an inherent consequence of the geometry imposed by the Lie derivative generating the dilations, i.e. evolution of the quantum system corresponds to parametrization of a sequence of charts by euclidean time. Coherent states emerge as a natural structure related to the Lie derivative generating the translations. (orig.)
30th IMAC, A Conference on Structural Dynamics
Catbas, FN; Mayes, R; Rixen, D; Griffith, DT; Allemang, R; Clerck, J; Klerk, D; Simmermacher, T; Cogan, S; Chauhan, S; Cunha, A; Racic, V; Reynolds, P; Salyards, K; Adams, D; Kerschen, G; Carrella, A; Voormeeren, SN; Allen, MS; Horta, LG; Barthorpe, R; Niezrecki, C; Blough, JR; Vol.1 Topics on the Dynamics of Civil Structures; Vol.2 Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics; Vol.3 Topics in Nonlinear Dynamics; Vol.4 Topics in Model Validation and Uncertainty Quantification; Vol.5 Topics in Modal Analysis I; Vol.6 Topics in Modal Analysis II
2012-01-01
Topics on the Dynamics of Civil Structures, Volume 1, Proceedings of the 30th IMAC, A Conference and Exposition on Structural Dynamics, 2012, the first volume of six from the Conference, brings together 45 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Human Induced Vibrations Bridge Dynamics Operational Modal Analysis Experimental Techniques and Modeling for Civil Structures System Identification for Civil Structures Method and Technologies for Bridge Monitoring Damage Detection for Civil Structures Structural Modeling Vibration Control Method and Approaches for Civil Structures Modal Testing of Civil Structures.
Structural optimization for nonlinear dynamic response
DEFF Research Database (Denmark)
Dou, Suguang; Strachan, B. Scott; Shaw, Steven W.
2015-01-01
by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance......Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear...... resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described...
Dynamics of Correlation Structure in Stock Market
Directory of Open Access Journals (Sweden)
Maman Abdurachman Djauhari
2014-01-01
Full Text Available In this paper a correction factor for Jennrich’s statistic is introduced in order to be able not only to test the stability of correlation structure, but also to identify the time windows where the instability occurs. If Jennrich’s statistic is only to test the stability of correlation structure along predetermined non-overlapping time windows, the corrected statistic provides us with the history of correlation structure dynamics from time window to time window. A graphical representation will be provided to visualize that history. This information is necessary to make further analysis about, for example, the change of topological properties of minimal spanning tree. An example using NYSE data will illustrate its advantages.
Calculating evolutionary dynamics in structured populations.
Directory of Open Access Journals (Sweden)
Charles G Nathanson
2009-12-01
Full Text Available Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced "games in phenotype space" and "evolutionary set theory." There can be local interactions for determining the relative fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in the limit of weak selection. We derive an intuitive formula for the structure coefficient, sigma, and provide a method for efficient numerical calculation.
Excited State Spectra and Dynamics of Phenyl-Substituted Butadienes
DEFF Research Database (Denmark)
Wallace-Williams, Stacie E.; Schwartz, Benjamin J.; Møller, Søren
1994-01-01
indicate that phenyl torsional motion is not important to the excited-state dynamics and reveal alternative excited-state reaction pathways. The results demonstrate how molecular systems that are structually similar can exhibit different electronic properties and excited-state dynamics....
Dynamic sign structures in visual art and music
DEFF Research Database (Denmark)
Zeller, Jörg
2006-01-01
Seemingly static meaning carriers in visual art are considered as aspects of holistic dynamical sign structures.......Seemingly static meaning carriers in visual art are considered as aspects of holistic dynamical sign structures....
Dynamic Analysis of Wind Turbines Including Soil-Structure Interaction
DEFF Research Database (Denmark)
Harte, M.; Basu, B.; Nielsen, Søren R.K.
2012-01-01
This paper investigates the along-wind forced vibration response of an onshore wind turbine. The study includes the dynamic interaction effects between the foundation and the underlying soil, as softer soils can influence the dynamic response of wind turbines. A Multi-Degree-of-Freedom (MDOF......) horizontal axes onshore wind turbine model is developed for dynamic analysis using an Euler–Lagrangian approach. The model is comprised of a rotor blade system, a nacelle and a flexible tower connected to a foundation system using a substructuring approach. The rotor blade system consists of three rotating...... for displacement of the turbine system are obtained and the modal frequencies of the combined turbine-foundation system are estimated. Simulations are presented for the MDOF turbine structure subjected to wind loading for different soil stiffness conditions. Steady state and turbulent wind loading, developed using...
The Dynamics and Structures of Adsorbed Surfaces
DEFF Research Database (Denmark)
Nielsen, M; Ellenson, W. D.; McTague, J. P.
1978-01-01
. Elastic neutron diffraction measurements, determining the two-dimensional structural ordering of the adsorbed films, have been performed on layers of N2, Ar, H2, D2, O2, Kr, and He. Measurements on layers of larger molecules such as CD4 and ND3 have also been reported. Inelastic neutron scattering...... measurements, studying the dynamics of the adsorbed films are only possible in a few especially favourable cases such as 36Ar and D2 films, where the coherent phonon scattering cross-sections are very large. In other cases incoherent scattering from hydrogen can give information about e.g. the mobility...
Structural dynamics of turbo-machines
Rangwala, AS
2009-01-01
The book presents a detailed and comprehensive treatment of structural vibration evaluation of turbo-machines. Starting with the fundamentals of the theory of vibration as related to various aspects of rotating machines, the dynamic analysis procedures of a broad spectrum of turbo-machines is covered. An in-depth procedure for analyzing the torsional and flexural oscillations of the components and of the rotor-bearing system is presented. The latest trends in design and analysis are presented, chief among them: Blade and coupled disk-blade mod
Dynamical structure of pure Lovelock gravity
Dadhich, Naresh; Durka, Remigiusz; Merino, Nelson; Miskovic, Olivera
2016-03-01
We study the dynamical structure of pure Lovelock gravity in spacetime dimensions higher than four using the Hamiltonian formalism. The action consists of a cosmological constant and a single higher-order polynomial in the Riemann tensor. Similarly to the Einstein-Hilbert action, it possesses a unique constant curvature vacuum and charged black hole solutions. We analyze physical degrees of freedom and local symmetries in this theory. In contrast to the Einstein-Hilbert case, the number of degrees of freedom depends on the background and can vary from zero to the maximal value carried by the Lovelock theory.
Dynamical spin structure factors of α-RuCl3
Suzuki, Takafumi; Suga, Sei-ichiro
2018-03-01
Honeycomb-lattice magnet α-RuCl3 is considered to be a potential candidate of realizing Kitaev spin liquid, although this material undergoes a phase transition to the zigzag magnetically ordered state at T N ∼ 7 K. Quite recently, inelastic neutron-scattering experiments using single crystal α-RuCl3 have unveiled characteristic dynamical properties. We calculate dynamical spin structure factors of three ab-initio models for α-RuCl3 with an exact numerical diagonalization method. We also calculate temperature dependences of the specific heat by employing thermal pure quantum states. We compare our numerical results with the experiments and discuss characteristics obtained by using three ab-initio models.
Neutrons probing the structure and dynamics of liquids
International Nuclear Information System (INIS)
Leclercq-Hugeux, F.; Coulet, M.V.; Gaspard, J.P.; Pouget, St.; Zanotti, J.M.
2007-01-01
This article illustrates the benefits of neutron techniques to the understanding of the liquid state. As opposed to the nearly complete order of crystals or the nearly complete disorder of gas, the disorder of a liquid is partial and results from dynamical events acting on a broad range of space and time scales. Consequently, no single, simple parameter can encompass the concept of order or disorder in the liquid state. The wide variety of neutron techniques (diffraction, quasi-elastic and inelastic scattering) is a key asset to solve the issue. Selected studies ranging over typical interactions and conditions relevant to liquids (metallic, covalent, molecular, liquids near a phase transition and confined fluids) are presented. In each case, both structural and dynamical aspects, along with the connections to complementary techniques (computer simulation, X-ray absorption and/or scattering) are highlighted. (authors)
Annual Report 2000. Chemical Structure and Dynamics; FINAL
International Nuclear Information System (INIS)
Colson, Steve D; McDowell, Rod S
2001-01-01
This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS and D) program is meeting the need for a fundamental, molecular-level understanding by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and (3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems
Molecular structures and intramolecular dynamics of pentahalides
Ischenko, A. A.
2017-03-01
This paper reviews advances of modern gas electron diffraction (GED) method combined with high-resolution spectroscopy and quantum chemical calculations in studies of the impact of intramolecular dynamics in free molecules of pentahalides. Some recently developed approaches to the electron diffraction data interpretation, based on direct incorporation of the adiabatic potential energy surface parameters to the diffraction intensity are described. In this way, complementary data of different experimental and computational methods can be directly combined for solving problems of the molecular structure and its dynamics. The possibility to evaluate some important parameters of the adiabatic potential energy surface - barriers to pseudorotation and saddle point of intermediate configuration from diffraction intensities in solving the inverse GED problem is demonstrated on several examples. With increasing accuracy of the electron diffraction intensities and the development of the theoretical background of electron scattering and data interpretation, it has become possible to investigate complex nuclear dynamics in fluxional systems by the GED method. Results of other research groups are also included in the discussion.
Ji, Pengfei; Zhang, Yuwen; Yang, Mo
2016-01-01
The structural, dynamic, and vibrational properties during the heat transfer process in Si/Ge superlattices, are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) ar...
State-dependent neutral delay equations from population dynamics.
Barbarossa, M V; Hadeler, K P; Kuttler, C
2014-10-01
A novel class of state-dependent delay equations is derived from the balance laws of age-structured population dynamics, assuming that birth rates and death rates, as functions of age, are piece-wise constant and that the length of the juvenile phase depends on the total adult population size. The resulting class of equations includes also neutral delay equations. All these equations are very different from the standard delay equations with state-dependent delay since the balance laws require non-linear correction factors. These equations can be written as systems for two variables consisting of an ordinary differential equation (ODE) and a generalized shift, a form suitable for numerical calculations. It is shown that the neutral equation (and the corresponding ODE--shift system) is a limiting case of a system of two standard delay equations.
Structural Dynamics of Tropical Moist Forest Gaps
Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana
2015-01-01
Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23 % versus 6 %) within gaps. Both sites demonstrate limited gap contagiousness defined by an
Modeling Insurgent Network Structure and Dynamics
Gabbay, Michael; Thirkill-Mackelprang, Ashley
2010-03-01
We present a methodology for mapping insurgent network structure based on their public rhetoric. Indicators of cooperative links between insurgent groups at both the leadership and rank-and-file levels are used, such as joint policy statements or joint operations claims. In addition, a targeting policy measure is constructed on the basis of insurgent targeting claims. Network diagrams which integrate these measures of insurgent cooperation and ideology are generated for different periods of the Iraqi and Afghan insurgencies. The network diagrams exhibit meaningful changes which track the evolution of the strategic environment faced by insurgent groups. Correlations between targeting policy and network structure indicate that insurgent targeting claims are aimed at establishing a group identity among the spectrum of rank-and-file insurgency supporters. A dynamical systems model of insurgent alliance formation and factionalism is presented which evolves the relationship between insurgent group dyads as a function of their ideological differences and their current relationships. The ability of the model to qualitatively and quantitatively capture insurgent network dynamics observed in the data is discussed.
Molecular dynamics simulations from putative transition states of alpha-spectrin SH3 domain
Periole, Xavier; Vendruscolo, Michele; Mark, Alan E.
2007-01-01
A series of molecular dynamics simulations in explicit solvent were started from nine structural models of the transition state of the SH3 domain of alpha-spectrin, which were generated by Lindorff Larsen et al. (Nat Struct Mol Biol 2004;11:443-449) using molecular dynamics simulations in which
Detecting brain dynamics during resting state: a tensor based evolutionary clustering approach
Al-sharoa, Esraa; Al-khassaweneh, Mahmood; Aviyente, Selin
2017-08-01
Human brain is a complex network with connections across different regions. Understanding the functional connectivity (FC) of the brain is important both during resting state and task; as disruptions in connectivity patterns are indicators of different psychopathological and neurological diseases. In this work, we study the resting state functional connectivity networks (FCNs) of the brain from fMRI BOLD signals. Recent studies have shown that FCNs are dynamic even during resting state and understanding the temporal dynamics of FCNs is important for differentiating between different conditions. Therefore, it is important to develop algorithms to track the dynamic formation and dissociation of FCNs of the brain during resting state. In this paper, we propose a two step tensor based community detection algorithm to identify and track the brain network community structure across time. First, we introduce an information-theoretic function to reduce the dynamic FCN and identify the time points that are similar topologically to combine them into a tensor. These time points will be used to identify the different FC states. Second, a tensor based spectral clustering approach is developed to identify the community structure of the constructed tensors. The proposed algorithm applies Tucker decomposition to the constructed tensors and extract the orthogonal factor matrices along the connectivity mode to determine the common subspace within each FC state. The detected community structure is summarized and described as FC states. The results illustrate the dynamic structure of resting state networks (RSNs), including the default mode network, somatomotor network, subcortical network and visual network.
Mahmoudpour, Sanaz; Attarnejad, Reza; Behnia, Cambyse
2011-01-01
Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite el...
Nonparametric inference of network structure and dynamics
Peixoto, Tiago P.
The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among
A statistical state dynamics approach to wall turbulence.
Farrell, B F; Gayme, D F; Ioannou, P J
2017-03-13
This paper reviews results obtained using statistical state dynamics (SSD) that demonstrate the benefits of adopting this perspective for understanding turbulence in wall-bounded shear flows. The SSD approach used in this work employs a second-order closure that retains only the interaction between the streamwise mean flow and the streamwise mean perturbation covariance. This closure restricts nonlinearity in the SSD to that explicitly retained in the streamwise constant mean flow together with nonlinear interactions between the mean flow and the perturbation covariance. This dynamical restriction, in which explicit perturbation-perturbation nonlinearity is removed from the perturbation equation, results in a simplified dynamics referred to as the restricted nonlinear (RNL) dynamics. RNL systems, in which a finite ensemble of realizations of the perturbation equation share the same mean flow, provide tractable approximations to the SSD, which is equivalent to an infinite ensemble RNL system. This infinite ensemble system, referred to as the stochastic structural stability theory system, introduces new analysis tools for studying turbulence. RNL systems provide computationally efficient means to approximate the SSD and produce self-sustaining turbulence exhibiting qualitative features similar to those observed in direct numerical simulations despite greatly simplified dynamics. The results presented show that RNL turbulence can be supported by as few as a single streamwise varying component interacting with the streamwise constant mean flow and that judicious selection of this truncated support or 'band-limiting' can be used to improve quantitative accuracy of RNL turbulence. These results suggest that the SSD approach provides new analytical and computational tools that allow new insights into wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
State-dependent intrinsic predictability of cortical network dynamics.
Directory of Open Access Journals (Sweden)
Leila Fakhraei
Full Text Available The information encoded in cortical circuit dynamics is fleeting, changing from moment to moment as new input arrives and ongoing intracortical interactions progress. A combination of deterministic and stochastic biophysical mechanisms governs how cortical dynamics at one moment evolve from cortical dynamics in recently preceding moments. Such temporal continuity of cortical dynamics is fundamental to many aspects of cortex function but is not well understood. Here we study temporal continuity by attempting to predict cortical population dynamics (multisite local field potential based on its own recent history in somatosensory cortex of anesthetized rats and in a computational network-level model. We found that the intrinsic predictability of cortical dynamics was dependent on multiple factors including cortical state, synaptic inhibition, and how far into the future the prediction extends. By pharmacologically tuning synaptic inhibition, we obtained a continuum of cortical states with asynchronous population activity at one extreme and stronger, spatially extended synchrony at the other extreme. Intermediate between these extremes we observed evidence for a special regime of population dynamics called criticality. Predictability of the near future (10-100 ms increased as the cortical state was tuned from asynchronous to synchronous. Predictability of the more distant future (>1 s was generally poor, but, surprisingly, was higher for asynchronous states compared to synchronous states. These experimental results were confirmed in a computational network model of spiking excitatory and inhibitory neurons. Our findings demonstrate that determinism and predictability of network dynamics depend on cortical state and the time-scale of the dynamics.
Structure, dynamics, and function of biomolecules
International Nuclear Information System (INIS)
Frauenfelder, H.; Berendzen, J.R.; Garcia, A.; Gupta, G.; Olah, G.A.; Terwilliger, T.C.; Trewhella, J.; Wood, C.C.; Woodruff, W.H.
1998-01-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors enhanced Los Alamos' core competency in Bioscience and Biotechnology by building on present strengths in experimental techniques, theory, high-performance computing, modeling, and simulation applied to biomolecular structure, dynamics, and function. Specifically, the authors strengthened their capabilities in neutron/x-ray scattering, x-ray crystallography, NMR, laser, and optical spectroscopies. Initially they focused on supporting the Los alamos Neutron Science Center (LANSCE) in the design and implementation of new neutron scattering instrumentation, they developed new methods for analysis of scattering data, and they developed new projects to study the structures of biomolecular complexes. The authors have also worked to strengthen interactions between theory and experiment, and between the biological and physical sciences. They sponsored regular meetings of members from all interested LANL technical divisions, and supported two lecture series: ''Biology for Physicists'' and ''Issues in Modern Biology''. They also supported the formation of interdisciplinary/inter-divisional teams to develop projects in science-based bioremediation and an integrated structural biology resource. Finally, they successfully worked with a multidisciplinary team to put forward the Laboratory's Genome and Beyond tactical goal
Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy
International Nuclear Information System (INIS)
Lee, Ingu; Pang, Yoonsoo; Lee, Sebok
2014-01-01
Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S 2 and S 1 excited states
Structure an dynamics in cavity quantum electrodynamics
International Nuclear Information System (INIS)
Kimble, H.J.
1994-01-01
Much of the theoretical background related to the radiative processes for atoms in the presence of boundaries comes from two often disjoint areas, namely cavity quantum electrodynamics and optical bistability with two-state atoms. While the former of these areas has been associated to a large degree with studies in a perturbative domain of altered associated to a large degree with studies in a perturbative domain of altered emission processes in the presence of boundaries other than those of free space, the latter is often viewed from the perspective of hysteresis cycles and device applications. With the exception of the laser, however, perhaps the most extensive investigations of quantum statistical processes in quantum optics are to be found in the literature on bistability with two-state atoms and on cavity QED. Unfortunately, the degree of overlap of these two areas has not always been fully appreciated. This circumstance is perhaps due in part to the fact that the investigation of dynamical processes in cavity QED has had as its cornerstone the Jaynes-Cummings problem, with extensions to include, for example, small amounts of dissipation. On the other hand, a principle aspect of the bistability literature has been the study of quantum fluctuations in open systems for which dissipation plays a central role, but for which the coherent quantum dynamics of the Haynes-Cummings model are to a large measure lost due to the usual assumption of large system size and weak coupling (as in the standard theory of the laser). 132 refs., 26 figs., 1 tab
Age structure and cooperation in coevolutionary games on dynamic network
Qin, Zilong; Hu, Zhenhua; Zhou, Xiaoping; Yi, Jingzhang
2015-04-01
Our proposed model imitates the growth of a population and describes the age structure and the level of cooperation in games on dynamic network with continuous changes of structure and topology. The removal of nodes and links caused by age-dependent attack, together with the nodes addition standing for the newborns of population, badly ruins Matthew effect in this coevolutionary process. Though the network is generated by growth and preferential attachment, it degenerates into random network and it is no longer heterogeneous. When the removal of nodes and links is equal to the addition of nodes and links, the size of dynamic network is maintained in steady-state, so is the low level of cooperation. Severe structure variation, homogeneous topology and continuous invasion of new defection jointly make dynamic network unsuitable for the survival of cooperator even when the probability with which the newborn players initially adopt the strategy cooperation is high, while things change slightly when the connections of newborn players are restricted. Fortunately, moderate interactions in a generation trigger an optimal recovering process to encourage cooperation. The model developed in this paper outlines an explanation of the cohesion changes in the development process of an organization. Some suggestions for cooperative behavior improvement are given in the end.
Plasma and current structures in dynamical pinches
International Nuclear Information System (INIS)
Butov, I.Ya.; Matveev, Yu.V.
1981-01-01
Dynamics of plasma layers and current structure in aZ-pinch device has been experimentally investigated. It is found that shaping of a main current envelope is ended with its explosion-like expansion, the pinch decaying after compression to separated current filaments. It is also shown that filling of a region outside the pinch with plasma and currents alternating in directions occurs owing to interaction of current loops (inductions) formed in a magnetic piston during its compression with reflected shock wave. Current circulating in the loops sometimes exceeds 1.5-2 times the current of discharge circuit. The phenomena noted appear during development of superheat instability and can be realized, for example, in theta-pinches, plasma focuses, tokamaks. The experiments were carried out at the Dynamic Zeta-pinch device at an energy reserse of up to 15 kJ (V 0 =24 kV) in a capacitor bank. Half-period of the discharge current is 9 μs; Isub(max)=3.5x10sup(5) A. Back current guide surrounding a china chamber of 28 cm diameter and 50 cm length is made in the form of a hollow cylinder. Initial chamber vacuum is 10 -6 torr [ru
Wheat yield dynamics: a structural econometric analysis.
Sahin, Afsin; Akdi, Yilmaz; Arslan, Fahrettin
2007-10-15
In this study we initially have tried to explore the wheat situation in Turkey, which has a small-open economy and in the member countries of European Union (EU). We have observed that increasing the wheat yield is fundamental to obtain comparative advantage among countries by depressing domestic prices. Also the changing structure of supporting schemes in Turkey makes it necessary to increase its wheat yield level. For this purpose, we have used available data to determine the dynamics of wheat yield by Ordinary Least Square Regression methods. In order to find out whether there is a linear relationship among these series we have checked each series whether they are integrated at the same order or not. Consequently, we have pointed out that fertilizer usage and precipitation level are substantial inputs for producing high wheat yield. Furthermore, in respect for our model, fertilizer usage affects wheat yield more than precipitation level.
Dynamical effects of QCD vacuum structure
International Nuclear Information System (INIS)
Ferreira, Erasmo
1994-01-01
The role of the QCD vacuum structure in the determination of the properties of states and processes occurring in the confinement regime of QCD is reviewed. The finite range of the vacuum correlations is discussed, and an analytical form is suggested for the correlation functions. The role of the vacuum quantum numbers in the phenomenology of high-energy scattering is reviewed. The vacuum correlation model of non-perturbative QCD is mentioned as a bridge between the fundamental theory and the description of the experiments. (author). 13 refs., 1 fig
Multiple Scale Analysis of the Dynamic State Index (DSI)
Müller, A.; Névir, P.
2016-12-01
The Dynamic State Index (DSI) is a novel parameter that indicates local deviations of the atmospheric flow field from a stationary, inviscid and adiabatic solution of the primitive equations of fluid mechanics. This is in contrast to classical methods, which often diagnose deviations from temporal or spatial mean states. We show some applications of the DSI to atmospheric flow phenomena on different scales. The DSI is derived from the Energy-Vorticity-Theory (EVT) which is based on two global conserved quantities, the total energy and Ertel's potential enstrophy. Locally, these global quantities lead to the Bernoulli function and the PV building together with the potential temperature the DSI.If the Bernoulli function and the PV are balanced, the DSI vanishes and the basic state is obtained. Deviations from the basic state provide an indication of diabatic and non-stationary weather events. Therefore, the DSI offers a tool to diagnose and even prognose different atmospheric events on different scales.On synoptic scale, the DSI can help to diagnose storms and hurricanes, where also the dipole structure of the DSI plays an important role. In the scope of the collaborative research center "Scaling Cascades in Complex Systems" we show high correlations between the DSI and precipitation on convective scale. Moreover, we compare the results with reduced models and different spatial resolutions.
An Approach for State Observation in Dynamical Systems Based on the Twisting Algorithm
DEFF Research Database (Denmark)
Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.
2013-01-01
This paper discusses a novel approach for state estimation in dynamical systems, with the special focus on hydraulic valve-cylinder drives. The proposed observer structure is based on the framework of the so-called twisting algorithm. This algorithm utilizes the sign of the state being the target...
Indoor footstep localization from structural dynamics instrumentation
Poston, Jeffrey D.; Buehrer, R. Michael; Tarazaga, Pablo A.
2017-05-01
Measurements from accelerometers originally deployed to measure a building's structural dynamics can serve a new role: locating individuals moving within a building. Specifically, this paper proposes measurements of footstep-generated vibrations as a novel source of information for localization. The complexity of wave propagation in a building (e.g., dispersion and reflection) limits the utility of existing algorithms designed to locate, for example, the source of sound in a room or radio waves in free space. This paper develops enhancements for arrival time determination and time difference of arrival localization in order to address the complexities posed by wave propagation within a building's structure. Experiments with actual measurements from an instrumented public building demonstrate the potential of locating footsteps to sub-meter accuracy. Furthermore, this paper explains how to forecast performance in other buildings with different sensor configurations. This localization capability holds the potential to assist public safety agencies in building evacuation and incidence response, to facilitate occupancy-based optimization of heating or cooling and to inform facility security.
Molecular dynamics study on glass and molten state of AgI-AgPO3
Matsunaga, Shigeki
2017-08-01
Molecular dynamics (MD) simulation on molten and glass state of AgI-AgPO3 have been performed to investigate the structural features and transport properties. In MD, the screened Born-Mayer type potentials including the effect of polarizability of ions have been used. The structure, conductivity, shear viscosity, and Voronoi polyhedron are discussed in relation with the temperature change.
Villaverde, Alejandro F; Banga, Julio R
2017-11-01
The concept of dynamical compensation has been recently introduced to describe the ability of a biological system to keep its output dynamics unchanged in the face of varying parameters. However, the original definition of dynamical compensation amounts to lack of structural identifiability. This is relevant if model parameters need to be estimated, as is often the case in biological modelling. Care should we taken when using an unidentifiable model to extract biological insight: the estimated values of structurally unidentifiable parameters are meaningless, and model predictions about unmeasured state variables can be wrong. Taking this into account, we explore alternative definitions of dynamical compensation that do not necessarily imply structural unidentifiability. Accordingly, we show different ways in which a model can be made identifiable while exhibiting dynamical compensation. Our analyses enable the use of the new concept of dynamical compensation in the context of parameter identification, and reconcile it with the desirable property of structural identifiability.
Mapping the structural and dynamical features of kinesin motor domains.
Directory of Open Access Journals (Sweden)
Guido Scarabelli
Full Text Available Kinesin motor proteins drive intracellular transport by coupling ATP hydrolysis to conformational changes that mediate directed movement along microtubules. Characterizing these distinct conformations and their interconversion mechanism is essential to determining an atomic-level model of kinesin action. Here we report a comprehensive principal component analysis of 114 experimental structures along with the results of conventional and accelerated molecular dynamics simulations that together map the structural dynamics of the kinesin motor domain. All experimental structures were found to reside in one of three distinct conformational clusters (ATP-like, ADP-like and Eg5 inhibitor-bound. These groups differ in the orientation of key functional elements, most notably the microtubule binding α4-α5, loop8 subdomain and α2b-β4-β6-β7 motor domain tip. Group membership was found not to correlate with the nature of the bound nucleotide in a given structure. However, groupings were coincident with distinct neck-linker orientations. Accelerated molecular dynamics simulations of ATP, ADP and nucleotide free Eg5 indicate that all three nucleotide states could sample the major crystallographically observed conformations. Differences in the dynamic coupling of distal sites were also evident. In multiple ATP bound simulations, the neck-linker, loop8 and the α4-α5 subdomain display correlated motions that are absent in ADP bound simulations. Further dissection of these couplings provides evidence for a network of dynamic communication between the active site, microtubule-binding interface and neck-linker via loop7 and loop13. Additional simulations indicate that the mutations G325A and G326A in loop13 reduce the flexibility of these regions and disrupt their couplings. Our combined results indicate that the reported ATP and ADP-like conformations of kinesin are intrinsically accessible regardless of nucleotide state and support a model where neck
Distributed Dynamic State Estimation with Extended Kalman Filter
Energy Technology Data Exchange (ETDEWEB)
Du, Pengwei; Huang, Zhenyu; Sun, Yannan; Diao, Ruisheng; Kalsi, Karanjit; Anderson, Kevin K.; Li, Yulan; Lee, Barry
2011-08-04
Increasing complexity associated with large-scale renewable resources and novel smart-grid technologies necessitates real-time monitoring and control. Our previous work applied the extended Kalman filter (EKF) with the use of phasor measurement data (PMU) for dynamic state estimation. However, high computation complexity creates significant challenges for real-time applications. In this paper, the problem of distributed dynamic state estimation is investigated. One domain decomposition method is proposed to utilize decentralized computing resources. The performance of distributed dynamic state estimation is tested on a 16-machine, 68-bus test system.
A dynamical topology for the space of states
International Nuclear Information System (INIS)
Dittrich, J.
1979-01-01
A new topology is introduced for the space of states of a physical system. This topology is given by dynamics, every state has a neighbourhood consisting of states connected by the time evolution only. With respect to the new topology, all conservation laws can be treated as topological laws. (author)
Motorcycle state estimation for lateral dynamics
Teerhuis, A.P.; Jansen, S.T.H.
2012-01-01
The motorcycle lean (or roll) angle development is one of the main characteristics of motorcycle lateral dynamics. Control of motorcycle motions requires an accurate assessment of this quantity and for safety applications also the risk of sliding needs to be considered. Direct measurement of the
Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics
2016-01-01
This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application...
Matrix of transmission in structural dynamics
International Nuclear Information System (INIS)
Mukherjee, S.
1975-01-01
Within the last few years numerous papers have been published on the subject of matrix method in elasto-mechanics. 'Matrix of Transmission' is one of the methods in this field which has gained considerable attention in recent years. The basic philosophy adopted in this method is based on the idea of breaking up a complicated system into component parts with simple elastic and dynamic properties which can be readily expressed in matrix form. These component matrices are considered as building blocks, which are fitted together according to a set of predetermined rules which then provide the static and dynamic properties of the entire system. A common type of system occuring in engineering practice consists of a number of elements linked together end to end in the form of a chain. The 'Transfer Matrix' is ideally suited for such a system, because only successive multiplication is necessary to connect these elements together. The number of degrees of freedom and intermediate conditions present no difficulty. Although the 'Transfer Matrix' method is suitable for the treatment of branched and coupled systems its application to systems which do not have predominant chain topology is not effective. Apart from the requirement that the system be linearely elastic, no other restrictions are made. In this paper, it is intended to give a general outline and theoretical formulation of 'Transfer Matrix' and then its application to actual problems in structural dynamics related to seismic analysis. The natural frequencies of a freely vibrating elastic system can be found by applying proper end conditions. The end conditions will yield the frequency determinate to zero. By using a suitable numerical method, the natural frequencies and mode shapes are determined by making a frequency sweep within the range of interest. Results of an analysis of a typical nuclear building by this method show very close agreement with the results obtained by using ASKA and SAP IV program. Therefore
State debt dynamics: the methodological aspect
Directory of Open Access Journals (Sweden)
Crijanovschi Stela
2013-02-01
Full Text Available In this article, it’s presented the methodological aspect of the state debt. The issue of supplementary money in order to cover the state debt is one of the factors that generate inflation, which respectively has a negative impact on the economic development
STATE DEBT DYNAMICS: THE METHODOLOGICAL ASPECT
Directory of Open Access Journals (Sweden)
Stela CRIJANOVSCHI
2013-02-01
Full Text Available In this article, it’s presented the methodological aspect of the state debt. The issue of supplementary money in order to cover the state debt is one of the factors that generate inflation, which respectively has a negative impact on the economic development.
Study on Human-structure Dynamic Interaction in Civil Engineering
Gao, Feng; Cao, Li Lin; Li, Xing Hua
2018-06-01
The research of human-structure dynamic interaction are reviewed. Firstly, the influence of the crowd load on structural dynamic characteristics is introduced and the advantages and disadvantages of different crowd load models are analyzed. Then, discussing the influence of structural vibration on the human-induced load, especially the influence of different stiffness structures on the crowd load. Finally, questions about human-structure interaction that require further study are presented.
Simulating CubeSat Structure Deployment Dynamics, Phase I
National Aeronautics and Space Administration — There is high value in simulating the nonlinear dynamics of stowing, deploying, and performance of deployable space structures, especially given the profound...
Kulish, Kirill I.; Novikov, Alexander S.; Tolstoy, Peter M.; Bolotin, Dmitrii S.; Bokach, Nadezhda A.; Zolotarev, Andrey A.; Kukushkin, Vadim Yu.
2016-05-01
Three new iminium salts [H2Ndbnd C(R)ONdbnd C(R‧)NH2](p-TolSO3)·½H2O ([1-3](p-TolSO3)·½H2O; R/R‧ = NMe2/PhCH21, NMe2/p-BrC6H42, N(CH2)5/p-BrC6H43) were synthesized via ZnII-mediated amidoxime-cyanamide coupling and their solid structures were studied by X-ray diffraction. Solution structure and conformational changes of [1-3](p-TolSO3)·½H2O were studied by dynamic NMR. The obtained quantitative data were supported by DFT calculations. All the obtained results help to understand the relative stability of the salts [H2Ndbnd C(R)ONdbnd C(R‧)NH2](X) (R = NAlk2, Alk, Ar) and give a further insight into the mechanism of ZnII-mediated generation of 1,2,4-oxadiazoles. The electron delocalization and sesquialteral bonds in the [H2Ndbnd C(NR2)ONdbnd C(R‧)NH2]+ system was recognized by estimation of values of activation energy barriers (14-18 kcal/mol by DNMR and 16-17 kcal/mol by DFT calculations) for the rotation around the CN bonds for the NR2 groups and inspection of the solid-state X-ray data along with the Wiberg bond indices (intermediate single/double bond order for the CN distances). This electron delocalization is responsible for the stabilization of the positively charged iminium cation. The moderate strength hydrogen bonding between the oxime N atom and the =NH2 group, which is verified from the X-ray, DNMR experiments, and by using quantum chemical calculations, stabilizes the iminium salt, but it is still weak to prevent the heterocyclization. Theoretical calculations of the heterocyclization of [H2Ndbnd C(R)ONdbnd C(R‧)NH2]+ to 1,2,4-oxadiazoles demonstrated that it is kinetically hindered to a greater extent for R = NAlk2 and this explains their lower reactivity as compared to the iminium salts with R = Alk, Ar.
Structural phase transition and dynamical properties of PbTiO3 simulated by molecular dynamics
International Nuclear Information System (INIS)
Costa, S C; Pizani, P S; Rino, J P; Borges, D S
2005-01-01
The temperature- and pressure-induced structural phase transition in PbTiO 3 is studied with the isoenthalpic-isobaric molecular-dynamics method, using an effective two-body interaction potential. The tetragonal to cubic transformation is successfully reproduced with both temperature and pressure. The behaviour of lattice parameters, vibrational density of states, and phonon anharmonicity with temperature and pressure are in very good agreement with experimental data. Two- and three-body correlations were analysed through pair distribution functions, coordination numbers and bond-angle distributions
Structural dynamics in fast reactor accident analysis
International Nuclear Information System (INIS)
Fistedis, S.H.
1975-01-01
Analyses and codes are under development combining the hydrodynamics and solid mechanics (and more recently the bubble dynamics) phenomena to gage the stresses, strains, and deformations of important primary components, as well as the overall adequacy of primary and secondary containments. An arbitrary partition of the structural components treated evolves into (1) a core mechanics effort; and (2) a primary system and containment program. The primary system and containment program treats the structural response of components beyond the core, starting with the core barrel. Combined hydrodynamics-solid mechanics codes provide transient stresses and strains and final deformations for components such as the reactor vessel, reactor cover, cover holddown bolts, as well as the pulses for which the primary piping system is to be analyzed. Both, Lagrangian and Eulerian two-dimensional codes are under development, which provide greater accuracy and longer durations for the treatment of HCDA. The codes are being augmented with bubble migration capability pertaining to the latter stages of the HCDA, after slug impact. Recent developments involve the adaptation of the 2-D Eulerian primary system code to the 2-D elastic-plastic treatment of primary piping. Pulses are provided at the vessel-primary piping interfaces of the inlet and outlet nozzles, calculation includes the elbows and pressure drops along the components of the primary piping system. Recent improvements to the primary containment codes include introduction of bending strength in materials, Langrangian mesh regularization techniques, and treatment of energy absorbing materials for the slug impact. Another development involves the combination of a 2-D finite element code for the reactor cover with the hydrodynamic containment code
Dynamical structure of hadron emission sources
Zhao Xi; Zhao Shu Song
2000-01-01
NA22 experimental data of the triplet seagull effects show that the Doppler effects of hadron emission sources exist exactly in hadron- hadron collisions. Every source possesses the same average energy (CMS) approximately. The collective seagull effects can be also explained by the (aQ)/sup nu /K/sub nu / (aQ) distributions (generalized functions). The dynamical structure of a hadron emission source is described by the (aQ)/sup nu /K/sub nu / (aQ) distributions. The anomalous dimensions of the pionic quantum fields are gamma /sub B/(g/sub R/)=-0.045+or-0.012, which control the singularities of the production amplitude in quantum field theory. The mathematical parameter epsilon =4-D (the dimension D of space time) in the Feynman integrals can be replaced by the anomalous gamma /sub B/(g/sub R/) of the quantum fields for the regularization. (-2 gamma /sub B/(g/sub R/) to or from epsilon /2=1/ln( Lambda /sup 2//m /sup 2/) Lambda to infinity ). (26 refs).
Dynamical structure of hadron emission sources
International Nuclear Information System (INIS)
Zhao Xi; Huang Bangrong; Zhao Shusong
2000-01-01
NA22 experimental data of the triplet seagull effects show that the Doppler effects of the hadron emission sources exist exactly in the hadron-hadron collisions. Every source possesses the same average energy (CMS) approximately. The collective seagull effects can be also explained by the (aQ) ν K ν (aQ) distributions (Generalized functions). The dynamical structure of a hadron emission source is described by the (aQ) ν K ν (aQ) distributions. The anomalous dimensions of the pionic quantum fields are γ B (g R ) = - 0.045 +- 0.012, which control the singularities of the production amplitude in quantum field theory. The mathematical parameter ε = 4-D (the dimension D of space time) in the Feynman integrals can be replaced by the anomalous γ B (g R ) of the quantum fields for the regularization. (-2γ B (g R )↔ε/2 1/ln(Λ 2 /m 2 )Λ→∞)
Dynamical structure of linearized GL(4) gravities
International Nuclear Information System (INIS)
Aragone, C.; Restuccia, A.
1978-01-01
The physical content of the three more natural models of GL(4) gravity is analyzed, for the case of weak fields. It is shown that the first model is the linearized version of Yang's one-tensor-field gravity and is a scalar-tensor theory, with its scalar part contained in a symmetric tensor. The second and the third linearized models, which can both be derived from the fourth-order action postulated by Yang, are two-tensor decoupled systems. In both cases one of the tensors is the symmetric weak metric gravity tensor field. the second tensor appearing in these two models, representing the GL(4)-gauge field, is either a linearized symmetric affinity (in the second model) or a linearized but nonsymmetric affinity (for the third model). It is shown that in these last two cases the affinity contains a helicity-3 propagating field. Owing to the presence of helicity-3 fields it is shown that it is better to regard Yang's action as an action for a two-tensor system instead of trying to recover from a pure gravity (one-tensor-field) action. Finally, it is shown what is the dynamical structure of the second and third linearized two-tensor models which can be derived from Yang's action. (author)
Flexible joints in structural and multibody dynamics
Directory of Open Access Journals (Sweden)
O. A. Bauchau
2013-02-01
Full Text Available Flexible joints, sometimes called bushing elements or force elements, are found in all structural and multibody dynamics codes. In their simplest form, flexible joints simply consist of sets of three linear and three torsional springs placed between two nodes of the model. For infinitesimal deformations, the selection of the lumped spring constants is an easy task, which can be based on a numerical simulation of the joint or on experimental measurements. If the joint undergoes finite deformations, identification of its stiffness characteristics is not so simple, specially if the joint is itself a complex system. When finite deformations occur, the definition of deformation measures becomes a critical issue. This paper proposes a family of tensorial deformation measures suitable for elastic bodies of finite dimension. These families are generated by two parameters that can be used to modify the constitutive behavior of the joint, while maintaining the tensorial nature of the deformation measures. Numerical results demonstrate the objectivity of the deformations measures, a feature that is not shared by the deformations measures presently used in the literature. The impact of the choice of the two parameters on the constitutive behavior of the flexible joint is also investigated.
Dynamics and statistics of unstable quantum states
International Nuclear Information System (INIS)
Sokolov, V.V.; Zelevinsky, V.G.
1989-01-01
The statistical theory of spectra formulated in terms of random matrices is extended to unstable states. The energies and widths of these states are treated as real and imaginary parts of complex eigenvalues for an effective non-hermitian hamiltonian. Eigenvalue statistics are investigated under simple assumptions. If the coupling through common decay channels is weak we obtain a Wigner distribution for the level spacings and a Porter-Thomas one for the widths, with the only exception for spacings less than widths where level repulsion fades out. Meanwhile in the complex energy plane the repulsion of eigenvalues is quadratic in accordance with the T-noninvariant character of decaying systems. In the opposite case of strong coupling with the continuum, k short-lived states are formed (k is the number of open decay channels). These states accumulate almost the whole total width, the rest of the states becoming long-lived. Such a perestroika corresponds to separation of direct processes (a nuclear analogue of Dicke coherent superradiance). At small channel number, Ericson fluctuations of the cross sections are found to be suppressed. The one-channel case is considered in detail. The joint distribution of energies and widths is obtained. The average cross sections and density of unstable states are calculated. (orig.)
Dynamical measurements of the interior structure of exoplanets
International Nuclear Information System (INIS)
Becker, Juliette C.; Batygin, Konstantin
2013-01-01
Giant gaseous planets often reside on orbits in sufficient proximity to their host stars for the planetary quadrupole gravitational field to become non-negligible. In presence of an additional planetary companion, a precise characterization of the system's orbital state can yield meaningful constraints on the transiting planet's interior structure. However, such methods can require a very specific type of system. This paper explores the dynamic range of applicability of these methods and shows that interior structure calculations are possible for a wide array of orbital architectures. The HAT-P-13 system is used as a case study, and the implications of perturbations arising from a third distant companion on the feasibility of an interior calculation are discussed. We find that the method discussed here is likely to be useful in studying other planetary systems, allowing the possibility of an expanded survey of the interiors of exoplanets.
Molecular Dynamics and Morphology of High Performance Elastomers and Fibers by Solid State NMR
2016-06-30
nuclear magnetic resonance (ssNMR) spectroscopy to investigate the chemical structure and physical state of the residual phosphorous in PBO fiber...ssNMR) spectroscopy to investigate the chemical structure and physical state of the residual phosphorous in PBO fiber, which has been long suspected to...Jason Cain, Jian H. Yu, David Veysset, Keith A. Nelson . Probing the Influence of Molecular Dynamics of Matrix Elastomers on Ballistic Impact Back-face
Organoactinide chemistry: synthesis, structure, and solution dynamics
International Nuclear Information System (INIS)
Brennan, J.G.
1985-12-01
This thesis considers three aspects of organoactinide chemistry. In chapter one, a bidentate phosphine ligand was used to kinetically stabilize complexes of the type Cp 2 MX 2 . Ligand redistribution processes are present throughout the synthetic work, as has often been observed in uranium cyclopentadienyl chemistry. The effects of covalent M-L bonding on the solution and solid state properties of U(III) coordination complexes are considered. In particular, the nature of the more subtle interaction between the metal and the neutral ligand are examined. Using relative basicity data obtained in solution, and solid state structural data (and supplemented by gas phase photoelectron measurements), it is demonstrated that the more electron rich U(III) centers engage in significant U → L π-donation. Trivalent uranium is shown to be capable of acting either as a one- or two-electron reducing agent toward a wide variety of unsaturated organic and inorganic molecules, generating molecular classes unobtainable via traditional synthetic approaches, as well as offering an alternative synthetic approach to molecules accessible via metathesis reactions. Ligand redistribution processes are again observed, but given the information concerning ligand lability, this reactivity pattern is applied to the synthesis of pure materials inaccessible from redox chemistry. 214 refs., 33 figs., 10 tabs
Tracking excited-state charge and spin dynamics in iron coordination complexes
DEFF Research Database (Denmark)
Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe
2014-01-01
to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)(3)](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate......Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons(1-4). But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited...... states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics(5) and the flux limitations of ultrafast X-ray sources(6,7). Such a situation exists for archetypal poly-pyridyl iron complexes, such as [Fe(2...
International Nuclear Information System (INIS)
Jiang, Shixiao W; Lu, Haihao; Zhou, Douglas; Cai, David
2016-01-01
Characterizing dispersive wave turbulence in the long time dynamics is central to understanding of many natural phenomena, e.g., in atmosphere ocean dynamics, nonlinear optics, and plasma physics. Using the β -Fermi–Pasta–Ulam nonlinear system as a prototypical example, we show that in thermal equilibrium and non-equilibrium steady state the turbulent state even in the strongly nonlinear regime possesses an effective linear stochastic structure in renormalized normal variables. In this framework, we can well characterize the spatiotemporal dynamics, which are dominated by long-wavelength renormalized waves. We further demonstrate that the energy flux is nearly saturated by the long-wavelength renormalized waves in non-equilibrium steady state. The scenario of such effective linear stochastic dynamics can be extended to study turbulent states in other nonlinear wave systems. (paper)
Quantifying structural states of soft mudrocks
Li, B.; Wong, R. C. K.
2016-05-01
In this paper, a cm model is proposed to quantify structural states of soft mudrocks, which are dependent on clay fractions and porosities. Physical properties of natural and reconstituted soft mudrock samples are used to derive two parameters in the cm model. With the cm model, a simplified homogenization approach is proposed to estimate geomechanical properties and fabric orientation distributions of soft mudrocks based on the mixture theory. Soft mudrocks are treated as a mixture of nonclay minerals and clay-water composites. Nonclay minerals have a high stiffness and serve as a structural framework of mudrocks when they have a high volume fraction. Clay-water composites occupy the void space among nonclay minerals and serve as an in-fill matrix. With the increase of volume fraction of clay-water composites, there is a transition in the structural state from the state of framework supported to the state of matrix supported. The decreases in shear strength and pore size as well as increases in compressibility and anisotropy in fabric are quantitatively related to such transition. The new homogenization approach based on the proposed cm model yields better performance evaluation than common effective medium modeling approaches because the interactions among nonclay minerals and clay-water composites are considered. With wireline logging data, the cm model is applied to quantify the structural states of Colorado shale formations at different depths in the Cold Lake area, Alberta, Canada. Key geomechancial parameters are estimated based on the proposed homogenization approach and the critical intervals with low strength shale formations are identified.
Knottin cyclization: impact on structure and dynamics
Directory of Open Access Journals (Sweden)
Gracy Jérôme
2008-12-01
Full Text Available Abstract Background Present in various species, the knottins (also referred to as inhibitor cystine knots constitute a group of extremely stable miniproteins with a plethora of biological activities. Owing to their small size and their high stability, knottins are considered as excellent leads or scaffolds in drug design. Two knottin families contain macrocyclic compounds, namely the cyclotides and the squash inhibitors. The cyclotide family nearly exclusively contains head-to-tail cyclized members. On the other hand, the squash family predominantly contains linear members. Head-to-tail cyclization is intuitively expected to improve bioactivities by increasing stability and lowering flexibility as well as sensitivity to proteolytic attack. Results In this paper, we report data on solution structure, thermal stability, and flexibility as inferred from NMR experiments and molecular dynamics simulations of a linear squash inhibitor EETI-II, a circular squash inhibitor MCoTI-II, and a linear analog lin-MCoTI. Strikingly, the head-to-tail linker in cyclic MCoTI-II is by far the most flexible region of all three compounds. Moreover, we show that cyclic and linear squash inhibitors do not display large differences in structure or flexibility in standard conditions, raising the question as to why few squash inhibitors have evolved into cyclic compounds. The simulations revealed however that the cyclization increases resistance to high temperatures by limiting structure unfolding. Conclusion In this work, we show that, in contrast to what could have been intuitively expected, cyclization of squash inhibitors does not provide clear stability or flexibility modification. Overall, our results suggest that, for squash inhibitors in standard conditions, the circularization impact might come from incorporation of an additional loop sequence, that can contribute to the miniprotein specificity and affinity, rather than from an increase in conformational rigidity
Gradient-based optimization in nonlinear structural dynamics
DEFF Research Database (Denmark)
Dou, Suguang
The intrinsic nonlinearity of mechanical structures can give rise to rich nonlinear dynamics. Recently, nonlinear dynamics of micro-mechanical structures have contributed to developing new Micro-Electro-Mechanical Systems (MEMS), for example, atomic force microscope, passive frequency divider......, frequency stabilization, and disk resonator gyroscope. For advanced design of these structures, it is of considerable value to extend current optimization in linear structural dynamics into nonlinear structural dynamics. In this thesis, we present a framework for modelling, analysis, characterization......, and optimization of nonlinear structural dynamics. In the modelling, nonlinear finite elements are used. In the analysis, nonlinear frequency response and nonlinear normal modes are calculated based on a harmonic balance method with higher-order harmonics. In the characterization, nonlinear modal coupling...
Modal analysis application for dynamic characterization of simple structures
International Nuclear Information System (INIS)
Pastorini, A.J.; Belinco, C.G.
1987-01-01
The knowledge of the dynamic characteristics of a structure helps to foresee the vibrating behaviour under operating conditions. The modal analysis techniques offer a method to perform the dynamic characterization of a studied structure from the vibration modes of such structure. A hammer provided with a loaded cell to excite a wide frequency band and accelerometer and, on the basis of a measurement of the transfer function at different points, various simple structures were given with a dynamic structures analysis (of the type of Fourier's rapidly transformation) and the results were compared with those obtained by other methods. Different fields where these techniques are applied, are also enumerated. (Author)
The fundamental structural framework of Goias state
International Nuclear Information System (INIS)
Hasui, Y.; Haralyi, N.L.E.
1986-01-01
The fundamental structural framework of the State of Goias is done by the Araguacema, Porangatu, Brasilia and Parana crustal blocks, linked through obduction zones at late Archean time. This first-order structure deduced from gravimetric and magnetic data is consistent with the distribution of granite-greenstone terrains high-grade terrains and associated supracrustals. This crustal geometry was modified by vertical shear zones and polycyclic faults, mostly of NW to WNW and NE to ENE trends, to which total displacements up to 200 km are related. Some isotope dating of the rocks are also presented. (author)
Directory of Open Access Journals (Sweden)
Cai Wingfield
2017-09-01
Full Text Available There is widespread interest in the relationship between the neurobiological systems supporting human cognition and emerging computational systems capable of emulating these capacities. Human speech comprehension, poorly understood as a neurobiological process, is an important case in point. Automatic Speech Recognition (ASR systems with near-human levels of performance are now available, which provide a computationally explicit solution for the recognition of words in continuous speech. This research aims to bridge the gap between speech recognition processes in humans and machines, using novel multivariate techniques to compare incremental 'machine states', generated as the ASR analysis progresses over time, to the incremental 'brain states', measured using combined electro- and magneto-encephalography (EMEG, generated as the same inputs are heard by human listeners. This direct comparison of dynamic human and machine internal states, as they respond to the same incrementally delivered sensory input, revealed a significant correspondence between neural response patterns in human superior temporal cortex and the structural properties of ASR-derived phonetic models. Spatially coherent patches in human temporal cortex responded selectively to individual phonetic features defined on the basis of machine-extracted regularities in the speech to lexicon mapping process. These results demonstrate the feasibility of relating human and ASR solutions to the problem of speech recognition, and suggest the potential for further studies relating complex neural computations in human speech comprehension to the rapidly evolving ASR systems that address the same problem domain.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Ning [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Zhenyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meng, Da [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elbert, Stephen T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Shaobu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diao, Ruisheng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2014-03-31
With the increasing complexity resulting from uncertainties and stochastic variations introduced by intermittent renewable energy sources, responsive loads, mobile consumption of plug-in vehicles, and new market designs, more and more dynamic behaviors are observed in everyday power system operation. To operate a power system efficiently and reliably, it is critical to adopt a dynamic paradigm so that effective control actions can be taken in time. The dynamic paradigm needs to include three fundamental components: dynamic state estimation; look-ahead dynamic simulation; and dynamic contingency analysis (Figure 1). These three components answer three basic questions: where the system is; where the system is going; and how secure the system is against accidents. The dynamic state estimation provides a solid cornerstone to support the other 2 components and is the focus of this study.
International Nuclear Information System (INIS)
Lee, Hyun Ah; Kim, Yong Il; Park, Gyung Jin; Kang, Byung Soo; Kim, Joo Sung
2006-01-01
All the loads in the real world are dynamic loads and structural optimization under dynamic loads is very difficult. Thus the dynamic loads are often transformed to static loads by dynamic factors, which are believed equivalent to the dynamic loads. However, due to the difference of load characteristics, there can be considerable differences between the results from static and dynamic analyses. When the natural frequency of a structure is high, the dynamic analysis result is similar to that of static analysis due to the small inertia effect on the behavior of the structure. However, if the natural frequency of the structure is low, the inertia effect should not be ignored. then, the behavior of the dynamic system is different from that of the static system. The difference of the two cases can be explained from the relationship between the homogeneous and the particular solutions of the differential equation that governs the behavior of the structure. Through various examples, the difference between the dynamic analysis and the static analysis are shown. Also dynamic response optimization results are compared with the results with static loads transformed from dynamic loads by dynamic factors, which show the necessity of the design considering dynamic loads
Structure and Dynamics of Polymer/Polymer grafted nanoparticle composite
Archer, Lynden
Addition of nanoparticles to polymers is a well-practiced methodology for augmenting various properties of the polymer host, including mechanical strength, thermal stability, barrier properties, dimensional stability and wear resistance. Many of these property changes are known to arise from nanoparticle-induced modification of polymer structure and chain dynamics, which are strong functions of the dispersion state of the nanoparticles' and on their relative size (D) to polymer chain dimensions (e.g. Random coil radius Rg or entanglement mesh size a) . This talk will discuss polymer nanocomposites (PNCs) comprised of Polyethylene Glycol (PEG) tethered silica nanoparticles (SiO2-PEG) dispersed in polymers as model systems for investigating phase stability and dynamics of PNCs. On the basis of small-angle X-ray Scattering, it will be shown that favorable enthalpic interactions between particle-tethered chains and a polymer host provides an important mechanism for creating PNCs in which particle aggregation is avoided. The talk will report on polymer and particle scale dynamics in these materials and will show that grafted nanoparticles well dispersed in a polymer host strongly influence the host polymer relaxation dynamics on all timescales and the polymers in turn produce dramatic changes in the nature (from diffusive to hyperdiffusive) and speed of nano particle decorrelation dynamics at the polymer entanglement threshold. A local viscosity model capable of explaining these observations is discussed and the results compared with scaling theories for NP motions in polymers This material is based on work supported by the National Science Foundation Award Nos. DMR-1609125 and CBET-1512297.
Controlling the dynamics of a self-organized structure using a rf-field
International Nuclear Information System (INIS)
Talasman, S.J.; Ignat, M.
2004-01-01
We investigate the influence of an external rf-field upon a plasma self-organized structure. We show that depending on the intensity of this field, though it is at very low values, the dynamics of the structure can be easily controlled over a wide range of the state parameters values. This could be considered as a non-feedback method of dynamics control
Structure and dynamics of the magnetopause
International Nuclear Information System (INIS)
Wang, Z.
1992-01-01
This thesis addresses several topics concerning the structure and dynamics of the magnetopause. These topics include the role of the magnetopause in global convection, the Kelvin-Helmholtz (K-H) instability, which accounts for momentum transport at the magnetopause, the formation of flux ropes by the tearing and twisting modes and particle diffusion across the magnetopause resulting from the destruction of magnetic surfaces. The author establishs an analytic electric field model for an open magnetosphere and introduce a magnetopause to control the reconnection rate and momentum transport. A realistic magnetospheric configuration is realized by 'stretch transformation'. The role of magnetic nulls in the electric field is approached with a technique for direct calculation of electric fields along field lines. Results indicate that electric fields associated with A-type or B-type nulls are generally singular. Then the author considers kinetic effects on the K-H instability. Contrary to the logical assumption that Landau damping damps the instability, it can instead enhance the growth and increase the spatial extent of the instability because the heating of resonance particles enhances the pressure perturbation. A gravitational analogy is used to determine the effect of curvature on K-H instability and it is found that the critical Richardson number for stability increases from 1/4 for incompressible fluids to 1/2 for compressible fluids. The flux rope, which accounts for flux transfer events (FTE), can be formed by a tearing or twisting mode. The tearing mode is self excited by the free energy associated with the magnetic configuration, while the twisting mode must be externally driven. The shear flow generates the twisting mode and reduces the growth rate of the tearing mode. The flux ropes resulting from the twisting mode closely resemble FTE's which have a longer pitch length than that from tearing mode
Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection
DEFF Research Database (Denmark)
Bork, Lasse; Møller, Stig Vinther
2015-01-01
We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves substantia......We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves...
Dynamics of polymers in the bulk state by neutron scattering
International Nuclear Information System (INIS)
Kanaya, Toshiji; Kaji, Keisuke; Kawaguchi, Tatsuya; Inoue, Kazuhiko.
1992-01-01
Dynamics of polymers in the bulk state was studied by quasi- and inelastic neutron scattering techniques in the time range of 10 -13 to 10 -10 s. The present work can be classified into three parts: (i) dynamics in the glassy, state, (ii) dynamics near the glass transition and (iii) dynamics in the molten state. In the first section, we discuss the low energy excitation in glassy polymers, which is an origin of anomalous thermal properties of amorphous materials at low temperatures. In the next section, we study dynamics of amorphous polymers near the glass transition which is one of the current topics of solid state physics as well as polymer physics. It was found that two modes of motion appear near the glass transition in the energy ranges near 1 meV and of 10-30μeV. These fast and slow modes arising ca. 50K below T g and just above T g , respectively, are discussed from viewpoints of molecular basis. In the last section, dynamics in the molten state is investigated by focusing on the mechanism of local conformational transition of polymer chains. The results are analyzed in terms of jump diffusion model with damped vibrational motions and compared with the Kramers' rate theory. (author)
Visualizing Structure and Dynamics of Disaccharide Simulations
Energy Technology Data Exchange (ETDEWEB)
Matthews, J. F.; Beckham, G. T.; Himmel, M. E.; Crowley, M. F.
2012-01-01
We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.
Vindenes, Yngvild; Sæther, Bernt-Erik; Engen, Steinar
2012-12-01
The development of stochastic demography has largely been based on age structured populations, although other types of demographic structure, especially permanent and dynamic heterogeneity, are likely common in natural populations. The combination of stochasticity and demographic structure is a challenge for analyses of population dynamics and extinction risk, because the population structure will fluctuate around the stable structure and the population size shows transient fluctuations. However, by using a diffusion approximation for the total reproductive value, density-independent dynamics of structured populations can be described with only three population parameters: the expected population growth rate, the environmental variance and the demographic variance. These parameters depend on population structure via the state-specific vital rates and transition rates. Once they are found, the diffusion approximation represents a substantial reduction in model complexity. Here, we review and compare the key population parameters across a wide range of demographic structure, from the case of no structure to the most general case of dynamic heterogeneity, and for both discrete and continuous types. We focus on the demographic variance, but also show how environmental stochasticity can be included. This study brings together results from recent models, each considering a specific type of population structure, and places them in a general framework for structured populations. Comparison across different types of demographic structure reveals that the reproductive value is an essential concept for understanding how population structure affects stochastic dynamics and extinction risk. Copyright © 2011 Elsevier Inc. All rights reserved.
Dynamic State Space Partitioning for External Memory Model Checking
DEFF Research Database (Denmark)
Evangelista, Sami; Kristensen, Lars Michael
2009-01-01
We describe a dynamic partitioning scheme usable by model checking techniques that divide the state space into partitions, such as most external memory and distributed model checking algorithms. The goal of the scheme is to reduce the number of transitions that link states belonging to different...
Global structure of exact scalar hairy dynamical black holes
Energy Technology Data Exchange (ETDEWEB)
Fan, Zhong-Ying [Center for High Energy Physics, Peking University,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Chen, Bin [Center for High Energy Physics, Peking University,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University, No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Collaborative Innovation Center of Quantum Matter,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Lü, H. [Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University,Beijing, 100875 P.R. (China)
2016-05-30
We study the global structure of some exact scalar hairy dynamical black holes which were constructed in Einstein gravity either minimally or non-minimally coupled to a scalar field. We find that both the apparent horizon and the local event horizon (measured in luminosity coordinate) monotonically increase with the advanced time as well as the Vaidya mass. At late advanced times, the apparent horizon approaches the event horizon and gradually becomes future outer. Correspondingly, the space-time arrives at stationary black hole states with the relaxation time inversely proportional to the 1/(n−1) power of the final black hole mass, where n is the space-time dimension. These results strongly support the solutions describing the formation of black holes with scalar hair. We also obtain new charged dynamical solutions in the non-minimal theory by introducing an Maxwell field which is non-minimally coupled to the scalar. The presence of the electric charge strongly modifies the dynamical evolution of the space-time.
Fault Diagnosis of Nonlinear Systems Using Structured Augmented State Models
Institute of Scientific and Technical Information of China (English)
Jochen Aβfalg; Frank Allg(o)wer
2007-01-01
This paper presents an internal model approach for modeling and diagnostic functionality design for nonlinear systems operating subject to single- and multiple-faults. We therefore provide the framework of structured augmented state models. Fault characteristics are considered to be generated by dynamical exosystems that are switched via equality constraints to overcome the augmented state observability limiting the number of diagnosable faults. Based on the proposed model, the fault diagnosis problem is specified as an optimal hybrid augmented state estimation problem. Sub-optimal solutions are motivated and exemplified for the fault diagnosis of the well-known three-tank benchmark. As the considered class of fault diagnosis problems is large, the suggested approach is not only of theoretical interest but also of high practical relevance.
Dynamics and management of stage-structured fish stocks.
Meng, Xinzhu; Lundström, Niklas L P; Bodin, Mats; Brännström, Åke
2013-01-01
With increasing fishing pressures having brought several stocks to the brink of collapse, there is a need for developing efficient harvesting methods that account for factors beyond merely yield or profit. We consider the dynamics and management of a stage-structured fish stock. Our work is based on a consumer-resource model which De Roos et al. (in Theor. Popul. Biol. 73, 47-62, 2008) have derived as an approximation of a physiologically-structured counterpart. First, we rigorously prove the existence of steady states in both models, that the models share the same steady states, and that there exists at most one positive steady state. Furthermore, we carry out numerical investigations which suggest that a steady state is globally stable if it is locally stable. Second, we consider multiobjective harvesting strategies which account for yield, profit, and the recovery potential of the fish stock. The recovery potential is a measure of how quickly a fish stock can recover from a major disturbance and serves as an indication of the extinction risk associated with a harvesting strategy. Our analysis reveals that a small reduction in yield or profit allows for a disproportional increase in recovery potential. We also show that there exists a harvesting strategy with yield close to the maximum sustainable yield (MSY) and profit close to that associated with the maximum economic yield (MEY). In offering a good compromise between MSY and MEY, we believe that this harvesting strategy is preferable in most instances. Third, we consider the impact of harvesting on population size structure and analytically determine the most and least harmful harvesting strategies. We conclude that the most harmful harvesting strategy consists of harvesting both adults and juveniles, while harvesting only adults is the least harmful strategy. Finally, we find that a high percentage of juvenile biomass indicates elevated extinction risk and might therefore serve as an early-warning signal of
Multiscale molecular dynamics simulation approaches to the structure and dynamics of viruses.
Huber, Roland G; Marzinek, Jan K; Holdbrook, Daniel A; Bond, Peter J
2017-09-01
Viral pathogens are a significant source of human morbidity and mortality, and have a major impact on societies and economies around the world. One of the challenges inherent in targeting these pathogens with drugs is the tight integration of the viral life cycle with the host's cellular machinery. However, the reliance of the virus on the host cell replication machinery is also an opportunity for therapeutic targeting, as successful entry- and exit-inhibitors have demonstrated. An understanding of the extracellular and intracellular structure and dynamics of the virion - as well as of the entry and exit pathways in host and vector cells - is therefore crucial to the advancement of novel antivirals. In recent years, advances in computing architecture and algorithms have begun to allow us to use simulations to study the structure and dynamics of viral ultrastructures at various stages of their life cycle in atomistic or near-atomistic detail. In this review, we outline specific challenges and solutions that have emerged to allow for structurally detailed modelling of viruses in silico. We focus on the history and state of the art of atomistic and coarse-grained approaches to simulate the dynamics of the large, macromolecular structures associated with viral infection, and on their usefulness in explaining and expanding upon experimental data. We discuss the types of interactions that need to be modeled to describe major components of the virus particle and advances in modelling techniques that allow for the treatment of these systems, highlighting recent key simulation studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structures in dynamics finite dimensional deterministic studies
Broer, HW; van Strien, SJ; Takens, F
1991-01-01
The study of non-linear dynamical systems nowadays is an intricate mixture of analysis, geometry, algebra and measure theory and this book takes all aspects into account. Presenting the contents of its authors' graduate courses in non-linear dynamical systems, this volume aims at researchers who wish to be acquainted with the more theoretical and fundamental subjects in non-linear dynamics and is designed to link the popular literature with research papers and monographs. All of the subjects covered in this book are extensively dealt with and presented in a pedagogic
Ergodic Theory, Open Dynamics, and Coherent Structures
Bose, Christopher; Froyland, Gary
2014-01-01
This book is comprised of selected research articles developed from a workshop on Ergodic Theory, Probabilistic Methods and Applications, held in April 2012 at the Banff International Research Station. It contains contributions from world leading experts in ergodic theory, dynamical systems, numerical analysis, fluid dynamics, and networks. The volume will serve as a valuable reference for mathematicians, physicists, engineers, physical oceanographers, atmospheric scientists, biologists, and climate scientists, who currently use, or wish to learn how to use, probabilistic techniques to cope with dynamical models that display open, coherent, or non-equilibrium behavior.
On the dynamics of generalized coherent states
International Nuclear Information System (INIS)
Nikolov, B.A.; Trifonov, D.A.
1981-01-01
Using the Klauder approach the stable evolution of generalized coherent states (GCS) for some groups (SU(2), SU(1.1) and U(N)) is considered and it is shown that one and the same classical solution z(t) can correctly characterize the quantum evolution for many different (in general nonequivalent) systems. As examples some concrete systems are treated in greater detail: it is obtained that the nonstationary systems of the singular oscillator, of the particle motion in a magnetic field and of the oscillator with a friction all have stable SU(1.1) GCS whose quantum evolution is determined by one and the same classical function z(t). The physical properties of the constructed SU(1.1)GCS are discussed and it is shown particularly that in the case of discrete series Dsub(k)sup((+)) they are those states for which the quantum mean value coincides with the statistical one for an oscillator in a thermostat [ru
Model reduction tools for nonlinear structural dynamics
Slaats, P.M.A.; Jongh, de J.; Sauren, A.A.H.J.
1995-01-01
Three mode types are proposed for reducing nonlinear dynamical system equations, resulting from finite element discretizations: tangent modes, modal derivatives, and newly added static modes. Tangent modes are obtained from an eigenvalue problem with a momentary tangent stiffness matrix. Their
4th International Conference on Structural Nonlinear Dynamics and Diagnosis
2018-01-01
This book presents contributions on the most active lines of recent advanced research in the field of nonlinear mechanics and physics selected from the 4th International Conference on Structural Nonlinear Dynamics and Diagnosis. It includes fifteen chapters by outstanding scientists, covering various aspects of applications, including road tanker dynamics and stability, simulation of abrasive wear, energy harvesting, modeling and analysis of flexoelectric nanoactuator, periodic Fermi–Pasta–Ulam problems, nonlinear stability in Hamiltonian systems, nonlinear dynamics of rotating composites, nonlinear vibrations of a shallow arch, extreme pulse dynamics in mode-locked lasers, localized structures in a photonic crystal fiber resonator, nonlinear stochastic dynamics, linearization of nonlinear resonances, treatment of a linear delay differential equation, and fractional nonlinear damping. It appeals to a wide range of experts in the field of structural nonlinear dynamics and offers researchers and engineers a...
Dynamical generation of maximally entangled states in two identical cavities
International Nuclear Information System (INIS)
Alexanian, Moorad
2011-01-01
The generation of entanglement between two identical coupled cavities, each containing a single three-level atom, is studied when the cavities exchange two coherent photons and are in the N=2,4 manifolds, where N represents the maximum number of photons possible in either cavity. The atom-photon state of each cavity is described by a qutrit for N=2 and a five-dimensional qudit for N=4. However, the conservation of the total value of N for the interacting two-cavity system limits the total number of states to only 4 states for N=2 and 8 states for N=4, rather than the usual 9 for two qutrits and 25 for two five-dimensional qudits. In the N=2 manifold, two-qutrit states dynamically generate four maximally entangled Bell states from initially unentangled states. In the N=4 manifold, two-qudit states dynamically generate maximally entangled states involving three or four states. The generation of these maximally entangled states occurs rather rapidly for large hopping strengths. The cavities function as a storage of periodically generated maximally entangled states.
Ground-state structures of Hafnium clusters
Energy Technology Data Exchange (ETDEWEB)
Ng, Wei Chun; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technoloty, Multimedia University, Melaca Campus, 75450 Melaka (Malaysia)
2015-04-24
Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.
International Nuclear Information System (INIS)
Souto, J; Alemany, M M G; Gallego, L J; González, L E; González, D J
2013-01-01
We report an ab initio molecular dynamics study of the static, dynamic and electronic properties of the liquid Bi x Li 1−x alloy, which is a complex binary system with a marked tendency to heterocoordination. The calculated total static structure factors are in good agreement with the available experimental data. The partial dynamic structure factors exhibit side peaks indicative of propagating density fluctuations, and for some concentrations we have found a density fluctuation mode with phase velocity greater than the hydrodynamic sound velocity. We have also evaluated other dynamical properties such as the diffusion coefficients, the shear viscosity and the adiabatic sound velocity. The electronic density of states show that the liquid Bi x Li 1−x alloy has a metallic character, although with strong deviations from the free-electron parabolic curve. The results reported improve the understanding of binary liquid alloys with both fast and slow propagating collective modes. (paper)
Energy Technology Data Exchange (ETDEWEB)
Ji, Pengfei; Zhang, Yuwen, E-mail: zhangyu@missouri.edu [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Yang, Mo [College of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China)
2013-12-21
The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.
International Nuclear Information System (INIS)
Ji, Pengfei; Zhang, Yuwen; Yang, Mo
2013-01-01
The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective
Ji, Pengfei; Zhang, Yuwen; Yang, Mo
2013-12-01
The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.
Complex-Dynamic Cosmology and Emergent World Structure
Kirilyuk, Andrei P.
2004-01-01
Universe structure emerges in the unreduced, complex-dynamic interaction process with the simplest initial configuration (two attracting homogeneous fields, quant-ph/9902015). The unreduced interaction analysis gives intrinsically creative cosmology, describing the real, explicitly emerging world structure with dynamic randomness on each scale. Without imposing any postulates or entities, we obtain physically real space, time, elementary particles with their detailed structure and intrinsic p...
Discretization model for nonlinear dynamic analysis of three dimensional structures
International Nuclear Information System (INIS)
Hayashi, Y.
1982-12-01
A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt
Dynamic Loading of Carrara Marble in a Heated State
Wong, Louis Ngai Yuen; Li, Zhihuan; Kang, Hyeong Min; Teh, Cee Ing
2017-06-01
Useable land is a finite space, and with a growing global population, countries have been exploring the use of underground space as a strategic resource to sustain the growth of their society and economy. However, the effects of impact loading on rocks that have been heated, and hence the integrity of the underground structure, are still not fully understood and has not been included in current design standards. Such scenarios include traffic accidents and explosions during an underground fire. This study aims to provide a better understanding of the dynamic load capacity of Carrara marble at elevated temperatures. Dynamic uniaxial compression tests are performed on Carrara marble held at various temperatures using a split-Hopkinson Pressure Bar (SHPB) setup with varying input force. A customized oven is included in the SHPB setup to allow for testing of the marble specimens in a heated state. After the loading test, a three-wave analysis is performed to obtain the dynamic stress-strain curve of the specimen under loading. The fragments of the failed specimens were also collected and dry-sieved to obtain the particle size distribution. The results reveal that the peak stress of specimens that have been heated is negatively correlated with the heating temperature. However, the energy absorbed by the specimens at peak stress at all temperatures is similar, indicating that a significant amount of energy is dissipated via plastic deformation. Generally, fragment size is also found to show a negative correlation with heating temperature and loading pressure. However, in some cases this relationship does not hold true, probably due to the occurrence of stress shadowing. Linear Elastic Fracture Mechanics has been found to be generally applicable to specimens tested at low temperatures; but at higher temperatures, Elastic-Plastic Fracture Mechanics will give a more accurate prediction. Another contribution of this study is to show that other than the peak stress of the
On the Dynamics of the Self-organized Structures in a Low-Temperature Diffusion Plasma
International Nuclear Information System (INIS)
Talasman, S.J.
1999-01-01
In this paper we investigate the dynamics of self organized space charge structures a in low-temperature diffusion plasma, in order to see what are the processes responsible for the appearance of such structures. This is performed through the time-resolved axial distributions of the light emitted from the plasma and through a particular cross section of the phase-space. One obtains that excitations, de-excitations and ionizations are implied in both the transient regimes of the formation of these structures, and the oscillating steady states of them. On the other hand it was found that the dynamics of such structures verify the KAM theorem. (author)
The effect of dynamical quark mass on the calculation of a strange quark star's structure
Institute of Scientific and Technical Information of China (English)
Gholam Hossein Bordbar; Babak Ziaei
2012-01-01
We discuss the dynamical behavior of strange quark matter components,in particular the effects of density dependent quark mass on the equation of state of strange quark matter.The dynamical masses of quarks are computed within the Nambu-Jona-Lasinio model,then we perform strange quark matter calculations employing the MIT bag model with these dynamical masses.For the sake of comparing dynamical mass interaction with QCD quark-quark interaction,we consider the one-gluon-exchange term as the effective interaction between quarks for the MIT bag model.Our dynamical approach illustrates an improvement in the obtained equation of state values.We also investigate the structure of the strange quark star using TolmanOppenheimer-Volkoff equations for all applied models.Our results show that dynamical mass interaction leads to lower values for gravitational mass.
The structure of 83Sr excited states
International Nuclear Information System (INIS)
Liptak, J.; Kristiak, J.; Kristiakova, K.
1976-01-01
The β-decay of 83 Y isomers (7.06 min and 2.85 min) have been studied by means of Ge(Li) detectors. The proposed level scheme of the 83 Sr nucleus is based on the coincidence measurement and the analysis of energy sums. The intensity balance requirement leads to αsub(T)(35.5keV)=3.2 which is consistent with M1 multipolarity of this transition. A probable structure of some of the excited states in the 83 Sr nucleus is discussed in the frame work of Alaga's model and Kuriyama's model
Ultrafast excited-state dynamics of 2,5-dimethylpyrrole.
Yang, Dongyuan; Min, Yanjun; Chen, Zhichao; He, Zhigang; Yuan, Kaijun; Dai, Dongxu; Yang, Xueming; Wu, Guorong
2018-04-17
The ultrafast excited-state dynamics of 2,5-dimethylpyrrole following excitation at wavelengths in the range of 265.7-216.7 nm is studied using the time-resolved photoelectron imaging method. It is found that excitation at longer wavelengths (265.7-250.2 nm) results in the population of the S1(1πσ*) state, which decays out of the photoionization window in about 90 fs. At shorter pump wavelengths (242.1-216.7 nm), the assignments are less clear-cut. We tentatively assign the initially photoexcited state(s) to the 1π3p Rydberg state(s) which has lifetimes of 159 ± 20, 125 ± 15, 102 ± 10 and 88 ± 10 fs for the pump wavelengths of 242.1, 238.1, 232.6 and 216.7 nm, respectively. Internal conversion to the S1(1πσ*) state represents at most a minor decay channel. The methyl substitution effects on the decay dynamics of the excited states of pyrrole are also discussed. Methyl substitution on the pyrrole ring seems to enhance the direct internal conversion from the 1π3p Rydberg state to the ground state, while methyl substitution on the N atom has less influence and the internal conversion to the S1(πσ*) state represents a main channel.
Dynamical load factor of impact loaded shell structures
International Nuclear Information System (INIS)
Hammel, J.
1977-01-01
Dynamical loaded structures can be analysed by spectral representations, which usually lead to an enormous computational effort. If it is possible to find a fitting dynamical load factor, the dynamical problem can be reduced to a statical one. The computation of this statical problem is much simpler. The disadvantage is that the dynamical load factor usually leads to a very rough approximation. In this paper it will be shown, that by combination of these two methods, the approximation of the dynamical load factor can be improved and the consumption of computation time can be enormously reduced. (Auth.)
Dynamics of coherent states in regular and chaotic regimes of the non-integrable Dicke model
Lerma-Hernández, S.; Chávez-Carlos, J.; Bastarrachea-Magnani, M. A.; López-del-Carpio, B.; Hirsch, J. G.
2018-04-01
The quantum dynamics of initial coherent states is studied in the Dicke model and correlated with the dynamics, regular or chaotic, of their classical limit. Analytical expressions for the survival probability, i.e. the probability of finding the system in its initial state at time t, are provided in the regular regions of the model. The results for regular regimes are compared with those of the chaotic ones. It is found that initial coherent states in regular regions have a much longer equilibration time than those located in chaotic regions. The properties of the distributions for the initial coherent states in the Hamiltonian eigenbasis are also studied. It is found that for regular states the components with no negligible contribution are organized in sequences of energy levels distributed according to Gaussian functions. In the case of chaotic coherent states, the energy components do not have a simple structure and the number of participating energy levels is larger than in the regular cases.
Dynamically tunable interface states in 1D graphene-embedded photonic crystal heterostructure
Huang, Zhao; Li, Shuaifeng; Liu, Xin; Zhao, Degang; Ye, Lei; Zhu, Xuefeng; Zang, Jianfeng
2018-03-01
Optical interface states exhibit promising applications in nonlinear photonics, low-threshold lasing, and surface-wave assisted sensing. However, the further application of interface states in configurable optics is hindered by their limited tunability. Here, we demonstrate a new approach to generate dynamically tunable and angle-resolved interface states using graphene-embedded photonic crystal (GPC) heterostructure device. By combining the GPC structure design with in situ electric doping of graphene, a continuously tunable interface state can be obtained and its tuning range is as wide as the full bandgap. Moreover, the exhibited tunable interface states offer a possibility to study the correspondence between space and time characteristics of light, which is beyond normal incident conditions. Our strategy provides a new way to design configurable devices with tunable optical states for various advanced optical applications such as beam splitter and dynamically tunable laser.
Electronic structure and electron dynamics at Si(100)
Energy Technology Data Exchange (ETDEWEB)
Weinelt, M. [Universitaet Erlangen-Nuernberg, Lehrstuhl fuer Festkoerperphysik, Erlangen (Germany); Max-Born-Institut, Berlin (Germany); Kutschera, M.; Schmidt, R.; Orth, C.; Fauster, T. [Universitaet Erlangen-Nuernberg, Lehrstuhl fuer Festkoerperphysik, Erlangen (Germany); Rohlfing, M. [International University Bremen, School of Engineering and Science, P.O. Box 750 561, Bremen (Germany)
2005-02-01
The electronic structure and electron dynamics at a Si(100) surface is studied by two-photon photoemission (2PPE). At 90 K the occupied D{sub up} dangling-bond state is located 150{+-}50 meV below the valence-band maximum (VBM) at the center of the surface Brillouin zone anti {gamma} and exhibits an effective hole mass of (0.5{+-}0.15)m{sub e}. The unoccupied D{sub down} band has a local minimum at anti {gamma} at 650{+-}50 meV above the VBM and shows strong dispersion along the dimer rows of the c(4 x 2) reconstructed surface. At 300 K the D{sub down} position shifts comparable to the Si conduction-band minimum by 40 meV to lower energies but the dispersion of the dangling-bond states is independent of temperature. The surface band bending for p-doped silicon is less than 30 meV, while acceptor-type defects cause significant and preparation-dependent band bending on n-doped samples. 2PPE spectra of Si(100) are dominated by interband transitions between the occupied and unoccupied surface states and emission out of transiently and permanently charged surface defects. Including electron-hole interaction in many-body calculations of the quasi-particle band structure leads us to assign a dangling-bond split-off state to a quasi-one-dimensional surface exciton with a binding energy of 130 meV. Electrons resonantly excited to the unoccupied D{sub down} dangling-bond band with an excess energy of about 350 meV need 1.5{+-}0.2 ps to scatter via phonon emission to the band bottom at anti {gamma} and relax within 5 ps with an excited hole in the occupied surface band to form an exciton living for nanoseconds. (orig.)
THE DYNAMICS OF THE MATRICS STRUCTURE
Directory of Open Access Journals (Sweden)
Dumitru CONSTANTINESCU
2007-01-01
Full Text Available The relationships organization-suppliers-customers have recently known major changes in the structure of services and have made the organization develop its managerial and professional competencies in order to do projects. The qualified organization is the most trust-worthy in the process of doing a project. The participation of an organization in doing projects depends on a multitude of factors. Out of these factors, the structural organization comes forth, as it represents the variable with the most important impact on a project’s quality, costs and lead time. From the organizational point of view, the matrix structure is frequently chosen for projects. The matrix structure generally coexists with the line structure. The two structures are contrastive. The line structure is based on the unity of command principle and is not open to cooperation and dialogue. The matrix structure encourages cooperation and communication, favours conflict, which is considered here a healthy and essential process. The matrix structure and the line structure claim their right to initiative. Conflict and the multidimensional integration of multiple hierarchies can be negotiated through the concept charisma – mediation, sustained by the matrix structure.
Nonlinear structural mechanics theory, dynamical phenomena and modeling
Lacarbonara, Walter
2013-01-01
Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling offers a concise, coherent presentation of the theoretical framework of nonlinear structural mechanics, computational methods, applications, parametric investigations of nonlinear phenomena and their mechanical interpretation towards design. The theoretical and computational tools that enable the formulation, solution, and interpretation of nonlinear structures are presented in a systematic fashion so as to gradually attain an increasing level of complexity of structural behaviors, under the prevailing assumptions on the geometry of deformation, the constitutive aspects and the loading scenarios. Readers will find a treatment of the foundations of nonlinear structural mechanics towards advanced reduced models, unified with modern computational tools in the framework of the prominent nonlinear structural dynamic phenomena while tackling both the mathematical and applied sciences. Nonlinear Structural Mechanics: Theory, Dynamical Phenomena...
Ab initio molecular dynamics simulation of hydrogen fluoride at several thermodynamic states
DEFF Research Database (Denmark)
Kreitmeir, M.; Bertagnolli, H.; Mortensen, Jens Jørgen
2003-01-01
Liquid hydrogen fluoride is a simple but interesting system for studies of the influence of hydrogen bonds on physical properties. We have performed ab initio molecular dynamics simulations of HF at several thermodynamic states, where we examine the microscopic structure of the liquid as well...
Energy Technology Data Exchange (ETDEWEB)
Receveur, V
1997-04-28
During a long time, the neutron scattering and X-rays techniques have not been used for the studies bearing on the folding of proteins. The compactness and the globularness of a protein are two structural characteristics describing the denatured states and the intermediate states of folding, and the neutrons and x-rays scattering are probably the two techniques the most appropriate to give this kind of information; they are sensible to the spatial extent and to the molecules compactness, and to their general shape. For these three or four last years, the works using these techniques are increasing, giving precious knowledge on the different steps of folding and on the interactions stabilizing the denatured or intermediate states. This thesis falls into this category. (N.C.).
Dynamic Capital Structure: Dynamics, Determinants and Speed of Adjustment
Tamirat, A.S.; Trujillo Barrera, A.A.; Pennings, J.M.E.
2017-01-01
The corporate finance literature has focused on explaining the determinants of firms target capital structure and speed of adjustment using the well-established theories such as pecking order, signaling and trade-off theories. However, less attention has been paid to understanding the financing
Recent Progress in Heliogyro Solar Sail Structural Dynamics
Wilkie, William K.; Warren, Jerry E.; Horta, Lucas G.; Juang, Jer-Nan; Gibbs, Samuel C.; Dowell, E.; Guerrant, Daniel; Lawrence Dale
2014-01-01
Results from recent National Aeronautics and Space Administration (NASA) research on the structural dynamics and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment, and results from small-scale in vacuo dynamics experiments with spinning high-aspect ratio membranes. A low-cost, rideshare payload heliogyro technology demonstration mission concept, used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, is also described.
Friends and foes : The dynamics of dual social structures
Sytch, M.; Tatarynowicz, A.
2014-01-01
This paper investigates the evolutionary dynamics of a dual social structure encompassing collaboration and conflict among corporate actors. We apply and advance structural balance theory to examine the formation of balanced and unbalanced dyadic and triadic structures, and to explore how these
DSIbin : Identifying dynamic data structures in C/C++ binaries
Rupprecht, Thomas; Chen, Xi; White, David H.; Boockmann, Jan H.; Luttgen, Gerald; Bos, Herbert
2017-01-01
Reverse engineering binary code is notoriously difficult and, especially, understanding a binary's dynamic data structures. Existing data structure analyzers are limited wrt. program comprehension: they do not detect complex structures such as skip lists, or lists running through nodes of different
Dynamic fracture toughness testing of structural steels
International Nuclear Information System (INIS)
Debel, C.P.
1978-01-01
Two candidate test methods aimed at producing materials properties of interest in connection with crack arrest assessments are currently under evaluation. These methods and the significance of the results are described. The quasi-static as well as the dynamic fracture toughness of a plain C-Mn steel in the as-quenched and tempered condition have been examined at temperatures between -115 0 C and the ambient temperature. Wedge-loaded duplex DCB-specimens were used in dynamic tests. The crack extension velocity was measured using a surface deposited grid and a registration circuit based on TTL-electronics. The toughness transition-temperature at quasi-static loading rate is found to be low; but during dynamic crack-extension a substantial shift of the transition-region to higher temperatures is produced, and fast fracture was obtained even at ambient temperature. Even though the dynamic fracture toughness Ksub(ID) increases with temperature, it decreases with increasing crack-extension velocity at a given temperature and the rate of decrease with respect to crack-extension velocity seems to be independent of temperature. Ksub(ID) appears to be insensitive to heat treatments. Test results indicate insufficient load-train stiffness, and problems due to crack branching were encountered. (author)
Power system dynamic state estimation using prediction based evolutionary technique
International Nuclear Information System (INIS)
Basetti, Vedik; Chandel, Ashwani K.; Chandel, Rajeevan
2016-01-01
In this paper, a new robust LWS (least winsorized square) estimator is proposed for dynamic state estimation of a power system. One of the main advantages of this estimator is that it has an inbuilt bad data rejection property and is less sensitive to bad data measurements. In the proposed approach, Brown's double exponential smoothing technique has been utilised for its reliable performance at the prediction step. The state estimation problem is solved as an optimisation problem using a new jDE-self adaptive differential evolution with prediction based population re-initialisation technique at the filtering step. This new stochastic search technique has been embedded with different state scenarios using the predicted state. The effectiveness of the proposed LWS technique is validated under different conditions, namely normal operation, bad data, sudden load change, and loss of transmission line conditions on three different IEEE test bus systems. The performance of the proposed approach is compared with the conventional extended Kalman filter. On the basis of various performance indices, the results thus obtained show that the proposed technique increases the accuracy and robustness of power system dynamic state estimation performance. - Highlights: • To estimate the states of the power system under dynamic environment. • The performance of the EKF method is degraded during anomaly conditions. • The proposed method remains robust towards anomalies. • The proposed method provides precise state estimates even in the presence of anomalies. • The results show that prediction accuracy is enhanced by using the proposed model.
Full scale dynamic testing of Kozloduy NPP unit 5 structures
International Nuclear Information System (INIS)
Da Rin, E.M.
1999-01-01
As described in this report, the Kozloduy NPP western site has been subjected to low level earthquake-like ground shaking - through appropriately devised underground explosions - and the resulting dynamic response of the NPP reactor Unit 5 important structures appropriately measured and digitally recorded. In-situ free-field response was measured concurrently more than 100 m aside the main structures of interest. The collected experimental data provide reference information on the actual dynamic characteristics of the Kozloduy NPPs main structures, as well as give some useful indications on the dynamic soil-structure interaction effects for the case of low level excitation. Performing the present full-scale dynamic structural testing activities took advantage of the experience gained by ISMES during similar tests, lately performed in Italy and abroad (in particular, at the Paks NPP in 1994). The IAEA promoted dynamic testing of the Kozloduy NPP Unit 5 by means of pertinently designed buried explosion-induced ground motions which has provided a large amount of data on the dynamic structural response of its major structures. In the present report, the conducted investigation is described and the acquired digital data presented. A series of preliminary analyses were undertaken for examining in detail the ground excitation levels that were produced by these weak earthquake simulation experiments, as well as for inferring some structural characteristics and behaviour information from the collected data. These analyses ascertained the high quality of the collected digital data. Presumably due to soil-structure dynamic interaction effects, reduced excitation levels were observed at the reactor building foundation raft level with respect to the concurrent free-field ground motions. measured at a 140 m distance from the reactor building centre. Further more detailed and systematic analyses are worthwhile to be performed for extracting more complete information about the
Entanglement dynamics of three-qubit states in noisy channels
Energy Technology Data Exchange (ETDEWEB)
Siomau, Michael [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Fritzsche, Stephan [Department of Physical Sciences, University of Oulu (Finland); Institute for Advanced Studies, Frankfurt am Main (Germany)
2010-07-01
The implementation of schemes for quantum teleportation requires the quantification of entanglement for states that, in general, are mixed due to the interaction with the environment. We study the entanglement dynamics of three-qubit GHZ and W states under the influence of the environment. As noise models for the influence of the environment we use {sigma}{sub z}, {sigma}{sub x} and {sigma}{sub y} Pauli as well as the depolarizing channel. The entanglement of the states is quantified with the lower bound to the three-qubit concurrence. We show that the GHZ state preserves more entanglement than the W state in transmission through {sigma}{sub x} and {sigma}{sub y} Pauli and the depolarizing channels. For {sigma}{sub z} Pauli channel, in contrast, the W state preserves more entanglement than the GHZ state.
An Energy-Based State Observer for Dynamical Subsystems with Inaccessible State Variables
Khalil, I.S.M.; Sabanovic, Asif; Misra, Sarthak
2012-01-01
This work presents an energy-based state estimation formalism for a class of dynamical systems with inaccessible/unknown outputs, and systems at which sensor utilization is impractical, or when measurements can not be taken. The power-conserving physical interconnections among most of the dynamical
Health and innovation: economic dynamics and Welfare State in Brazil
Directory of Open Access Journals (Sweden)
Carlos Augusto Grabois Gadelha
Full Text Available Abstract: The effective enforcement of the access to healthcare as fundamental right requires an important theoretical and political effort at linking the often contradictory economic and social dimensions of development. This study suggests the need for a systemic view of policies related to the industrial base and innovation in health and the construction of the Brazilian Unified National Health System (SUS. The authors investigate the relations between health, innovation, and development, seeking to show and update the political, economic, and social determinants of the recent Brazilian experience with the Health Economic-Industrial Complex (HEIC. They discuss how the agenda for innovation and domestic industrial production in health gained a central place in the project for construction of the SUS. The article thus seeks to link inherent issues from the agenda for development, production, and innovation to social policy in healthcare, as observed in recent years, and based on this analysis, points to political and conceptual challenges for implementing the SUS, especially as regards strengthening its technological and industrial base. As a byproduct, the article develops an analytical and factual focus on the consolidation of the HEIC in Brazil, both as a dynamic vector of industrial development, generating investment, income, employment, and innovations, and as a decisive element for reducing vulnerability and structural dependence in health. The authors aim to show that strengthening the SUS and orienting it to social needs is an essential part of building a social Welfare State in Brazil.
Invariant molecular-dynamics approach to structural phase transitions
International Nuclear Information System (INIS)
Wentzcovitch, R.M.
1991-01-01
Two fictitious Lagrangians to be used in molecular-dynamics simulations with variable cell shape and suitable to study problems like structural phase transitions are introduced. Because they are invariant with respect to the choice of the simulation cell edges and eliminate symmetry breaking associated with the fictitious part of the dynamics, they improve the physical content of numerical simulations that up to now have been done by using Parrinello-Rahman dynamics
Dynamic state estimation assisted power system monitoring and protection
Cui, Yinan
The advent of phasor measurement units (PMUs) has unlocked several novel methods to monitor, control, and protect bulk electric power systems. This thesis introduces the concept of "Dynamic State Estimation" (DSE), aided by PMUs, for wide-area monitoring and protection of power systems. Unlike traditional State Estimation where algebraic variables are estimated from system measurements, DSE refers to a process to estimate the dynamic states associated with synchronous generators. This thesis first establishes the viability of using particle filtering as a technique to perform DSE in power systems. The utility of DSE for protection and wide-area monitoring are then shown as potential novel applications. The work is presented as a collection of several journal and conference papers. In the first paper, we present a particle filtering approach to dynamically estimate the states of a synchronous generator in a multi-machine setting considering the excitation and prime mover control systems. The second paper proposes an improved out-of-step detection method for generators by means of angular difference. The generator's rotor angle is estimated with a particle filter-based dynamic state estimator and the angular separation is then calculated by combining the raw local phasor measurements with this estimate. The third paper introduces a particle filter-based dual estimation method for tracking the dynamic states of a synchronous generator. It considers the situation where the field voltage measurements are not readily available. The particle filter is modified to treat the field voltage as an unknown input which is sequentially estimated along with the other dynamic states. The fourth paper proposes a novel framework for event detection based on energy functions. The key idea is that any event in the system will leave a signature in WAMS data-sets. It is shown that signatures for four broad classes of disturbance events are buried in the components that constitute the
Quantifying and modeling soil structure dynamics
Characterization of soil structure has been a topic of scientific discussions ever since soil structure has been recognized as an important factor affecting soil physical, mechanical, chemical, and biological processes. Beyond semi-quantitative soil morphology classes, it is a challenge to describe ...
From Dynamic Condition Response Structures to Büchi Automata
DEFF Research Database (Denmark)
Mukkamala, Raghava Rao; Hildebrandt, Thomas
2010-01-01
Recently we have presented distributed dynamic condition response structures (DCR structures) as a declarative process model conservatively generalizing labelled event structures to allow for finite specifications of repeated, possibly infinite behavior. The key ideas are to split the causality...... relation of event structures in two dual relations: the condition relation and the response relation, to split the conflict relation in two relations: the dynamic exclusion and dynamic inclusion, and finally to allow configurations to be multi sets of events. In the present abstract we recall the model...... and show how to characterise the execution of DCR structures and the acceptance condition for infinite runs by giving a map to Bu ̈chi-automata. This is the first step towards automatic verification of processes specified as DCR structures....
Dynamical community structure of populations evolving on genotype networks
International Nuclear Information System (INIS)
Capitán, José A.; Aguirre, Jacobo; Manrubia, Susanna
2015-01-01
Neutral evolutionary dynamics of replicators occurs on large and heterogeneous networks of genotypes. These networks, formed by all genotypes that yield the same phenotype, have a complex architecture that conditions the molecular composition of populations and their movements on genome spaces. Here we consider as an example the case of populations evolving on RNA secondary structure neutral networks and study the community structure of the network revealed through dynamical properties of the population at equilibrium and during adaptive transients. We unveil a rich hierarchical community structure that, eventually, can be traced back to the non-trivial relationship between RNA secondary structure and sequence composition. We demonstrate that usual measures of modularity that only take into account the static, topological structure of networks, cannot identify the community structure disclosed by population dynamics
Dynamic analysis of CHASNUPP steam generator structure during shipping
International Nuclear Information System (INIS)
Han Liangbi; Xu Jinkang; Zhou Meiwu; He Yinbiao
1998-07-01
The dynamic analysis of CHASNUPP steam generator during shipping is described, including the simplified mathematical model, acceleration power spectrum of ocean wave induced random vibration, the dynamic analysis of steam generator structure under random loading, the applied computer code and calculated results
Mean-field theory of nuclear structure and dynamics
International Nuclear Information System (INIS)
Negele, J.W.
1982-01-01
The physical and theoretical foundations are presented for the mean-field theory of nuclear structure and dynamics. Salient features of the many-body theory of stationary states are reviewed to motivate the time-dependent mean-field approximation. The time-dependent Hartree-Fock approximation and its limitations are discussed and general theoretical formulations are presented which yield time-dependent mean-field equations in lowest approximation and provide suitable frameworks for overcoming various conceptual and practical limitations of the mean-field theory. Particular emphasis is placed on recent developments utilizing functional integral techniques to obtain a quantum mean-field theory applicable to quantized eigenstates, spontaneous fission, the nuclear partition function, and scattering problems. Applications to a number of simple, idealized systems are presented to verify the approximations for solvable problems and to elucidate the essential features of mean-field dynamics. Finally, calculations utilizing moderately realistic geometries and interactions are reviewed which address heavy-ion collisions, fusion, strongly damped collisions, and fission
Crystal structure and pair potentials: A molecular-dynamics study
Energy Technology Data Exchange (ETDEWEB)
Parrinello, M.; Rahman, A.
1980-10-06
With use of a Lagrangian which allows for the variation of the shape and size of the periodically repeating molecular-dynamics cell, it is shown that different pair potentials lead to different crystal structures.
Simulation of Protein Structure, Dynamics and Function in Organic Media
National Research Council Canada - National Science Library
Daggett, Valerie
1998-01-01
The overall goal of our ONR-sponsored research is to pursue realistic molecular modeling strudies pertinnent to the related properties of protein stability, dynamics, structure, function, and folding in aqueous solution...
Microscopic observation of magnon bound states and their dynamics.
Fukuhara, Takeshi; Schauß, Peter; Endres, Manuel; Hild, Sebastian; Cheneau, Marc; Bloch, Immanuel; Gross, Christian
2013-10-03
The existence of bound states of elementary spin waves (magnons) in one-dimensional quantum magnets was predicted almost 80 years ago. Identifying signatures of magnon bound states has so far remained the subject of intense theoretical research, and their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting in which to find such bound states by tracking the spin dynamics with single-spin and single-site resolution following a local excitation. Here we use in situ correlation measurements to observe two-magnon bound states directly in a one-dimensional Heisenberg spin chain comprising ultracold bosonic atoms in an optical lattice. We observe the quantum dynamics of free and bound magnon states through time-resolved measurements of two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single-magnon excitations. We also determine the decay time of bound magnons, which is probably limited by scattering on thermal fluctuations in the system. Our results provide a new way of studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.
Past and future trends in structures and dynamics
International Nuclear Information System (INIS)
Bader, R.M.; Goesch, W.H.; Olsen, J.J.
1981-01-01
An historical review and a series of prognostications based on current developments are presented for the fields of structural design and structural dynamics analysis. It is shown that while weight and cost reduction and improved durability have been the primary forces in structural technology development in the past, emphasis has shifted to such things as productivity, quality assurance, low observables for military aircraft and increased fuel efficiency. Prominent among recent advances in future developments are damage tolerance durability, computer-aided design, active flutter suppression, adhesive bonding of primary structures, cast aluminum structures, titanium and graphite-epoxy primary aircraft structures, aeroelastic tailoring composites, metal matrix composites, and radar-absorbing structures
Limitations and corrections in measuring dynamic characteristics of structural systems
International Nuclear Information System (INIS)
Walter, P.L.
1978-10-01
The work deals with limitations encountered in measuring the dynamic characteristics of structural systems. Structural loading and response are measured by transducers possessing multiple resonant frequencies in their transfer function. In transient environments, the resultant signals from these transducers are shown to be analytically unpredictable in amplitude level and frequency content. Data recorded during nuclear effects simulation testing on structures are analyzed. Results of analysis can be generalized to any structure which encounters dynamic loading. Methods to improve the recorded data are described which can be implemented on a frequency selective basis during the measurement process. These improvements minimize data distortion attributable to the transfer characteristics of the measuring transducers
Represenation of process state, structure and control
International Nuclear Information System (INIS)
Goodstein, L.P.; Rasmussen, J.
1987-04-01
Supervisory control is essentially a decision-making activity where, among other things, the dm has to maneuver within a complex problem space which reflects key dimensions and attributes of the object system (power plant ...). Of considerable importance therefore is the representation for the dm of this problem space comprising at the one end the target demands, goals, constraints and, at the other, the resources available for meeting the assigned goals - and all of this in pace with the dynamic event-driven environment which characterizes the types of systems of interest. Previous work has identified the advantages of utilizing the two-dimensional means-ends/part-whole space as a basic ingredient in a system representation. This paper associates more detailed representational requirements at the various levels of the means-ends axis with the activities of state identification and diagnosis. In addition, some examples of display formats which attempt to incorporate the outlined representational principles within the context of a PWR plant are discussed. (authors)
Directory of Open Access Journals (Sweden)
Kei Moritsugu
Full Text Available Molecular dynamics (MD simulations of proteins provide important information to understand their functional mechanisms, which are, however, likely to be hidden behind their complicated motions with a wide range of spatial and temporal scales. A straightforward and intuitive analysis of protein dynamics observed in MD simulation trajectories is therefore of growing significance with the large increase in both the simulation time and system size. In this study, we propose a novel description of protein motions based on the hierarchical clustering of fluctuations in the inter-atomic distances calculated from an MD trajectory, which constructs a single tree diagram, named a "Motion Tree", to determine a set of rigid-domain pairs hierarchically along with associated inter-domain fluctuations. The method was first applied to the MD trajectory of substrate-free adenylate kinase to clarify the usefulness of the Motion Tree, which illustrated a clear-cut dynamics picture of the inter-domain motions involving the ATP/AMP lid and the core domain together with the associated amplitudes and correlations. The comparison of two Motion Trees calculated from MD simulations of ligand-free and -bound glutamine binding proteins clarified changes in inherent dynamics upon ligand binding appeared in both large domains and a small loop that stabilized ligand molecule. Another application to a huge protein, a multidrug ATP binding cassette (ABC transporter, captured significant increases of fluctuations upon binding a drug molecule observed in both large scale inter-subunit motions and a motion localized at a transmembrane helix, which may be a trigger to the subsequent structural change from inward-open to outward-open states to transport the drug molecule. These applications demonstrated the capabilities of Motion Trees to provide an at-a-glance view of various sizes of functional motions inherent in the complicated MD trajectory.
Dynamic thermal analysis of machines in running state
Wang, Lihui
2014-01-01
With the increasing complexity and dynamism in today’s machine design and development, more precise, robust and practical approaches and systems are needed to support machine design. Existing design methods treat the targeted machine as stationery. Analysis and simulation are mostly performed at the component level. Although there are some computer-aided engineering tools capable of motion analysis and vibration simulation etc., the machine itself is in the dry-run state. For effective machine design, understanding its thermal behaviours is crucial in achieving the desired performance in real situation. Dynamic Thermal Analysis of Machines in Running State presents a set of innovative solutions to dynamic thermal analysis of machines when they are put under actual working conditions. The objective is to better understand the thermal behaviours of a machine in real situation while at the design stage. The book has two major sections, with the first section presenting a broad-based review of the key areas of ...
Chaotic Dynamical State Variables Selection Procedure Based Image Encryption Scheme
Directory of Open Access Journals (Sweden)
Zia Bashir
2017-12-01
Full Text Available Nowadays, in the modern digital era, the use of computer technologies such as smartphones, tablets and the Internet, as well as the enormous quantity of confidential information being converted into digital form have resulted in raised security issues. This, in turn, has led to rapid developments in cryptography, due to the imminent need for system security. Low-dimensional chaotic systems have low complexity and key space, yet they achieve high encryption speed. An image encryption scheme is proposed that, without compromising the security, uses reasonable resources. We introduced a chaotic dynamic state variables selection procedure (CDSVSP to use all state variables of a hyper-chaotic four-dimensional dynamical system. As a result, less iterations of the dynamical system are required, and resources are saved, thus making the algorithm fast and suitable for practical use. The simulation results of security and other miscellaneous tests demonstrate that the suggested algorithm excels at robustness, security and high speed encryption.
Combined Steady-State and Dynamic Heat Exchanger Experiment
Luyben, William L.; Tuzla, Kemal; Bader, Paul N.
2009-01-01
This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…
Integrated vehicle dynamics control using State Dependent Riccati Equations
Bonsen, B.; Mansvelders, R.; Vermeer, E.
2010-01-01
In this paper we discuss a State Dependent Riccati Equations (SDRE) solution for Integrated Vehicle Dynamics Control (IVDC). The SDRE approach is a nonlinear variant of the well known Linear Quadratic Regulator (LQR) and implements a quadratic cost function optimization. A modified version of this
steady and dynamic states analysis of induction motor: fea approach
African Journals Online (AJOL)
HOD
The flux levels at these loading conditions were also monitored. Key words: Three phase Induction Motor, Steady state and Dynamic Response, Flux Levels, FEA, Loading conditions. 1. INTRODUCTION ..... Boston: Computational Mechanics Publications;. New York: ... for Electrical Engineers, Cambridge University. Press ...
The state of the art in static and dynamic games
De Giovanni, P.
2009-01-01
Purpose - The purpose of this paper is to investigate the state of the art in static and dynamic games (or inter-firm relationships). This research area has changed significantly over the last 25 years through the development of phenomena such as the supply chain and the progressive overcoming of
Steady and dynamic states analysis of induction motor: FEA approach
African Journals Online (AJOL)
This paper deals with the steady and dynamic states analysis of induction motor using finite element analysis (FEA) approach. The motor has aluminum rotor bars and is designed for direct-on-line operation at 50 Hz. A study of the losses occurring in the motor performed at operating frequency of 50Hz showed that stator ...
Optimal control of peridinin excited-state dynamics
Czech Academy of Sciences Publication Activity Database
Dietzek, B.; Chábera, P.; Hanf, R.; Tschierlei, S.; Popp, J.; Pascher, T.; Yartsev, A.; Polívka, Tomáš
2010-01-01
Roč. 373, 1-2 (2010), s. 129-136 ISSN 0301-0104 Institutional research plan: CEZ:AV0Z50510513 Keywords : peridin * excited-state dynamics * coherent control Subject RIV: BO - Biophysics Impact factor: 2.017, year: 2010
Gas Price Formation, Structure and Dynamics
Energy Technology Data Exchange (ETDEWEB)
Davoust, R.
2008-07-01
Our study, focused on gas prices in importing economies, describes wholesale prices and retail prices, their evolution for the last one or two decades, the economic mechanisms of price formation. While an international market for oil has developed thanks to moderate storage and transportation charges, these costs are much higher in the case of natural gas, which involves that this energy is still traded inside continental markets. There are three regional gas markets around the world: North America (the United States, importing mainly from Canada and Mexico), Europe (importing mainly from Russia, Algeria and Norway) and Asia (Japan, Korea, Taiwan, China and India, importing mainly from Indonesia, Malaysia and Australia). A market for gas has also developed in South America, but it will not be covered by our paper. In Europe and the US, due to large domestic resources and strong grids, natural gas is purchased mostly through pipelines. In Northeast Asia, there is a lack of such infrastructures, so imported gas takes mainly the form of Liquefied Natural Gas (LNG), shipped on maritime tankers. Currently, the LNG market is divided into two zones: the Atlantic Basin (Europe and US) and the Pacific Basin (Asia and the Western Coast of America). For the past few years, the Middle East and Africa have tended to be crucial suppliers for both LNG zones. Gas price formation varies deeply between regional markets, depending on several structural factors (regulation, contracting practises, existence of a spot market, liquidity, share of imports). Empirically, the degree of market opening (which corresponds to the seniority in the liberalization process) seems to be the primary determinant of pricing patterns. North America has the most liberalized and well-performing natural gas industry in the world. Gas pricing is highly competitive and is based on supply/demand balances. Spot and futures markets are developed. The British gas sector is also deregulated and thus follows a
Gas Price Formation, Structure and Dynamics
International Nuclear Information System (INIS)
Davoust, R.
2008-01-01
Our study, focused on gas prices in importing economies, describes wholesale prices and retail prices, their evolution for the last one or two decades, the economic mechanisms of price formation. While an international market for oil has developed thanks to moderate storage and transportation charges, these costs are much higher in the case of natural gas, which involves that this energy is still traded inside continental markets. There are three regional gas markets around the world: North America (the United States, importing mainly from Canada and Mexico), Europe (importing mainly from Russia, Algeria and Norway) and Asia (Japan, Korea, Taiwan, China and India, importing mainly from Indonesia, Malaysia and Australia). A market for gas has also developed in South America, but it will not be covered by our paper. In Europe and the US, due to large domestic resources and strong grids, natural gas is purchased mostly through pipelines. In Northeast Asia, there is a lack of such infrastructures, so imported gas takes mainly the form of Liquefied Natural Gas (LNG), shipped on maritime tankers. Currently, the LNG market is divided into two zones: the Atlantic Basin (Europe and US) and the Pacific Basin (Asia and the Western Coast of America). For the past few years, the Middle East and Africa have tended to be crucial suppliers for both LNG zones. Gas price formation varies deeply between regional markets, depending on several structural factors (regulation, contracting practises, existence of a spot market, liquidity, share of imports). Empirically, the degree of market opening (which corresponds to the seniority in the liberalization process) seems to be the primary determinant of pricing patterns. North America has the most liberalized and well-performing natural gas industry in the world. Gas pricing is highly competitive and is based on supply/demand balances. Spot and futures markets are developed. The British gas sector is also deregulated and thus follows a
THE DYNAMICS OF THE MATRICS STRUCTURE
Dumitru CONSTANTINESCU
2007-01-01
The relationships organization-suppliers-customers have recently known major changes in the structure of services and have made the organization develop its managerial and professional competencies in order to do projects. The qualified organization is the most trust-worthy in the process of doing a project. The participation of an organization in doing projects depends on a multitude of factors. Out of these factors, the structural organization comes forth, as it represents the variable with...
Pressure dependence of excited-state charge-carrier dynamics in organolead tribromide perovskites
Liu, X. C.; Han, J. H.; Zhao, H. F.; Yan, H. C.; Shi, Y.; Jin, M. X.; Liu, C. L.; Ding, D. J.
2018-05-01
Excited-state charge-carrier dynamics governs the performance of organometal trihalide perovskites (OTPs) and is strongly influenced by the crystal structure. Characterizing the excited-state charge-carrier dynamics in OTPs under high pressure is imperative for providing crucial insights into structure-property relations. Here, we conduct in situ high-pressure femtosecond transient absorption spectroscopy experiments to study the excited-state carrier dynamics of CH3NH3PbBr3 (MAPbBr3) under hydrostatic pressure. The results indicate that compression is an effective approach to modulate the carrier dynamics of MAPbBr3. Across each pressure-induced phase, carrier relaxation, phonon scattering, and Auger recombination present different pressure-dependent properties under compression. Responsiveness is attributed to the pressure-induced variation in the lattice structure, which also changes the electronic band structure. Specifically, simultaneous prolongation of carrier relaxation and Auger recombination is achieved in the ambient phase, which is very valuable for excess energy harvesting. Our discussion provides clues for optimizing the photovoltaic performance of OTPs.
Dynamic Arrest in Charged Colloidal Systems Exhibiting Large-Scale Structural Heterogeneities
International Nuclear Information System (INIS)
Haro-Perez, C.; Callejas-Fernandez, J.; Hidalgo-Alvarez, R.; Rojas-Ochoa, L. F.; Castaneda-Priego, R.; Quesada-Perez, M.; Trappe, V.
2009-01-01
Suspensions of charged liposomes are found to exhibit typical features of strongly repulsive fluid systems at short length scales, while exhibiting structural heterogeneities at larger length scales that are characteristic of attractive systems. We model the static structure factor of these systems using effective pair interaction potentials composed of a long-range attraction and a shorter range repulsion. Our modeling of the static structure yields conditions for dynamically arrested states at larger volume fractions, which we find to agree with the experimentally observed dynamics
Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Lee, Ingu; Pang, Yoonsoo [Department of Physics and Photon Science, Gwangju (Korea, Republic of); Lee, Sebok [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)
2014-03-15
Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S{sub 2} and S{sub 1} excited states.
Determination of structure of oriented samples using two-dimensional solid state NMR techniques
International Nuclear Information System (INIS)
Jin Hong; Harbison, G.S.
1990-01-01
One dimensional and two-dimensional MAS techniques can give detailed information about the structure and dynamics of oriented systems. We describe the application of such techniques to the liquid-crystalline polymer poly(p-phenyleneterphtalimide) (PPTA), and thence deduce the solid-state structure of the material. (author). 9 refs.; 6 figs
Atomic probes of surface structure and dynamics
International Nuclear Information System (INIS)
Heller, E.J.; Jonsson, H.
1992-01-01
Progress for the period Sept. 15, 1992 to Sept. 14, 1993 is discussed. Semiclassical methods that will allow much faster and more accurate three-dimensional atom--surface scattering calculations, both elastic and inelastic, are being developed. The scattering of He atoms from buckyballs is being investigated as a test problem. Somewhat more detail is given on studies of He atom scattering from defective Pt surfaces. Molecular dynamics simulations of He + and Ar + ion sputtering of Pt surfaces are also being done. He atom scattering from Xe overlayers on metal surfaces and the thermalized dissociation of H 2 on Cu(110) are being studied. (R.W.R.) 64 refs
Dynamics of structures '89. Vol. 3
International Nuclear Information System (INIS)
1989-01-01
The proceedings, comprising 3 volumes published by the Plzen Centre of the Czechoslovak Society for Science and Technology (Vol. 1 and 2) and by Skoda Works in Plzen (Vol. 3), contain 107 papers, out of which 8 fall within the INIS Subject Scope; these deal with problems related to the earthquake resistance of nuclear power plants. Attention is paid to the evaluation of seismic characteristics of nuclear power plant equipment, to the equipment testing and to calculations of its dynamic characteristics under simulated seismic stress. (Z.M.)
Excimer Formation Dynamics of Dipyrenyldecane in Structurally Different Ionic Liquids.
Yadav, Anita; Pandey, Siddharth
2017-12-07
Ionic liquids, being composed of ions alone, may offer alternative pathways for molecular aggregation. These pathways could be controlled by the chemical structure of the cation and the anion of the ionic liquids. Intramolecular excimer formation dynamics of a bifluorophoric probe, 1,3-bis(1-pyrenyl)decane [1Py(10)1Py], where the fluorophoric pyrene moieties are separated by a long decyl chain, is investigated in seven different ionic liquids in 10-90 °C temperature range. The long alkyl separator allows for ample interaction with the solubilizing milieu prior to the formation of the excimer. The ionic liquids are composed of two sets, one having four ionic liquids of 1-butyl-3-methylimidazolium cation ([bmim + ]) with different anions and the other having four ionic liquids of bis(trifluoromethylsulfonyl)imide anion ([Tf 2 N - ]) with different cations. The excimer-to-monomer emission intensity ratio (I E /I M ) is found to increase with increasing temperature in sigmoidal fashion. Chemical structure of the ionic liquid controls the excimer formation efficiency, as I E /I M values within ionic liquids with the same viscosities are found to be significantly different. The excited-state intensity decay kinetics of 1Py(10)1Py in ionic liquids do not adhere to a simplistic Birk's scheme, where only one excimer conformer forms after excitation. The apparent rate constants of excimer formation (k a ) in highly viscous ionic liquids are an order of magnitude lower than those reported in organic solvents. In general, the higher the viscosity of the ionic liquid, the more sensitive is the k a to the temperature with higher activation energy, E a . The trend in E a is found to be similar to that for activation energy of the viscous flow (E a,η ). Stokes-Einstein relationship is not followed in [bmim + ] ionic liquids; however, with the exception of [choline][Tf 2 N], it is found to be followed in [Tf 2 N - ] ionic liquids suggesting the cyclization dynamics of 1Py(10)1Py
PCI-SS: MISO dynamic nonlinear protein secondary structure prediction
Directory of Open Access Journals (Sweden)
Aboul-Magd Mohammed O
2009-07-01
Full Text Available Abstract Background Since the function of a protein is largely dictated by its three dimensional configuration, determining a protein's structure is of fundamental importance to biology. Here we report on a novel approach to determining the one dimensional secondary structure of proteins (distinguishing α-helices, β-strands, and non-regular structures from primary sequence data which makes use of Parallel Cascade Identification (PCI, a powerful technique from the field of nonlinear system identification. Results Using PSI-BLAST divergent evolutionary profiles as input data, dynamic nonlinear systems are built through a black-box approach to model the process of protein folding. Genetic algorithms (GAs are applied in order to optimize the architectural parameters of the PCI models. The three-state prediction problem is broken down into a combination of three binary sub-problems and protein structure classifiers are built using 2 layers of PCI classifiers. Careful construction of the optimization, training, and test datasets ensures that no homology exists between any training and testing data. A detailed comparison between PCI and 9 contemporary methods is provided over a set of 125 new protein chains guaranteed to be dissimilar to all training data. Unlike other secondary structure prediction methods, here a web service is developed to provide both human- and machine-readable interfaces to PCI-based protein secondary structure prediction. This server, called PCI-SS, is available at http://bioinf.sce.carleton.ca/PCISS. In addition to a dynamic PHP-generated web interface for humans, a Simple Object Access Protocol (SOAP interface is added to permit invocation of the PCI-SS service remotely. This machine-readable interface facilitates incorporation of PCI-SS into multi-faceted systems biology analysis pipelines requiring protein secondary structure information, and greatly simplifies high-throughput analyses. XML is used to represent the input
Dynamic isoperimetry and the geometry of Lagrangian coherent structures
International Nuclear Information System (INIS)
Froyland, Gary
2015-01-01
The study of transport and mixing processes in dynamical systems is particularly important for the analysis of mathematical models of physical systems. We propose a novel, direct geometric method to identify subsets of phase space that remain strongly coherent over a finite time duration. This new method is based on a dynamic extension of classical (static) isoperimetric problems; the latter are concerned with identifying submanifolds with the smallest boundary size relative to their volume.The present work introduces dynamic isoperimetric problems; the study of sets with small boundary size relative to volume as they are evolved by a general dynamical system. We formulate and prove dynamic versions of the fundamental (static) isoperimetric (in)equalities; a dynamic Federer–Fleming theorem and a dynamic Cheeger inequality. We introduce a new dynamic Laplace operator and describe a computational method to identify coherent sets based on eigenfunctions of the dynamic Laplacian.Our results include formal mathematical statements concerning geometric properties of finite-time coherent sets, whose boundaries can be regarded as Lagrangian coherent structures. The computational advantages of our new approach are a well-separated spectrum for the dynamic Laplacian, and flexibility in appropriate numerical approximation methods. Finally, we demonstrate that the dynamic Laplace operator can be realised as a zero-diffusion limit of a newly advanced probabilistic transfer operator method [9] for finding coherent sets, which is based on small diffusion. Thus, the present approach sits naturally alongside the probabilistic approach [9], and adds a formal geometric interpretation. (paper)
Modeling the Structural Dynamic of Industrial Networks
Wilkinson, Ian F.; Wiley, James B.; Lin, Aizhong
Market systems consist of locally interacting agents who continuously pursue advantageous opportunities. Since the time of Adam Smith, a fundamental task of economics has been to understand how market systems develop and to explain their operation. During the intervening years, theory largely has stressed comparative statics analysis. Based on the assumptions of rational, utility or profit-maximizing agents, and negative, diminishing returns) feedback process, traditional economic analysis seeks to describe the, generally) unique state of an economy corresponding to an initial set of assumptions. The analysis is tatic in the sense that it does not describe the process by which an economy might get from one state to another.
Cardiolipin effects on membrane structure and dynamics.
Unsay, Joseph D; Cosentino, Katia; Subburaj, Yamunadevi; García-Sáez, Ana J
2013-12-23
Cardiolipin (CL) is a lipid with unique properties solely found in membranes generating electrochemical potential. It contains four acyl chains and tends to form nonlamellar structures, which are believed to play a key role in membrane structure and function. Indeed, CL alterations have been linked to disorders such as Barth syndrome and Parkinson's disease. However, the molecular effects of CL on membrane organization remain poorly understood. Here, we investigated the structure and physical properties of CL-containing membranes using confocal microscopy, fluorescence correlation spectroscopy, and atomic force microscopy. We found that the fluidity of the lipid bilayer increased and its mechanical stability decreased with CL concentration, indicating that CL decreases the packing of the membrane. Although the presence of up to 20% CL gave rise to flat, stable bilayers, the inclusion of 5% CL promoted the formation of flowerlike domains that grew with time. Surprisingly, we often observed two membrane-piercing events in atomic force spectroscopy experiments with CL-containing membranes. Similar behavior was observed with a lipid mixture mimicking the mitochondrial outer membrane composition. This suggests that CL promotes the formation of membrane areas with apposed double bilayers or nonlamellar structures, similar to those proposed for mitochondrial contact sites. All together, we show that CL induces membrane alterations that support the role of CL in facilitating bilayer structure remodeling, deformation, and permeabilization.
Chaos, dynamical structure and climate variability
Energy Technology Data Exchange (ETDEWEB)
Stewart, H.B. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science
1995-09-01
Deterministic chaos in dynamical systems offers a new paradigm for understanding irregular fluctuations. Techniques for identifying deterministic chaos from observed data, without recourse to mathematical models, are being developed. Powerful methods exist for reconstructing multidimensional phase space from an observed time series of a single scalar variable; these methods are invaluable when only a single scalar record of the dynamics is available. However, in some applications multiple concurrent time series may be available for consideration as phase space coordinates. Here the authors propose some basic analytical tools for such multichannel time series data, and illustrate them by applications to a simple synthetic model of chaos, to a low-order model of atmospheric circulation, and to two high-resolution paleoclimate proxy data series. The atmospheric circulation model, originally proposed by Lorenz, has 27 principal unknowns; they establish that the chaotic attractor can be embedded in a subspace of eight dimensions by exhibiting a specific subset of eight unknowns which pass multichannel tests for false nearest neighbors. They also show that one of the principal unknowns in the 27-variable model--the global mean sea surface temperature--is of no discernible usefulness in making short-term forecasts.
Nonlinear and stochastic dynamics of coherent structures
DEFF Research Database (Denmark)
Rasmussen, Kim
1997-01-01
This Thesis deals with nonlinear and stochastic dynamics in systems which can be described by nonlinear Schrödinger models. Basically three different models are investigated. The first is the continuum nonlinear Schröndinger model in one and two dimensions generalized by a tunable degree of nonli......This Thesis deals with nonlinear and stochastic dynamics in systems which can be described by nonlinear Schrödinger models. Basically three different models are investigated. The first is the continuum nonlinear Schröndinger model in one and two dimensions generalized by a tunable degree...... introduces the nonlinear Schrödinger model in one and two dimensions, discussing the soliton solutions in one dimension and the collapse phenomenon in two dimensions. Also various analytical methods are described. Then a derivation of the nonlinear Schrödinger equation is given, based on a Davydov like...... system described by a tight-binding Hamiltonian and a harmonic lattice coupled b y a deformation-type potential. This derivation results in a two-dimensional nonline ar Schrödinger model, and considering the harmonic lattice to be in thermal contact with a heat bath w e show that the nonlinear...
Dynamic active earth pressure on retaining structures
Indian Academy of Sciences (India)
This theory is based on a pseudo- static forced-based approach ... large enough to induce a limit or failure state in the soil, and hence full mobilization of earth pressure is ... The base of the soil layer is excited by a harmonic excitation to simu-.
Hadron structure with light dynamical quarks
International Nuclear Information System (INIS)
Edwards, R.G.; Richards, D.G.; Fleming, G.T.; Haegler, P.; Negele, J.W.; Orginos, K.; Pochinsky, A.; Renner, D.B.; Schroers, W.
2005-09-01
Generalized parton distributions encompass a wealth of information concerning the three-dimensional quark and gluon structure of the nucleon, and thus provide an ideal focus for the study of hadron structure using lattice QCD. The special limits corresponding to form factors and parton distributions are well explored experimentally, providing clear tests of lattice calculations, and the lack of experimental data for more general cases provides opportunities for genuine predictions and for guiding experiment. We present results from hybrid calculations with improved staggered (Asqtad) sea quarks and domain wall valence quarks at pion masses down to 350 MeV. (orig.)
Structural dynamics of N-ethylpropionamide clusters examined by nonlinear infrared spectroscopy
International Nuclear Information System (INIS)
Wang, Jianping; Yang, Fan; Zhao, Juan; Shi, Jipei
2015-01-01
In this work, the structural dynamics of N-ethylpropionamide (NEPA), a model molecule of β-peptides, in four typical solvents (DMSO, CH 3 CN, CHCl 3 , and CCl 4 ), were examined using the N—H stretching vibration (or the amide-A mode) as a structural probe. Steady-state and transient infrared spectroscopic methods in combination with quantum chemical computations and molecular dynamics simulations were used. It was found that in these solvents, NEPA exists in different aggregation forms, including monomer, dimer, and oligomers. Hydrogen-bonding interaction and local-solvent environment both affect the amide-A absorption profile and its vibrational relaxation dynamics and also affect the structural dynamics of NEPA. In particular, a correlation between the red-shifted frequency for the NEPA monomer from nonpolar to polar solvent and the vibrational excitation relaxation rate of the N—H stretching mode was observed
Dynamic Influence of Emotional States on Novel Word Learning
Guo, Jingjing; Zou, Tiantian; Peng, Danling
2018-01-01
Many researchers realize that it's unrealistic to isolate language learning and processing from emotions. However, few studies on language learning have taken emotions into consideration so far, so that the probable influences of emotions on language learning are unclear. The current study thereby aimed to examine the effects of emotional states on novel word learning and their dynamic changes with learning continuing and task varying. Positive, negative or neutral pictures were employed to induce a given emotional state, and then participants learned the novel words through association with line-drawing pictures in four successive learning phases. At the end of each learning phase, participants were instructed to fulfill a semantic category judgment task (in Experiment 1) or a word-picture semantic consistency judgment task (in Experiment 2) to explore the effects of emotional states on different depths of word learning. Converging results demonstrated that negative emotional state led to worse performance compared with neutral condition; however, how positive emotional state affected learning varied with learning task. Specifically, a facilitative role of positive emotional state in semantic category learning was observed but disappeared in word specific meaning learning. Moreover, the emotional modulation on novel word learning was quite dynamic and changeable with learning continuing, and the final attainment of the learned words tended to be similar under different emotional states. The findings suggest that the impact of emotion can be offset when novel words became more and more familiar and a part of existent lexicon. PMID:29695994
A framework of DYNAMIC data structures for string processing
DEFF Research Database (Denmark)
Prezza, Nicola
2017-01-01
implemented using DYNAMIC with those of stateof-the-art tools performing the same task. Our experiments show that algorithms making use of dynamic compressed data structures can be up to three orders of magnitude more space-efficient (albeit slower) than classical ones performing the same tasks.......In this paper we present DYNAMIC, an open-source C++ library implementing dynamic compressed data structures for string manipulation. Our framework includes useful tools such as searchable partial sums, succinct/gap-encoded bitvectors, and entropy/run-length compressed strings and FM indexes. We...... prove close-to-optimal theoretical bounds for the resources used by our structures, and show that our theoretical predictions are empirically tightly verified in practice. To conclude, we turn our attention to applications. We compare the performance of five recently-published compression algorithms...
Measurement of resistance switching dynamics in copper sulfide memristor structures
McCreery, Kaitlin; Olson, Matthew; Teitsworth, Stephen
Resistance switching materials are the subject of current research in large part for their potential to enable novel computing devices and architectures such as resistance random access memories and neuromorphic chips. A common feature of memristive structures is the hysteretic switching between high and low resistance states which is induced by the application of a sufficiently large electric field. Here, we describe a relatively simple wet chemistry process to fabricate Cu2 S / Cu memristive structures with Cu2 S film thickness ranging up to 150 micron. In this case, resistance switching is believed to be mediated by electromigration of Cu ions from the Cu substrate into the Cu2 S film. Hysteretic current-voltage curves are measured and reveal switching voltages of about 0.8 Volts with a relatively large variance and independent of film thickness. In order to gain insight into the dynamics and variability of the switching process, we have measured the time-dependent current response to voltage pulses of varying height and duration with a time resolution of 1 ns. The transient response consists of a deterministic RC component as well as stochastically varying abrupt current steps that occur within a few microseconds of the pulse application.
Mid-frequency Band Dynamics of Large Space Structures
Coppolino, Robert N.; Adams, Douglas S.
2004-01-01
High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.
Structural Identifiability of Dynamic Systems Biology Models.
Villaverde, Alejandro F; Barreiro, Antonio; Papachristodoulou, Antonis
2016-10-01
A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas.
Oxide Interfaces: emergent structure and dynamics
Energy Technology Data Exchange (ETDEWEB)
Clarke, Roy [Univ. of Michigan, Ann Arbor, MI (United States)
2016-08-16
This Final Report describes the scientific accomplishments that have been achieved with support from grant DE-FG02-06ER46273 during the period 6/1/2012– 5/31/2016. The overall goals of this program were focused on the behavior of epitaxial oxide heterostructures at atomic length scales (Ångstroms), and correspondingly short time-scales (fs -ns). The results contributed fundamentally to one of the currently most active frontiers in condensed matter physics research, namely to better understand the intricate relationship between charge, lattice, orbital and spin degrees of freedom that are exhibited by complex oxide heterostructures. The findings also contributed towards an important technological goal which was to achieve a better basic understanding of structural and electronic correlations so that the unusual properties of complex oxides can be exploited for energy-critical applications. Specific research directions included: probing the microscopic behavior of epitaxial interfaces and buried layers; novel materials structures that emerge from ionic and electronic reconfiguration at epitaxial interfaces; ultrahigh-resolution mapping of the atomic structure of heterointerfaces using synchrotron-based x-ray surface scattering, including direct methods of phase retrieval; using ultrafast lasers to study the effects of transient strain on coherent manipulation of multi-ferroic order parameters; and investigating structural ordering and relaxation processes in real-time.
Structure and dynamics of magnetic nanoparticles
DEFF Research Database (Denmark)
Clausen, K.N.; Bødker, F.; Hansen, M.F.
2000-01-01
In this paper we present X-ray and neutron diffraction data illustrating aspects of crystal and magnetic structures of ferromagnetic alpha-Fe and antiferromagnetic NiO nanoparticles, as well as inelastic neutron scattering studies of the magnetic fluctuations in NiO and in canted antiferromagnetic...
Emergence of structured communities through evolutionary dynamics.
Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M
2015-10-21
Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. Copyright © 2015 Elsevier Ltd. All rights reserved.
Irregular dynamics in up and down cortical states.
Directory of Open Access Journals (Sweden)
Jorge F Mejias
Full Text Available Complex coherent dynamics is present in a wide variety of neural systems. A typical example is the voltage transitions between up and down states observed in cortical areas in the brain. In this work, we study this phenomenon via a biologically motivated stochastic model of up and down transitions. The model is constituted by a simple bistable rate dynamics, where the synaptic current is modulated by short-term synaptic processes which introduce stochasticity and temporal correlations. A complete analysis of our model, both with mean-field approaches and numerical simulations, shows the appearance of complex transitions between high (up and low (down neural activity states, driven by the synaptic noise, with permanence times in the up state distributed according to a power-law. We show that the experimentally observed large fluctuation in up and down permanence times can be explained as the result of sufficiently noisy dynamical synapses with sufficiently large recovery times. Static synapses cannot account for this behavior, nor can dynamical synapses in the absence of noise.
Dynamic structure in self-sustained turbulence
International Nuclear Information System (INIS)
Itoh, K.; Itoh, S.; Yagi, M.; Fukuyama, A.
1995-06-01
Dynamical equation for the self-sustained and pressure-driven turbulence in toroidal plasmas is derived. The growth rate of the dressed-test mode, which belongs to the subcritical turbulence, is obtained as a function of the turbulent transport coefficient. In the limit of the low fluctuation level, the mode has the feature of the nonlinear instability and shows the explosive growth. The growth rate vanishes when the driven transport reaches to the stationarily-turbulent level. The stationary solution is thermodynamically stable. The characteristic time, by which the stationary and self-sustained turbulence is established, scales with the ion-sound transit time and is accelerated by the bad magnetic curvature. Influences of the pressure gradient as well as the radial electric field inhomogeneity are quantified. (author)
Symmetric structures of coherent states in superfluid helium-4
International Nuclear Information System (INIS)
Ahmad, M.
1981-02-01
Coherent States in superfluid helium-4 are discussed and symmetric structures are assigned to these states. Discrete and continuous series functions are exhibited for such states. Coherent State structure has been assigned to oscillating condensed bosons and their inter-relations and their effects on the superfluid system are analysed. (author)
Tri-State Current Source Inverter With Improved Dynamic Performance
DEFF Research Database (Denmark)
Blaabjerg, Frede; Loh, Poh Chiang; Wong, Chow Pang
2008-01-01
Traditional dc-ac current source inverter (CSI) has a right-half-plane (RHP) zero in its control-to-output transfer function. This RHP zero causes the inverter output to fall before rising when a step increase in command reference is required (commonly known as non-minimum-phase effect). To achieve...... a better dynamic response, this paper proposes the design of a tri-state CSI using only an additional semiconductor switch for introducing unique freewheeling states to the traditional six active and three null states of a CSI. With the freewheeling states inserted appropriately within the inverter state...... sequence, the inductive boosting and discharging intervals can be decoupled, allowing the RHP zero to be eliminated with only minor circuit modifications (high level control schemes like predictive and multiloop voltage/current control remain unchanged). The designed inverter can be controlled using...
Structure and dynamics of simple ionic liquids
International Nuclear Information System (INIS)
Parrinello, M.; Tosi, M.P.
1979-01-01
This paper deals with a classical fluid of positive and negative ions at liquid-state densities; tipically, a molten alkalihalide. It is mostly concerned with recent advances in microscopic understanding associated with correlations between charge density fluctuations and their interplay with mass density fluctuations and with single-ion motion. A brief review of related areas which hold promise of future development is also presented
Dynamic loads during failure risk assessment of bridge crane structures
Gorynin, A. D.; Antsev, V. Yu; Shaforost, A. N.
2018-03-01
The paper presents the method of failure risk assessment associated with a bridge crane metal structure at the design stage. It also justifies the necessity of taking into account dynamic loads with regard to the operational cycle of a bridge crane during failure risk assessment of its metal structure.
Molecular dynamics of the structure and thermodynamics of dusty ...
African Journals Online (AJOL)
The static structure and thermodynamic properties of two-dimensional dusty plasma are analyzed for some typical values of coupling and screening parameters using classical molecular dynamics. Radial distribution function and static structure factor are computed. The radial distribution functions display the typical ...
Molecular dynamic analysis of the structure of dendrimers
Energy Technology Data Exchange (ETDEWEB)
Canetta, E.; Maino, G. E-mail: maino@bologna.enea.it
2004-01-01
We present main results of molecular dynamics simulations that we have carried out in order to investigate structural properties of polyamidoamine (PAMAM) dendrimers. Obtained data confirm the PAMAM dendrimer structure proposed by experiments, performed by means of X-ray scattering (SAXS) and quasi-elastic light scattering (QELS) techniques.
Molecular dynamic analysis of the structure of dendrimers
International Nuclear Information System (INIS)
Canetta, E.; Maino, G.
2004-01-01
We present main results of molecular dynamics simulations that we have carried out in order to investigate structural properties of polyamidoamine (PAMAM) dendrimers. Obtained data confirm the PAMAM dendrimer structure proposed by experiments, performed by means of X-ray scattering (SAXS) and quasi-elastic light scattering (QELS) techniques
Quantum state propagation in linear photonic bandgap structures
International Nuclear Information System (INIS)
Severini, S; Tricca, D; Sibilia, C; Bertolotti, M; Perina, Jan
2004-01-01
In this paper we investigate the propagation of a generic quantum state in a corrugated waveguide, which reproduces a photonic bandgap structure. We find the conditions that assure the outcoming state to preserve the quantum properties of the incoming state. Then, focusing on a particular quantum state (realized by two counter-propagating coherent states), we study the possibility of preserving the quantum properties of this particular double coherent state even in the presence of absorption phenomena during propagation in the structure
Park, Jae Sung; Shekar, Ashwin; Graham, Michael D.
2018-01-01
The dynamics of the turbulent near-wall region is known to be dominated by coherent structures. These near-wall coherent structures are observed to burst in a very intermittent fashion, exporting turbulent kinetic energy to the rest of the flow. In addition, they are closely related to invariant solutions known as exact coherent states (ECS), some of which display nonlinear critical layer dynamics (motions that are highly localized around the surface on which the streamwise velocity matches the wave speed of ECS). The present work aims to investigate temporal coherence in minimal channel flow relevant to turbulent bursting and critical layer dynamics and its connection to the instability of ECS. It is seen that the minimal channel turbulence displays frequencies very close to those displayed by an ECS family recently identified in the channel flow geometry. The frequencies of these ECS are determined by critical layer structures and thus might be described as "critical layer frequencies." While the bursting frequency is predominant near the wall, the ECS frequencies (critical layer frequencies) become predominant over the bursting frequency at larger distances from the wall, and increasingly so as Reynolds number increases. Turbulent bursts are classified into strong and relatively weak classes with respect to an intermittent approach to a lower branch ECS. This temporally intermittent approach is closely related to an intermittent low drag event, called hibernating turbulence, found in minimal and large domains. The relationship between the strong burst and the instability of the lower branch ECS is further discussed in state space. The state-space dynamics of strong bursts is very similar to that of the unstable manifolds of the lower branch ECS. In particular, strong bursting processes are always preceded by hibernation events. This precursor dynamics to strong turbulence may aid in development of more effective control schemes by a way of anticipating dynamics
Directory of Open Access Journals (Sweden)
Esfandiar, H.
2013-05-01
Full Text Available In this paper, based on the VoigtKelvin constitutive model, nonlinear dynamic modelling and state space representation of a viscoelastic beam acting as a flexible robotic manipulator is investigated. Complete nonlinear dynamic modelling of a viscoelastic beam without premature linearisation of dynamic equations is developed. The adopted method is capable of reproducing nonlinear dynamic effects, such as beam stiffening due to centrifugal and Coriolis forces induced by rotation of the joints. Structural damping effects on the models dynamic behaviour are also shown. A reliable model for a viscoelastic beam is subsequently presented. The governing equations of motion are derived using Hamiltons principle, and using the finite difference method, nonlinear partial differential equations are reduced to ordinary differential equations. For the purpose of flexible manipulator control, the standard form of state space equations for the viscoelastic link and the actuator is obtained. Simulation results indicate substantial improvements in dynamic behaviour, and a parameter sensitivity study is carried out to investigate the effect of structural damping on the vibration amplitude.
Dynamic kirigami structures for integrated solar tracking
Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max
2015-01-01
Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820
Structure and dynamics of ringed galaxies
International Nuclear Information System (INIS)
Buta, R.J.
1984-01-01
In many spiral and SO galaxies, single or multiple ring structures are visible in the disk. These inner rings (r), outer rings (R), and nuclear rings (nr) were investigated by means of morphology, photometry, and spectroscopy in order to provide basic data on a long neglected phenomenon. The metric properties of each ring are investigated and found to correlate with the structure of the parent galaxy. When properly calibrated, inner rings in barred (SB) systems can be used as geometric extragalactic distance indicators to distances in excess of 100 Mpc. Other statistics are presented that confirm previous indications that the rings have preferred shapes, relative sizes, and orientations with respect to bars. A survey is made of the less homogeneous non-barred (SA) ringed systems, and the causes of the inhomogeneity are isolated. It is shown that rings can be identified in multiple-ring SA systems that are exactly analogous to those in barred spirals
International Conference on Structural Nonlinear Dynamics and Diagnosis
CSNDD 2012; CSNDD 2014
2015-01-01
This book, which presents the peer-reviewed post-proceedings of CSNDD 2012 and CSNDD 2014, addresses the important role that relevant concepts and tools from nonlinear and complex dynamics could play in present and future engineering applications. It includes 22 chapters contributed by outstanding researchers and covering various aspects of applications, including: structural health monitoring, diagnosis and damage detection, experimental methodologies, active vibration control and smart structures, passive control of structures using nonlinear energy sinks, vibro-impact dynamic MEMS/NEMS/AFM, energy-harvesting materials and structures, and time-delayed feedback control, as well as aspects of deterministic versus stochastic dynamics and control of nonlinear phenomena in physics. Researchers and engineers interested in the challenges posed and opportunities offered by nonlinearities in the development of passive and active control strategies, energy harvesting, novel design criteria, modeling and characteriz...
Real-Time Probing of Structural Dynamics by Interaction between Chromophores
DEFF Research Database (Denmark)
Brogaard, Rasmus Y.; Møller, Klaus Braagaard; Sølling, Theis Ivan
2011-01-01
We present an investigation of structural dynamics in excited-state cations probed in real-time by femtosecond timeresolved ion photofragmentation spectroscopy. From photoelectron spectroscopy data on 1,3-dibromopropane we conclude that the pump pulse ionizes the molecule, populating an excited...
Dynamics of SARS-coronavirus HR2 domain in the prefusion and transition states
McReynolds, Susanna; Jiang, Shaokai; Rong, Lijun; Caffrey, Michael
2009-12-01
The envelope glycoproteins S1 and S2 of severe acute respiratory syndrome coronavirus (SARS-CoV) mediate viral entry by conformational change from a prefusion state to a postfusion state that enables fusion of the viral and target membranes. In this work we present the characterization of the dynamic properties of the SARS-CoV S2-HR2 domain (residues 1141-1193 of S) in the prefusion and newly discovered transition states by NMR 15N relaxation studies. The dynamic properties of the different states, which are stabilized under different experimental conditions, extend the current model of viral membrane fusion and give insight into the design of structure-based antagonists of SARS-CoV in particular, as well as other enveloped viruses such as HIV.
Structural dynamics of the cell nucleus
Wiegert, Simon; Bading, Hilmar
2011-01-01
Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons. PMID:21738832
Dynamic structure factor on liquid Pb
International Nuclear Information System (INIS)
Padureanu, I.; Rapeanu, S.; Rotarascu, G.; Craciun, C.
1979-01-01
Dinamic structure factor S(Q,hω) in liquid Pb has been measured at 350 deg C and 400 deg C using the inelastic scattering of the slow neutrons. The measurements were performed in the momentum transfer range 0.6 A -1 -1 . The intermediate scattering function F(Q,t) is also calculated from S(Q,hω). Multiple scattering calculation shows that it is very large especially at small scattering angles. The comparison of the experimental data with the theory is made in terms of two theoretical models. (author)
Dynamical structure of extreme ultraviolet macrospicules
Karovska, Margarita; Habbal, Shadia Rifai
1994-01-01
We describe the substructures forming the macrospicules and their temporal evolution, as revealed by the application of an image enhancement algorithm to extreme ultraviolet (EUV) observations of macrospicules. The enhanced images uncover, for the first time, the substructures forming the column-like structures within the macrospicules and the low-lying arches at their base. The spatial and temporal evolution of macrospicules clearly show continuous interaction between these substructures with occasional ejection of plasma following a ballistic trajectory. We comment on the importance of these results for planning near future space observations of macrospicules with better temporal and spatial resolution.
Effect of support conditions on structural response under dynamic loading
International Nuclear Information System (INIS)
Akram, T.; Memon, S.A.
2008-01-01
In design practice, dynamic structural analysis is carried out with base of structure considered as fixed; this means that foundation is placed on rock like soil material. While conducting this type of analyses the role of foundation and soil behaviour is totally neglected. The actions in members and loads transferred at foundation level obtained in this manner do not depict the true structural behaviour. FEM (Finite Element Methods) analysis where both superstructure and foundation soil are coupled together is quite complicated and expensive for design environments. A simplified model is required to depict dynamic response of structures with foundations based on flexible soils. The primary purpose of this research is to compare the superstructure dynamic responses of structural systems with fixed base to that of simple soil model base. The selected simple soil model is to be suitable for use in a design environment to give more realistic results. For this purpose building models are idealized with various heights and structural systems in both 2D (Two Dimensional) and 3D (Three Dimensional) space. These models are then provided with visco-elastic supports representing three soil bearing capacities and the analysis results are compared to that of fixed supports models. The results indicate that fixed support system underestimates natural time period of the structures. Dynamic behavior and force response of visco-elastic support is different from fixed support model. Fixed support models result in over designed base columns and under designed beams. (author)
Changes in dynamic resting state network connectivity following aphasia therapy.
Duncan, E Susan; Small, Steven L
2017-10-24
Resting state magnetic resonance imaging (rsfMRI) permits observation of intrinsic neural networks produced by task-independent correlations in low frequency brain activity. Various resting state networks have been described, with each thought to reflect common engagement in some shared function. There has been limited investigation of the plasticity in these network relationships after stroke or induced by therapy. Twelve individuals with language disorders after stroke (aphasia) were imaged at multiple time points before (baseline) and after an imitation-based aphasia therapy. Language assessment using a narrative production task was performed at the same time points. Group independent component analysis (ICA) was performed on the rsfMRI data to identify resting state networks. A sliding window approach was then applied to assess the dynamic nature of the correlations among these networks. Network correlations during each 30-second window were used to cluster the data into ten states for each window at each time point for each subject. Correlation was performed between changes in time spent in each state and therapeutic gains on the narrative task. The amount of time spent in a single one of the (ten overall) dynamic states was positively associated with behavioral improvement on the narrative task at the 6-week post-therapy maintenance interval, when compared with either baseline or assessment immediately following therapy. This particular state was characterized by minimal correlation among the task-independent resting state networks. Increased functional independence and segregation of resting state networks underlies improvement on a narrative production task following imitation-based aphasia treatment. This has important clinical implications for the targeting of noninvasive brain stimulation in post-stroke remediation.
Dynamic characteristics and structural response of the SWR 1000 under earthquake loading conditions
International Nuclear Information System (INIS)
Bielor, E.; Brettschuh, W.; Krutzik, N.J.; Tropp, R.
2001-01-01
Based on the conceptual design documentation of the SWR 1000 reactor building as well as specified representative seismological, and soil-dynamic input data, corresponding to prospective sites as a basis, the dynamic characteristics, as well as the in-structure dynamic response of the coupled vibrating structures have been elaborated. The structural design analysis was based on a 3-dimensional mathematical model of the building in which all details of the internal structures as well as the containment including the water in the pools were represented adequately. In order to demonstrate the influence of the soil-structure interaction effects on the dynamic response results, the soil was represented by two different assumptions. At first, considering the state of the art procedures, assuming frequency independent soil capabilities (equivalent stiffnesses and damping values), time domain calculations were carried out. In the second step, based on the frequency-dependency of the soil capabilities, frequency domain calculations were performed. The structural responses obtained by means of both procedures and the same mathematical model of the structures were evaluated and compared. The suitability of the preliminary design concept are discussed and the structural response results obtained on the basis of the bearing capacity and the stresses in the characteristic regions of the structure
Water permeation dynamics of AqpZ: A tale of two states
DEFF Research Database (Denmark)
Xin, Lin; Su, Haibin; Helix Nielsen, Claus
2011-01-01
Molecular dynamics simulations of aquaporin Z homotetramer which is a membrane protein facilitating rapid water movement through the plasma membrane of Escherichia coli were performed. Initial configurations were taken from the open and closed states of crystal structures separately. The resulting...... and carbonyl oxygen of A117 was constructed based on the umbrella sampling technique. There are multiple local minima and transition states on the PMF. The assignment of the open or closed state was supported by the permeability pf, calculated within trajectories in umbrella sampling simulations. Our study...
Qvist, Johan; Schober, Helmut; Halle, Bertil
2011-04-14
One of the outstanding challenges presented by liquid water is to understand how molecules can move on a picosecond time scale despite being incorporated in a three-dimensional network of relatively strong H-bonds. This challenge is exacerbated in the supercooled state, where the dramatic slowing down of structural dynamics is reminiscent of the, equally poorly understood, generic behavior of liquids near the glass transition temperature. By probing single-molecule dynamics on a wide range of time and length scales, quasielastic neutron scattering (QENS) can potentially reveal the mechanistic details of water's structural dynamics, but because of interpretational ambiguities this potential has not been fully realized. To resolve these issues, we present here an extensive set of high-quality QENS data from water in the range 253-293 K and a corresponding set of molecular dynamics (MD) simulations to facilitate and validate the interpretation. Using a model-free approach, we analyze the QENS data in terms of two motional components. Based on the dynamical clustering observed in MD trajectories, we identify these components with two distinct types of structural dynamics: picosecond local (L) structural fluctuations within dynamical basins and slower interbasin jumps (J). The Q-dependence of the dominant QENS component, associated with J dynamics, can be quantitatively rationalized with a continuous-time random walk (CTRW) model with an apparent jump length that depends on low-order moments of the jump length and waiting time distributions. Using a simple coarse-graining algorithm to quantitatively identify dynamical basins, we map the newtonian MD trajectory on a CTRW trajectory, from which the jump length and waiting time distributions are computed. The jump length distribution is gaussian and the rms jump length increases from 1.5 to 1.9 Å as the temperature increases from 253 to 293 K. The rms basin radius increases from 0.71 to 0.75 Å over the same range. The
Thermal Structure and Mantle Dynamics of Rocky Exoplanets
Wagner, F. W.; Tosi, N.; Hussmann, H.; Sohl, F.
2011-12-01
The confirmed detections of CoRoT-7b and Kepler-10b reveal that rocky exoplanets exist. Moreover, recent theoretical studies suggest that small planets beyond the Solar System are indeed common and many of them will be discovered by increasingly precise observational surveys in the years ahead. The knowledge about the interior structure and thermal state of exoplanet interiors provides crucial theoretical input not only for classification and characterization of individual planetary bodies, but also to better understand the origin and evolution of the Solar System and the Earth in general. These developments and considerations have motivated us to address several questions concerning thermal structure and interior dynamics of terrestrial exoplanets. In the present study, depth-dependent structural models of solid exoplanet interiors have been constructed in conjunction with a mixing length approach to calculate self-consistently the radial distribution of temperature and heat flux. Furthermore, 2-D convection simulations using the compressible anelastic approximation have been carried through to examine the effect of thermodynamic quantities (e.g., thermal expansivity) on mantle convection pattern within rocky planets more massive than the Earth. In comparison to parameterized convection models, our calculated results predict generally hotter planetary interiors, which are mainly attributed to a viscosity-regulating feedback mechanism involving temperature and pressure. We find that density and thermal conductivity increase with depth by a factor of two to three, however, thermal expansivity decreases by more than an order of magnitude across the mantle for planets as massive as CoRoT-7b or Kepler-10b. The specific heat capacity is observed to stay almost constant over an extended region of the lower mantle. The planform of mantle convection is strongly modified in the presence of depth-dependent thermodynamic quantities with hot upwellings (plumes) rising across
Elements of earthquake engineering and structural dynamics. 2. ed.
International Nuclear Information System (INIS)
Filiatrault, A.
2002-01-01
This book is written for practising engineers, senior undergraduate and junior structural-engineering students, and university educators. Its main goal is to provide basic knowledge to structural engineers who have no previous knowledge about earthquake engineering and structural dynamics. Earthquake engineering is a multidisciplinary science. This book is not limited to structural analysis and design. The basics of other relevant topics (such as geology, seismology, and geotechnical engineering) are also covered to ensure that structural engineers can interact efficiently with other specialists during a construction project in a seismic zone
Steady State Dynamic Operating Behavior of Universal Motor
Directory of Open Access Journals (Sweden)
Muhammad Khan Burdi
2015-01-01
Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known
Hydrodynamics of stratified epithelium: Steady state and linearized dynamics
Yeh, Wei-Ting; Chen, Hsuan-Yi
2016-05-01
A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.
Fermionic molecular dynamics for ground states and collisions of nuclei
International Nuclear Information System (INIS)
Feldmeier, H.; Bieler, K.; Schnack, J.
1994-08-01
The antisymmetric many-body trial state which describes a system of interacting fermions is parametrized in terms of localized wave packets. The equations of motion are derived from the time-dependent quantum variational principle. The resulting Fermionic Molecular Dynamics (FMD) equations include a wide range of semi-quantal to classical physics extending from deformed Hartree-Fock theory to Newtonian molecular dynamics. Conservation laws are discussed in connection with the choice of the trial state. The model is applied to heavy-ion collisions with which its basic features are illustrated. The results show a great variety of phenomena including deeply inelastic collisions, fusion, incomplete fusion, fragmentation, neck emission, promptly emitted nucleons and evaporation. (orig.)
Introduction to State Estimation of High-Rate System Dynamics.
Hong, Jonathan; Laflamme, Simon; Dodson, Jacob; Joyce, Bryan
2018-01-13
Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer's convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model.
Structure-based control of complex networks with nonlinear dynamics.
Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka
2017-07-11
What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.
Coupled dynamics of node and link states in complex networks: a model for language competition
International Nuclear Information System (INIS)
Carro, Adrián; Toral, Raúl; Miguel, Maxi San
2016-01-01
Inspired by language competition processes, we present a model of coupled evolution of node and link states. In particular, we focus on the interplay between the use of a language and the preference or attitude of the speakers towards it, which we model, respectively, as a property of the interactions between speakers (a link state) and as a property of the speakers themselves (a node state). Furthermore, we restrict our attention to the case of two socially equivalent languages and to socially inspired network topologies based on a mechanism of triadic closure. As opposed to most of the previous literature, where language extinction is an inevitable outcome of the dynamics, we find a broad range of possible asymptotic configurations, which we classify as: frozen extinction states, frozen coexistence states, and dynamically trapped coexistence states. Moreover, metastable coexistence states with very long survival times and displaying a non-trivial dynamics are found to be abundant. Interestingly, a system size scaling analysis shows, on the one hand, that the probability of language extinction vanishes exponentially for increasing system sizes and, on the other hand, that the time scale of survival of the non-trivial dynamical metastable states increases linearly with the size of the system. Thus, non-trivial dynamical coexistence is the only possible outcome for large enough systems. Finally, we show how this coexistence is characterized by one of the languages becoming clearly predominant while the other one becomes increasingly confined to ‘ghetto-like’ structures: small groups of bilingual speakers arranged in triangles, with a strong preference for the minority language, and using it for their intra-group interactions while they switch to the predominant language for communications with the rest of the population. (paper)
DYNAMIC PARTICLE SYSTEMS FOR OBJECT STRUCTURE EXTRACTION
Directory of Open Access Journals (Sweden)
Olivier Lavialle
2011-05-01
Full Text Available A new deformable model based on the use of a particle system is introduced. By defining the local behavior of each particle, the system behaves as an active contour model showing a variable topology and regularization properties. The efficiency of the particle system is illustrated by two applications: the first one concerns the use of the system as a skeleton extractor based on the propagation of particles inside a treeshaped object. Using this method, it is possible to generate a cartography of structures such as veins or channels. In a second illustration, the system avoids the problem of initialization of a piecewise cubic Bspline network used to straighten curved text lines.
Majorana modes in solid state systems and its dynamics
Zhang, Qi; Wu, Biao
2018-04-01
We review the properties of Majorana fermions in particle physics and point out that Majorana modes in solid state systems are significantly different. The key reason is the concept of anti-particle in solid state systems is different from its counterpart in particle physics. We define Majorana modes as the eigenstates of Majorana operators and find that they can exist both at edges and in the bulk. According to our definition, only one single Majorana mode can exist in a system no matter at edges or in the bulk. Kitaev's spinless p-wave superconductor is used to illustrate our results and the dynamical behavior of the Majorana modes.
Spin dynamics in tunneling decay of a metastable state
Ban, Yue; Sherman, E. Ya.
2012-01-01
We analyze spin dynamics in the tunneling decay of a metastable localized state in the presence of spin-orbit coupling. We find that the spin polarization at short time scales is affected by the initial state while at long time scales both the probability- and the spin density exhibit diffraction-in-time phenomenon. We find that in addition to the tunneling time the tunneling in general can be characterized by a new parameter, the tunneling length. Although the tunneling length is independent...
Exact fluctuations of nonequilibrium steady states from approximate auxiliary dynamics
Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T.
2017-01-01
We describe a framework to significantly reduce the computational effort to evaluate large deviation functions of time integrated observables within nonequilibrium steady states. We do this by incorporating an auxiliary dynamics into trajectory based Monte Carlo calculations, through a transformation of the system's propagator using an approximate guiding function. This procedure importance samples the trajectories that most contribute to the large deviation function, mitigating the exponenti...
Learning to Estimate Dynamical State with Probabilistic Population Codes.
Directory of Open Access Journals (Sweden)
Joseph G Makin
2015-11-01
Full Text Available Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF, the parameters of which can be learned via latent-variable density estimation (the EM algorithm. The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states.
Investigating the Intersession Reliability of Dynamic Brain-State Properties.
Smith, Derek M; Zhao, Yrian; Keilholz, Shella D; Schumacher, Eric H
2018-06-01
Dynamic functional connectivity metrics have much to offer to the neuroscience of individual differences of cognition. Yet, despite the recent expansion in dynamic connectivity research, limited resources have been devoted to the study of the reliability of these connectivity measures. To address this, resting-state functional magnetic resonance imaging data from 100 Human Connectome Project subjects were compared across 2 scan days. Brain states (i.e., patterns of coactivity across regions) were identified by classifying each time frame using k means clustering. This was done with and without global signal regression (GSR). Multiple gauges of reliability indicated consistency in the brain-state properties across days and GSR attenuated the reliability of the brain states. Changes in the brain-state properties across the course of the scan were investigated as well. The results demonstrate that summary metrics describing the clustering of individual time frames have adequate test/retest reliability, and thus, these patterns of brain activation may hold promise for individual-difference research.
International Nuclear Information System (INIS)
Dellerue, Serge
2000-01-01
Understand the structure-dynamics-function relation in the case of proteins is essential. But few experimental techniques allow to have access to knowledge of fast internal movements of biological macromolecules. With the neutron scattering method, it has been possible to study the reorientation dynamics of side chains and of polypeptide skeleton for two proteins in terms of water or detergent and of temperature. With the use of the molecular dynamics method, essential for completing and interpreting the experimental data, it has been possible to assess the different contributions of the whole structure of proteins to the overall dynamics. It has been shown that the polypeptide skeleton presents an energy relaxation comparable to those of the side chains. Moreover, it has been explained that the protein dynamics can only be understood in terms of relaxation time distribution. (author) [fr
Structure and dynamics of weakly bound complexes
International Nuclear Information System (INIS)
Skouteris, D.
1998-01-01
The present thesis deals with the spectroscopic and theoretical investigation of weakly bound complexes involving a methane molecule. Studies of these Van der Waals complexes can give valuable information on the relevant intermolecular dynamics and promote the understanding of the interactions between molecules (which can ultimately lead to chemical reactions). Especially interesting are complexes involving molecules of high symmetry (e.g. tetrahedral, such as methane) because of the unusual effects arising from it (selection rules, nuclear Spin statistical weights etc.). The infrared spectrum of the Van der Waals complex between a CH 4 and a N 2 O molecule has been recorded and most of it has been assigned in the region of the N - O stretch (approximately 2225.0 cm -1 ). Despite the fact that this is really a weakly bound complex, it is nevertheless rigid enough so that the standard model for asymmetric top spectra can be applied to it with the usual quantum numbers. From the value of the inertial defect, it turns out that the methane unit is locked in a rigid configuration within the complex rather than freely rotating. The intermolecular distance as well as the tilting angle of the N 2 O linear unit are determined from the rotational constants. The complex itself turns out to have a T - shaped configuration. The infrared spectrum of the Ar - CH 4 complex at the ν 4 (bending) band of methane is also assigned. This is different from the previous one in that the methane unit rotates almost freely Within the complex. As a result, the quantum numbers used to classify rovibrational energy levels include these of the free unit. The concept of 'overall symmetry' is made use of to rationalise selection rules in various sub-bands of the spectrum. Moreover, new terms in the potential anisotropy Hamiltonian are calculated through the use of the overall symmetry concept. These are termed 'mixed anisotropy' terms since they involve both rotational and vibrational degrees of
PWL approximation of nonlinear dynamical systems, part I: structural stability
International Nuclear Information System (INIS)
Storace, M; De Feo, O
2005-01-01
This paper and its companion address the problem of the approximation/identification of nonlinear dynamical systems depending on parameters, with a view to their circuit implementation. The proposed method is based on a piecewise-linear approximation technique. In particular, this paper describes the approximation method and applies it to some particularly significant dynamical systems (topological normal forms). The structural stability of the PWL approximations of such systems is investigated through a bifurcation analysis (via continuation methods)
The Return to Schooling in Structural Dynamic Models: A Survey
Christian Belzil
2007-01-01
Working paper du GATE 2006-09; This papers contains a survey of the recent literature devoted to the returns to schooling within a dynamic structural framework. I present a historical perspective on the evolution of the literature, from early static models set in a selectivity framework (Willis and Rosen, 1979) to the recent literature, stimulated by Keane and Wolpin (1997), and which uses stochastic dynamic programming techniques. After reviewing the literature thoroughly, I compare the stru...
Chiral dynamics and partonic structure at large transverse distances
Energy Technology Data Exchange (ETDEWEB)
Strikman, M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Physics; Weiss, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States). Theory Center
2009-12-30
In this paper, we study large-distance contributions to the nucleon’s parton densities in the transverse coordinate (impact parameter) representation based on generalized parton distributions (GPDs). Chiral dynamics generates a distinct component of the partonic structure, located at momentum fractions x≲M_{π}/M_{N} and transverse distances b~1/M_{π}. We calculate this component using phenomenological pion exchange with a physical lower limit in b (the transverse “core” radius estimated from the nucleon’s axial form factor, R_{core}=0.55 fm) and demonstrate its universal character. This formulation preserves the basic picture of the “pion cloud” model of the nucleon’s sea quark distributions, while restricting its application to the region actually governed by chiral dynamics. It is found that (a) the large-distance component accounts for only ~1/3 of the measured antiquark flavor asymmetry d¯-u¯ at x~0.1; (b) the strange sea quarks s and s¯ are significantly more localized than the light antiquark sea; (c) the nucleon’s singlet quark size for x<0.1 is larger than its gluonic size, (b^{2})_{q+q¯}>(b^{2})_{g}, as suggested by the t-slopes of deeply-virtual Compton scattering and exclusive J/ψ production measured at HERA and FNAL. We show that our approach reproduces the general N_{c}-scaling of parton densities in QCD, thanks to the degeneracy of N and Δ intermediate states in the large-N_{c} limit. Finally, we also comment on the role of pionic configurations at large longitudinal distances and the limits of their applicability at small x.
Muraskin, Jordan; Dodhia, Sonam; Lieberman, Gregory; Garcia, Javier O; Verstynen, Timothy; Vettel, Jean M; Sherwin, Jason; Sajda, Paul
2016-12-01
Post-task resting state dynamics can be viewed as a task-driven state where behavioral performance is improved through endogenous, non-explicit learning. Tasks that have intrinsic value for individuals are hypothesized to produce post-task resting state dynamics that promote learning. We measured simultaneous fMRI/EEG and DTI in Division-1 collegiate baseball players and compared to a group of controls, examining differences in both functional and structural connectivity. Participants performed a surrogate baseball pitch Go/No-Go task before a resting state scan, and we compared post-task resting state connectivity using a seed-based analysis from the supplementary motor area (SMA), an area whose activity discriminated players and controls in our previous results using this task. Although both groups were equally trained on the task, the experts showed differential activity in their post-task resting state consistent with motor learning. Specifically, we found (1) differences in bilateral SMA-L Insula functional connectivity between experts and controls that may reflect group differences in motor learning, (2) differences in BOLD-alpha oscillation correlations between groups suggests variability in modulatory attention in the post-task state, and (3) group differences between BOLD-beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectivity analysis identified group differences in portions of the functionally derived network, suggesting that functional differences may also partially arise from variability in the underlying white matter pathways. Generally, we find that brain dynamics in the post-task resting state differ as a function of subject expertise and potentially result from differences in both functional and structural connectivity. Hum Brain Mapp 37:4454-4471, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals
The assessment of structural dynamics problems in nuclear reactor safety
International Nuclear Information System (INIS)
Liebe, R.
1978-10-01
The paper discusses important physical features of structural dynamics problems in reactor safety. First a general characterization is given of the following problems: Containment deformation due to pool-dynamics during BWR-blowdown; behavior of the core internals due to PWR-blowdown loads; dynamic response of a nuclear power plant during an earthquake; fuel element deformation due to local pressure pulses in an LMFBR core. Several criterias are formulated to classify typical problems so that a better choise can be made both of appropriate mathematical/numerical as well as experimental techniques. The degree of physical coupling between structural dynamics and fluid dynamics is discussed in more detail since it requires particular attention when selecting problem-oriented methods of solution. Some examples are given to illustrate the application and to compare advantages and disadvantages of several numerical methods. Then description is given of experimental techniques in structural dynamics and typical problem areas are identified. Finally some results are presented concerning the fuel element deformation problem in LMFBRs and from the general considerations some important conclusions are summarized. (orig.) 891 RW 892 AP [de
Dynamic characteristics analysis of deployable space structures considering joint clearance
Li, Tuanjie; Guo, Jian; Cao, Yuyan
2011-04-01
The clearance in joints influences the dynamic stability and the performance of deployable space structures (DSS). A virtual experimental modal analysis (VEMA) method is proposed to deal with the effects of joint clearance and link flexibility on the dynamic characteristics of the DSS in this paper. The focus is on the finite element modeling of the clearance joint, VEMA and the modal parameters identification of the DSS. The finite element models (FEM) of the clearance joint and the deployable structure are established in ANSYS. The transient dynamic analysis is conducted to provide the time history data of excitation and response for the VEMA. The fast Fourier transform (FFT) technique is used to transform the data from time domain to frequency domain. The frequency response function is calculated to identify the modal parameters of the deployable structure. Experimental verification is provided to indicate the VEMA method is both a cost and time efficient approach to obtain the dynamic characteristics of the DSS. Finally, we analyze the effects of clearance size and gravity on the dynamic characteristics of the DSS. The analysis results indicate that the joint clearance and gravity strongly influence the dynamic characteristics of the DSS.
Algorithm of Dynamic Model Structural Identification of the Multivariable Plant
Directory of Open Access Journals (Sweden)
Л.М. Блохін
2004-02-01
Full Text Available The new algorithm of dynamic model structural identification of the multivariable stabilized plant with observable and unobservable disturbances in the regular operating modes is offered in this paper. With the help of the offered algorithm it is possible to define the “perturbed” models of dynamics not only of the plant, but also the dynamics characteristics of observable and unobservable casual disturbances taking into account the absence of correlation between themselves and control inputs with the unobservable perturbations.
Femtosecond structural dynamics on the atomic length scale
Energy Technology Data Exchange (ETDEWEB)
Zhang, Dongfang
2014-03-15
deeply involved in their development. I performed the first study in our compact FED system. I studied the optical and structural response of alkali halides to intense UV excitation conditions, i.e. above the damage threshold of the samples which required the application of a single-shot scheme. In order to gain a better understanding of the ablation process that follows fs optical excitation in alkali halides, I applied a variety of different techniques. Optical reflectivity, femtosecond electron diffraction, ion detection and crater measurements revealed the existence of a cold ablation process that occurs well below the threshold for plasma formation and even that for the melting point of the salts. This atypical cold explosion owes to the presence of highly localized excitonic states and reflects the repulsive nature of initial electronic correlations at play. In the case of REGAE, we performed the first time-resolved experiment following the fs laser heating dynamics and partial melting of polycrystalline gold films. This experiment was crucial to test the overall synchronization of our REGAE machine. We were able to observe a clear dynamics under single-shot photo-excitation conditions and found time zero within 1 picosecond. Further electron pulse characterization will involve the implementation of ponderomotive scattering. I have already constructed the required modular setup and performed all preliminary ASTRA N-body simulations.
Femtosecond structural dynamics on the atomic length scale
International Nuclear Information System (INIS)
Zhang, Dongfang
2014-03-01
their development. I performed the first study in our compact FED system. I studied the optical and structural response of alkali halides to intense UV excitation conditions, i.e. above the damage threshold of the samples which required the application of a single-shot scheme. In order to gain a better understanding of the ablation process that follows fs optical excitation in alkali halides, I applied a variety of different techniques. Optical reflectivity, femtosecond electron diffraction, ion detection and crater measurements revealed the existence of a cold ablation process that occurs well below the threshold for plasma formation and even that for the melting point of the salts. This atypical cold explosion owes to the presence of highly localized excitonic states and reflects the repulsive nature of initial electronic correlations at play. In the case of REGAE, we performed the first time-resolved experiment following the fs laser heating dynamics and partial melting of polycrystalline gold films. This experiment was crucial to test the overall synchronization of our REGAE machine. We were able to observe a clear dynamics under single-shot photo-excitation conditions and found time zero within 1 picosecond. Further electron pulse characterization will involve the implementation of ponderomotive scattering. I have already constructed the required modular setup and performed all preliminary ASTRA N-body simulations.
Structure Learning in Stochastic Non-linear Dynamical Systems
Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.
2005-12-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.
Matrix of transmission in structural dynamics
International Nuclear Information System (INIS)
Mukherjee, S.
1975-01-01
The problem of close-coupled systems and cantilever type buildings can be treated efficiently by means of the very general and versatile method of transmission matrix. The expression 'matrix of transmission' is used to point out the fact that the method to be described differs fundamentally from another method related to matrix calculus, and also successfully used in vibration problem. In this method, forces and displacements are introduced as the 'unknowns' of the problem. The 'matrix of transmission' relates these quantities at one point of the structure to those at the neighbouring point. The natural frequencies of a freely vibrating elastic system can be found by applying proper end conditions. The end conditions will yield the frequency determinate to zero. By using suitable numerical method, the natural frequencies and mode shapes are determined, by making a frequency sweep within the range of interest. Results of analysis of a typical nuclear building by this method show very close agreement with the results obtained by using ASKA and SAP IV Program
Kaltashov, Igor A; Desiderio, Dominic M; Nibbering, Nico M
2012-01-01
The definitive guide to mass spectrometry techniques in biology and biophysics The use of mass spectrometry (MS) to study the architecture and dynamics of proteins is increasingly common within the biophysical community, and Mass Spectrometry in Structural Biology and Biophysics: Architecture, Dynamics, and Interaction of Biomolecules, Second Edition provides readers with detailed, systematic coverage of the current state of the art. Offering an unrivalled overview of modern MS-based armamentarium that can be used to solve the most challenging problems in biophysics, structural biol
Structures and dynamical properties of Cn, Sin, Gen, and Snn clusters with n up to 13
International Nuclear Information System (INIS)
Lu, Zhong-Yi; Wang, Cai-Zhuang; Ho, Kai-Ming
2000-01-01
Car-Parrinello molecular dynamics simulated annealings were carried out for clusters Si n , Ge n , and Sn n (n≤13). We investigate the temperature regions in which these clusters transform from a ''liquidlike'' phase to a ''solidlike'' phase, and then from the ''solidlike'' phase to the ground-state structures. Additional simulated annealing was also performed for the cluster C 13 which is selected as a prototype of small carbon clusters. In addition to the discovery of structures for Sn and Ge clusters, our simulation results also provide insights into the dynamics of cluster formation. (c) 2000 The American Physical Society
In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.
Yoo, Jejoong; Aksimentiev, Aleksei
2013-12-10
The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects.
Full scale dynamic testing of Paks nuclear power plant structures
International Nuclear Information System (INIS)
Da Rin, E.M.
1995-01-01
This report refers to the full-scale dynamic structural testing activities that have been performed in December 1994 at the Paks (H) Nuclear Power Plant, within the framework of: the IAEA Coordinated research Programme 'Benchmark Study for the Seismic Analysis and Testing of WWER-type Nuclear Power Plants, and the nuclear research activities of ENEL-WR/YDN, the Italian National Electricity Board in Rome. The specific objective of the conducted investigation was to obtain valid data on the dynamic behaviour of the plant's major constructions, under normal operating conditions, for enabling an assessment of their actual seismic safety to be made. As described in more detail hereafter, the Paks NPP site has been subjected to low level earthquake like ground shaking, through appropriately devised underground explosions, and the dynamic response of the plant's 1 st reactor unit important structures was appropriately measured and digitally recorded. In-situ free field response was measured concurrently and, moreover, site-specific geophysical and seismological data were simultaneously acquired too. The above-said experimental data is to provide basic information on the geophysical and seismological characteristics of the Paks NPP site, together with useful reference information on the true dynamic characteristics of its main structures and give some indications on the actual dynamic soil-structure interaction effects for the case of low level excitation
Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states
Energy Technology Data Exchange (ETDEWEB)
Nelson, Tammie [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Naumov, Artem [Skolkovo Institute of Science and Technology, Moscow 143026 (Russian Federation); Fernandez-Alberti, Sebastian [Universidad Nacional de Quilmes, Roque Saenz Pea 352, B1876BXD Bernal (Argentina); Tretiak, Sergei, E-mail: serg@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2016-12-20
The simulation of nonadiabatic dynamics in extended molecular systems involving hundreds of atoms and large densities of states is particularly challenging. Nonadiabatic coupling terms (NACTs) represent a significant numerical bottleneck in surface hopping approaches. Rather than using unreliable NACT cutting schemes, here we develop “on-the-fly” state limiting methods to eliminate states that are no longer essential for the non-radiative relaxation dynamics as a trajectory proceeds. We propose a state number criteria and an energy-based state limit. The latter is more physically relevant by requiring a user-imposed energy threshold. For this purpose, we introduce a local kinetic energy gauge by summing contributions from atoms within the spatial localization of the electronic wavefunction to define the energy available for upward hops. The proposed state limiting schemes are implemented within the nonadiabatic excited-state molecular dynamics framework to simulate photoinduced relaxation in poly-phenylene vinylene (PPV) and branched poly-phenylene ethynylene (PPE) oligomers for benchmark evaluation.
Investigation of the redox-dependent modulation of structure and dynamics in human cytochrome c
Energy Technology Data Exchange (ETDEWEB)
Imai, Mizue [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810 (Japan); Saio, Tomohide [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810 (Japan); Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Kumeta, Hiroyuki [Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021 (Japan); Uchida, Takeshi [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810 (Japan); Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Inagaki, Fuyuhiko [Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021 (Japan); Ishimori, Koichiro, E-mail: koichiro@sci.hokudai.ac.jp [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810 (Japan); Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)
2016-01-22
Redox-dependent changes in the structure and dynamics of human cytochrome c (Cyt c) were investigated by solution NMR. We found significant structural changes in several regions, including residues 23–28 (loop 3), which were further corroborated by chemical shift differences between the reduced and oxidized states of Cyt c. These differences are essential for discriminating redox states in Cyt c by cytochrome c oxidase (CcO) during electron transfer reactions. Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments identified that the region around His33 undergoes conformational exchanges on the μs-ms timescale, indicating significant redox-dependent structural changes. Because His33 is not part of the interaction site for CcO, our data suggest that the dynamic properties of the region, which is far from the interaction site for CcO, contribute to conformational changes during electron transfer to CcO. - Highlights: • Solution structure and dynamics analysis for human Cyt c by NMR. • Structural changes responsible for the discrimination of the redox state in Cyt c. • Conformational exchange in the region outside of the interaction site for CcO. • Less flexibility and rigid structure of the interaction site on Cyt c for CcO.
Internal structures of self-organized relaxed states and self-similar decay phase
International Nuclear Information System (INIS)
Kondoh, Yoshiomi
1992-03-01
A thought analysis on relaxation due to nonlinear processes is presented to lead to a set of general thoughts applicable to general nonlinear dynamical systems for finding out internal structures of the self-organized relaxed state without using 'invariant'. Three applications of the set of general thoughts to energy relaxations in resistive MHD plasmas, incompressible viscous fluids, and incompressible viscous MHD fluids are shown to lead to the internal structures of the self-organized relaxed states. It is shown that all of the relaxed states in these three dynamical systems are followed by self-similar decay phase without significant change of the spatial structure. The well known relaxed state of ∇ x B = ±λ B is shown to be derived generally in the low β plasma limit. (author)
Two stage approach to dynamic soil structure interaction
International Nuclear Information System (INIS)
Nelson, I.
1981-01-01
A two stage approach is used to reduce the effective size of soil island required to solve dynamic soil structure interaction problems. The ficticious boundaries of the conventional soil island are chosen sufficiently far from the structure so that the presence of the structure causes only a slight perturbation on the soil response near the boundaries. While the resulting finite element model of the soil structure system can be solved, it requires a formidable computational effort. Currently, a two stage approach is used to reduce this effort. The combined soil structure system has many frequencies and wavelengths. For a stiff structure, the lowest frequencies are those associated with the motion of the structure as a rigid body. In the soil, these modes have the longest wavelengths and attenuate most slowly. The higher frequency deformational modes of the structure have shorter wavelengths and their effect attenuates more rapidly with distance from the structure. The difference in soil response between a computation with a refined structural model, and one with a crude model, tends towards zero a very short distance from the structure. In the current work, the 'crude model' is a rigid structure with the same geometry and inertial properties as the refined model. Preliminary calculations indicated that a rigid structure would be a good low frequency approximation to the actual structure, provided the structure was much stiffer than the native soil. (orig./RW)
Structural dynamics and vibration 1995. PD-Volume 70
International Nuclear Information System (INIS)
Ovunc, B.A.; Esat, I.I.; Sabir, A.B.; Karadag, V.
1995-01-01
The themes of this symposium focused on: dynamic responses to temperature cycles and wind excitation; the influence of the hydraulic feedback on stability; structural reliability; vibratory stress relief; fault detection by signal processing; dynamic contact in mechanisms; vibration of thick flexible mechanisms; higher order mechanisms in flexible mechanisms; natural circular frequencies by finite element method; elastic buckling, stability, and vibration of linear and nonlinear structures; buckling of stiffened plates and rings; mixed variable optimization; vibration optimization; and optimization in a constrained space. Separate abstracts were prepared for 20 papers in this book
International Nuclear Information System (INIS)
Farasat, M; Golzan, M M; Shojaei, S H R; Morini, F; Deleuze, M S
2016-01-01
The electronic structure, electron binding energy spectrum and (e, 2e) momentum distributions of aniline have been theoretically predicted at an electron impact energy of 1.500 keV on the basis of Born–Oppenheimer molecular dynamical simulations, in order to account for thermally induced nuclear motions in the initial electronic ground state. Most computed momentum profiles are rather insensitive to thermally induced alterations of the molecular structure, with the exception of the profiles corresponding to two ionization bands at electron binding energies comprised between ∼10.0 and ∼12.0 eV (band C) and between ∼16.5 and ∼20.0 eV (band G). These profiles are found to be strongly influenced by nuclear dynamics in the electronic ground state, especially in the low momentum region. The obtained results show that thermal averaging smears out most generally the spectral fingerprints that are induced by nitrogen inversion. (paper)
Dynamics of Pertussis Transmission in the United States
Magpantay, F. M. G.; Rohani, P.
2015-01-01
Past patterns of infectious disease transmission set the stage on which modern epidemiologic dynamics are played out. Here, we present a comprehensive account of pertussis (whooping cough) transmission in the United States during the early vaccine era. We analyzed recently digitized weekly incidence records from Morbidity and Mortality Weekly Reports from 1938 to 1955, when the whole-cell pertussis vaccine was rolled out, and related them to contemporary patterns of transmission and resurgence documented in monthly incidence data from the National Notifiable Diseases Surveillance System. We found that, during the early vaccine era, pertussis epidemics in US states could be categorized as 1) annual, 2) initially annual and later multiennial, or 3) multiennial. States with predominantly annual cycles tended to have higher per capita birth rates, more household crowding, more children per family, and lower rates of school attendance than the states with multiennial cycles. Additionally, states that exhibited annual epidemics during 1938–1955 have had the highest recent (2001–2010) incidence, while those states that transitioned from annual cycles to multiennial cycles have had relatively low recent incidence. Our study provides an extensive picture of pertussis epidemiology in the United States dating back to the onset of vaccination, a back-story that could aid epidemiologists in understanding contemporary transmission patterns. PMID:26022662
The structure of states and maps in quantum theory
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 3. The structure of states and maps in quantum theory. Sudhavathani Simon S P ... The structure of statistical state spaces in the classical and quantum theories are compared in an interesting and novel manner. Quantum state spaces and maps on them ...
Energy Technology Data Exchange (ETDEWEB)
Car, R.; Parrinello, M.
1988-01-18
An amorphous silicon structure is obtained with a computer simulation based on a new molecular-dynamics technique in which the interatomic potential is derived from a parameter-free quantum mechanical method. Our results for the atomic structure, the phonon spectrum, and the electronic properties are in excellent agreement with experiment. In addition we study details of the microscopic dynamics which are not directly accessible to experiment. We find in particular that structural defects are associated with weak bonds. These may give rise to low-frequency vibrational modes.
Low-energy-state dynamics of entanglement for spin systems
International Nuclear Information System (INIS)
Jafari, R.
2010-01-01
We develop the ideas of the quantum renormalization group and quantum information by exploring the low-energy-state dynamics of entanglement resources of a system close to its quantum critical point. We demonstrate that low-energy-state dynamical quantities of one-dimensional magnetic systems can show a quantum phase transition point and show scaling behavior in the vicinity of the transition point. To present our idea, we study the evolution of two spin entanglements in the one-dimensional Ising model in the transverse field. The system is initialized as the so-called thermal ground state of the pure Ising model. We investigate the evolution of the generation of entanglement with increasing magnetic field. We obtain that the derivative of the time at which the entanglement reaches its maximum with respect to the transverse field diverges at the critical point and its scaling behaviors versus the size of the system are the same as the static ground-state entanglement of the system.
Dynamic soil-structure interactions on embedded buildings
International Nuclear Information System (INIS)
Kobarg, J.; Werkle, H.; Henseleit, O.
1983-01-01
The dynamic soil-structure interaction on the horizontal seismic excitation is investigated on two typical embedded auxiliary buildings of a nuclear power plant. The structure and the soil are modelled by various analytical and numerical methods. Under the condition of the linear viscoelastic theory, i.e. soil characteristic constant in time and independent of strain, the interaction influences between a homogenous soil layer and a structure are analysied for the following parameters: 4) mathematical soil modells; 4) mathematical structure modells; 4) shear wave velocities; 3) embedment conditions; 4) earthquake time histories. (orig.) [de
Imaging the equilibrium state and magnetization dynamics of partially built hard disk write heads
Energy Technology Data Exchange (ETDEWEB)
Valkass, R. A. J., E-mail: rajv202@ex.ac.uk; Yu, W.; Shelford, L. R.; Keatley, P. S.; Loughran, T. H. J.; Hicken, R. J. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Cavill, S. A. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Laan, G. van der; Dhesi, S. S. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Bashir, M. A.; Gubbins, M. A. [Research and Development, Seagate Technology, 1 Disc Drive, Springtown Industrial Estate, Derry BT48 0BF (United Kingdom); Czoschke, P. J.; Lopusnik, R. [Recording Heads Operation, Seagate Technology, 7801 Computer Avenue South, Bloomington, Minnesota 55435 (United States)
2015-06-08
Four different designs of partially built hard disk write heads with a yoke comprising four repeats of NiFe (1 nm)/CoFe (50 nm) were studied by both x-ray photoemission electron microscopy (XPEEM) and time-resolved scanning Kerr microscopy (TRSKM). These techniques were used to investigate the static equilibrium domain configuration and the magnetodynamic response across the entire structure, respectively. Simulations and previous TRSKM studies have made proposals for the equilibrium domain configuration of similar structures, but no direct observation of the equilibrium state of the writers has yet been made. In this study, static XPEEM images of the equilibrium state of writer structures were acquired using x-ray magnetic circular dichroism as the contrast mechanism. These images suggest that the crystalline anisotropy dominates the equilibrium state domain configuration, but competition with shape anisotropy ultimately determines the stability of the equilibrium state. Dynamic TRSKM images were acquired from nominally identical devices. These images suggest that a longer confluence region may hinder flux conduction from the yoke into the pole tip: the shorter confluence region exhibits clear flux beaming along the symmetry axis, whereas the longer confluence region causes flux to conduct along one edge of the writer. The observed variations in dynamic response agree well with the differences in the equilibrium magnetization configuration visible in the XPEEM images, confirming that minor variations in the geometric design of the writer structure can have significant effects on the process of flux beaming.
Static and dynamic properties of QCD bound states
International Nuclear Information System (INIS)
Kubrak, Stanislav
2015-01-01
The QCD phenomenology can be faced with the framework of the coupled quark DSE, meson BSE and baryon Faddeev equation, providing non-perturbative, continuum and Poincare invariant scientific approach. The research performed throughout this thesis is twofold. From one perspective we focus on the investigation of mass spectra for mesons with total spin quantum number J=3 and arising Regge-trajectory for natural parity states J PC =1 -- ,2 ++ ,3 -- within rainbow-ladder single gluon exchange model. The other findings are concerning the impact of the pion cloud effect on J>2 meson states, baryon masses, namely on Nucleon and Delta three-body bound states and meson dynamical properties like the pion form factor.
Dynamic generation of light states with discrete symmetries
Cordero, S.; Nahmad-Achar, E.; Castaños, O.; López-Peña, R.
2018-01-01
A dynamic procedure is established within the generalized Tavis-Cummings model to generate light states with discrete point symmetries, given by the cyclic group Cn. We consider arbitrary dipolar coupling strengths of the atoms with a one-mode electromagnetic field in a cavity. The method uses mainly the matter-field entanglement properties of the system, which can be extended to any number of three-level atoms. An initial state constituted by the superposition of two states with definite total excitation numbers, |ψ〉 M1,and |ψ〉 M 2, is considered. It can be generated by the proper selection of the time of flight of an atom passing through the cavity. We demonstrate that the resulting Husimi function of the light is invariant under cyclic point transformations of order n =| M1-M2| .
Chiral SU(3) dynamics and antikaon-nuclear quasibound states
International Nuclear Information System (INIS)
Weise, W.; Haertle, R.
2008-01-01
Recent developments are summarised concerning low-energy K-bar N interactions as they relate to the possible existence of antikaon-nuclear quasibound states. An exploratory study of antikaons bound to finite nuclei is performed, with emphasis on the evolution of such states from light to heavy nuclei (A = 16-208). The energy dependent, driving attractive K-bar N interactions are constructed using the s-wave coupled-channel amplitudes involving the Λ(1405) and resulting from chiral SU(3) dynamics, plus p-wave amplitudes dominated by the Σ(1385). Effects of Pauli and short-range correlations are discussed. The decay width induced by K - NN two-body absorption is estimated and found to be substantial. It is concluded that K-bar-nuclear quasibound states can possibly exist with binding energies ranging from 60 to 100 MeV, but with short life times corresponding to decay widths of similar magnitudes
Automatic Emotional State Detection using Facial Expression Dynamic in Videos
Directory of Open Access Journals (Sweden)
Hongying Meng
2014-11-01
Full Text Available In this paper, an automatic emotion detection system is built for a computer or machine to detect the emotional state from facial expressions in human computer communication. Firstly, dynamic motion features are extracted from facial expression videos and then advanced machine learning methods for classification and regression are used to predict the emotional states. The system is evaluated on two publicly available datasets, i.e. GEMEP_FERA and AVEC2013, and satisfied performances are achieved in comparison with the baseline results provided. With this emotional state detection capability, a machine can read the facial expression of its user automatically. This technique can be integrated into applications such as smart robots, interactive games and smart surveillance systems.
Conformational dynamics of a protein in the folded and the unfolded state
Energy Technology Data Exchange (ETDEWEB)
Fitter, Joerg
2003-08-01
In a quasielastic neutron scattering experiment, the picosecond dynamics of {alpha}-amylase was investigated for the folded and the unfolded state of the protein. In order to ensure a reasonable interpretation of the internal protein dynamics, the protein was measured in D{sub 2}O-buffer solution. The much higher structural flexibility of the pH induced unfolded state as compared to the native folded state was quantified using a simple analytical model, describing a local diffusion inside a sphere. In terms of this model the conformational volume, which is explored mainly by confined protein side-chain movements, is parameterized by the radius of a sphere (folded state, r=1.2 A; unfolded state, 1.8 A). Differences in conformational dynamics between the folded and the unfolded state of a protein are of fundamental interest in the field of protein science, because they are assumed to play an important role for the thermodynamics of folding/unfolding transition and for protein stability.
The structure and dynamics of boron nitride nanoscrolls
International Nuclear Information System (INIS)
Perim, Eric; Galvao, Douglas S
2009-01-01
Carbon nanoscrolls (CNSs) are structures formed by rolling up graphene layers into a scroll-like shape. CNNs have been experimentally produced by different groups. Boron nitride nanoscrolls (BNNSs) are similar structures using boron nitride instead of graphene layers. In this paper we report molecular mechanics and molecular dynamics results for the structural and dynamical aspects of BNNS formation. Similarly to CNS, BNNS formation is dominated by two major energy contributions, the increase in the elastic energy and the energetic gain due to van der Waals interactions of the overlapping surface of the rolled layers. The armchair scrolls are the most stable configuration while zigzag scrolls are metastable structures which can be thermally converted to armchairs. Chiral scrolls are unstable and tend to evolve into zigzag or armchair configurations depending on their initial geometries. The possible experimental routes to produce BNNSs are also addressed.
Stochastic Erosion of Fractal Structure in Nonlinear Dynamical Systems
Agarwal, S.; Wettlaufer, J. S.
2014-12-01
We analyze the effects of stochastic noise on the Lorenz-63 model in the chaotic regime to demonstrate a set of general issues arising in the interpretation of data from nonlinear dynamical systems typical in geophysics. The model is forced using both additive and multiplicative, white and colored noise and it is shown that, through a suitable choice of the noise intensity, both additive and multiplicative noise can produce similar dynamics. We use a recently developed measure, histogram distance, to show the similarity between the dynamics produced by additive and multiplicative forcing. This phenomenon, in a nonlinear fractal structure with chaotic dynamics can be explained by understanding how noise affects the Unstable Periodic Orbits (UPOs) of the system. For delta-correlated noise, the UPOs erode the fractal structure. In the presence of memory in the noise forcing, the time scale of the noise starts to interact with the period of some UPO and, depending on the noise intensity, stochastic resonance may be observed. This also explains the mixing in dissipative dynamical systems in presence of white noise; as the fractal structure is smoothed, the decay of correlations is enhanced, and hence the rate of mixing increases with noise intensity.
Structure and dynamics of aqueous solution of uranyl ions
International Nuclear Information System (INIS)
Chopra, Manish; Choudhury, Niharendu
2014-01-01
The present work describes a molecular dynamics simulation study of structure and dynamics of aqueous solution of uranyl ions in water. Structural properties of the system in terms of radial distribution functions and dynamical characteristics as obtained through velocity autocorrelation function and mean square displacements have been analyzed. The results for radial distribution functions show the oxygen of water to form the first solvation shell at 2.4 Å around the uranium atom, whereas the hydrogen atoms of water are distributed around the uranium atom with the major peak at around 3.0 Å. Analyses of transport behaviors of ions and water through MSD indicates that the diffusion of the uranyl ion is much less as compared to that of the water molecules. It is also observed that the dynamical behavior of water molecules gets modified due to the presence of uranyl ion. The effect of increase in concentration of uranyl ions on the structure and dynamics of water molecules is also studied
Approximate Dynamic Programming: Combining Regional and Local State Following Approximations.
Deptula, Patryk; Rosenfeld, Joel A; Kamalapurkar, Rushikesh; Dixon, Warren E
2018-06-01
An infinite-horizon optimal regulation problem for a control-affine deterministic system is solved online using a local state following (StaF) kernel and a regional model-based reinforcement learning (R-MBRL) method to approximate the value function. Unlike traditional methods such as R-MBRL that aim to approximate the value function over a large compact set, the StaF kernel approach aims to approximate the value function in a local neighborhood of the state that travels within a compact set. In this paper, the value function is approximated using a state-dependent convex combination of the StaF-based and the R-MBRL-based approximations. As the state enters a neighborhood containing the origin, the value function transitions from being approximated by the StaF approach to the R-MBRL approach. Semiglobal uniformly ultimately bounded (SGUUB) convergence of the system states to the origin is established using a Lyapunov-based analysis. Simulation results are provided for two, three, six, and ten-state dynamical systems to demonstrate the scalability and performance of the developed method.
Interfacial ionic 'liquids': connecting static and dynamic structures.
Uysal, Ahmet; Zhou, Hua; Feng, Guang; Lee, Sang Soo; Li, Song; Cummings, Peter T; Fulvio, Pasquale F; Dai, Sheng; McDonough, John K; Gogotsi, Yury; Fenter, Paul
2015-01-28
It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene-RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (∼0.15 eV).
32nd IMAC Conference and Exposition on Structural Dynamics
Mayes, Randy; Rixen, Daniel; Catbas, Fikret; Atamturktur, H; Moaveni, Babak; Papadimitriou, Costas; Schoenherr, Tyler; Foss, Gary; Niezrecki, Christopher; Allemang, Randall; Kerschen, Gaetan
2014-01-01
This critical collection examines a range of topics in modal analysis, from experimental techniques to acoustics to biodynamics, as presented in early findings and case studies from the Proceedings of the 32nd IMAC, A Conference and Exposition on Structural Dynamics, 2014. The collection includes papers in the following general technical research areas: Experimental Techniques, Processing Modal Data, Rotating Machinery, Acoustics, Adaptive Structures, Biodynamics, Damping
Proton structure functions in the dipole picture of BFKL dynamics
International Nuclear Information System (INIS)
Navelet, H.; Peschanski, R.; Wallon, S.; Royon, Ch.
1996-06-01
The proton structure functions are derived in the QCD dipole picture. Assuming k T and renormalization-group factorization, deep-inelastic proton scattering is related to deep-inelastic onium scattering. A three parameter fit of the 1994 H1 data in the low-x, moderate Q 2 range has been obtained. The dipole picture of BFKL dynamics is shown to provide a relevant model for quantitatively describing the proton structure functions at HERA. (author)
Capital Structure, Environmental Dynamism, Innovation Strategy, and Strategic Risk Management
DEFF Research Database (Denmark)
Juul Andersen, Torben
2005-01-01
Previous research found that capital structure affects performance when it is adapted to the level of environmental dynamism and pursuit of an innovation strategy. The current study reproduces some of these relationships in a more recent dataset but also identifies significant nuances across...... industrial environments. Analyses of a large cross sectional sample and various industry sub-samples suggest that other factors have influenced capital structure effects in recent years including flexibilities in multinational organization and effective strategic risk management capabilities....
Electronic excited states and relaxation dynamics in polymer heterojunction systems
Ramon, John Glenn Santos
The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally
Collective states in 230Th: band structure
Directory of Open Access Journals (Sweden)
A. I. Levon
2009-12-01
Full Text Available Experimental data for the excited states in the deformed nucleus 230Th studied in the (p, t reaction are analyzed. Sequences of the states are selected which can be treated as rotational bands and as multiplets of excitations. Experimental data are compared with the interacting boson model (IBM and the quasiparticle-phonon model (QPM calculations.
Investigation of the redox-dependent modulation of structure and dynamics in human cytochrome c.
Imai, Mizue; Saio, Tomohide; Kumeta, Hiroyuki; Uchida, Takeshi; Inagaki, Fuyuhiko; Ishimori, Koichiro
2016-01-22
Redox-dependent changes in the structure and dynamics of human cytochrome c (Cyt c) were investigated by solution NMR. We found significant structural changes in several regions, including residues 23-28 (loop 3), which were further corroborated by chemical shift differences between the reduced and oxidized states of Cyt c. These differences are essential for discriminating redox states in Cyt c by cytochrome c oxidase (CcO) during electron transfer reactions. Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments identified that the region around His33 undergoes conformational exchanges on the μs-ms timescale, indicating significant redox-dependent structural changes. Because His33 is not part of the interaction site for CcO, our data suggest that the dynamic properties of the region, which is far from the interaction site for CcO, contribute to conformational changes during electron transfer to CcO. Copyright © 2015 Elsevier Inc. All rights reserved.
Macroscopic description of complex adaptive networks coevolving with dynamic node states
Wiedermann, Marc; Donges, Jonathan F.; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen
2015-05-01
In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.
Development of structural health monitoring techniques using dynamics testing
Energy Technology Data Exchange (ETDEWEB)
James, G.H. III [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.
1996-03-01
Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.
Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics.
Maximova, Tatiana; Moffatt, Ryan; Ma, Buyong; Nussinov, Ruth; Shehu, Amarda
2016-04-01
Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.
Functional clustering in hippocampal cultures: relating network structure and dynamics
International Nuclear Information System (INIS)
Feldt, S; Dzakpasu, R; Olariu, E; Żochowski, M; Wang, J X; Shtrahman, E
2010-01-01
In this work we investigate the relationship between gross anatomic structural network properties, neuronal dynamics and the resultant functional structure in dissociated rat hippocampal cultures. Specifically, we studied cultures as they developed under two conditions: the first supporting glial cell growth (high glial group), and the second one inhibiting it (low glial group). We then compared structural network properties and the spatio-temporal activity patterns of the neurons. Differences in dynamics between the two groups could be linked to the impact of the glial network on the neuronal network as the cultures developed. We also implemented a recently developed algorithm called the functional clustering algorithm (FCA) to obtain the resulting functional network structure. We show that this new algorithm is useful for capturing changes in functional network structure as the networks evolve over time. The FCA detects changes in functional structure that are consistent with expected dynamical differences due to the impact of the glial network. Cultures in the high glial group show an increase in global synchronization as the cultures age, while those in the low glial group remain locally synchronized. We additionally use the FCA to quantify the amount of synchronization present in the cultures and show that the total level of synchronization in the high glial group is stronger than in the low glial group. These results indicate an interdependence between the glial and neuronal networks present in dissociated cultures
Dynamic analysis on market structure of China's coal industry
International Nuclear Information System (INIS)
Yang, Qing; Zhang, Lei; Wang, Xin
2017-01-01
According to industrial organization theory, market structure is a crucial factor to market performance. Based on the VAR model and the data from 1994 to 2014, we revealed the dynamic response route of the market structure to these factors and the change process of contribution rate of these factors to the market structure. It shows that market structure is inertial adjustment; technology advance and industry policy have continuous effects on improvement of market concentration ratio; market size and production scale have sustained negative effects on market concentration ratio; fixed capital has barrier effect, which is mainly the entry barrier effect at the beginning, and then the exit barrier effect continues to play a leading role. Therefore, the government has no need to introduce special policies to encourage merger or expansion on the capacity as enterprises would do it spontaneously; it is necessary to make market access system stricter, to improve exit compensation mechanism and to promote technological innovation; all these policies need dynamic adjustment based on the stages of economic cycle. - Highlights: • The adjustment mechanism of China's coal market structure is revealed. • Technology and industry policy are significant factors to optimize the market structure. • The government need not introduce special policy to encourage merger. • The market access system should be stricter. • Policies strength should be dynamically adjusted based on the economic cycle.
Structural relaxation dynamics and annealing effects of sodium silicate glass.
Naji, Mohamed; Piazza, Francesco; Guimbretière, Guillaume; Canizarès, Aurélien; Vaills, Yann
2013-05-09
Here we report high-precision measurements of structural relaxation dynamics in the glass transition range at the intermediate and short length scale for a strong sodium silicate glass during long annealing times. We evidence for the first time the heterogeneous dynamics at the intermediate range order by probing the acoustic longitudinal frequency in the GHz region by Brillouin light scattering spectroscopy. Or, from in-situ Raman measurements, we show that relaxation is indeed homogeneous at the interatomic length scale. Our results show that the dynamics at the intermediate range order contains two distinct relaxation time scales, a fast and a slow component, differing by about a 10-fold factor below Tg and approaching to one another past the glass transition. The slow relaxation time agrees with the shear relaxation time, proving that Si-O bond breaking constitutes the primary control of structural relaxation at the intermediate range order.
Parameter and Structure Inference for Nonlinear Dynamical Systems
Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark
2006-01-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.
Zooplankton community structure and dynamics during the transition ...
African Journals Online (AJOL)
This study investigates the zooplankton community structure and dynamics of Kufena Rock Pool during the transition from dry season (March to April) to rainy season (May to June) in Zaria, Nigeria. Physicochemical parameters such as temperature, hydrogen ion concentration, electrical conductivity and total dissolved ...
Progression of 3D Protein Structure and Dynamics Measurements
Sato-Tomita, Ayana; Sekiguchi, Hiroshi; Sasaki, Yuji C.
2018-06-01
New measurement methodologies have begun to be proposed with the recent progress in the life sciences. Here, we introduce two new methodologies, X-ray fluorescence holography for protein structural analysis and diffracted X-ray tracking (DXT), to observe the dynamic behaviors of individual single molecules.
Structure of hydrogenated amorphous silicon from ab initio molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Buda, F. (Department of Physics, The Ohio State University, 174 West 18th Avenue, Columbus, Ohio (USA)); Chiarotti, G.L. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario Nazionale di Fisica della Materia, Padriciano 99, I-34012 Trieste (Italy)); Car, R. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Institut Romard de Recherche Numerique en Physique des Materiaux, CH-1015 Lausanne, Switzerland Department of Condensed Matter Physics, University of Geneva, CH-1211 Geneva (Switzerland)); Parrinello, M. (IBM Research Division, Zurich Research Laboratory, CH-8803 Rueschlikon (Switzerland))
1991-09-15
We have generated a model of hydrogenated amorphous silicon by first-principles molecular dynamics. Our results are in good agreement with the available experimental data and provide new insight into the microscopic structure of this material. The calculation lends support to models in which monohydride complexes are prevalent, and indicates a strong tendency of hydrogen to form small clusters.
Gauge-invariant cosmic structures---A dynamic systems approach
International Nuclear Information System (INIS)
Woszczyna, A.
1992-01-01
Gravitational instability is expressed in terms of the dynamic systems theory. The gauge-invariant Ellis-Bruni equation and Bardeen's equation are discussed in detail. It is shown that in an open universe filled with matter of constant sound velocity the Jeans criterion does not adequately define the length scale of the gravitational structure
A new dynamic null model for phylogenetic community structure
Pigot, Alex L; Etienne, Rampal S
Phylogenies are increasingly applied to identify the mechanisms structuring ecological communities but progress has been hindered by a reliance on statistical null models that ignore the historical process of community assembly. Here, we address this, and develop a dynamic null model of assembly by
Isomorph invariance of the structure and dynamics of classical crystals
DEFF Research Database (Denmark)
Albrechtsen, Dan; Olsen, Andreas Elmerdahl; Pedersen, Ulf Rørbæk
2014-01-01
This paper shows by computer simulations that some crystalline systems have curves in their thermodynamic phase diagrams, so-called isomorphs, along which structure and dynamics in reduced units are invariant to a good approximation. The crystals are studied in a classical-mechanical framework...
From dynamics to structure and function of model biomolecular systems
Fontaine-Vive-Curtaz, F.
2007-01-01
The purpose of this thesis was to extend recent works on structure and dynamics of hydrogen bonded crystals to model biomolecular systems and biological processes. The tools that we have used are neutron scattering (NS) and density functional theory (DFT) and force field (FF) based simulation
Fluorescence relaxation spectroscopy : light on dynamical structures of flavoproteins
Burten - Bastiaens, P.I.H.
1992-01-01
Refinements in technique and data analysis have opened new avenues for a detailed interpretation of protein fluorescence. What is more, by combining new insights in protein structure and dynamics with improved knowledge of photophysics of biological chromophores, the coupling between
Dynamical Heterogeneity in Granular Fluids and Structural Glasses
Avila, Karina E.
Our current understanding of the dynamics of supercooled liquids and other similar slowly evolving (glassy) systems is rather limited. One aspect that is particularly poorly understood is the origin and behavior of the strong non trivial fluctuations that appear in the relaxation process toward equilibrium. Glassy systems and granular systems both present regions of particles moving cooperatively and at different rates from other regions. This phenomenon is known as spatially heterogeneous dynamics. A detailed explanation of this phenomenon may lead to a better understanding of the slow relaxation process, and perhaps it could even help to explain the presence of the glass transition. This dissertation concentrates on studying dynamical heterogeneity by analyzing simulation data for models of granular materials and structural glasses. For dissipative granular fluids, the growing behavior of dynamical heterogeneities is studied for different densities and different degrees of inelasticity in the particle collisions. The correlated regions are found to grow rapidly as the system approaches dynamical arrest. Their geometry is conserved even when probing at different cutoff length in the correlation function or when the energy dissipation in the system is increased. For structural glasses, I test a theoretical framework that models dynamical heterogeneity as originated in the presence of Goldstone modes, which emerge from a broken continuous time reparametrization symmetry. This analysis is based on quantifying the size and the spatial correlations of fluctuations in the time variable and of other kinds of fluctuations. The results obtained here agree with the predictions of the hypothesis. In particular, the fluctuations associated to the time reparametrization invariance become stronger for low temperatures, long timescales, and large coarse graining lengths. Overall, this research points to dynamical heterogeneity to be described for granular systems similarly than
Structural Phenomenon of Cement-Based Composite Elements in Ultimate Limit State
Directory of Open Access Journals (Sweden)
I. Iskhakov
2016-01-01
Full Text Available Cement-based composite materials have minimum of two components, one of which has higher strength compared to the other. Such materials include concrete, reinforced concrete (RC, and ferrocement, applied in single- or two-layer RC elements. This paper discusses experimental and theoretical results, obtained by the authors in the recent three decades. The authors have payed attention to a structural phenomenon that many design features (parameters, properties, etc. at ultimate limit state (ULS of a structure are twice higher (or lower than at initial loading state. This phenomenon is evident at material properties, structures (or their elements, and static and/or dynamic structural response. The phenomenon is based on two ideas that were developed by first author: quasi-isotropic state of a structure at ULS and minimax principle. This phenomenon is supported by experimental and theoretical results, obtained for various structures, like beams, frames, spatial structures, and structural joints under static or/and dynamic loadings. This study provides valuable indicators for experiments’ planning and estimation of structural state. The phenomenon provides additional equation(s for calculating parameters that are usually obtained experimentally and can lead to developing design concepts and RC theory, in which the number of empirical design coefficients will be minimal.
DEFF Research Database (Denmark)
Luczak, Marcin; Peeters, Bart; Kahsin, Maciej
2014-01-01
for uncertainty evaluation in experimentally estimated models. Investigated structures are plates, fuselage panels and helicopter main rotor blades as they represent different complexity levels ranging from coupon, through sub-component up to fully assembled structures made of composite materials. To evaluate......Aerospace and wind energy structures are extensively using components made of composite materials. Since these structures are subjected to dynamic environments with time-varying loading conditions, it is important to model their dynamic behavior and validate these models by means of vibration...
Atomic dynamics with photon-dressed core states
International Nuclear Information System (INIS)
Robicheaux, F.
1993-01-01
This paper describes the atomic dynamics when a Rydberg atom is in a laser field which is resonant with a dipole-allowed core transition. The main approximation is to completely ignore the (short-range, direct) interaction of the outer electron with the resonant laser which is the same approximation used with great success in calculating the spectrum due to isolated core excitations (ICE). The atom autoionizes when the core absorbs a photon, because the electron can then inelastically scatter from the excited core state, gaining enough energy to escape the atom. Despite neglecting the direct interaction between the outermost electron and the laser, the laser profoundly affects the autoionization dynamics. This effect is incorporated through a frame transformation between the dressed and undressed core states which only utilizes the field free atomic scattering parameters. A two-color experiment is proposed which might be able to measure nonperturbative effects arising from the dressed core states. The usual ICE transition rate is obtained through a perturbative expansion. Generic effects are examined through a model problem. A calculation of the Mg spectrum when the driving laser is tuned to the 3s 1/2- 3p 1/2 or the 3s 1/2- 3p 3/2 transition is presented
DECREASING OF MECHANISMS DYNAMIC LOADING AT THE TRANSIENT STATE
Directory of Open Access Journals (Sweden)
V. S. Loveikin
2015-11-01
Full Text Available Purpose. It is necessary to select modes of motion to reduce the dynamic loads in the mechanisms. This choice should be made on optimization basis. The purpose of research is to study methods of synthesis regimes of mechanisms and machines motion that provide optimal modes of movement for terminal and integral criteria. Methodology. For research the one-mass dynamic model of the mechanism has been used. As optimization criteria the terminal and comprehensive integral criteria were used. The stated optimization problem has been solved using dynamic programming and variational calculation. The direct variation method, which allowed finding only approximate solution of the original problem of optimal control, has been used as well. Findings. The ways of ensuring the absolute minimum of terminal criterion have been set for each method of problem solving. The stated characteristics show softness changes of kinematic functions during braking of mechanism. They point to the absolute minimum of adopted terminal criterion in the calculation. Originality. It is necessary to introduce new variables in the system equations during the solving of optimal control problems using dynamic programming to achieve an absolute minimum of terminal criteria. In general, to achieve a minimum of n-order terminal criterion an optimization problem should find relatively (n+1-th order function. When optimization problems is solving by variational calculation in order to ensure a minimization of n-th order terminal criterion by selecting the appropriate boundary conditions, it is necessary to solve the Euler-Poisson 2(n+1-th order equation (subject to symmetric setting boundary conditions. It is a necessary condition for an extremum of the functional with the (n+1-th order integrant. Practical value. Minimizing of adopted terminal criterion in the calculation allows eliminate the brunt in kinematic gearing of mechanisms, which increases their operational life. In addition
Reversibility and the structure of the local state space
International Nuclear Information System (INIS)
Al-Safi, Sabri W; Richens, Jonathan
2015-01-01
The richness of quantum theory’s reversible dynamics is one of its unique operational characteristics, with recent results suggesting deep links between the theory’s reversible dynamics, its local state space and the degree of non-locality it permits. We explore the delicate interplay between these features, demonstrating that reversibility places strong constraints on both the local and global state space. Firstly, we show that all reversible dynamics are trivial (composed of local transformations and permutations of subsytems) in maximally non-local theories whose local state spaces satisfy a dichotomy criterion; this applies to a range of operational models that have previously been studied, such as d-dimensional ‘hyperballs’ and almost all regular polytope systems. By separately deriving a similar result for odd-sided polygons, we show that classical systems are the only regular polytope state spaces whose maximally non-local composites allow for non-trivial reversible dynamics. Secondly, we show that non-trivial reversible dynamics do exist in maximally non-local theories whose state spaces are reducible into two or more smaller spaces. We conjecture that this is a necessary condition for the existence of such dynamics, but that reversible entanglement generation remains impossible even in this scenario. (paper)
Directory of Open Access Journals (Sweden)
Pan Dan-guang
2015-01-01
Full Text Available For realizing the variation of structural dynamic characteristics due to neighbor structure in buildings group, the surface structure is idealized as an equivalent single degree of freedom system with rigid base whose site consists of a single homogeneous layer. Based on the model, a equivalent method on the equivalent seismic excitation is proposed. Then, the differences of seismic response and equivalent seismic input between soil - structure interaction (SSI system and structure -soil-structure interaction (SSSI system are investigated by harmonic analysis. The numerical results show that dynamic responses would be underestimated in SSSI system when the forcing frequencies are close to the Natural frequency if the effects of neighborhood structure were ignored. Neighborhood structure would make the translational displacement increase and rocking vibration decrease. When establishing an effective seismic input, it is necessary to consider the impact of inertia interaction.
Fei, Juntao; Lu, Cheng
2018-04-01
In this paper, an adaptive sliding mode control system using a double loop recurrent neural network (DLRNN) structure is proposed for a class of nonlinear dynamic systems. A new three-layer RNN is proposed to approximate unknown dynamics with two different kinds of feedback loops where the firing weights and output signal calculated in the last step are stored and used as the feedback signals in each feedback loop. Since the new structure has combined the advantages of internal feedback NN and external feedback NN, it can acquire the internal state information while the output signal is also captured, thus the new designed DLRNN can achieve better approximation performance compared with the regular NNs without feedback loops or the regular RNNs with a single feedback loop. The new proposed DLRNN structure is employed in an equivalent controller to approximate the unknown nonlinear system dynamics, and the parameters of the DLRNN are updated online by adaptive laws to get favorable approximation performance. To investigate the effectiveness of the proposed controller, the designed adaptive sliding mode controller with the DLRNN is applied to a -axis microelectromechanical system gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed methodology can achieve good tracking property, and the comparisons of the approximation performance between radial basis function NN, RNN, and DLRNN show that the DLRNN can accurately estimate the unknown dynamics with a fast speed while the internal states of DLRNN are more stable.
Signatures of discrete breathers in coherent state quantum dynamics
International Nuclear Information System (INIS)
Igumenshchev, Kirill; Ovchinnikov, Misha; Prezhdo, Oleg; Maniadis, Panagiotis
2013-01-01
In classical mechanics, discrete breathers (DBs) – a spatial time-periodic localization of energy – are predicted in a large variety of nonlinear systems. Motivated by a conceptual bridging of the DB phenomena in classical and quantum mechanical representations, we study their signatures in the dynamics of a quantum equivalent of a classical mechanical point in phase space – a coherent state. In contrast to the classical point that exhibits either delocalized or localized motion, the coherent state shows signatures of both localized and delocalized behavior. The transition from normal to local modes have different characteristics in quantum and classical perspectives. Here, we get an insight into the connection between classical and quantum perspectives by analyzing the decomposition of the coherent state into system's eigenstates, and analyzing the spacial distribution of the wave-function density within these eigenstates. We find that the delocalized and localized eigenvalue components of the coherent state are separated by a mixed region, where both kinds of behavior can be observed. Further analysis leads to the following observations. Considered as a function of coupling, energy eigenstates go through avoided crossings between tunneling and non-tunneling modes. The dominance of tunneling modes in the high nonlinearity region is compromised by the appearance of new types of modes – high order tunneling modes – that are similar to the tunneling modes but have attributes of non-tunneling modes. Certain types of excitations preferentially excite higher order tunneling modes, allowing one to study their properties. Since auto-correlation functions decrease quickly in highly nonlinear systems, short-time dynamics are sufficient for modeling quantum DBs. This work provides a foundation for implementing modern semi-classical methods to model quantum DBs, bridging classical and quantum mechanical signatures of DBs, and understanding spectroscopic experiments
Directory of Open Access Journals (Sweden)
Gregory D Friedland
2009-05-01
Full Text Available Conformational ensembles are increasingly recognized as a useful representation to describe fundamental relationships between protein structure, dynamics and function. Here we present an ensemble of ubiquitin in solution that is created by sampling conformational space without experimental information using "Backrub" motions inspired by alternative conformations observed in sub-Angstrom resolution crystal structures. Backrub-generated structures are then selected to produce an ensemble that optimizes agreement with nuclear magnetic resonance (NMR Residual Dipolar Couplings (RDCs. Using this ensemble, we probe two proposed relationships between properties of protein ensembles: (i a link between native-state dynamics and the conformational heterogeneity observed in crystal structures, and (ii a relation between dynamics of an individual protein and the conformational variability explored by its natural family. We show that the Backrub motional mechanism can simultaneously explore protein native-state dynamics measured by RDCs, encompass the conformational variability present in ubiquitin complex structures and facilitate sampling of conformational and sequence variability matching those occurring in the ubiquitin protein family. Our results thus support an overall relation between protein dynamics and conformational changes enabling sequence changes in evolution. More practically, the presented method can be applied to improve protein design predictions by accounting for intrinsic native-state dynamics.
Parameter and state estimation in nonlinear dynamical systems
Creveling, Daniel R.
This thesis is concerned with the problem of state and parameter estimation in nonlinear systems. The need to evaluate unknown parameters in models of nonlinear physical, biophysical and engineering systems occurs throughout the development of phenomenological or reduced models of dynamics. When verifying and validating these models, it is important to incorporate information from observations in an efficient manner. Using the idea of synchronization of nonlinear dynamical systems, this thesis develops a framework for presenting data to a candidate model of a physical process in a way that makes efficient use of the measured data while allowing for estimation of the unknown parameters in the model. The approach presented here builds on existing work that uses synchronization as a tool for parameter estimation. Some critical issues of stability in that work are addressed and a practical framework is developed for overcoming these difficulties. The central issue is the choice of coupling strength between the model and data. If the coupling is too strong, the model will reproduce the measured data regardless of the adequacy of the model or correctness of the parameters. If the coupling is too weak, nonlinearities in the dynamics could lead to complex dynamics rendering any cost function comparing the model to the data inadequate for the determination of model parameters. Two methods are introduced which seek to balance the need for coupling with the desire to allow the model to evolve in its natural manner without coupling. One method, 'balanced' synchronization, adds to the synchronization cost function a requirement that the conditional Lyapunov exponents of the model system, conditioned on being driven by the data, remain negative but small in magnitude. Another method allows the coupling between the data and the model to vary in time according to a specific form of differential equation. The coupling dynamics is damped to allow for a tendency toward zero coupling
Bifurcation structure of localized states in the Lugiato-Lefever equation with anomalous dispersion
Parra-Rivas, P.; Gomila, D.; Gelens, L.; Knobloch, E.
2018-04-01
The origin, stability, and bifurcation structure of different types of bright localized structures described by the Lugiato-Lefever equation are studied. This mean field model describes the nonlinear dynamics of light circulating in fiber cavities and microresonators. In the case of anomalous group velocity dispersion and low values of the intracavity phase detuning these bright states are organized in a homoclinic snaking bifurcation structure. We describe how this bifurcation structure is destroyed when the detuning is increased across a critical value, and determine how a bifurcation structure known as foliated snaking emerges.
Real-Time Simulation of Coaxial Rotor Configurations with Combined Finite State Dynamic Wake and VPM
Zhao, Jinggen; He, Chengjian
2017-01-01
This paper describes a first-principle based finite state dynamic rotor wake model that addresses the complex aerodynamic interference inherent to coaxial rotor configurations in support of advanced vertical lift aircraft simulation, design, and analysis. The high fidelity rotor dynamic wake solution combines an enhanced real-time finite state dynamic wake model (DYW) with a first-principle based viscous Vortex Particle Method (VPM). The finite state dynamic wake model provides a state-spa...
Directory of Open Access Journals (Sweden)
Fábio A. Miessi Sanches
2009-03-01
Full Text Available In this paper we set up a model of regional banking competition based on Bresnahan (1982, Lau (1982 and Nakane (2002. The structural model is estimated using data from eight Brazilian states and a dynamic panel. The results show that on average the level of competition in the Brazilian banking system is high, even tough the null of perfect competition can be rejected at the usual significance levels. This result also prevails at the state level: Rio Grande do Sul, São Paulo, Rio de Janeiro, Pernambuco and Minas Gerais have high degree of competition.
Ground state structures and properties of Si3Hn (n= 1–6) clusters
Indian Academy of Sciences (India)
The ground state structures and properties of Si3H (1 ≤ ≤ 6) clusters have been calculated using Car–Parrinello molecular dynamics with simulated annealing and steepest descent optimization methods. We have studied cohesive energy per particle and first excited electronic level gap of the clusters as a function of ...
Direct Integration of Dynamic Emissive Displays into Knitted Fabric Structures
Bellingham, Alyssa
electroluminescence that occur where the conductive fibers contact the EL fibers. A passive matrix addressing scheme was used to apply a voltage to each pixel individually, creating a display capable of dynamically communicating information. Optical measurements of the intensity and color of emitted light were used to quantify the performance of the display and compare it to state-of-the-art display technologies. The charge-voltage (Q-V) electrical characterization technique is used to gain information about the ACPEL fiber device operation, and mechanical tests were performed to determine the effect everyday wear and tear would have on the performance of the display. The presented textile display structure and method of producing fibers with individual sections of electroluminescence addresses the shortcomings in existing textile display technology and provides a route to directly integrated communicative textiles for applications ranging from biomedical research and monitoring to fashion. An extensive discussion of the materials and methods of production needed to scale this textile display technology and incorporate it into wearable applications is presented.
Structure and dynamics of thylakoids in land plants
DEFF Research Database (Denmark)
Pribil, Mathias; Labs, Mathias; Leister, Dario
2014-01-01
Thylakoids of land plants have a bipartite structure, consisting of cylindrical grana stacks, made of membranous discs piled one on top of the other, and stroma lamellae which are helically wound around the cylinders. Protein complexes predominantly located in the stroma lamellae and grana end....... Depending on light conditions, thylakoid membranes undergo dynamic structural changes that involve alterations in granum diameter and height, vertical unstacking of grana, and swelling of the thylakoid lumen. This plasticity is realized predominantly by reorganization of the supramolecular structure...
Structure and Dynamics of Polymers in Cylindrical Nanoconfinement: A Molecular Dynamics Study
Pressly, James; Riggleman, Robert; Winey, Karen
The structure and dynamics of polymers under nanoconfinement is critical for understanding how polymers behave in applications from hydraulic fracking to fabricating integrated circuits. We previously used simulations to explore the effect of the diameter of cylindrical pores (d = 10-40 σ, where σ is the unit length in reduced units) on polymer end-to-end distance (Ree,perp, Ree,par) , entanglement density, melt diffusion coefficient (D), and local relaxation time (τperp, τpar) at fixed polymer chain length (N = 350). These studies found D, Ree,par, and τperp increased with increasing confinement while entanglement density, Ree,perp, and τpar decreased. Experiments also found that D increased but to a lesser extent. Here, we examine the molecular weight dependence of these properties using N = 25, 50, 100, 200, 350, and 500 confined to pores of diameter 14 σ to examine a range of confinements. Our preliminary results show that as N increases D and Ree,par, increase as well, relative to the unconfined state, while entanglement density and Ree,perp decrease, consistent with our previous work. Interestingly, τ is shown to be independent of chain length indicating the impact of confinement imposed by reducing pore diameter is distinct from that imposed by increasing chain length.
Dynamic vortex dust structures in a nuclear-track plasma
International Nuclear Information System (INIS)
Rykov, V A; Khudyakov, A V; Filinov, V S; Vladimirov, V I; Deputatova, L V; Krutov, D V; Fortov, V E
2003-01-01
Results are presented from Monte Carlo calculations of the electric charge on dust grains in a plasma produced during the slowing down of radioactive decay products of californium nuclei in neon. The dust grain charging is explained as being due to the drift of electrons and ions in an external electric field. It is shown that the charges of the grains depend on their coordinates and strongly fluctuate with time. The time-averaged grain charges agree with the experimental data obtained on ordered liquid-like dust structures in a nuclear-track plasma. The time-averaged dust grain charges are used to carry out computer modelling of the formation of dynamic vortex structures observed in experiments. Evidence is obtained for the fact that the electrostatic forces experienced by the dust grains are potential in character. The paper is supplemented by a video clip showing the typical dynamics of the simulated vortex dust structure
Applications of Asymptotic Sampling on High Dimensional Structural Dynamic Problems
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Bucher, Christian
2011-01-01
The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has consid...... dimensional reliability problems in structural dynamics.......The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has...... is minimized. Next, the method is applied on different cases of linear and nonlinear systems with a large number of random variables representing the dynamic excitation. The results show that asymptotic sampling is capable of providing good approximations of low failure probability events for very high...
Modeling structural change in spatial system dynamics: A Daisyworld example.
Neuwirth, C; Peck, A; Simonović, S P
2015-03-01
System dynamics (SD) is an effective approach for helping reveal the temporal behavior of complex systems. Although there have been recent developments in expanding SD to include systems' spatial dependencies, most applications have been restricted to the simulation of diffusion processes; this is especially true for models on structural change (e.g. LULC modeling). To address this shortcoming, a Python program is proposed to tightly couple SD software to a Geographic Information System (GIS). The approach provides the required capacities for handling bidirectional and synchronized interactions of operations between SD and GIS. In order to illustrate the concept and the techniques proposed for simulating structural changes, a fictitious environment called Daisyworld has been recreated in a spatial system dynamics (SSD) environment. The comparison of spatial and non-spatial simulations emphasizes the importance of considering spatio-temporal feedbacks. Finally, practical applications of structural change models in agriculture and disaster management are proposed.
Excited-state dynamics of mononucleotides and DNA strands in a deep eutectic solvent.
Zhang, Yuyuan; de La Harpe, Kimberly; Hariharan, Mahesh; Kohler, Bern
2018-04-17
The photophysics of several mono- and oligonucleotides were investigated in a deep eutectic solvent for the first time. The solvent glyceline, prepared as a 1 : 2 mole ratio mixture of choline chloride and glycerol, was used to study excited-state deactivation in a non-aqueous solvent by the use of steady-state and time-resolved spectroscopy. DNA strands in glyceline retain the secondary structures that are present in aqueous solution to some degree, thus enabling a study of the effects of solvent properties on the excited states of stacked bases and stacked base pairs. The excited-state lifetime of the mononucleotide 5'-AMP in glyceline is 630 fs, or twice as long as in aqueous solution. Even slower relaxation is seen for 5'-TMP in glyceline, and a possible triplet state with a lifetime greater than 3 ns is observed. Circular dichroism spectra show that the single strand (dA)18 and the duplex d(AT)9·d(AT)9 adopt similar structures in glyceline and in aqueous solution. Despite having similar conformations in both solvents, femtosecond transient absorption experiments reveal striking changes in the dynamics. Excited-state decay and vibrational cooling generally take place more slowly in glyceline than in water. Additionally, the fraction of long-lived excited states in both oligonucleotide systems is lower in glyceline than in aqueous solution. For a DNA duplex, water is suggested to favor decay pathways involving intrastrand charge separation, while the deep eutectic solvent favors interstrand deactivation channels involving neutral species. Slower solvation dynamics in the viscous deep eutectic solvent may also play a role. These results demonstrate that the dynamics of excitations in stacked bases and stacked base pairs depend not only on conformation, but are also highly sensitive to the solvent.
Directory of Open Access Journals (Sweden)
Sanaz Mahmoudpour
2011-01-01
Full Text Available Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite element method and scaled boundary finite element method is applied. Finite element method is used to analyze the structure, and scaled boundary finite element method is applied in the analysis of unbounded soil region. Due to analytical solution in the radial direction, the radiation condition is satisfied exactly. The material behavior of soil and structure is assumed to be linear. The soil region is considered as a homogeneous half-space. The analysis is performed in time domain. A computer program is prepared to analyze the soil-structure system. Comparing the results with those in literature shows the exactness and competency of the proposed method.
Uncertainty propagation through dynamic models of assemblies of mechanical structures
International Nuclear Information System (INIS)
Daouk, Sami
2016-01-01
When studying the behaviour of mechanical systems, mathematical models and structural parameters are usually considered deterministic. Return on experience shows however that these elements are uncertain in most cases, due to natural variability or lack of knowledge. Therefore, quantifying the quality and reliability of the numerical model of an industrial assembly remains a major question in low-frequency dynamics. The purpose of this thesis is to improve the vibratory design of bolted assemblies through setting up a dynamic connector model that takes account of different types and sources of uncertainty on stiffness parameters, in a simple, efficient and exploitable in industrial context. This work has been carried out in the framework of the SICODYN project, led by EDF R and D, that aims to characterise and quantify, numerically and experimentally, the uncertainties in the dynamic behaviour of bolted industrial assemblies. Comparative studies of several numerical methods of uncertainty propagation demonstrate the advantage of using the Lack-Of-Knowledge theory. An experimental characterisation of uncertainties in bolted structures is performed on a dynamic test rig and on an industrial assembly. The propagation of many small and large uncertainties through different dynamic models of mechanical assemblies leads to the assessment of the efficiency of the Lack-Of-Knowledge theory and its applicability in an industrial environment. (author)
Nonlinear dynamics of semiclassical coherent states in periodic potentials
International Nuclear Information System (INIS)
Carles, Rémi; Sparber, Christof
2012-01-01
We consider nonlinear Schrödinger equations with either local or nonlocal nonlinearities. In addition, we include periodic potentials as used, for example, in matter wave experiments in optical lattices. By considering the corresponding semiclassical scaling regime, we construct asymptotic solutions, which are concentrated both in space and in frequency around the effective semiclassical phase-space flow induced by Bloch’s spectral problem. The dynamics of these generalized coherent states is governed by a nonlinear Schrödinger model with effective mass. In the case of nonlocal nonlinearities, we establish a novel averaging-type result in the critical case. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)
Dynamics of an N-vortex state at small distances
Ovchinnikov, Yu. N.
2013-01-01
We investigate the dynamics of a state of N vortices, placed at the initial instant at small distances from some point, close to the "weight center" of vortices. The general solution of the time-dependent Ginsburg-Landau equation for N vortices in a large time interval is found. For N = 2, the position of the "weight center" of two vortices is time independent. For N ≥ 3, the position of the "weight center" weakly depends on time and is located in the range of the order of a 3, where a is a characteristic distance of a single vortex from the "weight center." For N = 3, the time evolution of the N-vortex state is fixed by the position of vortices at any time instant and by the values of two small parameters. For N ≥ 4, a new parameter arises in the problem, connected with relative increases in the number of decay modes.
Structure and Dynamics of the Quiet Solar Chromosphere
Kalkofen, Wolfgang
2002-04-01
The grant supported research on the structure of the quiet, nonmagnetic chromosphere and on wave excitation and propagation in both the nonmagnetic chromosphere and the magnetic network. The work on the structure of the chromosphere culminated in the recognition that between two competing views of the solar chromosphere, older models by Avrett and collaborators (referred to as VAL) and the newer, dynamical model by Carlsson & Stein (referred to as CS), the clear decision is in favor of the older models, and this in spite of the evident lack of physics, which does not include wave motion and oscillations. The contrast between the static VAL models and the dynamical CS model can be stated most succinctly by comparing the temperature variation implied by the VAL models and the temperature fluctuations of the CS model, which are, respectively, of the order of 10% for the VAL model (at heights where hydrogen is 50% ionized) and a factor of 10 (at the upper boundary of their chromospheric model). The huge fluctuations of the CS model have never been observed, whereas the smaller temperature variations of the VAL models are consistent with ground-based and space-based observations. While it should be obvious which model describes the Sun and which one fails, the case is far from settled in the minds of solar physicists. Thus, much educational work remains to be done and, of course, more research to develop arguments that make the case more convincing. The research on waves and oscillations has been based on a unified theory of excitation of acoustic waves in the field-free atmosphere and of transverse and longitudinal waves in magnetic flux tubes located in the magnetic network by noting, first, that impulsive excitation of all these waves in gravitationally stratified media leads to oscillations at the respective cutoff frequencies and, second, that the observed oscillation frequencies in the nonmagnetic and magnetic parts of the chromosphere match corresponding cutoff
Solution structure and dynamics of melanoma inhibitory activity protein
International Nuclear Information System (INIS)
Lougheed, Julie C.; Domaille, Peter J.; Handel, Tracy M.
2002-01-01
Melanoma inhibitory activity (MIA) is a small secreted protein that is implicated in cartilage cell maintenance and melanoma metastasis. It is representative of a recently discovered family of proteins that contain a Src Homologous 3 (SH3) subdomain. While SH3 domains are normally found in intracellular proteins and mediate protein-protein interactions via recognition of polyproline helices, MIA is single-domain extracellular protein, and it probably binds to a different class of ligands.Here we report the assignments, solution structure, and dynamics of human MIA determined by heteronuclear NMR methods. The structures were calculated in a semi-automated manner without manual assignment of NOE crosspeaks, and have a backbone rmsd of 0.38 A over the ordered regions of the protein. The structure consists of an SH3-like subdomain with N- and C-terminal extensions of approximately 20 amino acids each that together form a novel fold. The rmsd between the solution structure and our recently reported crystal structure is 0.86 A over the ordered regions of the backbone, and the main differences are localized to the most dynamic regions of the protein. The similarity between the NMR and crystal structures supports the use of automated NOE assignments and ambiguous restraints to accelerate the calculation of NMR structures
Solid-state NMR, electrophysiology and molecular dynamics characterization of human VDAC2
International Nuclear Information System (INIS)
Gattin, Zrinka; Schneider, Robert; Laukat, Yvonne; Giller, Karin; Maier, Elke; Zweckstetter, Markus; Griesinger, Christian; Benz, Roland; Becker, Stefan; Lange, Adam
2015-01-01
The voltage-dependent anion channel (VDAC) is the most abundant protein of the outer mitochondrial membrane and constitutes the major pathway for the transport of ADP, ATP, and other metabolites. In this multidisciplinary study we combined solid-state NMR, electrophysiology, and molecular dynamics simulations, to study the structure of the human VDAC isoform 2 in a lipid bilayer environment. We find that the structure of hVDAC2 is similar to the structure of hVDAC1, in line with recent investigations on zfVDAC2. However, hVDAC2 appears to exhibit an increased conformational heterogeneity compared to hVDAC1 which is reflected in broader solid-state NMR spectra and less defined electrophysiological profiles
Solid-state NMR, electrophysiology and molecular dynamics characterization of human VDAC2
Energy Technology Data Exchange (ETDEWEB)
Gattin, Zrinka; Schneider, Robert; Laukat, Yvonne; Giller, Karin [Max Planck Institute for Biophysical Chemistry (Germany); Maier, Elke [Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Lehrstuhl für Biotechnologie (Germany); Zweckstetter, Markus; Griesinger, Christian [Max Planck Institute for Biophysical Chemistry (Germany); Benz, Roland [Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Lehrstuhl für Biotechnologie (Germany); Becker, Stefan; Lange, Adam, E-mail: alange@fmp-berlin.de [Max Planck Institute for Biophysical Chemistry (Germany)
2015-04-15
The voltage-dependent anion channel (VDAC) is the most abundant protein of the outer mitochondrial membrane and constitutes the major pathway for the transport of ADP, ATP, and other metabolites. In this multidisciplinary study we combined solid-state NMR, electrophysiology, and molecular dynamics simulations, to study the structure of the human VDAC isoform 2 in a lipid bilayer environment. We find that the structure of hVDAC2 is similar to the structure of hVDAC1, in line with recent investigations on zfVDAC2. However, hVDAC2 appears to exhibit an increased conformational heterogeneity compared to hVDAC1 which is reflected in broader solid-state NMR spectra and less defined electrophysiological profiles.
Quantum dynamics on potential energy surfaces. Simpler states and simpler dynamics
Energy Technology Data Exchange (ETDEWEB)
Keller, Johannes Friedrich
2015-09-25
In this dissertation we analyze and simplify wave functions and observables in the context of quantum molecular dynamics. The two main topics we discuss are the structure of Hagedorn wave packets in position and phase space, and semiclassical approximations for the propagation of quantum expectations with nonnegative phase space densities. We provide algorithmic discretizations for these approximations and illustrate their validity and applicability by means of numerical experiments.
Structure, entanglements and dynamics of polymer nanocomposites containing spherical nanoparticles
International Nuclear Information System (INIS)
Karatrantos, A; Clarke, N; Composto, R J; Winey, K I
2014-01-01
We investigate the effect of nanoparticles on polymer structure, nanoparticle dynamics and topological constraints (entanglements) in polymer melts for nanoparticle loading above percolation threshold as high as 40.9% using stochastic molecular dynamics (MD) simulations. An increase in the number of entanglements (decrease of N e with 40.9% volume fraction of nanoparticles dispersed in the polymer matrix) in the nanocomposites is observed as evidenced by larger contour lengths of the primitive paths. Attraction between polymers and nanoparticles affects the entanglements in the nanocomposites and alters the primitive path. The diffusivity of small sized nanoparticles deviates significantly from the Stokes- Einstein relation
Coalescence of silver unidimensional structures by molecular dynamics simulation
International Nuclear Information System (INIS)
Perez A, M.; Gutierrez W, C.E.; Mondragon, G.; Arenas, J.
2007-01-01
The study of nanoparticles coalescence and silver nano rods phenomena by means of molecular dynamics simulation under the thermodynamic laws is reported. In this work we focus ourselves to see the conditions under which the one can be given one dimension growth of silver nano rods for the coalescence phenomenon among two nano rods or one nano rod and one particle; what allows us to study those structural, dynamic and morphological properties of the silver nano rods to different thermodynamic conditions. The simulations are carried out using the Sutton-Chen potentials of interaction of many bodies that allow to obtain appropriate results with the real physical systems. (Author)
An age-structured population balance model for microbial dynamics
Directory of Open Access Journals (Sweden)
Duarte M.V.E.
2003-01-01
Full Text Available This work presents an age-structured population balance model (ASPBM for a bioprocess in a continuous stirred-tank fermentor. It relates the macroscopic properties and dynamic behavior of biomass to the operational parameters and microscopic properties of cells. Population dynamics is governed by two time- and age-dependent density functions for living and dead cells, accounting for the influence of substrate and dissolved oxygen concentrations on cell division, aging and death processes. The ASPBM described biomass and substrate oscillations in aerobic continuous cultures as experimentally observed. It is noteworthy that a small data set consisting of nonsegregated measurements was sufficient to adjust a complex segregated mathematical model.
Estimating spatio-temporal dynamics of size-structured populations
DEFF Research Database (Denmark)
Kristensen, Kasper; Thygesen, Uffe Høgsbro; Andersen, Ken Haste
2014-01-01
with simple stock dynamics, to estimate simultaneously how size distributions and spatial distributions develop in time. We demonstrate the method for a cod population sampled by trawl surveys. Particular attention is paid to correlation between size classes within each trawl haul due to clustering...... of individuals with similar size. The model estimates growth, mortality and reproduction, after which any aspect of size-structure, spatio-temporal population dynamics, as well as the sampling process can be probed. This is illustrated by two applications: 1) tracking the spatial movements of a single cohort...