WorldWideScience

Sample records for state space description

  1. Description of quantum states using in free space optic communication

    Science.gov (United States)

    Kučera, Petr

    2017-11-01

    In the article we concentrate our attention on the quantum description of states which are prepared by light sources. The main goal of the article is the determination of density matrix of background radiation source. It is shown that these matrix elements satisfy Geometric distribution in the number state representation.

  2. Deep-Inelastic Final States in a Space-Time Description of Shower Development and Hadronization

    OpenAIRE

    Ellis, John; Geiger, Klaus; Kowalski, Henryk

    1996-01-01

    We extend a quantum kinetic approach to the description of hadronic showers in space, time and momentum space to deep-inelastic $ep$ collisions, with particular reference to experiments at HERA. We follow the history of hard scattering events back to the initial hadronic state and forward to the formation of colour-singlet pre-hadronic clusters and their decays into hadrons. The time evolution of the space-like initial-state shower and the time-like secondary partons are treated similarly, an...

  3. Deep-inelastic final states in a space-time description of shower development and hadronization

    International Nuclear Information System (INIS)

    Ellis, J.

    1996-06-01

    We extend a quantum kinetic approach to the description of hadronic showers in space, time and momentum space to deep-inelastic ep collisions, with particular reference to experiments at HERA. We follow the history of hard scattering events back to the initial hadronic state and forward to the formation of colour-singlet pre-hadronic clusters and their decays into hadrons. The time evolution of the space-like initial-state shower and the time-like secondary partons are treated similarly, and cluster formation is treated using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. We calculate the time evolution of particle distributions in rapidity, transverse and longitudinal space. We also compare the transverse hadronic energy flow and the distribution of observed hadronic masses with experimental data from HERA, finding encouraging results, and discuss the background to large-rapidity-gap events. The techniques developed in this paper may be applied in the future to more complicated processes such as eA, pp, pA and AA collisions. (orig.)

  4. Deep-inelastic final states in a space-time description of shower development and hadronization

    International Nuclear Information System (INIS)

    Ellis, J.; Geiger, K.; Kowalski, H.

    1996-01-01

    We extend a quantum kinetic approach to the description of hadronic showers in space, time, and momentum space to deep-inelastic ep collisions, with particular reference to experiments at DESY HERA. We follow the history of hard scattering events back to the initial hadronic state and forward to the formation of color-singlet prehadronic clusters and their decays into hadrons. The time evolution of the spacelike initial-state shower and the timelike secondary partons are treated similarly, and cluster formation is treated using a spatial criterion motivated by confinement and a nonperturbative model for hadronization. We calculate the time evolution of particle distributions in rapidity, transverse, and longitudinal space. We also compare the transverse hadronic energy flow and the distribution of observed hadronic masses with experimental data from HERA, finding encouraging results, and discuss the background to large-rapidity-gap events. The techniques developed in this paper may be applied in the future to more complicated processes such as eA, pp, pA, and AA collisions. copyright 1996 The American Physical Society

  5. Sweeping the State Space

    DEFF Research Database (Denmark)

    Mailund, Thomas

    The thesis describes the sweep-line method, a newly developed reduction method for alleviating the state explosion problem inherent in explicit-state state space exploration. The basic idea underlying the sweep-line method is, when calculating the state space, to recognise and delete states...... that are not reachable from the currently unprocessed states. Intuitively we drag a sweep-line through the state space with the invariant that all states behind the sweep-line have been processed and are unreachable from the states in front of the sweep-line. When calculating the state space of a system we iteratively...

  6. A phenomenological calculus of Wiener description space.

    Science.gov (United States)

    Richardson, I W; Louie, A H

    2007-10-01

    The phenomenological calculus is a categorical example of Robert Rosen's modeling relation. This paper is an alligation of the phenomenological calculus and generalized harmonic analysis, another categorical example. Our epistemological exploration continues into the realm of Wiener description space, in which constitutive parameters are extended from vectors to vector-valued functions of a real variable. Inherent in the phenomenology are fundamental representations of time and nearness to equilibrium.

  7. Quantum State Description Complexity (Invited Talk)

    OpenAIRE

    Vazirani, Umesh V.

    2011-01-01

    Quantum states generally require exponential sized classical descriptions, but the long conjectured area law provides hope that a large class of natural quantum states can be described succinctly. Recent progress in formally proving the area law is described.

  8. Matrix product state description of Halperin states

    Science.gov (United States)

    Crépel, V.; Estienne, B.; Bernevig, B. A.; Lecheminant, P.; Regnault, N.

    2018-04-01

    Many fractional quantum Hall states can be expressed as a correlator of a given conformal field theory used to describe their edge physics. As a consequence, these states admit an economical representation as an exact matrix product state (MPS) that was extensively studied for the systems without any spin or any other internal degrees of freedom. In that case, the correlators are built from a single electronic operator, which is primary with respect to the underlying conformal field theory. We generalize this construction to the archetype of Abelian multicomponent fractional quantum Hall wave functions, the Halperin states. These can be written as conformal blocks involving multiple electronic operators and we explicitly derive their exact MPS representation. In particular, we deal with the caveat of the full wave-function symmetry and show that any additional SU(2) symmetry is preserved by the natural MPS truncation scheme provided by the conformal dimension. We use our method to characterize the topological order of the Halperin states by extracting the topological entanglement entropy. We also evaluate their bulk correlation lengths, which are compared to plasma analogy arguments.

  9. Combinatorial description of space and strong interactions

    International Nuclear Information System (INIS)

    Zenczykowski, P.

    1988-01-01

    A reinterpretation is given of a successful phenomenological approach to hadron self-energy effects known as the unitarized quark model. General arguments are given that the proper description of strong interactions may require abandoning the assignment of a primary role to continuous concepts such as position and momentum in favor of discrete ones such as spin or W-spin. The reinterpretation exploits an analogy between the W-spin diagrams occurring in the calculations of hadronic loop effects and the spin network idea of Penrose. A connection between the S-matrix approach to hadron masses and the purely algebraic approach characteristic of the quark model is indicated. Several hadron mass relations generated by a resulting SU(6)/sub w/-group-theoretic expression are presented and discussed. Results of an attempt to generalize the scheme to the description of hadron vertices are reported

  10. Field-theoretical space-uncertainty description

    International Nuclear Information System (INIS)

    Papp, E.; Micu, C.A.

    1980-01-01

    An approach has been given to define both the nonzero minimum value of the space-uncertainty evaluation and of the upper rest-mass bound of the involved particles. In this respect there are analysed the space-uncertainties wich emerge both from the regularised quantum field-theory and high-energy behaviour. In such conditions there are involved particles wich are effectively nonpoint ones. It can be then concluded that the dualism broglien between waves and nonpoint particles is actually involved, now in more general terms

  11. The Wigner phase-space description of collision processes

    International Nuclear Information System (INIS)

    Lee, H.W.

    1984-01-01

    The paper concerns the Wigner distribution function in collision theory. Wigner phase-space description of collision processes; some general consideration on Wigner trajectories; and examples of Wigner trajectories; are all discussed. (U.K.)

  12. Projective loop quantum gravity. I. State space

    Science.gov (United States)

    Lanéry, Suzanne; Thiemann, Thomas

    2016-12-01

    Instead of formulating the state space of a quantum field theory over one big Hilbert space, it has been proposed by Kijowski to describe quantum states as projective families of density matrices over a collection of smaller, simpler Hilbert spaces. Beside the physical motivations for this approach, it could help designing a quantum state space holding the states we need. In a latter work by Okolów, the description of a theory of Abelian connections within this framework was developed, an important insight being to use building blocks labeled by combinations of edges and surfaces. The present work generalizes this construction to an arbitrary gauge group G (in particular, G is neither assumed to be Abelian nor compact). This involves refining the definition of the label set, as well as deriving explicit formulas to relate the Hilbert spaces attached to different labels. If the gauge group happens to be compact, we also have at our disposal the well-established Ashtekar-Lewandowski Hilbert space, which is defined as an inductive limit using building blocks labeled by edges only. We then show that the quantum state space presented here can be thought as a natural extension of the space of density matrices over this Hilbert space. In addition, it is manifest from the classical counterparts of both formalisms that the projective approach allows for a more balanced treatment of the holonomy and flux variables, so it might pave the way for the development of more satisfactory coherent states.

  13. Microscopical description of isovector collective Osup(+) states in atomic nuclei

    International Nuclear Information System (INIS)

    Chekanov, N.A.

    1983-01-01

    A microscopical consistent description of isobar-analogue states and isovector monopole giant resonances is given in framework of the random-phase theory. The necessary one-particle basis, including the continuous spectrum, is determined by solution of the Hartree-Fock equations with the effective Skyrme-type interaction. An important feature of such a description is an automatical fulfilment of the consistency conditions relating the shell potential, nuclear density and the residual interaction. Effects due to Coulomb interaction in nuclei are investigated, such as the Coulomb shift energies, isospin admixtures to the ground state of the parent nucleus. Transition densities for the analogue states are obtained. Numerical calculations have been performed in the coordinate space for a number of neutron-rich nuclei

  14. State Space Modeling Using SAS

    Directory of Open Access Journals (Sweden)

    Rajesh Selukar

    2011-05-01

    Full Text Available This article provides a brief introduction to the state space modeling capabilities in SAS, a well-known statistical software system. SAS provides state space modeling in a few different settings. SAS/ETS, the econometric and time series analysis module of the SAS system, contains many procedures that use state space models to analyze univariate and multivariate time series data. In addition, SAS/IML, an interactive matrix language in the SAS system, provides Kalman filtering and smoothing routines for stationary and nonstationary state space models. SAS/IML also provides support for linear algebra and nonlinear function optimization, which makes it a convenient environment for general-purpose state space modeling.

  15. Hartree-Fock description of superdeformed states

    International Nuclear Information System (INIS)

    Dobaczewski, J.; Meyer, J.

    1991-10-01

    The discovery of superdeformation has been preceded by theoretical predictions made in Nilsson-Strutinsky calculations and a description of the phenomenon still constitutes an exciting challenge to the theory of nuclear collective motion. In particular, a determination of electromagnetic transition rates requires a knowledge of microscopic collective wave functions, which can be achieved by using the Hartree-Fock (HF) theory and the generator coordinate method (GCM). In this study we present results of our calculations concerning the properties and superdeformed states in the mercury region. Using the GCM, we diagonalize the microscopic two-body hamiltonian within the basis set of constrained HF+BCS wave functions. The GCM provides values for the energy of the ground and excited states including the shape isomer which take into account the effect of correlations in the collective degree of freedom. The GCM will also allow us to discuss the qualitative modifications of the shape isomeric stability as induced by changes in pairing correlations

  16. Visual space perception at different levels of depth description

    Czech Academy of Sciences Publication Activity Database

    Šikl, Radovan; Šimeček, Michal

    2015-01-01

    Roč. 77, č. 6 (2015), 2098–2107 ISSN 1943-3921 R&D Projects: GA ČR GA13-28709S Institutional support: RVO:68081740 Keywords : visual space perception * Depth scales * Level of description Subject RIV: AN - Psychology Impact factor: 1.782, year: 2015

  17. Gul'ko, descriptive, and Gruenhage compact spaces

    Czech Academy of Sciences Publication Activity Database

    Fabian, Marián; Montesinos, V.; Zizler, Václav

    2010-01-01

    Roč. 104, č. 2 (2010), s. 201-220 ISSN 1578-7303 R&D Projects: GA AV ČR IAA100190901; GA AV ČR(CZ) IAA100190610 Institutional research plan: CEZ:AV0Z10190503 Keywords : Gul'ko * descriptive * fragmentable compact spaces * network Subject RIV: BA - General Mathematics Impact factor: 0.400, year: 2010 http://link.springer.com/article/10.5052%2FRACSAM.2010.14

  18. Improved description of the fragmentation of nuclear collective states

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1984-01-01

    A mathematical method is deveioped for a more accurate description of the fragmentation of one-phonon states forming giant resonances. The method consists in that the one-phonon states already fragmented are used in the two-phonon terms of wave functions. Strength functions are obtained for the exci excitation of collective charge-exchange states ano giant resonances in spherical nuclei

  19. My Life with State Space Models

    DEFF Research Database (Denmark)

    Lundbye-Christensen, Søren

    2007-01-01

    . The conceptual idea behind the state space model is that the evolution over time in the object we are observing and the measurement process itself are modelled separately. My very first serious analysis of a data set was done using a state space model, and since then I seem to have been "haunted" by state space...

  20. A conformal field theory description of fractional quantum Hall states

    NARCIS (Netherlands)

    Ardonne, E.

    2002-01-01

    In this thesis, we give a description of fractional quantum Hall states in terms of conformal field theory (CFT). As was known for a long time, the Laughlin states could be written in terms of correlators of chiral vertex operators of a c=1 CFT. It was shown by G. Moore and N. Read that more general

  1. Another comment on 'relativistic description of quark-antiquark bound states'

    International Nuclear Information System (INIS)

    Lucha, W.; Rupprecht, H.; Schoeberl, F.F.

    1991-04-01

    We point out some ambiguities in the treatment of fermion-antifermion bound states by solving the reduced Salpeter equation in coordinate space. Our observations allow to cast some doubt on the validity of the conclusion of Gara et al. that moving from a nonrelativistic to a relativistic description makes things worse. (authors)

  2. Real space multiple scattering description of alloy phase stability

    International Nuclear Information System (INIS)

    Turchi, P.E.A.; Sluiter, M.

    1992-01-01

    This paper presents a brief overview of the advanced methodology which has been recently developed to study phase stability properties of substitutional alloys, including order-disorder phenomena and structural transformations. The approach is based on the real space version of the Generalized Perturbation Method first introduced by Ducastelle and Gautier, within the Korringa-Kohn-Rostoker multiple scattering formulation of the Coherent Potential Approximation. Temperature effects are taken into account with a generalized meanfield approach, namely the Cluster Variation Method. The viability and the predictive power of such a scheme will be illustrated by a few examples, among them: the ground state properties of alloys, in particular the ordering tendencies for a series of equiatomic bcc-based alloys, the computation of alloy phase diagrams with the case of fcc and bcc-based Ni-Al alloys, the calculation of antiphase boundary energies and interfacial energies, and the stability of artificial ordered superlattices

  3. State Space Methods for Timed Petri Nets

    DEFF Research Database (Denmark)

    Christensen, Søren; Jensen, Kurt; Mailund, Thomas

    2001-01-01

    it possible to condense the usually infinite state space of a timed Petri net into a finite condensed state space without loosing analysis power. The second method supports on-the-fly verification of certain safety properties of timed systems. We discuss the application of the two methods in a number......We present two recently developed state space methods for timed Petri nets. The two methods reconciles state space methods and time concepts based on the introduction of a global clock and associating time stamps to tokens. The first method is based on an equivalence relation on states which makes...

  4. Generating Contextual Descriptions of Virtual Reality (VR) Spaces

    Science.gov (United States)

    Olson, D. M.; Zaman, C. H.; Sutherland, A.

    2017-12-01

    Virtual reality holds great potential for science communication, education, and research. However, interfaces for manipulating data and environments in virtual worlds are limited and idiosyncratic. Furthermore, speech and vision are the primary modalities by which humans collect information about the world, but the linking of visual and natural language domains is a relatively new pursuit in computer vision. Machine learning techniques have been shown to be effective at image and speech classification, as well as at describing images with language (Karpathy 2016), but have not yet been used to describe potential actions. We propose a technique for creating a library of possible context-specific actions associated with 3D objects in immersive virtual worlds based on a novel dataset generated natively in virtual reality containing speech, image, gaze, and acceleration data. We will discuss the design and execution of a user study in virtual reality that enabled the collection and the development of this dataset. We will also discuss the development of a hybrid machine learning algorithm linking vision data with environmental affordances in natural language. Our findings demonstrate that it is possible to develop a model which can generate interpretable verbal descriptions of possible actions associated with recognized 3D objects within immersive VR environments. This suggests promising applications for more intuitive user interfaces through voice interaction within 3D environments. It also demonstrates the potential to apply vast bodies of embodied and semantic knowledge to enrich user interaction within VR environments. This technology would allow for applications such as expert knowledge annotation of 3D environments, complex verbal data querying and object manipulation in virtual spaces, and computer-generated, dynamic 3D object affordances and functionality during simulations.

  5. Coherent states in the fermionic Fock space

    International Nuclear Information System (INIS)

    Oeckl, Robert

    2015-01-01

    We construct the coherent states in the sense of Gilmore and Perelomov for the fermionic Fock space. Our treatment is from the outset adapted to the infinite-dimensional case. The fermionic Fock space becomes in this way a reproducing kernel Hilbert space of continuous holomorphic functions. (paper)

  6. State-Space Formulation for Circuit Analysis

    Science.gov (United States)

    Martinez-Marin, T.

    2010-01-01

    This paper presents a new state-space approach for temporal analysis of electrical circuits. The method systematically obtains the state-space formulation of nondegenerate linear networks without using concepts of topology. It employs nodal/mesh systematic analysis to reduce the number of undesired variables. This approach helps students to…

  7. Eye tracking to explore attendance in health-state descriptions.

    Directory of Open Access Journals (Sweden)

    Anna Selivanova

    Full Text Available A crucial assumption in health valuation methods is that respondents pay equal attention to all information components presented in the response task. So far, there is no solid evidence that respondents are fulfilling this condition. The aim of our study is to explore the attendance to various information cues presented in the discrete choice (DC response tasks.Eye tracking was used to study the eye movements and fixations on specific information areas. This was done for seven DC response tasks comprising health-state descriptions. A sample of 10 respondents participated in the study. Videos of their eye movements were recorded and are presented graphically. Frequencies were computed for length of fixation and number of fixations, so differences in attendance were demonstrated for particular attributes in the tasks.All respondents completed the survey. Respondents were fixating on the left-sided health-state descriptions slightly longer than on the right-sided. Fatigue was not observed, as the time spent did not decrease in the final response tasks. The time spent on the tasks depended on the difficulty of the task and the amount of information presented.Eye tracking proved to be a feasible method to study the process of paying attention and fixating on health-state descriptions in the DC response tasks. Eye tracking facilitates the investigation of whether respondents fully read the information in health descriptions or whether they ignore particular elements.

  8. Phase space descriptions for simplicial 4D geometries

    International Nuclear Information System (INIS)

    Dittrich, Bianca; Ryan, James P

    2011-01-01

    Starting from the canonical phase space for discretized (4D) BF theory, we implement a canonical version of the simplicity constraints and construct phase spaces for simplicial geometries. Our construction allows us to study the connection between different versions of Regge calculus and approaches using connection variables, such as loop quantum gravity. We find that on a fixed triangulation the (gauge invariant) phase space associated with loop quantum gravity is genuinely larger than the one for length and even area Regge calculus. Rather, it corresponds to the phase space of area-angle Regge calculus, as defined in [1] (prior to the imposition of gluing constraints, which ensure the metricity of the triangulation). Finally, we show that for a subclass of triangulations one can construct first-class Hamiltonian and diffeomorphism constraints leading to flat 4D spacetimes.

  9. Statistical Software for State Space Methods

    Directory of Open Access Journals (Sweden)

    Jacques J. F. Commandeur

    2011-05-01

    Full Text Available In this paper we review the state space approach to time series analysis and establish the notation that is adopted in this special volume of the Journal of Statistical Software. We first provide some background on the history of state space methods for the analysis of time series. This is followed by a concise overview of linear Gaussian state space analysis including the modelling framework and appropriate estimation methods. We discuss the important class of unobserved component models which incorporate a trend, a seasonal, a cycle, and fixed explanatory and intervention variables for the univariate and multivariate analysis of time series. We continue the discussion by presenting methods for the computation of different estimates for the unobserved state vector: filtering, prediction, and smoothing. Estimation approaches for the other parameters in the model are also considered. Next, we discuss how the estimation procedures can be used for constructing confidence intervals, detecting outlier observations and structural breaks, and testing model assumptions of residual independence, homoscedasticity, and normality. We then show how ARIMA and ARIMA components models fit in the state space framework to time series analysis. We also provide a basic introduction for non-Gaussian state space models. Finally, we present an overview of the software tools currently available for the analysis of time series with state space methods as they are discussed in the other contributions to this special volume.

  10. Nuclear reactor descriptions for space power systems analysis

    Science.gov (United States)

    Mccauley, E. W.; Brown, N. J.

    1972-01-01

    For the small, high performance reactors required for space electric applications, adequate neutronic analysis is of crucial importance, but in terms of computational time consumed, nuclear calculations probably yield the least amount of detail for mission analysis study. It has been found possible, after generation of only a few designs of a reactor family in elaborate thermomechanical and nuclear detail to use simple curve fitting techniques to assure desired neutronic performance while still performing the thermomechanical analysis in explicit detail. The resulting speed-up in computation time permits a broad detailed examination of constraints by the mission analyst.

  11. The unitary space of particle internal states

    International Nuclear Information System (INIS)

    Perjes, Z.

    1978-09-01

    A relativistic theory of particle internal properties has been developed. Suppressing space-time information, internal wave functions and -observables are constructed in a 3-complex-dimensional space. The quantum numbers of a spinning point particle in this unitary space correspond with those of a low-mass hadron. Unitary space physics is linked with space-time notions via the Penrose theory of twistors, where new flavors may be represented by many-twistor systems. It is shown here that a four-twistor particle fits into the unitary space picture as a system of two points with equal masses and oppositely pointing unitary spins. Quantum states fall into the ISU(3) irreducible representations discovered by Sparling and the author. Full details of the computation involving SU(3) recoupling techniques are given. (author)

  12. Distributed Graph-Based State Space Generation

    NARCIS (Netherlands)

    Blom, Stefan; Kant, Gijs; Rensink, Arend; De Lara, J.; Varro, D.

    LTSMIN provides a framework in which state space generation can be distributed easily over many cores on a single compute node, as well as over multiple compute nodes. The tool works on the basis of a vector representation of the states; the individual cores are assigned the task of computing all

  13. On some problems of descriptive set theory in topological spaces

    International Nuclear Information System (INIS)

    Choban, M M

    2005-01-01

    Problems concerning the structure of Borel sets, their classification, and invariance of certain properties of sets under maps of given types arose in the first half of the previous century in the works of A. Lebesgue, R. Baire, N. N. Luzin, P. S. Alexandroff, P. S. Urysohn, P. S. Novikov, L. V. Keldysh, and A. A. Lyapunov and gave rise to many investigations. In this paper some results related to questions of F. Hausdorff, Luzin, Alexandroff, Urysohn, M. Katetov, and A. H. Stone are obtained. In 1934 Hausdorff posed the problem of invariance of the property of being an absolute B-set (that is, a Borel set in some complete separable metric space) under open continuous maps. By a theorem of Keldysh, the answer to this question is negative in general. The present paper gives additional conditions under which the answer to Hausdorff's question is positive. Some general problems of the theory of operations on sets are also treated

  14. Finite Word-Length Effects in Digital State-Space Filters

    Directory of Open Access Journals (Sweden)

    B. Psenicka

    1999-12-01

    Full Text Available The state-space description of digital filters involves except the relationship between input and output signals an additional set of state variables. The state-space structures of digital filters have many positive properties compared with direct canonical structures. The main advantage of digital filter structures developed using state-space technique is a smaller sensitivity to quantization effects by fixed-point implementation. In our presentation, the emphasis is on the analysis of coefficient quantization and on existence of zero-input limit cycles in state-space digital filters. The comparison with direct form II structure is presented.

  15. Description of symmetry of magnetic structures by representations of space groups. [Tables, projecton operator methods

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1974-10-15

    A description of magnetic structures based on the use of representations of space groups is given. Representations of the space groups were established for each compound on the basis of experimental data by the method of projection operators. The compounds contained in the list are collected according to crystal systems, alphabetically within each system. The description of each compound consists of the four parts. The first part contain the chemical symbol of the compound, the second its space group. The next part contains the chemical symbol of the magnetic atom and its positions in Wychoff notation with the number of equivalent positions in the crystal unit cell. The main description of a compound magnetic structure is given in the fourth part. It contains: K vector defined in the reciprocal space, the representation according to which a magnetic structure is transformed and the axial vector function S which describes the magnetic structure.

  16. Parameter and State Estimator for State Space Models

    Directory of Open Access Journals (Sweden)

    Ruifeng Ding

    2014-01-01

    Full Text Available This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.

  17. Space groups for solid state scientists

    CERN Document Server

    Glazer, Michael; Glazer, Alexander N

    2014-01-01

    This Second Edition provides solid state scientists, who are not necessarily experts in crystallography, with an understandable and comprehensive guide to the new International Tables for Crystallography. The basic ideas of symmetry, lattices, point groups, and space groups are explained in a clear and detailed manner. Notation is introduced in a step-by-step way so that the reader is supplied with the tools necessary to derive and apply space group information. Of particular interest in this second edition are the discussions of space groups application to such timely topics as high-te

  18. Projective limits of state spaces IV. Fractal label sets

    Science.gov (United States)

    Lanéry, Suzanne; Thiemann, Thomas

    2018-01-01

    Instead of formulating the state space of a quantum field theory over one big Hilbert space, it has been proposed by Kijowski (1977) to represent quantum states as projective families of density matrices over a collection of smaller, simpler Hilbert spaces (see Lanéry (2016) [1] for a concise introduction to this formalism). One can thus bypass the need to select a vacuum state for the theory, and still be provided with an explicit and constructive description of the quantum state space, at least as long as the label set indexing the projective structure is countable. Because uncountable label sets are much less practical in this context, we develop in the present article a general procedure to trim an originally uncountable label set down to countable cardinality. In particular, we investigate how to perform this tightening of the label set in a way that preserves both the physical content of the algebra of observables and its symmetries. This work is notably motivated by applications to the holonomy-flux algebra underlying Loop Quantum Gravity. Building on earlier work by Okołów (2013), a projective state space was introduced for this algebra in Lanéry and Thiemann (2016). However, the non-trivial structure of the holonomy-flux algebra prevents the construction of satisfactory semi-classical states (Lanéry and Thiemann, 2017). Implementing the general procedure just mentioned in the case of a one-dimensional version of this algebra, we show how a discrete subalgebra can be extracted without destroying universality nor diffeomorphism invariance. On this subalgebra, quantum states can then be constructed which are more regular than was possible on the original algebra. In particular, this allows the design of semi-classical states whose semi-classicality is enforced step by step, starting from collective, macroscopic degrees of freedom and going down progressively toward smaller and smaller scales.

  19. Coherent and squeezed states in phase space

    International Nuclear Information System (INIS)

    Jannussis, A.; Bartzis, V.; Vlahos, E.

    1990-01-01

    In the present paper, the coherent and the squeezed states in phase space have been studied. From the wave functions of the coherent and the squeezed state, their corresponding Wigner distribution functions are calculated. Especially the calculation of the corresponding Wigner functions for the above states permits the determination of the mean values of position and momentum and thus the Heisenberg uncertainty relation. In fact, from the related results, it is concluded that the uncertainty relation of the coherent and associated squeezed states is the same

  20. Condensed State Spaces for Symmetrical Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1996-01-01

    equivalence classes of states and equivalence classes of state changes. It is then possible to construct a condensed state space where each node represents an equivalence class of states while each arc represents an equivalence class of state changes. Such a condensed state space is often much smaller than...... the full state space and it is also much faster to construct. Nevertheless, it is possible to use the condensed state space to verify the same kind of behavioural properties as the full state space. Hence, we do not lose analytic power. We define state spaces and condensed state spaces for a language......-nets (or Petri nets in general) - although such knowledge will, of course, be a help. The first four sections of the paper introduce the basic concepts of CP-nets. The next three sections deal with state spaces, condensed state spaces and computer tools for state space analysis. Finally, there is a short...

  1. 40 CFR 239.4 - Narrative description of state permit program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Narrative description of state permit program. 239.4 Section 239.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID... Narrative description of state permit program. The description of a state's program must include: (a) An...

  2. Practical Application of Neural Networks in State Space Control

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon

    the networks, although some modifications are needed for the method to apply to the multilayer perceptron network. In connection with the multilayer perceptron networks it is also pointed out how instantaneous, sample-by-sample linearized state space models can be extracted from a trained network, thus opening......In the present thesis we address some problems in discrete-time state space control of nonlinear dynamical systems and attempt to solve them using generic nonlinear models based on artificial neural networks. The main aim of the work is to examine how well such control algorithms perform when...... theoretic notions followed by a detailed description of the topology, neuron functions and learning rules of the two types of neural networks treated in the thesis, the multilayer perceptron and the neurofuzzy networks. In both cases, a Least Squares second-order gradient method is used to train...

  3. Multimedia Mapping using Continuous State Space Models

    DEFF Research Database (Denmark)

    Lehn-Schiøler, Tue

    2004-01-01

    In this paper a system that transforms speech waveforms to animated faces are proposed. The system relies on continuous state space models to perform the mapping, this makes it possible to ensure video with no sudden jumps and allows continuous control of the parameters in 'face space'. Simulations...... are performed on recordings of 3-5 sec. video sequences with sentences from the Timit database. The model is able to construct an image sequence from an unknown noisy speech sequence fairly well even though the number of training examples are limited....

  4. Paths and partitions: Combinatorial descriptions of the parafermionic states

    Science.gov (United States)

    Mathieu, Pierre

    2009-09-01

    The Zk parafermionic conformal field theories, despite the relative complexity of their modes algebra, offer the simplest context for the study of the bases of states and their different combinatorial representations. Three bases are known. The classic one is given by strings of the fundamental parafermionic operators whose sequences of modes are in correspondence with restricted partitions with parts at distance k -1 differing at least by 2. Another basis is expressed in terms of the ordered modes of the k -1 different parafermionic fields, which are in correspondence with the so-called multiple partitions. Both types of partitions have a natural (Bressoud) path representation. Finally, a third basis, formulated in terms of different paths, is inherited from the solution of the restricted solid-on-solid model of Andrews-Baxter-Forrester. The aim of this work is to review, in a unified and pedagogical exposition, these four different combinatorial representations of the states of the Zk parafermionic models. The first part of this article presents the different paths and partitions and their bijective relations; it is purely combinatorial, self-contained, and elementary; it can be read independently of the conformal-field-theory applications. The second part links this combinatorial analysis with the bases of states of the Zk parafermionic theories. With the prototypical example of the parafermionic models worked out in detail, this analysis contributes to fix some foundations for the combinatorial study of more complicated theories. Indeed, as we briefly indicate in ending, generalized versions of both the Bressoud and the Andrews-Baxter-Forrester paths emerge naturally in the description of the minimal models.

  5. State-Space Modelling in Marine Science

    DEFF Research Database (Denmark)

    Albertsen, Christoffer Moesgaard

    State-space models provide a natural framework for analysing time series that cannot be observed without error. This is the case for fisheries stock assessments and movement data from marine animals. In fisheries stock assessments, the aim is to estimate the stock size; however, the only data...... available is the number of fish removed from the population and samples on a small fraction of the population. In marine animal movement, accurate position systems such as GPS cannot be used. Instead, inaccurate alternative must be used yielding observations with large errors. Both assessment and individual...... animal movement models are important for management and conservation of marine animals. Consequently, models should be developed to be operational in a management context while adequately evaluating uncertainties in the models. This thesis develops state-space models using the Laplace approximation...

  6. Unified description of bound, resonant and scattering states

    International Nuclear Information System (INIS)

    Konya, B.; Levai, G.; Papp, Z.

    2000-01-01

    Recently we have introduced a general method for calculating the discrete Hilbert-space basis representation of the Green's operators of those Hamiltonians which have infinite symmetric tridiagonal matrix forms. The elements of this matrix are used in the calculation of the Green's matrix in terms of a three-term recurrence relation and continued fractions. We specified our general approach to the case of the Coulomb problem and the Coulomb-Sturmian basis associated with it. As a further step, we can combine this new way of calculating the Coulomb-Green's matrix with a technique of solving integral equations in discrete Hilbert-space-basis representations. This provides us with a quantum mechanical approximation method which is rather general in the sense that it is equally applicable to solving bound-, resonant- and scattering-state problems with practically any potential of physical relevance. The method is especially suited to problems where Coulomb-like asymptotics have to be treated, but the formalism also contains the case of the free Green's operator as a special case. (author)

  7. On the Projective Description of Weighted (LF-Spaces of Continuous Functions

    Directory of Open Access Journals (Sweden)

    Catherine V. Komarchuk

    2014-01-01

    Full Text Available We solve the problem of the topological or algebraic description of countable inductive limits of weighted Fréchet spaces of continuous functions on a cone. This problem is investigated for two families of weights defined by positively homogeneous functions. Weights of this form play the important role in Fourier analysis.

  8. Complete description of photon trajectories in the Kerr-Newman space-time

    Energy Technology Data Exchange (ETDEWEB)

    Calvani, M [Padua Univ. (Italy). Ist. di Astronomia; Turolla, R [International School for Advanced Studies, Trieste (Italy)

    1981-08-01

    The complete description of null trajectories in the Kerr-Newman space-time is given in terms of the parameters of the source and of the constants of motion. The conditions for orbital and vortical motion are studied in detail and the locus of turning points is given for any choice of the parameters.

  9. Volumes of conditioned bipartite state spaces

    International Nuclear Information System (INIS)

    Milz, Simon; Strunz, Walter T

    2015-01-01

    We analyze the metric properties of conditioned quantum state spaces M η (n×m) . These spaces are the convex sets of nm×nm density matrices that, when partially traced over m degrees of freedom, respectively yield the given n × n density matrix η. For the case n = 2, the volume of M η (2×m) equipped with the Hilbert–Schmidt measure can be conjectured to be a simple polynomial of the radius of η in the Bloch-ball. Remarkably, for m=2,3 we find numerically that the probability p sep (2×m) (η) to find a separable state in M η (2×m) is independent of η (except for η pure). For m>3, the same holds for p PosPart (2×m) (η), the probability to find a state with a positive partial transpose in M η (2×m) . These results are proven analytically for the case of the family of 4 × 4 X-states, and thoroughly numerically investigated for the general case. The important implications of these findings for the clarification of open problems in quantum theory are pointed out and discussed. (paper)

  10. Modeling volatility using state space models.

    Science.gov (United States)

    Timmer, J; Weigend, A S

    1997-08-01

    In time series problems, noise can be divided into two categories: dynamic noise which drives the process, and observational noise which is added in the measurement process, but does not influence future values of the system. In this framework, we show that empirical volatilities (the squared relative returns of prices) exhibit a significant amount of observational noise. To model and predict their time evolution adequately, we estimate state space models that explicitly include observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging from three weeks (for foreign exchange) to three to five months (for stock indices). In most cases, a two-dimensional hidden state is required to yield residuals that are consistent with white noise. We compare these results with ordinary autoregressive models (without a hidden state) and find that autoregressive models underestimate the relaxation times by about two orders of magnitude since they do not distinguish between observational and dynamic noise. This new interpretation of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic volatility models and to GARCH models, and is useful for several problems in finance, including risk management and the pricing of derivative securities. Data sets used: Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years). Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years).

  11. Passage from a pure state description to the microcanonical ...

    Indian Academy of Sciences (India)

    ensemble distribution (microcanonical distribution) has no memory of the initial state. In .... state is not erased as the subspace is still state-dependent and no statistical mechanics ... using in the present context, even for pure states, the entropy.

  12. Unstable quantum states and rigged Hilbert spaces

    International Nuclear Information System (INIS)

    Gorini, V.; Parravicini, G.

    1978-10-01

    Rigged Hilbert space techniques are applied to the quantum mechanical treatment of unstable states in nonrelativistic scattering theory. A method is discussed which is based on representations of decay amplitudes in terms of expansions over complete sets of generalized eigenvectors of the interacting Hamiltonian, corresponding to complex eigenvalues. These expansions contain both a discrete and a continuum contribution. The former corresponds to eigenvalues located at the second sheet poles of the S matrix, and yields the exponential terms in the survival amplitude. The latter arises from generalized eigenvectors associated to complex eigenvalues on background contours in the complex plane, and gives the corrections to the exponential law. 27 references

  13. Description of multiple processes on the basis of triangulation in the velocity space

    International Nuclear Information System (INIS)

    Baldin, A.M.; Baldin, A.A.

    1986-01-01

    A method of the construction of polyhedrons in the relative four-velocity space is suggested which gives a complete description of multiple processes. A method of the consideration of a general case, when the total number of the relative velocity variables exceeds the number of the degrees of freedom, is also given. The account of the particular features of the polyhedrons due to the clusterization in the velocity space, as well as the account of the existence of intermediate asymptotics and the correlation depletion principle makes it possible to propose an algorithm for processing much larger bulk of experimental information on multiple processes as compared to the inclusive approach

  14. Multivariable Wind Modeling in State Space

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Pedersen, B. J.

    2011-01-01

    Turbulence of the incoming wind field is of paramount importance to the dynamic response of wind turbines. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper an empirical...... for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modeling method....... the succeeding state space and ARMA modeling of the turbulence rely on the positive definiteness of the cross-spectral density matrix, the problem with the non-positive definiteness of such matrices is at first addressed and suitable treatments regarding it are proposed. From the adjusted positive definite cross...

  15. Decomposition of gene expression state space trajectories.

    Directory of Open Access Journals (Sweden)

    Jessica C Mar

    2009-12-01

    Full Text Available Representing and analyzing complex networks remains a roadblock to creating dynamic network models of biological processes and pathways. The study of cell fate transitions can reveal much about the transcriptional regulatory programs that underlie these phenotypic changes and give rise to the coordinated patterns in expression changes that we observe. The application of gene expression state space trajectories to capture cell fate transitions at the genome-wide level is one approach currently used in the literature. In this paper, we analyze the gene expression dataset of Huang et al. (2005 which follows the differentiation of promyelocytes into neutrophil-like cells in the presence of inducers dimethyl sulfoxide and all-trans retinoic acid. Huang et al. (2005 build on the work of Kauffman (2004 who raised the attractor hypothesis, stating that cells exist in an expression landscape and their expression trajectories converge towards attractive sites in this landscape. We propose an alternative interpretation that explains this convergent behavior by recognizing that there are two types of processes participating in these cell fate transitions-core processes that include the specific differentiation pathways of promyelocytes to neutrophils, and transient processes that capture those pathways and responses specific to the inducer. Using functional enrichment analyses, specific biological examples and an analysis of the trajectories and their core and transient components we provide a validation of our hypothesis using the Huang et al. (2005 dataset.

  16. A Description Of Space Relations In An NLP Model: The ABBYY Compreno Approach

    Directory of Open Access Journals (Sweden)

    Aleksey Leontyev

    2015-12-01

    Full Text Available The current paper is devoted to a formal analysis of the space category and, especially, to questions bound with the presentation of space relations in a formal NLP model. The aim is to demonstrate how linguistic and cognitive problems relating to spatial categorization, definition of spatial entities, and the expression of different locative senses in natural languages can be solved in an artificial intelligence system. We offer a description of the locative groups in the ABBYY Compreno formalism – an integral NLP framework applied for machine translation, semantic search, fact extraction, and other tasks based on the semantic analysis of texts. The model is based on a universal semantic hierarchy of the thesaurus type and includes a description of all possible semantic and syntactic links every word can attach. In this work we define the set of semantic locative relations between words, suggest different tools for their syntactic presentation, give formal restrictions for the word classes that can denote spaces, and show different strategies of dealing with locative prepositions, especially as far as the problem of their machine translation is concerned.

  17. Microscopic description and excitation of unitary analog states

    Energy Technology Data Exchange (ETDEWEB)

    Kisslinger, L S [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA); Van Giai, N [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1977-12-05

    A microscopic investigation in a self-consistent particle-hole model reveals approximate unitary analog states in spite of large symmetry breaking. The K-nucleus elastic scattering and (K/sup -/, ..pi../sup -/) excitation of these states are studied, showing strong surface effects.

  18. Hiding State in CλaSH Hardware Descriptions

    NARCIS (Netherlands)

    Gerards, Marco Egbertus Theodorus; Baaij, C.P.R.; Kuper, Jan; Kooijman, Matthijs

    Synchronous hardware can be modelled as a mapping from input and state to output and a new state, such mappings are referred to as transition functions. It is natural to use a functional language to implement transition functions. The CaSH compiler is capable of translating transition functions to

  19. Phase-space description of plasma waves. Linear and nonlinear theory

    International Nuclear Information System (INIS)

    Biro, T.

    1992-11-01

    We develop an (r,k) phase space description of waves in plasmas by introducing Gaussian window functions to separate short scale oscillations from long scale modulations of the wave fields and variations in the plasma parameters. To obtain a wave equation that unambiguously separates conservative dynamics from dissipation also in an inhomogeneous and time varying background plasma, we first discuss the proper form of the current response function. On the analogy of the particle distribution function f(v,r,t), we introduce a wave density N(k,r,t) on phase space. This function is proven to satisfy a simple continuity equation. Dissipation is also included, and this allows us to describe the damping or growth of wave density' along rays. Problems involving geometric optics of continuous media often appear simpler when viewed in phase space, since the flow of N in phase space is incompressible. Within the phase space representation, we obtain a very general formula for the second order nonlinear current in terms of the vector potential. This formula is a convenient starting point for studies of coherent as well as turbulent nonlinear processes. We derive kinetic equations for weakly inhomogeneous and turbulent plasma, including the effects of inhomogeneous turbulence, wave convection and refraction. (author)

  20. Description of intruded states in a weak-coupling basis

    International Nuclear Information System (INIS)

    Arenas Peris, G.E.

    1989-01-01

    The systematics of intruder states is described in terms of a particle-hole weak-coupling basis, the first-order correction being then reduced to the monopole component of the interaction. The necessary matrix elements can be obtained from experimental data by using a model-consistent method. Calculations are performed for intruder states in the lead region as well as for the Zr isotopes. The agreement with the experimental data is striking in both cases. (Author) [es

  1. Advanced Solid State Lighting for AES Deep Space Hab

    Data.gov (United States)

    National Aeronautics and Space Administration — The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in...

  2. Modal description of longitudinal space-charge fields in pulse-driven free-electron devices

    Directory of Open Access Journals (Sweden)

    Yu. Lurie

    2010-05-01

    Full Text Available In pulsed-beam free-electron devices, longitudinal space-charge fields result in collective effects leading to an expansion of short electron bunches along their trajectory. This effect restricts an application of intense ultrashort electron pulses in free-electron radiation sources. A careful theoretical treatment is required in order to achieve an accurate description of the self-fields and the resulted electron beam dynamics. In this paper, longitudinal space-charge fields are considered in the framework of a three-dimensional, space-frequency approach. The model is based on the expansion of the total electromagnetic field (including self-fields in terms of transverse eigenmodes of the (cold cavity, in which the field is excited and propagates. The electromagnetic field, originally obtained in the model as a solution of the wave equation, is shown to satisfy also Gauss’s law. We applied the theory to derive an analytical expression for the longitudinal electric field of a pointlike charge, moving along a waveguide at a constant velocity. This enables consideration and study of the role played by different terms of the resulted expressions, such as components arising from forward and backward waves, propagating waves, and under cutoff frequencies, and so on. Possible simplifications in evaluation of longitudinal space-charge fields are discussed.

  3. A Database Approach to Distributed State Space Generation

    NARCIS (Netherlands)

    Blom, Stefan; Lisser, Bert; van de Pol, Jan Cornelis; Weber, M.

    2007-01-01

    We study distributed state space generation on a cluster of workstations. It is explained why state space partitioning by a global hash function is problematic when states contain variables from unbounded domains, such as lists or other recursive datatypes. Our solution is to introduce a database

  4. A Compositional Sweep-Line State Space Exploration Method

    DEFF Research Database (Denmark)

    Kristensen, Lars Michael; Mailund, Thomas

    2002-01-01

    State space exploration is a main approach to verification of finite-state systems. The sweep-line method exploits a certain kind of progress present in many systems to reduce peak memory usage during state space exploration. We present a new sweep-line algorithm for a compositional setting where...

  5. A Database Approach to Distributed State Space Generation

    NARCIS (Netherlands)

    Blom, Stefan; Lisser, Bert; van de Pol, Jan Cornelis; Weber, M.; Cerna, I.; Haverkort, Boudewijn R.H.M.

    2008-01-01

    We study distributed state space generation on a cluster of workstations. It is explained why state space partitioning by a global hash function is problematic when states contain variables from unbounded domains, such as lists or other recursive datatypes. Our solution is to introduce a database

  6. Homeless Youth in the United States: Description and Developmental Issues.

    Science.gov (United States)

    Smollar, Jacqueline

    1999-01-01

    Reviews the history and causes of homeless children in the United States from early 19th century to the present. Explores four characteristics necessary for positive developmental pathways that are compromised for children who live on the street: sense of industry and competency, feeling connected to others and society, sense of control of one's…

  7. Tight-Binding Description of Impurity States in Semiconductors

    Science.gov (United States)

    Dominguez-Adame, F.

    2012-01-01

    Introductory textbooks in solid state physics usually present the hydrogenic impurity model to calculate the energy of carriers bound to donors or acceptors in semiconductors. This model treats the pure semiconductor as a homogeneous medium and the impurity is represented as a fixed point charge. This approach is only valid for shallow impurities…

  8. Operator symbols in the description of observable-state systems

    International Nuclear Information System (INIS)

    Lassner, G.A.

    1978-01-01

    For the observable-state system of finite degree of freedom N topological properties of the kernels and symbols belonging to the considered operators are investigated. For the operators of the observable algebra of rho + (delta) kernels and symbols are distributions and for density matrices p they are smooth functions

  9. State-Space Inference and Learning with Gaussian Processes

    OpenAIRE

    Turner, R; Deisenroth, MP; Rasmussen, CE

    2010-01-01

    18.10.13 KB. Ok to add author version to spiral, authors hold copyright. State-space inference and learning with Gaussian processes (GPs) is an unsolved problem. We propose a new, general methodology for inference and learning in nonlinear state-space models that are described probabilistically by non-parametric GP models. We apply the expectation maximization algorithm to iterate between inference in the latent state-space and learning the parameters of the underlying GP dynamics model. C...

  10. ASAP: An Extensible Platform for State Space Analysis

    DEFF Research Database (Denmark)

    Westergaard, Michael; Evangelista, Sami; Kristensen, Lars Michael

    2009-01-01

    The ASCoVeCo State space Analysis Platform (ASAP) is a tool for performing explicit state space analysis of coloured Petri nets (CPNs) and other formalisms. ASAP supports a wide range of state space reduction techniques and is intended to be easy to extend and to use, making it a suitable tool fo...... for students, researchers, and industrial users that would like to analyze protocols and/or experiment with different algorithms. This paper presents ASAP from these two perspectives....

  11. Description of superdeformed nuclear states in the interacting boson model

    International Nuclear Information System (INIS)

    Liu, Y.; Zhao, E.; Liu, Y.; Song, J.; Liu, Y.; Sun, H.; Zhao, E.; Liu, Y.; Sun, H.

    1997-01-01

    We show in this paper that the superdeformed nuclear states can be described with a four parameter formula in the spirit of the perturbated SU(3) limit of the sdg IBM. The E2 transition γ-ray energies, the dynamical moments of inertia of the lowest superdeformed (SD) bands in even-even Hg, Pb, Gd, and Dy isotopes, and the energy differences ΔE γ -ΔE γ ref of the SD band 1 of 194 Hg are calculated. The calculated results agree with experimental data well. This indicates that the SD states are governed by a rotational interaction plus a perturbation with SO sdg (5) symmetry. The perturbation causing the ΔI=4 bifurcation to emerge in the ΔI=2 superdeformed rotational band may then possess SO sdg (5) symmetry. copyright 1997 The American Physical Society

  12. Variational description of continuum states in terms of integral relations

    International Nuclear Information System (INIS)

    Kievsky, A.; Viviani, M.; Barletta, Paolo; Romero-Redondo, C.; Garrido, E.

    2010-01-01

    Two integral relations derived from the Kohn variational principle (KVP) are used for describing scattering states. In usual applications the KVP requires the explicit form of the asymptotic behavior of the scattering wave function. This is not the case when the integral relations are applied since, due to their short-range nature, the only condition for the scattering wave function Ψ is that it be the solution of (H-E)Ψ=0 in the internal region. Several examples are analyzed for the computation of phase shifts from bound-state-type wave functions or, in the case of the scattering of charged particles, it is possible to obtain phase shifts using free asymptotic conditions. As a final example we discuss the use of the integral relations in the case of the hyperspherical adiabatic method.

  13. Space strategy and governance of ESA small member states

    Science.gov (United States)

    Sagath, Daniel; Papadimitriou, Angeliki; Adriaensen, Maarten; Giannopapa, Christina

    2018-01-01

    The European Space Agency (ESA) has twenty-two Member States with a variety of governance structures and strategic priorities regarding their space activities. The objective of this paper is to provide an up-to date overview and a holistic assessment of the national space governance structures and strategic priorities of the eleven smaller Member States (based on annual ESA contributions). A link is made between the governance structure and the main strategic objectives. The specific needs and interests of small and new Member States in the frame of European Space Integration are addressed. The first part of the paper focuses on the national space governance structures in the eleven smaller ESA Member States. The governance models of these Member States are identified including the responsible ministries and the entities entrusted with the implementation of space strategy/policy and programmes of the country. The second part of this paper focuses on the content and analysis of the national space strategies and indicates the main priorities and trends in the eleven smaller ESA Member States. The priorities are categorised with regards to technology domains, the role of space in the areas of sustainability and the motivators for space investments. In a third and final part, attention is given to the specific needs and interests of the smaller Member States in the frame of European space integration. ESA instruments are tailored to facilitate the needs and interests of the eleven smaller and/or new Member States.

  14. A Stochastic Description of Transition Between Granular Flow States

    International Nuclear Information System (INIS)

    Huang Decai; Sun Gang; Lu Kunquan

    2007-01-01

    Two-dimensional granular flow in a channel with small exit is studied by molecular dynamics simulations. We firstly define a key area near the exit, which is considered to be the choke area of the system. Then we observe the time variation of the local packing fraction and flow rate in this area for several fixed inflow rate, and find that these quantities change abruptly when the transition from dilute flow state to dense flow state happens. A relationship between the local flow rate and the local packing fraction in the key area is also given. The relationship is a continuous function under the fixed particle number condition, and has the characteristic that the flow rate has a maximum at a moderate packing fraction and the packing fraction is terminated at a high value with negative slope. By use of the relationship, the properties of the flow states under the fixed inflow rate condition are discussed in detail, and the discontinuities and the complex time variation behavior observed in the preexisting works are naturally explained by a stochastic process.

  15. A Sweep-Line Method for State Space Exploration

    DEFF Research Database (Denmark)

    Christensen, Søren; Kristensen, Lars Michael; Mailund, Thomas

    2001-01-01

    generation, since these states can never be reached again. This in turn reduces the memory used for state space storage during the task of verification. Examples of progress measures are sequence numbers in communication protocols and time in certain models with time. We illustrate the application...... of the method on a number of Coloured Petri Net models, and give a first evaluation of its practicality by means of an implementation based on the Design/CPN state space tool. Our experiments show significant reductions in both space and time used during state space exploration. The method is not specific...... to Coloured Petri Nets but applicable to a wide range of modelling languages....

  16. Technique for description of nonrotational excited states in a semiphenomenological nuclear theory

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1985-01-01

    A non-standard technique for microscopic description of excited nonrotational states is considered; it is suitable for inseparable force application. Besides, an additional binding operator, mixing quasi-particle excitations and E1-resonance states, is considered. Instead of the standard technique of state ''collectivization'' of the random phase approximation type it is used the so-called ''method of bound amplitudes''

  17. How to upload a physical quantum state into correlation space

    International Nuclear Information System (INIS)

    Morimae, Tomoyuki

    2011-01-01

    In the framework of the computational tensor network [Phys. Rev. Lett. 98, 220503 (2007)], the quantum computation is performed in a virtual linear space called the correlation space. It was recently shown [Phys. Rev. Lett. 103, 050503 (2009)] that a state in a correlation space can be downloaded to the real physical space. In this paper, conversely, we study how to upload a state from a real physical space to the correlation space. After showing the impossibility of cloning a state between a real physical space and the correlation space, we propose a simple teleportation-like method of uploading. This method also enables the Gottesman-Chuang gate teleportation trick and entanglement swapping in the virtual-real hybrid setting. Furthermore, compared with the inverse of the downloading method by Cai et al. [Phys. Rev. Lett. 103, 050503 (2009)], which also works to upload, the proposed uploading method has several advantages.

  18. Qualitative Description of Electric Power System Future States

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, Trevor D.; Corbin, Charles D.

    2018-03-06

    The simulation and evaluation of transactive systems depends to a large extent on the context in which those efforts are performed. Assumptions regarding the composition of the electric power system, the regulatory and policy environment, the distribution of renewable and other distributed energy resources (DERs), technological advances, and consumer engagement all contribute to, and affect, the evaluation of any given transactive system, regardless of its design. It is our position that the assumptions made about the state of the future power grid will determine, to some extent, the systems ultimately deployed, and that the transactive system itself may play an important role in the evolution of the power system.

  19. Theoretical description of high-lying two-electrons states

    International Nuclear Information System (INIS)

    Greene, C.H.; Cavagnero, M.; Sadeghpour, H.R.

    1993-01-01

    Within the past two years, experiments on high-lying doubly-excited states in He and H- have shown spectra at energies near excited hydrogenic thresholds having principal quantum numbers in the range N=5--9. While they display some nontrivial complexities, the spectra are tremendously simpler than might be anticipated on the basis of independent electron models, in that only a small fraction of the total number of anticipated resonances are observed experimentally. Moreover, for principal quantum number N that are not too high, specifically N - , the resonance positions are described accurately by adiabatic calculations using hyperspherical coordinates and can be parametrized by a remarkably simple two-electron Rydberg formula. The observed propensity for excitation of only a small subset of the possible resonance states has been codified by several groups into approximate selection rules based on alternative (but apparently equivalent) classification schemes. Comparatively few attempts have been made at quantitative tests of the validity of these rules. The present review describes recent efforts to quantify their accuracy and limitations using R-matrix and quantum defect techniques, and Smith's delay-time matrix. Prospensity rules for exciting different degrees of freedom are found to differ greatly in their degree of validity

  20. United State space programs - Present and planned

    Science.gov (United States)

    Frosch, R. A.

    1978-01-01

    The U.S. space program is considered with reference to the benefits derived by the public. Missions are divided into three categories: the use of near-earth space for remote sensing, communications, and other purposes directly beneficial to human welfare; the scientific exploration of the solar system and observation of the universe as part of the continuing effort to understand the place of earth and man in the cosmos; and the investigation of the sun-earth relationships which are basic to the terrestrial biosphere. Individual projects are described, and it is suggested that the future of space technology in 1978 is comparable to the future of aviation in 1924.

  1. Theoretical description of excited state dynamics in nanostructures

    Science.gov (United States)

    Rubio, Angel

    2009-03-01

    There has been much progress in the synthesis and characterization of nanostructures however, there remain immense challenges in understanding their properties and interactions with external probes in order to realize their tremendous potential for applications (molecular electronics, nanoscale opto-electronic devices, light harvesting and emitting nanostructures). We will review the recent implementations of TDDFT to study the optical absorption of biological chromophores, one-dimensional polymers and layered materials. In particular we will show the effect of electron-hole attraction in those systems. Applications to the optical properties of solvated nanostructures as well as excited state dynamics in some organic molecules will be used as text cases to illustrate the performance of the approach. Work done in collaboration with A. Castro, M. Marques, X. Andrade, J.L Alonso, Pablo Echenique, L. Wirtz, A. Marini, M. Gruning, C. Rozzi, D. Varsano and E.K.U. Gross.

  2. Active Affordance Learning in Continuous State and Action Spaces

    NARCIS (Netherlands)

    Wang, C.; Hindriks, K.V.; Babuska, R.

    2014-01-01

    Learning object affordances and manipulation skills is essential for developing cognitive service robots. We propose an active affordance learning approach in continuous state and action spaces without manual discretization of states or exploratory motor primitives. During exploration in the action

  3. Space transportation activities in the United States

    Science.gov (United States)

    Gabris, Edward A.

    1994-01-01

    The status of the existing space transportation systems in the U.S. and options for increased capability is being examined in the context of mission requirements, options for new vehicles, cost to operate the existing vehicles, cost to develop new vehicles, and the capabilities and plans of other suppliers. This assessment is addressing the need to build and resupply the space station, to maintain necessary military assets in a rapidly changing world, and to continue a competitive commercial space transportation industry. The Department of Defense (DOD) and NASA each conducted an 'access to space' study using a common mission model but with the emphasis on their unique requirements. Both studies considered three options: maintain and improve the existing capability, build a new launch vehicle using contemporary technology, and build a new launch vehicle using advanced technology. While no decisions have been made on a course of action, it will be influenced by the availability of funds in the U.S. budget, the changing need for military space assets, the increasing competition among space launch suppliers, and the emerging opportunity for an advanced technology, low cost system and international partnerships to develop it.

  4. Microscopic description of average level spacing in even-even nuclei

    International Nuclear Information System (INIS)

    Huong, Le Thi Quynh; Hung, Nguyen Quang; Phuc, Le Tan

    2017-01-01

    A microscopic theoretical approach to the average level spacing at the neutron binding energy in even-even nuclei is proposed. The approach is derived based on the Bardeen-Cooper-Schrieffer (BCS) theory at finite temperature and projection M of the total angular momentum J , which is often used to describe the superfluid properties of hot rotating nuclei. The exact relation of the J -dependent total level density to the M -dependent state densities, based on which the average level spacing is calculated, was employed. The numerical calculations carried out for several even-even nuclei have shown that in order to reproduce the experimental average level spacing, the M -dependent pairing gaps as well as the exact relation of the J -dependent total level density formula should be simultaneously used. (paper)

  5. Priorities in national space strategies and governance of the member states of the European Space Agency

    Science.gov (United States)

    Adriaensen, Maarten; Giannopapa, Christina; Sagath, Daniel; Papastefanou, Anastasia

    2015-12-01

    The European Space Agency (ESA) has twenty Member States with a variety of strategic priorities and governance structures regarding their space activities. A number of countries engage in space activities exclusively though ESA, while others have also their own national space programme. Some consider ESA as their prime space agency and others have additionally their own national agency with respective programmes. The main objective of this paper is to provide an up-to date overview and a holistic assessment of strategic priorities and the national space governance structures in 20 ESA Member States. This analysis and assessment has been conducted by analysing the Member States public documents, information provided at ESA workshop on this topic and though unstructured interviews. The paper is structured to include two main elements: priorities and trends in national space strategies and space governance in ESA Member States. The first part of this paper focuses on the content and analysis of the national space strategies and indicates the main priorities and trends in Member States. The priorities are categorised with regards to technology domains, the role of space in the areas of sustainability and the motivators that boost engagement in space. These vary from one Member State to another and include with different levels of engagement in technology domains amongst others: science and exploration, navigation, Earth observation, human space flight, launchers, telecommunications, and integrated applications. Member States allocate a different role of space as enabling tool adding to the advancement of sustainability areas including: security, resources, environment and climate change, transport and communication, energy, and knowledge and education. The motivators motivating reasoning which enhances or hinders space engagement also differs. The motivators identified are industrial competitiveness, job creation, technology development and transfer, social benefits

  6. System resiliency quantification using non-state-space and state-space analytic models

    International Nuclear Information System (INIS)

    Ghosh, Rahul; Kim, DongSeong; Trivedi, Kishor S.

    2013-01-01

    Resiliency is becoming an important service attribute for large scale distributed systems and networks. Key problems in resiliency quantification are lack of consensus on the definition of resiliency and systematic approach to quantify system resiliency. In general, resiliency is defined as the ability of (system/person/organization) to recover/defy/resist from any shock, insult, or disturbance [1]. Many researchers interpret resiliency as a synonym for fault-tolerance and reliability/availability. However, effect of failure/repair on systems is already covered by reliability/availability measures and that of on individual jobs is well covered under the umbrella of performability [2] and task completion time analysis [3]. We use Laprie [4] and Simoncini [5]'s definition in which resiliency is the persistence of service delivery that can justifiably be trusted, when facing changes. The changes we are referring to here are beyond the envelope of system configurations already considered during system design, that is, beyond fault tolerance. In this paper, we outline a general approach for system resiliency quantification. Using examples of non-state-space and state-space stochastic models, we analytically–numerically quantify the resiliency of system performance, reliability, availability and performability measures w.r.t. structural and parametric changes

  7. Complexity in Simplicity: Flexible Agent-based State Space Exploration

    DEFF Research Database (Denmark)

    Rasmussen, Jacob Illum; Larsen, Kim Guldstrand

    2007-01-01

    In this paper, we describe a new flexible framework for state space exploration based on cooperating agents. The idea is to let various agents with different search patterns explore the state space individually and communicate information about fruitful subpaths of the search tree to each other...

  8. Adaptive importance sampling of random walks on continuous state spaces

    International Nuclear Information System (INIS)

    Baggerly, K.; Cox, D.; Picard, R.

    1998-01-01

    The authors consider adaptive importance sampling for a random walk with scoring in a general state space. Conditions under which exponential convergence occurs to the zero-variance solution are reviewed. These results generalize previous work for finite, discrete state spaces in Kollman (1993) and in Kollman, Baggerly, Cox, and Picard (1996). This paper is intended for nonstatisticians and includes considerable explanatory material

  9. State Space Analysis of Hierarchical Coloured Petri Nets

    DEFF Research Database (Denmark)

    Christensen, Søren; Kristensen, Lars Michael

    2003-01-01

    In this paper, we consider state space analysis of Coloured Petri Nets. It is well-known that almost all dynamic properties of the considered system can be verified when the state space is finite. However, state space analysis is more than just formulating a set of formal requirements and invokin...... supporting computation and storage of state spaces which exploi the hierarchical structure of the models....... in which formal verification, partial state spaces, and analysis by means of graphical feedback and simulation are integrated entities. The focus of the paper is twofold: the support for graphical feedback and the way it has been integrated with simulation, and the underlying algorithms and data-structures......In this paper, we consider state space analysis of Coloured Petri Nets. It is well-known that almost all dynamic properties of the considered system can be verified when the state space is finite. However, state space analysis is more than just formulating a set of formal requirements and invoking...

  10. Holographic description of curved-space quantum field theory and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Uhlemann, Christoph Frank

    2012-12-12

    The celebrated AdS/CFT dualities provide a window to strongly-coupled quantum field theories (QFTs), which are realized in nature at the most fundamental level on the one hand, but are hardly accessible for the standard mathematical tools on the other hand. The prototype examples of AdS/CFT relate classical supergravity theories on (d+1)-dimensional anti-de Sitter space (AdS) to strongly-coupled d-dimensional conformal field theories (CFTs). The AdS spacetimes admit a timelike conformal boundary, on which the dual CFT is defined. In that sense the AdS/CFT dualities are holographic, and this new approach has led to remarkable progress in understanding strongly-coupled QFTs defined on Minkowski space and on the Einstein cylinder. On the other hand, the study of QFT on more generic curved spacetimes is of fundamental interest and non-trivial already for free theories. Moreover, understanding the properties of gravity as a quantum theory remains among the hardest problems to solve in physics. Both of these issues can be studied holographically and we investigate here generalizations of AdS/CFT involving on the lower-dimensional side QFTs on curved backgrounds and as a further generalization gravity. In the first part we expand on the holographic description of QFT on fixed curved backgrounds, which involves gravity on an asymptotically-AdS space with that prescribed boundary structure. We discuss geometries with de Sitter and AdS as conformal boundary to holographically describe CFTs on these spacetimes. After setting up the procedure of holographic renormalization we study the reflection of CFT unitarity properties in the dual bulk description. The geometry with AdS on the boundary exhibits a number of interesting features, mainly due to the fact that the boundary itself has a boundary. We study both cases and resolve potential tensions between the unitarity properties of the bulk and boundary theories, which would be incompatible with a duality. The origin of these

  11. Holographic description of curved-space quantum field theory and gravity

    International Nuclear Information System (INIS)

    Uhlemann, Christoph Frank

    2012-01-01

    The celebrated AdS/CFT dualities provide a window to strongly-coupled quantum field theories (QFTs), which are realized in nature at the most fundamental level on the one hand, but are hardly accessible for the standard mathematical tools on the other hand. The prototype examples of AdS/CFT relate classical supergravity theories on (d+1)-dimensional anti-de Sitter space (AdS) to strongly-coupled d-dimensional conformal field theories (CFTs). The AdS spacetimes admit a timelike conformal boundary, on which the dual CFT is defined. In that sense the AdS/CFT dualities are holographic, and this new approach has led to remarkable progress in understanding strongly-coupled QFTs defined on Minkowski space and on the Einstein cylinder. On the other hand, the study of QFT on more generic curved spacetimes is of fundamental interest and non-trivial already for free theories. Moreover, understanding the properties of gravity as a quantum theory remains among the hardest problems to solve in physics. Both of these issues can be studied holographically and we investigate here generalizations of AdS/CFT involving on the lower-dimensional side QFTs on curved backgrounds and as a further generalization gravity. In the first part we expand on the holographic description of QFT on fixed curved backgrounds, which involves gravity on an asymptotically-AdS space with that prescribed boundary structure. We discuss geometries with de Sitter and AdS as conformal boundary to holographically describe CFTs on these spacetimes. After setting up the procedure of holographic renormalization we study the reflection of CFT unitarity properties in the dual bulk description. The geometry with AdS on the boundary exhibits a number of interesting features, mainly due to the fact that the boundary itself has a boundary. We study both cases and resolve potential tensions between the unitarity properties of the bulk and boundary theories, which would be incompatible with a duality. The origin of these

  12. National space policy of the United States.

    Science.gov (United States)

    2010-06-28

    The space age began as a race for security and prestige between two superpowers . The opportunities : were boundless, and the decades that followed have seen a radical transformation in the way we live our : daily lives, in large part due to our use ...

  13. State space Newton's method for topology optimization

    DEFF Research Database (Denmark)

    Evgrafov, Anton

    2014-01-01

    /10/1-type constraints on the design field through penalties in many topology optimization approaches. We test the algorithm on the benchmark problems of dissipated power minimization for Stokes flows, and in all cases the algorithm outperforms the traditional first order reduced space/nested approaches...

  14. Stressors, stress and stress consequences during long-duration manned space missions: a descriptive model

    Science.gov (United States)

    Geuna, Stefano; Brunelli, Francesco; Perino, Maria A.

    Keeping crew members in good health is a major factor in the success or failure of long-duration manned space missions. Among the many possible agents that can affect the crew's general well-being, stress is certainly one of the most critical because of its implications on human health and performance, both physical and mental. Nevertheless, very few studies have been performed on this fundamental issue and none of them has addressed it in its entirity, considering its diverse physical and psychological aspects. In this work, a descriptive model is proposed to expound the mechanism and sequence of events which mediate stress. A critical analysis of the information provided by past manned spaceflights and by dedicated research performed in analogous environments is presented, and an extrapolation of the available data on human stress in such extreme conditions is proposed. Both internal and external stressors have been identified, at physical and psychosocial levels, thus providing the basis for their early detection and preventive reduction. The possible negative consequences of stress that may lead to disease in crewmembers are described. Finally, the most effective instruments which may be of help in reducing space-related human stress and treating its negative consequences are suggested.

  15. Minding the Gap: Narrative Descriptions about Mental States Attenuate Parochial Empathy

    Science.gov (United States)

    Bruneau, Emile G.; Cikara, Mina; Saxe, Rebecca

    2015-01-01

    In three experiments, we examine parochial empathy (feeling more empathy for in-group than out-group members) across novel group boundaries, and test whether we can mitigate parochial empathy with brief narrative descriptions. In the absence of individuating information, participants consistently report more empathy for members of their own assigned group than a competitive out-group. However, individualized descriptions of in-group and out-group targets significantly reduce parochial empathy by interfering with encoding of targets’ group membership. Finally, the descriptions that most effectively decrease parochial empathy are those that describe targets’ mental states. These results support the role of individuating information in ameliorating parochial empathy, suggest a mechanism for their action, and show that descriptions emphasizing targets’ mental states are particularly effective. PMID:26505194

  16. United States Army Space Experiment 601

    Science.gov (United States)

    1992-07-29

    impossible to urinate except into a diaper . The LES is hot and humid, bulky and heavy, and is unacceptable for space flight. The risk versus comfort...that the DSP satellite solar panels -r::eived enough sunlight reflected from the Earth to completely power the spacecraft, making the CRU output voltage...that were excessively cloudy were excluded from the statistics (if > 90% of pixels in the sample had brightness values above the threshold). The solar

  17. Use of state variables in the description of irradiation creep and deformation of metals

    International Nuclear Information System (INIS)

    Hart, E.W.; Li, C.Y.

    1976-01-01

    The understanding of the effects of irradiation on metal creep and deformation are not yet satisfactory, owing in part to the limitations on experimentation in radiation environment. Because of such limitations, theoretical considerations must play a strong role. Virtually all of the theoretical considerations currently employed are based on micro-mechanical models for the deformation behavior. The recent theoretical and experimental development of a plastic equation of state for metal deformation has led to the identification of some of the principal micro-mechanisms in phenomenological terms. The role of the individual mechanisms can be related to the state variables of the description, and those variables are directly accessible measurable quantities. This paper explores how irradiation might affect this description. It is shown that the radiation flux and the radiation fluence are expected to affect different components of the equation of state. The resultant description makes considerable use of the information developed in radiation-free environment. 5 fig

  18. A dynamical topology for the space of states

    International Nuclear Information System (INIS)

    Dittrich, J.

    1979-01-01

    A new topology is introduced for the space of states of a physical system. This topology is given by dynamics, every state has a neighbourhood consisting of states connected by the time evolution only. With respect to the new topology, all conservation laws can be treated as topological laws. (author)

  19. On infinite-dimensional state spaces

    International Nuclear Information System (INIS)

    Fritz, Tobias

    2013-01-01

    It is well known that the canonical commutation relation [x, p]=i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p]=i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context from which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V −1 U 2 V=U 3 , then finite-dimensionality entails the relation UV −1 UV=V −1 UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V −1 U 2 V=U 3 holds only up to ε and then yields a lower bound on the dimension.

  20. On infinite-dimensional state spaces

    Science.gov (United States)

    Fritz, Tobias

    2013-05-01

    It is well known that the canonical commutation relation [x, p] = i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p] = i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context from which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V-1U2V = U3, then finite-dimensionality entails the relation UV-1UV = V-1UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V-1U2V = U3 holds only up to ɛ and then yields a lower bound on the dimension.

  1. Detailed description of a state system for accounting for and control of nuclear material at the state level

    International Nuclear Information System (INIS)

    Jones, R.J.

    1985-02-01

    The purpose of this document is to provide a detailed description of the technical elements of a system for the accounting for and control of nuclear material at the State Authority level which can be used by a state in the establishment of a national system for nuclear material accounting and control. It is expected that a state system designed along the lines described also will assist the IAEA in carrying out its safeguards responsibilities. The scope of this document is limited to descriptions of the technical elements of a state level system concerned with Laws and Regulations, the Information System, and the Establishment of Requirements for Nuclear Material Accounting and Control. The discussion shows the relationship of these technical elements at the state level to the principal elements of an SSAC at the facility levels

  2. State space analysis of minimal channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Neelavara, Shreyas Acharya; Duguet, Yohann; Lusseyran, François, E-mail: acharya@limsi.fr [LIMSI-CNRS, Campus Universitaire d’Orsay, Université Paris-Saclay, F-91405 Orsay (France)

    2017-06-15

    Turbulence and edge states are investigated numerically in a plane Poiseuille flow driven by a fixed pressure gradient. Simulations are carried out within the minimal flow unit, a concept introduced by Jiménez and Moin (1991 J . Fluid Mech. 225 213–40) to unravel the dynamics of near-wall structures in the absence of outer large-scale motions. For both turbulent and edge regimes the activity appears to be localised near only one wall at a time, and the long term dynamics features abrupt reversals. The dynamics along one reversal is structured around the transient visit to a subspace of symmetric flow fields. An exact travelling wave solution is found to exist very close to this subspace. Additionally the self-similarity of the asymmetric states is addressed. Contrary to most studies focusing on symmetric solutions, the present study suggests that edge states, when localised near one wall, do not scale in outer units. The current study suggests a composite scaling. (paper)

  3. Automatic Design of a Maglev Controller in State Space

    Science.gov (United States)

    1991-12-01

    Design of a Maglev Controller in State Space Feng Zhao Richard Thornton Abstract We describe the automatic synthesis of a global nonlinear controller for...the global switching points of the controller is presented. The synthesized control system can stabilize the maglev vehicle with large initial displace...NUMBERS Automation Desing of a Maglev Controller in State Space N00014-89-J-3202 MIP-9001651 6. AUTHOR(S) Feng Zhao and Richard Thornton 7. PERFORMING

  4. Learning State Space Dynamics in Recurrent Networks

    Science.gov (United States)

    Simard, Patrice Yvon

    Fully recurrent (asymmetrical) networks can be used to learn temporal trajectories. The network is unfolded in time, and backpropagation is used to train the weights. The presence of recurrent connections creates internal states in the system which vary as a function of time. The resulting dynamics can provide interesting additional computing power but learning is made more difficult by the existence of internal memories. This study first exhibits the properties of recurrent networks in terms of convergence when the internal states of the system are unknown. A new energy functional is provided to change the weights of the units in order to the control the stability of the fixed points of the network's dynamics. The power of the resultant algorithm is illustrated with the simulation of a content addressable memory. Next, the more general case of time trajectories on a recurrent network is studied. An application is proposed in which trajectories are generated to draw letters as a function of an input. In another application of recurrent systems, a neural network certain temporal properties observed in human callosally sectioned brains. Finally the proposed algorithm for stabilizing dynamics around fixed points is extended to one for stabilizing dynamics around time trajectories. Its effects are illustrated on a network which generates Lisajous curves.

  5. Analytical description of photon beam phase spaces in inverse Compton scattering sources

    Directory of Open Access Journals (Sweden)

    C. Curatolo

    2017-08-01

    Full Text Available We revisit the description of inverse Compton scattering sources and the photon beams generated therein, emphasizing the behavior of their phase space density distributions and how they depend upon those of the two colliding beams of electrons and photons. The main objective is to provide practical formulas for bandwidth, spectral density, brilliance, which are valid in general for any value of the recoil factor, i.e. both in the Thomson regime of negligible electron recoil, and in the deep Compton recoil dominated region, which is of interest for gamma-gamma colliders and Compton sources for the production of multi-GeV photon beams. We adopt a description based on the center of mass reference system of the electron-photon collision, in order to underline the role of the electron recoil and how it controls the relativistic Doppler/boost effect in various regimes. Using the center of mass reference frame greatly simplifies the treatment, allowing us to derive simple formulas expressed in terms of rms momenta of the two colliding beams (emittance, energy spread, etc. and the collimation angle in the laboratory system. Comparisons with Monte Carlo simulations of inverse Compton scattering in various scenarios are presented, showing very good agreement with the analytical formulas: in particular we find that the bandwidth dependence on the electron beam emittance, of paramount importance in Thomson regime, as it limits the amount of focusing imparted to the electron beam, becomes much less sensitive in deep Compton regime, allowing a stronger focusing of the electron beam to enhance luminosity without loss of mono-chromaticity. A similar effect occurs concerning the bandwidth dependence on the frequency spread of the incident photons: in deep recoil regime the bandwidth comes out to be much less dependent on the frequency spread. The set of formulas here derived are very helpful in designing inverse Compton sources in diverse regimes, giving a

  6. State-space prediction model for chaotic time series

    Science.gov (United States)

    Alparslan, A. K.; Sayar, M.; Atilgan, A. R.

    1998-08-01

    A simple method for predicting the continuation of scalar chaotic time series ahead in time is proposed. The false nearest neighbors technique in connection with the time-delayed embedding is employed so as to reconstruct the state space. A local forecasting model based upon the time evolution of the topological neighboring in the reconstructed phase space is suggested. A moving root-mean-square error is utilized in order to monitor the error along the prediction horizon. The model is tested for the convection amplitude of the Lorenz model. The results indicate that for approximately 100 cycles of the training data, the prediction follows the actual continuation very closely about six cycles. The proposed model, like other state-space forecasting models, captures the long-term behavior of the system due to the use of spatial neighbors in the state space.

  7. A Learning State-Space Model for Image Retrieval

    Directory of Open Access Journals (Sweden)

    Lee Greg C

    2007-01-01

    Full Text Available This paper proposes an approach based on a state-space model for learning the user concepts in image retrieval. We first design a scheme of region-based image representation based on concept units, which are integrated with different types of feature spaces and with different region scales of image segmentation. The design of the concept units aims at describing similar characteristics at a certain perspective among relevant images. We present the details of our proposed approach based on a state-space model for interactive image retrieval, including likelihood and transition models, and we also describe some experiments that show the efficacy of our proposed model. This work demonstrates the feasibility of using a state-space model to estimate the user intuition in image retrieval.

  8. Reversibility and the structure of the local state space

    International Nuclear Information System (INIS)

    Al-Safi, Sabri W; Richens, Jonathan

    2015-01-01

    The richness of quantum theory’s reversible dynamics is one of its unique operational characteristics, with recent results suggesting deep links between the theory’s reversible dynamics, its local state space and the degree of non-locality it permits. We explore the delicate interplay between these features, demonstrating that reversibility places strong constraints on both the local and global state space. Firstly, we show that all reversible dynamics are trivial (composed of local transformations and permutations of subsytems) in maximally non-local theories whose local state spaces satisfy a dichotomy criterion; this applies to a range of operational models that have previously been studied, such as d-dimensional ‘hyperballs’ and almost all regular polytope systems. By separately deriving a similar result for odd-sided polygons, we show that classical systems are the only regular polytope state spaces whose maximally non-local composites allow for non-trivial reversible dynamics. Secondly, we show that non-trivial reversible dynamics do exist in maximally non-local theories whose state spaces are reducible into two or more smaller spaces. We conjecture that this is a necessary condition for the existence of such dynamics, but that reversible entanglement generation remains impossible even in this scenario. (paper)

  9. On the state space of the dipole ghost

    International Nuclear Information System (INIS)

    Binegar, B.

    1984-01-01

    A particular representation of SO(4, 2) is identified with the state space of the free dipole ghost. This representation is then given an explicit realization as the solution space of a 4th-order wave equation on a spacetime locally isomorphic to Minkowski space. A discrete basis for this solution space is given, as well as an explicit expression for its SO(4, 2) invariant inner product. The connection between the modes of dipole field and those of the massless scalar field is clarified, and a recent conjecture concerning the restriction of the dipole representation to the Poincare subgroup is confirmed. A particular coordinate transformation then reveals the theory of the dipole ghost in Minkowski space. Finally, it is shown that the solution space of the dipole equation is not unitarizable in a Poincare invariant manner. (orig.)

  10. A Sweep-Line Method for State Space Exploration

    DEFF Research Database (Denmark)

    Christensen, Søren; Kristensen, Lars Michael; Mailund, Thomas

    2001-01-01

    generation, since these states can never be reached again. This in turn reduces the memory used for state space storage during the task of verification. Examples of progress measures are sequence numbers in communication protocols and time in certain models with time. We illustrate the application...

  11. State Space Reduction for Model Checking Agent Programs

    NARCIS (Netherlands)

    S.-S.T.Q. Jongmans (Sung-Shik); K.V. Hindriks; M.B. van Riemsdijk; L. Dennis; O. Boissier; R.H. Bordini (Rafael)

    2012-01-01

    htmlabstractState space reduction techniques have been developed to increase the efficiency of model checking in the context of imperative programming languages. Unfortunately, these techniques cannot straightforwardly be applied to agents: the nature of states in the two programming paradigms

  12. Embedding a State Space Model Into a Markov Decision Process

    DEFF Research Database (Denmark)

    Nielsen, Lars Relund; Jørgensen, Erik; Højsgaard, Søren

    2011-01-01

    In agriculture Markov decision processes (MDPs) with finite state and action space are often used to model sequential decision making over time. For instance, states in the process represent possible levels of traits of the animal and transition probabilities are based on biological models...

  13. Dynamic State Space Partitioning for External Memory Model Checking

    DEFF Research Database (Denmark)

    Evangelista, Sami; Kristensen, Lars Michael

    2009-01-01

    We describe a dynamic partitioning scheme usable by model checking techniques that divide the state space into partitions, such as most external memory and distributed model checking algorithms. The goal of the scheme is to reduce the number of transitions that link states belonging to different...

  14. Reinforcement learning in continuous state and action spaces

    NARCIS (Netherlands)

    H. P. van Hasselt (Hado); M.A. Wiering; M. van Otterlo

    2012-01-01

    textabstractMany traditional reinforcement-learning algorithms have been designed for problems with small finite state and action spaces. Learning in such discrete problems can been difficult, due to noise and delayed reinforcements. However, many real-world problems have continuous state or action

  15. Construction of rigged Hilbert spaces to describe resonances and virtual states

    International Nuclear Information System (INIS)

    Gadella, M.

    1983-01-01

    In the present communication we present a mathematical formalism for the description of resonances and virtual states. We start by constructing rigged Hilbert spaces of Hardy class functions restricted to the positive half of the real line. Then resonances and virtual states can be written as generalized eigenvectors of the total Hamiltonian. We also define time evolution on functionals. We see that the time evolution group U(t) splits into two semigroups, one for t > 0 and the other for t < 0, hence showing the irreversibility of the decaying process

  16. Construction of rigged Hilbert spaces to describe resonances and virtual states

    International Nuclear Information System (INIS)

    Gadella, M.

    1984-01-01

    In the present communication we present a mathematical formalism for the description of resonances and virtual states. We start by constructing rigged Hilbert spaces of Hardy class functions restricted to the positive half of the real line. Then resonances and virtual states can be written as generalized eigenvectors of the total Hamiltonian. We also define time evolution on functionals. We see that the time evolution group U(t) splits into two semigroups, one for t>0 and the other for t<0, hence showing the irreversibility of the decaying process. (orig.)

  17. Description of the attitude control, guidance and navigation space replaceable units for automated space servicing of selected NASA missions

    Science.gov (United States)

    Chobotov, V. A.

    1974-01-01

    Control elements such as sensors, momentum exchange devices, and thrusters are described which can be used to define space replaceable units (SRU), in accordance with attitude control, guidance, and navigation performance requirements selected for NASA space serviceable mission spacecraft. A number of SRU's are developed, and their reliability block diagrams are presented. An SRU assignment is given in order to define a set of feasible space serviceable spacecraft for the missions of interest.

  18. Unambiguous discrimination of mixed states: A description based on system-ancilla coupling

    International Nuclear Information System (INIS)

    Zhou, Xiang-Fa; Zhang, Yong-Sheng; Guo, Guang-Can

    2007-01-01

    We propose a general description for the unambiguous discrimination of mixed states according to the system-environment coupling, and present a procedure to reduce this to a standard semidefinite programming problem. In the two-state case, we introduce the canonical vectors and partly simplify the problem to the case of discrimination between pairs of canonical vectors. By considering the positivity of the 2x2 matrices, we obtain a series of new upper bounds for the total success probability, which depends on both the prior probabilities and specific state structures

  19. States in the Hilbert space formulation and in the phase space formulation of quantum mechanics

    International Nuclear Information System (INIS)

    Tosiek, J.; Brzykcy, P.

    2013-01-01

    We consider the problem of testing whether a given matrix in the Hilbert space formulation of quantum mechanics or a function considered in the phase space formulation of quantum theory represents a quantum state. We propose several practical criteria for recognising states in these two versions of quantum physics. After minor modifications, they can be applied to check positivity of any operators acting in a Hilbert space or positivity of any functions from an algebra with a ∗-product of Weyl type. -- Highlights: ► Methods of testing whether a given matrix represents a quantum state. ► The Stratonovich–Weyl correspondence on an arbitrary symplectic manifold. ► Criteria for checking whether a function on a symplectic space is a Wigner function

  20. Information Theoretic Characterization of Physical Theories with Projective State Space

    Science.gov (United States)

    Zaopo, Marco

    2015-08-01

    Probabilistic theories are a natural framework to investigate the foundations of quantum theory and possible alternative or deeper theories. In a generic probabilistic theory, states of a physical system are represented as vectors of outcomes probabilities and state spaces are convex cones. In this picture the physics of a given theory is related to the geometric shape of the cone of states. In quantum theory, for instance, the shape of the cone of states corresponds to a projective space over complex numbers. In this paper we investigate geometric constraints on the state space of a generic theory imposed by the following information theoretic requirements: every non completely mixed state of a system is perfectly distinguishable from some other state in a single shot measurement; information capacity of physical systems is conserved under making mixtures of states. These assumptions guarantee that a generic physical system satisfies a natural principle asserting that the more a state of the system is mixed the less information can be stored in the system using that state as logical value. We show that all theories satisfying the above assumptions are such that the shape of their cones of states is that of a projective space over a generic field of numbers. Remarkably, these theories constitute generalizations of quantum theory where superposition principle holds with coefficients pertaining to a generic field of numbers in place of complex numbers. If the field of numbers is trivial and contains only one element we obtain classical theory. This result tells that superposition principle is quite common among probabilistic theories while its absence gives evidence of either classical theory or an implausible theory.

  1. Space Sciences Education and Outreach Project of Moscow State University

    Science.gov (United States)

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space

  2. The coherent state on SUq(2) homogeneous space

    International Nuclear Information System (INIS)

    Aizawa, N; Chakrabarti, R

    2009-01-01

    The generalized coherent states for quantum groups introduced by Jurco and StovIcek are studied for the simplest example SU q (2) in full detail. It is shown that the normalized SU q (2) coherent states enjoy the property of completeness, and allow a resolution of the unity. This feature is expected to play a key role in the application of these coherent states in physical models. The homogeneous space of SU q (2), i.e. the q-sphere of Podles, is reproduced in complex coordinates by using the coherent states. Differential calculus in the complex form on the homogeneous space is developed. The high spin limit of the SU q (2) coherent states is also discussed.

  3. Multivariate time series with linear state space structure

    CERN Document Server

    Gómez, Víctor

    2016-01-01

    This book presents a comprehensive study of multivariate time series with linear state space structure. The emphasis is put on both the clarity of the theoretical concepts and on efficient algorithms for implementing the theory. In particular, it investigates the relationship between VARMA and state space models, including canonical forms. It also highlights the relationship between Wiener-Kolmogorov and Kalman filtering both with an infinite and a finite sample. The strength of the book also lies in the numerous algorithms included for state space models that take advantage of the recursive nature of the models. Many of these algorithms can be made robust, fast, reliable and efficient. The book is accompanied by a MATLAB package called SSMMATLAB and a webpage presenting implemented algorithms with many examples and case studies. Though it lays a solid theoretical foundation, the book also focuses on practical application, and includes exercises in each chapter. It is intended for researchers and students wor...

  4. Relativistic resonances as non-orthogonal states in Hilbert space

    CERN Document Server

    Blum, W

    2003-01-01

    We analyze the energy-momentum properties of relativistic short-lived particles with the result that they are characterized by two 4-vectors: in addition to the familiar energy-momentum vector (timelike) there is an energy-momentum 'spread vector' (spacelike). The wave functions in space and time for unstable particles are constructed. For the relativistic properties of unstable states we refer to Wigner's method of Poincare group representations that are induced by representations of the space-time translation and rotation groups. If stable particles, unstable particles and resonances are treated as elementary objects that are not fundamentally different one has to take into account that they will not generally be orthogonal to each other in their state space. The scalar product between a stable and an unstable state with otherwise identical properties is calculated in a particular Lorentz frame. The spin of an unstable particle is not infinitely sharp but has a 'spin spread' giving rise to 'spin neighbors'....

  5. State space modeling of Memristor-based Wien oscillator

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2011-12-01

    State space modeling of Memristor based Wien \\'A\\' oscillator has been demonstrated for the first time considering nonlinear ion drift in Memristor. Time dependant oscillating resistance of Memristor is reported in both state space solution and SPICE simulation which plausibly provide the basis of realizing parametric oscillation by Memristor based Wien oscillator. In addition to this part Memristor is shown to stabilize the final oscillation amplitude by means of its nonlinear dynamic resistance which hints for eliminating diode in the feedback network of conventional Wien oscillator. © 2011 IEEE.

  6. State space modeling of Memristor-based Wien oscillator

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2011-01-01

    State space modeling of Memristor based Wien 'A' oscillator has been demonstrated for the first time considering nonlinear ion drift in Memristor. Time dependant oscillating resistance of Memristor is reported in both state space solution and SPICE simulation which plausibly provide the basis of realizing parametric oscillation by Memristor based Wien oscillator. In addition to this part Memristor is shown to stabilize the final oscillation amplitude by means of its nonlinear dynamic resistance which hints for eliminating diode in the feedback network of conventional Wien oscillator. © 2011 IEEE.

  7. Description of a stable scheme for steady-state coupled Monte Carlo–thermal–hydraulic calculations

    International Nuclear Information System (INIS)

    Dufek, Jan; Eduard Hoogenboom, J.

    2014-01-01

    Highlights: • A stable coupling scheme for steady-state MC–TH calculations is described. • The coupling scheme is based on the stochastic approximation method. • The neutron flux (or power) distribution is relaxed using a variable step-size. - Abstract: We provide a detailed description of a numerically stable and efficient coupling scheme for steady-state Monte Carlo neutronic calculations with thermal–hydraulic feedback. While we have previously derived and published the stochastic approximation based method for coupling the Monte Carlo criticality and thermal–hydraulic calculations, its possible implementation has not been described in a step-by-step manner. As the simple description of the coupling scheme was repeatedly requested from us, we have decided to make it available via this note

  8. A coarse grained description of time evolution: Irreversible state reduction and time-energy relation

    International Nuclear Information System (INIS)

    Bonifacio, R.; Milan Univ.

    1983-05-01

    We show that a proper coarse-grained description of time evolution leads to a finite difference equation with step tau for the density operator. This implies state reduction to the diagonal form in the energy representation and a quasi ergodic behaviour of quantum mechanical ensemble averages. An intrinsic time-energy relation tauΔE>=(h/2π)/2 is proposed, and its equivalence to a time quantization is discussed. (author)

  9. Description of width and spectra of two relativistic fermions bound states

    International Nuclear Information System (INIS)

    Sidorov, A.V.; Skachkov, N.B.

    1979-01-01

    The formalism for relativistic description of two particles with spin 1/2 is constructed. Used is the two-particle three-dimensional equation, obtained by quasipotential approach. Quasipotential equation in the relativistic configurational space with OBEP potential is reduced to the system of partial equations which is the analog of nonrelativistic Hamada-Jonston system. WKB approach is used to calculate mass spectra and leptonic width of mesons in quark model. The results of the study can be applied to the calculation of mass spectra and widths of electromagnetic decays of systems of e + e - , μ + μ - , c anti c, b anti b, N anti N type

  10. Estimation methods for nonlinear state-space models in ecology

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Berg, Casper Willestofte; Thygesen, Uffe Høgsbro

    2011-01-01

    The use of nonlinear state-space models for analyzing ecological systems is increasing. A wide range of estimation methods for such models are available to ecologists, however it is not always clear, which is the appropriate method to choose. To this end, three approaches to estimation in the theta...... logistic model for population dynamics were benchmarked by Wang (2007). Similarly, we examine and compare the estimation performance of three alternative methods using simulated data. The first approach is to partition the state-space into a finite number of states and formulate the problem as a hidden...... Markov model (HMM). The second method uses the mixed effects modeling and fast numerical integration framework of the AD Model Builder (ADMB) open-source software. The third alternative is to use the popular Bayesian framework of BUGS. The study showed that state and parameter estimation performance...

  11. Transformation of Socioeconomic Space: The Role of the State

    Directory of Open Access Journals (Sweden)

    Alexander Nikolaevich Shvetsov

    2015-03-01

    Full Text Available Modern Russia is traditionally characterized by a special and strong public participation in solving problems of spatial development. Thus, the state has following diverse roles: 1 the creator of the modern space configuration; 2 the mastermind and main driving force of modern spatial transformations; 3 the regulator and investor of these processes; 4 the main sponsor and beneficiary of space transformation; and, finally, the hostage of its own dominance in the processes of spatial transformation. However, stereotypes are being gradually overcome and public policy in the area of spatial transformations focuses not only on «public projects» but also on self-development of regions, combined with the interests of big business which plays an increasing role in the transformation of socioeconomic space. The article reveals the meaning and content of the problem of systemic interaction between the state and space concerning the modernization of the country. The author explores the range of fundamental research and applied issues resulting from the contradictory combination of traditional (historical stereotypes and the latest Russian circumstances. These issues determine the background, nature and consequences of state impacts on socio-economic space, as well as the composition, content and validity of the used instruments

  12. Deformed two-photon squeezed states in noncommutative space

    International Nuclear Information System (INIS)

    Zhang Jianzu

    2004-01-01

    Recent studies on nonperturbation aspects of noncommutative quantum mechanics explored a new type of boson commutation relations at the deformed level, described by deformed annihilation-creation operators in noncommutative space. This correlated boson commutator correlates different degrees of freedom, and shows an essential influence on dynamics. This Letter devotes to the development of formalism of deformed two-photon squeezed states in noncommutative space. General representations of deformed annihilation-creation operators and the consistency condition for the electromagnetic wave with a single mode of frequency in noncommunicative space are obtained. Two-photon squeezed states are studied. One finds that variances of the dimensionless Hermitian quadratures of the annihilation operator in one degree of freedom include variances in the other degree of freedom. Such correlations show the new feature of spatial noncommutativity and allow a deeper understanding of the correlated boson commutator

  13. Dissipative differential systems and the state space H∞ control problem

    NARCIS (Netherlands)

    Trentelman, H.L.; Willems, J.C.

    2000-01-01

    The purpose of this paper is to apply our very recent results on the synthesis of dissipative linear differential systems to the 'classical' state space H∞ control problem. We first review our general problem set-up, where the problem of rendering a given plant dissipative by general

  14. An Embeddable Virtual Machine for State Space Generation

    NARCIS (Netherlands)

    Weber, M.; Bosnacki, D.; Edelkamp, S.

    2007-01-01

    The semantics of modelling languages are not always specified in a precise and formal way, and their rather complex underlying models make it a non-trivial exercise to reuse them in newly developed tools. We report on experiments with a virtual machine-based approach for state space generation. The

  15. A state space algorithm for the spectral factorization

    NARCIS (Netherlands)

    Kraffer, F.; Kraffer, F.; Kwakernaak, H.

    1997-01-01

    This paper presents an algorithm for the spectral factorization of a para-Hermitian polynomial matrix. The algorithm is based on polynomial matrix to state space and vice versa conversions, and avoids elementary polynomial operations in computations; It relies on well-proven methods of numerical

  16. State Space Reduction of Linear Processes using Control Flow Reconstruction

    NARCIS (Netherlands)

    van de Pol, Jan Cornelis; Timmer, Mark

    2009-01-01

    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  17. State Space Reduction of Linear Processes Using Control Flow Reconstruction

    NARCIS (Netherlands)

    van de Pol, Jan Cornelis; Timmer, Mark; Liu, Zhiming; Ravn, Anders P.

    2009-01-01

    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  18. Abelian faces of state spaces of C*-algebras

    International Nuclear Information System (INIS)

    Batty, C.J.K.

    1980-01-01

    Let F be a closed face of the weak* compact convex state space of a unital C*-algebra A. The class of F-abelian states, introduced earlier by the author, is studied further. It is shown (without any restriction on A or F) that F is a Choquet simplex if and only if every state in F is F-abelian, and that it is sufficient for this that every pure state in F is F-abelian. As a corollary, it is deduced that an arbitrary C*-dynamical system (A,G,α) is G-abelian if and only if every ergodic state is weakly clustering. Nevertheless the set of all F-abelian (or even G-abelian) states is not necessarily weak* compact. (orig.)

  19. The quantum state vector in phase space and Gabor's windowed Fourier transform

    International Nuclear Information System (INIS)

    Bracken, A J; Watson, P

    2010-01-01

    Representations of quantum state vectors by complex phase space amplitudes, complementing the description of the density operator by the Wigner function, have been defined by applying the Weyl-Wigner transform to dyadic operators, linear in the state vector and anti-linear in a fixed 'window state vector'. Here aspects of this construction are explored, and a connection is established with Gabor's 'windowed Fourier transform'. The amplitudes that arise for simple quantum states from various choices of windows are presented as illustrations. Generalized Bargmann representations of the state vector appear as special cases, associated with Gaussian windows. For every choice of window, amplitudes lie in a corresponding linear subspace of square-integrable functions on phase space. A generalized Born interpretation of amplitudes is described, with both the Wigner function and a generalized Husimi function appearing as quantities linear in an amplitude and anti-linear in its complex conjugate. Schroedinger's time-dependent and time-independent equations are represented on phase space amplitudes, and their solutions described in simple cases.

  20. Coherent states on horospheric three-dimensional Lobachevsky space

    Energy Technology Data Exchange (ETDEWEB)

    Kurochkin, Yu., E-mail: y.kurochkin@ifanbel.bas-net.by; Shoukavy, Dz., E-mail: shoukavy@ifanbel.bas-net.by [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Rybak, I., E-mail: Ivan.Rybak@astro.up.pt [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2016-08-15

    In the paper it is shown that due to separation of variables in the Laplace-Beltrami operator (Hamiltonian of a free quantum particle) in horospheric and quasi-Cartesian coordinates of three dimensional Lobachevsky space, it is possible to introduce standard (“conventional” according to Perelomov [Generalized Coherent States and Their Applications (Springer-Verlag, 1986), p. 320]) coherent states. Some problems (oscillator on horosphere, charged particle in analogy of constant uniform magnetic field) where coherent states are suitable for treating were considered.

  1. Projective limits of state spaces II. Quantum formalism

    Science.gov (United States)

    Lanéry, Suzanne; Thiemann, Thomas

    2017-06-01

    In this series of papers, we investigate the projective framework initiated by Kijowski (1977) and Okołów (2009, 2014, 2013), which describes the states of a quantum theory as projective families of density matrices. A short reading guide to the series can be found in Lanéry (2016). After discussing the formalism at the classical level in a first paper (Lanéry, 2017), the present second paper is devoted to the quantum theory. In particular, we inspect in detail how such quantum projective state spaces relate to inductive limit Hilbert spaces and to infinite tensor product constructions (Lanéry, 2016, subsection 3.1) [1]. Regarding the quantization of classical projective structures into quantum ones, we extend the results by Okołów (2013), that were set up in the context of linear configuration spaces, to configuration spaces given by simply-connected Lie groups, and to holomorphic quantization of complex phase spaces (Lanéry, 2016, subsection 2.2) [1].

  2. Evaluating Russian space nuclear reactor technology for United States applications

    International Nuclear Information System (INIS)

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-01-01

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch

  3. Thermodynamic approach to rheological modeling and simulations at the configuration space level of description

    NARCIS (Netherlands)

    Jongschaap, R.J.J.; Denneman, A.I.M.; Denneman, A.I.M.; Conrads, W.

    1997-01-01

    The so-called matrix model is a general thermodynamic framework for microrheological modeling. This model has already been proven to be applicable for a wide class of systems, in particular to models formulated at the configuration tensor level of description. For models formulated at the

  4. Development and implementation of theoretical methods for the description of electronically core-excited states

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Jan

    2016-03-23

    -cc-series, a mean error of -0.23% ±0.12% for core-excitation energies can be identified at the CVS-ADC(2)-x level for carbon, nitrogen and oxygen K-edge excitations, whereas CVS-ADC(3) exhibits errors of 0.61% ± 0.32%. This is due to fortuitous error compensation of basis set truncation, electron correlation, orbital relaxation and neglect of relativistic effects at the CVS-ADC(2)-x level. Transition moments and spectral features, as well as static dipole moments, are excellently described with both CVS-ADC(2)-x and CVS-ADC(3). Especially the 6-311++G** basis set provides an excellent ratio of accuracy to computational time. Another important topic is the description of orbital relaxation effects. In the scope of this thesis, I show, how these effects are included indirectly within the CVS-ADC approaches. For this purpose, two different descriptors are used, i.e. electron promotion numbers and the amount of doubly excited amplitudes. Furthermore, with the help of detachment/attachment (D/A) densities, which can be constructed via the CVS-ISR approach, relaxation effects can be visualized. For this purpose, the (D/A) densities are compared with hole/electron (h/e) densities based on the transition density matrix. With this knowledge, the X-ray absorption spectra of medium-sized molecules and radicals from the fields of organic electronics and biology are investigated and analyzed. On the basis of these studies, the restricted and unrestricted versions of CVS-ADC(2)-x in combination with the 6-311++G** basis set exhibit mean errors of core-excitation energies around 0.1%, compared to experimental values. Additionally, core-excited state characters are analyzed with the help of state densities obtained via the CVS-ISR approach or the transition density matrix. To demonstrate the computational savings as a function of the size of the core space, several systems are investigated. CVS-ADC(3) calculations take about 8-10 times longer than CVS-ADC(2)-x calculations and since the

  5. Model potential for the description of metal/organic interface states

    Science.gov (United States)

    Armbrust, Nico; Schiller, Frederik; Güdde, Jens; Höfer, Ulrich

    2017-01-01

    We present an analytical one-dimensional model potential for the description of electronic interface states that form at the interface between a metal surface and flat-lying adlayers of π-conjugated organic molecules. The model utilizes graphene as a universal representation of these organic adlayers. It predicts the energy position of the interface state as well as the overlap of its wave function with the bulk metal without free fitting parameters. We show that the energy of the interface state depends systematically on the bond distance between the carbon backbone of the adayers and the metal. The general applicability and robustness of the model is demonstrated by a comparison of the calculated energies with numerous experimental results for a number of flat-lying organic molecules on different closed-packed metal surfaces that cover a large range of bond distances. PMID:28425444

  6. 22 CFR 92.2 - Description of overseas notarial functions of the Department of State, record of acts.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Description of overseas notarial functions of the Department of State, record of acts. 92.2 Section 92.2 Foreign Relations DEPARTMENT OF STATE LEGAL... officers of the Department of State is similar to the function of a notary public in the United States. See...

  7. Reaction Hamiltonian and state-to-state description of chemical reactions

    International Nuclear Information System (INIS)

    Ruf, B.A.; Kresin, V.Z.; Lester, W.A. Jr.

    1985-08-01

    A chemical reaction is treated as a quantum transition from reactants to products. A specific reaction Hamiltonian (in second quantization formalism) is introduced. The approach leads to Franck-Condon-like factor, and adiabatic method in the framework of the nuclear motion problems. The influence of reagent vibrational state on the product energy distribution has been studied following the reaction Hamiltonian method. Two different cases (fixed available energy and fixed translational energy) are distinguished. Results for several biomolecular reactions are presented. 40 refs., 5 figs

  8. Pure state consciousness and its local reduction to neuronal space

    Science.gov (United States)

    Duggins, A. J.

    2013-01-01

    The single neuronal state can be represented as a vector in a complex space, spanned by an orthonormal basis of integer spike counts. In this model a scalar element of experience is associated with the instantaneous firing rate of a single sensory neuron over repeated stimulus presentations. Here the model is extended to composite neural systems that are tensor products of single neuronal vector spaces. Depiction of the mental state as a vector on this tensor product space is intended to capture the unity of consciousness. The density operator is introduced as its local reduction to the single neuron level, from which the firing rate can again be derived as the objective correlate of a subjective element. However, the relational structure of perceptual experience only emerges when the non-local mental state is considered. A metric of phenomenal proximity between neuronal elements of experience is proposed, based on the cross-correlation function of neurophysiology, but constrained by the association of theoretical extremes of correlation/anticorrelation in inseparable 2-neuron states with identical and opponent elements respectively.

  9. Description of European Space Agency (ESA) Concept Development for a Mars Sample Receiving Facility (MSRF)

    Science.gov (United States)

    Vrublevskis, J.; Berthoud, L.; Guest, M.; Smith, C.; Bennett, A.; Gaubert, F.; Schroeven-Deceuninck, H.; Duvet, L.; van Winnendael, M.

    2018-04-01

    This presentation gives an overview of the several studies conducted for the European Space Agency (ESA) since 2007, which progressively developed layouts for a potential implementation of a Mars Sample Receiving Facility (MSRF).

  10. Wind power scenario generation through state-space specifications for uncertainty analysis of wind power plants

    International Nuclear Information System (INIS)

    Díaz, Guzmán; Gómez-Aleixandre, Javier; Coto, José

    2016-01-01

    Highlights: • State space representations for simulating wind power plant output are proposed. • The representation of wind speed in state space allows structural analysis. • The joint model incorporates the temporal and spatial dependence structure. • The models are easily integrable into a backward/forward sweep algorithm. • Results evidence the remarkable differences between joint and marginal models. - Abstract: This paper proposes the use of state space models to generate scenarios for the analysis of wind power plant (WPP) generation capabilities. The proposal is rooted on the advantages that state space models present for dealing with stochastic processes; mainly their structural definition and the use of Kalman filter to naturally tackle some involved operations. The specification proposed in this paper comprises a structured representation of individual Box–Jenkins models, with indications about further improvements that can be easily performed. These marginal models are combined to form a joint model in which the dependence structure is easily handled. Indications about the procedure to calibrate and check the model, as well as a validation of its statistical appropriateness, are provided. Application of the proposed state space models provides insight on the need to properly specify the structural dependence between wind speeds. In this paper the joint and marginal models are smoothly integrated into a backward–forward sweep algorithm to determine the performance indicators (voltages and powers) of a WPP through simulation. As a result, visibly heavy tails emerge in the generated power probability distribution through the use of the joint model—incorporating a detailed description of the dependence structure—in contrast with the normally distributed power yielded by the margin-based model.

  11. Web-based description of the space radiation environment using the Bethe-Bloch model

    Science.gov (United States)

    Cazzola, Emanuele; Calders, Stijn; Lapenta, Giovanni

    2016-01-01

    Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe-Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most important

  12. Web-based description of the space radiation environment using the Bethe–Bloch model

    International Nuclear Information System (INIS)

    Cazzola, Emanuele; Lapenta, Giovanni; Calders, Stijn

    2016-01-01

    Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe–Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most

  13. Description of occupant behaviour in building energy simulation: state-of-art and concepts for improvements

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Vinther; Corgnati, Stefano Paolo

    2011-01-01

    of basic assumptions that affect the results. Therefore, the calculated energy performance may differ significantly from the real energy consumption. One of the key reasons is the current inability to properly model occupant behaviour and to quantify the associated uncertainties in building performance...... predictions. By consequence, a better description of parameters related to occupant behaviour is highly required. In this paper, the state of art in occupant behaviour modelling within energy simulation tools is analysed and some concepts related to possible improvements of simulation tools are proposed...

  14. Space of symmetry matrices with elements 0, ±1 and complete geometric description; its properties and application.

    Science.gov (United States)

    Stróż, Kazimierz

    2011-09-01

    A fixed set, that is the set of all lattice metrics corresponding to the arithmetic holohedry of a primitive lattice, is a natural tool for keeping track of the symmetry changes that may occur in a deformable lattice [Ericksen (1979). Arch. Rat. Mech. Anal. 72, 1-13; Michel (1995). Symmetry and Structural Properties of Condensed Matter, edited by T. Lulek, W. Florek & S. Walcerz. Singapore: Academic Press; Pitteri & Zanzotto (1996). Acta Cryst. A52, 830-838; and references quoted therein]. For practical applications it is desirable to limit the infinite number of arithmetic holohedries, and simplify their classification and construction of the fixed sets. A space of 480 matrices with cyclic consecutive powers, determinant 1, elements from {0, ±1} and geometric description were analyzed and offered as the framework for dealing with the symmetry of reduced lattices. This matrix space covers all arithmetic holohedries of primitive lattice descriptions related to the three shortest lattice translations in direct or reciprocal spaces, and corresponds to the unique list of 39 fixed points with integer coordinates in six-dimensional space of lattice metrics. Matrices are presented by the introduced dual symbol, which sheds some light on the lattice and its symmetry-related properties, without further digging into matrices. By the orthogonal lattice distortion the lattice group-subgroup relations are easily predicted. It was proven and exemplified that new symbols enable classification of lattice groups on an absolute basis, without metric considerations. In contrast to long established but sophisticated methods for assessing the metric symmetry of a lattice, simple filtering of the symmetry operations from the predefined set is proposed. It is concluded that the space of symmetry matrices with elements from {0, ±1} is the natural environment of lattice symmetries related to the reduced cells and that complete geometric characterization of matrices in the arithmetic

  15. State-Space Modelling of Loudspeakers using Fractional Derivatives

    DEFF Research Database (Denmark)

    King, Alexander Weider; Agerkvist, Finn T.

    2015-01-01

    This work investigates the use of fractional order derivatives in modeling moving-coil loudspeakers. A fractional order state-space solution is developed, leading the way towards incorporating nonlinearities into a fractional order system. The method is used to calculate the response of a fractio......This work investigates the use of fractional order derivatives in modeling moving-coil loudspeakers. A fractional order state-space solution is developed, leading the way towards incorporating nonlinearities into a fractional order system. The method is used to calculate the response...... of a fractional harmonic oscillator, representing the mechanical part of a loudspeaker, showing the effect of the fractional derivative and its relationship to viscoelasticity. Finally, a loudspeaker model with a fractional order viscoelastic suspension and fractional order voice coil is fit to measurement data...

  16. State-space Manifold and Rotating Black Holes

    CERN Document Server

    Bellucci, Stefano

    2010-01-01

    We study a class of fluctuating higher dimensional black hole configurations obtained in string theory/ $M$-theory compactifications. We explore the intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the Hessian of the coarse graining entropy, defined over an ensemble of brane microstates. It has been shown that the state-space geometry spanned by the set of invariant parameters is non-degenerate, regular and has a negative scalar curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes, supersymmetric $AdS_5$ black holes, $D_1$-$D_5$ configurations and the associated BMPV black holes. Interestingly, these solutions demonstrate that the principal components of the state-space metric tensor admit a positive definite form, while the off diagonal components do not. Furthermore, the ratio of diagonal components weakens relatively faster than the off diagonal components, and thus they swiftly come into an equilibrium statistical configuration. Novel aspects of the scali...

  17. Improving the modelling of redshift-space distortions - I. A bivariate Gaussian description for the galaxy pairwise velocity distributions

    Science.gov (United States)

    Bianchi, Davide; Chiesa, Matteo; Guzzo, Luigi

    2015-01-01

    As a step towards a more accurate modelling of redshift-space distortions (RSD) in galaxy surveys, we develop a general description of the probability distribution function of galaxy pairwise velocities within the framework of the so-called streaming model. For a given galaxy separation r, such function can be described as a superposition of virtually infinite local distributions. We characterize these in terms of their moments and then consider the specific case in which they are Gaussian functions, each with its own mean μ and dispersion σ. Based on physical considerations, we make the further crucial assumption that these two parameters are in turn distributed according to a bivariate Gaussian, with its own mean and covariance matrix. Tests using numerical simulations explicitly show that with this compact description one can correctly model redshift-space distortions on all scales, fully capturing the overall linear and non-linear dynamics of the galaxy flow at different separations. In particular, we naturally obtain Gaussian/exponential, skewed/unskewed distribution functions, depending on separation as observed in simulations and data. Also, the recently proposed single-Gaussian description of RSD is included in this model as a limiting case, when the bivariate Gaussian is collapsed to a two-dimensional Dirac delta function. We also show how this description naturally allows for the Taylor expansion of 1 + ξS(s) around 1 + ξR(r), which leads to the Kaiser linear formula when truncated to second order, explicating its connection with the moments of the velocity distribution functions. More work is needed, but these results indicate a very promising path to make definitive progress in our programme to improve RSD estimators.

  18. Safe Exploration of State and Action Spaces in Reinforcement Learning

    OpenAIRE

    Garcia, Javier; Fernandez, Fernando

    2014-01-01

    In this paper, we consider the important problem of safe exploration in reinforcement learning. While reinforcement learning is well-suited to domains with complex transition dynamics and high-dimensional state-action spaces, an additional challenge is posed by the need for safe and efficient exploration. Traditional exploration techniques are not particularly useful for solving dangerous tasks, where the trial and error process may lead to the selection of actions whose execution in some sta...

  19. Advanced Solid State Lighting for AES Deep Space Hab Project

    Science.gov (United States)

    Holbert, Eirik

    2015-01-01

    The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in using color therapy to synchronize crew circadian rhythms. Current RGB LED technology does not produce sufficient brightness to adequately address general lighting in addition to color therapy. The intent is to address both through a mix of white and RGB LEDs designing for fully addressable alertness/relaxation levels as well as more dramatic circadian shifts.

  20. Real space renormalization group for spectra and density of states

    International Nuclear Information System (INIS)

    Wiecko, C.; Roman, E.

    1984-09-01

    We discuss the implementation of the Real Space Renormalization Group Decimation Technique for 1-d tight-binding models with long range interactions with or without disorder and for the 2-d regular square lattice. The procedure follows the ideas developed by Southern et al. Some new explicit formulae are included. The purpose of this study is to calculate spectra and densities of states following the procedure developed in our previous work. (author)

  1. Quantum computing based on space states without charge transfer

    International Nuclear Information System (INIS)

    Vyurkov, V.; Filippov, S.; Gorelik, L.

    2010-01-01

    An implementation of a quantum computer based on space states in double quantum dots is discussed. There is no charge transfer in qubits during a calculation, therefore, uncontrolled entanglement between qubits due to long-range Coulomb interaction is suppressed. Encoding and processing of quantum information is merely performed on symmetric and antisymmetric states of the electron in double quantum dots. Other plausible sources of decoherence caused by interaction with phonons and gates could be substantially suppressed in the structure as well. We also demonstrate how all necessary quantum logic operations, initialization, writing, and read-out could be carried out in the computer.

  2. Space-time complexity in solid state models

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1985-01-01

    In this Workshop on symmetry-breaking it is appropriate to include the evolving fields of nonlinear-nonequilibrium systems in which transitions to and between various degrees of ''complexity'' (including ''chaos'') occur in time or space or both. These notions naturally bring together phenomena of pattern formation and chaos and therefore have ramifications for a huge array of natural sciences - astrophysics, plasmas and lasers, hydrodynamics, field theory, materials and solid state theory, optics and electronics, biology, pattern recognition and evolution, etc. Our particular concerns here are with examples from solid state and condensed matter

  3. State space approach to mixed boundary value problems.

    Science.gov (United States)

    Chen, C. F.; Chen, M. M.

    1973-01-01

    A state-space procedure for the formulation and solution of mixed boundary value problems is established. This procedure is a natural extension of the method used in initial value problems; however, certain special theorems and rules must be developed. The scope of the applications of the approach includes beam, arch, and axisymmetric shell problems in structural analysis, boundary layer problems in fluid mechanics, and eigenvalue problems for deformable bodies. Many classical methods in these fields developed by Holzer, Prohl, Myklestad, Thomson, Love-Meissner, and others can be either simplified or unified under new light shed by the state-variable approach. A beam problem is included as an illustration.

  4. The Description of Health Among Iraqi Refugee Women in the United States.

    Science.gov (United States)

    Salman, Khlood F; Resick, Lenore K

    2015-08-01

    The purpose of this study was to understand the description of health among Iraqi women refugees, their health status, and health experiences during resettlement in the United States. Twelve women, ages 21-67 years old, who resettled in the United States during or after 2003 where interviewed. The women described health as a gift determined by God, the ability to function, the absence of physical symptoms, and the need to feel safe and secure in the context of resettlement. Although the Iraqi women valued health, during the resettlement process, seeking safety and feeling secure were the foremost priorities. Findings revealed that this is a vulnerable population which has experienced the violence of war and, as a result, have unique physical, mental, economic, and social concerns related to health. Implications are for a multidisciplinary approach to best meet the unique individual health needs of this vulnerable population.

  5. Space-time description of particle creation in gravitational and electromagnetic fields

    International Nuclear Information System (INIS)

    Mamaev, S.G.; Trunov, N.N.

    1983-01-01

    The dynamics of the creation of pairs of particles from the vacuum in strong time-dependent external fields is studied. The space-time correlation function of the pair is determined. An analysis of the behavior of this function allows one, in particular, to study the pair-creation process, to distinguish between real and virtual particles, etc

  6. Invariant description of solutions of hydrodynamic-type systems in hodograph space: hydrodynamic surfaces

    International Nuclear Information System (INIS)

    Ferapontov, E.V.

    2002-01-01

    Hydrodynamic surfaces are solutions of hydrodynamic-type systems viewed as non-parametrized submanifolds of the hodograph space. We propose an invariant differential-geometric characterization of hydrodynamic surfaces by expressing the curvature form of the characteristic web in terms of the reciprocal invariants. (author)

  7. Solar Pumped High Power Solid State Laser for Space Applications

    Science.gov (United States)

    Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.

    2004-01-01

    Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.

  8. Complex network analysis of state spaces for random Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Shreim, Amer [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Berdahl, Andrew [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Sood, Vishal [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Grassberger, Peter [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Paczuski, Maya [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada)

    2008-01-15

    We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 {<=} K {<=} 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2{sup N}, for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two.

  9. Complex network analysis of state spaces for random Boolean networks

    International Nuclear Information System (INIS)

    Shreim, Amer; Berdahl, Andrew; Sood, Vishal; Grassberger, Peter; Paczuski, Maya

    2008-01-01

    We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 ≤ K ≤ 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2 N , for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two

  10. Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission Description and Science Goals

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide

    2015-01-01

    In recent years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to acquire global observations of total (i.e., intracloud and cloud-to-ground) lightning after 17 years on-orbit. However, TRMM is now low on fuel, so this mission will soon be completed. As a follow on to this mission, a space-qualified LIS built as the flight spare for TRMM has been selected for flight as a science mission on the International Space Station (ISS). The ISS LIS will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of total lightning over the Earth. More specifically, it measures lightning during both day and night, with storm scale resolution (approx. 4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that lightning measured by LIS can be quantitatively related to thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations

  11. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  12. Documentation and archiving of the Space Shuttle wind tunnel test data base. Volume 1: Background and description

    Science.gov (United States)

    Romere, Paul O.; Brown, Steve Wesley

    1995-01-01

    Development of the space shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of space shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the space shuttle wind tunnel program. The two-volume set covers evolution of space shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.

  13. Macroscopic description of complex adaptive networks coevolving with dynamic node states

    Science.gov (United States)

    Wiedermann, Marc; Donges, Jonathan F.; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen

    2015-05-01

    In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.

  14. Mapping from Speech to Images Using Continuous State Space Models

    DEFF Research Database (Denmark)

    Lehn-Schiøler, Tue; Hansen, Lars Kai; Larsen, Jan

    2005-01-01

    In this paper a system that transforms speech waveforms to animated faces are proposed. The system relies on continuous state space models to perform the mapping, this makes it possible to ensure video with no sudden jumps and allows continuous control of the parameters in 'face space...... a subjective point of view the model is able to construct an image sequence from an unknown noisy speech sequence even though the number of training examples are limited.......'. The performance of the system is critically dependent on the number of hidden variables, with too few variables the model cannot represent data, and with too many overfitting is noticed. Simulations are performed on recordings of 3-5 sec.\\$\\backslash\\$ video sequences with sentences from the Timit database. From...

  15. Unified description of astrophysical properties of neutron stars independent of the equation of state

    Science.gov (United States)

    Pappas, George

    2015-12-01

    In recent years, a lot of work was done that has revealed some very interesting properties of neutron stars. One can relate the first few multipole moments of a neutron star, or quantities that can be derived from them, with relations that are independent of the equation of state (EoS). This is a very significant result that has great implications for the description of neutron stars and in particular for the description of the spacetime around them. Additionally, it was recently shown that there is a four-parameter analytic spacetime, known as the two-soliton spacetime, which can accurately capture the properties of the geometry around neutron stars. This allows for the possibility of describing in a unified formalism the astrophysically relevant properties of the spacetime around a neutron star independently of the particulars of the EoS for the matter of the star. More precisely, the description of these astrophysical properties is done using an EoS omniscient spacetime that can describe the exterior of any neutron star. In the present work, we investigate properties such as the location of the innermost stable circular orbit RISCO (or the surface of the star when the latter overcomes the former), the various frequencies of perturbed circular equatorial geodesics, the efficiency of an accretion disc, its temperature distribution, and other properties associated with the emitted radiation from the disc, in a way that holds for all possible choices of a realistic EoS for the neutron star. Furthermore, we provide proof of principle that if one were to measure the right combinations of pairs of these properties, with the additional knowledge of the mass of the neutron star, one could determine the EoS of the star.

  16. Solid State Pathways towards Molecular Complexity in Space

    Science.gov (United States)

    Linnartz, Harold; Bossa, Jean-Baptiste; Bouwman, Jordy; Cuppen, Herma M.; Cuylle, Steven H.; van Dishoeck, Ewine F.; Fayolle, Edith C.; Fedoseev, Gleb; Fuchs, Guido W.; Ioppolo, Sergio; Isokoski, Karoliina; Lamberts, Thanja; Öberg, Karin I.; Romanzin, Claire; Tenenbaum, Emily; Zhen, Junfeng

    2011-12-01

    It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex ``organic'' compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.

  17. A description of jet structure by psub(T)-limited phase space

    International Nuclear Information System (INIS)

    Clegg, A.B.; Donnachie, A.

    1982-01-01

    It is shown that the distribution of momenta of particles in quark jets from electron-positron annihilation and deep inelastic lepton scattering, at energies up to about 14 GeV, can be described by a simple psub(T)-limited phase space model. This model than allows a simple, essentially kinematical, explanation of various experimental results, in particular the observed rise in or 2 > with increasing energy at lower energies, departures from scaling in momentum distributions of charged particles in e + e - annihilation and seagull dips in or 2 > at xsub(F) = 0. (orig.)

  18. Description of surfaces associated with Grassmannian sigma models on Minkowski space

    International Nuclear Information System (INIS)

    Grundland, A.M.; Snobl, L.

    2005-01-01

    We construct and investigate smooth orientable surfaces in su(N) algebras. The structural equations of surfaces associated with Grassmannian sigma models on Minkowski space are studied using moving frames adapted to the surfaces. The first and second fundamental forms of these surfaces as well as the relations between them as expressed in the Gauss-Weingarten and Gauss-Codazzi-Ricci equations are found. The scalar curvature and the mean curvature vector expressed in terms of a solution of Grassmanian sigma model are obtained

  19. On a phase space quantum description of the spherical 2-brane

    International Nuclear Information System (INIS)

    Cordero, R; Turrubiates, F J; Vera, J C

    2014-01-01

    The quantum properties of the two-dimensional relativistic spherical membrane in phase space are analyzed using the Wigner function. Specifically, the true vacuum and rigid bubble nucleation cases are treated. Inspired by quantum cosmology, the Hartle–Hawking, Linde and Vilenkin boundary conditions are employed to calculate the bubble wave functions and their corresponding Wigner functions. Furthermore, the asymptotic behavior of the wave function using three different methods is explored and the Wigner functions are calculated numerically. Some aspects of the semiclassical properties for each boundary condition and their possible implications for quantum cosmology are discussed. (papers)

  20. Validation of ecological state space models using the Laplace approximation

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Albertsen, Christoffer Moesgaard; Berg, Casper Willestofte

    2017-01-01

    Many statistical models in ecology follow the state space paradigm. For such models, the important step of model validation rarely receives as much attention as estimation or hypothesis testing, perhaps due to lack of available algorithms and software. Model validation is often based on a naive...... for estimation in general mixed effects models. Implementing one-step predictions in the R package Template Model Builder, we demonstrate that it is possible to perform model validation with little effort, even if the ecological model is multivariate, has non-linear dynamics, and whether observations...... useful directions in which the model could be improved....

  1. On stationary states of electron beams in drift space

    International Nuclear Information System (INIS)

    Kovalev, N.F.

    2002-01-01

    The article is devoted to studying the conditions of formation and existence of virtual cathodes. The problem on stationary states of the strongly magnetized electron beams in the homogeneous drift channels is discussed. The problem on the planar and coaxial moduli of the drift spaces is considered. The possibility of existing the virtual cathodes in the coaxial tubular beams by the injection currents, smaller than the threshold ones is highly proved. The inaccuracy of results of a number of works, studying the properties of the virtual cathodes in the strongly magnetized electron beams, is shown [ru

  2. Fermi states of Bose systems in three space dimensions

    International Nuclear Information System (INIS)

    Garbaczewski, P.

    1985-01-01

    Recently an exact spectral solution was constructed by Sudarshan and Tata for the (NTHETA) Fermi version of the Lee model. We demonstrate that it provides a partial solution for the related pure Bose spectral problems. Moreover, the (NTHETA) Bose (Bolsterli--Nelson) version of the Lee model is shown to possess Fermi partners, both exhibiting the partial solubility interplay: finding solutions in the Fermi case would presumably be easier than in the original Bose model. Fermi states of the underlying Bose systems in three space dimensions are explicitly identified

  3. Stochastic final-state dynamics of widening entanglement-a possible description of quantum measurement

    International Nuclear Information System (INIS)

    Eriksson, Karl-Erik

    2009-01-01

    The measurement process of quantum mechanics is analysed in the scattering theory of quantum field theory. A matrix of bilinear forms of the scattering amplitudes (the R-matrix) is used as the basic descriptive tool. The measurement process is viewed as a final-state interaction described through a series of linear stochastic mappings of the R-matrix, not changing the observable to be measured. The unknown details of the measurement apparatus enter through the stochasticity of the mappings. Although linear in terms of the R-matrix, the mappings are nonlinear in the density matrix, which is obtainable from the R-matrix through normalization. The eigenstates of the observable are the attractors of the mapping process. This result, known from previous generalizations of quantum mechanics, is obtained here within linear quantum mechanics. The conclusion is that the measurement process can be understood within relativistic quantum field theory itself without any generalization or metatheory.

  4. [Female homicide victims in Recife, Pernambuco State, Brazil, 2009-2010: a descriptive study].

    Science.gov (United States)

    Silva, Maria Arleide da; Cabral Filho, José Eulálio; Amorim, Melania Maria Ramos; Falbo Neto, Gilliatt Hanois

    2013-02-01

    This study investigated the epidemiological profile of female homicide victims in Recife, Pernambuco State, Northeast Brazil. An observational descriptive and prospective study included all homicides from March 2009 to February 2010 with female victims from Recife, 10 to 49 years of age. A questionnaire was used to record socioeconomic, demographic, and biological risk factors. Relatives of the victims were interviewed, and data were collected from death certificates. We identified 60 homicides during the study period. Most victims were adult women with brown skin color and low schooling and low income. Other characteristics included smoking in 39.7%, alcohol and illicit drugs in 48.3% and 24.1%, respectively, and physical and/or sexual violence in the 12 months prior to the murder in 29.3%. Firearms were used in 69% of these homicides.

  5. Phase-space description of wave packet approach to electronic transport in nanoscale systems

    International Nuclear Information System (INIS)

    Szydłowski, D; Wołoszyn, M; Spisak, B J

    2013-01-01

    The dynamics of conduction electrons in resonant tunnelling nanosystems is studied within the phase-space approach based on the Wigner distribution function. The time evolution of the distribution function is calculated from the time-dependent quantum kinetic equation for which an effective numerical method is presented. Calculations of the transport properties of a double-barrier resonant tunnelling diode are performed to illustrate the proposed techniques. Additionally, analysis of the transient effects in the nanosystem is carried out and it is shown that for some range of the bias voltage the temporal variations of electronic current can take negative values. The explanation of this effect is based on the analysis of the time changes of the Wigner distribution function. The decay time of the temporal current oscillations in the nanosystem as a function of the bias voltage is determined. (paper)

  6. Data catalog series for space science and applications flight missions. Volume 5A: Descriptions of astronomy, astrophysics, and solar physics spacecraft and investigations. Volume 5B: Descriptions of data sets from astronomy, astrophysics, and solar physics spacecraft and investigations

    Science.gov (United States)

    Kim, Sang J. (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets of astronomy, astrophysics, solar physics spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  7. State-Space Estimation of Soil Organic Carbon Stock

    Science.gov (United States)

    Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.

    2014-04-01

    Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.

  8. Space science public outreach at Louisiana State University

    Science.gov (United States)

    Guzik, T.; Babin, E.; Cooney, W.; Giammanco, J.; Hartman, D.; McNeil, R.; Slovak, M.; Stacy, J.

    Over the last seven years the Astronomy / Astrophysics group in the Department of Physics and Astronomy of Louisiana State University has developed an exten- sive Space Science education and public outreach program. This program includes the local park district (the Recreation and Park Commission for the Parish of East Baton Rouge, BREC), the local amateur astronomer group (the Baton Rouge As- tronomical Society, BRAS), the Louisiana Arts and Science Museum (LASM), and Southern University (SU, part of the largest HBCU system in the nation). Our effort has directly led to the development of the Highland Road Park Observatory (HRPO, http://www.bro.lsu.edu/hrpo) that supports student astronomy training at LSU and SU, amateur observations and a public program for adults and children, establishment of a series of teacher professional development workshops in astronomy and physics, and the "Robots for Internet Experiences (ROBIE)" project (http://www.bro.lsu.edu/) where we have several instruments (e.g. HAM radio, radio telescope, optical tele- scopes) that can be controlled over the internet by students and teachers in the class- room along with associated lessons developed by a teacher group. In addition, this year the LASM, will be opening a new planetarium / space theater in downtown Baton Rouge, Louisiana. We are currently working to bring live views of the heavens from the HRPO telescope to audiences attending planetarium shows and will be working closely with planetarium staff to develop shows that highlight LSU astronomy / space science research. During the presentation we will provide some details about our in- dividual projects, the overall structure of our program, establishing community links and some of the lessons we learned along the way. Finally, we would like to acknowl- edge NASA, Louisiana State University, the Louisiana Systemic Initiatives Program and the Louisiana Technology Innovation Fund for their support.

  9. Real-space description of semiconducting band gaps in substitutional systems

    International Nuclear Information System (INIS)

    Magri, R.; Zunger, A.

    1991-01-01

    The goal of ''band-gap engineering'' in substitutional lattices is to identify atomic configurations that would give rise to a desired value of the band gap. Yet, current theoretical approaches to the problems, based largely on compilations of band structures for various latice configurations, have not yielded simple rules relating structural motifs to band gaps. We show that the band gap of substitutional AlAs/GaAs lattices can be usefully expanded in terms of a hierarchy of contributions from real-space ''atomic figures'' (pairs, triplets, quadruplets) detemined from first-principles band-structure calculations. Pair figures (up to fourth neighbors) and three-body figures are dominant. In analogy with similar cluster expansions of the total energy, this permits a systematic search among all lattice configurations for those having ''special'' band gaps. This approach enables the design of substitutional systems with certain band-gap properties by assembling atomic figures. As an illustration, we predict that the [0 bar 12]-oriented (AlAs) 1 /(GaAs) 4 /(AlAs) 1 /(GaAs) 2 superlattice has the largest band gap among all Al 0.25 Ga 0.75 As lattices with a maximum of ten cations per unit cell

  10. A Markovian state-space framework for integrating flexibility into space system design decisions

    Science.gov (United States)

    Lafleur, Jarret M.

    The past decades have seen the state of the art in aerospace system design progress from a scope of simple optimization to one including robustness, with the objective of permitting a single system to perform well even in off-nominal future environments. Integrating flexibility, or the capability to easily modify a system after it has been fielded in response to changing environments, into system design represents a further step forward. One challenge in accomplishing this rests in that the decision-maker must consider not only the present system design decision, but also sequential future design and operation decisions. Despite extensive interest in the topic, the state of the art in designing flexibility into aerospace systems, and particularly space systems, tends to be limited to analyses that are qualitative, deterministic, single-objective, and/or limited to consider a single future time period. To address these gaps, this thesis develops a stochastic, multi-objective, and multi-period framework for integrating flexibility into space system design decisions. Central to the framework are five steps. First, system configuration options are identified and costs of switching from one configuration to another are compiled into a cost transition matrix. Second, probabilities that demand on the system will transition from one mission to another are compiled into a mission demand Markov chain. Third, one performance matrix for each design objective is populated to describe how well the identified system configurations perform in each of the identified mission demand environments. The fourth step employs multi-period decision analysis techniques, including Markov decision processes from the field of operations research, to find efficient paths and policies a decision-maker may follow. The final step examines the implications of these paths and policies for the primary goal of informing initial system selection. Overall, this thesis unifies state-centric concepts of

  11. The Case For Space: A Legislative Framework For An Independent United States Space Force

    Science.gov (United States)

    2018-04-01

    example of an organization created by competing bureaucratic interests, ARPA hampered and muddled early service efforts to think clearly about space.12...change the way we think and prepare for that eventuality.”54 As aptly stated recently by Melissa de Zwart, Dean of Law at the University of Adelaide in...NASA Bets on Private Companies to Exploit Moon’s Resources,” Phys.org, 9 February 2014, https://phys.org/news/2014-02-nasa-private-companies-exploit

  12. Description and comparison of pharmacy technician training programs in the United States.

    Science.gov (United States)

    Anderson, Douglas C; Draime, Juanita A; Anderson, Timothy S

    2016-01-01

    To describe pharmacy technician training programs in the United States and to compare pharmacy technician program characteristics between programs with and without a pharmacist on faculty and between programs with different accreditation status. Descriptive, cross-sectional study. Not applicable. United States pharmacy technician programs. Not applicable. Student class size, faculty credentials, coursework components, program length, tuition rates, and admission criteria. Currently, there are more than 698 pharmacy technician programs across 1114 campuses, with complete data available for 216 programs. Programs varied widely in terms of class sizes, faculty credentials, and admission criteria. Programs with pharmacists on faculty were significantly less expensive than were those without pharmacists (P = 0.009). Accreditation had no impact on tuition prices. This is the first study of its kind to describe and characterize pharmacy technician training programs. There is relatively little control of technician training by the profession of pharmacy. The quality of these programs in terms of student outcomes is unknown, and it should be explored. Rigorous debate and discussion is needed regarding the future of pharmacy technician roles and the training required for those roles. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Gestational weight gain and nutritional state of the newborn: a descriptive study

    Directory of Open Access Journals (Sweden)

    Kelen Cristina Ramos dos SANTOS

    Full Text Available The objective was to characterize puerperal women in relation to gestational weight gain and their newborns in accordance with the nutritional state at birth. This is a descriptive, quantitative and retrospective study approved by the Ethics Committee at the institution responsible. The collection of data was from December 2012 to May 2013. The sample was composed of 24 puerperal women and their children. The participants presented an average age of 26.5 (DP=5.4 years, 79.2% white; 91.7% married; 58.3% multiparous; 75% with a level of education between secondary school and higher education; 58.3% with a low family income; 54.1% presented an altered pre-gestational nutritional state and 75% obtained an inadequate gestational weight gain. 79.2% of the newborns were classified as Adequate for Gestational Age (AIG. The newborns classified as Large for Gestational Age (GIG were from pregnant women that had excessive weight gain or were overweight. It was concluded that health professionals should be attentive to nutritional deviations with the intention of avoiding complications for maternal/fetal health.

  14. Microscopic description of pair transfer between two superfluid Fermi systems: Combining phase-space averaging and combinatorial techniques

    Science.gov (United States)

    Regnier, David; Lacroix, Denis; Scamps, Guillaume; Hashimoto, Yukio

    2018-03-01

    In a mean-field description of superfluidity, particle number and gauge angle are treated as quasiclassical conjugated variables. This level of description was recently used to describe nuclear reactions around the Coulomb barrier. Important effects of the relative gauge angle between two identical superfluid nuclei (symmetric collisions) on transfer probabilities and fusion barrier have been uncovered. A theory making contact with experiments should at least average over different initial relative gauge-angles. In the present work, we propose a new approach to obtain the multiple pair transfer probabilities between superfluid systems. This method, called phase-space combinatorial (PSC) technique, relies both on phase-space averaging and combinatorial arguments to infer the full pair transfer probability distribution at the cost of multiple mean-field calculations only. After benchmarking this approach in a schematic model, we apply it to the collision 20O+20O at various energies below the Coulomb barrier. The predictions for one pair transfer are similar to results obtained with an approximated projection method, whereas significant differences are found for two pairs transfer. Finally, we investigated the applicability of the PSC method to the contact between nonidentical superfluid systems. A generalization of the method is proposed and applied to the schematic model showing that the pair transfer probabilities are reasonably reproduced. The applicability of the PSC method to asymmetric nuclear collisions is investigated for the 14O+20O collision and it turns out that unrealistically small single- and multiple pair transfer probabilities are obtained. This is explained by the fact that relative gauge angle play in this case a minor role in the particle transfer process compared to other mechanisms, such as equilibration of the charge/mass ratio. We conclude that the best ground for probing gauge-angle effects in nuclear reaction and/or for applying the proposed

  15. A description of the roles, activities, and skills of clinical nurse specialists in the United States.

    Science.gov (United States)

    Scott, R A

    1999-07-01

    Clinical nurse specialists (CNSs) frequently adapt to meet the challenging and changing needs of patients, families, nurses, physicians, and institutions, thus creating an advance practice role that is problematic in definition and description. The two dilemmas associated with CNSs have been role confusion and ambiguity, and the inability to explicate CNSs' value in economic terms. The purpose of this study was to describe the roles, activities, skills, and the cost-saving and revenue-generating activities of Master's-prepared nurses who function in traditional CNS roles in the United States. A descriptive research design was employed, using Role Theory as a framework to guide the study. The tool used to measure CNS practice included a 68-item instrument. It was pretested and used in two pilot studies. Content validity was supported by three experienced CNSs who were, at the time, in a doctoral nursing program. Instrument reliability was 0.89. Surveys were mailed to all individuals who subscribed (n = 2379) to the Clinical Nurse Specialist Journal. From the convenience sample, 724 CNSs participated, providing a margin of error of +/- 4 percentage points with a 99% confidence level. Regarding the five role components, CNSs reported (listed from most frequently to least frequently) spending time in the role of expert practitioner, educator, consultant, administrator, and researcher. Most of the activities listed in each of the roles were typical of CNS practice. Of the advanced practice roles, the two with the most surprising results were the expert practitioner and administrator roles. The results indicated a trend toward performing advanced skills that have been in the past considered solely medical practice and toward increasing administrative responsibilities. A small number of CNSs were able to identify cost-saving and revenue-generating activities, including the monetary value of the activity.

  16. Hardware Interface Description for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio Ssystem (STRS) Radio

    Science.gov (United States)

    Shalkhauser, Mary Jo W.; Roche, Rigoberto

    2017-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx ML605 Virtex-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek eBox 620-110-FL) running the Ubuntu 12.4 operating system. Figure 1 shows the RIACS platform hardware. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications.The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.

  17. A General State-Space Formulation for Online Scheduling

    Directory of Open Access Journals (Sweden)

    Dhruv Gupta

    2017-11-01

    Full Text Available We present a generalized state-space model formulation particularly motivated by an online scheduling perspective, which allows modeling (1 task-delays and unit breakdowns; (2 fractional delays and unit downtimes, when using discrete-time grid; (3 variable batch-sizes; (4 robust scheduling through the use of conservative yield estimates and processing times; (5 feedback on task-yield estimates before the task finishes; (6 task termination during its execution; (7 post-production storage of material in unit; and (8 unit capacity degradation and maintenance. Through these proposed generalizations, we enable a natural way to handle routinely encountered disturbances and a rich set of corresponding counter-decisions. Thereby, greatly simplifying and extending the possible application of mathematical programming based online scheduling solutions to diverse application settings. Finally, we demonstrate the effectiveness of this model on a case study from the field of bio-manufacturing.

  18. Hybrid state-space time integration of rotating beams

    DEFF Research Database (Denmark)

    Krenk, Steen; Nielsen, Martin Bjerre

    2012-01-01

    An efficient time integration algorithm for the dynamic equations of flexible beams in a rotating frame of reference is presented. The equations of motion are formulated in a hybrid state-space format in terms of local displacements and local components of the absolute velocity. With inspiration...... of the system rotation enter via global operations with the angular velocity vector. The algorithm is based on an integrated form of the equations of motion with energy and momentum conserving properties, if a kinematically consistent non-linear formulation is used. A consistent monotonic scheme for algorithmic...... energy dissipation in terms of local displacements and velocities, typical of structural vibrations, is developed and implemented in the form of forward weighting of appropriate mean value terms in the algorithm. The algorithm is implemented for a beam theory with consistent quadratic non...

  19. Connections on the state-space over conformal field theories

    International Nuclear Information System (INIS)

    Ranganathan, K.; Sonoda, H.; Zwiebach, B.

    1994-01-01

    Motivated by the problem of background independence of closed string field theory we study geometry on the infinite vector bundle of local fields over the space of conformal field theories (CFTs). With any connection we can associate an excluded domain D for the integral of marginal operators, and an operator one-form ω μ . The pair (D, ω μ ) determines the covariant derivative of any correlator of local fields. We obtain interesting classes of connections in which ω μ 's can be written in terms of CFT data. For these connections we compute their curvatures in terms of four-point correlators, D, and ω μ . Among these connections three are of particular interest. A flat, metric compatible connection Γ, and connections c and c with non-vanishing curvature, with the latter metric compatible. The flat connection cannot be used to do parallel transport over a finite distance. Parallel transport with either c or c, however, allows us to construct a CFT in the state-space of another CFT a finite distance away. The construction is given in the form of perturbation theory manifestly free of divergences. (orig.)

  20. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    Science.gov (United States)

    Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.

    2015-01-01

    This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  1. Few-Body Techniques Using Coordinate Space for Bound and Continuum States

    Science.gov (United States)

    Garrido, E.

    2018-05-01

    These notes are a short summary of a set of lectures given within the frame of the "Critical Stability of Quantum Few-Body Systems" International School held in the Max Planck Institute for the Physics of Complex Systems (Dresden). The main goal of the lectures has been to provide the basic ingredients for the description of few-body systems in coordinate space. The hyperspherical harmonic and the adiabatic expansion methods are introduced in detail, and subsequently used to describe bound and continuum states. The expressions for the cross sections and reaction rates for three-body processes are derived. The case of resonant scattering and the complex scaling method as a tool to obtain the resonance energy and width is also introduced.

  2. A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations

    DEFF Research Database (Denmark)

    Hansen, M.H.; Gaunaa, Mac; Aagaard Madsen, Helge

    2004-01-01

    This report contains a description of a Beddoes-Leishman type dynamic stall model in both a state-space and an indicial function formulation. The model predicts the unsteady aerodynamic forces and moment on an airfoil section undergoing arbitrary motionin heave, lead-lag, and pitch. The model...... features, such as overshoot of the lift, in the stall region. The linearized model is shown to give identicalresults to the full model for small amplitude oscillations. Furthermore, it is shown that the response of finite thichkness airfoils can be reproduced to a high accuracy by the use of specific...... is carried out by comparing the response of the model with inviscid solutions and observing the general behavior of the model using known airfoil data as input. Theproposed dynamic model gives results identical to inviscid solutions within the attached-flow region; and it exhibits the expected dynamic...

  3. Space-group approach to two-electron states in unconventional superconductors

    International Nuclear Information System (INIS)

    Yarzhemsky, V. G.

    2008-01-01

    The direct application of the space-group representation theory, makes possible to obtain limitations for the symmetry of SOP on lines and planes of symmetry in one-electron Brillouin zone. In the case of highly symmetric UPt 3 only theoretical nodal structure of IR E 2u is in agreement with all the experimental results. On the other hand, in the case of high-T c superconductors the two electron description of Cooper pairs in D 2h symmetry is not sufficient to describe experimental nodal structure. It was shown that in this case, the nodal structure is the result of underlying interactions between two-electron states and hidden symmetry D-4 h . (author)

  4. Semiclassical description of quantum rotator in terms of SU(2) coherent states

    International Nuclear Information System (INIS)

    Gitman, D M; Petrusevich, D A; Shelepin, A L

    2013-01-01

    We introduce coordinates of the rigid body (rotator) using mutual positions between body-fixed and space-fixed reference frames. Wave functions that depend on such coordinates can be treated as scalar functions of the group SU(2). Irreducible representations of the group SU(2) × SU(2) in the space of such functions describe their possible transformations under independent rotations of the both reference frames. We construct sets of the corresponding group SU(2) × SU(2) Perelomov coherent states (CS) with a fixed angular momentum j of the rotator as special orbits of the latter group. Minimization of different uncertainty relations is discussed. The classical limit corresponds to the limit j → ∞. Considering Hamiltonians of rotators with different characteristics, we study the time evolution of the constructed CS. In some cases, the CS time evolution is completely or partially reduced to their parameter time evolution. If these parameters are chosen as Euler angles, then they obey the Euler equations in the classical limit. Quantum corrections to the motion of the quantum rotator can be found from exact equations on the CS parameters. (paper)

  5. Construction of spaces of kinematic quantum states for field theories via projective techniques

    International Nuclear Information System (INIS)

    Okołów, Andrzej

    2013-01-01

    We present a method of constructing a space of quantum states for a field theory: given phase space of a theory, we define a family of physical systems each possessing a finite number of degrees of freedom, next we define a space of quantum states for each finite system, finally using projective techniques we organize all these spaces into a space of quantum states which corresponds to the original phase space. This construction is kinematic in this sense that it bases merely on the structure of the phase space of a theory and does not take into account possible constraints on the space. The construction is a generalization of a construction by Kijowski—the latter one is limited to theories of linear phase spaces, while the former one is free of this limitation. The method presented in this paper enables to construct a space of quantum states for the teleparallel equivalent of general relativity. (paper)

  6. Description of Rhodnius marabaensis sp. n. (Hemiptera, Reduviidae, Triatominae) from Pará State, Brazil

    Science.gov (United States)

    Souza, Eder dos Santos; Von Atzingen, Noé Carlos Barbosa; Furtado, Maria Betânia; de Oliveira, Jader; Nascimento, Juliana Damieli; Vendrami, Daniel Pagotto; Gardim, Sueli; da Rosa, João Aristeu

    2016-01-01

    Abstract Rhodnius marabaensis sp. n. was collected on 12 May 2014 in the Murumurú Environmental Reserve in the city of Marabá, Pará State, Brazil. This study was based on previous consultation of morphological descriptions of 19 Rhodnius species and compared to the identification key for the genus Rhodnius. The examination included specimens from 18 Rhodnius species held in the Brazilian National and International Triatomine Taxonomy Reference Laboratory in the Oswaldo Cruz Institute in Rio de Janeiro, Brazil. The morphological characteristics of the head, thorax, abdomen, genitalia, and eggs have been determined. Rhodnius prolixus and Rhodnius robustus were examined in more detail because the BLAST analysis of a cyt-b sequence shows they are closely related to the new species, which also occurs in the northern region of Brazil. The most notable morphological features that distinguish Rhodnius marabaensis sp. n. are the keel-shaped apex of the head, the length of the second segment of the antennae, the shapes of the prosternum, mesosternum and metasternum, the set of spots on the abdomen, the male genitalia, the posterior and ventral surfaces of the external female genitalia, and the morphological characteristics of the eggs. Rhodnius jacundaensis Serra, Serra & Von Atzingen (1980) nomen nudum specimens deposited at the Maraba Cultural Center Foundation - MCCF were examined and considered as a synonym of Rhodnius marabaensis sp. n. PMID:27833419

  7. The State of Veterinary Dental Education in North America, Canada, and the Caribbean: A Descriptive Study.

    Science.gov (United States)

    Anderson, Jamie G; Goldstein, Gary; Boudreaux, Karen; Ilkiw, Jan E

    Dental disease is important in the population of pets seen by veterinarians. Knowledge and skills related to oral disease and dentistry are critical entry-level skills expected of graduating veterinarians. A descriptive survey on the state of veterinary dental education was sent to respondents from 35 veterinary schools in the United States, Canada, and the Caribbean. Using the online SurveyMonkey application, respondents answered up to 26 questions. Questions were primarily designed to determine the breadth and depth of veterinary dental education from didactic instruction in years 1-3 to the clinical year programs. There was an excellent response to the survey with 86% compliance. Learning opportunities for veterinary students in years 1-3 in both the lecture and laboratory environments were limited, as were the experiences in the clinical year 4, which were divided between community-type practices and veterinary dentistry and oral surgery services. The former provided more hands-on clinical experience, including tooth extraction, while the latter focused on dental charting and periodontal debridement. Data on degrees and certifications of faculty revealed only 12 programs with board-certified veterinary dentists. Of these, seven veterinary schools had residency programs in veterinary dentistry at the time of the survey. Data from this study demonstrate the lack of curricular time dedicated to dental content in the veterinary schools participating in the survey, thereby suggesting the need for veterinary schools to address the issue of veterinary dental education. By graduation, new veterinarians should have acquired the needed knowledge and skills to meet both societal demands and professional expectations.

  8. A d-person Differential Game with State Space Constraints

    International Nuclear Information System (INIS)

    Ramasubramanian, S.

    2007-01-01

    We consider a network of d companies (insurance companies, for example) operating under a treaty to diversify risk. Internal and external borrowing are allowed to avert ruin of any member of the network. The amount borrowed to prevent ruin is viewed upon as control. Repayment of these loans entails a control cost in addition to the usual costs. Each company tries to minimize its repayment liability. This leads to a d -person differential game with state space constraints. If the companies are also in possible competition a Nash equilibrium is sought. Otherwise a utopian equilibrium is more appropriate. The corresponding systems of HJB equations and boundary conditions are derived. In the case of Nash equilibrium, the Hamiltonian can be discontinuous; there are d interlinked control problems with state constraints; each value function is a constrained viscosity solution to the appropriate discontinuous HJB equation. Uniqueness does not hold in general in this case. In the case of utopian equilibrium, each value function turns out to be the unique constrained viscosity solution to the appropriate HJB equation. Connection with Skorokhod problem is briefly discussed

  9. State-space representation of the reactor dynamics equations

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1995-01-01

    This paper describes a novel formulation of the reactor space-independent kinetics equations. The intent is to present these equations in a form that is both compatible with modern control theory and mathematically rigorous. It is desired to write the kinetics equations in the standard state variable representation, x = Ax, where x is the state vector and A is the system matrix and, at the same time, avoid mathematical compromises such as the linearization of an equation about a particular operating point. The advantage to this proposed formulation is that it may allow the lateral transfer of existing control concepts, some that have been developed for other fields, to the operation of nuclear reactors. For example, sliding mode control has been developed to allow robots to function in a robust manner in the presence of changes in the system model. This is necessary because a robot is expected to be capable of picking up an object of unknown mass and moving that object along a specified trajectory. The variability of the object's mass introduces an uncertainty into the system model that is used to deduce the appropriate control action. Thus, the robot controller must be made robust against such variations. Sliding mode control is one means of accomplishing this. A reactor controller might benefit from the same concept if its objective were to cause the reactor power to move along a demanded trajectory despite the presence of some uncertainty in the net amount of reactivity that is present

  10. Principle of minimum distance in space of states as new principle in quantum physics

    International Nuclear Information System (INIS)

    Ion, D. B.; Ion, M. L. D.

    2007-01-01

    The mathematician Leonhard Euler (1707-1783) appears to have been a philosophical optimist having written: 'Since the fabric of universe is the most perfect and is the work of the most wise Creator, nothing whatsoever take place in this universe in which some relation of maximum or minimum does not appear. Wherefore, there is absolutely no doubt that every effect in universe can be explained as satisfactory from final causes themselves the aid of the method of Maxima and Minima, as can from the effective causes'. Having in mind this kind of optimism in the papers mentioned in this work we introduced and investigated the possibility to construct a predictive analytic theory of the elementary particle interaction based on the principle of minimum distance in the space of quantum states (PMD-SQS). So, choosing the partial transition amplitudes as the system variational variables and the distance in the space of the quantum states as a measure of the system effectiveness, we obtained the results presented in this paper. These results proved that the principle of minimum distance in space of quantum states (PMD-SQS) can be chosen as variational principle by which we can find the analytic expressions of the partial transition amplitudes. In this paper we present a description of hadron-hadron scattering via principle of minimum distance PMD-SQS when the distance in space of states is minimized with two directional constraints: dσ/dΩ(±1) = fixed. Then by using the available experimental (pion-nucleon and kaon-nucleon) phase shifts we obtained not only consistent experimental tests of the PMD-SQS optimality, but also strong experimental evidences for new principles in hadronic physics such as: Principle of nonextensivity conjugation via the Riesz-Thorin relation (1/2p + 1/2q = 1) and a new Principle of limited uncertainty in nonextensive quantum physics. The strong experimental evidence obtained here for the nonextensive statistical behavior of the [J,

  11. Data catalog series for space science and applications flight missions. Volume 3B: Descriptions of data sets from low- and medium-altitude scientific spacecraft and investigations

    Science.gov (United States)

    Jackson, John E. (Editor); Horowitz, Richard (Editor)

    1986-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from low and medium altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  12. Data catalog series for space science and applications flight missions. Volume 1B: Descriptions of data sets from planetary and heliocentric spacecraft and investigations

    Science.gov (United States)

    Horowitz, Richard (Compiler); Jackson, John E. (Compiler); Cameron, Winifred S. (Compiler)

    1987-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  13. Data Catalog Series for Space Science and Applications Flight Missions. Volume 2B; Descriptions of Data Sets from Geostationary and High-Altitude Scientific Spacecraft and Investigations

    Science.gov (United States)

    Schofield, Norman J. (Editor); Parthasarathy, R. (Editor); Hills, H. Kent (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from geostationary and high altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  14. United States Changing Demographics - English/Spanish Space Education

    Science.gov (United States)

    Leon, R.

    2002-01-01

    Accordingly the United States Census Bureau, the ethnic group adding the largest number of people to the national population is the Hispanic exceeding 12 percent of the population and growing by almost 60 percent between 1990 and 2000. The status of the nation's educational system with respect to Hispanic students is perhaps one of the most influential issues facing the largest economy of the world. The low income, lack of language skills, highest drop-out rate in the nation, are some of the reasons why Hispanics are less likely to receive a university degree than any other ethical group. In short, the government requires to implement compensatory programs and bilingual education to ensure global leadership. Because of ongoing immigration, Spanish persists longer among Hispanics than it did among other immigrant groups. Spanish is the fourth most spoken language in the world after Mandarin, Hindustani and English. Although not all U.S. Hispanics speak Spanish, almost all U.S. Spanish speakers are Hispanics. This paper is intended to outline the challenging implementation of a bilingual education project affiliated to NASA Johnson Space Center encouraging greater academic success of Hispanics in engineering, math and science. The prospective project covers the overall role of space activities in the development of science and technology, socioeconomic issues and international cooperation. An existent JSC project is the starting stage to keep on developing an interactive video teleconference and web-media technology and produce stimulating learning products in English and Spanish for students and teachers across the nation and around the world.

  15. Analysis of Life Histories: A State Space Approach

    Directory of Open Access Journals (Sweden)

    Rajulton, Fernando

    2001-01-01

    Full Text Available EnglishThe computer package LIFEHIST written by the author, is meant for analyzinglife histories through a state-space approach. Basic ideas on which the various programs have beenbuilt are described in this paper in a non-mathematical language. Users can use various programs formultistate analyses based on Markov and semi-Markov frameworks and sequences of transitions implied inlife histories. The package is under constant revision and programs for using a few specific modelsthe author thinks will be useful for analyzing longitudinal data will be incorporated in the nearfuture.FrenchLe système d'ordinateur LIFEHIST écrit par l'auteur est établi pour analyser desévénements au cours de la vie par une approche qui tient compte des états aucours du temps. Les idées fondamentales à la base des divers programmes dumodule sont décrites dans un langage non-mathématique. Le systèmeLIFEHIST peut être utilisé pour des analyses Markov et semi-Markov desséquences d’événements au cours de la vie. Le module est sous révisionconstante, et des programmes que l’auteur compte ajouter pour l'usage dedonnées longitudinales sont décrit.

  16. A Knowledge Discovery from POS Data using State Space Models

    Science.gov (United States)

    Sato, Tadahiko; Higuchi, Tomoyuki

    The number of competing-brands changes by new product's entry. The new product introduction is endemic among consumer packaged goods firm and is an integral component of their marketing strategy. As a new product's entry affects markets, there is a pressing need to develop market response model that can adapt to such changes. In this paper, we develop a dynamic model that capture the underlying evolution of the buying behavior associated with the new product. This extends an application of a dynamic linear model, which is used by a number of time series analyses, by allowing the observed dimension to change at some point in time. Our model copes with a problem that dynamic environments entail: changes in parameter over time and changes in the observed dimension. We formulate the model with framework of a state space model. We realize an estimation of the model using modified Kalman filter/fixed interval smoother. We find that new product's entry (1) decreases brand differentiation for existing brands, as indicated by decreasing difference between cross-price elasticities; (2) decreases commodity power for existing brands, as indicated by decreasing trend; and (3) decreases the effect of discount for existing brands, as indicated by a decrease in the magnitude of own-brand price elasticities. The proposed framework is directly applicable to other fields in which the observed dimension might be change, such as economic, bioinformatics, and so forth.

  17. Nonlinear State Space Modeling and System Identification for Electrohydraulic Control

    Directory of Open Access Journals (Sweden)

    Jun Yan

    2013-01-01

    Full Text Available The paper deals with nonlinear modeling and identification of an electrohydraulic control system for improving its tracking performance. We build the nonlinear state space model for analyzing the highly nonlinear system and then develop a Hammerstein-Wiener (H-W model which consists of a static input nonlinear block with two-segment polynomial nonlinearities, a linear time-invariant dynamic block, and a static output nonlinear block with single polynomial nonlinearity to describe it. We simplify the H-W model into a linear-in-parameters structure by using the key term separation principle and then use a modified recursive least square method with iterative estimation of internal variables to identify all the unknown parameters simultaneously. It is found that the proposed H-W model approximates the actual system better than the independent Hammerstein, Wiener, and ARX models. The prediction error of the H-W model is about 13%, 54%, and 58% less than the Hammerstein, Wiener, and ARX models, respectively.

  18. Holography and quantum states in elliptic de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, Illan F. [Department of Physics, University of California,Berkeley, CA, 94720 (United States); Neiman, Yasha [Perimeter Institute for Theoretical Physics,31 Caroline Street N, Waterloo, ON, N2L 2Y5 (Canada)

    2015-12-10

    We outline a program for interpreting the higher-spin dS/CFT model in terms of physics in the causal patch of a dS observer. The proposal is formulated in “elliptic” de Sitter space dS{sub 4}/ℤ{sub 2}, obtained by identifying antipodal points in dS{sub 4}. We discuss recent evidence that the higher-spin model is especially well-suited for this, since the antipodal symmetry of bulk solutions has a simple encoding on the boundary. For context, we test some other (free and interacting) theories for the same property. Next, we analyze the notion of quantum field states in the non-time-orientable dS{sub 4}/ℤ{sub 2}. We compare the physics seen by different observers, with the outcome depending on whether they share an arrow of time. Finally, we implement the marriage between higher-spin holography and observers in dS{sub 4}/ℤ{sub 2}, in the limit of free bulk fields. We succeed in deriving an observer’s operator algebra and Hamiltonian from the CFT, but not her S-matrix. We speculate on the extension of this to interacting higher-spin theory.

  19. Three-body problem in d-dimensional space: Ground state, (quasi)-exact-solvability

    Science.gov (United States)

    Turbiner, Alexander V.; Miller, Willard; Escobar-Ruiz, M. A.

    2018-02-01

    As a straightforward generalization and extension of our previous paper [A. V. Turbiner et al., "Three-body problem in 3D space: Ground state, (quasi)-exact-solvability," J. Phys. A: Math. Theor. 50, 215201 (2017)], we study the aspects of the quantum and classical dynamics of a 3-body system with equal masses, each body with d degrees of freedom, with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories (which are in the interaction plane) in the classical case are of this type. The quantum (and classical) Hamiltonian for which these states are eigenfunctions is derived. It corresponds to a three-dimensional quantum particle moving in a curved space with special d-dimension-independent metric in a certain d-dependent singular potential, while at d = 1, it elegantly degenerates to a two-dimensional particle moving in flat space. It admits a description in terms of pure geometrical characteristics of the interaction triangle which is defined by the three relative distances. The kinetic energy of the system is d-independent; it has a hidden sl(4, R) Lie (Poisson) algebra structure, alternatively, the hidden algebra h(3) typical for the H3 Calogero model as in the d = 3 case. We find an exactly solvable three-body S3-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly solvable three-body sextic polynomial type potential with singular terms. For both models, an extra first order integral exists. For d = 1, the whole family of 3-body (two-dimensional) Calogero-Moser-Sutherland systems as well as the Tremblay-Turbiner-Winternitz model is reproduced. It is shown that a straightforward generalization of the 3-body (rational) Calogero model to d > 1 leads to two primitive quasi

  20. A new cyber security risk evaluation method for oil and gas SCADA based on factor state space

    International Nuclear Information System (INIS)

    Yang, Li; Cao, Xiedong; Li, Jie

    2016-01-01

    Based on comprehensive analysis of the structure and the potential safety problem of oil and gas SCADA(Supervisor control and data acquisition) network, aiming at the shortcomings of traditional evaluation methods, combining factor state space and fuzzy comprehensive evaluation method, a new network security risk evaluation method of oil and gas SCADA is proposed. First of all, formal description of factor state space and its complete mathematical definition were presented; secondly, factor fuzzy evaluation steps were discussed; then, using analytic hierarchy method, evaluation index system for oil and gas SCADA system was established, the index weights of all factors were determined by two-two comparisons; structure design of three layers in reasoning machine was completed. Experiments and tests show that the proposed method is accurate, reliable and practical. Research results provide the template and the new method for the other industries.

  1. Identification of a class of nonlinear state-space models using RPE techniques

    DEFF Research Database (Denmark)

    Zhou, W. W.; Blanke, Mogens

    1986-01-01

    The recursive prediction error methods in state-space form have been efficiently used as parameter identifiers for linear systems, and especially Ljung's innovations filter using a Newton search direction has proved to be quite ideal. In this paper, the RPE method in state-space form is developed...... a quite convincing performance of the filter as combined parameter and state estimator....

  2. State and parameter estimation of state-space model with entry-wise correlated uniform noise

    Czech Academy of Sciences Publication Activity Database

    Pavelková, Lenka; Kárný, Miroslav

    2014-01-01

    Roč. 28, č. 11 (2014), s. 1189-1205 ISSN 0890-6327 R&D Projects: GA TA ČR TA01030123; GA ČR GA13-13502S Institutional research plan: CEZ:AV0Z1075907 Keywords : state-space models * bounded noise * filtering problems * estimation algorithms * uncertain dynamic systems Subject RIV: BC - Control Systems Theory Impact factor: 1.346, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/pavelkova-0422958.pdf

  3. Solid State Energy Conversion for Deep Space Power

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermophotovoltaic (TPV) devices employed in static radioisotope generators show great promise for highly efficient, reliable, and resilient power generation for...

  4. An application of gain-scheduled control using state-space interpolation to hydroactive gas bearings

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane; Camino, Juan F.; Niemann, Hans Henrik

    2016-01-01

    with a gain-scheduling strategy using state-space interpolation, which avoids both the performance loss and the increase of controller order associated to the Youla parametrisation. The proposed state-space interpolation for gain-scheduling is applied for mass imbalance rejection for a controllable gas...... bearing scheduled in two parameters. Comparisons against the Youla-based scheduling demonstrate the superiority of the state-space interpolation....

  5. Coulomb plus strong interaction bound states - momentum space numerical solutions

    International Nuclear Information System (INIS)

    Heddle, D.P.; Tabakin, F.

    1985-01-01

    The levels and widths of hadronic atoms are calculated in momentum space using an inverse algorithm for the eigenvalue problem. The Coulomb singularity is handled by the Lande substraction method. Relativistic, nonlocal, complex hadron-nucleus interactions are incorporated as well as vacuum polarization and finite size effects. Coordinate space wavefunctions are obtained by employing a Fourier Bessel transformation. (orig.)

  6. The State of Play: US Space Systems Competitiveness

    Science.gov (United States)

    Zapata, Edgar

    2017-01-01

    Collects space systems cost and related data (flight rate, payload, etc.) over time. Gathers only public data. Non-recurring and recurring. Minimal data processing. Graph, visualize, add context. Focus on US space systems competitiveness. Keep fresh update as data arises, launches occur, etc. Keep fresh focus on recent data, indicative of the future.

  7. Formulating state space models in R with focus on longitudinal regression models

    DEFF Research Database (Denmark)

    Dethlefsen, Claus; Lundbye-Christensen, Søren

      We provide a language for formulating a range of state space models. The described methodology is implemented in the R -package sspir available from cran.r-project.org . A state space model is specified similarly to a generalized linear model in R , by marking the time-varying terms in the form......  We provide a language for formulating a range of state space models. The described methodology is implemented in the R -package sspir available from cran.r-project.org . A state space model is specified similarly to a generalized linear model in R , by marking the time-varying terms...

  8. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    Science.gov (United States)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  9. State space modeling of time-varying contemporaneous and lagged relations in connectivity maps.

    Science.gov (United States)

    Molenaar, Peter C M; Beltz, Adriene M; Gates, Kathleen M; Wilson, Stephen J

    2016-01-15

    Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network parameters are constant across time), but this assumption does not always hold true. The authors provide a description of a new approach for simultaneously detecting time-varying (or dynamic) contemporaneous and lagged relations in brain connectivity maps. Specifically, they use a novel raw data likelihood estimation technique (involving a second-order extended Kalman filter/smoother embedded in a nonlinear optimizer) to determine the variances of the random walks associated with state space model parameters and their autoregressive components. The authors illustrate their approach with simulated and blood oxygen level-dependent functional magnetic resonance imaging data from 30 daily cigarette smokers performing a verbal working memory task, focusing on seven regions of interest (ROIs). Twelve participants had dynamic directed functional connectivity maps: Eleven had one or more time-varying contemporaneous ROI state loadings, and one had a time-varying autoregressive parameter. Compared to smokers without dynamic maps, smokers with dynamic maps performed the task with greater accuracy. Thus, accurate detection of dynamic brain processes is meaningfully related to behavior in a clinical sample. Published by Elsevier Inc.

  10. A classification and description of the shrubland vegetation on Platberg, Eastern Free State, South Africa

    Directory of Open Access Journals (Sweden)

    Robert F. Brand

    2009-10-01

    Conservation implications: The floristic composition and community analysis proves Platberg to be an important centre for plant diversity, with high species richness, a variety of habitats, and complex ecosystems. This description of the woodland communities can be used to assist with the setting of criteria for the management and protection of inselbergs in the province.

  11. Altered states, altered spaces : architecture, space and landscape in the film and television of Stanley Kubrick and Ken Russell

    OpenAIRE

    Melia, Matthew

    2017-01-01

    Altered States, Altered Spaces: Architecture, Landscape and Space in the work of Stanley Kubrick and Ken Russell.\\ud \\ud Stanley Kubrick and Ken Russell, at first, seem like unlikely bedfellows for a critical comparison: the combined Baroque, Mannerist, frequently excessive and romantic nature of Russell’s screen standing in apparent contrast to the structure, order, organisation, Brutalism and spatial complexity of Kubrick’s.\\ud \\ud In an online blogpost1 (2007) Russell biographer Paul Sutto...

  12. Geodesics in thermodynamic state spaces of quantum gases

    International Nuclear Information System (INIS)

    Oshima, H.; Obata, T.; Hara, H.

    2002-01-01

    The geodesics for ideal quantum gases are numerically studied. We show that 30 ideal quantum state is connected to an ideal classical state by geodesics and that the bundle of geodesics for Bose gases have a tendency of convergence

  13. A State Space Model for the Wood Chip Refining Model

    Directory of Open Access Journals (Sweden)

    David Di Ruscio

    1997-07-01

    Full Text Available A detailed dynamic model of the fibre size distribution between the refiner discs, distributed along the refiner radius, is presented. Both one- and two-dimensional descriptions for the fibre or shive geometry are given. It is shown that this model may be simplified and that analytic solutions exist under non-restrictive assumptions. A direct method for the recursive estimation of unknown parameters is presented. This method is applicable to linear or linearized systems which have a triangular structure.

  14. On the Calculation of Quantum Mechanical Ground States from Classical Geodesic Motion on Certain Spaces of Constant Negative Curvature

    CERN Document Server

    Tomaschitz, R

    1989-01-01

    We consider geodesic motion on three-dimensional Riemannian manifolds of constant negative curvature, topologically equivalent to S x ]0,1[, S a compact surface of genus two. To those trajectories which are bounded and recurrent in both directions of the time evolution a fractal limit set is associated whose Hausdorff dimension is intimately connected with the quantum mechanical energy ground state, determined by the Schrodinger operator on the manifold. We give a rather detailed and pictorial description of the hyperbolic spaces we have in mind, discuss various aspects of classical and quantum mechanical motion on them as far as they are needed to establish the connection between energy ground state and Hausdorff dimension and give finally some examples of ground state calculations in terms of Hausdorff dimensions of limit sets of classical trajectories.

  15. On the calculation of quantum mechanical ground states from classical geodesic motion on certain spaces of constant negative curvature

    International Nuclear Information System (INIS)

    Tomaschitz, R.

    1989-01-01

    We consider geodesic motion on three-dimensional Riemannian manifolds of constant negative curvature, topologically equivalent to S x ]0,1[, S a compact surface of genus two. To those trajectories which are recurrent in both directions of the time evolution t → +∞, t → -∞ a fractal limit set is associated whose Hausdorff dimension is intimately connected with the quantum mechanical energy ground state, determined by the Schroedinger operator on the manifold. We give a rather detailed and pictorial description of the hyperbolic spaces we have in mind, discuss various aspects of classical and quantum mechanical motion on them as far as they are needed to establish the connection between energy ground state and Hausdorff dimension and give finally some examples of ground state calculations in terms of Hausdorff dimensions of limit sets of classical trajectories. (orig.)

  16. Phase space structure of generalized Gaussian cat states

    International Nuclear Information System (INIS)

    Nicacio, Fernando; Maia, Raphael N.P.; Toscano, Fabricio; Vallejos, Raul O.

    2010-01-01

    We analyze generalized Gaussian cat states obtained by superposing arbitrary Gaussian states. The structure of the interference term of the Wigner function is always hyperbolic, surviving the action of a thermal reservoir. We also consider certain superpositions of mixed Gaussian states. An application to semiclassical dynamics is discussed.

  17. Quantum mechanics. An epistemological revolution that is revealed in the description of micro-states

    International Nuclear Information System (INIS)

    Mugur-Schachter, M.

    2009-01-01

    The author deals with the issue of why quantum mechanics is so difficult to understand. The answer is identified here: the quantum formalism includes the principles of a radical revolution in epistemology. The development of these principles has led to an entire re-shaping of how to generate knowledge in sciences. It is a description of what lays behind quantum mechanics in terms of conceptualization. (A.C.)

  18. On the description of electronic final states in the K-shell ionization by protons

    International Nuclear Information System (INIS)

    Aashamar, O.; Kocbach, L.

    1976-06-01

    The choice of free electronic wave functions in the description of K-shell ionization by protons is discussed. The previously known discrepancies between PWBA and SCA results are shown to be entirely due to two different choices of electronic wave functions. Calculations in the SCA framework with Hartree-Fock-Slater wave functions are reported. Some general features of the SCA calculations are discussed. (Auth.)

  19. Formulating state space models in R with focus on longitudinal regression models

    DEFF Research Database (Denmark)

    Dethlefsen, Claus; Lundbye-Christensen, Søren

    2006-01-01

    We provide a language for formulating a range of state space models with response densities within the exponential family. The described methodology is implemented in the R-package sspir. A state space model is specified similarly to a generalized linear model in R, and then the time-varying terms...

  20. Problem of short-term forecasting of near-earth space state

    International Nuclear Information System (INIS)

    Eselevich, V.G.; Ashmanets, V.I.; Startsev, S.A.

    1996-01-01

    The paper deals with actual and practically important problem of investigation and forecasting of state condition during magnetic storms. The available methods of forecasting of near-earth space state are analyzed. Forecasting of magnetic storms was conducted for control of space vehicles. Quasi-determinate method of magnetic storm forecasting is suggested. 13 refs., 3 figs

  1. A descriptive model of resting-state networks using Markov chains.

    Science.gov (United States)

    Xie, H; Pal, R; Mitra, S

    2016-08-01

    Resting-state functional connectivity (RSFC) studies considering pairwise linear correlations have attracted great interests while the underlying functional network structure still remains poorly understood. To further our understanding of RSFC, this paper presents an analysis of the resting-state networks (RSNs) based on the steady-state distributions and provides a novel angle to investigate the RSFC of multiple functional nodes. This paper evaluates the consistency of two networks based on the Hellinger distance between the steady-state distributions of the inferred Markov chain models. The results show that generated steady-state distributions of default mode network have higher consistency across subjects than random nodes from various RSNs.

  2. Descriptions of health states associated with increasing severity and frequency of hypoglycemia: a patient-level perspective

    Directory of Open Access Journals (Sweden)

    Harris SB

    2013-09-01

    Full Text Available Stewart B Harris,1 Kamlesh Khunti,2 Mona Landin-Olsson,3 Claus B Galbo-Jørgensen,4 Mette Bøgelund,4 Barrie Chubb,5 Jens Gundgaard,6 Marc Evans71Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; 2Diabetes Research Unit, University of Leicester, Leicester, UK; 3Department of Medicine, Helsingborg Hospital, Lund University, Lund, Sweden; 4Incentive, Holte Stationsvej, Holte, Denmark; 5EU Health Economics and Outcomes Research, Novo Nordisk Ltd, Crawley, UK; 6Health Economics and HTA, Novo Nordisk A/S, Søborg, Denmark; 7Department of Diabetes, University Hospital Llandough, Cardiff, UKAims: We sought to develop descriptions of health states associated with daytime and nocturnal hypoglycemia in a structured fashion from the patient's perspective under different combinations of severity and frequency of hypoglycemic events.Methods: An expert meeting followed by two patient focus groups was used to develop comprehensive descriptions of acute consequences of severe and non-severe, daytime and nocturnal hypoglycemia. Patients with diabetes (type 1 = 85, type 2 = 162 from a survey panel then validated these descriptions and assessed how often they worried and took different actions to prevent hypoglycemia. Severity and frequency of hypoglycemia were compared with respect to how often people worried and took actions to prevent an event. The effect of hypoglycemia on 35 different life activities was quantitatively compared for patients who had and had not experienced a severe hypoglycemic event.Results: At least 95% of respondents agreed that the detailed patient-level descriptions of health states accurately reflected their experience of severe and non-severe, daytime and nocturnal hypoglycemia, thereby validating these descriptions. Respondents who had experienced a severe hypoglycemic event were generally more adversely affected in their worries and actions and life events than those who experienced only non

  3. Making Faces - State-Space Models Applied to Multi-Modal Signal Processing

    DEFF Research Database (Denmark)

    Lehn-Schiøler, Tue

    2005-01-01

    The two main focus areas of this thesis are State-Space Models and multi modal signal processing. The general State-Space Model is investigated and an addition to the class of sequential sampling methods is proposed. This new algorithm is denoted as the Parzen Particle Filter. Furthermore...... optimizer can be applied to speed up convergence. The linear version of the State-Space Model, the Kalman Filter, is applied to multi modal signal processing. It is demonstrated how a State-Space Model can be used to map from speech to lip movements. Besides the State-Space Model and the multi modal...... application an information theoretic vector quantizer is also proposed. Based on interactions between particles, it is shown how a quantizing scheme based on an analytic cost function can be derived....

  4. The state of space science in Africa | Mhlahlo | Africa Insight

    African Journals Online (AJOL)

    There has been an increase in the number of space science activities and facilities in Africa in the last 15 years. This increase, however, is not proportionate to the indigenous user community for these activities and facilities. In this paper, I discuss these activities and their benefits for the African region, and point out some of ...

  5. Investigation of unstable periodic space-time states in distributed active system with supercritical current

    International Nuclear Information System (INIS)

    Koronovskij, A.A.; Rempen, I.S.; Khramov, A.E.

    2003-01-01

    The set of the unstable periodic space-time states, characterizing the chaotic space-time dynamics of the electron beam with the supercritical current in the Pierce diode is discussed. The Lyapunov indicators of the revealed instable space-time states of the chaotic dynamics of the distributed self-excited system are calculated. It is shown that change in the set of the unstable periodic states in dependence on the Pierce parameter is determined by change in the various orbits stability, which is demonstrated by the values of senior Lyapunov unstable state index [ru

  6. dS/CFT correspondence from a holographic description of massless scalar fields in Minkowski space-time

    International Nuclear Information System (INIS)

    Loran, Farhang

    2004-01-01

    We solve Klein-Gordon equation for massless scalars on (d+1)-dimensional Minkowski (Euclidean) space in terms of the Cauchy data on the hypersurface t=0. By inserting the solution into the action of massless scalars in Minkowski (Euclidean) space we obtain the action of dual theory on the boundary t=0 which is exactly the holographic dual of conformally coupled scalars on (d+1)-dimensional (Euclidean anti) de Sitter space obtained in (A)dS/CFT correspondence. The observed equivalence of dual theories is explained using the one-to-one map between conformally coupled scalar fields on Minkowski (Euclidean) space and (Euclidean anti) de Sitter space which is an isomorphism between the hypersurface t=0 of Minkowski (Euclidean) space and the boundary of (A)dS space

  7. A sectionwise defined model for the material description of 100Cr6 in the thixotropic state

    Science.gov (United States)

    Behrens, B.-A.; Chugreev, A.; Hootak, M.

    2018-05-01

    A sectionwise defined material model has been developed for the numerical description of thixoforming processes. It consists of two sections. The first one describes the material behaviour below the solidus temperature and comprises an approach from structure mechanics, whereas the second section model describes the thixotropic behaviour above the solidus temperature based on the Ostwald-de Waele power law. The material model has been implemented in a commercial FE software Simufact Forming by means of user-defined subroutines. Numerical and experimental investigations of special upsetting tests have been designed and carried out with Armco iron-coated specimens. Finally, the model parameters were fitted by reverse engineering.

  8. Skyrme RPA description of γ-vibrational states in rare-earth nuclei

    Directory of Open Access Journals (Sweden)

    Nesterenko V.O.

    2016-01-01

    Full Text Available The lowest γ-vibrational states with Kπ = 2+γ in well-deformed Dy, Er and Yb isotopes are investigated within the self-consistent separable quasiparticle random-phase-approximation (QRPA approach based on the Skyrme functional. The energies Eγ and reduced transition probabilities B(E2γ of the states are calculated with the Skyrme force SV-mas10. We demonstrate the strong effect of the pairing blocking on the energies of γ-vibrational states. It is also shown that collectivity of γ-vibrational states is strictly determined by keeping the Nilsson selection rules in the corresponding lowest 2qp configurations.

  9. Relativistic description of quark-antiquark bound states. Spin-independent treatment

    International Nuclear Information System (INIS)

    Gara, A.; Durand, B.; Durand, L.; Nickisch, L.J.

    1989-01-01

    We present the results of a detailed study of light- and heavy-quark--antiquark bound states in the context of the reduced Bethe-Salpeter equation with static vector and scalar interactions. In the present paper, we consider the spin-averaged spectra. Spin effects are considered in a separate paper. We find that this approach, although apparently successful for the heavy-quark b bar b and c bar c states, fails for the s bar s, l bar l, and light-heavy states. The reasons for the failure are intrinsic to the method, as we discuss. Difficulties are already evident for the c bar c states

  10. The front form of relativistic Lagrangian dynamics in the two-dimensional space-time and its connection with the Hamiltonian description

    International Nuclear Information System (INIS)

    Sokolov, S.N.; Tret'yak, V.I.

    1985-01-01

    The Lagrangian relativistic theory in the two-dimensional space-time in the front form of dynamics is formulated and its connections with the predictive mechanics, with the Hamiltonian description, and with the Fokker-type action theory are established. The relations are found in a closed form without using formal expansions. The existence of mathematical limitations on a magnitude of Lagrangians of two-particle interactions is shown

  11. State-Space Analysis of Granger-Geweke Causality Measures with Application to fMRI.

    Science.gov (United States)

    Solo, Victor

    2016-05-01

    The recent interest in the dynamics of networks and the advent, across a range of applications, of measuring modalities that operate on different temporal scales have put the spotlight on some significant gaps in the theory of multivariate time series. Fundamental to the description of network dynamics is the direction of interaction between nodes, accompanied by a measure of the strength of such interactions. Granger causality and its associated frequency domain strength measures (GEMs) (due to Geweke) provide a framework for the formulation and analysis of these issues. In pursuing this setup, three significant unresolved issues emerge. First, computing GEMs involves computing submodels of vector time series models, for which reliable methods do not exist. Second, the impact of filtering on GEMs has never been definitively established. Third, the impact of downsampling on GEMs has never been established. In this work, using state-space methods, we resolve all these issues and illustrate the results with some simulations. Our analysis is motivated by some problems in (fMRI) brain imaging, to which we apply it, but it is of general applicability.

  12. Corporal Punishment in the State of Louisiana: A Descriptive Study of Policies and Practices

    Science.gov (United States)

    Broussard, Mary R.

    2014-01-01

    Louisiana is currently one of the 19 states in the United States that still allow the use of corporal punishment in public schools. The research questions that drove this study explored Louisiana-published court cases involving corporal punishment in public schools, district policies regarding the use of corporal punishment, reported instances of…

  13. THE STATE OF GREEN SPACES IN KUMASI CITY (GHANA: LESSONS FOR OTHER AFRICAN CITIES

    Directory of Open Access Journals (Sweden)

    Collins ADJEI MENSAH

    2016-12-01

    Full Text Available Integrating green spaces such as parks and gardens into the physical landscape of cities has been identified to enhance the health and wellbeing of urban dwellers. This paper assesses the state of green spaces in Kumasi city (Ghana, once known as the garden city of West Africa. Using a case study approach, a mixture of qualitative research techniques were employed whilst a set of eight themes were put together to guide the assessment. In all, green spaces were found to be in poor state. With the exception of conservation and heritage theme, the remaining seven themes that were used for the assessment all found the green spaces to be in poor state. It is therefore recommended that there should be an attitudinal change towards the maintenance of green spaces, the application of a collaborative governance approach, and priority giving to green spaces in all development agendas by city authorities.

  14. Pauli principle role in the description of collective non-rotational states of deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Shirikova, N.Yu.; Serdyukova, S.I.; Meliev, F.; Nesterenko, V.O.

    1981-01-01

    The Pauli principle role account for one-phonon and two- phonon states of even-even deformed nuclei sup(160, 164)Dy, sup(230, 232)Th, 154 Gd, 240 Pu, 238 U is performed. With account of isoscalar part of multipole-multipole interaction hamiltonian of a model and basic equations for energy and wave functions of one-phonon and two-phonon states are obtained. The results of calculations of centroids of energies of two-phonon states of the (lambda 1 μ 1 i 1 lambda 2 μ 2 i 2 ) type with and without the Pauli principle are tabulated. The calculations performed have shown that the energy centroids shift of collective two-phonon states with the Pauli-principle account is characteristic for all even-even deformed nuclei. In the authors opinion additional experimental investigations of 154 Cd, 164 Dy, 240 Pu two-phonon nuclei states to confirm theoretical results are necessary [ru

  15. The United States Space Force: Not If, But When

    Science.gov (United States)

    2016-06-01

    the World View satellites and Falcon -9 rockets produced today by private companies are helping to forge a path to the heavens. In both of these... Rocket Force, Strategic Support Force. January 3. Accessed February 25, 2016. http://www.janes.com/article/56974/china-establishes-new- rocket -force...Betting Big on Space Warfare — Against China and Russia. February 12. Accessed February 12, 2016. https://news.vice.com/article/the-pentagon-is-betting

  16. United States Military Space: Into the Twenty-First Century

    Science.gov (United States)

    2002-01-01

    famous and articulate spokesmen for planetary science; Pale Blue Dot : A Vision of the Human Future in Space (New York: Random House, 1994) was one...and defining human characteristic. Carl Sagan is a primary spokesman for those who view spaceflight in scientific and ecological terms and see it as...Spacefaring Civilization (New York: Jeremy P. Tarcher/Putnam, 1999). Carl Sagan cofounded the Planetary Society in 1980 and was one of the most

  17. A quantitative description of state-level taxation of oil and gas production in the continental U.S

    International Nuclear Information System (INIS)

    Weber, Jeremy G.; Wang, Yongsheng; Chomas, Maxwell

    2016-01-01

    We provide a quantitative description of state-level taxation of oil and gas production in the continental U.S. for 2004–2013. Aggregate revenues from production taxes nearly doubled in real terms over the period, reaching $10.3 billion and accounting for 20% of tax receipts in the top ten revenue states. The average state had a tax rate of 3.6%; nationally, the average dollar of production was taxed at 4.2%. The oil-specific rate estimated for the study period is $2.4 per barrel or $5.5 per ton of carbon. Lastly, state-level tax rates are two-thirds higher in states excluding oil and gas wells from local property taxes, suggesting that the policies are substitutes for one another. - Highlights: •State tax revenue from oil and gas production nearly doubled from 2004 to 2013. •Nationally, the typical dollar of production is taxed at 4.2%. •The rate applied to the typical dollar of production did not increase over time. •On average oil is taxed at $2.4 per barrel or $5.5 per ton of carbon. •State tax rates are two-thirds higher where oil and gas are not taxed as property.

  18. Vacuum states for gravitons field in de Sitter space

    Science.gov (United States)

    Bamba, Kazuharu; Rahbardehghan, Surena; Pejhan, Hamed

    2017-11-01

    In this paper, considering the linearized Einstein equation with a two-parameter family of linear covariant gauges in de Sitter spacetime, we examine possible vacuum states for the gravitons field with respect to invariance under the de Sitter group S O0(1 ,4 ) . Our calculations explicitly reveal that there exists no natural de Sitter-invariant vacuum state (the Euclidean or Bunch-Davies state) for the gravitons field. Indeed, on the foundation of a rigorous group-theoretical reasoning, we prove that if one insists on full covariance as well as causality for the theory, one has to give up the positivity requirement of the inner product. However, one may still look for states with as much symmetry as possible, more precisely, a restrictive version of covariance by considering the gravitons field and the associated vacuum state which are, respectively, covariant and invariant with respect to some maximal subgroup of the full de Sitter group. In this regard, we treat the S O (4 ) case and find a family of S O (4 )-invariant states. The associated S O (4 )-covariant quantum field is given, as well.

  19. Towards a shell-model description of intruder states and the onset of deformation

    International Nuclear Information System (INIS)

    Heyde, K.; Van Isacker, P.; Casten, R.F.; Wood, J.L.

    1985-01-01

    Basing on the nuclear shell-model and concentrating on the monopole, pairing and quadrupole corrections originating from the nucleon-nucleon force, both the appearance of low-lying 0 + intruder states near major closed shells (Z = 50, 82) and sub-shell regions (Z = 40, 64) can be described. Moreover, a number of new facets related to the study of intruder states are presented. 19 refs., 3 figs

  20. Description of the turnover of the dynamical moment of inertia of the superdeformed nuclear state

    International Nuclear Information System (INIS)

    Yuxin Liu; Jiangang Song; Hong-zhou Sun; Jia-jun Wang; En-guang Zhao

    1998-01-01

    We propose in this paper an approach to describe the dynamical moment of inertia of superdeformed nuclear states in the spirit of variable moments of inertia. Both the general changing feature and the turnover of dynamical moments of inertia with rotational frequency are well described in our approach. It indicates that the competition between the angular momentum driving effect and the restraining effect plays a crucial role in determining the dynamical moments of inertia of superdeformed nuclear states. (author)

  1. Properties of Griffin-Hill-Wheeler spaces - 2. one-parameters and two-conjugate parameter families of generator states

    International Nuclear Information System (INIS)

    Passos, E.J.V. de; Toledo Piza, A.F.R. de.

    The properties of the subspaces of the many-body Hilbert space which are associated with the use of the Generator Coordinate Method (GCM) in connection with one parameter, and with two-conjugate parameter families of generator states are examined in detail. It is shown that natural orthonormal base vectors in each case are immediately related to Peierls-Voccoz and Peierls-Thouless projections respectively. Through the formal consideration of a canonical transformation to collective, P and Q, and intrinsic degrees of freedom, the properties of the GCM subspaces with respect to the kinematical separation of these degrees of freedom are discussed in detail. An application is made, using the ideas developed in this paper, a) to translation; b) to illustrate the qualitative understanting of the content of existing GCM calculations of giant ressonances in light nuclei and c) to the definition of appropriate asymptotic states in current GCM descriptions of scattering [pt

  2. State-of-the-art Space Telescope Digicon performance data

    Science.gov (United States)

    Ginaven, R. O.; Choisser, J. P.; Acton, L.; Wysoczanski, W.; Alting-Mees, H. R.; Smith, R. D., II; Beaver, E. A.; Eck, H. J.; Delamere, A.; Shannon, J. L.

    1980-01-01

    The Digicon has been chosen as the detector for the High Resolution Spectrograph and the Faint Object Spectrograph of the Space Telescope. Both tubes are 512 channel, parallel-output devices and feature CsTe photocathodes on MgF2 faceplates. Using a computer-assisted test facility, the tubes have been characterized with respect to diode array performance, photocathode response (1100-9000 A), and imaging capability. Data are presented on diode dark current and capacitance distributions, pulse height resolution, photocathode quantum efficiency, uniformity and blemishes, dark count rate, distortion, resolution, and crosstalk.

  3. Quantization of Space-like States in Lorentz-Violating Theories

    Science.gov (United States)

    Colladay, Don

    2018-01-01

    Lorentz violation frequently induces modified dispersion relations that can yield space-like states that impede the standard quantization procedures. In certain cases, an extended Hamiltonian formalism can be used to define observer-covariant normalization factors for field expansions and phase space integrals. These factors extend the theory to include non-concordant frames in which there are negative-energy states. This formalism provides a rigorous way to quantize certain theories containing space-like states and allows for the consistent computation of Cherenkov radiation rates in arbitrary frames and avoids singular expressions.

  4. Identified state-space prediction model for aero-optical wavefronts

    Science.gov (United States)

    Faghihi, Azin; Tesch, Jonathan; Gibson, Steve

    2013-07-01

    A state-space disturbance model and associated prediction filter for aero-optical wavefronts are described. The model is computed by system identification from a sequence of wavefronts measured in an airborne laboratory. Estimates of the statistics and flow velocity of the wavefront data are shown and can be computed from the matrices in the state-space model without returning to the original data. Numerical results compare velocity values and power spectra computed from the identified state-space model with those computed from the aero-optical data.

  5. Filtering and smoothing of stae vector for diffuse state space models

    NARCIS (Netherlands)

    Koopman, S.J.; Durbin, J.

    2003-01-01

    This paper presents exact recursions for calculating the mean and mean square error matrix of the state vector given the observations for the multi-variate linear Gaussian state-space model in the case where the initial state vector is (partially) diffuse.

  6. Solid State Welding Development at Marshall Space Flight Center

    Science.gov (United States)

    Ding, Robert J.; Walker, Bryant

    2012-01-01

    What is TSW and USW? TSW is a solid state weld process consisting of an induction coil heating source, a stir rod, and non-rotating containment plates Independent heating, stirring and forging controls Decouples the heating, stirring and forging process elements of FSW. USW is a solid state weld process consisting of an induction coil heating source, a stir rod, and a non-rotating containment plate; Ultrasonic energy integrated into non-rotating containment plate and stir rod; Independent heating, stirring and forging controls; Decouples the heating, stirring and forging process elements of FSW.

  7. Solid state neutron dosimeter for space applications. Final Report

    International Nuclear Information System (INIS)

    Entine, G.; Nagargar, V.; Sharif, D.

    1990-08-01

    Personnel engaged in space flight are exposed to significant flux of high energy neutrons arising from both primary and secondary sources of ionizing radiation. Presently, there exist no compact neutron sensor capable of being integrated in a flight instrument to provide real time measurement of this radiation flux. A proposal was made to construct such an instrument using special PIN silicon diode which has the property of being insensitive to the other forms of ionizing radiation. Studies were performed to determine the design and construction of a better reading system to allow the PIN diode to be read with high precision. The physics of the device was studied, especially with respect to those factors which affect the sensitivity and reproducibility of the neutron response. This information was then used to develop methods to achieve high sensitivity at low neutron doses. The feasibility was shown of enhancing the PIN diode sensitivity to make possible the measurement of the low doses of neutrons encountered in space flights. The new PIN diode will make possible the development of a very compact, accurate, personal neutron dosimeter

  8. Crossing of the cosmological constant boundary-an equation of state description

    International Nuclear Information System (INIS)

    Stefancic, Hrvoje

    2006-01-01

    The phenomenon of the dark energy transition between the quintessence regime (w > -1) and the phantom regime (w < -1), also known as the cosmological constant boundary crossing, is analysed in terms of the dark energy equation of state. It is found that the dark energy equation of state in the dark energy models which exhibit the transition is implicitly defined. The generalizations of the models explicitly constructed to exhibit the transition are studied to gain insight into the mechanism of the transition. It is found that the cancellation of the terms corresponding to the cosmological constant boundary makes the transition possible

  9. S3C: EBT Steady-State Shooting code description and user's guide

    International Nuclear Information System (INIS)

    Downum, W.B.

    1983-09-01

    The Oak Ridge National Laboratory (ORNL) one-dimensional (1-D) Steady-State Shooting code (S3C) for ELMO Bumpy Torus (EBT) plasmas is described. Benchmark calculations finding the steady-state density and electron and ion temperature profiles for a known neutral density profile and known external energy sources are carried out. Good agreement is obtained with results from the ORNL Radially Resolved Time Dependent 1-D Transport code for an EBT-Q type reactor. The program logic is described, along with the physics models in each code block and the variable names used. Sample input and output files are listed, along with the main code

  10. IBFA description of high-spin positive-parity states in Rh isotopes

    International Nuclear Information System (INIS)

    Bucurescu, D.; Cata, G.; Cutoiu, D.; Constantinescu, G.; Ivascu, M.; Zamfir, N.V.

    1985-01-01

    Properties of the odd-mass Rh isotopes are investigated in the framework of the interacting boson-fermion approximation (IBFA) model in which the odd proton moves in the 1gsub(9/2) and 2dsub(5/2) orbitals. Lifetimes of some high-spin positive-parity states in 99 Rh obtained by the recoil-distance method with the 88 Sr( 14 N,3n) reaction are also reported. Calculated excitation energies and electromagnetic properties of the high-spin positive-parity states are compared with experiment and an acceptable agreement is obtained. (orig.)

  11. Hyperstate matrix models : extending demographic state spaces to higher dimensions

    NARCIS (Netherlands)

    Roth, G.; Caswell, H.

    2016-01-01

    1. Demographic models describe population dynamics in terms of the movement of individuals among states (e.g. size, age, developmental stage, parity, frailty, physiological condition). Matrix population models originally classified individuals by a single characteristic. This was enlarged to two

  12. United States military service members and their tattoos: a descriptive study.

    Science.gov (United States)

    Lande, R Gregory; Bahroo, Bhagwan A; Soumoff, Alyssa

    2013-08-01

    To explore the characteristics of military service tattoos a descriptive study was conducted at Walter Reed Army Medical Center to collect information from a convenience sample. An investigator-developed questionnaire provided the data for this study. Over the ensuing 12 month-period the researchers collected 126 questionnaires. Typical respondents were enlisted men with at least one deployment to an area of combat operations. Among the respondents, 57% acquired their tattoos before their deployment. One-quarter of the respondents reported only one tattoo, leaving the majority with multiple tattoos. Men received their first tattoo at an earlier age than women. The most common tattoo listed a person's name. Respondents did not regret their tattoos and rarely acquired the body art under the influence of alcohol or drugs. Little evidence was found to support a connection between tattoos and deployment. Few regretted their decisions and most all approached the tattoo experience free of any mind-altering substance. All this seems to suggest that military tattoos are a well-accepted means of self-expression. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  13. New York State Middle Schools and Instructional Scheduling, Teaming and Common Planning: A Descriptive Study

    Science.gov (United States)

    Corey, Chad; Babo, Gerard

    2016-01-01

    Data regarding the type of instructional scheduling utilized along with the use of teaming and common planning at the middle school level has not been collected nor reported on the New York State School Report Card, and therefore it is not known whether and how middle schools are implementing these three school supports. Consequently, the purpose…

  14. Compilation of data and descriptions for United States and foreign liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Appleby, E.R.

    1975-08-01

    This document is a compilation of design and engineering information pertaining to liquid metal cooled fast breeder reactors which have operated, are operating, or are currently under construction, in the United States and abroad. All data has been taken from publicly available documents, journals, and books

  15. The way toward theoretical description of state-selected reactions of O+ with methane

    Czech Academy of Sciences Publication Activity Database

    Hrušák, Jan; Paidarová, Ivana

    354-355, SI (2013), s. 372-377 ISSN 1387-3806 R&D Projects: GA ČR GAP208/11/0446 Institutional support: RVO:61388955 Keywords : methane oxidation * excited state * ab initio MCSCF calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.227, year: 2013

  16. On the theoretical description of nuclear quadrupole coupling in Π states of small molecules

    Czech Academy of Sciences Publication Activity Database

    Fišer, J.; Polák, Rudolf

    2013-01-01

    Roč. 425, NOV 2013 (2013), s. 126-133 ISSN 0301-0104 Institutional support: RVO:61388955 Keywords : Π States * Nuclear quadrupole coupling constant * Electric dipole moment Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.028, year: 2013

  17. Equation of state description of the dark energy transition between quintessence and phantom regimes

    International Nuclear Information System (INIS)

    Stefancic, Hrvoje

    2006-01-01

    The dark energy crossing of the cosmological constant boundary (the transition between the quintessence and phantom regimes) is described in terms of the implicitly defined dark energy equation of state. The generalizations of the models explicitly constructed to exhibit the crossing provide the insight into the cancellation mechanism which makes the transition possible

  18. Description of Etrocorema belumensis sp.n. from Royal Belum State Park, Perak, Malaysia:

    OpenAIRE

    Asiah, Wan Nur; Salmah, Che M. R.; Sivec, Ignac

    2009-01-01

    Only one variable Etrocorema species, E. nigrogeniculatum (Enderlein), is currently recognized from Peninsular Malaysia. During limnological study in Royal Belum State Park, Malaysia, specimens of a new species of Etrocorema, E.belumensis n. sp., were discovered. Illustrations of male and female genitalia, eggs, and larvae of this new taxon are provided.

  19. The group-theoretical approach to the description of nuclear states

    International Nuclear Information System (INIS)

    Baktybaev, K.

    2001-01-01

    Study of symmetrical environmental properties, including nuclei, nuclear particles, atoms and molecules has very important, and sometimes determinative meaning. The role of visible symmetry, in other words of the world beauty is generally known, and studied for a long time. The internal symmetry of material world (isotopic, angular, gauge, dynamic etc.), playing vitally important significance for its structure, creation and development has been widely studied for last years. The development of conception of dynamic symmetry and supersymmetry in the structure of nuclear system condition and their supplement under studies of specific nuclei properties is considered in the present article. The next section includes the summary of the main point of dynamic symmetry and its connection to corresponding Lie algebra and techniques of physical operators construction through generators of chosen algebra and its subalgebra. Section 3 states the dynamic-symmetric properties of atomic nuclei collective states, which are described by the model of interactive bosons. Section 4 is dedicated to conception of dynamic supersymmetry, its supplement under structure study of quasi-particle and collective states of nuclei and all interactions. In particular, the theory is applied for study of fermion and boson states in the even isotopes Pd, Dy and Er

  20. Description of a new species of Microglanis (Siluriformes: Pseudopimelodidae from the Amazon basin, Amazonas State, Brazil

    Directory of Open Access Journals (Sweden)

    Lucas Ribeiro Jarduli

    Full Text Available The first species of Microglanis from the rio Amazonas, Amazonas State, Brazil is described. This species differs from all congeners by the forked caudal fin, and color pattern of the supraoccipital region consisting of two elliptical and juxtaposed pale spots, besides a combination of morphometrics characters.

  1. A Descriptive Study of Students with Disabilities at Montana State University Billings

    Science.gov (United States)

    Dell, Thomas Francis

    2013-01-01

    The purpose of this study was to describe and analyze how the characteristics of age, major and type of disabilities for students who received services through Disability Support Services at Montana State University-Billings have changed from 1999 to 2011. Furthermore, this analysis contrasted local trends for types of disabilities with national…

  2. Central-moment description of polarization for quantum states of light

    DEFF Research Database (Denmark)

    Björk, G.; Söderholm, J.; Kim, Y.-S.

    2012-01-01

    We present a moment expansion for the systematic characterization of the polarization properties of quantum states of light. Specifically,we link the method to themeasurements of the Stokes operator in different directions on the Poincar´e sphere and provide a scheme for polarization tomography w...

  3. Sensorless State-Space Control of Elastic Two-Inertia Drive System Using a Minimum State Order Observer

    Directory of Open Access Journals (Sweden)

    V. Comnac

    2009-12-01

    Full Text Available The paper presents sensorless state-space control of two-inertia drive system with resilient coupling. The control structure contains an I+PI controller for load speed regulation and a state feedback controller for effective vibration suppression of the elastic coupling. Mechanical state variable of two-inertia drive are obtained by using a linear minimum-order (Gopinath state observer. The design of the combined (I+PI and state feedback controller is achieved with the extended version of the modulus criterion [5]. The dynamic behavior of presented control structure has been examined, for different conditions, using MATLAB/SIMULINK simulation.

  4. State Space Models and the Kalman-Filter in Stochastic Claims Reserving: Forecasting, Filtering and Smoothing

    Directory of Open Access Journals (Sweden)

    Nataliya Chukhrova

    2017-05-01

    Full Text Available This paper gives a detailed overview of the current state of research in relation to the use of state space models and the Kalman-filter in the field of stochastic claims reserving. Most of these state space representations are matrix-based, which complicates their applications. Therefore, to facilitate the implementation of state space models in practice, we present a scalar state space model for cumulative payments, which is an extension of the well-known chain ladder (CL method. The presented model is distribution-free, forms a basis for determining the entire unobservable lower and upper run-off triangles and can easily be applied in practice using the Kalman-filter for prediction, filtering and smoothing of cumulative payments. In addition, the model provides an easy way to find outliers in the data and to determine outlier effects. Finally, an empirical comparison of the scalar state space model, promising prior state space models and some popular stochastic claims reserving methods is performed.

  5. Electronic Excitations in Solution: The Interplay between State Specific Approaches and a Time-Dependent Density Functional Theory Description.

    Science.gov (United States)

    Guido, Ciro A; Jacquemin, Denis; Adamo, Carlo; Mennucci, Benedetta

    2015-12-08

    We critically analyze the performances of continuum solvation models when coupled to time-dependent density functional theory (TD-DFT) to predict solvent effects on both absorption and emission energies of chromophores in solution. Different polarization schemes of the polarizable continuum model (PCM), such as linear response (LR) and three different state specific (SS) approaches, are considered and compared. We show the necessity of introducing a SS model in cases where large electron density rearrangements are involved in the excitations, such as charge-transfer transitions in both twisted and quadrupolar compounds, and underline the very delicate interplay between the selected polarization method and the chosen exchange-correlation functional. This interplay originates in the different descriptions of the transition and ground/excited state multipolar moments by the different functionals. As a result, the choice of both the DFT functional and the solvent polarization scheme has to be consistent with the nature of the studied electronic excitation.

  6. Robust Performance of Systems with Structured Uncertainties in State Space

    OpenAIRE

    Zhou, K.; Khargonekar, P.P.; Stoustrup, Jakob; Niemann, H.H.

    1995-01-01

    This paper considers robust performance analysis and state feedback design for systems with time-varying parameter uncertainties. The notion of a strongly robust % performance criterion is introduced, and its applications in robust performance analysis and synthesis for nominally linear systems with time-varying uncertainties are discussed and compared with the constant scaled small gain criterion. It is shown that most robust performance analysis and synthesisproblems under this strongly rob...

  7. The Internet: a global free space with limited state control

    OpenAIRE

    Dommering, E.; van Ginkel, B.; de Goede, M.; Koops, B.J.; Plooij-van Gorsel, E.; Verrijn Stuart, H.; Smallenbroek, J.

    2015-01-01

    Chapter II explains that the internet, as represented by the internet community, has broken free of the traditional structure of the telecommunication sector under international law, namely a convention (recording global agreements about telecommunications) and an international organisation (the International Telecommunication Union) in which national states work together. This structure has been replaced by a multistakeholder model, partly under private law, consisting of ICANN (domain names...

  8. Monthly version of HadISST sea surface temperature state-space components

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — State-Space Decomposition of Monthly version of HadISST sea surface temperature component (1-degree). See Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C....

  9. State Estimation of International Space Station Centrifuge Rotor With Incomplete Knowledge of Disturbance Inputs

    National Research Council Canada - National Science Library

    Sullivan, Michael J

    2005-01-01

    This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system where only relative measurements are available with limited knowledge of both rotor imbalance disturbances and International Space Station (ISS...

  10. Limitations Of The Current State Space Modelling Approach In Multistage Machining Processes Due To Operation Variations

    Science.gov (United States)

    Abellán-Nebot, J. V.; Liu, J.; Romero, F.

    2009-11-01

    The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.

  11. A state space approach for the eigenvalue problem of marine risers

    KAUST Repository

    Alfosail, Feras; Nayfeh, Ali H.; Younis, Mohammad I.

    2017-01-01

    A numerical state-space approach is proposed to examine the natural frequencies and critical buckling limits of marine risers. A large axial tension in the riser model causes numerical limitations. These limitations are overcome by using

  12. State-Space Realization of the Wave-Radiation Force within FAST: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, T.; Sarmento, A.; Alves, M.; Jonkman, J.

    2013-06-01

    Several methods have been proposed in the literature to find a state-space model for the wave-radiation forces. In this paper, four methods were compared, two in the frequency domain and two in the time domain. The frequency-response function and the impulse response of the resulting state-space models were compared against the ones derived by the numerical code WAMIT. The implementation of the state-space module within the FAST offshore wind turbine computer-aided engineering (CAE) tool was verified, comparing the results against the previously implemented numerical convolution method. The results agreed between the two methods, with a significant reduction in required computational time when using the state-space module.

  13. Description of a newly discovered Triatoma infestans (Hemiptera: Reduviidae Foci in Ibipeba, State of Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Renato Freitas Araújo

    2014-07-01

    Full Text Available Introduction Chagas disease transmitted by the Triatoma infestans was eradicated from Brazil in 2006. However, reports of triatomine foci threaten the control of Chagas disease. The goal of this study was to determine T. infestans foci in the City of Ibipeba, State of Bahia. Methods Triatominae specimens were collected in Ibipeba and entomologic indicators were calculated using indices of domiciliary infestation, density, and colonization. Results T. infestans foci was discovery in Ibipeba, State of Bahia. Approximately 95% of the specimens were discovered inside dwellings, of which 34% were T. infestans. This species was also discovered forming a colony in tree bark in the peridomicile. Conclusions Triatoma infestans foci in peridomestic ecotopes in Ibipeba, BA, indicate increased the risk of transmission Chagas disease.

  14. Eating difficulties among stroke patients in the acute state: a descriptive, cross-sectional, comparative study.

    Science.gov (United States)

    Medin, Jörgen; Windahl, Jenny; von Arbin, Magnus; Tham, Kerstin; Wredling, Regina

    2011-09-01

    To examine eating difficulties among stroke patients - a comparison between women and men. Gender differences have been reported in studies of stroke, but the findings are inconclusive and few of these studies have specifically focused on gender differences in eating difficulties. This study was a descriptive, cross-sectional, comparative study. Patients with stroke were recruited at a general hospital in Sweden. To detect eating difficulties, individual observations of the patients were made during one meal using a structured observation protocol. Assessment also included measurements of nutritional and oral status, degree of independence, stroke severity, neglect and well-being. One hundred and four patients (53·8% women) were included in the study. The proportion of stroke patients with one or more eating difficulties was 81·7%. The most common eating difficulties were 'managing food on the plate' (66·3%), 'food consumption' (54·8%) and 'sitting position' (45·2%). Women had lower 'food consumption', more severe stroke (p = 0·003), worse functional status (p = 0·001) and lower quality of life (QoL) (p=0·038) than men. More women than men were malnourished and living alone. After adjustment for functional status and motor arm, the odds ratio of having difficulties with food consumption was four times higher among women than men (1·7-9·4, confidence interval 95%). More women than men with stroke suffered from inadequate food consumption. The women had more severe strokes, experienced poorer QoL and showed lower functional status than the men. In the rehabilitation process of women with stroke, these factors should be taken into consideration. Structured observation of meals, including assessment of food consumption, might be necessary in acute stroke care to detect patients, especially women, who might need closer supervision and nutritional intervention. © 2011 Blackwell Publishing Ltd.

  15. State-of-the art of dc components for secondary power distribution of Space Station Freedom

    International Nuclear Information System (INIS)

    Krauthamer, S.; Gangal, M.; Das, R.

    1991-01-01

    The National Aeronautics and Space Administration has selected 120-Vdc secondary power distribution for Space Station Freedom. Although this high voltage level is new for space applications, it is well within the bounds for components and subsystems being developed and in some cases being used in aerospace, defense, and terrestrial applications. In this paper state-of-the-art components and subsystems for Space Station Freedom in terms of performance, size, and topology are examined. One objective is to inform the users of Space Station Freedom about what is available in power supplies and power control devices. The other objective is to stimulate the interest in the component industry so that more focused product development can be started. Based on results of this study, it is estimated that, with some redesign, modifications, and space qualification, many of these components may be applied to Space Station Freedom needs

  16. Rosette of rosettes of Hilbert spaces in the indefinite metric state space of the quantized Maxwell field

    International Nuclear Information System (INIS)

    Gessner, W.; Ernst, V.

    1980-01-01

    The indefinite metric space O/sub M/ of the covariant form of the quantized Maxwell field M is analyzed in some detail. S/sub M/ contains not only the pre-Hilbert space X 0 of states of transverse photons which occurs in the Gupta--Bleuler formalism of the free M, but a whole rosette of continuously many, isomorphic, complete, pre-Hilbert spaces L/sup q/ disjunct up to the zero element o of S/sub M/. The L/sup q/ are the maximal subspaces of S/sub M/ which allow the usual statistical interpretation. Each L/sup q/ corresponds uniquely to one square integrable, spatial distribution j/sup o/(x) of the total charge Q=0. If M is in any state from L/sup q/, the bare charge j 0 (x) appears to be inseparably dressed by the quantum equivalent of its proper, classical Coulomb field E(x). The vacuum occurs only in the state space L 0 of the free Maxwell field. Each L/sup q/ contains a secondary rosette of continuously many, up to o disjunct, isomorphic Hilbert spaces H/sub g//sup q/ related to different electromagnetic gauges. The space H/sub o//sup q/, which corresponds to the Coulomb gauge within the Lorentz gauge, plays a physically distinguished role in that only it leads to the usual concept of energy. If M is in any state from H/sub g//sup q/, the bare 4-current j 0 (x), j(x), where j(x) is any square integrable, transverse current density in space, is endowed with its proper 4-potential which depends on the chosen gauge, and with its proper, gauge independent, Coulomb--Oersted field E(x), B(x). However, these fields exist only in the sense of quantum mechanical expectation values equipped with the corresponding field fluctuations. So they are basically different from classical electromagnetic fields

  17. Secondary structure classification of amino-acid sequences using state-space modeling

    OpenAIRE

    Brunnert, Marcus; Krahnke, Tillmann; Urfer, Wolfgang

    2001-01-01

    The secondary structure classification of amino acid sequences can be carried out by a statistical analysis of sequence and structure data using state-space models. Aiming at this classification, a modified filter algorithm programmed in S is applied to data of three proteins. The application leads to correct classifications of two proteins even when using relatively simple estimation methods for the parameters of the state-space models. Furthermore, it has been shown that the assumed initial...

  18. State space in BRST-quantization and Kugo-Ojima quartets

    International Nuclear Information System (INIS)

    Rybkin, G.N.

    1989-01-01

    The structure of the state space in the BRST-quantization is considered and the connection between different approaches to the proof of the positive definiteness of the metric on the physical state space is established. The correspondence between different expressions for the BRST-charge, quadratic in fields, is obtained. The relation between different representations of the BRST-algebra is found. 22 refs

  19. Limits on nonlocal correlations from the structure of the local state space

    International Nuclear Information System (INIS)

    Janotta, Peter; Gogolin, Christian; Barrett, Jonathan; Brunner, Nicolas

    2011-01-01

    The outcomes of measurements on entangled quantum systems can be nonlocally correlated. However, while it is easy to write down toy theories allowing arbitrary nonlocal correlations, those allowed in quantum mechanics are limited. Quantum correlations cannot, for example, violate a principle known as macroscopic locality, which implies that they cannot violate Tsirelson's bound. This paper shows that there is a connection between the strength of nonlocal correlations in a physical theory and the structure of the state spaces of individual systems. This is illustrated by a family of models in which local state spaces are regular polygons, where a natural analogue of a maximally entangled state of two systems exists. We characterize the nonlocal correlations obtainable from such states. The family allows us to study the transition between classical, quantum and super-quantum correlations by varying only the local state space. We show that the strength of nonlocal correlations - in particular whether the maximally entangled state violates Tsirelson's bound or not-depends crucially on a simple geometric property of the local state space, known as strong self-duality. This result is seen to be a special case of a general theorem, which states that a broad class of entangled states in probabilistic theories-including, by extension, all bipartite classical and quantum states-cannot violate macroscopic locality. Finally, our results show that models exist that are locally almost indistinguishable from quantum mechanics, but can nevertheless generate maximally nonlocal correlations.

  20. Robust Performance of Systems with Structured Uncertainties in State Space

    DEFF Research Database (Denmark)

    Zhou, Kemin; Khargonekar, Pramod P.; Stoustrup, Jakob

    1995-01-01

    This paper considers robust performance analysis and state feedback design for systems with time-varying parameter uncertainties. The notion of a strongly robust % performance criterion is introduced, and its applications in robust performance analysis and synthesis for nominally linear systems...... with time-varying uncertainties are discussed and compared with the constant scaled small gain criterion. It is shown that most robust performance analysis and synthesis problems under this strongly robust % performance criterion can be transformed into linear matrix inequality problems, and can be solved...

  1. Exploiting Stabilizers and Parallelism in State Space Generation with the Symmetry Method

    DEFF Research Database (Denmark)

    Lorentsen, Louise; Kristensen, Lars Michael

    2001-01-01

    The symmetry method is a main reduction paradigm for alleviating the state explosion problem. For large symmetry groups deciding whether two states are symmetric becomes time expensive due to the apparent high time complexity of the orbit problem. The contribution of this paper is to alleviate th...... the negative impact of the orbit problem by the specification of canonical representatives for equivalence classes of states in Coloured Petri Nets, and by giving algorithms exploiting stabilizers and parallelism for computing the condensed state space....

  2. Parallel symbolic state-space exploration is difficult, but what is the alternative?

    Directory of Open Access Journals (Sweden)

    Gianfranco Ciardo

    2009-12-01

    Full Text Available State-space exploration is an essential step in many modeling and analysis problems. Its goal is to find the states reachable from the initial state of a discrete-state model described. The state space can used to answer important questions, e.g., "Is there a dead state?" and "Can N become negative?", or as a starting point for sophisticated investigations expressed in temporal logic. Unfortunately, the state space is often so large that ordinary explicit data structures and sequential algorithms cannot cope, prompting the exploration of (1 parallel approaches using multiple processors, from simple workstation networks to shared-memory supercomputers, to satisfy large memory and runtime requirements and (2 symbolic approaches using decision diagrams to encode the large structured sets and relations manipulated during state-space generation. Both approaches have merits and limitations. Parallel explicit state-space generation is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately limited by the memory and processors available. Symbolic methods are a heuristic that can efficiently encode many, but not all, functions over a structured and exponentially large domain; here the pitfalls are subtler: their performance varies widely depending on the class of decision diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic approaches are often much more efficient than explicit ones for many practical models, we argue for the need to parallelize symbolic state-space generation algorithms, so that we can realize the advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts, and promising directions toward this goal.

  3. Perturbed stationary-state description of the polarization effect in innershell ionization

    International Nuclear Information System (INIS)

    Basbas, G.; Land, D.J.

    1983-01-01

    A one-parameter trial initial-state wavefunction correlated to a projectile (polarized) is described and used to calculate innershell ionization cross sections for collisions with heavy charged particles. The variational principle is used to determine the parameter. The minimized energy gives the binding effect as a function of projectile position. Existing codes can be readily adapted to incorporate the trial wavefunction. Comparison with the previous theory of the polarization effect is made. Results for K-shell ionization of titanium by protons in the 0.3 to 2.4 MeV energy range agree with measured values

  4. Self-consistent description of dipole states taking into account the one-particle continuum

    International Nuclear Information System (INIS)

    Gareev, F.A.; Ershov, S.N.; Pyatov, N.I.; Fayans, S.A.; Salamov, D.I.

    1981-01-01

    A self-consistent translationally invariant model with separable effective interactions is used to describe the dipole excitations of spherical nuclei. The equations for the effective field are solved in the coordinate representation, taking the one-particle continuum into account exactly. This makes it possible to obtain the escape widths of excitations with energy above the nucleon-emission threshold. We calculate the energies, B(E1), strength functions, escape widths, and transition densities of the dipole states for a number of light and heavy nuclei

  5. Quasiparticle phonon model description of low-energy states in 152Pr

    Science.gov (United States)

    Alexa, P.; Ramdhane, M.; Thiamova, G.; Simpson, G. S.; Faust, H. R.; Genevey, J.; Köster, U.; Materna, T.; Orlandi, R.; Pinston, J. A.; Scherillo, A.; Hons, Z.

    2018-03-01

    Delayed γ -ray and conversion-electron spectroscopy is performed on A =152 fission fragments, at the Lohengrin spectrometer of the Institut Laue-Langevin, providing a new decay scheme for 152Pr. The quasiparticle phonon model, combined with the particle-rotor model, which allows octupole correlations and Coriolis mixing to be taken into account, is applied to analyze its low-energy structure. The main configurations are found to be (π 3 /2 [422 ] ⊗ν 5 /2 [642 ] ) 1+ for the isomer and (π 3 /2 [541 ] ⊗ν 3 /2 [521 ] ) 3+ for the ground state.

  6. Attenuation factors for B(E2) in the microscopic description of multiphonon states

    International Nuclear Information System (INIS)

    Matsuyanagi, Kenichi

    1982-01-01

    With an exactly solvable O(4) model of Piepenbring, Silvestre-Brac and Szymanski, we demonstrate that the attenuation factor for the B(E2) values, derived by the lowest-order approximation of the multiphonon method, takes excellent care of the kinematical anharmonicity effects, if multiphonon states are defined in the intrinsic subspace orthogonal to the pairing rotation. It is also shown that the other attenuation effect characterizing the interacting boson model is not a dominant effect in the model analysed here. (author)

  7. Toward an accurate description of solid-state properties of superheavy elements

    Directory of Open Access Journals (Sweden)

    Schwerdtfeger Peter

    2016-01-01

    Full Text Available In the last two decades cold and hot fusion experiments lead to the production of new elements for the Periodic Table up to nuclear charge 118. Recent developments in relativistic quantum theory have made it possible to obtain accurate electronic properties for the trans-actinide elements with the aim to predict their potential chemical and physical behaviour. Here we report on first results of solid-state calculations for Og (element 118 to support future atom-at-a-time gas-phase adsorption experiments on surfaces such as gold or quartz.

  8. Mortality variation across Australia: descriptive data for states and territories, and statistical divisions.

    Science.gov (United States)

    Wilkinson, D; Hiller, J; Moss, J; Ryan, P; Worsley, T

    2000-06-01

    To describe variation in all cause and selected cause-specific mortality rates across Australia. Mortality and population data for 1997 were obtained from the Australian Bureau of Statistics. All cause and selected cause-specific mortality rates were calculated and directly standardised to the 1997 Australian population in 5-year age groups. Selected major causes of death included cancer, coronary artery disease, cerebrovascular disease, diabetes, accidents and suicide. Rates are reported by statistical division, and State and Territory. All cause age-standardised mortality was 6.98 per 1000 in 1997 and this varied 2-fold from a low in the statistical division of Pilbara, Western Australia (5.78, 95% confidence interval 5.06-6.56), to a high in Northern Territory--excluding Darwin (11.30, 10.67-11.98). Similar mortality variation (all p killers. Larger variation (all p suicide (0.6-3.8 per 10,000). Less marked variation was observed when analysed by State and Territory, but Northern Territory consistently has the highest age-standardised mortality rates. Analysed by statistical division, substantial mortality gradients exist across Australia, suggesting an inequitable distribution of the determinants of health. Further research is required to better understand this heterogeneity.

  9. Complex-network description of thermal quantum states in the Ising spin chain

    Science.gov (United States)

    Sundar, Bhuvanesh; Valdez, Marc Andrew; Carr, Lincoln D.; Hazzard, Kaden R. A.

    2018-05-01

    We use network analysis to describe and characterize an archetypal quantum system—an Ising spin chain in a transverse magnetic field. We analyze weighted networks for this quantum system, with link weights given by various measures of spin-spin correlations such as the von Neumann and Rényi mutual information, concurrence, and negativity. We analytically calculate the spin-spin correlations in the system at an arbitrary temperature by mapping the Ising spin chain to fermions, as well as numerically calculate the correlations in the ground state using matrix product state methods, and then analyze the resulting networks using a variety of network measures. We demonstrate that the network measures show some traits of complex networks already in this spin chain, arguably the simplest quantum many-body system. The network measures give insight into the phase diagram not easily captured by more typical quantities, such as the order parameter or correlation length. For example, the network structure varies with transverse field and temperature, and the structure in the quantum critical fan is different from the ordered and disordered phases.

  10. The United States nuclear plant reliability data program: Its description and status

    International Nuclear Information System (INIS)

    Wise, M.J.

    1975-01-01

    The American National Standards Institute Subcommittee N18-20 has developed and implemented the United States Nuclear Plant Reliability Data System (NPRDS). The NPRDS is designed to accumulate, store, analyse, and report reliability and failure statistics on systems and components of nuclear power plants related to nuclear safety. Input data to the NPRDS consist of engineering, operating, and failure information submitted on a voluntary basis by participating utilities. Prior to entry into the computerized data base, the data are thoroughly checked for accuracy by both the submitting organizations and the NPRDS operating contractor. The data base is the source of various periodic output reports to the nuclear power industry and is utilized to produce special reports upon request. The present data base represents data accumulated from about thirty nuclear units with additional units expected to begin submitting data immediately. The objective is to have essentially all operating nuclear units in the United States of America participating in the program by the end of 1975. The first NPRDS annual reports containing meaningful reliability and failure statistics are expected to be produced following the end of 1975. (author)

  11. Structural robustness with suboptimal responses for linear state space model

    Science.gov (United States)

    Keel, L. H.; Lim, Kyong B.; Juang, Jer-Nan

    1989-01-01

    A relationship between the closed-loop eigenvalues and the amount of perturbations in the open-loop matrix is addressed in the context of performance robustness. If the allowable perturbation ranges of elements of the open-loop matrix A and the desired tolerance of the closed-loop eigenvalues are given such that max(j) of the absolute value of Delta-lambda(j) (A+BF) should be less than some prescribed value, what is a state feedback controller F which satisfies the closed-loop eigenvalue perturbation-tolerance requirement for a class of given perturbation in A? The paper gives an algorithm to design such a controller. Numerical examples are included for illustration.

  12. Relativistic description of quark-antiquark bound states. II. Spin-dependent treatment

    International Nuclear Information System (INIS)

    Gara, A.; Durand, B.; Durand, L.

    1990-01-01

    We present the results of a study of light- and heavy-quark--antiquark bound states in the context of the reduced Bethe-Salpeter equation, including the full spin dependence. We obtain good fits to the observed spin splittings in the b bar b and c bar c systems using a short-distance single-gluon-exchange interaction, and a long-distance scalar confining interaction. However, we cannot obtain satisfactory fits to the centers of gravity of the b bar b and c bar c spin multiplets at the same time, and the splittings calculated for q bar Q mesons containing the lighter quarks are very poor. The difficulty appears to be intrinsic to the reduced Salpeter equation for reasons which we discuss

  13. INVENTORY AND DESCRIPTION OF COMMERCIAL REACTOR FUELS WITHIN THE UNITED STATES

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.

    2011-03-31

    There are currently 104 nuclear reactors in 31 states, operated by 51 different utilities. Operation of these reactors generates used fuel assemblies that require storage prior to final disposition. The regulatory framework within the United States (U.S.) allows for the licensing of used nuclear fuel storage facilities for an initial licensing period of up to 40 years with potential for license extensions in 40 years increments. Extended storage, for periods of up to 300 years, is being considered within the U.S. Therefore, there is an emerging need to develop the technical bases to support the licensing for long-term storage. In support of the Research and Development (R&D) activities required to support the technical bases, a comprehensive assessment of the current inventory of used nuclear fuel based upon publicly available resources has been completed that includes the most current projections of used fuel discharges from operating reactors. Negotiations with the nuclear power industry are ongoing concerning the willingness of individual utilities to provide information and material needed to complete the R&D activities required to develop the technical bases for used fuel storage for up to 300 years. This report includes a status of negotiations between DOE and industry in these regards. These negotiations are expected to result in a framework for cooperation between the Department and industry in which industry will provide and specific information on used fuel inventory and the Department will compensate industry for the material required for Research and Development and Testing and Evaluation Facility activities.

  14. State space model extraction of thermohydraulic systems – Part I: A linear graph approach

    International Nuclear Information System (INIS)

    Uren, K.R.; Schoor, G. van

    2013-01-01

    Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex ® model of the U-tube. Flownex ® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state

  15. Projective limits of state spaces III. Toy-models

    Science.gov (United States)

    Lanéry, Suzanne; Thiemann, Thomas

    2018-01-01

    In this series of papers, we investigate the projective framework initiated by Kijowski (1977) and Okołów (2009, 2014, 2013) [1,2], which describes the states of a quantum theory as projective families of density matrices. A short reading guide to the series can be found in Lanéry (2016). A strategy to implement the dynamics in this formalism was presented in our first paper Lanéry and Thiemann (2017) (see also Lanéry, 2016, section 4), which we now test in two simple toy-models. The first one is a very basic linear model, meant as an illustration of the general procedure, and we will only discuss it at the classical level. In the second one, we reformulate the Schrödinger equation, treated as a classical field theory, within this projective framework, and proceed to its (non-relativistic) second quantization. We are then able to reproduce the physical content of the usual Fock quantization.

  16. Gauge invariant description of heavy quark bound states in quantum chromodynamics

    International Nuclear Information System (INIS)

    Moore, S.E.

    1980-08-01

    A model for a heavy quark meson is proposed in the framework of a gauge-invariant version of quantum chromodynamics. The field operators in this formulation are taken to be Wilson loops and strings with quark-antiquark ends. The fundamental differential equations of point-like Q.C.D. are expressed as variational equations of the extended loops and strings. The 1/N expansion is described, and it is assumed that nonleading effects such as intermediate quark pairs and nonplanar gluonic terms can be neglected. The action of the Hamiltonian in the A 0 = 0 gauge on a string operator is derived. A trial meson wave functional is constructed consisting of a path-averaged string operator applied to the full vacuum. A Gaussian in the derivative of the path location is assumed for the minimal form of the measure over paths. A variational parameter is incorporated in the measure as the exponentiated coefficient of the squared path location. The expectation value of the Hamiltonian in the trial state is evaluated for the assumption that the negative logarithm of the expectation value of a Wilson loop is proportional to the loop area. The energy is then minimized by deriving the equivalent quantum mechanical Schroedinger's equation and using the quantum mechanical 1/n expansion to estimate the effective eigenvalues. It is found that the area law behavior of the Wilson loop implies a nonzero best value of the variational parameter corresponding to a quantum broadening of the flux tube

  17. Experiences of internationally educated nurses holding management positions in the United States: Descriptive phenomenological study.

    Science.gov (United States)

    Allen, Lilian A

    2018-02-12

    The purpose of this study was to explore the experiences of internationally educated nurses in management positions in United States health care organisations to understand the obstacles and support these individuals' experience when pursuing and working in managerial roles. Although internationally educated nurses are an integral part of the US health care industry, few work in managerial roles. Little is known about the experiences of internationally educated nurses who do obtain management positions. In this qualitative, phenomenological study, seven internationally educated nurses who were managers in Chicago, Illinois, responded to open-ended interview questions. Supervisors contributed to the participants' acceptance of management positions. The participants experienced challenges such as cultural differences, language, and communication. Despite these challenges, the participants had positive working relationships with staff and supervisors. Further, the participants had opportunities for education and professional growth. Internationally educated nurses benefit from participating in organisational committees. They face challenges related to work responsibilities, cultural differences and communication but can succeed in management roles through developing strategies to overcome the challenges and through receiving support from staff, colleagues and supervisors. More internationally educated nurses may obtain managerial positions if supervisors provide encouragement and support. © 2018 John Wiley & Sons Ltd.

  18. Excited state characterization of carbonyl containing carotenoids: a comparison between single and multireference descriptions

    Science.gov (United States)

    Spezia, Riccardo; Knecht, Stefan; Mennucci, Benedetta

    Carotenoids can play multiple roles in biological photoreceptors thanks to their rich photophysics. In the present work, we have investigated six of the most common carbonyl containing carotenoids: Echinenone, Canthaxanthin, Astaxanthin, Fucoxanthin, Capsanthin and Capsorubin. Their excitation properties are investigated by means of a hybrid density functional theory (DFT) and multireference configuration interaction (MRCI) approach to elucidate the role of the carbonyl group: the bright transition is of {\\pi}{\\pi}* character, as expected, but the presence of a C=O moiety reduces the energy of n{\\pi}* transitions which may become closer to the {\\pi}{\\pi}* transition, in particular as the conjugation chain decreases. This can be related to the presence of a low-lying charge transfer state typical of short carbonyl- containing carotenoids. The DFT/MRCI results are finally used to benchmark single- reference time-dependent DFT-based methods: among the investigated functionals, the meta- GGA (and in particular M11L and MN12L) functionals show to perform the best for all six investigated systems.

  19. Level crossing analysis of chemically induced dynamic nuclear polarization: Towards a common description of liquid-state and solid-state cases

    Energy Technology Data Exchange (ETDEWEB)

    Sosnovsky, Denis V.; Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru [International Tomography Centre of SB RAS, Institutskaya 3a, 630090, Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova 2, 630090, Novosibirsk (Russian Federation); Jeschke, Gunnar [Institut für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich (Switzerland); Matysik, Jörg [Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, D-04103 Leipzig (Germany); Vieth, Hans-Martin [International Tomography Centre of SB RAS, Institutskaya 3a, 630090, Novosibirsk (Russian Federation); Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin (Germany)

    2016-04-14

    Chemically Induced Dynamic Nuclear Polarization (CIDNP) is an efficient method of creating non-equilibrium polarization of nuclear spins by using chemical reactions, which have radical pairs as intermediates. The CIDNP effect originates from (i) electron spin-selective recombination of radical pairs and (ii) the dependence of the inter-system crossing rate in radical pairs on the state of magnetic nuclei. The CIDNP effect can be investigated by using Nuclear Magnetic Resonance (NMR) methods. The gain from CIDNP is then two-fold: it allows one to obtain considerable amplification of NMR signals; in addition, it provides a very useful tool for investigating elusive radicals and radical pairs. While the mechanisms of the CIDNP effect in liquids are well established and understood, detailed analysis of solid-state CIDNP mechanisms still remains challenging; likewise a common theoretical frame for the description of CIDNP in both solids and liquids is missing. Difficulties in understanding the spin dynamics that lead to the CIDNP effect in the solid-state case are caused by the anisotropy of spin interactions, which increase the complexity of spin evolution. In this work, we propose to analyze CIDNP in terms of level crossing phenomena, namely, to attribute features in the CIDNP magnetic field dependence to Level Crossings (LCs) and Level Anti-Crossings (LACs) in a radical pair. This approach allows one to describe liquid-state CIDNP; the same holds for the solid-state case where anisotropic interactions play a significant role in CIDNP formation. In solids, features arise predominantly from LACs, since in most cases anisotropic couplings result in perturbations, which turn LCs into LACs. We have interpreted the CIDNP mechanisms in terms of the LC/LAC concept. This consideration allows one to find analytical expressions for a wide magnetic field range, where several different mechanisms are operative; furthermore, the LAC description gives a way to determine CIDNP sign

  20. On coherent-state representations of quantum mechanics: Wave mechanics in phase space

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Jørgensen, Thomas Godsk; Torres-Vega, Gabino

    1997-01-01

    In this article we argue that the state-vector phase-space representation recently proposed by Torres-Vega and co-workers [introduced in J. Chem. Phys. 98, 3103 (1993)] coincides with the totality of coherent-state representations for the Heisenberg-Weyl group. This fact leads to ambiguities when...

  1. Quantum scattering theory of a single-photon Fock state in three-dimensional spaces.

    Science.gov (United States)

    Liu, Jingfeng; Zhou, Ming; Yu, Zongfu

    2016-09-15

    A quantum scattering theory is developed for Fock states scattered by two-level systems in three-dimensional free space. It is built upon the one-dimensional scattering theory developed in waveguide quantum electrodynamics. The theory fully quantizes the incident light as Fock states and uses a non-perturbative method to calculate the scattering matrix.

  2. State-space approach for evaluating the soil-plant-atmosphere system

    International Nuclear Information System (INIS)

    Timm, L.C.; Reichardt, K.; Cassaro, F.A.M.; Tominaga, T.T.; Bacchi, O.O.S.; Oliveira, J.C.M.; Dourado-Neto, D.

    2004-01-01

    Using as examples one sugarcane and one forage oat experiment, both carried out in the State of Sao Paulo, Brazil, this chapter presents recent state-space approaches used to evaluate the relation between soil and plant properties. A contrast is made between classical statistics methodologies that do not take into account the sampling position coordinates, and the more recently used methodologies which include the position coordinates, and allow a better interpretation of the field-sampled data. Classical concepts are first introduced, followed by spatially referenced methodologies like the autocorrelation function, the cross correlation function, and the state-space approach. Two variations of the state-space approach are given: one emphasizes the evolution of the state system while the other based on the bayesian formulation emphasizes the evolution of the estimated observations. It is concluded that these state-space analyses using dynamic regression models improve data analyses and are therefore recommended for analyzing time and space data series related to the performance of a given soil-plant-atmosphere system. (author)

  3. New development of the projected shell model and description of low-lying collective states in transitional nuclei

    International Nuclear Information System (INIS)

    Chen, F. Q.; Sun, Y.

    2013-01-01

    Description of the interplay between different nuclear shapes is an interesting but challenging problem. The original projected shell model (PSM) is applicable to nuclei with fixed shapes. We extend the PSM by superimposing (angular-momentum- and particle-number-) projected product wave functions in the spirit of the generate coordinate method. With this development, the Gd isotopes across the N = 90 region are studied, and the results indicate spectroscopic features of shape phase transition with varying neutron number. In order to illustrate the shape distribution in microscopic wave functions, we introduce a deformation representation and show that the collectively excited K π = 0 + states in the Gd isotopes have characters of shape vibration. (authors)

  4. The Thermionic System Evaluation Test (TSET): Descriptions, limitations, and the involvement of the space nuclear power community

    International Nuclear Information System (INIS)

    Morris, D.B.

    1993-01-01

    Project and test planning for the Thermionic System Evaluation Test (TSET) Project began in August 1990. Since the formalization of the contract agreement two years ago, the TOPAZ-II testing hardware was delivered in May 1992. In the months since the delivery of the test hardware, Russians and Americans working side-by-side installed the equipment and are preparing to begin testing in early 1993. The procurement of the Russian TOPAZ-II unfueled thermionic space nuclear power system (SNP) provides a unique opportunity to understand a complete thermionic system and enhances the possibility for further study of this type of power conversion for space applications. This paper will describe the program and test article, facility and test article limitations, and how the government and industry are encouraged to be involved in the program

  5. Topology-based description of the NCA cathode configurational space and an approach of its effective reduction

    Directory of Open Access Journals (Sweden)

    Zolotarev Pavel

    2018-01-01

    Full Text Available Modification of existing solid electrolyte and cathode materialsis a topic of interest for theoreticians and experimentalists. In particular, itrequires elucidation of the influence of dopants on the characteristics of thestudying materials. For the reason of high complexity of theconfigurational space of doped/deintercalated systems, application of thecomputer modeling approaches is hindered, despite significant advances ofcomputational facilities in last decades. In this study, we propose a scheme,which allows to reduce a set of structures of a modeled configurationalspace for the subsequent study by means of the time-consuming quantumchemistry methods. Application of the proposed approach is exemplifiedthrough the study of the configurational space of the commercialLiNi0.8Co0.15Al0.05O2 (NCA cathode material approximant.

  6. Topology-based description of the NCA cathode configurational space and an approach of its effective reduction

    Science.gov (United States)

    Zolotarev, Pavel; Eremin, Roman

    2018-04-01

    Modification of existing solid electrolyte and cathode materialsis a topic of interest for theoreticians and experimentalists. In particular, itrequires elucidation of the influence of dopants on the characteristics of thestudying materials. For the reason of high complexity of theconfigurational space of doped/deintercalated systems, application of thecomputer modeling approaches is hindered, despite significant advances ofcomputational facilities in last decades. In this study, we propose a scheme,which allows to reduce a set of structures of a modeled configurationalspace for the subsequent study by means of the time-consuming quantumchemistry methods. Application of the proposed approach is exemplifiedthrough the study of the configurational space of the commercialLiNi0.8Co0.15Al0.05O2 (NCA) cathode material approximant.

  7. Topology-based description of the NCA cathode configurational space and an approach of its effective reduction

    OpenAIRE

    Zolotarev Pavel; Eremin Roman

    2018-01-01

    Modification of existing solid electrolyte and cathode materialsis a topic of interest for theoreticians and experimentalists. In particular, itrequires elucidation of the influence of dopants on the characteristics of thestudying materials. For the reason of high complexity of theconfigurational space of doped/deintercalated systems, application of thecomputer modeling approaches is hindered, despite significant advances ofcomputational facilities in last decades. In this study, we propose a...

  8. A Descriptive Analysis of Care Provided by Law Enforcement Prior to EMS Arrival in the United States.

    Science.gov (United States)

    Klassen, Aaron B; Core, S Brent; Lohse, Christine M; Sztajnkrycer, Matthew D

    2018-04-01

    Study Objectives Law enforcement is increasingly viewed as a key component in the out-of-hospital chain of survival, with expanded roles in cardiac arrest, narcotic overdose, and traumatic bleeding. Little is known about the nature of care provided by law enforcement prior to the arrival of Emergency Medical Services (EMS) assets. The purpose of the current study was to perform a descriptive analysis of events reported to a national EMS database. This study was a descriptive analysis of the 2014 National Emergency Medical Services Information System (NEMSIS) public release research data set, containing EMS emergency response data from 41 states. Code E09_02 1200 specifically identifies care provided by law enforcement prior to EMS arrival. A total of 25,835,729 unique events were reported. Of events in which pre-arrival care was documented, 2.0% received prior aid by law enforcement. Patients receiving law enforcement care prior to EMS arrival were more likely to be younger (52.8 [SD=23.3] years versus 58.7 [SD=23.3] years), male (54.8% versus 46.7%), and white (80.3% versus 77.5%). Basic Life Support (BLS) EMS response was twice as likely in patients receiving prior aid by law enforcement. Multiple-casualty incidents were five times more likely with prior aid by law enforcement. Compared with prior aid by other services, law enforcement pre-arrival care was more likely with motor vehicle accidents, firearm assaults, knife assaults, blunt assaults, and drug overdoses, and less likely at falls and childbirths. Cardiac arrest was significantly more common in patients receiving prior aid by law enforcement (16.5% versus 2.6%). Tourniquet application and naloxone administration were more common in the law enforcement prior aid group. Where noted, law enforcement pre-arrival care occurs in 2.0% of EMS patient encounters. The majority of cases involve cardiac arrest, motor vehicle accidents, and assaults. Better understanding of the nature of law enforcement care is

  9. Who actually receives cell phone use while driving citations and how much are these laws enforced among states? A descriptive, cross-sectional study

    OpenAIRE

    Rudisill, Toni M; Zhu, Motao

    2016-01-01

    Objectives While numerous cell phone use while driving laws have been passed among states, little information exists regarding who gets cited for these traffic infractions and how much these laws are enforced at the state-level within the USA. Design Cross-sectional, descriptive study. Setting 14 states and the District of Columbia. Participants Those receiving cell phone use while driving citations within included states from 2007 to 2013. Primary outcome Demographic characteristics of cited...

  10. Floods of December 1964 and January 1965 in the Far Western States; Part 1 Description

    Science.gov (United States)

    Waananen, A.O.; Harris, D.D.; Williams, R.C.

    1971-01-01

    The floods of December 1964 and January 1965 in the Far Western States were extreme; in many areas, the greatest in the history of recorded streamflow and substantially greater than those of December 1955. An unusually large area--Oregon, most of Idaho, northern California, southern Washington, and small areas in western and northern Nevada--was involved. It exceeded the area flooded in 1955. Outstanding features included recordbreaking peak discharges, high sediment concentrations, large sediment loads, and extensive flood damage. The loss of 47 lives and direct property damage of more than $430 million was attributable to the floods. Yet, storage in reservoirs and operation of flood-control facilities were effective in preventing far greater damages in many areas, particularly in the Central Valley in California and the Willamette River basin in Oregon. The floods were caused by three principal storms during the period December 19 to January 31. The December 19-23 storm was the greatest in overall intensity and areal extent. Crests occurred on many major streams December 23, 1964, 9 years to the day after the great flood of December 23, 1955. The January 2-7 storm produced extreme floods in some basins in California. The January 21-31 storm produced maximum stages in some streams in northeastern Oregon and southeastern Washington and a repetition of high flows in part of the Willamette River basin and in some basins in coastal Oregon. All the storms, and particularly the warm torrential rain December 21-23, reflected the combined effect of moist unstable airmasses, strong west-southwest winds, and mountain ranges oriented nearly at right angles to the flow of air. High air temperatures and strong winds associated with the storms caused melting of snow, and the meltwater augmented the rain that fell on frozen ground. The coastal areas of northern California and southern Oregon had measurable rain on as many as 50 days in December and January. A maximum

  11. Evaluating abundance and trends in a Hawaiian avian community using state-space analysis

    Science.gov (United States)

    Camp, Richard J.; Brinck, Kevin W.; Gorresen, P.M.; Paxton, Eben H.

    2016-01-01

    Estimating population abundances and patterns of change over time are important in both ecology and conservation. Trend assessment typically entails fitting a regression to a time series of abundances to estimate population trajectory. However, changes in abundance estimates from year-to-year across time are due to both true variation in population size (process variation) and variation due to imperfect sampling and model fit. State-space models are a relatively new method that can be used to partition the error components and quantify trends based only on process variation. We compare a state-space modelling approach with a more traditional linear regression approach to assess trends in uncorrected raw counts and detection-corrected abundance estimates of forest birds at Hakalau Forest National Wildlife Refuge, Hawai‘i. Most species demonstrated similar trends using either method. In general, evidence for trends using state-space models was less strong than for linear regression, as measured by estimates of precision. However, while the state-space models may sacrifice precision, the expectation is that these estimates provide a better representation of the real world biological processes of interest because they are partitioning process variation (environmental and demographic variation) and observation variation (sampling and model variation). The state-space approach also provides annual estimates of abundance which can be used by managers to set conservation strategies, and can be linked to factors that vary by year, such as climate, to better understand processes that drive population trends.

  12. Linear discrete-time state space realization of a modified quadruple tank system with state estimation using Kalman filter

    DEFF Research Database (Denmark)

    Mohd. Azam, Sazuan Nazrah

    2017-01-01

    In this paper, we used the modified quadruple tank system that represents a multi-input-multi-output (MIMO) system as an example to present the realization of a linear discrete-time state space model and to obtain the state estimation using Kalman filter in a methodical mannered. First, an existing...... part of the Kalman filter is used to estimates the current state, based on the model and the measurements. The static and dynamic Kalman filter is compared and all results is demonstrated through simulations....

  13. Weaponizing the Final Frontier: The United States and the New Space Race

    Science.gov (United States)

    2017-06-09

    prepare to defend these systems from attack.41 The next logical step is the development and execution of this philosophy to secure national interests...fourth argument impacting the weaponization of space references is the question of morality . In the article, Moral and Ethical Decisions Regarding Space...Warfare, Col (now General) John Hyten and Dr. Robert Uy describe the moral and ethical considerations to evaluate as the United States shapes

  14. State-Space Geometry, Statistical Fluctuations, and Black Holes in String Theory

    Directory of Open Access Journals (Sweden)

    Stefano Bellucci

    2014-01-01

    Full Text Available We study the state-space geometry of various extremal and nonextremal black holes in string theory. From the notion of the intrinsic geometry, we offer a state-space perspective to the black hole vacuum fluctuations. For a given black hole entropy, we explicate the intrinsic geometric meaning of the statistical fluctuations, local and global stability conditions, and long range statistical correlations. We provide a set of physical motivations pertaining to the extremal and nonextremal black holes, namely, the meaning of the chemical geometry and physics of correlation. We illustrate the state-space configurations for general charge extremal black holes. In sequel, we extend our analysis for various possible charge and anticharge nonextremal black holes. From the perspective of statistical fluctuation theory, we offer general remarks, future directions, and open issues towards the intrinsic geometric understanding of the vacuum fluctuations and black holes in string theory.

  15. On classical state space realizability of bilinear inout-output differential equations

    OpenAIRE

    Kotta, U.; Mullari, T.; Kotta, P.; Zinober, A.S.I.

    2006-01-01

    This paper studies the realizability property of continuous-time bilinear i/o equations in the classical state space form. Constraints on the parameters of the bilinear i/o model are suggested that lead to realizable models. The paper proves that the 2nd order bilinear i/o differential equation, unlike the discrete-time case, is always realizable in the classical state space form. The complete list of 3rd and 4th order realizable i/o bilinear models is given and two subclasses of realizable i...

  16. Quantum states and the Hadamard form. III. Constraints in cosmological space-times

    International Nuclear Information System (INIS)

    Najmi, A.; Ottewill, A.C.

    1985-01-01

    We examine the constraints on the construction of Fock spaces for scalar fields in spatially flat Robertson-Walker space-times imposed by requiring that the vacuum state of the theory have a two-point function possessing the Hadamard singularity structure required by standard renormalization theory. It is shown that any such vacuum state must be a second-order adiabatic vacuum. We discuss the global requirements on the two-point function for it to possess the Hadamard form at all times if it possesses it at one time

  17. Mixture estimation with state-space components and Markov model of switching

    Czech Academy of Sciences Publication Activity Database

    Nagy, Ivan; Suzdaleva, Evgenia

    2013-01-01

    Roč. 37, č. 24 (2013), s. 9970-9984 ISSN 0307-904X R&D Projects: GA TA ČR TA01030123 Institutional support: RVO:67985556 Keywords : probabilistic dynamic mixtures, * probability density function * state-space models * recursive mixture estimation * Bayesian dynamic decision making under uncertainty * Kerridge inaccuracy Subject RIV: BC - Control Systems Theory Impact factor: 2.158, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/nagy-mixture estimation with state-space components and markov model of switching.pdf

  18. Perceiving the target's state or state provoked by the target? An analysis of the descriptive and evaluative knowledge in person perception.

    Science.gov (United States)

    Mignon, Astrid; Mollaret, Patrick

    2012-12-01

    In line with the theory of traits as generalized affordances, the present article argues that target's states (TSs) and states provoked by a target (other's states (OSs) towards target) are two components of the meaning of traits referring, respectively, to a descriptive and to an evaluative knowledge of people. A preliminary study confirmed that TS and OS were equally representative of a trait. Two studies were designed to study the effects of practising the use of traits as either TS or OS categories (an induction procedure) on a subsequent person perception task, requiring participants to rate photographed targets on a series of traits. Results show that both the differentiation between targets and evaluative consistency of ratings were enhanced under the OS condition compared to TS and control (with no practice of traits) conditions. Importantly, Study 2 tends to show that the effects of the induction procedure are not limited to the practised traits but also generalize to unpractised traits. Implications of these findings for social perception research are discussed. ©2011 The British Psychological Society.

  19. Experiment Description and Results for Arrival Operations Using Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR)

    Science.gov (United States)

    Baxley, Brian T.; Murdoch, Jennifer L.; Swieringa, Kurt A.; Barmore, Bryan E.; Capron, William R.; Hubbs, Clay E.; Shay, Richard F.; Abbott, Terence S.

    2013-01-01

    The predicted increase in the number of commercial aircraft operations creates a need for improved operational efficiency. Two areas believed to offer increases in aircraft efficiency are optimized profile descents and dependent parallel runway operations. Using Flight deck Interval Management (FIM) software and procedures during these operations, flight crews can achieve by the runway threshold an interval assigned by air traffic control (ATC) behind the preceding aircraft that maximizes runway throughput while minimizing additional fuel consumption and pilot workload. This document describes an experiment where 24 pilots flew arrivals into the Dallas Fort-Worth terminal environment using one of three simulators at NASA?s Langley Research Center. Results indicate that pilots delivered their aircraft to the runway threshold within +/- 3.5 seconds of their assigned time interval, and reported low workload levels. In general, pilots found the FIM concept, procedures, speeds, and interface acceptable. Analysis of the time error and FIM speed changes as a function of arrival stream position suggest the spacing algorithm generates stable behavior while in the presence of continuous (wind) or impulse (offset) error. Concerns reported included multiple speed changes within a short time period, and an airspeed increase followed shortly by an airspeed decrease.

  20. Coherent states for FLRW space-times in loop quantum gravity

    International Nuclear Information System (INIS)

    Magliaro, Elena; Perini, Claudio; Marciano, Antonino

    2011-01-01

    We construct a class of coherent spin-network states that capture properties of curved space-times of the Friedmann-Lamaitre-Robertson-Walker type on which they are peaked. The data coded by a coherent state are associated to a cellular decomposition of a spatial (t=const) section with a dual graph given by the complete five-vertex graph, though the construction can be easily generalized to other graphs. The labels of coherent states are complex SL(2,C) variables, one for each link of the graph, and are computed through a smearing process starting from a continuum extrinsic and intrinsic geometry of the canonical surface. The construction covers both Euclidean and Lorentzian signatures; in the Euclidean case and in the limit of flat space we reproduce the simplicial 4-simplex semiclassical states used in spin foams.

  1. Gamow state vectors as functionals over subspaces of the nuclear space

    International Nuclear Information System (INIS)

    Bohm, A.

    1979-12-01

    Exponentially decaying Gamow state vectors are obtained from S-matrix poles in the lower half of the second sheet, and are defined as functionals over a subspace of the nuclear space, PHI. Exponentially growing Gamow state vectors are obtained from S-matrix poles in the upper half of the second sheet, and are defined as functionals over another subspace of PHI. On functionals over these two subspaces the dynamical group of time development splits into two semigroups

  2. Identification of a Class of Non-linear State Space Models using RPE Techniques

    DEFF Research Database (Denmark)

    Zhou, Wei-Wu; Blanke, Mogens

    1989-01-01

    The RPE (recursive prediction error) method in state-space form is developed in the nonlinear systems and extended to include the exact form of a nonlinearity, thus enabling structure preservation for certain classes of nonlinear systems. Both the discrete and the continuous-discrete versions...... of the algorithm in an innovations model are investigated, and a nonlinear simulation example shows a quite convincing performance of the filter as combined parameter and state estimator...

  3. Descriptive aspects of space on Guimarães Rosa's “A hora e vez de Augusto Matraga”: an initiation on journey

    Directory of Open Access Journals (Sweden)

    João Gomes da Silva Neto

    2013-12-01

    Full Text Available This paper focuses on some textual and discursive aspects of the Guimarães Rosa´s story “A hora e vez de Augusto Matraga”, concerning to description sequences and its role in the configuration of the fictional space. We discuss a narrative matrix whose spatial and temporal structures reveal a trajectory towards the human being redemption – a kind of initiation journey, marked by the mystic of an ascetic life. The analyses also points to the recurrent themes of violence and religiousness that support the narrative tension, straightly related to the protagonist conflicts. Violence and religiousness express the initiation journey paradoxes. Our methodology adopts theoretical contributions of the Pragmatic Linguistics and the Textual Analysis of the Discourses.

  4. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    Science.gov (United States)

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  5. Negative norm states in de Sitter space and QFT without renormalization procedure

    International Nuclear Information System (INIS)

    Takook, M.V.

    2002-01-01

    In recent papers, 1,2 it has been shown that the presence of negative norm states or negative frequency solutions are indispensable for a fully covariant quantization of the minimally coupled scalar field in de Sitter space. Their presence, while leaving unchanged the physical content of the theory, offers the advantage of eliminating any ultraviolet divergence in the vacuum energy 2 and infrared divergence in the two point function. 3 We attempt here to extend this method to the interacting quantum field in Minkowski space-time. As an illustration of the procedure, we consider the λϕ 4 theory in Minkowski space-time. The mathematical consequences of this method is the disappearance of the ultraviolet divergence to the one-loop approximation. This means, the effect of these auxiliary negative norm states is to allow an automatic renormalization of the theory in this approximation. (author)

  6. Algorithms for a parallel implementation of Hidden Markov Models with a small state space

    DEFF Research Database (Denmark)

    Nielsen, Jesper; Sand, Andreas

    2011-01-01

    Two of the most important algorithms for Hidden Markov Models are the forward and the Viterbi algorithms. We show how formulating these using linear algebra naturally lends itself to parallelization. Although the obtained algorithms are slow for Hidden Markov Models with large state spaces...

  7. Is long distance free space quantum communication with the OAM state of light feasible [Presentation

    CSIR Research Space (South Africa)

    Hamadou Ibrahim, A

    2013-06-01

    Full Text Available -space quantum communication with the OAM state of light feasible? A. HAMADOU IBRAHIM1,2, F.S. ROUX1, M. McLAREN1,3 , A. FORBES1,2,3 & T. KONRAD2 1. CSIR National Laser Centre, PO Box 395, Pretoria 0001 2. School of Physics, University of Kwazulu...

  8. Evolved finite state controller for hybrid system in reduced search space

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun

    2009-01-01

    This paper presents an evolutionary methodology to automatically generate finite state automata (FSA) controllers to control hybrid systems. The proposed approach reduces the search space using an invariant analysis of the system. FSA controllers for a case study of two-tank system have been...

  9. Wigner's dynamical transition state theory in phase space : classical and quantum

    NARCIS (Netherlands)

    Waalkens, Holger; Schubert, Roman; Wiggins, Stephen

    We develop Wigner's approach to a dynamical transition state theory in phase space in both the classical and quantum mechanical settings. The key to our development is the construction of a normal form for describing the dynamics in the neighbourhood of a specific type of saddle point that governs

  10. A non-linear state space approach to model groundwater fluctuations

    NARCIS (Netherlands)

    Berendrecht, W.L.; Heemink, A.W.; Geer, F.C. van; Gehrels, J.C.

    2006-01-01

    A non-linear state space model is developed for describing groundwater fluctuations. Non-linearity is introduced by modeling the (unobserved) degree of water saturation of the root zone. The non-linear relations are based on physical concepts describing the dependence of both the actual

  11. System Identification of Civil Engineering Structures using State Space and ARMAV Models

    DEFF Research Database (Denmark)

    Andersen, P.; Kirkegaard, Poul Henning; Brincker, Rune

    In this paper the relations between an ambient excited structural system, represented by an innovation state space system, and the Auto-Regressive Moving Average Vector (ARMAV) model are considered. It is shown how to obtain a multivariate estimate of the ARMAV model from output measurements, usi...

  12. Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models

    NARCIS (Netherlands)

    Koopman, S.J.; Lucas, A.; Scharth, M.

    2015-01-01

    We propose a general likelihood evaluation method for nonlinear non-Gaussian state-space models using the simulation-based method of efficient importance sampling. We minimize the simulation effort by replacing some key steps of the likelihood estimation procedure by numerical integration. We refer

  13. Determinants of road traffic safety : new evidence from Australia using state-space analysis.

    NARCIS (Netherlands)

    Nghiem, S. Commandeur, J.J.F. & Connelly, L.B.

    2016-01-01

    This paper examines the determinants of road traffic crash fatalities in Queensland for the period 1958–2007 using a state-space time-series model. In particular, we investigate the effects of policies that aimed to reduce drink-driving on traffic fatalities, as well as indicators of the economic

  14. State-space solutions to the h_inf/ltr design problem

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    1993-01-01

    observer based approach is proposed, where the Z part of the controller is appended to a standard full-order observer. Second, allowing for general controllers, an JC state-space problem is formulated directly from the recovery errors. Both approaches lead to controller orders of at most 2n. In the minimum...

  15. A direct derivation of the exact Fisther information matrix of Gaussian vector state space models

    NARCIS (Netherlands)

    Klein, A.A.B.; Neudecker, H.

    2000-01-01

    This paper deals with a direct derivation of Fisher's information matrix of vector state space models for the general case, by which is meant the establishment of the matrix as a whole and not element by element. The method to be used is matrix differentiation, see [4]. We assume the model to be

  16. Steady-State Calculation of the ATLAS Test Facility Using the SPACE Code

    International Nuclear Information System (INIS)

    Kim, Hyoung Tae; Choi, Ki Yong; Kim, Kyung Doo

    2011-01-01

    The Korean nuclear industry is developing a thermalhydraulic analysis code for safety analysis of pressurized water reactors (PWRs). The new code is called the Safety and Performance Analysis Code for Nuclear Power Plants (SPACE). Several research and industrial organizations including KAERI (Korea Atomic Energy Research Institute) are participating in the collaboration for the development of the SPACE code. One of the main tasks of KAERI is to carry out separate effect tests (SET) and integral effect tests (IET) for code verification and validation (V and V). The IET has been performed with ATLAS (Advanced Thermalhydraulic Test Loop for Accident Simulation) based on the design features of the APR1400 (Advanced Power Reactor of 1400MWe). In the present work the SPACE code input-deck for ATLAS is developed and used for simulation of the steady-state conditions of ATLAS as a preliminary work for IET V and V of the SPACE code

  17. Exploiting Stabilizers and Parallelism in State Space Generation with the Symmetry Method

    DEFF Research Database (Denmark)

    Lorentsen, Louise; Kristensen, Lars Michael

    2001-01-01

    The symmetry method is a main reduction paradigm for alleviating the state explosion problem. For large symmetry groups deciding whether two states are symmetric becomes time expensive due to the apparent high time complexity of the orbit problem. The contribution of this paper is to alleviate th...... the negative impact of the orbit problem by the specification of canonical representatives for equivalence classes of states in Coloured Petri Nets, and by giving algorithms exploiting stabilizers and parallelism for computing the condensed state space.......The symmetry method is a main reduction paradigm for alleviating the state explosion problem. For large symmetry groups deciding whether two states are symmetric becomes time expensive due to the apparent high time complexity of the orbit problem. The contribution of this paper is to alleviate...

  18. State-space models for bio-loggers: A methodological road map

    DEFF Research Database (Denmark)

    Jonsen, I.D.; Basson, M.; Bestley, S.

    2012-01-01

    Ecologists have an unprecedented array of bio-logging technologies available to conduct in situ studies of horizontal and vertical movement patterns of marine animals. These tracking data provide key information about foraging, migratory, and other behaviours that can be linked with bio-physical...... development of state-space modelling approaches for animal movement data provides statistical rigor for inferring hidden behavioural states, relating these states to bio-physical data, and ultimately for predicting the potential impacts of climate change. Despite the widespread utility, and current popularity...

  19. Displaced squeezed number states: Position space representation, inner product, and some applications

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Jørgensen, Thomas Godsk; Dahl, Jens Peder

    1996-01-01

    For some applications the overall phase of a quantum state is crucial. For the so-called displaced squeezed number state (DSN), which is a generalization of the well-known squeezed coherent state, we obtain the position space representation with the correct overall phase, from the dynamics...... in a harmonic potential. The importance of the overall phase is demonstrated in the context of characteristic or moment generating functions. For two special cases the characteristic function is shown to be computable from the inner product of two different DSNs....

  20. Space-time description of dengue outbreaks in Cruzeiro, São Paulo, in 2006 and 2011

    Directory of Open Access Journals (Sweden)

    Renata Marzzano de Carvalho

    2014-12-01

    Full Text Available Objective: to identify patterns in the spatial and temporal distribution of cases of dengue fever occurring in the city of Cruzeiro, state of São Paulo (SP. Methods: an ecological and exploratory study was undertaken using spatial analysis tools and data from dengue cases obtained on the SinanNet. The analysis was carried out by area, using the IBGE census sector as a unit. The months of March to June 2006 and 2011 were assessed, revealing progress of the disease. TerraView 3.3.1 was used to calculate the Global Moran’s I, month to month, and the Kernel estimator. Results: in the year 2006, 691 cases of dengue fever (rate of 864.2 cases/100,000 inhabitants were georeferenced; and the Moran’s I and p-values were significant in the months of April and May (IM = 0.28; p = 0.01; IM = 0.20; p = 0.01 with higher densities in the central, north, northeast and south regions. In the year 2011, 654 cases of dengue fever (rate of 886.8 cases/100,000 inhabitants were georeferenced; and the Moran’s I and p-values were significant in the months of April and May (IM = 0.28; p = 0.01; IM = 0.16; p = 0.05 with densities in the same regions as 2006. The Global Moran’s I is a global measure of spatial autocorrelation, which indicates the degree of spatial association in the set of information from the product in relation to the average. The I varies between -1 and +1 and can be attributed to a level of significance (p-value. The positive value points to a positive or direct spatial autocorrelation. Conclusion: we were able to identify patterns in the spatial and temporal distribution of dengue cases occurring in the city of Cruzeiro, SP, and locate the census sectors where the outbreak began and how it evolved.

  1. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    Science.gov (United States)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  2. A state-space Bayesian framework for estimating biogeochemical transformations using time-lapse geophysical data

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Hubbard, S.; Williams, K.; Pride, S.; Li, L.; Steefel, C.; Slater, L.

    2009-04-15

    We develop a state-space Bayesian framework to combine time-lapse geophysical data with other types of information for quantitative estimation of biogeochemical parameters during bioremediation. We consider characteristics of end-products of biogeochemical transformations as state vectors, which evolve under constraints of local environments through evolution equations, and consider time-lapse geophysical data as available observations, which could be linked to the state vectors through petrophysical models. We estimate the state vectors and their associated unknown parameters over time using Markov chain Monte Carlo sampling methods. To demonstrate the use of the state-space approach, we apply it to complex resistivity data collected during laboratory column biostimulation experiments that were poised to precipitate iron and zinc sulfides during sulfate reduction. We develop a petrophysical model based on sphere-shaped cells to link the sulfide precipitate properties to the time-lapse geophysical attributes and estimate volume fraction of the sulfide precipitates, fraction of the dispersed, sulfide-encrusted cells, mean radius of the aggregated clusters, and permeability over the course of the experiments. Results of the case study suggest that the developed state-space approach permits the use of geophysical datasets for providing quantitative estimates of end-product characteristics and hydrological feedbacks associated with biogeochemical transformations. Although tested here on laboratory column experiment datasets, the developed framework provides the foundation needed for quantitative field-scale estimation of biogeochemical parameters over space and time using direct, but often sparse wellbore data with indirect, but more spatially extensive geophysical datasets.

  3. Solar Pumped Solid State Lasers for Space Solar Power: Experimental Path

    Science.gov (United States)

    Fork, Richard L.; Carrington, Connie K.; Walker, Wesley W.; Cole, Spencer T.; Green, Jason J. A.; Laycock, Rustin L.

    2003-01-01

    We outline an experimentally based strategy designed to lead to solar pumped solid state laser oscillators useful for space solar power. Our method involves solar pumping a novel solid state gain element specifically designed to provide efficient conversion of sunlight in space to coherent laser light. Kilowatt and higher average power is sought from each gain element. Multiple such modular gain elements can be used to accumulate total average power of interest for power beaming in space, e.g., 100 kilowatts and more. Where desirable the high average power can also be produced as a train of pulses having high peak power (e.g., greater than 10(exp 10 watts). The modular nature of the basic gain element supports an experimental strategy in which the core technology can be validated by experiments on a single gain element. We propose to do this experimental validation both in terrestrial locations and also on a smaller scale in space. We describe a terrestrial experiment that includes diagnostics and the option of locating the laser beam path in vacuum environment. We describe a space based experiment designed to be compatible with the Japanese Experimental Module (JEM) on the International Space Station (ISS). We anticipate the gain elements will be based on low temperature (approx. 100 degrees Kelvin) operation of high thermal conductivity (k approx. 100 W/cm-K) diamond and sapphire (k approx. 4 W/cm-K). The basic gain element will be formed by sequences of thin alternating layers of diamond and Ti:sapphire with special attention given to the material interfaces. We anticipate this strategy will lead to a particularly simple, robust, and easily maintained low mass modelocked multi-element laser oscillator useful for space solar power.

  4. A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.H.; Gaunaa, M.; Aagaard Madsen, H.

    2004-06-01

    This report contains a description of a Beddoes-Leishman type dynamic stall model in both a state-space and an indicial function formulation. The m odel predicts the unsteady aerodynamic foreces and moment on an airfoil section undergoing arbitrary motion in heavy, lead-lag, and pitch. The model includes the effects of shed vorticity from the trailing edge (Theodorsen Theory), and the effects of an instationary trailing edge separation point. The governing equations of the model are nonlinear, and they are linearized about a steady state for application in stability analyzes. A validation is carried out by comparing the response of the model with inviscid solutions and observing the general behavior of the model using known airfoil data as input. The proposed dyanmic model gives results identical to inviscid solutions within the attached-flow region; and it exhibits the expected dynamic features, such as overshoot of the lift, in the stall region. The linearized model is shown to give identical results to the full model for small amplitude oscillations. furthermore, it is shown that the response of finite thickness airfoils can be reproduced to a high accuracy by the use of specific inviscid response functions. (au)

  5. You Pretty Little Flocker: Exploring the Aesthetic State Space of Creative Ecosystems.

    Science.gov (United States)

    Eldridge, Alice

    2015-01-01

    Artificial life models constitute a rich compendium of tools for the generative arts; complex, self-organizing, emergent behaviors have great interactive and generative potential. But how can we go beyond simply visualizing scientific simulations and manipulate these models for use in design and creative art contexts? You Pretty Little Flocker is a proof-of-concept study in expanding and exploring the aesthetic state space of a model for generative design. A modified version of Reynolds' flocking algorithm (1987) is described in which the space of possible images is extended and navigable in a way that at once provides user control and maintains generative autonomy.

  6. Inequities in coverage of smokefree space policies within the United States

    Directory of Open Access Journals (Sweden)

    Christopher Lowrie

    2017-05-01

    Full Text Available Abstract Background Previous studies have found extensive geographic and demographic differences in tobacco use. These differences have been found to be reduced by effective public policies, including banning smoking in public spaces. Smokefree indoor and outdoor spaces reduce secondhand smoke exposure and denormalize smoking. Methods We evaluated regional and demographic differences in the proportion of the population covered by smokefree policies enacted in the United States prior to 2014, for both adults and children. Results Significant differences in coverage were found by ethnicity, region, income, and education (p < 0.001. Smokefree policy coverage was lower for jurisdictions with higher proportions of poor households, households with no high school diploma and the Southeast region. Increased ethnic heterogeneity was found to be a significant predictor of coverage in indoor “public spaces generally”, meaning that diversity is protective, with differential effect by region (p = 0.004 – which may relate to urbanicity. Children had a low level of protection in playgrounds and schools (~10% covered nationwide – these spaces were found to be covered at lower rates than indoor spaces. Conclusions Disparities in smokefree space policies have potential to exacerbate existing health inequities. A national increase in smokefree policies to protect children in playgrounds and schools is a crucial intervention to reduce such inequities.

  7. Evolution from pure states into mixed states in de Sitter space

    International Nuclear Information System (INIS)

    Sakagami, Masa-aki.

    1987-03-01

    An attempt is made to clarify realization of a classical distribution from quantum fluctuations of the order parameter in the inflationary universe. We discuss destruction of quantum coherence associated with a state of the order parameter in models where it interacts with the environment. For that purpose, the time evolution of the reduced density matrix ρ tilde, which is obtained by coarse-graining of the environment, is investigated. It is shown that off-diagonal elements of ρ tilde decrease as the phase transition proceeds. (author)

  8. Fossil plotopterid seabirds from the Eo-Oligocene of the Olympic Peninsula (Washington State, USA: descriptions and functional morphology.

    Directory of Open Access Journals (Sweden)

    Gareth J Dyke

    Full Text Available The plotopterids (Aves, Plotopteridae were a group of extinct wing-propelled marine birds that are known from Paleogene-aged sediments (Eocene to Miocene, mostly around the Pacific Rim (especially Japan and the northwest coast of North America. While these birds exhibit a strikingly similar wing morphology to penguins (Spheniscidae, they also share derived characters with pelecaniform birds that are absent in penguins and exhibit apparently superficial similarities with auks (Alcidae: Charadriiformes. Despite quite an abundant fossil record, these birds have been little studied, and in particular their functional morphology remains little understood. Here we present osteological overviews of specimens from the northwest coast of Washington state (USA. We give an amended diagnosis for the well-represented North American genus, Tonsala Olson, 1980, describe a new large species, and examine the functional morphology of plotopterids showing that the ratio of humeral strength to femoral strength is quite low in one well-represented species Tonsala buchanani sp.nov., relative to both extant penguins and alcids. While the femoral strength of Tonsala buchanani is 'penguin-grade', its humeral strength is more 'alcid-grade'. These results have implications for understanding the mode-of-locomotion of these extinct marine birds. Although not related to Spheniscidae, our descriptions and functional results suggest that Tonsala buchanani sustained similar loads in walking, but slightly lower humeral loads during swimming, than a modern penguin. This suggests a swimming mode that is more similar to living alcids, than to the highly-specialised locomotor strategy of living and fossil penguins.

  9. Motion state analysis of space target based on optical cross section

    Science.gov (United States)

    Tian, Qichen; Li, Zhi; Xu, Can; Liu, Chenghao

    2017-10-01

    In order to solve the problem that the movement state analysis method of the space target based on OCS is not related to the real motion state. This paper proposes a method based on OCS for analyzing the state of space target motion. This paper first establish a three-dimensional model of real STSS satellite, then change the satellite's surface into element, and assign material to each panel according to the actual conditions of the satellite. This paper set up a motion scene according to the orbit parameters of STSS satellite in STK, and the motion states are set to three axis steady state and slowly rotating unstable state respectively. In these two states, the occlusion condition of the surface element is firstly determined, and the effective face element is selected. Then, the coordinates of the observation station and the solar coordinates in the satellite body coordinate system are input into the OCS calculation program, and the OCS variation curves of the three axis steady state and the slow rotating unstable state STSS satellite are obtained. Combining the satellite surface structure and the load situation, the OCS change curve of the three axis stabilized satellite is analyzed, and the conclude that the OCS curve fluctuates up and down when the sunlight is irradiated to the load area; By using Spectral analysis method, autocorrelation analysis and the cross residual method, the rotation speed of OCS satellite in slow rotating unstable state is analyzed, and the rotation speed of satellite is successfully reversed. By comparing the three methods, it is found that the cross residual method is more accurate.

  10. Topex/Poseidon: A United States/France mission. Oceanography from space: The oceans and climate

    Science.gov (United States)

    1992-01-01

    The TOPEX/POSEIDON space mission, sponsored by NASA and France's space agency, the Centre National d'Etudes Spatiales (CNES), will give new observations of the Earth from space to gain a quantitative understanding of the role of ocean currents in climate change. Rising atmospheric concentrations of carbon dioxide and other 'greenhouse gases' produced as a result of human activities could generate a global warming, followed by an associated rise in sea level. The satellite will use radar altimetry to measure sea-surface height and will be tracked by three independent systems to yield accurate topographic maps over the dimensions of entire ocean basins. The satellite data, together with the Tropical Ocean and Global Atmosphere (TOGA) program and the World Ocean Circulation Experiment (WOCE) measurements, will be analyzed by an international scientific team. By merging the satellite observations with TOGA and WOCE findings, the scientists will establish the extensive data base needed for the quantitative description and computer modeling of ocean circulation. The ocean models will eventually be coupled with atmospheric models to lay the foundation for predictions of global climate change.

  11. Parameter retrieval of chiral metamaterials based on the state-space approach.

    Science.gov (United States)

    Zarifi, Davoud; Soleimani, Mohammad; Abdolali, Ali

    2013-08-01

    This paper deals with the introduction of an approach for the electromagnetic characterization of homogeneous chiral layers. The proposed method is based on the state-space approach and properties of a 4×4 state transition matrix. Based on this, first, the forward problem analysis through the state-space method is reviewed and properties of the state transition matrix of a chiral layer are presented and proved as two theorems. The formulation of a proposed electromagnetic characterization method is then presented. In this method, scattering data for a linearly polarized plane wave incident normally on a homogeneous chiral slab are combined with properties of a state transition matrix and provide a powerful characterization method. The main difference with respect to other well-established retrieval procedures based on the use of the scattering parameters relies on the direct computation of the transfer matrix of the slab as opposed to the conventional calculation of the propagation constant and impedance of the modes supported by the medium. The proposed approach allows avoiding nonlinearity of the problem but requires getting enough equations to fulfill the task which was provided by considering some properties of the state transition matrix. To demonstrate the applicability and validity of the method, the constitutive parameters of two well-known dispersive chiral metamaterial structures at microwave frequencies are retrieved. The results show that the proposed method is robust and reliable.

  12. State-space model with deep learning for functional dynamics estimation in resting-state fMRI.

    Science.gov (United States)

    Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang

    2016-04-01

    Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Urban Green Space and the Pursuit of Health Equity in Parts of the United States

    Directory of Open Access Journals (Sweden)

    Viniece Jennings

    2017-11-01

    Full Text Available Research has demonstrated that inequitable access to green space can relate to health disparities or inequalities. This commentary aims to shift the dialogue to initiatives that have integrated green spaces in projects that may promote health equity in the United States. Specifically, we connect this topic to factors such as community revitalization, affordable housing, neighborhood walkability, food security, job creation, and youth engagement. We provide a synopsis of locations and initiatives in different phases of development along with characteristics to support effectiveness and strategies to overcome challenges. The projects cover locations such as Atlanta (GA, Los Angeles (CA, the District of Columbia (Washington D.C., South Bronx (NY, and Utica (NY. Such insight can develop our understanding of green space projects that support health equity and inform the dialogue on this topic in ways that advance research and advocacy.

  14. EVENT DRIVEN AUTOMATIC STATE MODIFICATION OF BNL'S BOOSTER FOR NASA SPACE RADIATION LABORATORY SOLAR PARTICLE SIMULATOR

    International Nuclear Information System (INIS)

    BROWN, D.; BINELLO, S.; HARVEY, M.; MORRIS, J.; RUSEK, A.; TSOUPAS, N.

    2005-01-01

    The NASA Space Radiation Laboratory (NSRL) was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The NSRL makes use of heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. NASA is interested in reproducing the energy spectrum from a solar flare in the space environment for a single ion species. To do this we have built and tested a set of software tools which allow the state of the Booster and the NSRL beam line to be changed automatically. In this report we will describe the system and present results of beam tests

  15. Quantum corrections in thermal states of fermions on anti-de Sitter space-time

    Science.gov (United States)

    Ambruş, Victor E.; Winstanley, Elizabeth

    2017-12-01

    We study the energy density and pressure of a relativistic thermal gas of massless fermions on four-dimensional Minkowski and anti-de Sitter space-times using relativistic kinetic theory. The corresponding quantum field theory quantities are given by components of the renormalized expectation value of the stress-energy tensor operator acting on a thermal state. On Minkowski space-time, the renormalized vacuum expectation value of the stress-energy tensor is by definition zero, while on anti-de Sitter space-time the vacuum contribution to this expectation value is in general nonzero. We compare the properties of the vacuum and thermal expectation values of the energy density and pressure for massless fermions and discuss the circumstances in which the thermal contribution dominates over the vacuum one.

  16. Estimating saturated hydraulic conductivity and air permeability from soil physical properties using state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe; Møldrup, Per; Nielsen, Don

    2003-01-01

    and gaseous chemicals in the vadose zone. In this study, three modeling approaches were used to identify the dependence of saturated hydraulic conductivity (K-S) and air permeability at -100 cm H2O soil-water potential (k(a100)) on soil physical properties in undisturbed soil: (i) Multiple regression, (ii......) ARIMA (autoregressive integrated moving average) modeling, and (iii) State-space modeling. In addition to actual soil property values, ARIMA and state-space models account for effects of spatial correlation in soil properties. Measured data along two 70-m-long transects at a 20-year old constructed......Estimates of soil hydraulic conductivity (K) and air permeability (k(a)) at given soil-water potentials are often used as reference points in constitutive models for K and k(a) as functions of moisture content and are, therefore, a prerequisite for predicting migration of water, air, and dissolved...

  17. Modeling and Simulation of DC Power Electronics Systems Using Harmonic State Space (HSS) Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    based on the state-space averaging and generalized averaging, these also have limitations to show the same results as with the non-linear time domain simulations. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling......For the efficiency and simplicity of electric systems, the dc based power electronics systems are widely used in variety applications such as electric vehicles, ships, aircrafts and also in homes. In these systems, there could be a number of dynamic interactions between loads and other dc-dc....... Through this method, the required computation time and CPU memory for large dc power electronics systems can be reduced. Besides, the achieved results show the same results as with the non-linear time domain simulation, but with the faster simulation time which is beneficial in a large network....

  18. Robust control of uncertain dynamic systems a linear state space approach

    CERN Document Server

    Yedavalli, Rama K

    2014-01-01

    This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the “real world” system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework Illustrates various systems level methodologies with examples and...

  19. A state space approach for the eigenvalue problem of marine risers

    KAUST Repository

    Alfosail, Feras

    2017-10-05

    A numerical state-space approach is proposed to examine the natural frequencies and critical buckling limits of marine risers. A large axial tension in the riser model causes numerical limitations. These limitations are overcome by using the modified Gram–Schmidt orthonormalization process as an intermediate step during the numerical integration process with the fourth-order Runge–Kutta scheme. The obtained results are validated against those obtained with other numerical methods, such as the finite-element, Galerkin, and power-series methods, and are found to be in good agreement. The state-space approach is shown to be computationally more efficient than the other methods. Also, we investigate the effect of a high applied tension, a high apparent weight, and higher-order modes on the accuracy of the numerical scheme. We demonstrate that, by applying the orthonormalization process, the stability and convergence of the approach are significantly improved.

  20. State-space-based harmonic stability analysis for paralleled grid-connected inverters

    DEFF Research Database (Denmark)

    Wang, Yanbo; Wang, Xiongfei; Chen, Zhe

    2016-01-01

    This paper addresses a state-space-based harmonic stability analysis of paralleled grid-connected inverters system. A small signal model of individual inverter is developed, where LCL filter, the equivalent delay of control system, and current controller are modeled. Then, the overall small signal...... model of paralleled grid-connected inverters is built. Finally, the state space-based stability analysis approach is developed to explain the harmonic resonance phenomenon. The eigenvalue traces associated with time delay and coupled grid impedance are obtained, which accounts for how the unstable...... inverter produces the harmonic resonance and leads to the instability of whole paralleled system. The proposed approach reveals the contributions of the grid impedance as well as the coupled effect on other grid-connected inverters under different grid conditions. Simulation and experimental results...

  1. Use of digital control theory state space formalism for feedback at SLC

    International Nuclear Information System (INIS)

    Himel, T.; Hendrickson, L.; Rouse, F.; Shoaee, H.

    1991-05-01

    The algorithms used in the database-driven SLC fast-feedback system are based on the state space formalism of digital control theory. These are implemented as a set of matrix equations which use a Kalman filter to estimate a vector of states from a vector of measurements, and then apply a gain matrix to determine the actuator settings from the state vector. The matrices used in the calculation are derived offline using Linear Quadratic Gaussian minimization. For a given noise spectrum, this procedure minimizes the rms of the states (e.g., the position or energy of the beam). The offline program also allows simulation of the loop's response to arbitrary inputs, and calculates its frequency response. 3 refs., 3 figs

  2. A state-space-based prognostics model for lithium-ion battery degradation

    International Nuclear Information System (INIS)

    Xu, Xin; Chen, Nan

    2017-01-01

    This paper proposes to analyze the degradation of lithium-ion batteries with the sequentially observed discharging profiles. A general state-space model is developed in which the observation model is used to approximate the discharging profile of each cycle, the corresponding parameter vector is treated as the hidden state, and the state-transition model is used to track the evolution of the parameter vector as the battery ages. The EM and EKF algorithms are adopted to estimate and update the model parameters and states jointly. Based on this model, we construct prediction on the end of discharge times for unobserved cycles and the remaining useful cycles before the battery failure. The effectiveness of the proposed model is demonstrated using a real lithium-ion battery degradation data set. - Highlights: • Unifying model for Li-Ion battery SOC and SOH estimation. • Extended Kalman filter based efficient inference algorithm. • Using voltage curves in discharging to have wide validity.

  3. Volume of the space of qubit-qubit channels and state transformations under random quantum channels

    OpenAIRE

    Lovas, Attila; Andai, Attila

    2017-01-01

    The simplest building blocks for quantum computations are the qubit-qubit quantum channels. In this paper, we analyze the structure of these channels via their Choi representation. The restriction of a quantum channel to the space of classical states (i.e. probability distributions) is called the underlying classical channel. The structure of quantum channels over a fixed classical channel is studied, the volume of general and unital qubit channels with respect to the Lebesgue measure is comp...

  4. State-Space Dynamic Model for Estimation of Radon Entry Rate, based on Kalman Filtering

    Czech Academy of Sciences Publication Activity Database

    Brabec, Marek; Jílek, K.

    2007-01-01

    Roč. 98, - (2007), s. 285-297 ISSN 0265-931X Grant - others:GA SÚJB JC_11/2006 Institutional research plan: CEZ:AV0Z10300504 Keywords : air ventilation rate * radon entry rate * state-space modeling * extended Kalman filter * maximum likelihood estimation * prediction error decomposition Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.963, year: 2007

  5. Estimation of Unobserved Inflation Expectations in India using State-Space Model

    OpenAIRE

    Chattopadhyay, Siddhartha; Sahu, Sohini; Jha, Saakshi

    2016-01-01

    Inflation expectations is an important marker for monetary policy makers. India being a new entrant to the group of countries that pursue inflation targeting as its monetary policy objective, estimating the inflation expectation is of paramount importance. This paper estimates the unobserved inflation expectations in India between 1993:Q1 to 2016:Q1 from the Fisher equation relation using the state space approach (Kalman Filter). We find that our results match well with the inflation forecast...

  6. Quantum limits to information about states for finite dimensional Hilbert space

    International Nuclear Information System (INIS)

    Jones, K.R.W.

    1990-01-01

    A refined bound for the correlation information of an N-trial apparatus is developed via an heuristic argument for Hilbert spaces of arbitrary finite dimensionality. Conditional upon the proof of an easily motivated inequality it was possible to find the optimal apparatus for large ensemble quantum Inference, thereby solving the asymptotic optimal state determination problem. In this way an alternative inferential uncertainty principle, is defined which is then contrasted with the usual Heisenberg uncertainty principle. 6 refs

  7. The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer

    Science.gov (United States)

    Davis, Anthony B.

    2012-01-01

    Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.

  8. State-space prediction of spring discharge in a karst catchment in southwest China

    Science.gov (United States)

    Li, Zhenwei; Xu, Xianli; Liu, Meixian; Li, Xuezhang; Zhang, Rongfei; Wang, Kelin; Xu, Chaohao

    2017-06-01

    Southwest China represents one of the largest continuous karst regions in the world. It is estimated that around 1.7 million people are heavily dependent on water derived from karst springs in southwest China. However, there is a limited amount of water supply in this region. Moreover, there is not enough information on temporal patterns of spring discharge in the area. In this context, it is essential to accurately predict spring discharge, as well as understand karst hydrological processes in a thorough manner, so that water shortages in this area could be predicted and managed efficiently. The objectives of this study were to determine the primary factors that govern spring discharge patterns and to develop a state-space model to predict spring discharge. Spring discharge, precipitation (PT), relative humidity (RD), water temperature (WD), and electrical conductivity (EC) were the variables analyzed in the present work, and they were monitored at two different locations (referred to as karst springs A and B, respectively, in this paper) in a karst catchment area in southwest China from May to November 2015. Results showed that a state-space model using any combinations of variables outperformed a classical linear regression, a back-propagation artificial neural network model, and a least square support vector machine in modeling spring discharge time series for karst spring A. The best state-space model was obtained by using PT and RD, which accounted for 99.9% of the total variation in spring discharge. This model was then applied to an independent data set obtained from karst spring B, and it provided accurate spring discharge estimates. Therefore, state-space modeling was a useful tool for predicting spring discharge in karst regions in southwest China, and this modeling procedure may help researchers to obtain accurate results in other karst regions.

  9. Recursive prediction error methods for online estimation in nonlinear state-space models

    Directory of Open Access Journals (Sweden)

    Dag Ljungquist

    1994-04-01

    Full Text Available Several recursive algorithms for online, combined state and parameter estimation in nonlinear state-space models are discussed in this paper. Well-known algorithms such as the extended Kalman filter and alternative formulations of the recursive prediction error method are included, as well as a new method based on a line-search strategy. A comparison of the algorithms illustrates that they are very similar although the differences can be important for the online tracking capabilities and robustness. Simulation experiments on a simple nonlinear process show that the performance under certain conditions can be improved by including a line-search strategy.

  10. Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces

    International Nuclear Information System (INIS)

    Jack, B.; Leach, J.; Franke-Arnold, S.; Ireland, D. G.; Padgett, M. J.; Yao, A. M.; Barnett, S. M.; Romero, J.

    2010-01-01

    We use spatial light modulators (SLMs) to measure correlations between arbitrary superpositions of orbital angular momentum (OAM) states generated by spontaneous parametric down-conversion. Our technique allows us to fully access a two-dimensional OAM subspace described by a Bloch sphere, within the higher-dimensional OAM Hilbert space. We quantify the entanglement through violations of a Bell-type inequality for pairs of modal superpositions that lie on equatorial, polar, and arbitrary great circles of the Bloch sphere. Our work shows that SLMs can be used to measure arbitrary spatial states with a fidelity sufficient for appropriate quantum information processing systems.

  11. Energy-momentum tensor and definition of particle states for Robertson-Walker space-time

    International Nuclear Information System (INIS)

    Brown, M.R.; Dutton, C.R.

    1978-01-01

    A new regularization scheme is developed for calculating expectation values of the energy-momentum tensor of a quantized scalar field in Robertson-Walker space-times. Using this regularized stress tensor we consider a definition for the vacuum state of the scalar field on any initial hypersurface. Asymptotic methods are developed to investigate the structure of both the divergent and finite terms of the stress tensor when evaluated in this state. The conformal anomaly is discussed in the context of this model. It does not naturally enter into the analysis and we argue that its inclusion is unnecessary

  12. Effect of stress-state and spacing on voids in a shear-field

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2012-01-01

    in the overall average stress state can be prescribed. This also allows for studies of the effect of different initial void spacing in the two in-plane coordinate directions. The stress states considered are essentially simple shear, with various levels of tensile stresses or compressive stresses superposed, i.......e. low positive stress triaxiality or even negative stress triaxiality. For high aspect ratio unit cells a clear localization band is found inside the cell, which actually represents several parallel bands, due to periodicity. In the materials represented by a low aspect ratio unit cell localization...

  13. An evaluation of behavior inferences from Bayesian state-space models: A case study with the Pacific walrus

    Science.gov (United States)

    Beatty, William; Jay, Chadwick V.; Fischbach, Anthony S.

    2016-01-01

    State-space models offer researchers an objective approach to modeling complex animal location data sets, and state-space model behavior classifications are often assumed to have a link to animal behavior. In this study, we evaluated the behavioral classification accuracy of a Bayesian state-space model in Pacific walruses using Argos satellite tags with sensors to detect animal behavior in real time. We fit a two-state discrete-time continuous-space Bayesian state-space model to data from 306 Pacific walruses tagged in the Chukchi Sea. We matched predicted locations and behaviors from the state-space model (resident, transient behavior) to true animal behavior (foraging, swimming, hauled out) and evaluated classification accuracy with kappa statistics (κ) and root mean square error (RMSE). In addition, we compared biased random bridge utilization distributions generated with resident behavior locations to true foraging behavior locations to evaluate differences in space use patterns. Results indicated that the two-state model fairly classified true animal behavior (0.06 ≤ κ ≤ 0.26, 0.49 ≤ RMSE ≤ 0.59). Kernel overlap metrics indicated utilization distributions generated with resident behavior locations were generally smaller than utilization distributions generated with true foraging behavior locations. Consequently, we encourage researchers to carefully examine parameters and priors associated with behaviors in state-space models, and reconcile these parameters with the study species and its expected behaviors.

  14. State-space modelling for the ejector-based refrigeration system driven by low grade energy

    International Nuclear Information System (INIS)

    Xue, Binqiang; Cai, Wenjian; Wang, Xinli

    2015-01-01

    This paper presents a novel global state-space model to describe the ejector-based refrigeration system, which includes the dynamics of the two heat exchangers and the static properties of ejector, compressor and expansion valve. Different from the existing methods, the proposed method introduces some intermediate variables into the dynamic modelling in developing reduced order models of the heat exchangers (evaporator and condenser) based on the Number of Transfer Units (NTU) method. This global model with fewer dimensions is much simpler and can be more convenient for the real-time control system design, compared with other dynamic models. Finally, the proposed state-space model has been validated by dynamic response experiments on the ejector-based refrigeration cycle with refrigerant R134a.The experimental results indicate that the proposed model can predict well the dynamics of the ejector-based refrigeration system. - Highlights: • A low-order state-space model of ejector-based refrigeration system is presented. • Reduced-order models of heat exchangers are developed based on NTU method. • The variations of mass flow rates are introduced in multiple fluid phase regions. • Experimental results show the proposed model has a good performance

  15. A state-space model for estimating detailed movements and home range from acoustic receiver data

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Weng, Kevin

    2013-01-01

    We present a state-space model for acoustic receiver data to estimate detailed movement and home range of individual fish while accounting for spatial bias. An integral part of the approach is the detection function, which models the probability of logging tag transmissions as a function of dista......We present a state-space model for acoustic receiver data to estimate detailed movement and home range of individual fish while accounting for spatial bias. An integral part of the approach is the detection function, which models the probability of logging tag transmissions as a function...... that the location error scales log-linearly with detection range and movement speed. This result can be used as guideline for designing network layout when species movement capacity and acoustic environment are known or can be estimated prior to network deployment. Finally, as an example, the state-space model...... is used to estimate home range and movement of a reef fish in the Pacific Ocean....

  16. Description of nuclear properties

    International Nuclear Information System (INIS)

    Faessler, A.

    1991-01-01

    The lectures want to give a survey about new developments in the description of nuclei. In a first chapter we try to derive nuclear properties from the basis theory of quantum chromodynamics. This is not rigorously possible. There are still many cracks in the bridge between QCD and nuclear structure. The basic ingredient for nuclear structure calculations is the nucleon-nucleon interaction. We shall discuss the nucleon-nucleon interaction in a quark model. In a further chapter we discuss the way to come from a bare nucleon-nucleon interaction in free space to an effective nucleon-nucleon interaction in a limited model space for nuclear structure calculations. Such nuclear structure calculations can be done as shell model calculations. But they are due to the large number of configurations limited to light nuclei. We discuss possibilities (MONSTER and VAMPIR) to enlarge the model space for medium heavy and heavy nuclei. As the example of the low lying isovector 1 + states we discuss collective models (Bohr - Mottelson Model, interacting Boson Model) with proton and neutron degrees of freedom. The same states can also be described microscopically with the Quasi-Particle Random Phase Approximation (QRPA). We discuss the removal of spurious states in RPA. We also discuss the calculation of form factors and compare with inelastic electron scattering data. Finally we apply QRPA to the double-beta decay. Grand unified models predict, that the neutrino is identical with his antiparticle, that it has a finite mass and a weak right-handed interaction. If these properties are found the standard model of the strong and the electro-weak interaction can not be correct. Presently we can only derive from lower limits of the half lives of neutrinoless double-beta decays upper limits of the neutrino mass and of the right-handedness of the weak interaction and lower limits of the mass of the right handed heavy vector boson, if a specific grand unified model is given. (author)

  17. Ensemble Kalman Filtering with a Divided State-Space Strategy for Coupled Data Assimilation Problems

    KAUST Repository

    Luo, Xiaodong

    2014-12-01

    This study considers the data assimilation problem in coupled systems, which consists of two components (subsystems) interacting with each other through certain coupling terms. A straightforward way to tackle the assimilation problem in such systems is to concatenate the states of the subsystems into one augmented state vector, so that a standard ensemble Kalman filter (EnKF) can be directly applied. This work presents a divided state-space estimation strategy, in which data assimilation is carried out with respect to each individual subsystem, involving quantities from the subsystem itself and correlated quantities from other coupled subsystems. On top of the divided state-space estimation strategy, the authors also consider the possibility of running the subsystems separately. Combining these two ideas, a few variants of the EnKF are derived. The introduction of these variants is mainly inspired by the current status and challenges in coupled data assimilation problems and thus might be of interest from a practical point of view. Numerical experiments with a multiscale Lorenz 96 model are conducted to evaluate the performance of these variants against that of the conventional EnKF. In addition, specific for coupled data assimilation problems, two prototypes of extensions of the presented methods are also developed in order to achieve a trade-offbetween efficiency and accuracy.

  18. Ensemble Kalman Filtering with a Divided State-Space Strategy for Coupled Data Assimilation Problems

    KAUST Repository

    Luo, Xiaodong; Hoteit, Ibrahim

    2014-01-01

    This study considers the data assimilation problem in coupled systems, which consists of two components (subsystems) interacting with each other through certain coupling terms. A straightforward way to tackle the assimilation problem in such systems is to concatenate the states of the subsystems into one augmented state vector, so that a standard ensemble Kalman filter (EnKF) can be directly applied. This work presents a divided state-space estimation strategy, in which data assimilation is carried out with respect to each individual subsystem, involving quantities from the subsystem itself and correlated quantities from other coupled subsystems. On top of the divided state-space estimation strategy, the authors also consider the possibility of running the subsystems separately. Combining these two ideas, a few variants of the EnKF are derived. The introduction of these variants is mainly inspired by the current status and challenges in coupled data assimilation problems and thus might be of interest from a practical point of view. Numerical experiments with a multiscale Lorenz 96 model are conducted to evaluate the performance of these variants against that of the conventional EnKF. In addition, specific for coupled data assimilation problems, two prototypes of extensions of the presented methods are also developed in order to achieve a trade-offbetween efficiency and accuracy.

  19. Completeness and orthonormality of the Volkov states and the Volkov propagator in configuration space

    Science.gov (United States)

    Di Piazza, A.

    2018-03-01

    Volkov states and Volkov propagator are the basic analytical tools to investigate QED processes occurring in the presence of an intense plane-wave electromagnetic field. In the present paper we provide alternative and relatively simple proofs of the completeness and of the orthonormality at a fixed time of the Volkov states. Concerning the completeness, we exploit some known properties of the Green's function of the Dirac operator in a plane wave, whereas the orthonormality of the Volkov states is proved, relying only on a geometric argument based on the Gauss theorem in four dimensions. In relation with the completeness of the Volkov states, we also study some analytical properties of the Green's function of the Dirac operator in a plane wave, which we explicitly prove to coincide with the Volkov propagator in configuration space. In particular, a closed-form expression in terms of modified Bessel functions and Hankel functions is derived by means of the operator technique in a plane wave and different asymptotic forms are determined. Finally, the transformation properties of the Volkov propagator under general gauge transformations and a general gauge-invariant expression of the so-called dressed mass in configuration space are presented.

  20. State Estimation of International Space Station Centrifuge Rotor With Incomplete Knowledge of Disturbance Inputs

    Science.gov (United States)

    Sullivan, Michael J.

    2005-01-01

    This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system where only relative measurements are available with limited knowledge of both rotor imbalance disturbances and International Space Station (ISS) thruster disturbances. A Kalman filter is applied to a plant model augmented with sinusoidal disturbance states used to model both the effect of the rotor imbalance and the 155 thrusters on the CR relative motion measurement. The sinusoidal disturbance states compensate for the lack of the availability of plant inputs for use in the Kalman filter. Testing confirms that complete disturbance modeling is necessary to ensure reliable estimation. Further testing goes on to show that increased estimator operational bandwidth can be achieved through the expansion of the disturbance model within the filter dynamics. In addition, Monte Carlo analysis shows the varying levels of robustness against defined plant/filter uncertainty variations.

  1. Nonclassicality of Photon-Added Displaced Thermal State via Quantum Phase-Space Distributions

    Science.gov (United States)

    Zhang, Ran; Meng, Xiang-Guo; Du, Chuan-Xun; Wang, Ji-Suo

    2018-02-01

    We introduce a new kind of nonclassical mixed state generated by adding arbitrary photons to a displaced thermal state, i.e., the photon-added displaced thermal state (PADTS), and obtain the normalization factor, which is simply related to two-variable Hermite polynomials. We also discuss the nonclassicality of the PADTS by considering quantum phase-space distributions. The results indicate that the value of the photon count statistics is maximum when the number of detected photons is equal to the number of added photons, and that the photon-added operation has a similar modulation effect with increasing displacement. Moreover, the negative volume of the Wigner function for the PADTS takes a maximal value for a specific photon-added number.

  2. State of Art in space weather observational activities and data management in Europe

    Science.gov (United States)

    Stanislawska, Iwona

    One of the primary scientific and technical goals of space weather is to produce data in order to investigate the Sun impact on the Earth and its environment. Studies based on data mining philosophy yield increase the knowledge of space weather physical properties, modelling capabilities and gain applications of various procedures in space weather monitoring and forecasting. Exchanging tailored individually and/or jointly data between different entities, storing of the databases and making data accessible for the users is the most important task undertaken by investigators. National activities spread over Europe is currently consolidated pursuant to the terms of effectiveness and individual contributions embedded in joint integrated efforts. The role of COST 724 Action in animation of such a movement is essential. The paper focuses on the analysis of the European availability in the Internet near-real time and historical collections of the European ground based and satellite observations, operational indices and parameters. A detailed description of data delivered is included. The structure of the content is supplied according to the following selection: (1) observations, raw and/or corrected, updated data, (2) resolution, availability of real-time and historical data, (3) products, as the results of models and theory including (a) maps, forecasts and alerts, (b) resolution, availability of real-time and historical data, (4) platforms to deliver data. Characterization of the networking of stations, observatories and space related monitoring systems of data collections is integrated part of the paper. According to these provisions operational systems developed for these purposes is presented and analysed. It concerns measurements, observations and parameters from the theory and models referred to local, regional collections, European and worldwide networks. Techniques used by these organizations to generate the digital content are identified. As the reference pan

  3. A novel Generalized State-Space Averaging (GSSA) model for advanced aircraft electric power systems

    International Nuclear Information System (INIS)

    Ebrahimi, Hadi; El-Kishky, Hassan

    2015-01-01

    Highlights: • A study model is developed for aircraft electric power systems. • A novel GSSA model is developed for the interconnected power grid. • The system’s dynamics are characterized under various conditions. • The averaged results are compared and verified with the actual model. • The obtained measured values are validated with available aircraft standards. - Abstract: The growing complexity of Advanced Aircraft Electric Power Systems (AAEPS) has made conventional state-space averaging models inadequate for systems analysis and characterization. This paper presents a novel Generalized State-Space Averaging (GSSA) model for the system analysis, control and characterization of AAEPS. The primary objective of this paper is to introduce a mathematically elegant and computationally simple model to copy the AAEPS behavior at the critical nodes of the electric grid. Also, to reduce some or all of the drawbacks (complexity, cost, simulation time…, etc) associated with sensor-based monitoring and computer aided design software simulations popularly used for AAEPS characterization. It is shown in this paper that the GSSA approach overcomes the limitations of the conventional state-space averaging method, which fails to predict the behavior of AC signals in a circuit analysis. Unlike conventional averaging method, the GSSA model presented in this paper includes both DC and AC components. This would capture the key dynamic and steady-state characteristics of the aircraft electric systems. The developed model is then examined for the aircraft system’s visualization and accuracy of computation under different loading scenarios. Through several case studies, the applicability and effectiveness of the GSSA method is verified by comparing to the actual real-time simulation model obtained from Powersim 9 (PSIM9) software environment. The simulations results represent voltage, current and load power at the major nodes of the AAEPS. It has been demonstrated that

  4. State-space dimensionality in short-memory hidden-variable theories

    International Nuclear Information System (INIS)

    Montina, Alberto

    2011-01-01

    Recently we have presented a hidden-variable model of measurements for a qubit where the hidden-variable state-space dimension is one-half the quantum-state manifold dimension. The absence of a short memory (Markov) dynamics is the price paid for this dimensional reduction. The conflict between having the Markov property and achieving the dimensional reduction was proved by Montina [A. Montina, Phys. Rev. A 77, 022104 (2008)] using an additional hypothesis of trajectory relaxation. Here we analyze in more detail this hypothesis introducing the concept of invertible process and report a proof that makes clearer the role played by the topology of the hidden-variable space. This is accomplished by requiring suitable properties of regularity of the conditional probability governing the dynamics. In the case of minimal dimension the set of continuous hidden variables is identified with an object living an N-dimensional Hilbert space whose dynamics is described by the Schroedinger equation. A method for generating the economical non-Markovian model for the qubit is also presented.

  5. Real-time validation of receiver state information in optical space-time block code systems.

    Science.gov (United States)

    Alamia, John; Kurzweg, Timothy

    2014-06-15

    Free space optical interconnect (FSOI) systems are a promising solution to interconnect bottlenecks in high-speed systems. To overcome some sources of diminished FSOI performance caused by close proximity of multiple optical channels, multiple-input multiple-output (MIMO) systems implementing encoding schemes such as space-time block coding (STBC) have been developed. These schemes utilize information pertaining to the optical channel to reconstruct transmitted data. The STBC system is dependent on accurate channel state information (CSI) for optimal system performance. As a result of dynamic changes in optical channels, a system in operation will need to have updated CSI. Therefore, validation of the CSI during operation is a necessary tool to ensure FSOI systems operate efficiently. In this Letter, we demonstrate a method of validating CSI, in real time, through the use of moving averages of the maximum likelihood decoder data, and its capacity to predict the bit error rate (BER) of the system.

  6. Grey-box state-space identification of nonlinear mechanical vibrations

    Science.gov (United States)

    Noël, J. P.; Schoukens, J.

    2018-05-01

    The present paper deals with the identification of nonlinear mechanical vibrations. A grey-box, or semi-physical, nonlinear state-space representation is introduced, expressing the nonlinear basis functions using a limited number of measured output variables. This representation assumes that the observed nonlinearities are localised in physical space, which is a generic case in mechanics. A two-step identification procedure is derived for the grey-box model parameters, integrating nonlinear subspace initialisation and weighted least-squares optimisation. The complete procedure is applied to an electrical circuit mimicking the behaviour of a single-input, single-output (SISO) nonlinear mechanical system and to a single-input, multiple-output (SIMO) geometrically nonlinear beam structure.

  7. VNI version 4.1. Simulation of high-energy particle collisions in QCD: Space-time evolution of e+e-... A + B collisions with parton-cascades, cluster-hadronization, final-state hadron cascades

    International Nuclear Information System (INIS)

    Geiger, K.; Longacre, R.

    1999-01-01

    VNI is a general-purpose Monte-Carlo event-generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. It uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme, as well as the development of hadron cascades after hadronization. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time-development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position-space, momentum-space and color-space. The parton-evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi)hard interactions in QCD, involving 2 → 2 parton collisions, 2 → 1 parton fusion processes, and 1 → 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. Finally, the cascading of produced prehadronic clusters and of hadrons includes a multitude of 2 → n processes, and is modeled in parallel to the parton cascade description. This paper gives a brief review of the physics underlying VNI, as well as a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including simple examples), annotates input and control parameters, and discusses output data provided by it

  8. United States Human Access to Space, Exploration of the Moon and Preparation for Mars Exploration

    Science.gov (United States)

    Rhatigan, Jennifer L.

    2009-01-01

    In the past, men like Leonardo da Vinci and Jules Verne imagined the future and envisioned fantastic inventions such as winged flying machines, submarines, and parachutes, and posited human adventures like transoceanic flight and journeys to the Moon. Today, many of their ideas are reality and form the basis for our modern world. While individual visionaries like da Vinci and Verne are remembered for the accuracy of their predictions, today entire nations are involved in the process of envisioning and defining the future development of mankind, both on and beyond the Earth itself. Recently, Russian, European, and Chinese teams have all announced plans for developing their own next generation human space vehicles. The Chinese have announced their intention to conduct human lunar exploration, and have flown three crewed space missions since 2003, including a flight with three crew members to test their extravehicular (spacewalking) capabilities in September 2008. Very soon, the prestige, economic development, scientific discovery, and strategic security advantage historically associated with leadership in space exploration and exploitation may no longer be the undisputed province of the United States. Much like the sponsors of the seafaring explorers of da Vinci's age, we are motivated by the opportunity to obtain new knowledge and new resources for the growth and development of our own civilization. NASA's new Constellation Program, established in 2005, is tasked with maintaining the United States leadership in space, exploring the Moon, creating a sustained human lunar presence, and eventually extending human operations to Mars and beyond. Through 2008, the Constellation Program developed a full set of detailed program requirements and is now completing the preliminary design phase for the new Orion Crew Exploration Vehicle (CEV), the Ares I Crew Launch Vehicle, and the associated infrastructure necessary for humans to explore the Moon. Component testing is well

  9. State-space modeling of the radio frequency inductively-coupled plasma generator

    International Nuclear Information System (INIS)

    Dewangan, Rakesh Kumar; Punjabi, Sangeeta B; Mangalvedekar, H A; Lande, B K; Joshi, N K; Barve, D N

    2010-01-01

    Computational fluid dynamics models of RF-ICP are useful in understanding the basic transport phenomenon in an ICP torch under a wide variety of operating conditions. However, these models lack the ability to evaluate the effects of the plasma condition on the RF generator. In this paper, simulation of an induction plasma generator has been done using state space modelling by considering inductively coupled plasma as a part of RF network .The time dependent response of the RF-ICP generator circuit to given input excitation has been computed by extracting the circuit's state-space variables and their constraint matrices. MATLAB 7.1 software has been used to solve the state equations. The values of RF coil current, frequency and plasma power has been measured experimentally also at different plate bias voltage. The simulated model is able to predict RF coil current, frequency, plasma power, overall efficiency of the generator. The simulated and measured values are in agreement with each other. This model can prove useful as a design tool for the Induction plasma generator.

  10. Investigation of multidimensional control systems in the state space and wavelet medium

    Science.gov (United States)

    Fedosenkov, D. B.; Simikova, A. A.; Fedosenkov, B. A.

    2018-05-01

    The notions are introduced of “one-dimensional-point” and “multidimensional-point” automatic control systems. To demonstrate the joint use of approaches based on the concepts of state space and wavelet transforms, a method for optimal control in a state space medium represented in the form of time-frequency representations (maps), is considered. The computer-aided control system is formed on the basis of the similarity transformation method, which makes it possible to exclude the use of reduced state variable observers. 1D-material flow signals formed by primary transducers are converted by means of wavelet transformations into multidimensional concentrated-at-a point variables in the form of time-frequency distributions of Cohen’s class. The algorithm for synthesizing a stationary controller for feeding processes is given here. The conclusion is made that the formation of an optimal control law with time-frequency distributions available contributes to the improvement of transient processes quality in feeding subsystems and the mixing unit. Confirming the efficiency of the method presented is illustrated by an example of the current registration of material flows in the multi-feeding unit. The first section in your paper.

  11. Generalized state spaces and nonlocality in fault-tolerant quantum-computing schemes

    International Nuclear Information System (INIS)

    Ratanje, N.; Virmani, S.

    2011-01-01

    We develop connections between generalized notions of entanglement and quantum computational devices where the measurements available are restricted, either because they are noisy and/or because by design they are only along Pauli directions. By considering restricted measurements one can (by considering the dual positive operators) construct single-particle-state spaces that are different to the usual quantum-state space. This leads to a modified notion of entanglement that can be very different to the quantum version (for example, Bell states can become separable). We use this approach to develop alternative methods of classical simulation that have strong connections to the study of nonlocal correlations: we construct noisy quantum computers that admit operations outside the Clifford set and can generate some forms of multiparty quantum entanglement, but are otherwise classical in that they can be efficiently simulated classically and cannot generate nonlocal statistics. Although the approach provides new regimes of noisy quantum evolution that can be efficiently simulated classically, it does not appear to lead to significant reductions of existing upper bounds to fault tolerance thresholds for common noise models.

  12. A robust state-space kinetics-guided framework for dynamic PET image reconstruction

    International Nuclear Information System (INIS)

    Tong, S; Alessio, A M; Kinahan, P E; Liu, H; Shi, P

    2011-01-01

    Dynamic PET image reconstruction is a challenging issue due to the low SNR and the large quantity of spatio-temporal data. We propose a robust state-space image reconstruction (SSIR) framework for activity reconstruction in dynamic PET. Unlike statistically-based frame-by-frame methods, tracer kinetic modeling is incorporated to provide physiological guidance for the reconstruction, harnessing the temporal information of the dynamic data. Dynamic reconstruction is formulated in a state-space representation, where a compartmental model describes the kinetic processes in a continuous-time system equation, and the imaging data are expressed in a discrete measurement equation. Tracer activity concentrations are treated as the state variables, and are estimated from the dynamic data. Sampled-data H ∞ filtering is adopted for robust estimation. H ∞ filtering makes no assumptions on the system and measurement statistics, and guarantees bounded estimation error for finite-energy disturbances, leading to robust performance for dynamic data with low SNR and/or errors. This alternative reconstruction approach could help us to deal with unpredictable situations in imaging (e.g. data corruption from failed detector blocks) or inaccurate noise models. Experiments on synthetic phantom and patient PET data are performed to demonstrate feasibility of the SSIR framework, and to explore its potential advantages over frame-by-frame statistical reconstruction approaches.

  13. State space orderings for Gauss-Seidel in Markov chains revisited

    Energy Technology Data Exchange (ETDEWEB)

    Dayar, T. [Bilkent Univ., Ankara (Turkey)

    1996-12-31

    Symmetric state space orderings of a Markov chain may be used to reduce the magnitude of the subdominant eigenvalue of the (Gauss-Seidel) iteration matrix. Orderings that maximize the elemental mass or the number of nonzero elements in the dominant term of the Gauss-Seidel splitting (that is, the term approximating the coefficient matrix) do not necessarily converge faster. An ordering of a Markov chain that satisfies Property-R is semi-convergent. On the other hand, there are semi-convergent symmetric state space orderings that do not satisfy Property-R. For a given ordering, a simple approach for checking Property-R is shown. An algorithm that orders the states of a Markov chain so as to increase the likelihood of satisfying Property-R is presented. The computational complexity of the ordering algorithm is less than that of a single Gauss-Seidel iteration (for sparse matrices). In doing all this, the aim is to gain an insight for faster converging orderings. Results from a variety of applications improve the confidence in the algorithm.

  14. Birth spacing, human capital, and the motherhood penalty at midlife in the United States

    Directory of Open Access Journals (Sweden)

    Margaret Gough

    2017-08-01

    Full Text Available Background: Researchers have examined how first-birth timing is related to motherhood wage penalties, but research that examines birth spacing is lacking. Furthermore, little research has examined the persistence of penalties across the life course. Objective: The objective is to estimate the effects of birth spacing on midlife labor market outcomes and assess the extent to which these effects vary by education and age at first birth. Methods: I use data from the United States from the 1979-2010 waves of the National Longitudinal Survey of Youth 1979 and dynamic inverse probability of treatment weighting to estimate the effects of different birth intervals on mothers' midlife cumulative work hours, cumulative earnings, and hourly wages. I examine how education and age at first birth moderate these effects. Results: Women with birth intervals longer than two years but no longer than six years have the smallest penalties for cumulative outcomes; in models interacting the birth interval with age at first birth, postponement of a first birth to at least age 30 appears to be more important for cumulative outcomes than birth spacing. College-educated women benefit more from a longer birth interval than less educated women. Conclusions: Childbearing strategies that result in greater accumulation of human capital provide long-run labor market benefits to mothers, and results suggest that different birth-spacing patterns could play a small role in facilitating this accumulation, as theorized in past literature. Contribution: I contribute to the demographic literature by testing the theory that birth spacing matters for mothers' labor market outcomes and by assessing the effects at midlife rather than immediately following a birth.

  15. Full-potential multiple scattering theory with space-filling cells for bound and continuum states.

    Science.gov (United States)

    Hatada, Keisuke; Hayakawa, Kuniko; Benfatto, Maurizio; Natoli, Calogero R

    2010-05-12

    We present a rigorous derivation of a real-space full-potential multiple scattering theory (FP-MST) that is free from the drawbacks that up to now have impaired its development (in particular the need to expand cell shape functions in spherical harmonics and rectangular matrices), valid both for continuum and bound states, under conditions for space partitioning that are not excessively restrictive and easily implemented. In this connection we give a new scheme to generate local basis functions for the truncated potential cells that is simple, fast, efficient, valid for any shape of the cell and reduces to the minimum the number of spherical harmonics in the expansion of the scattering wavefunction. The method also avoids the need for saturating 'internal sums' due to the re-expansion of the spherical Hankel functions around another point in space (usually another cell center). Thus this approach provides a straightforward extension of MST in the muffin-tin (MT) approximation, with only one truncation parameter given by the classical relation l(max) = kR(b), where k is the electron wavevector (either in the excited or ground state of the system under consideration) and R(b) is the radius of the bounding sphere of the scattering cell. Moreover, the scattering path operator of the theory can be found in terms of an absolutely convergent procedure in the l(max) --> ∞ limit. Consequently, this feature provides a firm ground for the use of FP-MST as a viable method for electronic structure calculations and makes possible the computation of x-ray spectroscopies, notably photo-electron diffraction, absorption and anomalous scattering among others, with the ease and versatility of the corresponding MT theory. Some numerical applications of the theory are presented, both for continuum and bound states.

  16. The consciousness state space (CSS – a unifying model for consciousness and self

    Directory of Open Access Journals (Sweden)

    Aviva eBerkovich-Ohana

    2014-04-01

    Full Text Available Every experience, those we are aware of and those we are not, is embedded in a subjective timeline, is tinged with emotion, and inevitably evokes a certain sense of self. Here, we present a phenomenological model for consciousness and selfhood which relates time, awareness, and emotion within one framework. The consciousness state space (CSS model is a theoretical one. It relies on a broad range of literature, hence has high explanatory and integrative strength, and helps in visualizing the relationship between different aspects of experience.Briefly, it is suggested that all phenomenological states fall into two categories of consciousness, core and extended (CC and EC, respectively. CC supports minimal selfhood that is short of temporal extension, its scope being the here and now. EC supports narrative selfhood, which involves personal identity and continuity across time, as well as memory, imagination and conceptual thought. The CSS is a phenomenological space, created by three dimensions: time, awareness and emotion. Each of the three dimensions is shown to have a dual phenomenological composition, falling within CC and EC. The neural spaces supporting each of these dimensions, as well as CC and EC, are laid out based on the neuroscientific literature.The CSS dynamics includes two simultaneous trajectories, one in CC and one in EC, typically antagonistic in normal experiences. However, this characteristic behavior is altered in states in which a person experiences an altered sense of self. Two examples are laid out, flow and meditation. The CSS model creates a broad theoretical framework with explanatory and unificatory power. It constructs a detailed map of the consciousness and selfhood phenomenology, which offers constraints for the science of consciousness. We conclude by outlaying several testable predictions raised by the CSS model.

  17. The consciousness state space (CSS)-a unifying model for consciousness and self.

    Science.gov (United States)

    Berkovich-Ohana, Aviva; Glicksohn, Joseph

    2014-01-01

    Every experience, those we are aware of and those we are not, is embedded in a subjective timeline, is tinged with emotion, and inevitably evokes a certain sense of self. Here, we present a phenomenological model for consciousness and selfhood which relates time, awareness, and emotion within one framework. The consciousness state space (CSS) model is a theoretical one. It relies on a broad range of literature, hence has high explanatory and integrative strength, and helps in visualizing the relationship between different aspects of experience. Briefly, it is suggested that all phenomenological states fall into two categories of consciousness, core and extended (CC and EC, respectively). CC supports minimal selfhood that is short of temporal extension, its scope being the here and now. EC supports narrative selfhood, which involves personal identity and continuity across time, as well as memory, imagination and conceptual thought. The CSS is a phenomenological space, created by three dimensions: time, awareness and emotion. Each of the three dimensions is shown to have a dual phenomenological composition, falling within CC and EC. The neural spaces supporting each of these dimensions, as well as CC and EC, are laid out based on the neuroscientific literature. The CSS dynamics include two simultaneous trajectories, one in CC and one in EC, typically antagonistic in normal experiences. However, this characteristic behavior is altered in states in which a person experiences an altered sense of self. Two examples are laid out, flow and meditation. The CSS model creates a broad theoretical framework with explanatory and unificatory power. It constructs a detailed map of the consciousness and selfhood phenomenology, which offers constraints for the science of consciousness. We conclude by outlining several testable predictions raised by the CSS model.

  18. State-Space Equations and the First-Phase Algorithm for Signal Control of Single Intersections

    Institute of Scientific and Technical Information of China (English)

    LI Jinyuan; PAN Xin; WANG Xiqin

    2007-01-01

    State-space equations were applied to formulate the queuing and delay of traffic at a single intersection in this paper. The signal control of a single intersection was then modeled as a discrete-time optimal control problem, with consideration of the constraints of stream conflicts, saturation flow rate, minimum green time, and maximum green time. The problem cannot be solved directly due to the nonlinear constraints.However, the results of qualitative analysis were used to develop a first-phase signal control algorithm. Simulation results show that the algorithm substantially reduces the total delay compared to fixed-time control.

  19. Equilibrium points of the tilted perfect fluid Bianchi VIh state space

    Science.gov (United States)

    Apostolopoulos, Pantelis S.

    2005-05-01

    We present the full set of evolution equations for the spatially homogeneous cosmologies of type VIh filled with a tilted perfect fluid and we provide the corresponding equilibrium points of the resulting dynamical state space. It is found that only when the group parameter satisfies h > -1 a self-similar solution exists. In particular we show that for h > -{1/9} there exists a self-similar equilibrium point provided that γ ∈ ({2(3+sqrt{-h})/5+3sqrt{-h}},{3/2}) whereas for h VIh.

  20. Frequency Domain Modeling and Simulation of DC Power Electronic Systems Using Harmonic State Space Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    For the efficiency and simplicity of electric systems, the dc power electronic systems are widely used in a variety of applications such as electric vehicles, ships, aircraft and also in homes. In these systems, there could be a number of dynamic interactions and frequency coupling between network...... with different switching frequency or harmonics from ac-dc converters makes that harmonics and frequency coupling are both problems of ac system and challenges of dc system. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling...

  1. Independence of automorphism group, center, and state space of quantum logics

    International Nuclear Information System (INIS)

    Navara, M.

    1992-01-01

    We prove that quantum logics (-orthomodular posets) admit full independence of the attributes important within the foundations of quantum mechanics. Namely, we present the construction of quantum logics with given sublogics (=physical subsystems), automorphism groups, centers (=open-quotes classical partsclose quotes of the systems), and state spaces. Thus, all these open-quotes parametersclose quotes are independent. Our result is rooted in the line of investigation carried out by Greechie; Kallus and Trnkova; Kalmbach; and Navara and Ptak; and considerably enriches the known algebraic methods in orthomodular posets. 19 refs., 1 fig

  2. Conditions for extinction events in chemical reaction networks with discrete state spaces.

    Science.gov (United States)

    Johnston, Matthew D; Anderson, David F; Craciun, Gheorghe; Brijder, Robert

    2018-05-01

    We study chemical reaction networks with discrete state spaces and present sufficient conditions on the structure of the network that guarantee the system exhibits an extinction event. The conditions we derive involve creating a modified chemical reaction network called a domination-expanded reaction network and then checking properties of this network. Unlike previous results, our analysis allows algorithmic implementation via systems of equalities and inequalities and suggests sequences of reactions which may lead to extinction events. We apply the results to several networks including an EnvZ-OmpR signaling pathway in Escherichia coli.

  3. State-space models’ dirty little secrets: even simple linear Gaussian models can have estimation problems

    DEFF Research Database (Denmark)

    Auger-Méthé, Marie; Field, Chris; Albertsen, Christoffer Moesgaard

    2016-01-01

    problems. We demonstrate that these problems occur primarily when measurement error is larger than biological stochasticity, the condition that often drives ecologists to use SSMs. Using an animal movement example, we show how these estimation problems can affect ecological inference. Biased parameter......State-space models (SSMs) are increasingly used in ecology to model time-series such as animal movement paths and population dynamics. This type of hierarchical model is often structured to account for two levels of variability: biological stochasticity and measurement error. SSMs are flexible...

  4. Precise Model Analysis for 3-phase High Power Converter using the Harmonic State Space Modeling

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    This paper presents about the generalized multi-frequency modeling and analysis methodology, which can be used in control loop design and stability analysis. In terms of the switching frequency of high power converter, there can be harmonics interruption if the voltage source converter has a low...... switching frequency ratio or multi-sampling frequency. The range of the control bandwidth can include the switching component. Thus, the systems become unstable. This paper applies the Harmonic State Space (HSS) Modeling method in order to find out the transfer function for each harmonics terms...

  5. Addressing challenges in single species assessments via a simple state-space assessment model

    DEFF Research Database (Denmark)

    Nielsen, Anders

    Single-species and age-structured fish stock assessments still remains the main tool for managing fish stocks. A simple state-space assessment model is presented as an alternative to (semi) deterministic procedures and the full parametric statistical catch at age models. It offers a solution...... to some of the key challenges of these models. Compared to the deterministic procedures it solves a list of problems originating from falsely assuming that age classified catches are known without errors and allows quantification of uncertainties of estimated quantities of interest. Compared to full...

  6. A System of Poisson Equations for a Nonconstant Varadhan Functional on a Finite State Space

    International Nuclear Information System (INIS)

    Cavazos-Cadena, Rolando; Hernandez-Hernandez, Daniel

    2006-01-01

    Given a discrete-time Markov chain with finite state space and a stationary transition matrix, a system of 'local' Poisson equations characterizing the (exponential) Varadhan's functional J(.) is given. The main results, which are derived for an arbitrary transition structure so that J(.) may be nonconstant, are as follows: (i) Any solution to the local Poisson equations immediately renders Varadhan's functional, and (ii) a solution of the system always exist. The proof of this latter result is constructive and suggests a method to solve the local Poisson equations

  7. Parental and Infant Gender Factors in Parent–Infant Interaction: State-Space Dynamic Analysis

    OpenAIRE

    M. Angeles Cerezo; Purificación Sierra-García; Gemma Pons-Salvador; Rosa M. Trenado

    2017-01-01

    This study aimed to investigate the influence of parental gender on their interaction with their infants, considering, as well, the role of the infant’s gender. The State Space Grid (SSG) method, a graphical tool based on the non-linear dynamic system (NDS) approach was used to analyze the interaction, in Free-Play setting, of 52 infants, aged 6 to 10 months, divided into two groups: half of the infants interacted with their fathers and half with their mothers. There were 50% boys in each gro...

  8. State-space representation of instationary two-dimensional airfoil aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Marcus; Matthies, Hermann G. [Institute of Scientific Computing, Technical University Braunschweig, Hans-Sommer-Str. 65, Braunschweig 38106 (Germany)

    2004-03-01

    In the aero-elastic analysis of wind turbines the need to include a model of the local, two-dimensional instationary aerodynamic loads, commonly referred to as dynamic stall model, has become obvious in the last years. In this contribution an alternative choice for such a model is described, based on the DLR model. Its derivation is governed by the flow physics, thus enabling interpolation between different profile geometries. An advantage of the proposed model is its state-space form, i.e. a system of differential equations, which facilitates the important tasks of aeroelastic stability and sensitivity investigations. The model is validated with numerical calculations.

  9. Forecasting the Global Mean Sea Level, a Continuous-Time State-Space Approach

    DEFF Research Database (Denmark)

    Boldrini, Lorenzo

    In this paper we propose a continuous-time, Gaussian, linear, state-space system to model the relation between global mean sea level (GMSL) and the global mean temperature (GMT), with the aim of making long-term projections for the GMSL. We provide a justification for the model specification based......) and the temperature reconstruction from Hansen et al. (2010). We compare the forecasting performance of the proposed specification to the procedures developed in Rahmstorf (2007b) and Vermeer and Rahmstorf (2009). Finally, we compute projections for the sea-level rise conditional on the 21st century SRES temperature...

  10. Large-signal analysis of DC motor drive system using state-space averaging technique

    International Nuclear Information System (INIS)

    Bekir Yildiz, Ali

    2008-01-01

    The analysis of a separately excited DC motor driven by DC-DC converter is realized by using state-space averaging technique. Firstly, a general and unified large-signal averaged circuit model for DC-DC converters is given. The method converts power electronic systems, which are periodic time-variant because of their switching operation, to unified and time independent systems. Using the averaged circuit model enables us to combine the different topologies of converters. Thus, all analysis and design processes about DC motor can be easily realized by using the unified averaged model which is valid during whole period. Some large-signal variations such as speed and current relating to DC motor, steady-state analysis, large-signal and small-signal transfer functions are easily obtained by using the averaged circuit model

  11. PERFORMANCE OPTIMIZATION OF THE DIODE-PUMPED SOLID-STATE LASER FOR SPACE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    D. A. Arkhipov

    2015-11-01

    Full Text Available Subject of Research. Thermophysical and optical techniques of parameter regulation for diode pumped solid-state laser are studied as applied to space laser communication and laser ranging lines. Methods. The investigations are carried out on the base of the original design of diode pumped solid-state laser module that includes the following: Nd:YAG slab element, diode pumped by 400W QCW produced by NORTHROP GRUMMAN; two-pass unstable resonator with rotation of the laser beam aperture about its axis through 1800; the output mirror of the resonator with a variable reflection coefficient; hyperthermal conductive plates for thermal stabilization of the laser diode generation modes. The presence of thermal conductive plates excludes conventional running water systems applied as cooling systems for solid-state laser components. The diodes temperature stabilization is achieved by applying the algorithm of pulse-width modulation of power of auxiliary electric heaters. To compensate for non-stationary thermal distortions of the slab refractive index, the laser resonator scheme comprises a prism reflector with an apex angle of 1200. Narrow sides of the prism are covered with reflective coating, and its wide side is sprayed with antireflection coating. The beam aperture is turned around its axis through 1800 because of triple reflection of the beam inside the prism. The turning procedure leads to compensating for the output beam phase distortions in view of symmetric character of the aberrations of slab refractive index. To suppress parasitic oscillations inside the slab, dielectric coatings of wide sides of the slab are used. Main Results. We have demonstrated theoretically and experimentally that the usage of hyperthermal conductive plates together with the algorithm of pulse-width modulation provides stabilizing of the diode substrate temperature accurate within ± 0.1 °С and smoothing the temperature distribution along the plate surface accurate

  12. Wigner's dynamical transition state theory in phase space: classical and quantum

    International Nuclear Information System (INIS)

    Waalkens, Holger; Schubert, Roman; Wiggins, Stephen

    2008-01-01

    We develop Wigner's approach to a dynamical transition state theory in phase space in both the classical and quantum mechanical settings. The key to our development is the construction of a normal form for describing the dynamics in the neighbourhood of a specific type of saddle point that governs the evolution from reactants to products in high dimensional systems. In the classical case this is the standard Poincaré–Birkhoff normal form. In the quantum case we develop a normal form based on the Weyl calculus and an explicit algorithm for computing this quantum normal form. The classical normal form allows us to discover and compute the phase space structures that govern classical reaction dynamics. From this knowledge we are able to provide a direct construction of an energy dependent dividing surface in phase space having the properties that trajectories do not locally 're-cross' the surface and the directional flux across the surface is minimal. Using this, we are able to give a formula for the directional flux through the dividing surface that goes beyond the harmonic approximation. We relate this construction to the flux–flux autocorrelation function which is a standard ingredient in the expression for the reaction rate in the chemistry community. We also give a classical mechanical interpretation of the activated complex as a normally hyperbolic invariant manifold (NHIM), and further describe the structure of the NHIM. The quantum normal form provides us with an efficient algorithm to compute quantum reaction rates and we relate this algorithm to the quantum version of the flux–flux autocorrelation function formalism. The significance of the classical phase space structures for the quantum mechanics of reactions is elucidated by studying the phase space distribution of scattering states. The quantum normal form also provides an efficient way of computing Gamov–Siegert resonances. We relate these resonances to the lifetimes of the quantum activated

  13. Nonlinear dynamic analysis and state space representation of a manipulator under viscoelastic material conditions

    Directory of Open Access Journals (Sweden)

    Esfandiar, H.

    2013-05-01

    Full Text Available In this paper, based on the VoigtKelvin constitutive model, nonlinear dynamic modelling and state space representation of a viscoelastic beam acting as a flexible robotic manipulator is investigated. Complete nonlinear dynamic modelling of a viscoelastic beam without premature linearisation of dynamic equations is developed. The adopted method is capable of reproducing nonlinear dynamic effects, such as beam stiffening due to centrifugal and Coriolis forces induced by rotation of the joints. Structural damping effects on the models dynamic behaviour are also shown. A reliable model for a viscoelastic beam is subsequently presented. The governing equations of motion are derived using Hamiltons principle, and using the finite difference method, nonlinear partial differential equations are reduced to ordinary differential equations. For the purpose of flexible manipulator control, the standard form of state space equations for the viscoelastic link and the actuator is obtained. Simulation results indicate substantial improvements in dynamic behaviour, and a parameter sensitivity study is carried out to investigate the effect of structural damping on the vibration amplitude.

  14. Learning of state-space models with highly informative observations: A tempered sequential Monte Carlo solution

    Science.gov (United States)

    Svensson, Andreas; Schön, Thomas B.; Lindsten, Fredrik

    2018-05-01

    Probabilistic (or Bayesian) modeling and learning offers interesting possibilities for systematic representation of uncertainty using probability theory. However, probabilistic learning often leads to computationally challenging problems. Some problems of this type that were previously intractable can now be solved on standard personal computers thanks to recent advances in Monte Carlo methods. In particular, for learning of unknown parameters in nonlinear state-space models, methods based on the particle filter (a Monte Carlo method) have proven very useful. A notoriously challenging problem, however, still occurs when the observations in the state-space model are highly informative, i.e. when there is very little or no measurement noise present, relative to the amount of process noise. The particle filter will then struggle in estimating one of the basic components for probabilistic learning, namely the likelihood p (data | parameters). To this end we suggest an algorithm which initially assumes that there is substantial amount of artificial measurement noise present. The variance of this noise is sequentially decreased in an adaptive fashion such that we, in the end, recover the original problem or possibly a very close approximation of it. The main component in our algorithm is a sequential Monte Carlo (SMC) sampler, which gives our proposed method a clear resemblance to the SMC2 method. Another natural link is also made to the ideas underlying the approximate Bayesian computation (ABC). We illustrate it with numerical examples, and in particular show promising results for a challenging Wiener-Hammerstein benchmark problem.

  15. Narrative descriptions should replace grades and numerical ratings for clinical performance in medical education in the United States

    Directory of Open Access Journals (Sweden)

    Janice Lynn Hanson

    2013-11-01

    Full Text Available Background: In medical education, evaluation of clinical performance is based almost universally on rating scales for defined aspects of performance and scores on examinations and checklists. Unfortunately, scores and grades do not capture progress and competence among learners in the complex tasks and roles required to practice medicine. While the literature suggests serious problems with the validity and reliability of ratings of clinical performance based on numerical scores, the critical issue is not that judgments about what is observed vary from rater to rater but that these judgments are lost when translated into numbers on a scale. As the Next Accreditation System of the Accreditation Council on Graduate Medical Education (ACGME takes effect, medical educators have an opportunity to create new processes of evaluation to document and facilitate progress of medical learners in the required areas of competence.Proposal and initial experience: Narrative descriptions of learner performance in the clinical environment, gathered using a framework for observation that builds a shared understanding of competence among the faculty, promise to provide meaningful qualitative data closely linked to the work of physicians. With descriptions grouped in categories and matched to milestones, core faculty can place each learner along the milestones’ continua of progress. This provides the foundation for meaningful feedback to facilitate the progress of each learner as well as documentation of progress toward competence.Implications: This narrative evaluation system addresses educational needs as well as the goals of the Next Accreditation System for explicitly documented progress. Educators at other levels of education and in other professions experience similar needs for authentic assessment and, with meaningful frameworks that describe roles and tasks, may also find useful a system built on descriptions of learner performance in actual work settings

  16. Wigner’s phase-space function and atomic structure: II. Ground states for closed-shell atoms

    DEFF Research Database (Denmark)

    Springborg, Michael; Dahl, Jens Peder

    1987-01-01

    We present formulas for reduced Wigner phase-space functions for atoms, with an emphasis on the first-order spinless Wigner function. This function can be written as the sum of separate contributions from single orbitals (the natural orbitals). This allows a detailed study of the function. Here we...... display and analyze the function for the closed-shell atoms helium, beryllium, neon, argon, and zinc in the Hartree-Fock approximation. The quantum-mechanical exact results are compared with those obtained with the approximate Thomas-Fermi description of electron densities in phase space....

  17. Quantum-enhanced reinforcement learning for finite-episode games with discrete state spaces

    Science.gov (United States)

    Neukart, Florian; Von Dollen, David; Seidel, Christian; Compostella, Gabriele

    2017-12-01

    Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum annealing machines produced by D-Wave Systems, have been subject to multiple analyses in research, with the aim of characterizing the technology's usefulness for optimization and sampling tasks. Here, we present a way to partially embed both Monte Carlo policy iteration for finding an optimal policy on random observations, as well as how to embed n sub-optimal state-value functions for approximating an improved state-value function given a policy for finite horizon games with discrete state spaces on a D-Wave 2000Q quantum processing unit (QPU). We explain how both problems can be expressed as a quadratic unconstrained binary optimization (QUBO) problem, and show that quantum-enhanced Monte Carlo policy evaluation allows for finding equivalent or better state-value functions for a given policy with the same number episodes compared to a purely classical Monte Carlo algorithm. Additionally, we describe a quantum-classical policy learning algorithm. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of the QPU, and not to prove supremacy over every existing classical policy evaluation algorithm.

  18. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya

    2016-05-26

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  19. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya; Bera, Ashok; Parida, Manas R.; Adhikari, Aniruddha; Shaheen, Basamat; Alarousu, Erkki; Sun, Jingya; Wu, Tao; Bakr, Osman; Mohammed, Omar F.

    2016-01-01

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  20. A State-Space Estimation of the Lee-Carter Mortality Model and Implications for Annuity Pricing

    OpenAIRE

    Man Chung Fung; Gareth W. Peters; Pavel V. Shevchenko

    2015-01-01

    In this article we investigate a state-space representation of the Lee-Carter model which is a benchmark stochastic mortality model for forecasting age-specific death rates. Existing relevant literature focuses mainly on mortality forecasting or pricing of longevity derivatives, while the full implications and methods of using the state-space representation of the Lee-Carter model in pricing retirement income products is yet to be examined. The main contribution of this article is twofold. Fi...

  1. State space model extraction of thermohydraulic systems – Part II: A linear graph approach applied to a Brayton cycle-based power conversion unit

    International Nuclear Information System (INIS)

    Uren, Kenneth Richard; Schoor, George van

    2013-01-01

    This second paper in a two part series presents the application of a developed state space model extraction methodology applied to a Brayton cycle-based PCU (power conversion unit) of a PBMR (pebble bed modular reactor). The goal is to investigate if the state space extraction methodology can cope with larger and more complex thermohydraulic systems. In Part I the state space model extraction methodology for the purpose of control was described in detail and a state space representation was extracted for a U-tube system to illustrate the concept. In this paper a 25th order nonlinear state space representation in terms of the different energy domains is extracted. This state space representation is solved and the responses of a number of important states are compared with results obtained from a PBMR PCU Flownex ® model. Flownex ® is a validated thermo fluid simulation software package. The results show that the state space model closely resembles the dynamics of the PBMR PCU. This kind of model may be used for nonlinear MIMO (multi-input, multi-output) type of control strategies. However, there is still a need for linear state space models since many control system design and analysis techniques require a linear state space model. This issue is also addressed in this paper by showing how a linear state space model can be derived from the extracted nonlinear state space model. The linearised state space model is also validated by comparing the state space model to an existing linear Simulink ® model of the PBMR PCU system. - Highlights: • State space model extraction of a pebble bed modular reactor PCU (power conversion unit). • A 25th order nonlinear time varying state space model is obtained. • Linearisation of a nonlinear state space model for use in power output control. • Non-minimum phase characteristic that is challenging in terms of control. • Models derived are useful for MIMO control strategies

  2. Unified geometric description of black hole thermodynamics

    International Nuclear Information System (INIS)

    Alvarez, Jose L.; Quevedo, Hernando; Sanchez, Alberto

    2008-01-01

    In the space of thermodynamic equilibrium states we introduce a Legendre invariant metric which contains all the information about the thermodynamics of black holes. The curvature of this thermodynamic metric becomes singular at those points where, according to the analysis of the heat capacities, phase transitions occur. This result is valid for the Kerr-Newman black hole and all its special cases and, therefore, provides a unified description of black hole phase transitions in terms of curvature singularities.

  3. State-space based analysis and forecasting of macroscopic road safety trends in Greece.

    Science.gov (United States)

    Antoniou, Constantinos; Yannis, George

    2013-11-01

    In this paper, macroscopic road safety trends in Greece are analyzed using state-space models and data for 52 years (1960-2011). Seemingly unrelated time series equations (SUTSE) models are developed first, followed by richer latent risk time-series (LRT) models. As reliable estimates of vehicle-kilometers are not available for Greece, the number of vehicles in circulation is used as a proxy to the exposure. Alternative considered models are presented and discussed, including diagnostics for the assessment of their model quality and recommendations for further enrichment of this model. Important interventions were incorporated in the models developed (1986 financial crisis, 1991 old-car exchange scheme, 1996 new road fatality definition) and found statistically significant. Furthermore, the forecasting results using data up to 2008 were compared with final actual data (2009-2011) indicating that the models perform properly, even in unusual situations, like the current strong financial crisis in Greece. Forecasting results up to 2020 are also presented and compared with the forecasts of a model that explicitly considers the currently on-going recession. Modeling the recession, and assuming that it will end by 2013, results in more reasonable estimates of risk and vehicle-kilometers for the 2020 horizon. This research demonstrates the benefits of using advanced state-space modeling techniques for modeling macroscopic road safety trends, such as allowing the explicit modeling of interventions. The challenges associated with the application of such state-of-the-art models for macroscopic phenomena, such as traffic fatalities in a region or country, are also highlighted. Furthermore, it is demonstrated that it is possible to apply such complex models using the relatively short time-series that are available in macroscopic road safety analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Descriptive Research

    DEFF Research Database (Denmark)

    Wigram, Anthony Lewis

    2003-01-01

    Descriptive research is described by Lathom-Radocy and Radocy (1995) to include Survey research, ex post facto research, case studies and developmental studies. Descriptive research also includes a review of the literature in order to provide both quantitative and qualitative evidence of the effect...... starts will allow effect size calculations to be made in order to evaluate effect over time. Given the difficulties in undertaking controlled experimental studies in the creative arts therapies, descriptive research methods offer a way of quantifying effect through descriptive statistical analysis...

  5. Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models

    Science.gov (United States)

    Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas

    2017-02-01

    A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-approximating regions in the output space that correspond to increasingly closer approximations of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-approximating region. Theoretically, if continued to the limit, the sequence of data-approximating regions would converge on to the observed output vector and the approximate posterior distributions, which are conditional on the data-approximation region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an approximate posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally

  6. Self-consistent description of isobaric 0+ states taking the one-particle continuum into account exactly

    International Nuclear Information System (INIS)

    Pyatov, N.I.; Salamov, D.I.; Fayans, S.A.

    1981-01-01

    The properties of discrete and resonance isobaric 0 + states of nuclei are studied within the framework of a self-consistent approach. The equations for the charge-exchange effective field are solved in the coordinate representation taking the one-particle continuum into account exactly. Microscopic estimates of the analog-state energies and the matrix elements, transition densities, and strength functions of the isospin-allowed and forbidden Fermi transitions are obtained together with the values of the isospin admixtures in the ground states of the parent nuclei and their analogs. The escape widths of the isobaric resonances are also discussed

  7. Description of low-lying vibrational Kπ ≠ 0+ states of deformed nuclei in the quasiparticle-phonon nuclear model

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Shirikova, N.Yu.

    1989-01-01

    The QPNM equations are derived taking account of p-h and p-p interactions. The calculated quadrupole, octupole and hexadecapole vibrational states in 168 Er, 172 Yb and 178 Hf are found to be reasonale agreement with experimental data. It is shown that distribution of the Eλ strength in some deformed nuclei differs from the standard one. There are cases when for a given K π and Eλ strength is concentrated not on the first but on higher-lying states. The assertion made earlier about the absence of collective two-phonon states in deformed nuclei is confirmed. 44 refs.; 1 fig.; 6 tabs

  8. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties

    Science.gov (United States)

    Xu, Xin; Goddard, William A.

    2004-01-01

    We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee–Yang–Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee–Yang–Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA. PMID:14981235

  9. Simultaneous estimation of multiple phases in digital holographic interferometry using state space analysis

    Science.gov (United States)

    Kulkarni, Rishikesh; Rastogi, Pramod

    2018-05-01

    A new approach is proposed for the multiple phase estimation from a multicomponent exponential phase signal recorded in multi-beam digital holographic interferometry. It is capable of providing multidimensional measurements in a simultaneous manner from a single recording of the exponential phase signal encoding multiple phases. Each phase within a small window around each pixel is appproximated with a first order polynomial function of spatial coordinates. The problem of accurate estimation of polynomial coefficients, and in turn the unwrapped phases, is formulated as a state space analysis wherein the coefficients and signal amplitudes are set as the elements of a state vector. The state estimation is performed using the extended Kalman filter. An amplitude discrimination criterion is utilized in order to unambiguously estimate the coefficients associated with the individual signal components. The performance of proposed method is stable over a wide range of the ratio of signal amplitudes. The pixelwise phase estimation approach of the proposed method allows it to handle the fringe patterns that may contain invalid regions.

  10. Complete synchronization of chaotic atmospheric models by connecting only a subset of state space

    Directory of Open Access Journals (Sweden)

    P. H. Hiemstra

    2012-11-01

    Full Text Available Connected chaotic systems can, under some circumstances, synchronize their states with an exchange of matter and energy between the systems. This is the case for toy models like the Lorenz 63, and more complex models. In this study we perform synchronization experiments with two connected quasi-geostrophic (QG models of the atmosphere with 1449 degrees of freedom. The purpose is to determine whether connecting only a subset of the model state space can still lead to complete synchronization (CS. In addition, we evaluated whether empirical orthogonal functions (EOF form efficient basis functions for synchronization in order to limit the number of connections. In this paper, we show that only the intermediate spectral wavenumbers (5–12 need to be connected in order to achieve CS. In addition, the minimum connection timescale needed for CS is 7.3 days. Both the connection subset and the connection timescale, or strength, are consistent with the time and spatial scales of the baroclinic instabilities in the model. This is in line with the fact that the baroclinic instabilities are the largest source of divergence between the two connected models. Using the Lorenz 63 model, we show that EOFs are nearly optimal basis functions for synchronization. The QG model results show that the minimum number of EOFs that need to be connected for CS is a factor of three smaller than when connecting the original state variables.

  11. Space resolved x-ray diffraction measurements of the supercooled state of polymers

    International Nuclear Information System (INIS)

    Asano, Tsutomu; Yoshida, Shinya; Nishida, Akira; Mina, M.F.

    2002-01-01

    In order to measure an ordering process of polymers, the supercooled state near the crystallizing surface was observed by a space resolved X-ray diffraction method at Photon Factory (PF). Using temperature slope crystallization, low density polyethylene and even-number paraffins were examined during crystallization from the melt state. The results indicate that polyethylene shows a sharp b-axis orientation where the lamellar normal and crystalline c-axis are perpendicular to the temperature slope. The crystalline lamellae are well-developed with lamellar thickness of 180 A. The supercooled melt state just above the crystallizing plane shows some diffraction in the small angle region without any crystalline reflection in the wide angle. This fact suggests that a long-range ordering (lamellar structure) appears prior to the short-range one (crystalline structure). The in-situ crystallizing surface was observed by an optical microscope connected to a TV system. The crystallizing surface of even-number paraffins moves to upwards in the temperature slope. In-situ X-ray measurements at PF revealed that the crystalline c-axis and lamellar normal of the even number paraffins are parallel to the temperature slope. From these results, the crystalline ordering and the surface movement of even number paraffins are explained using special nucleation mechanism including a screw dislocation. (author)

  12. Modal space three-state feedback control for electro-hydraulic servo plane redundant driving mechanism with eccentric load decoupling.

    Science.gov (United States)

    Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining

    2018-06-01

    The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. X-ray Tomography and Impregnation Methods to Analyze Pore Space Hetrerogeneities at the Hydrated State

    International Nuclear Information System (INIS)

    Pret, D.; Ferrage, E.; Tertre, E.; Robinet, J.C.; Faurel, M.; Hubert, F.; Pelletier, M.; Bihannic, I.

    2013-01-01

    For clay based materials, the investigation of both mineral skeleton and pore space organization as well as water distribution remains a key and challenging task. Such information is however required in order to fully understand and model their macroscopic hydro-mechanical or transport properties. In particular, as far as swelling clay minerals are involved, even pure clay materials are well known to represent spatially heterogeneous, anisotropic and deformable media from the nanometre to the centimetre scale. Probing their organization over such extremely large scale range requires the combination of different techniques providing quantitative results that can be used to feed global balances of water and pore distributions. Bulk physical measurements have been used for decades for analyzing clay systems at the dry state or for hydrated states under free macroscopic swelling conditions of samples. These approaches need to be associated to reveal the complexity of the pore space network. Indeed, all probes exhibit contrasted accessibilities and provide data on the basis of simple geometrical models either about pore or neck/throat size for a given size range. The main interest of imaging techniques is their ability to reveal the spatial heterogeneities of organization as well as the real morphology of pores. Still, they are poorly documented in literature as preparation procedures and extraction of quantitative data are not straightforward for clay materials. Clay organization is highly reactive and is, for example, a function of the resin/water removal technique used during embedding process, the content/composition of pore water or the pressure applied. Imaging techniques based on electron beam generally requires vacuum conditions around the sample and imply its impregnation by a resin. It is then generally difficult to assess the hydration state corresponding to the organization observed. Coupling different techniques is thus only possible when similar

  14. Description of low-lying states in odd-odd deformed nuclei taking account of the coupling with core rotations and vibrations. 1

    International Nuclear Information System (INIS)

    Kvasil, J.; Hrivnacova, I.; Nesterenko, V.O.

    1990-01-01

    The microscopic approach for description of low-lyinig states in deformed odd-odd nuclei is formulated as a generalization of the quasiparticle-phonon model (QPM) with including the rotational degrees of freedom and n-p interaction between external nucleons into the QPM. In comparison with other models, the approach proposed includes all three the most important effects coupling with rotational and vibrational degrees of freedom of doubly-even core and p-n interaction mentioned above even treates them on the microscopic base. 36 refs

  15. Project for the Space Science in Moscow State University of Geodesy and Cartography (MIIGAiK)

    Science.gov (United States)

    Semenov, M.; Oberst, J.; Malinnikov, V.; Shingareva, K.; Grechishchev, A.; Karachevtseva, I.; Konopikhin, A.

    2012-04-01

    Introduction: Based on the proposal call of the Government of Russian Federation 40 of international scientists came to Russia for developing and support-ing research capabilities of national educational institutions. Moscow State University of Geodesy and Cartography (MIIGAiK) and invited scientist Prof. Dr. Jurgen Oberst were awarded a grant to establish a capable research facility concerned with Planetary Geodesy, Cartography and Space Exploration. Objectives: The goals of the project are to build laboratory infrastructure, and suitable capability for MIIGAiK to participate in the planning, execution and analyses of data from future Russian planetary mis-sions and also to integrate into the international science community. Other important tasks are to develop an attractive work place and job opportunities for planetary geodesy and cartography students. For this purposes new MIIGAiK Extraterrestrial Laboratory (MExLab) was organized. We involved professors, researchers, PhD students in to the projects of Moon and planets exploration at the new level of Russian Space Science development. Main results: MExLab team prepare data for upcom-ing Russian space missions, such as LUNA-GLOB and LUNA-RESOURSE. We established cooperation with Russian and international partners (IKI, ESA, DLR, and foreign Universities) and actively participated in international conferences and workshops. Future works: For the future science development we investigated the old Soviet Archives and received the access to the telemetry data of the Moon rovers Lunokhod-1 and Lunokhod-2. That data will be used in education purposes and could be the perfect base for the analysis, development and support in new Russian and international missions and especially Moon exploration projects. MExLab is open to cooperate and make the consortiums for science projects for the Moon and planets exploration. Acknowledgement: Works are funded by the Rus-sian Government (Project name: "Geodesy, cartography and the

  16. Public policies for managing urban growth and protecting open space: policy instruments and lessons learned in the United States

    Science.gov (United States)

    David N. Bengston; Jennifer O. Fletcher

    2003-01-01

    The public sector in the United States has responded to growing concern about the social and environmental costs of sprawling development patterns by creating a wide range of policy instruments designed to manage urban growth and protect open space. These techniques have been implemented at the local, regional, state and, to a limited extent, national levels. This...

  17. Phase space dynamics and control of the quantum particles associated to hypergraph states

    Directory of Open Access Journals (Sweden)

    Berec Vesna

    2015-01-01

    Full Text Available As today’s nanotechnology focus becomes primarily oriented toward production and manipulation of materials at the subatomic level, allowing the performance and complexity of interconnects where the device density accepts more than hundreds devices on a single chip, the manipulation of semiconductor nanostructures at the subatomic level sets its prime tasks on preserving and adequate transmission of information encoded in specified (quantum states. The presented study employs the quantum communication protocol based on the hypergraph network model where the numerical solutions of equations of motion of quantum particles are associated to vertices (assembled with device chip, which follow specific controllable paths in the phase space. We address these findings towards ultimate quest for prediction and selective control of quantum particle trajectories. In addition, presented protocols could represent valuable tool for reducing background noise and uncertainty in low-dimensional and operationally meaningful, scalable complex systems.

  18. Relating landfill gas emissions to atmospheric pressure using numerical modeling and state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, T.G.; Christophersen, Mette; Moldrup, P.

    2003-01-01

    were applied: (I) State-space analysis was used to identify relations between gas flux and short-term (hourly) variations in atmospheric pressure. (II) A numerical gas transport model was fitted to the data and used to quantify short-term impacts of variations in atmospheric pressure, volumetric soil......-water content, soil gas permeability, soil gas diffusion coefficients, and biological CH4 degradation rate upon landfill gas concentration and fluxes in the soil. Fluxes and concentrations were found to be most sensitive to variations in volumetric soil water content, atmospheric pressure variations and gas...... permeability whereas variations in CH4 oxidation rate and molecular coefficients had less influence. Fluxes appeared to be most sensitive to atmospheric pressure at intermediate distances from the landfill edge. Also overall CH4 fluxes out of the soil over longer periods (years) were largest during periods...

  19. PySSM: A Python Module for Bayesian Inference of Linear Gaussian State Space Models

    Directory of Open Access Journals (Sweden)

    Christopher Strickland

    2014-04-01

    Full Text Available PySSM is a Python package that has been developed for the analysis of time series using linear Gaussian state space models. PySSM is easy to use; models can be set up quickly and efficiently and a variety of different settings are available to the user. It also takes advantage of scientific libraries NumPy and SciPy and other high level features of the Python language. PySSM is also used as a platform for interfacing between optimized and parallelized Fortran routines. These Fortran routines heavily utilize basic linear algebra and linear algebra Package functions for maximum performance. PySSM contains classes for filtering, classical smoothing as well as simulation smoothing.

  20. Uncertainty evaluation for IIR (infinite impulse response) filtering using a state-space approach

    International Nuclear Information System (INIS)

    Link, Alfred; Elster, Clemens

    2009-01-01

    A novel method is proposed for evaluating the uncertainty associated with the output of a discrete-time IIR filter when the input signal is corrupted by additive noise and the filter coefficients are uncertain. This task arises, for instance, when the noise-corrupted output of a measurement system is compensated by a digital filter which has been designed on the basis of the characteristics of the measurement system. We assume that the noise is either stationary or uncorrelated, and we presume knowledge about its autocovariance function or its time-dependent variances, respectively. Uncertainty evaluation is considered in line with the 'Guide to the Expression of Uncertainty in Measurement'. A state-space representation is used to derive a calculation scheme which allows the uncertainties to be evaluated in an easy way and also enables real-time applications. The proposed procedure is illustrated by an example

  1. State space modeling of reactor core in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W. [Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Shamsuddin, Mustaffa [Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Abdullah, M. Adib [Swinburne University of Technology, Faculty of Engineering, Computing and Science, Jalan Simpang Tiga, 93350 Kuching, Sarawak (Malaysia)

    2014-07-10

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  2. Robustness of Operational Matrices of Differentiation for Solving State-Space Analysis and Optimal Control Problems

    Directory of Open Access Journals (Sweden)

    Emran Tohidi

    2013-01-01

    Full Text Available The idea of approximation by monomials together with the collocation technique over a uniform mesh for solving state-space analysis and optimal control problems (OCPs has been proposed in this paper. After imposing the Pontryagins maximum principle to the main OCPs, the problems reduce to a linear or nonlinear boundary value problem. In the linear case we propose a monomial collocation matrix approach, while in the nonlinear case, the general collocation method has been applied. We also show the efficiency of the operational matrices of differentiation with respect to the operational matrices of integration in our numerical examples. These matrices of integration are related to the Bessel, Walsh, Triangular, Laguerre, and Hermite functions.

  3. An optical flow-based state-space model of the vocal folds

    DEFF Research Database (Denmark)

    Granados, Alba; Brunskog, Jonas

    2017-01-01

    High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A l...... to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters........ A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able...

  4. Real time evolution at finite temperatures with operator space matrix product states

    International Nuclear Information System (INIS)

    Pižorn, Iztok; Troyer, Matthias; Eisler, Viktor; Andergassen, Sabine

    2014-01-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model. (paper)

  5. Real time evolution at finite temperatures with operator space matrix product states

    Science.gov (United States)

    Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias

    2014-07-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

  6. A computational approach to extinction events in chemical reaction networks with discrete state spaces.

    Science.gov (United States)

    Johnston, Matthew D

    2017-12-01

    Recent work of Johnston et al. has produced sufficient conditions on the structure of a chemical reaction network which guarantee that the corresponding discrete state space system exhibits an extinction event. The conditions consist of a series of systems of equalities and inequalities on the edges of a modified reaction network called a domination-expanded reaction network. In this paper, we present a computational implementation of these conditions written in Python and apply the program on examples drawn from the biochemical literature. We also run the program on 458 models from the European Bioinformatics Institute's BioModels Database and report our results. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. An optical flow-based state-space model of the vocal folds.

    Science.gov (United States)

    Granados, Alba; Brunskog, Jonas

    2017-06-01

    High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.

  8. New integrable model of quantum field theory in the state space with indefinite metric

    International Nuclear Information System (INIS)

    Makhankov, V.G.; Pashaev, O.K.

    1981-01-01

    The system of coupled nonlinear Schroedinger eqs. (NLS) with noncompact internal symmetry group U(p, q) is considered. It describes in quasiclassical limit the system of two ''coloured'' Bose-gases with point-like interaction. The structure of tran-sition matrix is studied via the spectral transform (ST) (in-verse method). The Poisson brackets of the elements of this matrix and integrals of motion it generates are found. The theory under consideration may be put in the corresponding quantum field theory in the state vector space with indefinite metric. The so-called R matrix (Faddeev) and commutation relations for the transition matrix elements are also obtained, which implies the model to be investigated with the help of the quantum version of ST

  9. Harmonic Interaction Analysis in Grid Connected Converter using Harmonic State Space (HSS) Modeling

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    -model, are introduced to analyze these problems. However, it is found that Linear Time Invariant (LTI) base model analysis makes it difficult to analyze these phenomenon because of time varying system operation trajectories, varying output impedance seen by grid connected systems and neglected switching component......An increasing number of power electronics based Distributed Generation (DG) systems and loads generate coupled harmonic as well as non-characteristic harmonic with each other. Several methods like impedance based analysis, which is derived from conventional small signal- and average...... during the modeling process. This paper investigates grid connected converter by means of Harmonic State Space (HSS) small signal model, which is modeled from Linear Time varying Periodically (LTP) system. Further, a grid connected converter harmonic matrix is investigated to analyze the harmonic...

  10. Studies of HOMs in chains of SRF cavities using state-space concatenation scheme

    Energy Technology Data Exchange (ETDEWEB)

    Galek, Tomasz; Heller, Johann; Flisgen, Thomas; Brackebusch, Korinna; Rienen, Ursula van [Institut fuer Allgemeine Elektrotechnik, Universitaet Rostock (Germany)

    2016-07-01

    The design of modern superconducting radio frequency cavities for acceleration of charged particle bunches requires intensive numerical simulations, as they typically arise as modules of several multi-cell cavities. A wide variety of parameters vital to the proper operation of accelerating cavities must be optimized and studied. One of the most important issues concerning the SRF cavities is the influence of the higher order modes on the beam quality, in this contribution. For TESLA-like structures with 1.3 GHz accelerating mode, higher order modes are calculated up to 4 GHz, the external quality factor and the shunt/geometrical impedance spectra are analyzed. To compute properties of complete RF modules the state-space concatenation scheme is used. The aspects of the concatenation scheme and its application to the bERLinPro's chain of cavities is discussed.

  11. Summary results of the first United States manned orbital space flight

    Science.gov (United States)

    Glenn, J. H. Jr

    1963-01-01

    This paper describes the principal findings of the first United States manned orbital space flight in light of the flight mission. Consideration is given to the coordinated tracking network, recovery forces and to the spacecraft and its several functional systems. These include mechanisms for heat protection, escape maneuvers, spacecraft control, power supply, communications, life support and landing. A few difficulties encountered in the flight and deviations from the planned sequence are described. Craft preparation, aeromedical studies, flight plan and particularly flight observations--including the color, light, horizon visibility by day and by night, cloud formations and sunrise and sunset effects are given in some detail. The general conclusion from the MA-6 flight is that man can adapt well to new conditions encountered in space flight and that man can contribute importantly to mission reliability and toward mission achievement through his capacities to control the spacecraft and its multiple systems contribute to decision making and adaptation of programming as well as to direct exploratory and experimental observations.

  12. Contaminant ingress into multizone buildings: An analytical state-space approach

    KAUST Repository

    Parker, Simon

    2013-08-13

    The ingress of exterior contaminants into buildings is often assessed by treating the building interior as a single well-mixed space. Multizone modelling provides an alternative way of representing buildings that can estimate concentration time series in different internal locations. A state-space approach is adopted to represent the concentration dynamics within multizone buildings. Analysis based on this approach is used to demonstrate that the exposure in every interior location is limited to the exterior exposure in the absence of removal mechanisms. Estimates are also developed for the short term maximum concentration and exposure in a multizone building in response to a step-change in concentration. These have considerable potential for practical use. The analytical development is demonstrated using a simple two-zone building with an inner zone and a range of existing multizone models of residential buildings. Quantitative measures are provided of the standard deviation of concentration and exposure within a range of residential multizone buildings. Ratios of the maximum short term concentrations and exposures to single zone building estimates are also provided for the same buildings. © 2013 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  13. Parental and Infant Gender Factors in Parent-Infant Interaction: State-Space Dynamic Analysis.

    Science.gov (United States)

    Cerezo, M Angeles; Sierra-García, Purificación; Pons-Salvador, Gemma; Trenado, Rosa M

    2017-01-01

    This study aimed to investigate the influence of parental gender on their interaction with their infants, considering, as well, the role of the infant's gender. The State Space Grid (SSG) method, a graphical tool based on the non-linear dynamic system (NDS) approach was used to analyze the interaction, in Free-Play setting, of 52 infants, aged 6 to 10 months, divided into two groups: half of the infants interacted with their fathers and half with their mothers. There were 50% boys in each group. MANOVA results showed no differential parenting of boys and girls. Additionally, mothers and fathers showed no differences in the Diversity of behavioral dyadic states nor in Predictability. However, differences associated with parent's gender were found in that the paternal dyads were more "active" than the maternal dyads: they were faster in the rates per second of behavioral events and transitions or change of state. In contrast, maternal dyads were more repetitive because, once they visited a certain dyadic state, they tend to be involved in more events. Results showed a significant discriminant function on the parental groups, fathers and mothers. Specifically, the content analyses carried out for the three NDS variables, that previously showed differences between groups, showed particular dyadic behavioral states associated with the rate of Transitions and the Events per Visit ratio. Thus, the transitions involving 'in-out' of 'Child Social Approach neutral - Sensitive Approach neutral' state and the repetitions of events in the dyadic state 'Child Play-Sensitive Approach neutral' distinguished fathers from mothers. The classification of dyads (with fathers and mothers) based on this discriminant function identified 73.10% (19/26) of the father-infant dyads and 88.5% (23/26) of the mother-infant dyads. The study of father-infant interaction using the SSG approach offers interesting possibilities because it characterizes and quantifies the actual moment-to-moment flow

  14. Parental and Infant Gender Factors in Parent–Infant Interaction: State-Space Dynamic Analysis

    Directory of Open Access Journals (Sweden)

    M. Angeles Cerezo

    2017-10-01

    Full Text Available This study aimed to investigate the influence of parental gender on their interaction with their infants, considering, as well, the role of the infant’s gender. The State Space Grid (SSG method, a graphical tool based on the non-linear dynamic system (NDS approach was used to analyze the interaction, in Free-Play setting, of 52 infants, aged 6 to 10 months, divided into two groups: half of the infants interacted with their fathers and half with their mothers. There were 50% boys in each group. MANOVA results showed no differential parenting of boys and girls. Additionally, mothers and fathers showed no differences in the Diversity of behavioral dyadic states nor in Predictability. However, differences associated with parent’s gender were found in that the paternal dyads were more “active” than the maternal dyads: they were faster in the rates per second of behavioral events and transitions or change of state. In contrast, maternal dyads were more repetitive because, once they visited a certain dyadic state, they tend to be involved in more events. Results showed a significant discriminant function on the parental groups, fathers and mothers. Specifically, the content analyses carried out for the three NDS variables, that previously showed differences between groups, showed particular dyadic behavioral states associated with the rate of Transitions and the Events per Visit ratio. Thus, the transitions involving ‘in–out’ of ‘Child Social Approach neutral – Sensitive Approach neutral’ state and the repetitions of events in the dyadic state ‘Child Play-Sensitive Approach neutral’ distinguished fathers from mothers. The classification of dyads (with fathers and mothers based on this discriminant function identified 73.10% (19/26 of the father–infant dyads and 88.5% (23/26 of the mother–infant dyads. The study of father-infant interaction using the SSG approach offers interesting possibilities because it characterizes and

  15. Dysconnection topography in schizophrenia revealed with state-space analysis of EEG.

    Science.gov (United States)

    Jalili, Mahdi; Lavoie, Suzie; Deppen, Patricia; Meuli, Reto; Do, Kim Q; Cuénod, Michel; Hasler, Martin; De Feo, Oscar; Knyazeva, Maria G

    2007-10-24

    The dysconnection hypothesis has been proposed to account for pathophysiological mechanisms underlying schizophrenia. Widespread structural changes suggesting abnormal connectivity in schizophrenia have been imaged. A functional counterpart of the structural maps would be the EEG synchronization maps. However, due to the limits of currently used bivariate methods, functional correlates of dysconnection are limited to the isolated measurements of synchronization between preselected pairs of EEG signals. To reveal a whole-head synchronization topography in schizophrenia, we applied a new method of multivariate synchronization analysis called S-estimator to the resting dense-array (128 channels) EEG obtained from 14 patients and 14 controls. This method determines synchronization from the embedding dimension in a state-space domain based on the theoretical consequence of the cooperative behavior of simultaneous time series-the shrinking of the state-space embedding dimension. The S-estimator imaging revealed a specific synchronization landscape in schizophrenia patients. Its main features included bilaterally increased synchronization over temporal brain regions and decreased synchronization over the postcentral/parietal region neighboring the midline. The synchronization topography was stable over the course of several months and correlated with the severity of schizophrenia symptoms. In particular, direct correlations linked positive, negative, and general psychopathological symptoms to the hyper-synchronized temporal clusters over both hemispheres. Along with these correlations, general psychopathological symptoms inversely correlated within the hypo-synchronized postcentral midline region. While being similar to the structural maps of cortical changes in schizophrenia, the S-maps go beyond the topography limits, demonstrating a novel aspect of the abnormalities of functional cooperation: namely, regionally reduced or enhanced connectivity. The new method of

  16. Dysconnection topography in schizophrenia revealed with state-space analysis of EEG.

    Directory of Open Access Journals (Sweden)

    Mahdi Jalili

    2007-10-01

    Full Text Available The dysconnection hypothesis has been proposed to account for pathophysiological mechanisms underlying schizophrenia. Widespread structural changes suggesting abnormal connectivity in schizophrenia have been imaged. A functional counterpart of the structural maps would be the EEG synchronization maps. However, due to the limits of currently used bivariate methods, functional correlates of dysconnection are limited to the isolated measurements of synchronization between preselected pairs of EEG signals.To reveal a whole-head synchronization topography in schizophrenia, we applied a new method of multivariate synchronization analysis called S-estimator to the resting dense-array (128 channels EEG obtained from 14 patients and 14 controls. This method determines synchronization from the embedding dimension in a state-space domain based on the theoretical consequence of the cooperative behavior of simultaneous time series-the shrinking of the state-space embedding dimension. The S-estimator imaging revealed a specific synchronization landscape in schizophrenia patients. Its main features included bilaterally increased synchronization over temporal brain regions and decreased synchronization over the postcentral/parietal region neighboring the midline. The synchronization topography was stable over the course of several months and correlated with the severity of schizophrenia symptoms. In particular, direct correlations linked positive, negative, and general psychopathological symptoms to the hyper-synchronized temporal clusters over both hemispheres. Along with these correlations, general psychopathological symptoms inversely correlated within the hypo-synchronized postcentral midline region. While being similar to the structural maps of cortical changes in schizophrenia, the S-maps go beyond the topography limits, demonstrating a novel aspect of the abnormalities of functional cooperation: namely, regionally reduced or enhanced connectivity.The new

  17. State-space forecasting of Schistosoma haematobium time-series in Niono, Mali.

    Science.gov (United States)

    Medina, Daniel C; Findley, Sally E; Doumbia, Seydou

    2008-08-13

    Much of the developing world, particularly sub-Saharan Africa, exhibits high levels of morbidity and mortality associated with infectious diseases. The incidence of Schistosoma sp.-which are neglected tropical diseases exposing and infecting more than 500 and 200 million individuals in 77 countries, respectively-is rising because of 1) numerous irrigation and hydro-electric projects, 2) steady shifts from nomadic to sedentary existence, and 3) ineffective control programs. Notwithstanding the colossal scope of these parasitic infections, less than 0.5% of Schistosoma sp. investigations have attempted to predict their spatial and or temporal distributions. Undoubtedly, public health programs in developing countries could benefit from parsimonious forecasting and early warning systems to enhance management of these parasitic diseases. In this longitudinal retrospective (01/1996-06/2004) investigation, the Schistosoma haematobium time-series for the district of Niono, Mali, was fitted with general-purpose exponential smoothing methods to generate contemporaneous on-line forecasts. These methods, which are encapsulated within a state-space framework, accommodate seasonal and inter-annual time-series fluctuations. Mean absolute percentage error values were circa 25% for 1- to 5-month horizon forecasts. The exponential smoothing state-space framework employed herein produced reasonably accurate forecasts for this time-series, which reflects the incidence of S. haematobium-induced terminal hematuria. It obliquely captured prior non-linear interactions between disease dynamics and exogenous covariates (e.g., climate, irrigation, and public health interventions), thus obviating the need for more complex forecasting methods in the district of Niono, Mali. Therefore, this framework could assist with managing and assessing S. haematobium transmission and intervention impact, respectively, in this district and potentially elsewhere in the Sahel.

  18. Distributed BOLD-response in association cortex vector state space predicts reaction time during selective attention.

    Science.gov (United States)

    Musso, Francesco; Konrad, Andreas; Vucurevic, Goran; Schäffner, Cornelius; Friedrich, Britta; Frech, Peter; Stoeter, Peter; Winterer, Georg

    2006-02-15

    Human cortical information processing is thought to be dominated by distributed activity in vector state space (Churchland, P.S., Sejnowski, T.J., 1992. The Computational Brain. MIT Press, Cambridge.). In principle, it should be possible to quantify distributed brain activation with independent component analysis (ICA) through vector-based decomposition, i.e., through a separation of a mixture of sources. Using event-related functional magnetic resonance imaging (fMRI) during a selective attention-requiring task (visual oddball), we explored how the number of independent components within activated cortical areas is related to reaction time. Prior to ICA, the activated cortical areas were determined on the basis of a General linear model (GLM) voxel-by-voxel analysis of the target stimuli (checkerboard reversal). Two activated cortical areas (temporoparietal cortex, medial prefrontal cortex) were further investigated as these cortical regions are known to be the sites of simultaneously active electromagnetic generators which give rise to the compound event-related potential P300 during oddball task conditions. We found that the number of independent components more strongly predicted reaction time than the overall level of "activation" (GLM BOLD-response) in the left temporoparietal area whereas in the medial prefrontal cortex both ICA and GLM predicted reaction time equally well. Comparable correlations were not seen when principle components were used instead of independent components. These results indicate that the number of independently activated components, i.e., a high level of cortical activation complexity in cortical vector state space, may index particularly efficient information processing during selective attention-requiring tasks. To our best knowledge, this is the first report describing a potential relationship between neuronal generators of cognitive processes, the associated electrophysiological evidence for the existence of distributed networks

  19. Harmonic Instability Assessment Using State-Space Modeling and Participation Analysis in Inverter-Fed Power Systems

    DEFF Research Database (Denmark)

    Wang, Yanbo; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    parameters on the harmonic instability of the power system. Moreover, the harmonic-frequency oscillation modes are identified, where participation analysis is presented to evaluate the contributions of different states to these modes and to further reveal how the system gives rise to harmonic instability......This paper presents a harmonic instability analysis method using state-space modeling and participation analysis in the inverter-fed ac power systems. A full-order state-space model for the droop-controlled Distributed Generation (DG) inverter is built first, including the time delay of the digital...... control system, inner current and voltage control loops, and outer droop-based power control loop. Based on the DG inverter model, an overall state-space model of a two-inverter-fed system is established. The eigenvalue-based stability analysis is then presented to assess the influence of controller...

  20. A Descriptive Study of Television News Coverage of Tobacco in the United States: Frequency of Topics, Frames, Exemplars, and Efficacy

    Science.gov (United States)

    BLAKE, KELLY D.; KAUFMAN, ANNETTE R.; LORENZO, JOSHUA; AUGUSTSON, ERIK M.

    2015-01-01

    There is a positive correlation between recall of tobacco-related television news and perceived risks of smoking and thoughts about quitting. The authors used Cision US, Inc., to create a sampling frame (N =61,027) of local and national television news coverage of tobacco from October 1, 2008, to September 30, 2009, and to draw a nationally representative sample (N =730) for content analysis. The authors conducted a descriptive study to determine the frequency and proportion of stories containing specified tobacco topics, frames, sources, and action messages, and the valence of the coverage. Valence was generally neutral; 68% of stories took a balanced stance, with 26% having a tenor supportive of tobacco control and 6% opposing tobacco control. The most frequently covered topics included smoking bans (n =195) and cessation (n =156). The least covered topics included hookah (n =1) and menthol (n =0). The majority of coverage lacked quoting any source (n =345); government officials (n =144) were the most quoted sources. Coverage lacked action messages or resources; 29 stories (Television news can be leveraged by health communication professionals to increase awareness of underrepresented topics in tobacco control. PMID:26176379

  1. Development of a model for the description of highly excited states in odd-A deformed nuclei

    International Nuclear Information System (INIS)

    Malov, L.A.; Soloviev, V.G.

    1975-01-01

    An approximate method is suggested for solution of the set of equations, obtained earlier for describing the structure of intermediate-and high-excitation states within the framework of the model taking into account quasiparticle-phonon interaction. The analysis is conducted for the case of an odd deformed nucleus, when several one-quasiparticle components are simultaneously taken into account

  2. Description of strong M1 transitions between 4^+ states at N=52 within the sdg-IBM-2

    Science.gov (United States)

    Casperson, R. J.; Werner, V.; Heinze, S.

    2009-10-01

    The interplay between collective and single-particle degrees of freedom for nuclei near the N=50 shell closure have recently been under investigation. In Molybdenum and Ruthenium nuclei, collective symmetric and mixed-symmetric structures have been identified, while in Zirconium, underlying shell-structure plays an enhanced role. The one-phonon 2^+ mixed-symmetry state was identified from its strong M1 transition to the 2^+1 state. Similar transitions were observed between 4^+ states in ^94Mo and ^92Zr, and shell model calculations indicate that hexadecapole excitations play a role. These phenomena will be investigated within the sdg-Interacting Boson Model-2 in order to gain a better understanding about the structure of the states involved, and to which extent the hexadecapole degree of freedom is important at relatively low energies. First calculations within this model, using an F-spin conserving Hamiltonian to disentangle symmetric and mixed- symmetric structures, will be presented and compared to data.

  3. Fermionic bound states in Minkowski space. Light-cone singularities and structure

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Wayne de; Frederico, Tobias; Pimentel, Rafael [Instituto Tecnologico de Aeronautica, DCTA, Dept. de Fisica, Sao Jose dos Campos, Sao Paulo (Brazil); Salme, Giovanni [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Viviani, Michele [Istituto Nazionale di Fisica Nucleare, Pisa (Italy)

    2017-11-15

    The Bethe-Salpeter equation for two-body bound system with spin 1/2 constituent is addressed directly in the Minkowski space. In order to accomplish this aim we use the Nakanishi integral representation of the Bethe-Salpeter amplitude and exploit the formal tool represented by the exact projection onto the null-plane. This formal step allows one (i) to deal with end-point singularities one meets and (ii) to find stable results, up to strongly relativistic regimes, which settle in strongly bound systems. We apply this technique to obtain the numerical dependence of the binding energies upon the coupling constants and the light-front amplitudes for a fermion-fermion 0{sup +} state with interaction kernels, in ladder approximation, corresponding to scalar-, pseudoscalar- and vector-boson exchanges, respectively. After completing the numerical survey of the previous cases, we extend our approach to a quark-antiquark system in 0{sup -} state, taking both constituent-fermion and exchanged-boson masses, from lattice calculations. Interestingly, the calculated light-front amplitudes for such a mock pion show peculiar signatures of the spin degrees of freedom. (orig.)

  4. Fast Kalman-like filtering for large-dimensional linear and Gaussian state-space models

    KAUST Repository

    Ait-El-Fquih, Boujemaa; Hoteit, Ibrahim

    2015-01-01

    This paper considers the filtering problem for linear and Gaussian state-space models with large dimensions, a setup in which the optimal Kalman Filter (KF) might not be applicable owing to the excessive cost of manipulating huge covariance matrices. Among the most popular alternatives that enable cheaper and reasonable computation is the Ensemble KF (EnKF), a Monte Carlo-based approximation. In this paper, we consider a class of a posteriori distributions with diagonal covariance matrices and propose fast approximate deterministic-based algorithms based on the Variational Bayesian (VB) approach. More specifically, we derive two iterative KF-like algorithms that differ in the way they operate between two successive filtering estimates; one involves a smoothing estimate and the other involves a prediction estimate. Despite its iterative nature, the prediction-based algorithm provides a computational cost that is, on the one hand, independent of the number of iterations in the limit of very large state dimensions, and on the other hand, always much smaller than the cost of the EnKF. The cost of the smoothing-based algorithm depends on the number of iterations that may, in some situations, make this algorithm slower than the EnKF. The performances of the proposed filters are studied and compared to those of the KF and EnKF through a numerical example.

  5. More on the rainbow chain: entanglement, space-time geometry and thermal states

    International Nuclear Information System (INIS)

    Rodríguez-Laguna, Javier; Dubail, Jérôme; Ramírez, Giovanni; Calabrese, Pasquale; Sierra, Germán

    2017-01-01

    The rainbow chain is an inhomogenous exactly solvable local spin model that, in its ground state, displays a half-chain entanglement entropy growing linearly with the system size. Although many exact results about the rainbow chain are known, the structure of the underlying quantum field theory has not yet been unraveled. Here we show that the universal scaling features of this model are captured by a massless Dirac fermion in a curved space-time with constant negative curvature R   =  − h "2 ( h is the amplitude of the inhomogeneity). This identification allows us to use recently developed techniques to study inhomogeneous conformal systems and to analytically characterise the entanglement entropies of more general bipartitions. These results are carefully tested against exact numerical calculations. Finally, we study the entanglement entropies of the rainbow chain in thermal states, and find that there is a non-trivial interplay between the rainbow effective temperature T_R and the physical temperature T . (paper)

  6. Fast Kalman-like filtering for large-dimensional linear and Gaussian state-space models

    KAUST Repository

    Ait-El-Fquih, Boujemaa

    2015-08-13

    This paper considers the filtering problem for linear and Gaussian state-space models with large dimensions, a setup in which the optimal Kalman Filter (KF) might not be applicable owing to the excessive cost of manipulating huge covariance matrices. Among the most popular alternatives that enable cheaper and reasonable computation is the Ensemble KF (EnKF), a Monte Carlo-based approximation. In this paper, we consider a class of a posteriori distributions with diagonal covariance matrices and propose fast approximate deterministic-based algorithms based on the Variational Bayesian (VB) approach. More specifically, we derive two iterative KF-like algorithms that differ in the way they operate between two successive filtering estimates; one involves a smoothing estimate and the other involves a prediction estimate. Despite its iterative nature, the prediction-based algorithm provides a computational cost that is, on the one hand, independent of the number of iterations in the limit of very large state dimensions, and on the other hand, always much smaller than the cost of the EnKF. The cost of the smoothing-based algorithm depends on the number of iterations that may, in some situations, make this algorithm slower than the EnKF. The performances of the proposed filters are studied and compared to those of the KF and EnKF through a numerical example.

  7. A State Space Model for Spatial Updating of Remembered Visual Targets during Eye Movements.

    Science.gov (United States)

    Mohsenzadeh, Yalda; Dash, Suryadeep; Crawford, J Douglas

    2016-01-01

    In the oculomotor system, spatial updating is the ability to aim a saccade toward a remembered visual target position despite intervening eye movements. Although this has been the subject of extensive experimental investigation, there is still no unifying theoretical framework to explain the neural mechanism for this phenomenon, and how it influences visual signals in the brain. Here, we propose a unified state-space model (SSM) to account for the dynamics of spatial updating during two types of eye movement; saccades and smooth pursuit. Our proposed model is a non-linear SSM and implemented through a recurrent radial-basis-function neural network in a dual Extended Kalman filter (EKF) structure. The model parameters and internal states (remembered target position) are estimated sequentially using the EKF method. The proposed model replicates two fundamental experimental observations: continuous gaze-centered updating of visual memory-related activity during smooth pursuit, and predictive remapping of visual memory activity before and during saccades. Moreover, our model makes the new prediction that, when uncertainty of input signals is incorporated in the model, neural population activity and receptive fields expand just before and during saccades. These results suggest that visual remapping and motor updating are part of a common visuomotor mechanism, and that subjective perceptual constancy arises in part from training the visual system on motor tasks.

  8. Description of the Charge Transfer States at the Pentacene/C60 Interface: Combining Range-Separated Hybrid Functionals with the Polarizable Continuum Model

    KAUST Repository

    Zheng, Zilong

    2016-06-24

    Density functional theory (DFT) approaches based on range-separated hybrid functionals are currently methods of choice for the description of the charge-transfer (CT) states in organic donor/acceptor solar cells. However, these calculations are usually performed on small-size donor/acceptor complexes and as result do not account for electronic polarization effects. Here, using a pentacene/C60 complex as a model system, we discuss the ability of long-range corrected (LCR) hybrid functionals in combination with the polarizable continuum model (PCM) to determine the impact of the solid-state environment on the CT states. The CT energies are found to be insensitive to the interactions with the dielectric medium when a conventional time-dependent DFT/PCM (TDDFT/PCM) approach is used. However, a decrease in the energy of the CT state in the framework of LRC functionals can be obtained by using a smaller range-separated parameter when going from an isolated donor/acceptor complex to the solid-state case.

  9. On the applicability of the critical state model to the description of electromagnetic properties of high-Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, L.M.; Il' in, N.V.; Voloshin, I.F. (All-Russian Electrical Engineering Inst., Moscow (Russia)); Makarov, N.M.; Yampol' skii, V.A. (Inst. for Radiophysics and Electronics, Ukr. Acad. Sci., Karkov (Ukraine)); Perez Rodriguez, F. (Inst. de Fisica, Univ. Autonoma de Puebla, Rue (Mexico)); Snyder, R.L. (New York State Coll. of Ceramics, Alfred Univ. (United States))

    1993-02-20

    The frequency dependence of the surface impedance of superconductors have been studied experimentally and theoretically in the radio frequency range. Its essential deviation was found from the linear law predicted by the usual critical state model. The character of this deviation depends qualitatively on the amplitude of the radio wave. We have established the frequency limits of applicability of the traditional critical state model. Results obtained print out an explanation in the frame of the modified model where we take into account the contribution of a dissipative term to the screening current. The value of this is connected with the V-I plot of the superconductor, so it is possible to obtain information about the V-I characteristics by the contactless method. (orig.).

  10. Who actually receives cell phone use while driving citations and how much are these laws enforced among states? A descriptive, cross-sectional study.

    Science.gov (United States)

    Rudisill, Toni M; Zhu, Motao

    2016-06-14

    While numerous cell phone use while driving laws have been passed among states, little information exists regarding who gets cited for these traffic infractions and how much these laws are enforced at the state-level within the USA. Cross-sectional, descriptive study. 14 states and the District of Columbia. Those receiving cell phone use while driving citations within included states from 2007 to 2013. Demographic characteristics of cited drivers were assessed. Rates of infractions per 100 000 licensed in-state drivers per year for various cell phone use while driving violations were calculated. Drivers were cited for hand-held use violations (n=2.5 million) more than texting (n=14 682) or young driver all cell phone bans (n=342). Among states that provided data for all traffic violations, cell phone use while driving citations comprised 1% of all written citations. Regardless of ban type, males (68.2%) were cited more frequently than females. Drivers 25-64 years of age (90.8%) were more likely to be cited for hand-held phone use. The average yearly rate of infractions per 100 000 licensed in-state drivers from 2010-2013 was 5.8 for texting bans, 2607 for hand-held bans, and 9954 for any traffic violation. Among cited drivers, age and sex differences existed by the type of ban violated. State-level enforcement appeared sparse. Due to the potential serious consequences of cell phone use while driving in the USA, more enforcement and targeted public safety campaigns are likely needed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Description of a multi-university education and collaborative care child psychiatry access program: New York State's CAP PC.

    Science.gov (United States)

    Kaye, D L; Fornari, V; Scharf, M; Fremont, W; Zuckerbrot, R; Foley, C; Hargrave, T; Smith, B A; Wallace, J; Blakeslee, G; Petras, J; Sengupta, S; Singarayer, J; Cogswell, A; Bhatia, I; Jensen, P

    2017-09-01

    Although, child mental health problems are widespread, few get adequate treatment, and there is a severe shortage of child psychiatrists. To address this public health need many states have adopted collaborative care programs to assist primary care to better assess and manage pediatric mental health concerns. This report adds to the small literature on collaborative care programs and describes one large program that covers most of New York state. CAP PC, a component program of New York State's Office of Mental Health (OMH) Project TEACH, has provided education and consultation support to primary care providers covering most of New York state since 2010. The program is uniquely a five medical school collaboration with hubs at each that share one toll free number and work together to provide education and consultation support services to PCPs. The program developed a clinical communications record to track information about all consultations which forms the basis of much of this report. 2-week surveys following consultations, annual surveys, and pre- and post-educational program evaluations have also been used to measure the success of the program. CAP PC has grown over the 6years of the program and has provided 8013 phone consultations to over 1500 PCPs. The program synergistically provided 17,523 CME credits of educational programming to 1200 PCPs. PCP users of the program report very high levels of satisfaction and self reported growth in confidence. CAP PC demonstrates that large-scale collaborative consultation models for primary care are feasible to implement, popular with PCPs, and can be sustained. The program supports increased access to child mental health services in primary care and provides child psychiatric expertise for patients who would otherwise have none. Copyright © 2017. Published by Elsevier Inc.

  12. Visceral leishmaniasis in the state of Sao Paulo, Brazil: spatial and space-time analysis.

    Science.gov (United States)

    Cardim, Marisa Furtado Mozini; Guirado, Marluci Monteiro; Dibo, Margareth Regina; Chiaravalloti, Francisco

    2016-08-11

    To perform both space and space-time evaluations of visceral leishmaniasis in humans in the state of Sao Paulo, Brazil. The population considered in the study comprised autochthonous cases of visceral leishmaniasis and deaths resulting from it in Sao Paulo, between 1999 and 2013. The analysis considered the western region of the state as its studied area. Thematic maps were created to show visceral leishmaniasis dissemination in humans in the municipality. Spatial analysis tools Kernel and Kernel ratio were used to respectively obtain the distribution of cases and deaths and the distribution of incidence and mortality. Scan statistics were used in order to identify spatial and space-time clusters of cases and deaths. The visceral leishmaniasis cases in humans, during the studied period, were observed to occur in the western portion of Sao Paulo, and their territorial extension mainly followed the eastbound course of the Marechal Rondon highway. The incidences were characterized as two sequences of concentric ellipses of decreasing intensities. The first and more intense one was found to have its epicenter in the municipality of Castilho (where the Marechal Rondon highway crosses the border of the state of Mato Grosso do Sul) and the second one in Bauru. Mortality was found to have a similar behavior to incidence. The spatial and space-time clusters of cases were observed to coincide with the two areas of highest incidence. Both the space-time clusters identified, even without coinciding in time, were started three years after the human cases were detected and had the same duration, that is, six years. The expansion of visceral leishmaniasis in Sao Paulo has been taking place in an eastbound direction, focusing on the role of highways, especially Marechal Rondon, in this process. The space-time analysis detected the disease occurred in cycles, in different spaces and time periods. These meetings, if considered, may contribute to the adoption of actions that aim to

  13. Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.

    Science.gov (United States)

    Aprasoff, Jonathan; Donchin, Opher

    2012-04-01

    Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to 're-tune' the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.

  14. An Assessment of the State of the Art of Curriculum Materials and a Status Assessment of Training Programs for Robotics/Automated Systems Technicians. Task Analysis and Descriptions of Required Job Competencies of Robotics/Automated Systems Technicians.

    Science.gov (United States)

    Hull, Daniel M.; Lovett, James E.

    This report presents the results of research conducted to determine the current state of the art of robotics/automated systems technician (RAST) training offered in the United States. Section I discusses the RAST curriculum project, of which this state-of-the-art review is a part, and offers a RAST job description. Section II describes the…

  15. On the role of anti-bound states in the RPA description of the giant monopole resonance

    International Nuclear Information System (INIS)

    Vertse, T.; Bang, J.

    1989-01-01

    The limit of the applicability of the resonant Random Phase Approximation (RPA) method is tested by calculating escape widths in the giant monopole resonance of 16 O and comparing them to the results of a time dependent Hartree-Fock calculation. Though the widths of the narrow s-wave component agree reasonably well, the broad p-wave component shows large disagreement, which cannot be cured by complementing the basis with anti-bound states in the RPA calculation. (author) 18 refs.; 3 tabs

  16. Attenuation Factors for B(E2) in the Microscopic Description of Multiphonon States ---A Simple Model Analysis---

    Science.gov (United States)

    Matsuyanagi, K.

    1982-05-01

    With an exactly solvable O(4) model of Piepenbring, Silvestre-Brac and Szymanski, we demonstrate that the attenuation factor for the B(E2) values, derived by the lowest-order approximation of the multiphonon method, takes excellent care of the kinematical anharmonicity effects, if multiphonon states are defined in the intrinsic subspace orthogonal to the pairing rotation. It is also shown that the other attenuation effect characterizing the interacting boson model is not a dominant effect in the model analysed here.

  17. Analytic description of highly excited vibrational-rotational states of diatomic molecules: II. Application to the hydrogen chloride molecule

    International Nuclear Information System (INIS)

    Burenin, A.V.; Ryabikin, M.Y.

    1995-01-01

    Processing of the precise experimental data on transition frequencies and energy levels in the ground electronic state of the H 35 Cl molecule was carried out on the basis of the asymptotically correct perturbation series analytically constructed to describe the discrete vibrational-rotational spectrum of a diatomic molecule. The perturbation series was shown to converge rapidly up to the dissociation energy E D , whereas the conventional Dunham series has a distinct limit of applicability equal to 0.39E D . 12 refs., 2 figs

  18. Improving the effectiveness of ecological site descriptions: General state-and-transition models and the Ecosystem Dynamics Interpretive Tool (EDIT)

    Science.gov (United States)

    Bestelmeyer, Brandon T.; Williamson, Jeb C.; Talbot, Curtis J.; Cates, Greg W.; Duniway, Michael C.; Brown, Joel R.

    2016-01-01

    State-and-transition models (STMs) are useful tools for management, but they can be difficult to use and have limited content.STMs created for groups of related ecological sites could simplify and improve their utility. The amount of information linked to models can be increased using tables that communicate management interpretations and important within-group variability.We created a new web-based information system (the Ecosystem Dynamics Interpretive Tool) to house STMs, associated tabular information, and other ecological site data and descriptors.Fewer, more informative, better organized, and easily accessible STMs should increase the accessibility of science information.

  19. A Solution Space for a System of Null-State Partial Differential Equations: Part 1

    Science.gov (United States)

    Flores, Steven M.; Kleban, Peter

    2015-01-01

    This article is the first of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations (PDEs) in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE). In CFT, these are null-state equations and conformal Ward identities. They govern partition functions for the continuum limit of a statistical cluster or loop-gas model, such as percolation, or more generally the Potts models and O( n) models, at the statistical mechanical critical point. (SLE partition functions also satisfy these equations.) For such a lattice model in a polygon with its 2 N sides exhibiting a free/fixed side-alternating boundary condition , this partition function is proportional to the CFT correlation function where the w i are the vertices of and where is a one-leg corner operator. (Partition functions for "crossing events" in which clusters join the fixed sides of in some specified connectivity are linear combinations of such correlation functions.) When conformally mapped onto the upper half-plane, methods of CFT show that this correlation function satisfies the system of PDEs that we consider. In this first article, we use methods of analysis to prove that the dimension of this solution space is no more than C N , the Nth Catalan number. While our motivations are based in CFT, our proofs are completely rigorous. This proof is contained entirely within this article, except for the proof of Lemma 14, which constitutes the second article (Flores and Kleban, in Commun Math Phys, arXiv:1404.0035, 2014). In the third article (Flores and Kleban, in Commun Math Phys, arXiv:1303.7182, 2013), we use the results of this article to prove that the solution space of this system of PDEs has dimension C N and is spanned by solutions constructed with the CFT Coulomb gas (contour integral) formalism. In the fourth article (Flores and Kleban, in Commun Math Phys, arXiv:1405

  20. Non steady-state descriptions of drug permeation through stratum corneum. I. The biphasic brick-and-mortar model.

    Science.gov (United States)

    Heisig, M; Lieckfeldt, R; Wittum, G; Mazurkevich, G; Lee, G

    1996-03-01

    The diffusion equation should be solved for the non-steady-state problem of drug diffusion within a two-dimensional, biphasic stratum corneum membrane having homogeneous lipid and corneocyte phases. A numerical method was developed for a brick-and-mortar SC-geometry, enabling an explicit solution for time-dependent drug concentration within both phases. The lag time and permeability were calculated. It is shown how the barrier property of this model membrane depends on relative phase permeability, corneocyte alignment, and corneocyte-lipid partition coefficient. Additionally, the time-dependent drug concentration profiles within the membrane can be observed during the lag and steady-state phases. The model SC-membrane predicts, from purely morphological principles, lag times and permeabilities that are in good agreement with experimental values. The long lag times and very small permeabilities reported for human SC can only be predicted for a highly-staggered corneocyte geometry and corneocytes that are 1000 times less permeable than the lipid phase. Although the former conclusion is reasonable, the latter is questionable. The elongated, flattened corneocyte shape renders lag time and permeability insensitive to large changes in their alignment within the SC. Corneocyte/lipid partitioning is found to be fundamentally different to SC/donor partitioning, since increasing drug lipophilicity always reduces both lag time and permeability.