WorldWideScience

Sample records for state sensor based

  1. Zirconia-based solid state chemical gas sensors

    CERN Document Server

    Zhuiykov, S

    2000-01-01

    This paper presents an overview of chemical gas sensors, based on solid state technology, that are sensitive to environmental gases, such as O sub 2 , SO sub x , NO sub x , CO sub 2 and hydrocarbons. The paper is focussed on performance of electrochemical gas sensors that are based on zirconia as a solid electrolyte. The paper considers sensor structures and selection of electrode materials. Impact of interfaces on sensor performance is discussed. This paper also provides a brief overview of electrochemical properties of zirconia and their effect on sensor performance. Impact of auxiliary materials on sensors performance characteristics, such as sensitivity, selectivity, response time and recovery time, is also discussed. Dual gas sensors that can be applied for simultaneous monitoring of the concentration of both oxygen and other gas phase components, are briefly considered

  2. Short-Term Distribution System State Forecast Based on Optimal Synchrophasor Sensor Placement and Extreme Learning Machine

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaiguang; Zhang, Yingchen

    2016-11-14

    This paper proposes an approach for distribution system state forecasting, which aims to provide an accurate and high speed state forecasting with an optimal synchrophasor sensor placement (OSSP) based state estimator and an extreme learning machine (ELM) based forecaster. Specifically, considering the sensor installation cost and measurement error, an OSSP algorithm is proposed to reduce the number of synchrophasor sensor and keep the whole distribution system numerically and topologically observable. Then, the weighted least square (WLS) based system state estimator is used to produce the training data for the proposed forecaster. Traditionally, the artificial neural network (ANN) and support vector regression (SVR) are widely used in forecasting due to their nonlinear modeling capabilities. However, the ANN contains heavy computation load and the best parameters for SVR are difficult to obtain. In this paper, the ELM, which overcomes these drawbacks, is used to forecast the future system states with the historical system states. The proposed approach is effective and accurate based on the testing results.

  3. Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform

    Science.gov (United States)

    Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot

    2006-01-01

    A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from logic 1 (+5 V) to logic 0 (+1.7 V). The entire instrument provides an inherently digital output of light intensity measurements for a few cents. A light dependent resistor (LDR) modified with similar sensor membrane was also used as a comparison method. Both the LED sensor and the LDR sensor responded to various pH buffer solutions in a similar way to obtain sigmoidal curves expected of the dye. The pKa value obtained for the sensors was found to agree with the literature value.

  4. Model-Based Method for Sensor Validation

    Science.gov (United States)

    Vatan, Farrokh

    2012-01-01

    Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).

  5. A novel solid-state electrochemiluminescence quenching sensor for detection of aniline based on luminescent composite nanofibers

    International Nuclear Information System (INIS)

    Wang, Xiaoying; Yang, Yu; Gao, Huiwen

    2014-01-01

    A novel solid-state electrochemiluminescence (ECL) quenching sensor based on the luminescent composite nanofibers for detection of aniline has been developed. The gold nanoparticles (AuNPs) and Ruthenium (II) tris-(bipyridine) (Ru(bpy) 3 2+ ) doped nylon 6 (PA6) luminescent composite nanofibers (Ru–AuNPs–PA6) were successfully deposited to the bare glassy carbon (GC) electrode by a one-step electrospinning technique. The Ru–AuNPs–PA6 nanofibers maintained the photoelectric properties of the Ru(bpy) 3 2+ ions completely and exhibited excellent ECL behaviors. A high quenching effect on the ECL signal of the Ru–AuNPs–PA6/C 2 O 4 2− system was obtained with the presence of low concentration aniline compounds. The potential of analytical application was explored by use of the inhibited ECL. The quenching efficiencies of the five kinds of aniline compounds were compared by monitoring the aniline-dependent ECL intensity change. The magnitude of quenching depended linearly upon the concentration of aniline in the investigated concentration range of 10–10 µM. The detection limit for aniline is 5.0 nM, which is comparable or better than that in the reported assays. The solid-state ECL quenching sensor exhibited high sensitivity and good stability. This study may provide new insight into the design of advanced electrospun nanofibers-based ECL sensors for detection and analysis of a variety of active molecules. - Highlights: • The Ru–AuNPs–PA6 nanofibers were first prepared by one-step electrospinning technique. • The Ru–AuNPs–PA6 nanofibers exhibited excellent ECL behaviors on GC electrodes. • It is the first solid-state ECL sensor based on nanofibers for aniline detection. • The quenching efficiencies of the five kinds of aniline compounds were compared. • The strategy could be extended to develop various nanofibers-based ECL sensors

  6. Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform

    OpenAIRE

    Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot

    2006-01-01

    A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from lo...

  7. Model-based Sensor Data Acquisition and Management

    OpenAIRE

    Aggarwal, Charu C.; Sathe, Saket; Papaioannou, Thanasis G.; Jeung, Ho Young; Aberer, Karl

    2012-01-01

    In recent years, due to the proliferation of sensor networks, there has been a genuine need of researching techniques for sensor data acquisition and management. To this end, a large number of techniques have emerged that advocate model-based sensor data acquisition and management. These techniques use mathematical models for performing various, day-to-day tasks involved in managing sensor data. In this chapter, we survey the state-of-the-art techniques for model-based sensor data acquisition...

  8. Sampled-data-based vibration control for structural systems with finite-time state constraint and sensor outage.

    Science.gov (United States)

    Weng, Falu; Liu, Mingxin; Mao, Weijie; Ding, Yuanchun; Liu, Feifei

    2018-05-10

    The problem of sampled-data-based vibration control for structural systems with finite-time state constraint and sensor outage is investigated in this paper. The objective of designing controllers is to guarantee the stability and anti-disturbance performance of the closed-loop systems while some sensor outages happen. Firstly, based on matrix transformation, the state-space model of structural systems with sensor outages and uncertainties appearing in the mass, damping and stiffness matrices is established. Secondly, by considering most of those earthquakes or strong winds happen in a very short time, and it is often the peak values make the structures damaged, the finite-time stability analysis method is introduced to constrain the state responses in a given time interval, and the H-infinity stability is adopted in the controller design to make sure that the closed-loop system has a prescribed level of disturbance attenuation performance during the whole control process. Furthermore, all stabilization conditions are expressed in the forms of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using the LMI Toolbox. Finally, numerical examples are given to demonstrate the effectiveness of the proposed theorems. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Characteristics of Solid-State Calcium Ion Sensors Based on Photocurable and Selfplasticising Polyacrylate Matrices

    Directory of Open Access Journals (Sweden)

    Lee Yook Heng

    2017-11-01

    Full Text Available New membrane materials based on cross-linked poly(n-butyl acrylate (nBA, have been used successfully as calcium ion-selective membranes. These membrane materials possess selfplasticising property and hence do not require plasticisers. The photocurability and good adhesion characteristics of these polymer matrices enable workable solid-state calcium ion sensors to be fabricated by simple photocure procedures employing the calcium ionophore ETH5234 and a lipophilic additive as ion sensing components. The calcium ion-selectivity of the sensors can be controlled by varying the chemical composition of the photocured  membrane. An optimum amount of the cross-linker 2,2-hexanedioldiacrylate (HDDA and the incorporation of n-heptyl acrylate (nHA led to improvement in the calcium ion-selectivity. The best calcium ion-selectivity was obtained from a copolymer membrane with composition: nBA = 74 wt-%, nHA = 20 wt-% and HDDA = 0.1 wt-%. The selectivity coefficients of calcium over major cations were: LogKCaPot,Na= -4.4,  LogKCaPot,K = -3.6, LogKCa,PotLi = -5.9, LogKCaPot,Mg= -4.4 with a Nernstian slope (29.1 ± 0.8 mV/decade under buffered conditions. This potentiometric performance is comparable to other solid-state calcium ion sensors with various plasticised polymer membranes.

  10. Emotion and Cognitive Reappraisal Based on GSR Wearable Sensor

    Institute of Scientific and Technical Information of China (English)

    LI Minjia; XIE Lun; WANG Zhiliang; REN Fuji

    2017-01-01

    Various wearable equipment enables us to measure people behavior by physiological signals. In our research, we present one gal-vanic skin reaction (GSR) wearable sensor which can analyze human emotions based on cognition reappraisal. First, We research the factors of emotional state transition in Arousal-Valence-Stance(AVS) emotional space. Second, the influence of the cognition on emotional state transition is considered, and the reappraisal factor based on Gross regulation theory is established to correct the effectiveness from cognitive reappraisal ability to emotional state transition. Third, based on the previous work, we establish a GSR emotion sensing system for predicting emotional state transition and considering the correlation between GSR signals and emotions. Finally, an overall wearable sensor layout is built. In the experiment part, we invited 30 college students to wear our GSR sensors and watch 14 kinds of affective videos. We recorded their GSR signals while asking them to record their emotional states synchronously. The experiment results show different reappraisal factors can predict subjects'emotional state transition well and indirectly confirm the feasibility of the Gross regulation theory.

  11. A Survey of Model-based Sensor Data Acquisition and Management

    OpenAIRE

    Aggarwal, Charu C.; Sathe, Saket; Papaioannou, Thanasis; Jeung, Hoyoung; Aberer, Karl

    2013-01-01

    In recent years, due to the proliferation of sensor networks, there has been a genuine need of researching techniques for sensor data acquisition and management. To this end, a large number of techniques have emerged that advocate model-based sensor data acquisition and management. These techniques use mathematical models for performing various, day-to-day tasks involved in managing sensor data. In this chapter, we survey the state-of-the-art techniques for model-based sensor data acquisition...

  12. Progress in triboluminescence-based smart optical sensor system

    International Nuclear Information System (INIS)

    Olawale, David O.; Dickens, Tarik; Sullivan, William G.; Okoli, Okenwa I.; Sobanjo, John O.; Wang, Ben

    2011-01-01

    Extensive research work has been done in recent times to apply the triboluminescence (TL) phenomenon for damage detection in engineering structures. Of particular note are the various attempts to apply it in the detection of impact damages in composites and aerospace structures. This is because TL-based sensor systems have a great potential for wireless, in-situ and distributed (WID) structural health monitoring when fully developed. This review article highlights development and the current state-of-the-art in the application of TL-based sensor systems. The underlying mechanisms believed to be responsible for triboluminescence, particularly in zinc sulfide manganese, a highly triboluminescent material, are discussed. The challenges militating against the full exploitation and field application of TL sensor systems are also identified. Finally, viable solutions and approaches to address these challenges are enumerated. - Highlights: → The underlying mechanisms believed to be responsible for triboluminescence. → State-of-the-art in the development and application of TL-based sensor systems. → The challenges militating against the full exploitation and field application of TL sensor systems are identified. → Viable solutions and approaches to address these challenges are enumerated.

  13. Monitoring Method and Apparatus Using Asynchronous, One-Way Transmission from Sensor to Base Station

    Science.gov (United States)

    Jensen, Scott L. (Inventor); Drouant, George J. (Inventor)

    2013-01-01

    A monitoring system is disclosed, which includes a base station and at least one sensor unit that is separate from the base station. The at least one sensor unit resides in a dormant state until it is awakened by the triggering of a vibration-sensitive switch. Once awakened, the sensor may take a measurement, and then transmit to the base station the measurement. Once data is transmitted from the sensor to the base station, the sensor may return to its dormant state. There may be various sensors for each base station and the various sensors may optionally measure different quantities, such as current, voltage, single-axis and/or three-axis magnetic fields.

  14. 100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors

    Science.gov (United States)

    Lee, Minbaek; Lee, Joohyung; Kim, Tae Hyun; Lee, Hyungwoo; Lee, Byung Yang; Park, June; Jhon, Young Min; Seong, Maeng-Je; Hong, Seunghun

    2010-02-01

    Nanoscale sensors based on single-walled carbon nanotube (SWNT) networks have been considered impractical due to several fundamental limitations such as a poor sensitivity and small signal-to-noise ratio. Herein, we present a strategy to overcome these fundamental problems and build highly-sensitive low-noise nanoscale sensors simply by controlling the structure of the SWNT networks. In this strategy, we prepared nanoscale width channels based on aligned SWNT networks using a directed assembly strategy. Significantly, the aligned network-based sensors with narrower channels exhibited even better signal-to-noise ratio than those with wider channels, which is opposite to conventional random network-based sensors. As a proof of concept, we demonstrated 100 nm scale low-noise sensors to detect mercury ions with the detection limit of ~1 pM, which is superior to any state-of-the-art portable detection system and is below the allowable limit of mercury ions in drinking water set by most government environmental protection agencies. This is the first demonstration of 100 nm scale low-noise sensors based on SWNT networks. Considering the increased interests in high-density sensor arrays for healthcare and environmental protection, our strategy should have a significant impact on various industrial applications.

  15. 100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minbaek; Lee, Joohyung; Kim, Tae Hyun; Lee, Hyungwoo; Lee, Byung Yang; Hong, Seunghun [Department of Physics and Astronomy, Seoul National University, Shilim-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Park, June; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of); Jhon, Young Min, E-mail: mseong@cau.ac.kr, E-mail: shong@phya.snu.ac.kr [Korea Institute of Science and Technology, Hawolgok-Dong, Seongbuk-Gu, Seoul 136-791 (Korea, Republic of)

    2010-02-05

    Nanoscale sensors based on single-walled carbon nanotube (SWNT) networks have been considered impractical due to several fundamental limitations such as a poor sensitivity and small signal-to-noise ratio. Herein, we present a strategy to overcome these fundamental problems and build highly-sensitive low-noise nanoscale sensors simply by controlling the structure of the SWNT networks. In this strategy, we prepared nanoscale width channels based on aligned SWNT networks using a directed assembly strategy. Significantly, the aligned network-based sensors with narrower channels exhibited even better signal-to-noise ratio than those with wider channels, which is opposite to conventional random network-based sensors. As a proof of concept, we demonstrated 100 nm scale low-noise sensors to detect mercury ions with the detection limit of {approx}1 pM, which is superior to any state-of-the-art portable detection system and is below the allowable limit of mercury ions in drinking water set by most government environmental protection agencies. This is the first demonstration of 100 nm scale low-noise sensors based on SWNT networks. Considering the increased interests in high-density sensor arrays for healthcare and environmental protection, our strategy should have a significant impact on various industrial applications.

  16. 100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors

    International Nuclear Information System (INIS)

    Lee, Minbaek; Lee, Joohyung; Kim, Tae Hyun; Lee, Hyungwoo; Lee, Byung Yang; Hong, Seunghun; Park, June; Seong, Maeng-Je; Jhon, Young Min

    2010-01-01

    Nanoscale sensors based on single-walled carbon nanotube (SWNT) networks have been considered impractical due to several fundamental limitations such as a poor sensitivity and small signal-to-noise ratio. Herein, we present a strategy to overcome these fundamental problems and build highly-sensitive low-noise nanoscale sensors simply by controlling the structure of the SWNT networks. In this strategy, we prepared nanoscale width channels based on aligned SWNT networks using a directed assembly strategy. Significantly, the aligned network-based sensors with narrower channels exhibited even better signal-to-noise ratio than those with wider channels, which is opposite to conventional random network-based sensors. As a proof of concept, we demonstrated 100 nm scale low-noise sensors to detect mercury ions with the detection limit of ∼1 pM, which is superior to any state-of-the-art portable detection system and is below the allowable limit of mercury ions in drinking water set by most government environmental protection agencies. This is the first demonstration of 100 nm scale low-noise sensors based on SWNT networks. Considering the increased interests in high-density sensor arrays for healthcare and environmental protection, our strategy should have a significant impact on various industrial applications.

  17. A sensor network architecture for urban traffic state estimation with mixed eulerian/lagrangian sensing based on distributed computing

    KAUST Repository

    Canepa, Edward S.; Odat, Enas M.; Dehwah, Ahmad H.; Mousa, Mustafa; Jiang, Jiming; Claudel, Christian G.

    2014-01-01

    This article describes a new approach to urban traffic flow sensing using decentralized traffic state estimation. Traffic sensor data is generated both by fixed traffic flow sensor nodes and by probe vehicles equipped with a short range transceiver. The data generated by these sensors is sent to a local coordinator node, that poses the problem of estimating the local state of traffic as a mixed integer linear program (MILP). The resulting optimization program is then solved by the nodes in a distributed manner, using branch-and-bound methods. An optimal amount of noise is then added to the maps before dissemination to a central database. Unlike existing probe-based traffic monitoring systems, this system does not transmit user generated location tracks nor any user presence information to a centralized server, effectively preventing privacy attacks. A simulation of the system performance on computer-generated traffic data shows that the system can be implemented with currently available technology. © 2014 Springer International Publishing Switzerland.

  18. Optimal allocation of sensors for state estimation of distributed parameter systems

    International Nuclear Information System (INIS)

    Sunahara, Yoshifumi; Ohsumi, Akira; Mogami, Yoshio.

    1978-01-01

    The purpose of this paper is to present a method for finding the optimal allocation of sensors for state estimation of linear distributed parameter systems. This method is based on the criterion that the error covariance associated with the state estimate becomes minimal with respect to the allocation of the sensors. A theorem is established, giving the sufficient condition for optimizing the allocation of sensors to make minimal the error covariance approximated by a modal expansion. The remainder of this paper is devoted to illustrate important phases of the general theory of the optimal measurement allocation problem. To do this, several examples are demonstrated, including extensive discussions on the mutual relation between the optimal allocation and the dynamics of sensors. (author)

  19. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch.

    Science.gov (United States)

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang

    2016-01-19

    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.

  20. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch

    Directory of Open Access Journals (Sweden)

    Tao Huang

    2016-01-01

    Full Text Available Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.

  1. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch

    Science.gov (United States)

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang

    2016-01-01

    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture. PMID:26797616

  2. Inertial Sensor-Based Gait Recognition: A Review

    Science.gov (United States)

    Sprager, Sebastijan; Juric, Matjaz B.

    2015-01-01

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634

  3. A Model of Solid State Gas Sensors

    Science.gov (United States)

    Woestman, J. T.; Brailsford, A. D.; Shane, M.; Logothetis, E. M.

    1997-03-01

    Solid state gas sensors are widely used to measure the concentrations of gases such as CO, CH_4, C_3H_6, H_2, C_3H8 and O2 The applications of these sensors range from air-to-fuel ratio control in combustion processes including those in automotive engines and industrial furnaces to leakage detection of inflammable and toxic gases in domestic and industrial environments. As the need increases to accurately measure smaller and smaller concentrations, problems such as poor selectivity, stability and response time limit the use of these sensors. In an effort to overcome some of these limitations, a theoretical model of the transient behavior of solid state gas sensors has been developed. In this presentation, a model for the transient response of an electrochemical gas sensor to gas mixtures containing O2 and one reducing species, such as CO, is discussed. This model accounts for the transport of the reactive species to the sampling electrode, the catalyzed oxidation/reduction reaction of these species and the generation of the resulting electrical signal. The model will be shown to reproduce the results of published steady state models and to agree with experimental steady state and transient data.

  4. Solid State pH Sensor Based on Light Emitting Diodes (LED As Detector Platform

    Directory of Open Access Journals (Sweden)

    Dermot Diamond

    2006-08-01

    Full Text Available A low-power, high sensitivity, very low-cost light emitting diode (LED-baseddevice developed for low-cost sensor networks was modified with bromocresol greenmembrane to work as a solid-state pH sensor. In this approach, a reverse-biased LEDfunctioning as a photodiode is coupled with a second LED configured in conventionalemission mode. A simple timer circuit measures how long (in microsecond it takes for thephotocurrent generated on the detector LED to discharge its capacitance from logic 1 ( 5 Vto logic 0 ( 1.7 V. The entire instrument provides an inherently digital output of lightintensity measurements for a few cents. A light dependent resistor (LDR modified withsimilar sensor membrane was also used as a comparison method. Both the LED sensor andthe LDR sensor responded to various pH buffer solutions in a similar way to obtainsigmoidal curves expected of the dye. The pKa value obtained for the sensors was found toagree with the literature value.

  5. Magnetic sensor for steady state tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Neyatani, Yuzuru; Mori, Katsuharu; Oguri, Shigeru; Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1996-06-01

    A new type of magnetic sensor has been developed for the measurement of steady state magnetic fields without DC-drift such as integration circuit. The electromagnetic force induced to the current which leads to the sensor was used for the measurement. For the high frequency component which exceeds higher than the vibration frequency of sensor, pick-up coil was used through the high pass filter. From the results using tokamak discharges, this sensor can measure the magnetic field in the tokamak discharge. During {approx}2 hours measurement, no DC drift was observed. The sensor can respond {approx}10ms of fast change of magnetic field during disruptions. We confirm the extension of measured range to control the current which leads to the sensor. (author).

  6. Development of Solid-State Electrochemiluminescence (ECL Sensor Based on Ru(bpy32+-Encapsulated Silica Nanoparticles for the Detection of Biogenic Polyamines

    Directory of Open Access Journals (Sweden)

    Anna-Maria Spehar-Délèze

    2015-05-01

    Full Text Available A solid state electrochemiluminescence (ECL sensor based on Ru(bpy32+-encapsulated silica nanoparticles (RuNP covalently immobilised on a screen printed carbon electrode has been developed and characterised. RuNPs were synthesised using water-in-oil microemulsion method, amino groups were introduced on their surface, and they were characterised by transmission electron microscopy. Aminated RuNPs were covalently immobilised on activate screen-printed carbon electrodes to form a solid state ECL biosensor. The biosensor surfaces were characterised using electrochemistry and scanning electron microscopy, which showed that aminated nanoparticles formed dense 3D layers on the electrode surface thus allowing immobilisation of high amount of Ru(bpy32+. The developed sensor was used for ECL detection of biogenic polyamines, namely spermine, spermidine, cadaverine and putrescine. The sensor exhibited high sensitivity and stability.

  7. Multi-Sensor Based State Prediction for Personal Mobility Vehicles.

    Directory of Open Access Journals (Sweden)

    Jamilah Abdur-Rahim

    Full Text Available This paper presents a study on multi-modal human emotional state detection while riding a powered wheelchair (PMV; Personal Mobility Vehicle in an indoor labyrinth-like environment. The study reports findings on the habituation of human stress response during self-driving. In addition, the effects of "loss of controllability", change in the role of the driver to a passenger, are investigated via an autonomous driving modality. The multi-modal emotional state detector sensing framework consists of four sensing devices: electroencephalograph (EEG, heart inter-beat interval (IBI, galvanic skin response (GSR and stressor level lever (in the case of autonomous riding. Physiological emotional state measurement characteristics are organized by time-scale, in terms of capturing slower changes (long-term and quicker changes from moment-to-moment. Experimental results with fifteen participants regarding subjective emotional state reports and commercial software measurements validated the proposed emotional state detector. Short-term GSR and heart signal characterizations captured moment-to-moment emotional state during autonomous riding (Spearman correlation; ρ = 0.6, p < 0.001. Short-term GSR and EEG characterizations reliably captured moment-to-moment emotional state during self-driving (Classification accuracy; 69.7. Finally, long-term GSR and heart characterizations were confirmed to reliably capture slow changes during autonomous riding and also of emotional state during participant resting state. The purpose of this study and the exploration of various algorithms and sensors in a structured framework is to provide a comprehensive background for multi-modal emotional state prediction experiments and/or applications. Additional discussion regarding the feasibility and utility of the possibilities of these concepts are given.

  8. Information-based self-organization of sensor nodes of a sensor network

    Science.gov (United States)

    Ko, Teresa H [Castro Valley, CA; Berry, Nina M [Tracy, CA

    2011-09-20

    A sensor node detects a plurality of information-based events. The sensor node determines whether at least one other sensor node is an information neighbor of the sensor node based on at least a portion of the plurality of information-based events. The information neighbor has an overlapping field of view with the sensor node. The sensor node sends at least one communication to the at least one other sensor node that is an information neighbor of the sensor node in response to at least one information-based event of the plurality of information-based events.

  9. Characterization of cement-based materials using a reusable piezoelectric impedance-based sensor

    Science.gov (United States)

    Tawie, R.; Lee, H. K.

    2011-08-01

    This paper proposes a reusable sensor, which employs a piezoceramic (PZT) plate as an active sensing transducer, for non-destructive monitoring of cement-based materials based on the electromechanical impedance (EMI) sensing technique. The advantage of the sensor design is that the PZT can be easily removed from the set-up and re-used for repetitive tests. The applicability of the sensor was demonstrated for monitoring of the setting of cement mortar. EMI measurements were performed using an impedance analyzer and the transformation of the specimen from the plastic to solid state was monitored by automatically measuring the changes in the PZT conductance spectra with respect to curing time using the root mean square deviation (RMSD) algorithm. In another experiment, drying-induced moisture loss of a hardened mortar specimen at saturated surface dry (SSD) condition was measured, and monitored using the reusable sensor to establish a correlation between the RMSD values and moisture loss rate. The reusable sensor was also demonstrated for detecting progressive damages imparted on a mortar specimen attached with the sensor under several loading levels before allowing it to load to failure. Overall, the reusable sensor is an effective and efficient monitoring device that could possibly be used for field application in characterization of cement-based materials.

  10. Characterization of cement-based materials using a reusable piezoelectric impedance-based sensor

    International Nuclear Information System (INIS)

    Tawie, R; Lee, H K

    2011-01-01

    This paper proposes a reusable sensor, which employs a piezoceramic (PZT) plate as an active sensing transducer, for non-destructive monitoring of cement-based materials based on the electromechanical impedance (EMI) sensing technique. The advantage of the sensor design is that the PZT can be easily removed from the set-up and re-used for repetitive tests. The applicability of the sensor was demonstrated for monitoring of the setting of cement mortar. EMI measurements were performed using an impedance analyzer and the transformation of the specimen from the plastic to solid state was monitored by automatically measuring the changes in the PZT conductance spectra with respect to curing time using the root mean square deviation (RMSD) algorithm. In another experiment, drying-induced moisture loss of a hardened mortar specimen at saturated surface dry (SSD) condition was measured, and monitored using the reusable sensor to establish a correlation between the RMSD values and moisture loss rate. The reusable sensor was also demonstrated for detecting progressive damages imparted on a mortar specimen attached with the sensor under several loading levels before allowing it to load to failure. Overall, the reusable sensor is an effective and efficient monitoring device that could possibly be used for field application in characterization of cement-based materials

  11. #2) Sensor Technology-State of the Science | Science ...

    Science.gov (United States)

    Establish market surveys of commercially-available air quality sensorsConduct an extensive literature survey describing the state of sensor technologiesInvestigate emerging technologies and their potential to meet future air quality monitoring needs for the Agency as well as other partners/stakeholders Develop sensor user guidesEducate sensor developers/sensors users on the state of low cost censorsFacilitate knowledge transfer to Federal/Regional/State air quality associatesWork directly with sensor developers to dramatically speed up the development of next generation air monitoring Support ORD’s Sensor Roadmap by focusing on areas of highest priority (NAAQS, Air Toxics, Citizen Science)Establish highly integrated research efforts across ORD and its partners (internal/external) to ensure consistent The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose.

  12. Variable-State-Dimension Kalman-based Filter for orientation determination using inertial and magnetic sensors.

    Science.gov (United States)

    Sabatini, Angelo Maria

    2012-01-01

    In this paper a quaternion-based Variable-State-Dimension Extended Kalman Filter (VSD-EKF) is developed for estimating the three-dimensional orientation of a rigid body using the measurements from an Inertial Measurement Unit (IMU) integrated with a triaxial magnetic sensor. Gyro bias and magnetic disturbances are modeled and compensated by including them in the filter state vector. The VSD-EKF switches between a quiescent EKF, where the magnetic disturbance is modeled as a first-order Gauss-Markov stochastic process (GM-1), and a higher-order EKF where extra state components are introduced to model the time-rate of change of the magnetic field as a GM-1 stochastic process, namely the magnetic disturbance is modeled as a second-order Gauss-Markov stochastic process (GM-2). Experimental validation tests show the effectiveness of the VSD-EKF, as compared to either the quiescent EKF or the higher-order EKF when they run separately.

  13. Variable-State-Dimension Kalman-Based Filter for Orientation Determination Using Inertial and Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Angelo Maria Sabatini

    2012-06-01

    Full Text Available In this paper a quaternion-based Variable-State-Dimension Extended Kalman Filter (VSD-EKF is developed for estimating the three-dimensional orientation of a rigid body using the measurements from an Inertial Measurement Unit (IMU integrated with a triaxial magnetic sensor. Gyro bias and magnetic disturbances are modeled and compensated by including them in the filter state vector. The VSD-EKF switches between a quiescent EKF, where the magnetic disturbance is modeled as a first-order Gauss-Markov stochastic process (GM-1, and a higher-order EKF where extra state components are introduced to model the time-rate of change of the magnetic field as a GM-1 stochastic process, namely the magnetic disturbance is modeled as a second-order Gauss-Markov stochastic process (GM-2. Experimental validation tests show the effectiveness of the VSD-EKF, as compared to either the quiescent EKF or the higher-order EKF when they run separately.

  14. Reputation-based secure sensor localization in wireless sensor networks.

    Science.gov (United States)

    He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing

    2014-01-01

    Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments.

  15. Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor.

    Science.gov (United States)

    Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A J; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian

    2017-05-01

    The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom-based spin sensor that changes the sensor's spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface.

  16. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2018-01-01

    Full Text Available With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms.

  17. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks.

    Science.gov (United States)

    Zhang, Ying; Wang, Jun; Hao, Guan

    2018-01-08

    With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms.

  18. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks

    Science.gov (United States)

    Zhang, Ying; Wang, Jun; Hao, Guan

    2018-01-01

    With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms. PMID:29316702

  19. Steady-state modelling of the universal exhaust gas oxygen (UEGO) sensor

    International Nuclear Information System (INIS)

    Collings, N; Hegarty, K; Ramsander, T

    2012-01-01

    The universal exhaust gas oxygen (UEGO) sensor is a well-established device which was developed for the measurement of relative air fuel ratio in internal combustion engines. There is, however, little information available which allows for the prediction of the UEGO's behaviour when exposed to arbitrary gas mixtures, pressures and temperatures. Here we present a steady-state model for the sensor, based on a solution of the Stefan–Maxwell equation, and which includes a momentum balance. The response of the sensor is dominated by a diffusion barrier, which controls the rate of diffusion of gas species between the exhaust and a cavity. Determination of the diffusion barrier characteristics, especially the mean pore size, porosity and tortuosity, is essential for the purposes of modelling, and a measurement technique based on identification of the sensor pressure giving zero temperature sensitivity is shown to be a convenient method of achieving this. The model, suitably calibrated, is shown to make good predictions of sensor behaviour for large variations of pressure, temperature and gas composition. (paper)

  20. Smart sensor-based geospatial architecture for dike monitoring

    Science.gov (United States)

    Herle, S.; Becker, R.; Blankenbach, J.

    2016-04-01

    Artificial hydraulic structures like dams or dikes used for water level regulations or flood prevention are continuously under the influence of the weather and variable river regimes. Thus, ongoing monitoring and simulation is crucial in order to determine the inner condition. Potentially life-threatening situations, in extreme case a failure, must be counteracted by all available means. Nowadays flood warning systems rely exclusively on water level forecast without considering the state of the structure itself. Area-covering continuous knowledge of the inner state including time dependent changes increases the capability of recognizing and locating vulnerable spots for early treatment. In case of a predicted breach, advance warning time for alerting affected citizens can be extended. Our approach is composed of smart sensors integrated in a service-oriented geospatial architecture to monitor and simulate artificial hydraulic structures continuously. The sensors observe the inner state of the construction like the soil moisture or the stress and deformation over time but also various external influences like water levels or wind speed. They are interconnected in distributed network architecture by a so-called sensor bus system based on lightweight protocols like Message Queue Telemetry Transport for Sensor Networks (MQTT-SN). These sensor data streams are transferred into an OGC Sensor Web Enablement (SWE) data structure providing high-level geo web services to end users. Bundled with 3rd party geo web services (WMS etc.) powerful processing and simulation tools can be invoked using the Web Processing Service (WPS) standard. Results will be visualized in a geoportal allowing user access to all information.

  1. Soft Sensor of Vehicle State Estimation Based on the Kernel Principal Component and Improved Neural Network

    Directory of Open Access Journals (Sweden)

    Haorui Liu

    2016-01-01

    Full Text Available In the car control systems, it is hard to measure some key vehicle states directly and accurately when running on the road and the cost of the measurement is high as well. To address these problems, a vehicle state estimation method based on the kernel principal component analysis and the improved Elman neural network is proposed. Combining with nonlinear vehicle model of three degrees of freedom (3 DOF, longitudinal, lateral, and yaw motion, this paper applies the method to the soft sensor of the vehicle states. The simulation results of the double lane change tested by Matlab/SIMULINK cosimulation prove the KPCA-IENN algorithm (kernel principal component algorithm and improved Elman neural network to be quick and precise when tracking the vehicle states within the nonlinear area. This algorithm method can meet the software performance requirements of the vehicle states estimation in precision, tracking speed, noise suppression, and other aspects.

  2. Eddy current probe development based on a magnetic sensor array

    International Nuclear Information System (INIS)

    Vacher, F.

    2007-06-01

    This research deals with in the study of the use of innovating magnetic sensors in eddy current non destructive inspection. The author reports an analysis survey of magnetic sensor performances. This survey enables the selection of magnetic sensor technologies used in non destructive inspection. He presents the state-of-the-art of eddy current probes exploiting the qualities of innovating magnetic sensors, and describes the methods enabling the use of these magnetic sensors in non destructive testing. Two main applications of innovating magnetic sensors are identified: the detection of very small defects by means of magneto-resistive sensors, and the detection of deep defects by means of giant magneto-impedances. Based on the use of modelling, optimization, signal processing tools, probes are manufactured for these both applications

  3. Bluetooth-based wireless sensor networks

    Science.gov (United States)

    You, Ke; Liu, Rui Qiang

    2007-11-01

    In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.

  4. Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor

    Science.gov (United States)

    Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian

    2017-01-01

    The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom–based spin sensor that changes the sensor’s spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface. PMID:28560346

  5. Invariant Observer-Based State Estimation for Micro-Aerial Vehicles in GPS-Denied Indoor Environments Using an RGB-D Camera and MEMS Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Dachuan Li

    2015-04-01

    Full Text Available This paper presents a non-linear state observer-based integrated navigation scheme for estimating the attitude, position and velocity of micro aerial vehicles (MAV operating in GPS-denied indoor environments, using the measurements from low-cost MEMS (micro electro-mechanical systems inertial sensors and an RGB-D camera. A robust RGB-D visual odometry (VO approach was developed to estimate the MAV’s relative motion by extracting and matching features captured by the RGB-D camera from the environment. The state observer of the RGB-D visual-aided inertial navigation was then designed based on the invariant observer theory for systems possessing symmetries. The motion estimates from the RGB-D VO were fused with inertial and magnetic measurements from the onboard MEMS sensors via the state observer, providing the MAV with accurate estimates of its full six degree-of-freedom states. Implementations on a quadrotor MAV and indoor flight test results demonstrate that the resulting state observer is effective in estimating the MAV’s states without relying on external navigation aids such as GPS. The properties of computational efficiency and simplicity in gain tuning make the proposed invariant observer-based navigation scheme appealing for actual MAV applications in indoor environments.

  6. New measures of mental state and behavior based on data collected from sensors, smartphones, and the Internet.

    Science.gov (United States)

    Glenn, Tasha; Monteith, Scott

    2014-12-01

    With the rapid and ubiquitous acceptance of new technologies, algorithms will be used to estimate new measures of mental state and behavior based on digital data. The algorithms will analyze data collected from sensors in smartphones and wearable technology, and data collected from Internet and smartphone usage and activities. In the future, new medical measures that assist with the screening, diagnosis, and monitoring of psychiatric disorders will be available despite unresolved reliability, usability, and privacy issues. At the same time, similar non-medical commercial measures of mental state are being developed primarily for targeted advertising. There are societal and ethical implications related to the use of these measures of mental state and behavior for both medical and non-medical purposes.

  7. Selected examples of intelligent (micro) sensor systems: state-of-the-art and tendencies

    Science.gov (United States)

    Hauptmann, Peter R.

    2006-03-01

    The capability of intelligent sensors to have more intelligence built into them continues to drive their application in areas including automotive, aerospace and defense, industrial, intelligent house and wear, medical and homeland security. In principle it is difficult to overestimate the importance of intelligent (micro) sensors or sensor systems within advanced societies but one characteristic feature is the global market for sensors, which is now about 20 billion annually. Therefore sensors or sensor systems play a dominant role in many fields from the macro sensor in manufacturing industry down to the miniaturized sensor for medical applications. The diversity of sensors precludes a complete description of the state-of-the-art; selected examples will illustrate the current situation. MEMS (microelectromechanical systems) devices are of special interest in the context of micro sensor systems. In past the main requirements of a sensor were in terms of metrological performance. The electrical (or optical) signal produced by the sensor needed to match the measure relatively accurately. Such basic functionality is no longer sufficient. Data processing near the sensor, the extraction of more information than just the direct sensor information by signal analysis, system aspects and multi-sensor information are the new demands. A shifting can be observed away from aiming to design perfect single-function transducers and towards the utilization of system-based sensors as system components. In the ideal case such systems contain sensors, actuators and electronics. They can be realized in monolithic, hybrid or discrete form—which kind is used depends on the application. In this article the state-of-the-art of intelligent sensors or sensor systems is reviewed using selected examples. Future trends are deduced.

  8. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain.

    Science.gov (United States)

    Müller, Gerhard; Hackner, Angelika; Beer, Sebastian; Göbel, Johann

    2016-01-20

    The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  9. Modeling and Analysis of Energy Conservation Scheme Based on Duty Cycling in Wireless Ad Hoc Sensor Network

    Science.gov (United States)

    Chung, Yun Won; Hwang, Ho Young

    2010-01-01

    In sensor network, energy conservation is one of the most critical issues since sensor nodes should perform a sensing task for a long time (e.g., lasting a few years) but the battery of them cannot be replaced in most practical situations. For this purpose, numerous energy conservation schemes have been proposed and duty cycling scheme is considered the most suitable power conservation technique, where sensor nodes alternate between states having different levels of power consumption. In order to analyze the energy consumption of energy conservation scheme based on duty cycling, it is essential to obtain the probability of each state. In this paper, we analytically derive steady state probability of sensor node states, i.e., sleep, listen, and active states, based on traffic characteristics and timer values, i.e., sleep timer, listen timer, and active timer. The effect of traffic characteristics and timer values on the steady state probability and energy consumption is analyzed in detail. Our work can provide sensor network operators guideline for selecting appropriate timer values for efficient energy conservation. The analytical methodology developed in this paper can be extended to other energy conservation schemes based on duty cycling with different sensor node states, without much difficulty. PMID:22219676

  10. Modeling and Analysis of Energy Conservation Scheme Based on Duty Cycling in Wireless Ad Hoc Sensor Network

    Directory of Open Access Journals (Sweden)

    Yun Won Chung

    2010-06-01

    Full Text Available In sensor network, energy conservation is one of the most critical issues since sensor nodes should perform a sensing task for a long time (e.g., lasting a few years but the battery of them cannot be replaced in most practical situations. For this purpose, numerous energy conservation schemes have been proposed and duty cycling scheme is considered the most suitable power conservation technique, where sensor nodes alternate between states having different levels of power consumption. In order to analyze the energy consumption of energy conservation scheme based on duty cycling, it is essential to obtain the probability of each state. In this paper, we analytically derive steady state probability of sensor node states, i.e., sleep, listen, and active states, based on traffic characteristics and timer values, i.e., sleep timer, listen timer, and active timer. The effect of traffic characteristics and timer values on the steady state probability and energy consumption is analyzed in detail. Our work can provide sensor network operators guideline for selecting appropriate timer values for efficient energy conservation. The analytical methodology developed in this paper can be extended to other energy conservation schemes based on duty cycling with different sensor node states, without much difficulty.

  11. Pressure Sensor: State of the Art, Design, and Application for Robotic Hand

    Directory of Open Access Journals (Sweden)

    Ahmed M. Almassri

    2015-01-01

    Full Text Available We survey the state of the art in a variety of force sensors for designing and application of robotic hand. Most of the force sensors are examined based on tactile sensing. For a decade, many papers have widely discussed various sensor technologies and transducer methods which are based on microelectromechanical system (MEMS and silicon used for improving the accuracy and performance measurement of tactile sensing capabilities especially for robotic hand applications. We found that transducers and materials such as piezoresistive and polymer, respectively, are used in order to improve the sensing sensitivity for grasping mechanisms in future. This predicted growth in such applications will explode into high risk tasks which requires very precise purposes. It shows considerable potential and significant levels of research attention.

  12. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain

    Directory of Open Access Journals (Sweden)

    Gerhard Müller

    2016-01-01

    Full Text Available The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  13. Sensor-based activity recognition using extended belief rule-based inference methodology.

    Science.gov (United States)

    Calzada, A; Liu, J; Nugent, C D; Wang, H; Martinez, L

    2014-01-01

    The recently developed extended belief rule-based inference methodology (RIMER+) recognizes the need of modeling different types of information and uncertainty that usually coexist in real environments. A home setting with sensors located in different rooms and on different appliances can be considered as a particularly relevant example of such an environment, which brings a range of challenges for sensor-based activity recognition. Although RIMER+ has been designed as a generic decision model that could be applied in a wide range of situations, this paper discusses how this methodology can be adapted to recognize human activities using binary sensors within smart environments. The evaluation of RIMER+ against other state-of-the-art classifiers in terms of accuracy, efficiency and applicability was found to be significantly relevant, specially in situations of input data incompleteness, and it demonstrates the potential of this methodology and underpins the basis to develop further research on the topic.

  14. Fuzzy-Based Sensor Fusion for Cognitive Radio-Based Vehicular Ad Hoc and Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Jalil Piran

    2015-01-01

    Full Text Available In wireless sensor networks, sensor fusion is employed to integrate the acquired data from diverse sensors to provide a unified interpretation. The best and most salient advantage of sensor fusion is to obtain high-level information in both statistical and definitive aspects, which cannot be attained by a single sensor. In this paper, we propose a novel sensor fusion technique based on fuzzy theory for our earlier proposed Cognitive Radio-based Vehicular Ad Hoc and Sensor Networks (CR-VASNET. In the proposed technique, we considered four input sensor readings (antecedents and one output (consequent. The employed mobile nodes in CR-VASNET are supposed to be equipped with diverse sensors, which cater to our antecedent variables, for example, The Jerk, Collision Intensity, and Temperature and Inclination Degree. Crash_Severity is considered as the consequent variable. The processing and fusion of the diverse sensory signals are carried out by fuzzy logic scenario. Accuracy and reliability of the proposed protocol, demonstrated by the simulation results, introduce it as an applicable system to be employed to reduce the causalities rate of the vehicles’ crashes.

  15. Solid electrolyte gas sensors based on cyclic voltammetry with one active electrode

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, G; Jasinski, P, E-mail: gregor@biomed.eti.pg.gda.pl [Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2011-10-29

    Solid state gas sensors are cost effective, small, rugged and reliable. Typically electrochemical solid state sensors operate in either potentiometric or amperometric mode. However, a lack of selectivity is sometimes a shortcoming of such sensors. It seems that improvements of selectivity can be obtained in case of the electrocatalytic sensors, which operate in cyclic voltammetry mode. Their working principle is based on acquisition of an electric current, while voltage ramp is applied to the sensor. The current-voltage response depends in a unique way on the type and concentration of ambient gas. Most electrocatalytic sensors have symmetrical structure. They are in a form of pellets with two electrodes placed on their opposite sides. Electrochemical reactions occur simultaneously on both electrodes. In this paper results for sensors with only one active electrode exposed to ambient gas are presented. The other electrode was isolated from ambient gas with dielectric sealing. This sensor construction allows application of advanced measuring procedures, which permit sensor regeneration acceleration. Experiments were conducted on Nasicon sensors. Properties of two sensors, one with one active electrode and second with symmetrical structure, used for the detection of mixtures of NO{sub 2} and synthetic air are compared.

  16. State Estimation for Sensor Monitoring System with Uncertainty and Disturbance

    Directory of Open Access Journals (Sweden)

    Jianhong Sun

    2014-10-01

    Full Text Available This paper considers the state estimation problem for the sensor monitoring system which contains system uncertainty and nonlinear disturbance. In the sensor monitoring system, states of each inner sensor node usually contains system uncertainty, and external noise often works as nonlinear item. Besides, information transmission in the system is also time consuming. All mentioned above may arouse in unstable of the monitoring system. In this case, states of sensors could be wrongly sampled. Under this circumstance, a proper mathematical model is proposed and by the use of Lipschitz condition, the nonlinear item is transformed to linear one. In addition, we suppose that all sensor nodes are distributed arranged, no interface occurs with each other. By establishing proper Lyapunov– Krasovskii functional, sufficient conditions are acquired by solving linear matrix inequality to make the error augmented system stable, and the gains of observers are also derived. Finally, an illustrated example is given to show that system observed value tracks system states well, which fully demonstrate the effectiveness of our result.

  17. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    Science.gov (United States)

    Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei

    2007-01-01

    Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  18. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dao-Wei Bi

    2007-03-01

    Full Text Available Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  19. Sensors and Technologies in Spain: State-of-the-Art

    Directory of Open Access Journals (Sweden)

    Gonzalo Pajares

    2014-08-01

    Full Text Available The aim of this special issue was to provide a comprehensive view on the state-of-the-art sensor technology in Spain. Different problems cause the appearance and development of new sensor technologies and vice versa, the emergence of new sensors facilitates the solution of existing real problems. [...

  20. A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors

    Science.gov (United States)

    Mathew, Ribu; Ravi Sankar, A.

    2018-06-01

    In the last decade, microelectromechanical systems (MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications, especially in the field of chemical and biological sensing. Compared to conventional solid-state semiconductor-based piezoresistive cantilever sensors, SU-8 polymeric cantilevers have advantages in terms of better sensitivity along with reduced material and fabrication cost. In recent times, numerous researchers have investigated their potential as a sensing platform due to high performance-to-cost ratio of SU-8 polymer-based cantilever sensors. In this article, we critically review the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors. The evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to polymers, especially SU-8 polymer, is discussed in detail. Theoretical principles of surface stress generation and their application in cantilever sensing technology are also devised. Variants of SU-8 polymeric cantilevers with different composition of materials in cantilever stacks are explained. Furthermore, the interdependence of the material selection, geometrical design parameters, and fabrication process of piezoresistive SU-8 polymeric cantilever sensors and their cumulative impact on the sensor response are also explained in detail. In addition to the design-, fabrication-, and performance-related factors, this article also describes various challenges in engineering SU-8 polymeric cantilevers as a universal sensing platform such as temperature and moisture vulnerability. This review article would serve as a guideline for researchers to understand specifics and functionality of surface stress-based piezoresistive SU-8 cantilever sensors.[Figure not available: see fulltext.

  1. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review

    Directory of Open Access Journals (Sweden)

    Carlos Morón

    2015-11-01

    Full Text Available Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a “simple” and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc.

  2. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review.

    Science.gov (United States)

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-11-11

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a "simple" and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc.

  3. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review

    Science.gov (United States)

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-01-01

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a “simple” and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc. PMID:26569244

  4. A micromachined inline type microwave power sensor with working state transfer switches

    International Nuclear Information System (INIS)

    Han Lei

    2011-01-01

    A wideband 8-12 GHz inline type microwave power sensor, which has both working and non-working states, is presented. The power sensor measures the microwave power coupled from a CPW line by a MEMS membrane. In order to reduce microwave losses during the non-working state, a new structure of working state transfer switches is proposed to realize the two working states. The fabrication of the power sensor with two working states is compatible with the GaAs MMIC (monolithic microwave integrated circuit) process. The experimental results show that the power sensor has an insertion loss of 0.18 dB during the non-working state and 0.24 dB during the working state at a frequency of 10 GHz. This means that no microwave power has been coupled from the CPW line during the non-working state. (semiconductor integrated circuits)

  5. Waypoint Generation Based on Sensor Aimpoint

    Science.gov (United States)

    2009-03-01

    United States Government . AFIT/GAE/ENV/09-M01 WAYPOINT GENERATION BASED ON SENSOR AIMPOINT THESIS Presented to the Faculty Department of Aeronautical...BATCAM. Aviones physics parameters for the Procerus testbed, the Unicorn UAV, were provided by Procerus, which allowed another simulated MAV to 48 be...flown in the HIL tests. The AFIT Advanced Navigation Technologies (ANT) Center did not own a Unicorn UAV, so it could not be flown in flight tests

  6. A state-the-art report on the development of the piezoelectric accelerometer sensor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee Yun; Oh, Suk Jin; Kim, Kyung Hoh; Kim, Sun Jae; Kang, Dae Kab [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    A state-of-the art surveys on the application and the manufacturing technology of a piezoelectric accelerometer sensor. An accelerometer sensor is applied to the monitoring of acoustic leak, reactor coolant pump vibration and loose parts in the reactor, and the measurement of vibration and stress of large equipments such as pump, tubes, etc.. The performance of an accelerometer consisted of piezoelectric ceramic, mass, base, case and cable is depend on the characteristics of each component and the assembling method. Sensitivity, linearity and dynamic range, transverse sensitivity, phase response, transient temperature response, frequency response, base strain sensitivity, magnetic sensitivity, acoustic sensitivity, humidity effect and radiation effect must be measured and evaluated for conforming quality of the developed accelerometer sensor. 35 figs., 29 tabs., 38 refs. (Author).

  7. A state-the-art report on the development of the piezoelectric accelerometer sensor

    International Nuclear Information System (INIS)

    Park, Jee Yun; Oh, Suk Jin; Kim, Kyung Hoh; Kim, Sun Jae; Kang, Dae Kab

    1994-12-01

    A state-of-the art surveys on the application and the manufacturing technology of a piezoelectric accelerometer sensor. An accelerometer sensor is applied to the monitoring of acoustic leak, reactor coolant pump vibration and loose parts in the reactor, and the measurement of vibration and stress of large equipments such as pump, tubes, etc.. The performance of an accelerometer consisted of piezoelectric ceramic, mass, base, case and cable is depend on the characteristics of each component and the assembling method. Sensitivity, linearity and dynamic range, transverse sensitivity, phase response, transient temperature response, frequency response, base strain sensitivity, magnetic sensitivity, acoustic sensitivity, humidity effect and radiation effect must be measured and evaluated for conforming quality of the developed accelerometer sensor. 35 figs., 29 tabs., 38 refs. (Author)

  8. Concept for a solid-state multi-parameter sensor system for cell-culture monitoring

    International Nuclear Information System (INIS)

    Baecker, M.; Beging, S.; Biselli, M.; Poghossian, A.; Wang, J.; Zang, W.; Wagner, P.; Schoening, M.J.

    2009-01-01

    In this study, a concept for a silicon-based modular solid-state sensor system for inline multi-parameter monitoring of cell-culture fermentation processes is presented. The envisaged multi-parameter sensor system consists of two identical sensor modules and is intended for continuous quantification of up to five (bio-)chemical and physical parameters, namely, glucose and glutamine concentration, pH value, electrolyte conductivity and temperature by applying different transducer principles and/or different operation modes. Experimental results for the field-effect electrolyte-insulator-semiconductor (EIS) sterilisable pH sensor and electrolyte conductivity sensor based on interdigitated electrodes are presented. The ongoing autoclaving does not have any significant impact on the pH-sensitive properties of a Ta 2 O 5 -gate EIS sensor. Even after 30 autoclaving cycles, the pH sensors show a clear pH response and nearly linear calibration curve with a slope of 57 ± 1 mV/pH. Additional scanning electron microscopy and ellipsometric investigations do not show any visible surface degradation or changes in the thickness of the pH-sensitive Ta 2 O 5 layer. The preliminary results demonstrate the suitability of the developed EIS sensor for an inline pH measurement during a fermentation process. In addition, interdigitated electrodes of different geometries serving as electrolyte conductivity sensor have been tested for measurements in relatively high ionic-strength solutions.

  9. Optical Fiber Grating based Sensors

    DEFF Research Database (Denmark)

    Michelsen, Susanne

    2003-01-01

    In this thesis differenct optical fiber gratings are used for sensor purposes. If a fiber with a core concentricity error (CCE) is used, a directional dependent bend sensor can be produced. The CCE direction can be determined by means of diffraction. This makes it possible to produce long......-period gratings in a fiber with a CCE direction parallel or perpendicular to the writing direction. The maximal bending sensitivity is independent on the writing direction, but the detailed bending response is different in the two cases. A temperature and strain sensor, based on a long-period grating and two...... sampled gratings, was produced and investigated. It is based on the different temperature and strain response of these gratings. Both a transfer matrix method and an overlap calculation is performed to explain the sensor response. Another type of sensor is based on tuning and modulation of a laser...

  10. CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel.

    Science.gov (United States)

    Tokuda, Takashi; Takahashi, Masayuki; Uejima, Kazuhiro; Masuda, Keita; Kawamura, Toshikazu; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Okitsu, Teru; Takeuchi, Shoji; Ohta, Jun

    2014-11-01

    A CMOS image sensor-based implantable glucose sensor based on an optical-sensing scheme is proposed and experimentally verified. A glucose-responsive fluorescent hydrogel is used as the mediator in the measurement scheme. The wired implantable glucose sensor was realized by integrating a CMOS image sensor, hydrogel, UV light emitting diodes, and an optical filter on a flexible polyimide substrate. Feasibility of the glucose sensor was verified by both in vitro and in vivo experiments.

  11. Recent Advances in Paper-Based Sensors

    Directory of Open Access Journals (Sweden)

    Edith Chow

    2012-08-01

    Full Text Available Paper-based sensors are a new alternative technology for fabricating simple, low-cost, portable and disposable analytical devices for many application areas including clinical diagnosis, food quality control and environmental monitoring. The unique properties of paper which allow passive liquid transport and compatibility with chemicals/biochemicals are the main advantages of using paper as a sensing platform. Depending on the main goal to be achieved in paper-based sensors, the fabrication methods and the analysis techniques can be tuned to fulfill the needs of the end-user. Current paper-based sensors are focused on microfluidic delivery of solution to the detection site whereas more advanced designs involve complex 3-D geometries based on the same microfluidic principles. Although paper-based sensors are very promising, they still suffer from certain limitations such as accuracy and sensitivity. However, it is anticipated that in the future, with advances in fabrication and analytical techniques, that there will be more new and innovative developments in paper-based sensors. These sensors could better meet the current objectives of a viable low-cost and portable device in addition to offering high sensitivity and selectivity, and multiple analyte discrimination. This paper is a review of recent advances in paper-based sensors and covers the following topics: existing fabrication techniques, analytical methods and application areas. Finally, the present challenges and future outlooks are discussed.

  12. A New Miniaturized Inkjet Printed Solid State Electrolyte Sensor for Applications in Life Support Systems - First Results

    Science.gov (United States)

    Hill, Christine; Stefanos Fasoulas, -; Eberhart, Martin; Berndt, Felix

    New generations of integrated closed loop systems will combine life support systems (incl. biological components) and energy systems such as fuel cell and electrolysis systems. Those systems and their test beds also contain complex safety sensor monitoring systems. Especially in fuel cells and electrolysis systems, the hydrogen and oxygen flows and exchange into other areas due to diffusion processes or leaks need to be monitored. Knowledge of predominant gas concentrations at all times is essential to avoid explosive gas mixtures. Solid state electrolyte sensors are promising for use as safety sensors. They have already been developed and produced at various institutes, but the power consumption for heating an existing solid state electrolyte sensor element still lies between 1 to 1.5 W and the operational readiness still takes about 20 to 30 s. This is partially due to the current manufacturing process for the solid state electrolyte sensor elements that is based on screen printing technology. However this technology has strong limitations in flexibility of the layout and re-designs. It is therefore suitable for mass production, but not for a flexible development and the production of specific individual sensors, e.g. for space applications. Moreover a disadvantage is the relatively high material consumption, especially in combination with the sensors need of expensive noble metal and ceramic pastes, which leads to a high sensor unit price. The Inkjet technology however opens up completely new possibilities in terms of dimensions, geometries, structures, morphologies and materials of sensors. This new approach is capable of printing finer high-resolution layers without the necessity of meshes or masks for patterning. Using the Inkjet technology a design change is possible at any time on the CAD screen. Moreover the ink is only deposited where it is needed. Custom made sensors, as they are currently demanded in space sensor applications, are thus realized simply

  13. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors

    Science.gov (United States)

    Dutton, Neale A. W.; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K.

    2016-01-01

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643

  14. Solid state gas sensors. Industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Maximilian [Siemens AG, Muenchen (Germany). Corporate Technology; Lehmann, Mirko (eds.) [Innovative Sensor Technology (IST) AG, Wattwil (Switzerland)

    2012-11-01

    Written by experts. Richly illustrated. Encourages future research and investments in the fascinating field of gas sensors. Gas sensor products are very often the key to innovations in the fields of comfort, security, health, environment, and energy savings. This compendium focuses on what the research community labels as solid state gas sensors, where a gas directly changes the electrical properties of a solid, serving as the primary signal for the transducer. It starts with a visionary approach to how life in future buildings can benefit from the power of gas sensors. The requirements for various applications, such as for example the automotive industry, are then discussed in several chapters. Further contributions highlight current trends in new sensing principles, such as the use of nanomaterials and how to use new sensing principles for innovative applications in e.g. meteorology. So as to bring together the views of all the different groups needed to produce new gas sensing applications, renowned industrial and academic representatives report on their experiences and expectations in research, applications and industrialisation.

  15. Relational-Based Sensor Data Cleansing

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Liu, Xiufeng; Nordbjerg, Finn Ebertsen

    2015-01-01

    cleansing approaches, such as classification, prediction and moving average are not suited for embedded sensor devices, due to the limited storage and processing capabilities. In this paper, we propose a sensor data cleansing approach using the relational-based technologies, including constraints, triggers...... and granularity-based data aggregation. The proposed approach is simple but effective to cleanse different types of dirty data, including delayed data, incomplete data, incorrect data, duplicate data and missing data. We evaluate the proposed strategy to verify its efficiency, effectiveness and adaptability.......Today sensors are widely used in many monitoring applications. Due to some random environmental effects and/or sensing failures, the collected sensor data is typically noisy. Thus, it is critical to cleanse the sensor data before using it to answer queries or conduct data analysis. Popular data...

  16. Observability analysis for model-based fault detection and sensor selection in induction motors

    International Nuclear Information System (INIS)

    Nakhaeinejad, Mohsen; Bryant, Michael D

    2011-01-01

    Sensors in different types and configurations provide information on the dynamics of a system. For a specific task, the question is whether measurements have enough information or whether the sensor configuration can be changed to improve the performance or to reduce costs. Observability analysis may answer the questions. This paper presents a general algorithm of nonlinear observability analysis with application to model-based diagnostics and sensor selection in three-phase induction motors. A bond graph model of the motor is developed and verified with experiments. A nonlinear observability matrix based on Lie derivatives is obtained from state equations. An observability index based on the singular value decomposition of the observability matrix is obtained. Singular values and singular vectors are used to identify the most and least observable configurations of sensors and parameters. A complex step derivative technique is used in the calculation of Jacobians to improve the computational performance of the observability analysis. The proposed algorithm of observability analysis can be applied to any nonlinear system to select the best configuration of sensors for applications of model-based diagnostics, observer-based controller, or to determine the level of sensor redundancy. Observability analysis on induction motors provides various sensor configurations with corresponding observability indices. Results show the redundancy levels for different sensors, and provide a sensor selection guideline for model-based diagnostics, and for observer-based controllers. The results can also be used for sensor fault detection and to improve the reliability of the system by increasing the redundancy level in measurements

  17. Sensor-based control of a nine-link biped

    International Nuclear Information System (INIS)

    Furusho, J.; Sano, A.

    1990-01-01

    The authors aimed to realize smooth 3D biped walking in a robot through control based on information obtained from various sensors. They employed a method to control walking by dividing it into motions in the sagittal plane and in the lateral plane. They treated motion in the lateral plane as a regulator problem with two equilibrium states. They also used relatively low gain feedback coefficients obtained from the optimal regulator theory. For motion in the sagittal plane, they put the body speed close to the smooth speed function given in advance by controlling the ankle torque. The effectiveness of the proposed control method was examined by computer simulation and proved by experiments with out BLR-G2 walking robot. The BLR-G2 is equipped with foot pressure and ankle torque sensors to provide information about the condition of contact with the floor. The sole and ankle driving actuators undergo force/torque feedback control based on the sensor information. These contributed toward realizing smooth walking with the sole firmly gripping the floor

  18. All-plastic fiber-based pressure sensor

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Lwin, Richard; Leon-Saval, Sergio

    2016-01-01

    We present a feasibility study and a prototype of an all-plastic fiber-based pressure sensor. The sensor is based on long period gratings inscribed for the first time to the best of our knowledge by a CO2 laser in polymethyl methacrylate (PMMA) microstructured fibers and coupled to a pod......-like transducer that converts pressure to strain. The sensor prototype was characterized for pressures up to 150 mbars, and various parameters related to its construction were also characterized in order to enhance sensitivity. We consider this sensor in the context of future applications in endoscopic pressure...... sensors....

  19. Gas Sensors Based on Electrodeposited Polymers

    Directory of Open Access Journals (Sweden)

    Boris Lakard

    2015-07-01

    Full Text Available Electrochemically deposited polymers, also called “synthetic metals”, have emerged as potential candidates for chemical sensing due to their interesting and tunable chemical, electrical, and structural properties. In particular, most of these polymers (including polypyrrole, polyaniline, polythiophene and their derivatives can be used as the sensitive layer of conductimetric gas sensors because of their conducting properties. An important advantage of polymer-based gas sensors is their efficiency at room temperature. This characteristic is interesting since most of the commercially-available sensors, usually based on metal oxides, work at high temperatures (300–400 °C. Consequently, polymer-based gas sensors are playing a growing role in the improvement of public health and environment control because they can lead to gas sensors operating with rapid detection, high sensitivity, small size, and specificity in atmospheric conditions. In this review, the recent advances in electrodeposited polymer-based gas sensors are summarized and discussed. It is shown that the sensing characteristics of electrodeposited polymers can be improved by chemical functionalization, nanostructuration, or mixing with other functional materials to form composites or hybrid materials.

  20. Test-bench for characterization of steady state magnetic sensors parameters in wide temperature range

    International Nuclear Information System (INIS)

    Kovařík, Karel; Ďuran, Ivan; Sentkerestiová, Jana; Šesták, David

    2013-01-01

    Highlights: •Prepared test bench for calibration of steady state magnetic sensors. •Test-bench design optimized for calibration up to 300 °C. •Test-bench is remotely controllable and allows long term measurements. •Construction allows easy manipulation with even irradiated samples. -- Abstract: Magnetic sensors in ITER tokamak and in other future fusion devices will face an environment with temperature often elevated well above 200 °C. Dedicated test benches are needed to allow characterization of performance of magnetic sensors at such elevated temperatures. This contribution describes realization of test bench for calibration of steady state magnetic sensors based on Hall effect. The core of the set-up is the coil providing DC calibration magnetic field. Optimization of coils design to ensure its compatibility with elevated temperature up to 300 °C is described. Optimized coil was manufactured, and calibrated both at room temperature and at temperature of 250 °C. Measured calibration magnetic field of the coil biased by a 30 A commercial laboratory power supplies is 224 mT. The coil is supplemented by PID regulated air cooling system for fine control of sensors temperature during measurements. Data acquisition system is composed from PC A/D converter boards with resolution below 1 μV. The key parameters of the test bench are remotely controllable and the system allows long term continuous measurements including tests of irradiated samples. The performance of the test bench is demonstrated on recent measurements with metal Hall sensors based on thin copper sensing layers

  1. Redox sensor proteins for highly sensitive direct imaging of intracellular redox state.

    Science.gov (United States)

    Sugiura, Kazunori; Nagai, Takeharu; Nakano, Masahiro; Ichinose, Hiroshi; Nakabayashi, Takakazu; Ohta, Nobuhiro; Hisabori, Toru

    2015-02-13

    Intracellular redox state is a critical factor for fundamental cellular functions, including regulation of the activities of various metabolic enzymes as well as ROS production and elimination. Genetically-encoded fluorescent redox sensors, such as roGFP (Hanson, G. T., et al. (2004)) and Redoxfluor (Yano, T., et al. (2010)), have been developed to investigate the redox state of living cells. However, these sensors are not useful in cells that contain, for example, other colored pigments. We therefore intended to obtain simpler redox sensor proteins, and have developed oxidation-sensitive fluorescent proteins called Oba-Q (oxidation balance sensed quenching) proteins. Our sensor proteins derived from CFP and Sirius can be used to monitor the intracellular redox state as their fluorescence is drastically quenched upon oxidation. These blue-shifted spectra of the Oba-Q proteins enable us to monitor various redox states in conjunction with other sensor proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Application of a sensor array based on capillary-attached conductive gas sensors for odor identification

    International Nuclear Information System (INIS)

    Bahraminejad, Behzad; Basri, Shahnor; Isa, Maryam; Hambali, Zarida

    2010-01-01

    An electronic nose based on an array of capillary-attached conductive gas sensors was fabricated. The identification ability of the developed structure was investigated by employing different categories of simple and complex odor databases. Feature data sets were generated from the dynamic and steady state responses of the sensor array to the applied odor databases. Combinations of different feature extraction and classification methods were used to detect target gases. Validation of each technique was evaluated. Achievements of the study proved high classification rates of the fabricated e-nose in odor identification. It was indicated that gas identification is possible by applying the early selected portion of transient responses of the developed sensor array. The ability of the mentioned structure in analyzing gas mixtures was also investigated. The results presented high accuracy in the classification of gas mixtures

  3. FLEXIBLE PH SENSOR WITH POLYANILINE LAYER BASED ON IMPEDANCE MEASUREMENT

    OpenAIRE

    Chuang, Cheng-Hsin; Wu, Hsun-Pei; Chen, Cheng-Ho; Wu, Peng-Rong

    2012-01-01

    A flexible sensor with conducting polyaniline layer for detecting pH value based on the impedance measurement is fabricated and demonstrated in this study. The pH sensor consists of an interdigital electrode array on a flexible printed circuit and a thin-film polyaniline as the sensing layer. As the conductivity of polyaniline depends on the redox state, the impedance change of the polyaniline after it has reacted with different pH value solutions works as the sensing mechanism. In order to o...

  4. Multi-rate sensor fusion-based adaptive discrete finite-time synergetic control for flexible-joint mechanical systems

    International Nuclear Information System (INIS)

    Xue Guang-Yue; Ren Xue-Mei; Xia Yuan-Qing

    2013-01-01

    This paper proposes an adaptive discrete finite-time synergetic control (ADFTSC) scheme based on a multi-rate sensor fusion estimator for flexible-joint mechanical systems in the presence of unmeasured states and dynamic uncertainties. Multi-rate sensors are employed to observe the system states which cannot be directly obtained by encoders due to the existence of joint flexibilities. By using an extended Kalman filter (EKF), the finite-time synergetic controller is designed based on a sensor fusion estimator which estimates states and parameters of the mechanical system with multi-rate measurements. The proposed controller can guarantee the finite-time convergence of tracking errors by the theoretical derivation. Simulation and experimental studies are included to validate the effectiveness of the proposed approach. (general)

  5. Performance of UWB Array-Based Radar Sensor in a Multi-Sensor Vehicle-Based Suit for Landmine Detection

    NARCIS (Netherlands)

    Yarovoy, A.; Savelyev, T.; Zhuge, X.; Aubry, P.; Ligthart, L.; Schavemaker, J.G.M.; Tettelaar, P.; Breejen, E. de

    2008-01-01

    In this paper, integration of an UWB array-based timedomain radar sensor in a vehicle-mounted multi-sensor system for landmine detection is described. Dedicated real-time signal processing algorithms are developed to compute the radar sensor confidence map which is used for sensor fusion.

  6. Sensitivity Enhancement of FBG-Based Strain Sensor.

    Science.gov (United States)

    Li, Ruiya; Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Li, Tianliang; Mao, Jian

    2018-05-17

    A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments.

  7. Approach for Self-Calibrating CO₂ Measurements with Linear Membrane-Based Gas Sensors.

    Science.gov (United States)

    Lazik, Detlef; Sood, Pramit

    2016-11-17

    Linear membrane-based gas sensors that can be advantageously applied for the measurement of a single gas component in large heterogeneous systems, e.g., for representative determination of CO₂ in the subsurface, can be designed depending on the properties of the observation object. A resulting disadvantage is that the permeation-based sensor response depends on operating conditions, the individual site-adapted sensor geometry, the membrane material, and the target gas component. Therefore, calibration is needed, especially of the slope, which could change over several orders of magnitude. A calibration-free approach based on an internal gas standard is developed to overcome the multi-criterial slope dependency. This results in a normalization of sensor response and enables the sensor to assess the significance of measurement. The approach was proofed on the example of CO₂ analysis in dry air with tubular PDMS membranes for various CO₂ concentrations of an internal standard. Negligible temperature dependency was found within an 18 K range. The transformation behavior of the measurement signal and the influence of concentration variations of the internal standard on the measurement signal were shown. Offsets that were adjusted based on the stated theory for the given measurement conditions and material data from the literature were in agreement with the experimentally determined offsets. A measurement comparison with an NDIR reference sensor shows an unexpectedly low bias (sensor response, and comparable statistical uncertainty.

  8. Development of a Dual Solid-State pH-AT Sensor

    Science.gov (United States)

    Briggs, E.; Martz, T. R.; Kummel, A.; Sandoval, S.; Erten, A.

    2016-02-01

    Here we report on our progress toward development of a solid state, reagentless sensor capable of rapid and simultaneous measurement of pH and Total Alkalinity (AT) using ion sensitive field effect transistor (ISFET) technology. The goal of this work is to provide a means of continuous, direct measurement of the seawater carbon dioxide system through measurement of two "master variables" (pH and AT). ISFET-based pH sensors that achieve 0.001 precision are presently in widespread use on autonomous oceanographic platforms. Modifications to an ISFET allow a nL-scale acid-base titration of total alkalinity to be carried out in 10 s. Titrant, H+, is generated through the electrolysis of water on the surface of the chip eliminating the requirement of external reagents. Initial characterization has been performed titrating individual components (i.e. OH-, HCO3-, CO32-, PO43-) of seawater AT. Based on previous work by others in simple acid-base systems and our preliminary results in seawater we feel that it is within reach to set a benchmark goal of 10 μmol kg-1 precision in AT. The estimated resolution of this dual pH-AT sensor translates to approximately 0.5 and 0.7% error in Total Dissolved Inorganic Carbon (CT) and pCO2 respectively and would have a number of immediate applications for investigating biogeochemical processes where strong gradients exist over short distances and in rapidly changing environments.

  9. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.

    Science.gov (United States)

    Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan

    2018-02-06

    This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.

  10. Detection of Cadmium Ion by Evanescent Wave Based Chitosan Coated Optical Fiber Sensor

    International Nuclear Information System (INIS)

    Yulianti, I; Edy, S S; Saputra, B A; Aji, M P; Susanto; Kurdi, O

    2017-01-01

    Evanescent wave based-optical fiber sensor to detect cadmium ion is proposed. Chitosan was used by using the dip-coating method. The sensor was fabricated in U-bent shape. U-bent optical sensor at aconcentration of 2ppm and 5ppm had asensitivity of 0.2067 dBm/ppm and -0.7995 dBm/ppm, respectively. At a level of 2ppm - 5ppm, the optical sensor has a linear response with asensitivity of -0.283 dBm/ppm. The sensor takes 9.5 minutes to reach steady stateat aconcentration of 1 ppm. Atalevel of 2ppm - 5ppm, the sensor takes 5 minutes to 10.45 minutes to reach steady state. (paper)

  11. Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications.

    Science.gov (United States)

    Roy, Soumyendu; David-Pur, Moshe; Hanein, Yael

    2017-10-11

    Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing. Solid-state ion selective electrodes (ISEs), sensitive to Na + ions, were prepared by drop coating plasticized poly(vinyl chloride) (PVC) doped with ionophore and ion exchanger on CNT electrodes. The ion selective membrane (ISM) filled the intertubular spaces of the highly porous CNT film and formed an attachment that was stronger than that achieved with flat Au, Pt, or carbon electrodes. Concentration of the ISM solution used influenced the attachment to the CNT film, the ISM surface morphology, and the overall performance of the sensor. Sensitivity of 56 ± 3 mV/decade to Na + ions was achieved. Optimized solid-state reference electrodes (REs), suitable for wearable applications, were prepared by coating CNT electrodes with colloidal dispersion of Ag/AgCl, agarose hydrogel with 0.5 M NaCl, and a passivation layer of PVC doped with NaCl. The CNT-based REs had low sensitivity (-1.7 ± 1.2 mV/decade) toward the NaCl solution and high repeatability and were superior to bare Ag/AgCl, metals, carbon, and CNT films, reported previously as REs. CNT-based ISEs were calibrated against CNT-based REs, and the short-term stability of the system was tested. We demonstrate that CNT-based devices implemented on a flexible support are a very attractive platform for future wearable technology devices.

  12. Efficient Vector-Based Forwarding for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Peng Xie

    2010-01-01

    Full Text Available Underwater Sensor Networks (UWSNs are significantly different from terrestrial sensor networks in the following aspects: low bandwidth, high latency, node mobility, high error probability, and 3-dimensional space. These new features bring many challenges to the network protocol design of UWSNs. In this paper, we tackle one fundamental problem in UWSNs: robust, scalable, and energy efficient routing. We propose vector-based forwarding (VBF, a geographic routing protocol. In VBF, the forwarding path is guided by a vector from the source to the target, no state information is required on the sensor nodes, and only a small fraction of the nodes is involved in routing. To improve the robustness, packets are forwarded in redundant and interleaved paths. Further, a localized and distributed self-adaptation algorithm allows the nodes to reduce energy consumption by discarding redundant packets. VBF performs well in dense networks. For sparse networks, we propose a hop-by-hop vector-based forwarding (HH-VBF protocol, which adapts the vector-based approach at every hop. We evaluate the performance of VBF and HH-VBF through extensive simulations. The simulation results show that VBF achieves high packet delivery ratio and energy efficiency in dense networks and HH-VBF has high packet delivery ratio even in sparse networks.

  13. Resource Discovery in Activity-Based Sensor Networks

    DEFF Research Database (Denmark)

    Bucur, Doina; Bardram, Jakob

    This paper proposes a service discovery protocol for sensor networks that is specifically tailored for use in humancentered pervasive environments. It uses the high-level concept of computational activities (as logical bundles of data and resources) to give sensors in Activity-Based Sensor Networ....... ABSN enhances the generic Extended Zone Routing Protocol with logical sensor grouping and greatly lowers network overhead during the process of discovery, while keeping discovery latency close to optimal.......This paper proposes a service discovery protocol for sensor networks that is specifically tailored for use in humancentered pervasive environments. It uses the high-level concept of computational activities (as logical bundles of data and resources) to give sensors in Activity-Based Sensor Networks...... (ABSNs) knowledge about their usage even at the network layer. ABSN redesigns classical network-level service discovery protocols to include and use this logical structuring of the network for a more practically applicable service discovery scheme. Noting that in practical settings activity-based sensor...

  14. Relational-Based Sensor Data Cleansing

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Nordbjerg, Finn Ebertsen

    2015-01-01

    approaches, such as classification, prediction and moving average, are not suited for embedded sensor devices, due to their limit storage and processing capabilities. In this paper, we propose a sensor data cleansing approach using the relational-based technologies, including constraints, triggers...... and granularity-based data aggregation. The proposed approach is simple but effective to cleanse different types of dirty data, including delayed data, incomplete data, incorrect data, duplicate data and missing data. We evaluate the proposed strategy to verify its efficiency and effectiveness.......Today sensors are widely used in many monitoring applications. Due to some random environmental effects and/or sensing failures, the collected sensor data is typically noisy. Thus, it is critical to cleanse the data before using it for answering queries or for data analysis. Popular data cleansing...

  15. A risk-based sensor placement methodology

    International Nuclear Information System (INIS)

    Lee, Ronald W.; Kulesz, James J.

    2008-01-01

    A risk-based sensor placement methodology is proposed to solve the problem of optimal location of sensors to protect population against the exposure to, and effects of, known and/or postulated chemical, biological, and/or radiological threats. Risk is calculated as a quantitative value representing population at risk from exposure at standard exposure levels. Historical meteorological data are used to characterize weather conditions as the frequency of wind speed and direction pairs. The meteorological data drive atmospheric transport and dispersion modeling of the threats, the results of which are used to calculate risk values. Sensor locations are determined via an iterative dynamic programming algorithm whereby threats detected by sensors placed in prior iterations are removed from consideration in subsequent iterations. In addition to the risk-based placement algorithm, the proposed methodology provides a quantification of the marginal utility of each additional sensor. This is the fraction of the total risk accounted for by placement of the sensor. Thus, the criteria for halting the iterative process can be the number of sensors available, a threshold marginal utility value, and/or a minimum cumulative utility achieved with all sensors

  16. Planar potentiometric sensors based on Au and Ag microelectrodes and conducting polymers for flow-cell analysis

    International Nuclear Information System (INIS)

    ToczyIowska, Renata; Pokrop, RafaI; Dybko, Artur; Wroblewski, Wojciech

    2005-01-01

    Back-side contact Au and Ag microelectrodes were used as transducers to construct planar all-solid-state electrodes suitable for flow-through analysis. The microsensors were based on plasticized PVC potassium-selective membranes containing ion-electron conducting polymer-polypyrrole doped with di(2-ethylhexyl) sulfosuccinate. The proposed technique allowed simple construction of microsensors in one step, by membrane solution casting directly on the surface of the planar metallic transducers. The performance of the microsensors based on Au and Ag transducers were determined and compared with planar sensors based on internal electrolyte immobilized in polyHEMA. The addition of the polypyrrole to the membrane composition did not influence on the selectivity, reproducibility and long-term stability of the microsensors but improved their standard potential stability in time in comparison with coated-wire type sensors. Moreover, all-solid-state microsensors based on Au transducers exhibited better signal stability than Ag based sensors

  17. Model-based sensor diagnosis

    International Nuclear Information System (INIS)

    Milgram, J.; Dormoy, J.L.

    1994-09-01

    Running a nuclear power plant involves monitoring data provided by the installation's sensors. Operators and computerized systems then use these data to establish a diagnostic of the plant. However, the instrumentation system is complex, and is not immune to faults and failures. This paper presents a system for detecting sensor failures using a topological description of the installation and a set of component models. This model of the plant implicitly contains relations between sensor data. These relations must always be checked if all the components are functioning correctly. The failure detection task thus consists of checking these constraints. The constraints are extracted in two stages. Firstly, a qualitative model of their existence is built using structural analysis. Secondly, the models are formally handled according to the results of the structural analysis, in order to establish the constraints on the sensor data. This work constitutes an initial step in extending model-based diagnosis, as the information on which it is based is suspect. This work will be followed by surveillance of the detection system. When the instrumentation is assumed to be sound, the unverified constraints indicate errors on the plant model. (authors). 8 refs., 4 figs

  18. Incremental Structured Dictionary Learning for Video Sensor-Based Object Tracking

    Science.gov (United States)

    Xue, Ming; Yang, Hua; Zheng, Shibao; Zhou, Yi; Yu, Zhenghua

    2014-01-01

    To tackle robust object tracking for video sensor-based applications, an online discriminative algorithm based on incremental discriminative structured dictionary learning (IDSDL-VT) is presented. In our framework, a discriminative dictionary combining both positive, negative and trivial patches is designed to sparsely represent the overlapped target patches. Then, a local update (LU) strategy is proposed for sparse coefficient learning. To formulate the training and classification process, a multiple linear classifier group based on a K-combined voting (KCV) function is proposed. As the dictionary evolves, the models are also trained to timely adapt the target appearance variation. Qualitative and quantitative evaluations on challenging image sequences compared with state-of-the-art algorithms demonstrate that the proposed tracking algorithm achieves a more favorable performance. We also illustrate its relay application in visual sensor networks. PMID:24549252

  19. Noise activated bistable sensor based on chaotic system with output defined by temporal coding and firing rate.

    Science.gov (United States)

    Korneta, Wojciech; Gomes, Iacyel

    2017-11-01

    Traditional bistable sensors use external bias signal to drive its response between states and their detection strategy is based on the output power spectral density or the residence time difference (RTD) in two sensor states. Recently, the noise activated nonlinear dynamic sensors driven only by noise based on RTD technique have been proposed. Here, we present experimental results of dc voltage measurements by noise-driven bistable sensor based on electronic Chua's circuit operating in a chaotic regime where two single scroll attractors coexist. The output of the sensor is quantified by the proportion of the time the sensor stays in one state to the total observation time and by the spike-count rate with spikes defined by crossings between attractors. The relationship between the stimuli and particular observable for different noise intensities is obtained, the usefulness of each coding scheme is discussed, and the optimal noise intensity for detection is indicated. It is shown that the obtained relationship is the same for any observation time when population coding is used. The optimal time window for both detection and the number of units in population coding is found. Our results may be useful for analyses and understanding of the neural activity and in designing bistable storage elements at length scales where thermal fluctuations drastically increase and the effect of noise must be taken into consideration.

  20. Inertial sensor-based methods in walking speed estimation: a systematic review.

    Science.gov (United States)

    Yang, Shuozhi; Li, Qingguo

    2012-01-01

    Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm.

  1. Inertial Sensor-Based Methods in Walking Speed Estimation: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Qingguo Li

    2012-05-01

    Full Text Available Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm.

  2. A novel self-powered wireless temperature sensor based on thermoelectric generators

    International Nuclear Information System (INIS)

    Shi, Yongming; Wang, Yao; Deng, Yuan; Gao, Hongli; Lin, Zhen; Zhu, Wei; Ye, Huihong

    2014-01-01

    Highlights: • A self-powered temperature sensor, based on thermoelectric generator, is presented. • This novel sensor can operate without any batteries or other power sources. • This sensor combines signal sensing and power supplying together. • The measurement error is 0.5 K during the sensor operating period. • This sensor can detect temperature fluctuation situations such as fire disaster. - Abstract: A novel self-powered wireless temperature sensor has been designed and presented for solving the power supply problem of temperature sensors. This sensor can autonomously measure temperature under positive temperature fluctuation situations. The self-powered characteristic, realized by using four thermoelectric generators, enables the sensor to operate without any batteries or other power sources. In order to obtain these features, attentions are not only focused on the method to combine signal sensing and power generating together, but also on the method to improve measurement accuracy. Experimental results confirm that this novel sensor has excellent measurement accuracy. The measured performance is consistent with the calculated characteristics. For typical application, this self-powered temperature sensor can detect fire before it develops to flashover state. And the maximum detection distance grows with the growth of burning rate. All the results indicate this innovative sensor is a promising self-powered device which can be used to measure temperature value in positive temperature fluctuation situations

  3. Kalman Filter for Estimation of Sensor Acceleration Using Six - axis Inertial Sensor

    International Nuclear Information System (INIS)

    Lee, Jung Keun

    2015-01-01

    Although an accelerometer is a sensor that measures acceleration, it cannot be used by itself to measure the acceleration when the orientation of the sensor changes. This paper introduces a Kalman filter for the estimation of a sensor acceleration based on a six-axis inertial sensor (i.e., a three-axis accelerometer and three-axis gyroscope). The novelty of the proposed Kalman filter lies in the fact that its state vector includes not only the tilt angle variable but also the sensor acceleration. Thus, the filter can explicitly estimate the latter with a high accuracy. The accuracy of acceleration estimates were validated experimentally under three different dynamic conditions, using an optical motion capture system. It could be concluded that the performance of the proposed Kalman filter was comparable to that of the state-of-the-art estimation algorithm employed by the Xsens MTw. The proposed algorithm may be more suitable than inertial/magnetic sensor-based algorithms for various applications adopting six-axis inertial sensors

  4. A comparative study of sensor fault diagnosis methods based on observer for ECAS system

    Science.gov (United States)

    Xu, Xing; Wang, Wei; Zou, Nannan; Chen, Long; Cui, Xiaoli

    2017-03-01

    The performance and practicality of electronically controlled air suspension (ECAS) system are highly dependent on the state information supplied by kinds of sensors, but faults of sensors occur frequently. Based on a non-linearized 3-DOF 1/4 vehicle model, different methods of fault detection and isolation (FDI) are used to diagnose the sensor faults for ECAS system. The considered approaches include an extended Kalman filter (EKF) with concise algorithm, a strong tracking filter (STF) with robust tracking ability, and the cubature Kalman filter (CKF) with numerical precision. We propose three filters of EKF, STF, and CKF to design a state observer of ECAS system under typical sensor faults and noise. Results show that three approaches can successfully detect and isolate faults respectively despite of the existence of environmental noise, FDI time delay and fault sensitivity of different algorithms are different, meanwhile, compared with EKF and STF, CKF method has best performing FDI of sensor faults for ECAS system.

  5. Observability-Based Guidance and Sensor Placement

    Science.gov (United States)

    Hinson, Brian T.

    Control system performance is highly dependent on the quality of sensor information available. In a growing number of applications, however, the control task must be accomplished with limited sensing capabilities. This thesis addresses these types of problems from a control-theoretic point-of-view, leveraging system nonlinearities to improve sensing performance. Using measures of observability as an information quality metric, guidance trajectories and sensor distributions are designed to improve the quality of sensor information. An observability-based sensor placement algorithm is developed to compute optimal sensor configurations for a general nonlinear system. The algorithm utilizes a simulation of the nonlinear system as the source of input data, and convex optimization provides a scalable solution method. The sensor placement algorithm is applied to a study of gyroscopic sensing in insect wings. The sensor placement algorithm reveals information-rich areas on flexible insect wings, and a comparison to biological data suggests that insect wings are capable of acting as gyroscopic sensors. An observability-based guidance framework is developed for robotic navigation with limited inertial sensing. Guidance trajectories and algorithms are developed for range-only and bearing-only navigation that improve navigation accuracy. Simulations and experiments with an underwater vehicle demonstrate that the observability measure allows tuning of the navigation uncertainty.

  6. State of the art on defenses against wormhole attacks in wireless sensor networks

    DEFF Research Database (Denmark)

    Prasad, Neeli R.; Giannetsos, T.; Dimitriou, T.

    2009-01-01

    describe the wormhole attack, a severe routing attack against sensor networks that is particularly challenging to defend against. We detail its characteristics and study its effects on the successful operation of a sensor network. We present state-of-the-art research for addressing wormhole related...... the possibility of using more sophisticated methods, like intrusion detection systems, to achieve a more complete and autonomic defense mechanism against wormhole attackers. We present our work on intrusion detection and introduce a lightweight IDS framework, called LIDeA, designed for wireless sensor networks....... LIDeA is based on a distributed architecture, in which nodes overhear their neighboring nodes and collaborate with each other in order to successfully detect an intrusion. We conclude by highlighting how such a system can be used for defending against wormhole attackers....

  7. Identifiability of Additive, Time-Varying Actuator and Sensor Faults by State Augmentation

    Science.gov (United States)

    Upchurch, Jason M.; Gonzalez, Oscar R.; Joshi, Suresh M.

    2014-01-01

    Recent work has provided a set of necessary and sucient conditions for identifiability of additive step faults (e.g., lock-in-place actuator faults, constant bias in the sensors) using state augmentation. This paper extends these results to an important class of faults which may affect linear, time-invariant systems. In particular, the faults under consideration are those which vary with time and affect the system dynamics additively. Such faults may manifest themselves in aircraft as, for example, control surface oscillations, control surface runaway, and sensor drift. The set of necessary and sucient conditions presented in this paper are general, and apply when a class of time-varying faults affects arbitrary combinations of actuators and sensors. The results in the main theorems are illustrated by two case studies, which provide some insight into how the conditions may be used to check the theoretical identifiability of fault configurations of interest for a given system. It is shown that while state augmentation can be used to identify certain fault configurations, other fault configurations are theoretically impossible to identify using state augmentation, giving practitioners valuable insight into such situations. That is, the limitations of state augmentation for a given system and configuration of faults are made explicit. Another limitation of model-based methods is that there can be large numbers of fault configurations, thus making identification of all possible configurations impractical. However, the theoretical identifiability of known, credible fault configurations can be tested using the theorems presented in this paper, which can then assist the efforts of fault identification practitioners.

  8. Nanopore sensors for DNA analysis

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Venkatesan, B.M.; Shim, Jeong

    2012-01-01

    Solid-state nanopore sensors are promising devices for single DNA molecule detection and sequencing. This paper presents a review of our work on solid-state nanopores performed over the last decade. In particular, here we discuss atomic-layer-deposited (ALD)-based, graphene-based, and functionali......Solid-state nanopore sensors are promising devices for single DNA molecule detection and sequencing. This paper presents a review of our work on solid-state nanopores performed over the last decade. In particular, here we discuss atomic-layer-deposited (ALD)-based, graphene...

  9. Constrained State Estimation for Individual Localization in Wireless Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaoxue Feng

    2014-11-01

    Full Text Available Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS, which gets better filtering performance than NILS without constraint.

  10. Constrained State Estimation for Individual Localization in Wireless Body Sensor Networks

    Science.gov (United States)

    Feng, Xiaoxue; Snoussi, Hichem; Liang, Yan; Jiao, Lianmeng

    2014-01-01

    Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF) show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS), which gets better filtering performance than NILS without constraint. PMID:25390408

  11. Constrained state estimation for individual localization in wireless body sensor networks.

    Science.gov (United States)

    Feng, Xiaoxue; Snoussi, Hichem; Liang, Yan; Jiao, Lianmeng

    2014-11-10

    Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF) show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS), which gets better filtering performance than NILS without constraint.

  12. Dynamic Hierarchical Energy-Efficient Method Based on Combinatorial Optimization for Wireless Sensor Networks.

    Science.gov (United States)

    Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing

    2017-07-19

    Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.

  13. Adaptive Sensing Based on Profiles for Sensor Systems

    Directory of Open Access Journals (Sweden)

    Yoshiteru Ishida

    2009-10-01

    Full Text Available This paper proposes a profile-based sensing framework for adaptive sensor systems based on models that relate possibly heterogeneous sensor data and profiles generated by the models to detect events. With these concepts, three phases for building the sensor systems are extracted from two examples: a combustion control sensor system for an automobile engine, and a sensor system for home security. The three phases are: modeling, profiling, and managing trade-offs. Designing and building a sensor system involves mapping the signals to a model to achieve a given mission.

  14. An Energy-Based State Observer for Dynamical Subsystems with Inaccessible State Variables

    NARCIS (Netherlands)

    Khalil, I.S.M.; Sabanovic, Asif; Misra, Sarthak

    2012-01-01

    This work presents an energy-based state estimation formalism for a class of dynamical systems with inaccessible/unknown outputs, and systems at which sensor utilization is impractical, or when measurements can not be taken. The power-conserving physical interconnections among most of the dynamical

  15. Incremental Structured Dictionary Learning for Video Sensor-Based Object Tracking

    Directory of Open Access Journals (Sweden)

    Ming Xue

    2014-02-01

    Full Text Available To tackle robust object tracking for video sensor-based applications, an online discriminative algorithm based on incremental discriminative structured dictionary learning (IDSDL-VT is presented. In our framework, a discriminative dictionary combining both positive, negative and trivial patches is designed to sparsely represent the overlapped target patches. Then, a local update (LU strategy is proposed for sparse coefficient learning. To formulate the training and classification process, a multiple linear classifier group based on a K-combined voting (KCV function is proposed. As the dictionary evolves, the models are also trained to timely adapt the target appearance variation. Qualitative and quantitative evaluations on challenging image sequences compared with state-of-the-art algorithms demonstrate that the proposed tracking algorithm achieves a more favorable performance. We also illustrate its relay application in visual sensor networks.

  16. Carbon Nanotube Based Chemical Sensors for Space and Terrestrial Applications

    Science.gov (United States)

    Li, Jing; Lu, Yijiang

    2009-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs), on a pair of interdigitated electrodes (IDE) processed with a silicon-based microfabrication and micromachining technique. The IDE fingers were fabricated using photolithography and thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to nitrogen dioxide, acetone, benzene, nitrotoluene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing of carbon nanotubes in our sensor platform can be understood by intra- and inter-tube electron modulation in terms of charge transfer mechanisms. As a result of the charge transfer, the conductance of p-type or hole-richer SWNTs in air will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost. Additionally, a wireless capability of such a sensor chip can be used for networked mobile and fixed-site detection and warning systems for military bases, facilities and battlefield areas.

  17. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states.

    Science.gov (United States)

    Toneff, M J; Sreekumar, A; Tinnirello, A; Hollander, P Den; Habib, S; Li, S; Ellis, M J; Xin, L; Mani, S A; Rosen, J M

    2016-06-17

    The epithelial to mesenchymal transition (EMT) has been implicated in metastasis and therapy resistance of carcinomas and can endow cancer cells with cancer stem cell (CSC) properties. The ability to detect cancer cells that are undergoing or have completed EMT has typically relied on the expression of cell surface antigens that correlate with an EMT/CSC phenotype. Alternatively these cells may be permanently marked through Cre-mediated recombination or through immunostaining of fixed cells. The EMT process is dynamic, and these existing methods cannot reveal such changes within live cells. The development of fluorescent sensors that mirror the dynamic EMT state by following the expression of bona fide EMT regulators in live cells would provide a valuable new tool for characterizing EMT. In addition, these sensors will allow direct observation of cellular plasticity with respect to the epithelial/mesenchymal state to enable more effective studies of EMT in cancer and development. We generated a lentiviral-based, dual fluorescent reporter system, designated as the Z-cad dual sensor, comprising destabilized green fluorescent protein containing the ZEB1 3' UTR and red fluorescent protein driven by the E-cadherin (CDH1) promoter. Using this sensor, we robustly detected EMT and mesenchymal to epithelial transition (MET) in breast cancer cells by flow cytometry and fluorescence microscopy. Importantly, we observed dynamic changes in cellular populations undergoing MET. Additionally, we used the Z-cad sensor to identify and isolate minor subpopulations of cells displaying mesenchymal properties within a population comprising predominately epithelial-like cells. The Z-cad dual sensor identified cells with CSC-like properties more effectively than either the ZEB1 3' UTR or E-cadherin sensor alone. The Z-cad dual sensor effectively reports the activities of two factors critical in determining the epithelial/mesenchymal state of carcinoma cells. The ability of this stably

  18. Identifiability of Additive Actuator and Sensor Faults by State Augmentation

    Science.gov (United States)

    Joshi, Suresh; Gonzalez, Oscar R.; Upchurch, Jason M.

    2014-01-01

    A class of fault detection and identification (FDI) methods for bias-type actuator and sensor faults is explored in detail from the point of view of fault identifiability. The methods use state augmentation along with banks of Kalman-Bucy filters for fault detection, fault pattern determination, and fault value estimation. A complete characterization of conditions for identifiability of bias-type actuator faults, sensor faults, and simultaneous actuator and sensor faults is presented. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have unknown biases. The fault identifiability conditions are demonstrated via numerical examples. The analytical and numerical results indicate that caution must be exercised to ensure fault identifiability for different fault patterns when using such methods.

  19. Approach for Self-Calibrating CO2 Measurements with Linear Membrane-Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Detlef Lazik

    2016-11-01

    Full Text Available Linear membrane-based gas sensors that can be advantageously applied for the measurement of a single gas component in large heterogeneous systems, e.g., for representative determination of CO2 in the subsurface, can be designed depending on the properties of the observation object. A resulting disadvantage is that the permeation-based sensor response depends on operating conditions, the individual site-adapted sensor geometry, the membrane material, and the target gas component. Therefore, calibration is needed, especially of the slope, which could change over several orders of magnitude. A calibration-free approach based on an internal gas standard is developed to overcome the multi-criterial slope dependency. This results in a normalization of sensor response and enables the sensor to assess the significance of measurement. The approach was proofed on the example of CO2 analysis in dry air with tubular PDMS membranes for various CO2 concentrations of an internal standard. Negligible temperature dependency was found within an 18 K range. The transformation behavior of the measurement signal and the influence of concentration variations of the internal standard on the measurement signal were shown. Offsets that were adjusted based on the stated theory for the given measurement conditions and material data from the literature were in agreement with the experimentally determined offsets. A measurement comparison with an NDIR reference sensor shows an unexpectedly low bias (<1% of the non-calibrated sensor response, and comparable statistical uncertainty.

  20. Resource Discovery in Activity-Based Sensor Networks

    DEFF Research Database (Denmark)

    Bucur, Doina; Bardram, Jakob

    This paper proposes a service discovery protocol for sensor networks that is specifically tailored for use in humancentered pervasive environments. It uses the high-level concept of computational activities (as logical bundles of data and resources) to give sensors in Activity-Based Sensor Networks...... (ABSNs) knowledge about their usage even at the network layer. ABSN redesigns classical network-level service discovery protocols to include and use this logical structuring of the network for a more practically applicable service discovery scheme. Noting that in practical settings activity-based sensor...

  1. Weighted Optimization-Based Distributed Kalman Filter for Nonlinear Target Tracking in Collaborative Sensor Networks.

    Science.gov (United States)

    Chen, Jie; Li, Jiahong; Yang, Shuanghua; Deng, Fang

    2017-11-01

    The identification of the nonlinearity and coupling is crucial in nonlinear target tracking problem in collaborative sensor networks. According to the adaptive Kalman filtering (KF) method, the nonlinearity and coupling can be regarded as the model noise covariance, and estimated by minimizing the innovation or residual errors of the states. However, the method requires large time window of data to achieve reliable covariance measurement, making it impractical for nonlinear systems which are rapidly changing. To deal with the problem, a weighted optimization-based distributed KF algorithm (WODKF) is proposed in this paper. The algorithm enlarges the data size of each sensor by the received measurements and state estimates from its connected sensors instead of the time window. A new cost function is set as the weighted sum of the bias and oscillation of the state to estimate the "best" estimate of the model noise covariance. The bias and oscillation of the state of each sensor are estimated by polynomial fitting a time window of state estimates and measurements of the sensor and its neighbors weighted by the measurement noise covariance. The best estimate of the model noise covariance is computed by minimizing the weighted cost function using the exhaustive method. The sensor selection method is in addition to the algorithm to decrease the computation load of the filter and increase the scalability of the sensor network. The existence, suboptimality and stability analysis of the algorithm are given. The local probability data association method is used in the proposed algorithm for the multitarget tracking case. The algorithm is demonstrated in simulations on tracking examples for a random signal, one nonlinear target, and four nonlinear targets. Results show the feasibility and superiority of WODKF against other filtering algorithms for a large class of systems.

  2. Passive alcohol sensors tested in 3 states for youth alcohol enforcement

    Science.gov (United States)

    1996-05-01

    Passive alcohol sensors were tested in three states to determine their effectiveness in enforcing zero tolerance or low BAC laws for under 21 age drivers. The passive alcohol sensor was designed to sample the air immediately around the suspect for si...

  3. Vision Sensor-Based Road Detection for Field Robot Navigation

    Directory of Open Access Journals (Sweden)

    Keyu Lu

    2015-11-01

    Full Text Available Road detection is an essential component of field robot navigation systems. Vision sensors play an important role in road detection for their great potential in environmental perception. In this paper, we propose a hierarchical vision sensor-based method for robust road detection in challenging road scenes. More specifically, for a given road image captured by an on-board vision sensor, we introduce a multiple population genetic algorithm (MPGA-based approach for efficient road vanishing point detection. Superpixel-level seeds are then selected in an unsupervised way using a clustering strategy. Then, according to the GrowCut framework, the seeds proliferate and iteratively try to occupy their neighbors. After convergence, the initial road segment is obtained. Finally, in order to achieve a globally-consistent road segment, the initial road segment is refined using the conditional random field (CRF framework, which integrates high-level information into road detection. We perform several experiments to evaluate the common performance, scale sensitivity and noise sensitivity of the proposed method. The experimental results demonstrate that the proposed method exhibits high robustness compared to the state of the art.

  4. Novel fabrication of flexible graphene-based chemical sensors with heaters using soft lithographic patterning method.

    Science.gov (United States)

    Jung, Min Wook; Myung, Sung; Song, Wooseok; Kang, Min-A; Kim, Sung Ho; Yang, Cheol-Soo; Lee, Sun Sook; Lim, Jongsun; Park, Chong-Yun; Lee, Jeong-O; An, Ki-Seok

    2014-08-27

    We have fabricated graphene-based chemical sensors with flexible heaters for the highly sensitive detection of specific gases. We believe that increasing the temperature of the graphene surface significantly enhanced the electrical signal change of the graphene-based channel, and reduced the recovery time needed to obtain a normal state of equilibrium. In addition, a simple and efficient soft lithographic patterning process was developed via surface energy modification for advanced, graphene-based flexible devices, such as gas sensors. As a proof of concept, we demonstrated the high sensitivity of NO2 gas sensors based on graphene nanosheets. These devices were fabricated using a simple soft-lithographic patterning method, where flexible graphene heaters adjacent to the channel of sensing graphene were utilized to control graphene temperature.

  5. Oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor: Sensing ability, TD-DFT calculations and its application as an efficient solid state sensor

    Science.gov (United States)

    Lan, Linxin; Li, Tianduo; Wei, Tao; Pang, He; Sun, Tao; Wang, Enhua; Liu, Haixia; Niu, Qingfen

    2018-03-01

    An oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor 3 T-2CN was reported. Sensor 3 T-2CN showed both naked-eye recognition and ratiometric fluorescence response for CN- with an excellent selectivity and high sensitivity. The sensing mechanism based on the nucleophilic attack of CN- on the vinyl Cdbnd C bond has been successfully confirmed by the optical measurements, 1H NMR titration, FT-IR spectra as well as the DFT/TD-DFT calculations. Moreover, the detection limit was calculated to be 0.19 μM, which is much lower than the maximum permission concentration in drinking water (1.9 μM). Importantly, test strips (filter paper and TLC plates) containing 3 T-2CN were fabricated, which could act as a practical and efficient solid state optical sensor for CN- in field measurements.

  6. Optical Fiber Sensors Based on Nanoparticle-Embedded Coatings

    Directory of Open Access Journals (Sweden)

    Aitor Urrutia

    2015-01-01

    Full Text Available The use of nanoparticles (NPs in scientific applications has attracted the attention of many researchers in the last few years. The use of NPs can help researchers to tune the physical characteristics of the sensing coating (thickness, roughness, specific area, refractive index, etc. leading to enhanced sensors with response time or sensitivity better than traditional sensing coatings. Additionally, NPs also offer other special properties that depend on their nanometric size, and this is also a source of new sensing applications. This review focuses on the current status of research in the use of NPs within coatings in optical fiber sensing. Most used sensing principles in fiber optics are briefly described and classified into several groups: absorbance-based sensors, interferometric sensors, fluorescence-based sensors, fiber grating sensors, and resonance-based sensors, among others. For each sensor group, specific examples of the utilization of NP-embedded coatings in their sensing structure are reported.

  7. Patient Posture Monitoring System Based on Flexible Sensors

    Directory of Open Access Journals (Sweden)

    Youngsu Cha

    2017-03-01

    Full Text Available Monitoring patients using vision cameras can cause privacy intrusion problems. In this paper, we propose a patient position monitoring system based on a patient cloth with unobtrusive sensors. We use flexible sensors based on polyvinylidene fluoride, which is a flexible piezoelectric material. Theflexiblesensorsareinsertedintopartsclosetothekneeandhipoftheloosepatientcloth. We measure electrical signals from the sensors caused by the piezoelectric effect when the knee and hip in the cloth are bent. The measured sensor outputs are transferred to a computer via Bluetooth. We use a custom-made program to detect the position of the patient through a rule-based algorithm and the sensor outputs. The detectable postures are based on six human motions in and around a bed. The proposed system can detect the patient positions with a success rate over 88 percent for three patients.

  8. A Review of Microfiber-Based Temperature Sensors

    Directory of Open Access Journals (Sweden)

    Wanvisa Talataisong

    2018-02-01

    Full Text Available Optical microfiber-based temperature sensors have been proposed for many applications in a variety of industrial uses, including biomedical, geological, automotive, and defense applications. This increasing demand for these micrometric devices is attributed to their large dynamic range, high sensitivity, fast-response, compactness and robustness. Additionally, they can perform in-situ measurements remotely and in harsh environments. This paper presents an overview of optical microfibers, with a focus on their applications in temperature sensing. This review broadly divides microfiber-based temperature sensors into two categories: resonant and non-resonant microfiber sensors. While the former includes microfiber loop, knot and coil resonators, the latter comprises sensors based on functionally coated/doped microfibers, microfiber couplers, optical gratings and interferometers. In the conclusions, a summary of reported performances is presented.

  9. APTAMER-BASED SERRS SENSOR FOR THROMBIN DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H; Baker, B R; Wachsmann-Hogiu, S; Pagba, C V; Laurence, T A; Lane, S M; Lee, L P; Tok, J B

    2008-07-02

    We describe an aptamer-based Surface Enhanced Resonance Raman Scattering (SERRS) sensor with high sensitivity, specificity, and stability for the detection of a coagulation protein, human a-thrombin. The sensor achieves high sensitivity and a limit of detection of 100 pM by monitoring the SERRS signal change upon the single step of thrombin binding to immobilized thrombin binding aptamer. The selectivity of the sensor is demonstrated by the specific discrimination of thrombin from other protein analytes. The specific recognition and binding of thrombin by the thrombin binding aptamer is essential to the mechanism of the aptamer-based sensor, as shown through measurements using negative control oligonucleotides. In addition, the sensor can detect 1 nM thrombin in the presence of complex biofluids, such as 10% fetal calf serum, demonstrating that the immobilized, 5{prime}-capped, 3{prime}-capped aptamer is sufficiently robust for clinical diagnostic applications. Furthermore, the proposed sensor may be implemented for multiplexed detection using different aptamer-Raman probe complexes.

  10. Polymer based amperometric hydrogen sensor

    International Nuclear Information System (INIS)

    Ramesh, C.; Periaswami, G.; Mathews, C.K.; Shankar, P.

    1993-01-01

    A polymer based amperometric hydrogen sensor has been developed for measuring hydrogen in argon. Polyvinyl alcohol-phosphoric acid serves as the solid electrolyte for proton conduction. The electrolyte is sandwiched between two palladium films. Short circuit current between the film at room temperature is measured and is found to be linearly dependant on hydrogen concentration in argon to which one side of the film is exposed. The other side is exposed to air. The response time of the sensor is found to be improved on application of a D.C. potential of 200 mV in series. The sensitivity of the sensor is in ppm range. This may be sufficient for monitoring cover gas hydrogen in FBTR. Work is underway to improve the long-term stability of the sensor. (author)

  11. An Extended Kalman Filter-Based Attitude Tracking Algorithm for Star Sensors.

    Science.gov (United States)

    Li, Jian; Wei, Xinguo; Zhang, Guangjun

    2017-08-21

    Efficiency and reliability are key issues when a star sensor operates in tracking mode. In the case of high attitude dynamics, the performance of existing attitude tracking algorithms degenerates rapidly. In this paper an extended Kalman filtering-based attitude tracking algorithm is presented. The star sensor is modeled as a nonlinear stochastic system with the state estimate providing the three degree-of-freedom attitude quaternion and angular velocity. The star positions in the star image are predicted and measured to estimate the optimal attitude. Furthermore, all the cataloged stars observed in the sensor field-of-view according the predicted image motion are accessed using a catalog partition table to speed up the tracking, called star mapping. Software simulation and night-sky experiment are performed to validate the efficiency and reliability of the proposed method.

  12. Hydrogel-based sensor for CO2 measurements

    NARCIS (Netherlands)

    Herber, S.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2004-01-01

    A hydrogel-based sensor is presented for CO2 measurements. The sensor consists of a pressure sensor and porous silicon cover. A pH-sensitive hydrogel is confined between the two parts. Furthermore the porous cover contains a bicarbonate solution and a gaspermeable membrane. CO2 reacts with the

  13. Classification of Reactor Facility Operational State Using SPRT Methods with Radiation Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Aviles, Camila A. [ORNL; Rao, Nageswara S. [ORNL

    2018-01-01

    We consider the problem of inferring the operational state of a reactor facility by using measurements from a radiation sensor network, which is deployed around the facility’s ventilation stack. The radiation emissions from the stack decay with distance, and the corresponding measurements are inherently random with parameters determined by radiation intensity levels at the sensor locations. We fuse measurements from network sensors to estimate the intensity at the stack, and use this estimate in a one-sided Sequential Probability Ratio Test (SPRT) to infer the on/off state of the reactor facility. We demonstrate the superior performance of this method over conventional majority vote fusers and individual sensors using (i) test measurements from a network of NaI sensors, and (ii) emulated measurements using radioactive effluents collected at a reactor facility stack. We analytically quantify the performance improvements of individual sensors and their networks with adaptive thresholds over those with fixed ones, by using the packing number of the radiation intensity space.

  14. Reviewing Automated Sensor-Based Visitor Tracking Studies

    DEFF Research Database (Denmark)

    Mygind, Lærke; Bentsen, Peter

    2017-01-01

    The method of timing and tracking has a long history within visitor studies and exhibition evaluation. With an increase in indoor tracking research, sensor-based positioning tool usage in museums has grown, as have expectations regarding the efficacy of technological sensing systems. This literat......The method of timing and tracking has a long history within visitor studies and exhibition evaluation. With an increase in indoor tracking research, sensor-based positioning tool usage in museums has grown, as have expectations regarding the efficacy of technological sensing systems...... methods in terms of obtained level of detail, accuracy, level of obtrusiveness, automation of data entry, ability to time concurrent behaviors, and amount of observer training needed. Although individual sensor-based and traditional, observational methods had both strengths and weaknesses, all sensor......-based timing and tracking methods provided automated data entry and the opportunity to track a number of visitors simultaneously regardless of the available personnel....

  15. ReliefF-Based EEG Sensor Selection Methods for Emotion Recognition.

    Science.gov (United States)

    Zhang, Jianhai; Chen, Ming; Zhao, Shaokai; Hu, Sanqing; Shi, Zhiguo; Cao, Yu

    2016-09-22

    Electroencephalogram (EEG) signals recorded from sensor electrodes on the scalp can directly detect the brain dynamics in response to different emotional states. Emotion recognition from EEG signals has attracted broad attention, partly due to the rapid development of wearable computing and the needs of a more immersive human-computer interface (HCI) environment. To improve the recognition performance, multi-channel EEG signals are usually used. A large set of EEG sensor channels will add to the computational complexity and cause users inconvenience. ReliefF-based channel selection methods were systematically investigated for EEG-based emotion recognition on a database for emotion analysis using physiological signals (DEAP). Three strategies were employed to select the best channels in classifying four emotional states (joy, fear, sadness and relaxation). Furthermore, support vector machine (SVM) was used as a classifier to validate the performance of the channel selection results. The experimental results showed the effectiveness of our methods and the comparison with the similar strategies, based on the F-score, was given. Strategies to evaluate a channel as a unity gave better performance in channel reduction with an acceptable loss of accuracy. In the third strategy, after adjusting channels' weights according to their contribution to the classification accuracy, the number of channels was reduced to eight with a slight loss of accuracy (58.51% ± 10.05% versus the best classification accuracy 59.13% ± 11.00% using 19 channels). In addition, the study of selecting subject-independent channels, related to emotion processing, was also implemented. The sensors, selected subject-independently from frontal, parietal lobes, have been identified to provide more discriminative information associated with emotion processing, and are distributed symmetrically over the scalp, which is consistent with the existing literature. The results will make a contribution to the

  16. ReliefF-Based EEG Sensor Selection Methods for Emotion Recognition

    Directory of Open Access Journals (Sweden)

    Jianhai Zhang

    2016-09-01

    Full Text Available Electroencephalogram (EEG signals recorded from sensor electrodes on the scalp can directly detect the brain dynamics in response to different emotional states. Emotion recognition from EEG signals has attracted broad attention, partly due to the rapid development of wearable computing and the needs of a more immersive human-computer interface (HCI environment. To improve the recognition performance, multi-channel EEG signals are usually used. A large set of EEG sensor channels will add to the computational complexity and cause users inconvenience. ReliefF-based channel selection methods were systematically investigated for EEG-based emotion recognition on a database for emotion analysis using physiological signals (DEAP. Three strategies were employed to select the best channels in classifying four emotional states (joy, fear, sadness and relaxation. Furthermore, support vector machine (SVM was used as a classifier to validate the performance of the channel selection results. The experimental results showed the effectiveness of our methods and the comparison with the similar strategies, based on the F-score, was given. Strategies to evaluate a channel as a unity gave better performance in channel reduction with an acceptable loss of accuracy. In the third strategy, after adjusting channels’ weights according to their contribution to the classification accuracy, the number of channels was reduced to eight with a slight loss of accuracy (58.51% ± 10.05% versus the best classification accuracy 59.13% ± 11.00% using 19 channels. In addition, the study of selecting subject-independent channels, related to emotion processing, was also implemented. The sensors, selected subject-independently from frontal, parietal lobes, have been identified to provide more discriminative information associated with emotion processing, and are distributed symmetrically over the scalp, which is consistent with the existing literature. The results will make a

  17. A carbon nanotube-based pressure sensor

    International Nuclear Information System (INIS)

    Karimov, Kh S; Saleem, M; Khan, Adam; Qasuria, T A; Mateen, A; Karieva, Z M

    2011-01-01

    In this study, a carbon nanotube (CNT)-based Al/CNT/Al pressure sensor was designed, fabricated and investigated. The sensor was fabricated by depositing CNTs on an adhesive elastic polymer tape and placing this in an elastic casing. The diameter of multiwalled nanotubes varied between 10 and 30 nm. The nominal thickness of the CNT layers in the sensors was in the range ∼300-430 μm. The inter-electrode distance (length) and the width of the surface-type sensors were in the ranges 4-6 and 3-4 mm, respectively. The dc resistance of the sensors decreased 3-4 times as the pressure was increased up to 17 kN m -2 . The resistance-pressure relationships were simulated.

  18. Organic Thin-Film Transistor (OTFT-Based Sensors

    Directory of Open Access Journals (Sweden)

    Daniel Elkington

    2014-04-01

    Full Text Available Organic thin film transistors have been a popular research topic in recent decades and have found applications from flexible displays to disposable sensors. In this review, we present an overview of some notable articles reporting sensing applications for organic transistors with a focus on the most recent publications. In particular, we concentrate on three main types of organic transistor-based sensors: biosensors, pressure sensors and “e-nose”/vapour sensors.

  19. Chemical Sensors Based on Metal Oxide Nanostructures

    Science.gov (United States)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  20. Wearable PPG sensor based alertness scoring system.

    Science.gov (United States)

    Dey, Jishnu; Bhowmik, Tanmoy; Sahoo, Saswata; Tiwari, Vijay Narayan

    2017-07-01

    Quantifying mental alertness in today's world is important as it enables the person to adopt lifestyle changes for better work efficiency. Miniaturized sensors in wearable devices have facilitated detection/monitoring of mental alertness. Photoplethysmography (PPG) sensors through Heart Rate Variability (HRV) offer one such opportunity by providing information about one's daily alertness levels without requiring any manual interference from the user. In this paper, a smartwatch based alertness estimation system is proposed. Data collected from PPG sensor of smartwatch is processed and fed to machine learning based model to get a continuous alertness score. Utility functions are designed based on statistical analysis to give a quality score on different stages of alertness such as awake, long sleep and short duration power nap. An intelligent data collection approach is proposed in collaboration with the motion sensor in the smartwatch to reduce battery drainage. Overall, our proposed wearable based system provides a detailed analysis of alertness over a period in a systematic and optimized manner. We were able to achieve an accuracy of 80.1% for sleep/awake classification along with alertness score. This opens up the possibility for quantifying alertness levels using a single PPG sensor for better management of health related activities including sleep.

  1. Planar Laser-Based QEPAS Trace Gas Sensor

    Directory of Open Access Journals (Sweden)

    Yufei Ma

    2016-06-01

    Full Text Available A novel quartz enhanced photoacoustic spectroscopy (QEPAS trace gas detection scheme is reported in this paper. A cylindrical lens was employed for near-infrared laser focusing. The laser beam was shaped as a planar line laser between the gap of the quartz tuning fork (QTF prongs. Compared with a spherical lens-based QEPAS sensor, the cylindrical lens-based QEPAS sensor has the advantages of easier laser beam alignment and a reduction of stringent stability requirements. Therefore, the reported approach is useful in long-term and continuous sensor operation.

  2. Evaluating a Novel Cellular Automata-Based Distributed Power Management Approach for Mobile Wireless Sensor Networks

    Science.gov (United States)

    Adabi, Sepideh; Adabi, Sahar; Rezaee, Ali

    According to the traditional definition of Wireless Sensor Networks (WSNs), static sensors have limited the feasibility of WSNs in some kind of approaches, so the mobility was introduced in WSN. Mobile nodes in a WSN come equipped with battery and from the point of deployment, this battery reserve becomes a valuable resource since it cannot be replenished. Hence, maximizing the network lifetime by minimizing the energy is an important challenge in Mobile WSN. Energy conservation can be accomplished by different approaches. In this paper, we presented an energy conservation solution based on Cellular Automata. The main objective of this solution is based on dynamically adjusting the transmission range and switching between operational states of the sensor nodes.

  3. Sensor-based whole-arm obstacle avoidance utilizing ASIC technology

    International Nuclear Information System (INIS)

    Wintenberg, A.L.; Ericson, M.N.; Babcock, S.M.; Armstrong, G.A.; Britton, C.L. Jr.; Butler, P.L.; Hamel, W.R.; Newport, D.F.

    1993-01-01

    Operation of manipulator systems in poorly defined work environments often presents a significant hazard to both the robotic assembly and the environment. In applications relating to the Environmental Restoration and Waste Management (ER ampersand WM) Program, many of the environments are considered hazardous, both, in the structure and composition of the environment Use of a sensing system that provides information to the manipulator control unit regarding obstacles in close proximity will provide protection against collisions. In this paper, a hierarchical design and implementation of a whole-arm obstacle avoidance system is presented. The system is based on capacitive sensors configured as bracelets for proximity sensing. Each bracelet contains a number of sensor nodes and a processor for sensor node control and readout, and communications with a higher level host, common to all bracelets. The host controls the entire sensing network and communicates proximity information to the manipulator controller. The overall architecture of this system is discussed with detail on the individual system modules. Details of an application specific integrated circuit (ASIC) designed to implement the sensor node electronics are presented. Justifications for the general measurement methods and associated implementation are discussed. Additionally, the current state of development including measured dam is presented

  4. A Review of Carbon Nanotubes-Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2009-01-01

    Full Text Available Gas sensors have attracted intensive research interest due to the demand of sensitive, fast response, and stable sensors for industry, environmental monitoring, biomedicine, and so forth. The development of nanotechnology has created huge potential to build highly sensitive, low cost, portable sensors with low power consumption. The extremely high surface-to-volume ratio and hollow structure of nanomaterials is ideal for the adsorption of gas molecules. Particularly, the advent of carbon nanotubes (CNTs has fuelled the inventions of gas sensors that exploit CNTs' unique geometry, morphology, and material properties. Upon exposure to certain gases, the changes in CNTs' properties can be detected by various methods. Therefore, CNTs-based gas sensors and their mechanisms have been widely studied recently. In this paper, a broad but yet in-depth survey of current CNTs-based gas sensing technology is presented. Both experimental works and theoretical simulations are reviewed. The design, fabrication, and the sensing mechanisms of the CNTs-based gas sensors are discussed. The challenges and perspectives of the research are also addressed in this review.

  5. A probabilistic model-based soft sensor to monitor lactic acid bacteria fermentations

    DEFF Research Database (Denmark)

    Spann, Robert; Roca, Christophe; Kold, David

    2018-01-01

    A probabilistic soft sensor based on a mechanistic model was designed to monitor S. thermophilus fermentations, and validated with experimental lab-scale data. It considered uncertainties in the initial conditions, on-line measurements, and model parameters by performing Monte Carlo simulations...... the model parameters that were then used as input to the mechanistic model. The soft sensor predicted both the current state variables, as well as the future course of the fermentation, e.g. with a relative mean error of the biomass concentration of 8 %. This successful implementation of a process...... within the monitoring system. It predicted, therefore, the probability distributions of the unmeasured states, such as biomass, lactose, and lactic acid concentrations. To this end, a mechanistic model was developed first, and a statistical parameter estimation was performed in order to assess parameter...

  6. SU-8 Based Piezoresistive Mechanical Sensor

    DEFF Research Database (Denmark)

    Thaysen, Jacob; Yalcinkaya, Arda Deniz; Vestergaard, R.K.

    2002-01-01

    We present the first SU-8 based piezoresistive mechanical sensor. Conventionally, silicon has been used as a piezoresistive material due to its high gauge factor and thereby high sensitivity to strain changes in a sensor. By using the fact that SU-8 is much softer than silicon and that a gold...

  7. Development of GaN-based microchemical sensor nodes

    Science.gov (United States)

    Prokopuk, Nicholas; Son, Kyung-Ah; George, Thomas; Moon, Jeong S.

    2005-01-01

    Sensors based III-N technology are gaining significant interest due to their potential for monolithic integration of RF transceivers and light sources and the capability of high temperature operations. We are developing a GaN-based micro chemical sensor node for remote detection of chemical toxins, and present electrical responses of AlGaN/GaN HEMT (High Electron Mobility Transistor) sensors to chemical toxins as well as other common gases.

  8. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.

    Science.gov (United States)

    Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-02-08

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.

  9. Chemical Sensors Based on Cyclodextrin Derivatives.

    Science.gov (United States)

    Ogoshi, Tomoki; Harada, Akira

    2008-08-25

    This review focuses on chemical sensors based on cyclodextrin (CD) derivatives. This has been a field of classical interest, and is now of current interest for numerous scientists. First, typical chemical sensors using chromophore appended CDs are mentioned. Various "turn-off" and "turn-on" fluorescent chemical sensors, in which fluorescence intensity was decreased or increased by complexation with guest molecules, respectively, were synthesized. Dye modified CDs and photoactive metal ion-ligand complex appended CDs, metallocyclodextrins, were also applied for chemical sensors. Furthermore, recent novel approaches to chemical sensing systems using supramolecular structures such as CD dimers, trimers and cooperative binding systems of CDs with the other macrocycle [2]rotaxane and supramolecular polymers consisting of CD units are mentioned. New chemical sensors using hybrids of CDs with p-conjugated polymers, peptides, DNA, nanocarbons and nanoparticles are also described in this review.

  10. Toward Sensor-Based Context Aware Systems

    Directory of Open Access Journals (Sweden)

    Kouhei Takada

    2012-01-01

    Full Text Available This paper proposes a methodology for sensor data interpretation that can combine sensor outputs with contexts represented as sets of annotated business rules. Sensor readings are interpreted to generate events labeled with the appropriate type and level of uncertainty. Then, the appropriate context is selected. Reconciliation of different uncertainty types is achieved by a simple technique that moves uncertainty from events to business rules by generating combs of standard Boolean predicates. Finally, context rules are evaluated together with the events to take a decision. The feasibility of our idea is demonstrated via a case study where a context-reasoning engine has been connected to simulated heartbeat sensors using prerecorded experimental data. We use sensor outputs to identify the proper context of operation of a system and trigger decision-making based on context information.

  11. Application of Photocured Polymer Ion Selective Membranes for Solid-State Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Natalia Abramova

    2015-06-01

    Full Text Available Application of conducting polymers with additional functional groups for a solid contact formation and photocurable membranes as sensitive elements of solid-state chemical sensors is discussed. Problems associated with application of UV-curable polymers for sensors are analyzed. A method of sensor fabrication using copolymerized conductive layer and sensitive membrane is presented and the proof of concept is confirmed by two examples of solid-contact electrodes for Ca ions and pH.

  12. Thin-film chemical sensors based on electron tunneling

    Science.gov (United States)

    Khanna, S. K.; Lambe, J.; Leduc, H. G.; Thakoor, A. P.

    1985-01-01

    The physical mechanisms underlying a novel chemical sensor based on electron tunneling in metal-insulator-metal (MIM) tunnel junctions were studied. Chemical sensors based on electron tunneling were shown to be sensitive to a variety of substances that include iodine, mercury, bismuth, ethylenedibromide, and ethylenedichloride. A sensitivity of 13 parts per billion of iodine dissolved in hexane was demonstrated. The physical mechanisms involved in the chemical sensitivity of these devices were determined to be the chemical alteration of the surface electronic structure of the top metal electrode in the MIM structure. In addition, electroreflectance spectroscopy (ERS) was studied as a complementary surface-sensitive technique. ERS was shown to be sensitive to both iodine and mercury. Electrolyte electroreflectance and solid-state MIM electroreflectance revealed qualitatively the same chemical response. A modified thin-film structure was also studied in which a chemically active layer was introduced at the top Metal-Insulator interface of the MIM devices. Cobalt phthalocyanine was used for the chemically active layer in this study. Devices modified in this way were shown to be sensitive to iodine and nitrogen dioxide. The chemical sensitivity of the modified structure was due to conductance changes in the active layer.

  13. Solid State Gas Sensor Research in Germany – a Status Report

    Directory of Open Access Journals (Sweden)

    Udo Weimar

    2009-06-01

    Full Text Available This status report overviews activities of the German gas sensor research community. It highlights recent progress in the field of potentiometric, amperometric, conductometric, impedimetric, and field effect-based gas sensors. It is shown that besides step-by-step improvements of conventional principles, e.g. by the application of novel materials, novel principles turned out to enable new markets. In the field of mixed potential gas sensors, novel materials allow for selective detection of combustion exhaust components. The same goal can be reached by using zeolites for impedimetric gas sensors. Operando spectroscopy is a powerful tool to learn about the mechanisms in n-type and in p-type conductometric sensors and to design knowledge-based improved sensor devices. Novel deposition methods are applied to gain direct access to the material morphology as well as to obtain dense thick metal oxide films without high temperature steps. Since conductometric and impedimetric sensors have the disadvantage that a current has to pass the gas sensitive film, film morphology, electrode materials, and geometrical issues affect the sensor signal. Therefore, one tries to measure directly the Fermi level position either by measuring the gas-dependent Seebeck coefficient at high temperatures or at room temperature by applying a modified miniaturized Kelvin probe method, where surface adsorption-based work function changes drive the drain-source current of a field effect transistor.

  14. Design and implementation of PAVEMON: A GIS web-based pavement monitoring system based on large amounts of heterogeneous sensors data

    Science.gov (United States)

    Shahini Shamsabadi, Salar

    A web-based PAVEment MONitoring system, PAVEMON, is a GIS oriented platform for accommodating, representing, and leveraging data from a multi-modal mobile sensor system. Stated sensor system consists of acoustic, optical, electromagnetic, and GPS sensors and is capable of producing as much as 1 Terabyte of data per day. Multi-channel raw sensor data (microphone, accelerometer, tire pressure sensor, video) and processed results (road profile, crack density, international roughness index, micro texture depth, etc.) are outputs of this sensor system. By correlating the sensor measurements and positioning data collected in tight time synchronization, PAVEMON attaches a spatial component to all the datasets. These spatially indexed outputs are placed into an Oracle database which integrates seamlessly with PAVEMON's web-based system. The web-based system of PAVEMON consists of two major modules: 1) a GIS module for visualizing and spatial analysis of pavement condition information layers, and 2) a decision-support module for managing maintenance and repair (Mℝ) activities and predicting future budget needs. PAVEMON weaves together sensor data with third-party climate and traffic information from the National Oceanic and Atmospheric Administration (NOAA) and Long Term Pavement Performance (LTPP) databases for an organized data driven approach to conduct pavement management activities. PAVEMON deals with heterogeneous and redundant observations by fusing them for jointly-derived higher-confidence results. A prominent example of the fusion algorithms developed within PAVEMON is a data fusion algorithm used for estimating the overall pavement conditions in terms of ASTM's Pavement Condition Index (PCI). PAVEMON predicts PCI by undertaking a statistical fusion approach and selecting a subset of all the sensor measurements. Other fusion algorithms include noise-removal algorithms to remove false negatives in the sensor data in addition to fusion algorithms developed for

  15. Analyzer for measurement of nitrogen oxide concentration by ozone content reduction in gas using solid state chemiluminescent sensor

    Science.gov (United States)

    Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.

    2014-05-01

    Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01

  16. Laser-based gas sensors keep moisture out of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2006-07-15

    Natural gas often contains contaminants that cause corrosion, and long-term deterioration, and must be cleaned and brought to pipeline standards before it can be delivered to high-pressure, long-distance pipelines. Many older sensors produce false data that can result in contaminated gas getting through. This article presented details of the SpectraSensor, a new laser-based sensor technology used by the El Paso Natural Gas Company (EPNG). The SpectraSensor is comprised of a tunable diode laser (TDL) based technology developed by the National American Space Agency (NASA). The gas analyzer provides non-contact measurement of moisture, carbon dioxide, and other corrosives in natural gas pipelines, and the tunable laser-based gas sensors are fast, accurate, and flexible. Producers can monitor El Paso's gas analyzer readings by capturing the electronic signal from El Paso's unit via a SCADA system and view the readings from control rooms. While initial purchase price is higher than more problematic surface-based gas sensors, an evaluation of the technology has indicated that maintenance savings alone may provide an almost immediate return on investments. Unlike electrochemical and crystal gas sensors, laser-based gas analyzers do not come into direct contact with any substances, a fact which practically eliminates maintenance and operational costs. Studies have shown that the cost of operating conventional electrochemical sensors can result in a cumulative annual expense exceeding $50,000 per unit including labour; recalibration and rebuilding; back-up sensor heads; and gas dehydration and tariffs. 1 fig.

  17. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Science.gov (United States)

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  18. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Md. Mahbubur Rahman

    2015-02-01

    Full Text Available Conducting polymers (CPs are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  19. Manufacture and application of RuO2 solid-state metal-oxide pH sensor to common beverages.

    Science.gov (United States)

    Lonsdale, W; Wajrak, M; Alameh, K

    2018-04-01

    A new reproducible solid-state metal-oxide pH sensor for beverage quality monitoring is developed and characterised. The working electrode of the developed pH sensor is based on the use of laser-etched sputter-deposited RuO 2 on Al 2 O 3 substrate, modified with thin layers of sputter-deposited Ta 2 O 5 and drop-cast Nafion for minimisation of redox interference. The reference electrode is manufactured by further modifying a working electrode with a porous polyvinyl butyral layer loaded with fumed SiO 2 . The developed pH sensor shows excellent performance when applied to a selection of beverage samples, with a measured accuracy within 0.08 pH of a commercial glass pH sensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Mover Position Detection for PMTLM Based on Linear Hall Sensors through EKF Processing.

    Science.gov (United States)

    Yan, Leyang; Zhang, Hui; Ye, Peiqing

    2017-04-06

    Accurate mover position is vital for a permanent magnet tubular linear motor (PMTLM) control system. In this paper, two linear Hall sensors are utilized to detect the mover position. However, Hall sensor signals contain third-order harmonics, creating errors in mover position detection. To filter out the third-order harmonics, a signal processing method based on the extended Kalman filter (EKF) is presented. The limitation of conventional processing method is first analyzed, and then EKF is adopted to detect the mover position. In the EKF model, the amplitude of the fundamental component and the percentage of the harmonic component are taken as state variables, and they can be estimated based solely on the measured sensor signals. Then, the harmonic component can be calculated and eliminated. The proposed method has the advantages of faster convergence, better stability and higher accuracy. Finally, experimental results validate the effectiveness and superiority of the proposed method.

  1. Graphene-Paper Based Electrochemical Sensors

    DEFF Research Database (Denmark)

    Zhang, Minwei; Halder, Arnab; Cao, Xianyi

    2017-01-01

    in electrochemical sensors and energy technologies amongothers. In this chapter, we present some examples to overview recent advances in theresearch and development of two-dimensional (2D) graphene papers as new materialsfor electrochemical sensors. The chapter covers the design, fabrication, functionalizationand...... functionalization ofgraphene papers with polymer and nanoscale functional building blocks for electrochemical-sensing purposes. In terms of electrochemical-sensing applications, the emphasis ison enzyme-graphene and nanoparticle-graphene paper-based systems for the detectionof glucose. We finally conclude...

  2. Failure diagnosis using deep belief learning based health state classification

    International Nuclear Information System (INIS)

    Tamilselvan, Prasanna; Wang, Pingfeng

    2013-01-01

    Effective health diagnosis provides multifarious benefits such as improved safety, improved reliability and reduced costs for operation and maintenance of complex engineered systems. This paper presents a novel multi-sensor health diagnosis method using deep belief network (DBN). DBN has recently become a popular approach in machine learning for its promised advantages such as fast inference and the ability to encode richer and higher order network structures. The DBN employs a hierarchical structure with multiple stacked restricted Boltzmann machines and works through a layer by layer successive learning process. The proposed multi-sensor health diagnosis methodology using DBN based state classification can be structured in three consecutive stages: first, defining health states and preprocessing sensory data for DBN training and testing; second, developing DBN based classification models for diagnosis of predefined health states; third, validating DBN classification models with testing sensory dataset. Health diagnosis using DBN based health state classification technique is compared with four existing diagnosis techniques. Benchmark classification problems and two engineering health diagnosis applications: aircraft engine health diagnosis and electric power transformer health diagnosis are employed to demonstrate the efficacy of the proposed approach

  3. Self-deployable mobile sensor networks for on-demand surveillance

    Science.gov (United States)

    Miao, Lidan; Qi, Hairong; Wang, Feiyi

    2005-05-01

    This paper studies two interconnected problems in mobile sensor network deployment, the optimal placement of heterogeneous mobile sensor platforms for cost-efficient and reliable coverage purposes, and the self-organizable deployment. We first develop an optimal placement algorithm based on a "mosaicked technology" such that different types of mobile sensors form a mosaicked pattern uniquely determined by the popularity of different types of sensor nodes. The initial state is assumed to be random. In order to converge to the optimal state, we investigate the swarm intelligence (SI)-based sensor movement strategy, through which the randomly deployed sensors can self-organize themselves to reach the optimal placement state. The proposed algorithm is compared with the random movement and the centralized method using performance metrics such as network coverage, convergence time, and energy consumption. Simulation results are presented to demonstrate the effectiveness of the mosaic placement and the SI-based movement.

  4. Biological and chemical sensors based on graphene materials.

    Science.gov (United States)

    Liu, Yuxin; Dong, Xiaochen; Chen, Peng

    2012-03-21

    Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, graphene and its derivatives have stimulated exploding interests in their sensor applications ever since the first isolation of free-standing graphene sheets in year 2004. This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection. We emphasize on the underlying detection (or signal transduction) mechanisms, the unique roles and advantages of the used graphene materials. Properties and preparations of different graphene materials, their functionalizations are also comparatively discussed in view of sensor development. Finally, the perspective and current challenges of graphene sensors are outlined (312 references).

  5. Characterization and Modeling of Electrical Response of Electrode Catalyzed Reactions in AIGaN/GaN-Based Gas Sensors

    Science.gov (United States)

    Melby, Jacob H.

    C to 125°C. The absolute current change was measured as a function of hydrogen concentration and compared with simulated curves based on the Langmuir isotherm and four other modified isotherms at a sensor temperature of 125°C. The sensor response was found to monotonically increase for a wide range of hydrogen concentrations (500 ppb to 5 vol%). It was found that the Langmuir isotherm, which treats all hydrogen binding sites as equivalent, was inadequate to describe the sensor response. A simple two-state model involving two distinct hydrogen binding states that have previously been observed in surface studies was found to adequately describe the response of these sensors from 500 ppb to 5 vol% hydrogen in nitrogen. Other modified Langmuir models were also analyzed and compared with the two-state model. While the models based on modified isotherms all yielded good fits to the data, the simpler two-state model (based upon a weakly bound and strongly bound hydrogen atom) and the Sips model (with distribution of states skewed towards higher binding energies) more closely match results from surface studies of dissociative desorption of hydrogen on Pt. Either of these models should therefore serve as a reasonable foundation for understanding and modeling the response of AlGaN/GaN-based hydrogen sensors with Pt catalysts. The electrical response of a Pt-gated HEMT-based sensor was also measured in a flowing gaseous stream consisting of hydrogen in air at elevated temperatures. The sensor response was found to monotonically increase for a narrow range of hydrogen pressures (1000 ppm to 4 vol%). Oxygen is found to decrease sensor response magnitude and increase the sensor response time. A modified Langmuir isotherm was found to adequately describe the influence of oxygen on a Pt-gated HEMT-based sensor under a narrow range of conditions. Additional sensor measurements were conducted on AlGaN/GaN diode sensors employing a variety of platinum-group catalysts. The influence of

  6. Sensor-based material tagging system

    International Nuclear Information System (INIS)

    Vercellotti, L.C.; Cox, R.W.; Ravas, R.J.; Schlotterer, J.C.

    1991-01-01

    Electronic identification tags are being developed for tracking material and personnel. In applying electronic identification tags to radioactive materials safeguards, it is important to measure attributes of the material to ensure that the tag remains with the material. The addition of a microcontroller with an on-board analog-to-digital converter to an electronic identification tag application-specific integrated-circuit has been demonstrated as means to provide the tag with sensor data. Each tag is assembled into a housing, which serves as a scale for measuring the weight of a paint-can-sized container and its contents. Temperature rise of the can above ambient is also measured, and a piezoelectric detector detects disturbances and immediately puts the tag into its alarm and beacon mode. Radiation measurement was also considered, but the background from nearby containers was found to be excessive. The sensor-based tagging system allows tracking of the material in cans as it is stored in vaults or is moved through the manufacturing process. The paper presents details of the sensor-based material tagging system and describes a demonstration system

  7. Optical hydrogen sensors based on metal-hydrides

    Science.gov (United States)

    Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.

    2012-06-01

    For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

  8. Energy-efficient algorithm for classification of states of wireless sensor network using machine learning methods

    Science.gov (United States)

    Yuldashev, M. N.; Vlasov, A. I.; Novikov, A. N.

    2018-05-01

    This paper focuses on the development of an energy-efficient algorithm for classification of states of a wireless sensor network using machine learning methods. The proposed algorithm reduces energy consumption by: 1) elimination of monitoring of parameters that do not affect the state of the sensor network, 2) reduction of communication sessions over the network (the data are transmitted only if their values can affect the state of the sensor network). The studies of the proposed algorithm have shown that at classification accuracy close to 100%, the number of communication sessions can be reduced by 80%.

  9. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    Science.gov (United States)

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-11-09

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  10. Evaluating detection and estimation capabilities of magnetometer-based vehicle sensors

    Science.gov (United States)

    Slater, David M.; Jacyna, Garry M.

    2013-05-01

    In an effort to secure the northern and southern United States borders, MITRE has been tasked with developing Modeling and Simulation (M&S) tools that accurately capture the mapping between algorithm-level Measures of Performance (MOP) and system-level Measures of Effectiveness (MOE) for current/future surveillance systems deployed by the the Customs and Border Protection Office of Technology Innovations and Acquisitions (OTIA). This analysis is part of a larger M&S undertaking. The focus is on two MOPs for magnetometer-based Unattended Ground Sensors (UGS). UGS are placed near roads to detect passing vehicles and estimate properties of the vehicle's trajectory such as bearing and speed. The first MOP considered is the probability of detection. We derive probabilities of detection for a network of sensors over an arbitrary number of observation periods and explore how the probability of detection changes when multiple sensors are employed. The performance of UGS is also evaluated based on the level of variance in the estimation of trajectory parameters. We derive the Cramer-Rao bounds for the variances of the estimated parameters in two cases: when no a priori information is known and when the parameters are assumed to be Gaussian with known variances. Sample results show that UGS perform significantly better in the latter case.

  11. Telecommunication Platforms for Transmitting Sensor Data over Communication Networks-State of the Art and Challenges.

    Science.gov (United States)

    Staniec, Kamil; Habrych, Marcin

    2016-07-19

    The importance of constructing wide-area sensor networks for holistic environmental state evaluation has been demonstrated. A general structure of such a network has been presented with distinction of three segments: local (based on ZigBee, Ethernet and ModBus techniques), core (base on cellular technologies) and the storage/application. The implementation of these techniques requires knowledge of their technical limitations and electromagnetic compatibility issues. The former refer to ZigBee performance degradation in multi-hop transmission, whereas the latter are associated with the common electromagnetic spectrum sharing with other existing technologies or with undesired radiated emissions generated by the radio modules of the sensor network. In many cases, it is also necessary to provide a measurement station with autonomous energy source, such as solar. As stems from measurements of the energetic efficiency of these sources, one should apply them with care and perform detailed power budget since their real performance may turn out to be far from expected. This, in turn, may negatively affect-in particular-the operation of chemical sensors implemented in the network as they often require additional heating.

  12. Magnetic Field Sensors Based on Giant Magnetoresistance (GMR Technology: Applications in Electrical Current Sensing

    Directory of Open Access Journals (Sweden)

    Càndid Reig

    2009-10-01

    Full Text Available The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR, from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications.

  13. A Solar Position Sensor Based on Image Vision.

    Science.gov (United States)

    Ruelas, Adolfo; Velázquez, Nicolás; Villa-Angulo, Carlos; Acuña, Alexis; Rosales, Pedro; Suastegui, José

    2017-07-29

    Solar collector technologies operate with better performance when the Sun beam direction is normal to the capturing surface, and for that to happen despite the relative movement of the Sun, solar tracking systems are used, therefore, there are rules and standards that need minimum accuracy for these tracking systems to be used in solar collectors' evaluation. Obtaining accuracy is not an easy job, hence in this document the design, construction and characterization of a sensor based on a visual system that finds the relative azimuth error and height of the solar surface of interest, is presented. With these characteristics, the sensor can be used as a reference in control systems and their evaluation. The proposed sensor is based on a microcontroller with a real-time clock, inertial measurement sensors, geolocation and a vision sensor, that obtains the angle of incidence from the sunrays' direction as well as the tilt and sensor position. The sensor's characterization proved how a measurement of a focus error or a Sun position can be made, with an accuracy of 0.0426° and an uncertainty of 0.986%, which can be modified to reach an accuracy under 0.01°. The validation of this sensor was determined showing the focus error on one of the best commercial solar tracking systems, a Kipp & Zonen SOLYS 2. To conclude, the solar tracking sensor based on a vision system meets the Sun detection requirements and components that meet the accuracy conditions to be used in solar tracking systems and their evaluation or, as a tracking and orientation tool, on photovoltaic installations and solar collectors.

  14. Experimental Investigation on Admittance-Based Piezoelectric Sensor Diagnostic Process

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyejin; Park, Tongil; Park, Gyuhae [Chonnam National University, Gwangju (Korea, Republic of)

    2015-01-15

    Structural health monitoring (SHM) techniques based on the use of active-sensing piezoelectric (PZT) materials have received considerable attention. The validation of the PZT functionality during SHM operation is critical to successfully implementing a reliable SHM system. In this study, we investigated several parameters that affect the admittance-based sensor diagnostic process. We experimentally identified the temperature dependency of the active-sensor diagnostic process. We found that the admittance-based sensor diagnostic process can differentiate the adhesion conditions of bonding materials that are used to install a PZT on a structure, which is important when designing a sensor diagnostic process for an SHM system.

  15. Fully wireless pressure sensor based on endoscopy images

    Science.gov (United States)

    Maeda, Yusaku; Mori, Hirohito; Nakagawa, Tomoaki; Takao, Hidekuni

    2018-04-01

    In this paper, the result of developing a fully wireless pressure sensor based on endoscopy images for an endoscopic surgery is reported for the first time. The sensor device has structural color with a nm-scale narrow gap, and the gap is changed by air pressure. The structural color of the sensor is acquired from camera images. Pressure detection can be realized with existing endoscope configurations only. The inner air pressure of the human body should be measured under flexible-endoscope operation using the sensor. Air pressure monitoring, has two important purposes. The first is to quantitatively measure tumor size under a constant air pressure for treatment selection. The second purpose is to prevent the endangerment of a patient due to over transmission of air. The developed sensor was evaluated, and the detection principle based on only endoscopy images has been successfully demonstrated.

  16. LPG based all plastic pressure sensor

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Lwin, R.; Leon-Saval, S.

    2015-01-01

    A prototype all-plastic pressure sensor is presented and characterized for potential use as an endoscope. The sensor is based on Long Period Gratings (LPG) inscribed with a CO2 laser in 6-ring microstructured PMMA fiber. Through a latex coated, plastic 3D-printed transducer pod, external pressure...... is converted to longitudinal elongation of the pod and therefore of the fiber containing the LPG. The sensor has been characterised for pressures of up to 160 mBar in an in-house built pressure chamber. Furthermore, the influence of the fiber prestrain, fiber thickness and the effect of different glues...

  17. Electrodes for Semiconductor Gas Sensors

    Science.gov (United States)

    Lee, Sung Pil

    2017-01-01

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349

  18. Low-temperature capacitive sensor based on perovskite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zaza, F., E-mail: fabio.zaza@enea.it; Serra, E.; Caprioli, F. [ENEA-Casaccia R.C. via Anguillarese 301, 00123 Rome (Italy); Orio, G.; Pasquali, M. [Department of Basic and Applied Sciences for Engineering, La Sapienza University, Via A. Scarpa 14/16, 00161 Rome (Italy)

    2015-06-23

    Energy, environmental and social issues drive towards the green political economy and the development of advanced technologies, promoting renewable energy sources, improving energy conversion efficiency and reducing exhaust gas emissions. The development of sustainable technologies requires strategic research in the area of gas sensors for monitoring air quality, controlling gas emissions and optimizing combustion processes. Solid state sensors are the most attractive one because of their simplicity in function, small size and low cost. The aim of this work is to synthetize and characterize strontium titanate and test its sensing performance. The prepared sensor device shows significant sensitivity and response rate at room-temperature. However, because of the low recovery rate, the regeneration of the sensor has to be made at high temperature for promoting the decomposition of the carbonates formed on the perovkite surface.

  19. Low-temperature capacitive sensor based on perovskite oxides

    International Nuclear Information System (INIS)

    Zaza, F.; Serra, E.; Caprioli, F.; Orio, G.; Pasquali, M.

    2014-01-01

    Energy, environmental and social issues drive towards the green political economy and the development of advanced technologies, promoting renewable energy sources, improving energy conversion efficiency and reducing exhaust gas emissions. The development of sustainable technologies requires strategic research in the area of gas sensors for monitoring air quality, controlling gas emissions and optimizing combustion processes. Solid state sensors are the most attractive one because of their simplicity in function, small size and low cost. The aim of this work is to synthetize and characterize strontium titanate and test its sensing performance. The prepared sensor device shows significant sensitivity and response rate at room-temperature. However, because of the low recovery rate, the regeneration of the sensor has to be made at high temperature for promoting the decomposition of the carbonates formed on the perovkite surface

  20. Low-temperature capacitive sensor based on perovskite oxides

    Science.gov (United States)

    Zaza, F.; Orio, G.; Serra, E.; Caprioli, F.; Pasquali, M.

    2015-06-01

    Energy, environmental and social issues drive towards the green political economy and the development of advanced technologies, promoting renewable energy sources, improving energy conversion efficiency and reducing exhaust gas emissions. The development of sustainable technologies requires strategic research in the area of gas sensors for monitoring air quality, controlling gas emissions and optimizing combustion processes. Solid state sensors are the most attractive one because of their simplicity in function, small size and low cost. The aim of this work is to synthetize and characterize strontium titanate and test its sensing performance. The prepared sensor device shows significant sensitivity and response rate at room-temperature. However, because of the low recovery rate, the regeneration of the sensor has to be made at high temperature for promoting the decomposition of the carbonates formed on the perovkite surface.

  1. A Protocol Layer Trust-Based Intrusion Detection Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2017-05-01

    Full Text Available This article proposes a protocol layer trust-based intrusion detection scheme for wireless sensor networks. Unlike existing work, the trust value of a sensor node is evaluated according to the deviations of key parameters at each protocol layer considering the attacks initiated at different protocol layers will inevitably have impacts on the parameters of the corresponding protocol layers. For simplicity, the paper mainly considers three aspects of trustworthiness, namely physical layer trust, media access control layer trust and network layer trust. The per-layer trust metrics are then combined to determine the overall trust metric of a sensor node. The performance of the proposed intrusion detection mechanism is then analyzed using the t-distribution to derive analytical results of false positive and false negative probabilities. Numerical analytical results, validated by simulation results, are presented in different attack scenarios. It is shown that the proposed protocol layer trust-based intrusion detection scheme outperforms a state-of-the-art scheme in terms of detection probability and false probability, demonstrating its usefulness for detecting cross-layer attacks.

  2. Integrated chemical sensor array platform based on a light emitting diode, xerogel-derived sensor elements, and high-speed pin printing

    International Nuclear Information System (INIS)

    Cho, Eun Jeong; Bright, Frank V.

    2002-01-01

    We report a new, solid-state, integrated optical array sensor platform. By using pin printing technology in concert with sol-gel-processing methods, we form discrete xerogel-based microsensor elements that are on the order of 100 μm in diameter and 1 μm thick directly on the face of a light emitting diode (LED). The LED serves as the light source to excite chemically responsive luminophores sequestered within the doped xerogel microsensors and the analyte-dependent emission from within the doped xerogel is detected with a charge coupled device (CCD). We overcome the problem of background illumination from the LED reaching the CCD and the associated biasing that results by coating the LED first with a thin layer of blue paint. The thin paint layer serves as an optical filter, knocking out the LEDs red-edge spectral tail. The problem of the spatially-dependent fluence across the LED face is solved entirely by performing ratiometric measurements. We illustrate the performance of the new sensor scheme by forming an array of 100 discrete O 2 -responsive sensing elements on the face of a single LED. The combination of pin printing with an integrated sensor and light source platform results in a rapid method of forming (∼1 s per sensor element) reusable sensor arrays. The entire sensor array can be calibrated using just one sensor element. Array-to-array reproducibly is <8%. Arrays can be formed using single or multiple pins with indistinguishable analytical performance

  3. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2014-01-01

    Full Text Available Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.

  4. Metal/Metal Oxide Differential Electrode pH Sensors

    Science.gov (United States)

    West, William; Buehler, Martin; Keymeulen, Didier

    2007-01-01

    Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.

  5. ISFET based enzyme sensors

    NARCIS (Netherlands)

    van der Schoot, Bart H.; Bergveld, Piet

    1987-01-01

    This paper reviews the results that have been reported on ISFET based enzyme sensors. The most important improvement that results from the application of ISFETs instead of glass membrane electrodes is in the method of fabrication. Problems with regard to the pH dependence of the response and the

  6. MULTIFUNCTIONAL (NOx/CO/O2) SOLID-STATE SENSORS FOR COAL COMBUSTION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Wachsman

    2005-05-29

    We have made great progress in both developing solid state sensors for coal combustion control and understanding the mechanism by which they operate. We have fabricated and tested numerous sensors and identified the role electrode microstructure plays in sensor response. We have developed both p-type (La{sub 2}CuO{sub 4}) and n-type (WO{sub 3}) semiconducting NO{sub x} sensing electrodes. We have demonstrated their respective sensing behavior (sensitivities and cross-sensitivities), related this behavior to their gas adsorption/desorption behavior and catalytic activity, and in so doing verified that our proposed Differential Electrode Equilibria is a more comprehensive sensing mechanism. These investigations and their results are summarized below. The composition and microstructure of the sensing electrode is the key parameters that influence the sensing performance. We investigated the effect of electrode microstructure on the NO{sub x} sensitivity and response time using a La{sub 2}CuO{sub 4}-based potentiometric sensor. Temperature dependence, cross-sensitivity and selectivities of a La{sub 2}CuO{sub 4}- and WO{sub 3}-based potentiometric NO{sub x} sensor were investigated both in N{sub 2} and in a simulated exhaust gas. We performed temperature programmed reaction (TPR) and desorption (TPD) experiments to determine the reaction and adsorption characteristics of O{sub 2}, NO{sub x}, CO, CO{sub 2}, and their mixtures on the electrodes, and related the results to sensor performance. In order to optimize the sensor electrode microstructure, powders were prepared using four different powder synthesis routes, resulting in different particle size distributions and BET surface areas. Different sintering conditions were also applied. The microstructure of electrodes, synthesized with the same composition, has a dramatic effect on both sensitivity and response time of potentiometric NO sensors, showing that large surface areas generate a porous morphology with smaller

  7. A MEMS SOI-based piezoresistive fluid flow sensor

    Science.gov (United States)

    Tian, B.; Li, H. F.; Yang, H.; Song, D. L.; Bai, X. W.; Zhao, Y. L.

    2018-02-01

    In this paper, a SOI (silicon-on-insulator)-based piezoresistive fluid flow sensor is presented; the presented flow sensor mainly consists of a nylon sensing head, stainless steel cantilever beam, SOI sensor chip, printed circuit board, half-cylinder gasket, and stainless steel shell. The working principle of the sensor and some detailed contrastive analysis about the sensor structure were introduced since the nylon sensing head and stainless steel cantilever beam have distinct influence on the sensor performance; the structure of nylon sensing head and stainless steel cantilever beam is also discussed. The SOI sensor chip was fabricated using micro-electromechanical systems technologies, such as reactive ion etching and low pressure chemical vapor deposition. The designed fluid sensor was packaged and tested; a calibration installation system was purposely designed for the sensor experiment. The testing results indicated that the output voltage of the sensor is proportional to the square of the fluid flow velocity, which is coincident with the theoretical derivation. The tested sensitivity of the sensor is 3.91 × 10-4 V ms2/kg.

  8. Development of a Waterproof Crack-Based Stretchable Strain Sensor Based on PDMS Shielding

    Directory of Open Access Journals (Sweden)

    Seong Kyung Hong

    2018-04-01

    Full Text Available This paper details the design of a poly(dimethylsiloxane (PDMS-shielded waterproof crack-based stretchable strain sensor, in which the electrical characteristics and sensing performance are not influenced by changes in humidity. This results in a higher number of potential applications for the sensor. A previously developed omni-purpose stretchable strain (OPSS sensor was used as the basis for this work, which utilizes a metal cracking structure and provides a wide sensing range and high sensitivity. Changes in the conductivity of the OPSS sensor, based on humidity conditions, were investigated along with the potential possibility of using the design as a humidity sensor. However, to prevent conductivity variation, which can decrease the reliability and sensing ability of the OPSS sensor, PDMS was utilized as a shielding layer over the OPSS sensor. The PDMS-shielded OPSS sensor showed approximately the same electrical characteristics as previous designs, including in a high humidity environment, while maintaining its strain sensing capabilities. The developed sensor shows promise for use under high humidity conditions and in underwater applications. Therefore, considering its unique features and reliable sensing performance, the developed PDMS-shielded waterproof OPSS sensor has potential utility in a wide range of applications, such as motion monitoring, medical robotics and wearable healthcare devices.

  9. Development of a Waterproof Crack-Based Stretchable Strain Sensor Based on PDMS Shielding.

    Science.gov (United States)

    Hong, Seong Kyung; Yang, Seongjin; Cho, Seong J; Jeon, Hyungkook; Lim, Geunbae

    2018-04-12

    This paper details the design of a poly(dimethylsiloxane) (PDMS)-shielded waterproof crack-based stretchable strain sensor, in which the electrical characteristics and sensing performance are not influenced by changes in humidity. This results in a higher number of potential applications for the sensor. A previously developed omni-purpose stretchable strain (OPSS) sensor was used as the basis for this work, which utilizes a metal cracking structure and provides a wide sensing range and high sensitivity. Changes in the conductivity of the OPSS sensor, based on humidity conditions, were investigated along with the potential possibility of using the design as a humidity sensor. However, to prevent conductivity variation, which can decrease the reliability and sensing ability of the OPSS sensor, PDMS was utilized as a shielding layer over the OPSS sensor. The PDMS-shielded OPSS sensor showed approximately the same electrical characteristics as previous designs, including in a high humidity environment, while maintaining its strain sensing capabilities. The developed sensor shows promise for use under high humidity conditions and in underwater applications. Therefore, considering its unique features and reliable sensing performance, the developed PDMS-shielded waterproof OPSS sensor has potential utility in a wide range of applications, such as motion monitoring, medical robotics and wearable healthcare devices.

  10. A frequency output ferroelectric phase PNZT capacitor-based temperature sensor

    KAUST Repository

    Khan, Naveed

    2016-09-05

    In this paper, a frequency output temperature sensor based on a 4% Niobium doped 20/80 Zr/Ti Lead Zirconate Titanate (PNZT) capacitor is proposed. The sensor capacitance vs temperature and capacitance vs voltage characteristics are experimentally measured below the Curie temperature of the ferroelectric capacitor. The capacitance of the 20/80 (Zr/Ti) composition PNZT capacitor changes by 29% for a temperature change from 10°C to 100°C, which translates to 0.32%/°C temperature sensitivity. The measured sensor characteristics show less than ∼0.7°C deviation from the ideal linear response. A Wien bridge oscillator based temperature sensor is demonstrated based on the PNZT capacitors. Mathematical analysis for the effect of the op-amp finite unity-gain frequency on the sensor circuit oscillation frequency is provided. The experimentally realized frequency output temperature sensor shows -17.6% relative frequency change for a temperature change from 10°C to 100°C. The proposed capacitive temperature sensor can be used in low-power smart sensor nodes without the need for extensive calibration. © 2015 IEEE.

  11. Microbial BOD sensors based on Zr (IV)-loaded collagen fiber.

    Science.gov (United States)

    Zhao, Lei; He, Li; Chen, Shujuan; Zou, Likou; Zhou, Kang; Ao, Xiaolin; Liu, Shuliang; Hu, Xinjie; Han, Guoquan

    2017-03-01

    Biochemical oxygen demand (BOD) sensors based on Zr (IV)-loaded collagen fiber (ZrCF), a novel material with great porous structure, were developed. This novel material shows adsorbability by microorganisms. Saccharomyces cerevisiae and Escherichia coli were used for the construction of BOD sensors. Factors affecting BOD sensor performance were examined. The ZrCF-based BOD sensor showed different sensitivities and linear response ranges with different biofilm densities. The amount of microorganisms strongly affected the performance of the BOD sensor. Poor permeability of previously reported immobilization carriers were greatly circumvented by ZrCF. The service life of the ZrCF-based BOD sensor was more than 42 days. The immobilized microorganisms can be stored for more than 6 months under 4°C in PB solution. There was good correlation between the results of the sensor method and the standard 5-day BOD method in the determination of pure organic substrates and real water samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Integrated Temperature Sensors based on Heat Diffusion

    NARCIS (Netherlands)

    Van Vroonhoven, C.P.L.

    2015-01-01

    This thesis describes the theory, design and implementation of a new class of integrated temperature sensors, based on heat diffusion. In such sensors, temperature is sensed by measuring the time it takes for heat to diffuse through silicon. An on-chip thermal delay can be determined by geometry and

  13. Hydrogen sensor based on palladium-yttrium alloy nanosheet

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Boyi [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Zhu, Yong, E-mail: y.zhu@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Chen, Youping; Song, Han; Huang, Pengcheng [School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Dao, Dzung Viet [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia)

    2017-06-15

    This paper presents a hydrogen sensor based on palladium-yttrium (Pd-Y) alloy nanosheet. Zigzag-shaped Pd-Y nanosheet with a thickness of 19.3 nm was deposited on a quartz substrate by using an ultrahigh-vacuum magnetron sputtering system and shadow mask. The atomic ratio of palladium to yttrium in the nanosheet was 0.92/0.08. The fabrication process was simple and low-cost, and the sensor can be mass-produced. The experimental results show the sensor has a superior sensitivity, reversibility, and reproducibility. The resistive-based hydrogen detection mechanism in this research is much simpler and more compact compared to the optical-based detection method. - Highlights: • Pd-Y sensing element was fabricated using a magnetron sputtering system and shadow mask. • The Pd-Y compound consisted of 92% Pd and 8% Y. • The fabrication process was simple, low-cost, and mass-production compatible. • The sensor showed superior sensitivity, reversibility, and reproducibility to hydrogen gas. • The device is more compact than the optical-based counterpart.

  14. Hydrogen sensor based on palladium-yttrium alloy nanosheet

    International Nuclear Information System (INIS)

    Wang, Boyi; Zhu, Yong; Chen, Youping; Song, Han; Huang, Pengcheng; Dao, Dzung Viet

    2017-01-01

    This paper presents a hydrogen sensor based on palladium-yttrium (Pd-Y) alloy nanosheet. Zigzag-shaped Pd-Y nanosheet with a thickness of 19.3 nm was deposited on a quartz substrate by using an ultrahigh-vacuum magnetron sputtering system and shadow mask. The atomic ratio of palladium to yttrium in the nanosheet was 0.92/0.08. The fabrication process was simple and low-cost, and the sensor can be mass-produced. The experimental results show the sensor has a superior sensitivity, reversibility, and reproducibility. The resistive-based hydrogen detection mechanism in this research is much simpler and more compact compared to the optical-based detection method. - Highlights: • Pd-Y sensing element was fabricated using a magnetron sputtering system and shadow mask. • The Pd-Y compound consisted of 92% Pd and 8% Y. • The fabrication process was simple, low-cost, and mass-production compatible. • The sensor showed superior sensitivity, reversibility, and reproducibility to hydrogen gas. • The device is more compact than the optical-based counterpart.

  15. Flexible Graphene-Based Wearable Gas and Chemical Sensors.

    Science.gov (United States)

    Singh, Eric; Meyyappan, M; Nalwa, Hari Singh

    2017-10-11

    Wearable electronics is expected to be one of the most active research areas in the next decade; therefore, nanomaterials possessing high carrier mobility, optical transparency, mechanical robustness and flexibility, lightweight, and environmental stability will be in immense demand. Graphene is one of the nanomaterials that fulfill all these requirements, along with other inherently unique properties and convenience to fabricate into different morphological nanostructures, from atomically thin single layers to nanoribbons. Graphene-based materials have also been investigated in sensor technologies, from chemical sensing to detection of cancer biomarkers. The progress of graphene-based flexible gas and chemical sensors in terms of material preparation, sensor fabrication, and their performance are reviewed here. The article provides a brief introduction to graphene-based materials and their potential applications in flexible and stretchable wearable electronic devices. The role of graphene in fabricating flexible gas sensors for the detection of various hazardous gases, including nitrogen dioxide (NO 2 ), ammonia (NH 3 ), hydrogen (H 2 ), hydrogen sulfide (H 2 S), carbon dioxide (CO 2 ), sulfur dioxide (SO 2 ), and humidity in wearable technology, is discussed. In addition, applications of graphene-based materials are also summarized in detecting toxic heavy metal ions (Cd, Hg, Pb, Cr, Fe, Ni, Co, Cu, Ag), and volatile organic compounds (VOCs) including nitrobenzene, toluene, acetone, formaldehyde, amines, phenols, bisphenol A (BPA), explosives, chemical warfare agents, and environmental pollutants. The sensitivity, selectivity and strategies for excluding interferents are also discussed for graphene-based gas and chemical sensors. The challenges for developing future generation of flexible and stretchable sensors for wearable technology that would be usable for the Internet of Things (IoT) are also highlighted.

  16. Applying Sensor Web Technology to Marine Sensor Data

    Science.gov (United States)

    Jirka, Simon; del Rio, Joaquin; Mihai Toma, Daniel; Nüst, Daniel; Stasch, Christoph; Delory, Eric

    2015-04-01

    In this contribution we present two activities illustrating how Sensor Web technology helps to enable a flexible and interoperable sharing of marine observation data based on standards. An important foundation is the Sensor Web Architecture developed by the European FP7 project NeXOS (Next generation Low-Cost Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management). This architecture relies on the Open Geospatial Consortium's (OGC) Sensor Web Enablement (SWE) framework. It is an exemplary solution for facilitating the interoperable exchange of marine observation data within and between (research) organisations. The architecture addresses a series of functional and non-functional requirements which are fulfilled through different types of OGC SWE components. The diverse functionalities offered by the NeXOS Sensor Web architecture are shown in the following overview: - Pull-based observation data download: This is achieved through the OGC Sensor Observation Service (SOS) 2.0 interface standard. - Push-based delivery of observation data to allow users the subscription to new measurements that are relevant for them: For this purpose there are currently several specification activities under evaluation (e.g. OGC Sensor Event Service, OGC Publish/Subscribe Standards Working Group). - (Web-based) visualisation of marine observation data: Implemented through SOS client applications. - Configuration and controlling of sensor devices: This is ensured through the OGC Sensor Planning Service 2.0 interface. - Bridging between sensors/data loggers and Sensor Web components: For this purpose several components such as the "Smart Electronic Interface for Sensor Interoperability" (SEISI) concept are developed; this is complemented by a more lightweight SOS extension (e.g. based on the W3C Efficient XML Interchange (EXI) format). To further advance this architecture, there is on-going work to develop dedicated profiles of selected OGC

  17. Applying Sensor-Based Technology to Improve Construction Safety Management.

    Science.gov (United States)

    Zhang, Mingyuan; Cao, Tianzhuo; Zhao, Xuefeng

    2017-08-11

    Construction sites are dynamic and complicated systems. The movement and interaction of people, goods and energy make construction safety management extremely difficult. Due to the ever-increasing amount of information, traditional construction safety management has operated under difficult circumstances. As an effective way to collect, identify and process information, sensor-based technology is deemed to provide new generation of methods for advancing construction safety management. It makes the real-time construction safety management with high efficiency and accuracy a reality and provides a solid foundation for facilitating its modernization, and informatization. Nowadays, various sensor-based technologies have been adopted for construction safety management, including locating sensor-based technology, vision-based sensing and wireless sensor networks. This paper provides a systematic and comprehensive review of previous studies in this field to acknowledge useful findings, identify the research gaps and point out future research directions.

  18. Development of a solid-state multi-sensor array camera for real time imaging of magnetic fields

    International Nuclear Information System (INIS)

    Benitez, D; Gaydecki, P; Quek, S; Torres, V

    2007-01-01

    The development of a real-time magnetic field imaging camera based on solid-state sensors is described. The final laboratory comprises a 2D array of 33 x 33 solid state, tri-axial magneto-inductive sensors, and is located within a large current-carrying coil. This may be excited to produce either a steady or time-varying magnetic field. Outputs from several rows of sensors are routed to a sub-master controller and all sub-masters route to a master-controller responsible for data coordination and signal pre-processing. The data are finally streamed to a host computer via a USB interface and the image generated and displayed at a rate of several frames per second. Accurate image generation is predicated on a knowledge of the sensor response, magnetic field perturbations and the nature of the target respecting permeability and conductivity. To this end, the development of the instrumentation has been complemented by extensive numerical modelling of field distribution patterns using boundary element methods. Although it was originally intended for deployment in the nondestructive evaluation (NDE) of reinforced concrete, it was soon realised during the course of the work that the magnetic field imaging system had many potential applications, for example, in medicine, security screening, quality assurance (such as the food industry), other areas of nondestructive evaluation (NDE), designs associated with magnetic fields, teaching and research

  19. Development of a solid-state multi-sensor array camera for real time imaging of magnetic fields

    Science.gov (United States)

    Benitez, D.; Gaydecki, P.; Quek, S.; Torres, V.

    2007-07-01

    The development of a real-time magnetic field imaging camera based on solid-state sensors is described. The final laboratory comprises a 2D array of 33 x 33 solid state, tri-axial magneto-inductive sensors, and is located within a large current-carrying coil. This may be excited to produce either a steady or time-varying magnetic field. Outputs from several rows of sensors are routed to a sub-master controller and all sub-masters route to a master-controller responsible for data coordination and signal pre-processing. The data are finally streamed to a host computer via a USB interface and the image generated and displayed at a rate of several frames per second. Accurate image generation is predicated on a knowledge of the sensor response, magnetic field perturbations and the nature of the target respecting permeability and conductivity. To this end, the development of the instrumentation has been complemented by extensive numerical modelling of field distribution patterns using boundary element methods. Although it was originally intended for deployment in the nondestructive evaluation (NDE) of reinforced concrete, it was soon realised during the course of the work that the magnetic field imaging system had many potential applications, for example, in medicine, security screening, quality assurance (such as the food industry), other areas of nondestructive evaluation (NDE), designs associated with magnetic fields, teaching and research.

  20. Development of GaN-based micro chemical sensor nodes

    Science.gov (United States)

    Son, Kyung-ah; Prokopuk, Nicholas; George, Thomas; Moon, Jeong S.

    2005-01-01

    Sensors based on III-N technology are gaining significant interest due to their potential for monolithic integration of RF transceivers and light sources and the capability of high temperature operations. We are developing a GaN-based micro chemical sensor node for remote detection of chemical toxins, and present electrical responses of AlGaN/GaN HEMT (High Electron Mobility Transistor) sensors to chemical toxins as well as other common gases.

  1. Optimize Etching Based Single Mode Fiber Optic Temperature Sensor

    OpenAIRE

    Ajay Kumar; Dr. Pramod Kumar

    2014-01-01

    This paper presents a description of etching process for fabrication single mode optical fiber sensors. The process of fabrication demonstrates an optimized etching based method to fabricate single mode fiber (SMF) optic sensors in specified constant time and temperature. We propose a single mode optical fiber based temperature sensor, where the temperature sensing region is obtained by etching its cladding diameter over small length to a critical value. It is observed that th...

  2. A high sensitivity nanomaterial based SAW humidity sensor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, T-T; Chou, T-H [Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan (China); Chen, Y-Y [Department of Mechanical Engineering, Tatung University, Taipei 104, Taiwan (China)], E-mail: wutt@ndt.iam.ntu.edu.tw

    2008-04-21

    In this paper, a highly sensitive humidity sensor is reported. The humidity sensor is configured by a 128{sup 0}YX-LiNbO{sub 3} based surface acoustic wave (SAW) resonator whose operating frequency is at 145 MHz. A dual delay line configuration is realized to eliminate external temperature fluctuations. Moreover, for nanostructured materials possessing high surface-to-volume ratio, large penetration depth and fast charge diffusion rate, camphor sulfonic acid doped polyaniline (PANI) nanofibres are synthesized by the interfacial polymerization method and further deposited on the SAW resonator as selective coating to enhance sensitivity. The humidity sensor is used to measure various relative humidities in the range 5-90% at room temperature. Results show that the PANI nanofibre based SAW humidity sensor exhibits excellent sensitivity and short-term repeatability.

  3. pH sensor based on boron nitride nanotubes.

    Science.gov (United States)

    Huang, Q; Bando, Y; Zhao, L; Zhi, C Y; Golberg, D

    2009-10-14

    A submicrometer-sized pH sensor based on biotin-fluorescein-functionalized multiwalled BN nanotubes with anchored Ag nanoparticles is designed. Intrinsic pH-dependent photoluminescence and Raman signals in attached fluorescein molecules enhanced by Ag nanoparticles allow this novel nanohybrid to perform as a practical pH sensor. It is able to work in a submicrometer-sized space. For example, the sensor may determine the environmental pH of sub-units in living cells where a traditional optical fiber sensor fails because of spatial limitations.

  4. pH sensor based on boron nitride nanotubes

    International Nuclear Information System (INIS)

    Huang, Q; Bando, Y; Zhao, L; Zhi, C Y; Golberg, D

    2009-01-01

    A submicrometer-sized pH sensor based on biotin-fluorescein-functionalized multiwalled BN nanotubes with anchored Ag nanoparticles is designed. Intrinsic pH-dependent photoluminescence and Raman signals in attached fluorescein molecules enhanced by Ag nanoparticles allow this novel nanohybrid to perform as a practical pH sensor. It is able to work in a submicrometer-sized space. For example, the sensor may determine the environmental pH of sub-units in living cells where a traditional optical fiber sensor fails because of spatial limitations.

  5. Development of paper-based electrochemical sensors for water quality monitoring

    Science.gov (United States)

    Smith, Suzanne; Bezuidenhout, Petroné; Mbanjwa, Mesuli; Zheng, Haitao; Conning, Mariette; Palaniyandy, Nithyadharseni; Ozoemena, Kenneth; Land, Kevin

    2016-02-01

    We present a method for the development of paper-based electrochemical sensors for detection of heavy metals in water samples. Contaminated water leads to serious health problems and environmental issues. Paper is ideally suited for point-of-care testing, as it is low cost, disposable, and multi-functional. Initial sensor designs were manufactured on paper substrates using combinations of inkjet printing and screen printing technologies using silver and carbon inks. Bismuth onion-like carbon nanoparticle ink was manufactured and used as the active material of the sensor for both commercial and paper-based sensors, which were compared using standard electrochemical analysis techniques. The results highlight the potential of paper-based sensors to be used effectively for rapid water quality monitoring at the point-of-need.

  6. Distributed Input and State Estimation Using Local Information in Heterogeneous Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dzung Tran

    2017-07-01

    Full Text Available A new distributed input and state estimation architecture is introduced and analyzed for heterogeneous sensor networks. Specifically, nodes of a given sensor network are allowed to have heterogeneous information roles in the sense that a subset of nodes can be active (that is, subject to observations of a process of interest and the rest can be passive (that is, subject to no observation. Both fixed and varying active and passive roles of sensor nodes in the network are investigated. In addition, these nodes are allowed to have non-identical sensor modalities under the common underlying assumption that they have complimentary properties distributed over the sensor network to achieve collective observability. The key feature of our framework is that it utilizes local information not only during the execution of the proposed distributed input and state estimation architecture but also in its design in that global uniform ultimate boundedness of error dynamics is guaranteed once each node satisfies given local stability conditions independent from the graph topology and neighboring information of these nodes. As a special case (e.g., when all nodes are active and a positive real condition is satisfied, the asymptotic stability can be achieved with our algorithm. Several illustrative numerical examples are further provided to demonstrate the efficacy of the proposed architecture.

  7. Sensor fusion-based map building for mobile robot exploration

    International Nuclear Information System (INIS)

    Ribo, M.

    2000-01-01

    To carry out exploration tasks in unknown or partially unknown environments, a mobile robot needs to acquire and maintain models of its environment. In doing so, several sensors of same nature and/or heterogeneous sensor configurations may be used by the robot to achieve reliable performances. However, this in turn poses the problem of sensor fusion-based map building: How to interpret, combine and integrate sensory information in order to build a proper representation of the environment. Specifically, the goal of this thesis is to probe integration algorithms for Occupancy Grid (OG) based map building using odometry, ultrasonic rangefinders, and stereo vision. Three different uncertainty calculi are presented here which are used for sensor fusion-based map building purposes. They are based on probability theory, Dempster-Shafer theory of evidence, and fuzzy set theory. Besides, two different sensor models are depicted which are used to translate sensing data into range information. Experimental examples of OGs built from real data recorded by two robots in office-like environment are presented. They show the feasibility of the proposed approach for building both sonar and visual based OGs. A comparison among the presented uncertainty calculi is performed in a sonar-based framework. Finally, the fusion of both sonar and visual information based of the fuzzy set theory is depicted. (author)

  8. Physiological roles of acid-base sensors.

    Science.gov (United States)

    Levin, Lonny R; Buck, Jochen

    2015-01-01

    Acid-base homeostasis is essential for life. The macromolecules upon which living organisms depend are sensitive to pH changes, and physiological systems use the equilibrium between carbon dioxide, bicarbonate, and protons to buffer their pH. Biological processes and environmental insults are constantly challenging an organism's pH; therefore, to maintain a consistent and proper pH, organisms need sensors that measure pH and that elicit appropriate responses. Mammals use multiple sensors for measuring both intracellular and extracellular pH, and although some mammalian pH sensors directly measure protons, it has recently become apparent that many pH-sensing systems measure pH via bicarbonate-sensing soluble adenylyl cyclase.

  9. Capillarity-based preparation system for optical colorimetric sensor arrays.

    Science.gov (United States)

    Luo, Xiao-Gang; Yi, Xin; Bu, Xiang-Nan; Hou, Chang-Jun; Huo, Dan-Qun; Yang, Mei; Fa, Huan-Bao; Lei, Jin-Can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  10. Finite State Machine Analysis of Remote Sensor Data

    International Nuclear Information System (INIS)

    Barbson, John M.

    1999-01-01

    The use of unattended monitoring systems for monitoring the status of high value assets and processes has proven to be less costly and less intrusive than the on-site inspections which they are intended to replace. However, these systems present a classic information overload problem to anyone trying to analyze the resulting sensor data. These data are typically so voluminous and contain information at such a low level that the significance of any single reading (e.g., a door open event) is not obvious. Sophisticated, automated techniques are needed to extract expected patterns in the data and isolate and characterize the remaining patterns that are due to undeclared activities. This paper describes a data analysis engine that runs a state machine model of each facility and its sensor suite. It analyzes the raw sensor data, converting and combining the inputs from many sensors into operator domain level information. It compares the resulting activities against a set of activities declared by an inspector or operator, and then presents the differences in a form comprehensible to an inspector. Although the current analysis engine was written with international nuclear material safeguards, nonproliferation, and transparency in mind, since there is no information about any particular facility in the software, there is no reason why it cannot be applied anywhere it is important to verify processes are occurring as expected, to detect intrusion into a secured area, or to detect the diversion of valuable assets

  11. Electrochemical sensors and biosensors based on less aggregated graphene.

    Science.gov (United States)

    Bo, Xiangjie; Zhou, Ming; Guo, Liping

    2017-03-15

    As a novel single-atom-thick sheet of sp 2 hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Estimation of local concentration from measurements of stochastic adsorption dynamics using carbon nanotube-based sensors

    International Nuclear Information System (INIS)

    Jang, Hong; Lee, Jay H.; Braatz, Richard D.

    2016-01-01

    This paper proposes a maximum likelihood estimation (MLE) method for estimating time varying local concentration of the target molecule proximate to the sensor from the time profile of monomolecular adsorption and desorption on the surface of the sensor at nanoscale. Recently, several carbon nanotube sensors have been developed that can selectively detect target molecules at a trace concentration level. These sensors use light intensity changes mediated by adsorption or desorption phenomena on their surfaces. The molecular events occurring at trace concentration levels are inherently stochastic, posing a challenge for optimal estimation. The stochastic behavior is modeled by the chemical master equation (CME), composed of a set of ordinary differential equations describing the time evolution of probabilities for the possible adsorption states. Given the significant stochastic nature of the underlying phenomena, rigorous stochastic estimation based on the CME should lead to an improved accuracy over than deterministic estimation formulated based on the continuum model. Motivated by this expectation, we formulate the MLE based on an analytical solution of the relevant CME, both for the constant and the time-varying local concentrations, with the objective of estimating the analyte concentration field in real time from the adsorption readings of the sensor array. The performances of the MLE and the deterministic least squares are compared using data generated by kinetic Monte Carlo (KMC) simulations of the stochastic process. Some future challenges are described for estimating and controlling the concentration field in a distributed domain using the sensor technology.

  13. A market-based optimization approach to sensor and resource management

    Science.gov (United States)

    Schrage, Dan; Farnham, Christopher; Gonsalves, Paul G.

    2006-05-01

    Dynamic resource allocation for sensor management is a problem that demands solutions beyond traditional approaches to optimization. Market-based optimization applies solutions from economic theory, particularly game theory, to the resource allocation problem by creating an artificial market for sensor information and computational resources. Intelligent agents are the buyers and sellers in this market, and they represent all the elements of the sensor network, from sensors to sensor platforms to computational resources. These agents interact based on a negotiation mechanism that determines their bidding strategies. This negotiation mechanism and the agents' bidding strategies are based on game theory, and they are designed so that the aggregate result of the multi-agent negotiation process is a market in competitive equilibrium, which guarantees an optimal allocation of resources throughout the sensor network. This paper makes two contributions to the field of market-based optimization: First, we develop a market protocol to handle heterogeneous goods in a dynamic setting. Second, we develop arbitrage agents to improve the efficiency in the market in light of its dynamic nature.

  14. Distributed Event-Based Set-Membership Filtering for a Class of Nonlinear Systems With Sensor Saturations Over Sensor Networks.

    Science.gov (United States)

    Ma, Lifeng; Wang, Zidong; Lam, Hak-Keung; Kyriakoulis, Nikos

    2017-11-01

    In this paper, the distributed set-membership filtering problem is investigated for a class of discrete time-varying system with an event-based communication mechanism over sensor networks. The system under consideration is subject to sector-bounded nonlinearity, unknown but bounded noises and sensor saturations. Each intelligent sensing node transmits the data to its neighbors only when certain triggering condition is violated. By means of a set of recursive matrix inequalities, sufficient conditions are derived for the existence of the desired distributed event-based filter which is capable of confining the system state in certain ellipsoidal regions centered at the estimates. Within the established theoretical framework, two additional optimization problems are formulated: one is to seek the minimal ellipsoids (in the sense of matrix trace) for the best filtering performance, and the other is to maximize the triggering threshold so as to reduce the triggering frequency with satisfactory filtering performance. A numerically attractive chaos algorithm is employed to solve the optimization problems. Finally, an illustrative example is presented to demonstrate the effectiveness and applicability of the proposed algorithm.

  15. Influence of temperature and humidity on carbon based printed flexible sensors

    KAUST Repository

    Nag, Anindya

    2018-03-02

    This paper presents the response of two different types of novel printed sensors towards the change in temperature and humidity. The electrodes of all the sensors were based on carbon materials. Followed by the design and fabrication of the sensors, the responses of the sensors were analyzed for different temperature and humidity conditions in an incubator. These results provide a podium to enhance the alternation of the fabrication procedure of carbon-based printed sensors.

  16. Influence of temperature and humidity on carbon based printed flexible sensors

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas; Kosel, Jü rgen

    2018-01-01

    This paper presents the response of two different types of novel printed sensors towards the change in temperature and humidity. The electrodes of all the sensors were based on carbon materials. Followed by the design and fabrication of the sensors, the responses of the sensors were analyzed for different temperature and humidity conditions in an incubator. These results provide a podium to enhance the alternation of the fabrication procedure of carbon-based printed sensors.

  17. Validation of Underwater Sensor Package Using Feature Based SLAM

    Directory of Open Access Journals (Sweden)

    Christopher Cain

    2016-03-01

    Full Text Available Robotic vehicles working in new, unexplored environments must be able to locate themselves in the environment while constructing a picture of the objects in the environment that could act as obstacles that would prevent the vehicles from completing their desired tasks. In enclosed environments, underwater range sensors based off of acoustics suffer performance issues due to reflections. Additionally, their relatively high cost make them less than ideal for usage on low cost vehicles designed to be used underwater. In this paper we propose a sensor package composed of a downward facing camera, which is used to perform feature tracking based visual odometry, and a custom vision-based two dimensional rangefinder that can be used on low cost underwater unmanned vehicles. In order to examine the performance of this sensor package in a SLAM framework, experimental tests are performed using an unmanned ground vehicle and two feature based SLAM algorithms, the extended Kalman filter based approach and the Rao-Blackwellized, particle filter based approach, to validate the sensor package.

  18. Validation of Underwater Sensor Package Using Feature Based SLAM

    Science.gov (United States)

    Cain, Christopher; Leonessa, Alexander

    2016-01-01

    Robotic vehicles working in new, unexplored environments must be able to locate themselves in the environment while constructing a picture of the objects in the environment that could act as obstacles that would prevent the vehicles from completing their desired tasks. In enclosed environments, underwater range sensors based off of acoustics suffer performance issues due to reflections. Additionally, their relatively high cost make them less than ideal for usage on low cost vehicles designed to be used underwater. In this paper we propose a sensor package composed of a downward facing camera, which is used to perform feature tracking based visual odometry, and a custom vision-based two dimensional rangefinder that can be used on low cost underwater unmanned vehicles. In order to examine the performance of this sensor package in a SLAM framework, experimental tests are performed using an unmanned ground vehicle and two feature based SLAM algorithms, the extended Kalman filter based approach and the Rao-Blackwellized, particle filter based approach, to validate the sensor package. PMID:26999142

  19. A Novel Multisensor Traffic State Assessment System Based on Incomplete Data

    Directory of Open Access Journals (Sweden)

    Yiliang Zeng

    2014-01-01

    Full Text Available A novel multisensor system with incomplete data is presented for traffic state assessment. The system comprises probe vehicle detection sensors, fixed detection sensors, and traffic state assessment algorithm. First of all, the validity checking of the traffic flow data is taken as preprocessing of this method. And then a new method based on the history data information is proposed to fuse and recover the incomplete data. According to the characteristics of space complementary of data based on the probe vehicle detector and fixed detector, a fusion model of space matching is presented to estimate the mean travel speed of the road. Finally, the traffic flow data include flow, speed and, occupancy rate, which are detected between Beijing Deshengmen bridge and Drum Tower bridge, are fused to assess the traffic state of the road by using the fusion decision model of rough sets and cloud. The accuracy of experiment result can reach more than 98%, and the result is in accordance with the actual road traffic state. This system is effective to assess traffic state, and it is suitable for the urban intelligent transportation system.

  20. Flexible textile-based strain sensor induced by contacts

    International Nuclear Information System (INIS)

    Zhang, Hui

    2015-01-01

    In this paper, the contact effects are used as the key sensing element to develop flexible textile-structured strain sensors. The structures of the contact are analyzed theoretically and the contact resistances are investigated experimentally. The electromechanical properties of the textiles are investigated to find the key factors which determine the sensitivity, repeatability, and linearity of the sensor. The sensing mechanism is based on the change of contact resistance induced by the change of the configuration of the textiles. In order to improve the performance of the textile strain sensor, the contact resistance is designed based on the electromechanical properties of the fabric. It can be seen from the results that the performance of the sensor is largely affected by the structure of the contacts, which are determined by the morphology of fiber surface and the structures of the yarn and fabric. (paper)

  1. IBE-Lite: a lightweight identity-based cryptography for body sensor networks.

    Science.gov (United States)

    Tan, Chiu C; Wang, Haodong; Zhong, Sheng; Li, Qun

    2009-11-01

    A body sensor network (BSN) is a network of sensors deployed on a person's body for health care monitoring. Since the sensors collect personal medical data, security and privacy are important components in a BSN. In this paper, we developed IBE-Lite, a lightweight identity-based encryption suitable for sensors in a BSN. We present protocols based on IBE-Lite that balance security and privacy with accessibility and perform evaluation using experiments conducted on commercially available sensors.

  2. Bulk disk resonator based ultrasensitive mass sensor

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Davis, Zachary James

    2009-01-01

    range. The sensor has been characterized in terms of sensitivity both for distributed mass detection, performing six consecutive depositions of e-beam evaporated Au, and localized mass detection, depositing approximately 7.5 pg of Pt/Ga/C three times consecutively with a Focused Ion Beam system......In the framework of developing an innovative label-free sensor for multiarrayed biodetection applications, we present a novel bulk resonator based mass sensor. The sensor is a polysilicon disk which shows a Q-factor of 6400 in air at 68.8 MHz, resulting in mass resolutions down in the femtogram....... The sensor has an extremely high distributed mass to frequency shift sensitivity of 60104 Hzcm2/¿g and shows a localized mass to frequency sensitivity up to 4405 Hz/pg with a localized mass resolution down to 15 fg. The device has been fabricated with a new microfabrication process that uses only two...

  3. Feedback-type giant magneto-impedance sensor based on longitudinal excitation

    International Nuclear Information System (INIS)

    Zhao Wen; Bu Xiongzhu; Yu Geliang; Xiang Chao

    2012-01-01

    In this paper, the characteristics of Fe-based amorphous ribbon based on the longitudinal excitation are investigated with assistance of the theory of the giant magneto-impedance (GMI) effect. A feedback-type GMI micro-magnetic sensor is designed with regard to the design of the sensing element, the excitation circuit, the conditional circuit and the feedback circuit. With the analysis of the dynamic and static characteristics of the feedback-type GMI sensor, it is concluded that the designed feedback-type GMI sensor has higher linearity, stability and dynamic characteristics than non-feedback-type GMI sensor in −2.5 to +2.5 Oe. - Highlights: ► A feedback-type GMI micro-magnetic sensor is designed. ► Excitation coil and feedback coil of the sensor is designed to be in one. ► The feedback-type sensor has higher linearity and stability than non-feedback type. ► The feedback-type sensor has better dynamic characteristics than non-feedback type.

  4. Analyzing the factors affecting network lifetime cluster-based wireless sensor network

    International Nuclear Information System (INIS)

    Malik, A.S.; Qureshi, A.

    2010-01-01

    Cluster-based wireless sensor networks enable the efficient utilization of the limited energy resources of the deployed sensor nodes and hence prolong the node as well as network lifetime. Low Energy Adaptive Clustering Hierarchy (Leach) is one of the most promising clustering protocol proposed for wireless sensor networks. This paper provides the energy utilization and lifetime analysis for cluster-based wireless sensor networks based upon LEACH protocol. Simulation results identify some important factors that induce unbalanced energy utilization between the sensor nodes and hence affect the network lifetime in these types of networks. These results highlight the need for a standardized, adaptive and distributed clustering technique that can increase the network lifetime by further balancing the energy utilization among sensor nodes. (author)

  5. THE GAS SENSORS BASED ON ZINC OXIDE (THE REVIEW)

    OpenAIRE

    Bugayova, M. E.; Koval, V. M.; Lashkarev, G. V.; Lazorenko, V. I.; Karpina, V. A.; Khranovskyy, V. D.

    2017-01-01

    The wide range of gas sensor application, in particular, in a mining industry for detection of outflow of gases, the control of gas emissions over an atmosphere at the industrial enterprises, in housing and communal services, in home appliances makes actual the review. As the systematized analysis of gas sensor based on ZnO has not being carried out — this work is of interest for development of chemical sensors based on zinc compound with high sensitivity, selectivity and stability. The resis...

  6. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865

  7. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.

  8. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Kea-Tiong Tang

    2011-04-01

    Full Text Available This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN applications.

  9. Low Power and High Sensitivity MOSFET-Based Pressure Sensor

    International Nuclear Information System (INIS)

    Zhang Zhao-Hua; Ren Tian-Ling; Zhang Yan-Hong; Han Rui-Rui; Liu Li-Tian

    2012-01-01

    Based on the metal-oxide-semiconductor field effect transistor (MOSFET) stress sensitive phenomenon, a low power MOSFET pressure sensor is proposed. Compared with the traditional piezoresistive pressure sensor, the present pressure sensor displays high performances on sensitivity and power consumption. The sensitivity of the MOSFET sensor is raised by 87%, meanwhile the power consumption is decreased by 20%. (cross-disciplinary physics and related areas of science and technology)

  10. A sensor-less methanol concentration control system based on feedback from the stack temperature

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new sensor-less methanol control algorithm based on feedback from the stack temperature is developed. • Feasibility of the algorithm is tested using a DMFC system with a recirculating fuel loop. • The algorithm precisely controls the methanol concentration without the use of methanol sensors. • The sensor-less controller shortens the time that the DMFC system requires to go from start-up to steady-state. • This controller is effective in handling unexpected changes in the methanol concentration and stack temperature. - Abstract: A sensor-less methanol concentration control system based on feedback from the stack temperature (SLCCF) has been developed. The SLCCF algorithm is embedded into an in-house LabVIEW program that has been developed to control the methanol concentration in the feed of direct methanol fuel cells (DMFCs). This control method utilizes the close correlation between the stack temperature and the methanol concentration in the feed. Basically, the amounts of methanol to be supplied to the re-circulating feed stream are determined by estimating the methanol consumption rates under given operating conditions, which are then adjusted by a proportional–integral controller and supplied into the feed stream to maintain the stack temperature at a set value. The algorithm is designed to control the methanol concentration and the stack temperature for both start-up and normal operation processes. Feasibility tests with a 200 W-class DMFC system under various operating conditions confirm that the algorithm successfully maintains the methanol concentration in the feed as well as the stack temperature at set values, and the start-up time required for the DMFC system to reach steady-state operating conditions is reduced significantly compared with conventional sensor-less methods

  11. Metallic nanoparticle-based strain sensors elaborated by atomic layer deposition

    Science.gov (United States)

    Puyoo, E.; Malhaire, C.; Thomas, D.; Rafaël, R.; R'Mili, M.; Malchère, A.; Roiban, L.; Koneti, S.; Bugnet, M.; Sabac, A.; Le Berre, M.

    2017-03-01

    Platinum nanoparticle-based strain gauges are elaborated by means of atomic layer deposition on flexible polyimide substrates. Their electro-mechanical response is tested under mechanical bending in both buckling and conformational contact configurations. A maximum gauge factor of 70 is reached at a strain level of 0.5%. Although the exponential dependence of the gauge resistance on strain is attributed to the tunneling effect, it is shown that the majority of the junctions between adjacent Pt nanoparticles are in a short circuit state. Finally, we demonstrate the feasibility of an all-plastic pressure sensor integrating Pt nanoparticle-based strain gauges in a Wheatstone bridge configuration.

  12. A novel angular acceleration sensor based on the electromagnetic induction principle and investigation of its calibration tests.

    Science.gov (United States)

    Zhao, Hao; Feng, Hao

    2013-08-12

    An angular acceleration sensor can be used for the dynamic analysis of human and joint motions. In this paper, an angular acceleration sensor with novel structure based on the principle of electromagnetic induction is designed. The method involves the construction of a constant magnetic field by the excitation windings of sensor, and the cup-shaped rotor that cut the magnetic field. The output windings of the sensor generate an electromotive force, which is directly proportional to the angular acceleration through the electromagnetic coupling when the rotor has rotational angular acceleration. The mechanical structure and the magnetic working circuit of the sensor are described. The output properties and the mathematical model including the transfer function and state-space model of the sensor are established. The asymptotical stability of the sensor when it is working is verified by the Lyapunov Theorem. An angular acceleration calibration device based on the torsional pendulum principle is designed. The method involves the coaxial connection of the angular acceleration sensor, torsion pendulum and a high-precision angle sensor, and then an initial external force is applied to the torsion pendulum to produce a periodic damping angle oscillation. The angular acceleration sensor and the angle sensor will generate two corresponding electrical signals. The sensitivity coefficient of the angular acceleration sensor can be obtained after processing these two-channel signals. The experiment results show that the sensitivity coefficient of the sensor is about 17.29 mv/Krad·s2. Finally, the errors existing in the practical applications of the sensor are discussed and the corresponding improvement measures are proposed to provide effective technical support for the practical promotion of the novel sensor.

  13. Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview

    International Nuclear Information System (INIS)

    Shinar, Joseph; Shinar, Ruth

    2008-01-01

    The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of ∼2 x 10 5 h (∼23 yr) at ∼150 Cd m -2 (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m -2 ). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor. (topical review)

  14. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    Science.gov (United States)

    2012-04-16

    Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless

  15. Elements for successful sensor-based process control {Integrated Metrology}

    International Nuclear Information System (INIS)

    Butler, Stephanie Watts

    1998-01-01

    Current productivity needs have stimulated development of alternative metrology, control, and equipment maintenance methods. Specifically, sensor applications provide the opportunity to increase productivity, tighten control, reduce scrap, and improve maintenance schedules and procedures. Past experience indicates a complete integrated solution must be provided for sensor-based control to be used successfully in production. In this paper, Integrated Metrology is proposed as the term for an integrated solution that will result in a successful application of sensors for process control. This paper defines and explores the perceived four elements of successful sensor applications: business needs, integration, components, and form. Based upon analysis of existing successful commercially available controllers, the necessary business factors have been determined to be strong, measurable industry-wide business needs whose solution is profitable and feasible. This paper examines why the key aspect of integration is the decision making process. A detailed discussion is provided of the components of most importance to sensor based control: decision-making methods, the 3R's of sensors, and connectivity. A metric for one of the R's (resolution) is proposed to allow focus on this important aspect of measurement. A form for these integrated components which synergistically partitions various aspects of control at the equipment and MES levels to efficiently achieve desired benefits is recommended

  16. Elements for successful sensor-based process control {Integrated Metrology}

    Science.gov (United States)

    Butler, Stephanie Watts

    1998-11-01

    Current productivity needs have stimulated development of alternative metrology, control, and equipment maintenance methods. Specifically, sensor applications provide the opportunity to increase productivity, tighten control, reduce scrap, and improve maintenance schedules and procedures. Past experience indicates a complete integrated solution must be provided for sensor-based control to be used successfully in production. In this paper, Integrated Metrology is proposed as the term for an integrated solution that will result in a successful application of sensors for process control. This paper defines and explores the perceived four elements of successful sensor applications: business needs, integration, components, and form. Based upon analysis of existing successful commercially available controllers, the necessary business factors have been determined to be strong, measurable industry-wide business needs whose solution is profitable and feasible. This paper examines why the key aspect of integration is the decision making process. A detailed discussion is provided of the components of most importance to sensor based control: decision-making methods, the 3R's of sensors, and connectivity. A metric for one of the R's (resolution) is proposed to allow focus on this important aspect of measurement. A form for these integrated components which synergistically partitions various aspects of control at the equipment and MES levels to efficiently achieve desired benefits is recommended.

  17. SERS-based pesticide detection by using nanofinger sensors

    Science.gov (United States)

    Kim, Ansoon; Barcelo, Steven J.; Li, Zhiyong

    2015-01-01

    Simple, sensitive, and rapid detection of trace levels of extensively used and highly toxic pesticides are in urgent demand for public health. Surface-enhanced Raman scattering (SERS)-based sensor was designed to achieve ultrasensitive and simple pesticide sensing. We developed a portable sensor system composed of high performance and reliable gold nanofinger sensor strips and a custom-built portable Raman spectrometer. Compared to the general procedure and previously reported studies that are limited to laboratory settings, our analytical method is simple, sensitive, rapid, and cost-effective. Based on the SERS results, the chemical interaction of two pesticides, chlorpyrifos (CPF) and thiabendazole (TBZ), with gold nanofingers was studied to determine a fingerprint for each pesticide. The portable SERS-sensor system was successfully demonstrated to detect CPF and TBZ pesticides within 15 min with a detection limit of 35 ppt in drinking water and 7 ppb on apple skin, respectively.

  18. Semiconductor device-based sensors for gas, chemical, and biomedical applications

    CERN Document Server

    Ren, Fan

    2011-01-01

    Sales of U.S. chemical sensors represent the largest segment of the multi-billion-dollar global sensor market, which includes instruments for chemical detection in gases and liquids, biosensors, and medical sensors. Although silicon-based devices have dominated the field, they are limited by their general inability to operate in harsh environments faced with factors such as high temperature and pressure. Exploring how and why these instruments have become a major player, Semiconductor Device-Based Sensors for Gas, Chemical, and Biomedical Applications presents the latest research, including or

  19. Image-based occupancy sensor

    Science.gov (United States)

    Polese, Luigi Gentile; Brackney, Larry

    2015-05-19

    An image-based occupancy sensor includes a motion detection module that receives and processes an image signal to generate a motion detection signal, a people detection module that receives the image signal and processes the image signal to generate a people detection signal, a face detection module that receives the image signal and processes the image signal to generate a face detection signal, and a sensor integration module that receives the motion detection signal from the motion detection module, receives the people detection signal from the people detection module, receives the face detection signal from the face detection module, and generates an occupancy signal using the motion detection signal, the people detection signal, and the face detection signal, with the occupancy signal indicating vacancy or occupancy, with an occupancy indication specifying that one or more people are detected within the monitored volume.

  20. Optical Slot-Waveguide Based Biochemical Sensors

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2009-06-01

    Full Text Available Slot-waveguides allow light to be guided and strongly confined inside a nanometer-scale region of low refractive index. Thus stronger light-analyte interaction can be obtained as compared to that achievable by a conventional waveguide, in which the propagating beam is confined to the high-refractive-index core of the waveguide. In addition, slot-waveguides can be fabricated by employing CMOS compatible materials and technology, enabling miniaturization, integration with electronic, photonic and fluidic components in a chip, and mass production. These advantages have made the use of slot-waveguides for highly sensitive biochemical optical integrated sensors an emerging field. In this paper, recent achievements in slot-waveguide based biochemical sensing will be reviewed. These include slot-waveguide ring resonator based refractometric label-free biosensors, label-based optical sensing, and nano-opto-mechanical sensors.

  1. Palladium coated fibre Bragg grating based hydrogen sensor

    International Nuclear Information System (INIS)

    Kasinathan, M.; Sosamma, S.; Kishore, S.; Elumalai, V.; Krishnan, R.; Babu Rao, C.; Dash, Sitaram; Murali, N.; Jayakumar, T.

    2011-01-01

    Detection of steam generator leaks in fast nuclear reactors is carried out by monitoring hydrogen in argon cover-gas. Hydrogen released during sodium cleaning of fast reactor components is required to be monitored. Hydrogen sensors with good sensitivity, stability and response time are required for all the above applications. We report a new type of hydrogen sensor with a Fibre Bragg Grating (FBG) coated with palladium thin film which is used to detect the leak of hydrogen gas in the Steam Generator (SG) module of the Fast Breeder Reactor (FBR). If water leaks into sodium, it results in sodium-water reaction. In this reaction hydrogen and sodium hydroxide are formed. Due to the explosive risk of hydrogen system, hydrogen sensors are of great interest in this case. It is known that hydrogen forms an explosive mixture with air once its concentration exceeds beyond the explosion limit of four percent. The advantages of FBG based hydrogen sensor over the other hydrogen sensors are its inherent property of safety from sparking, immunity to ambient electromagnetic interference. The sensing mechanism in this device is based on mechanical strain that is induced in the palladium coating when it absorbs hydrogen. This process physically stretches the grating and causes the grating period and grating's refractive index, to change. The Bragg wavelength shift is directly proportional to the strain induced and can be directly related to the percentage of hydrogen exposure. The online monitoring of palladium thin film coating on FBG is carried out and recorded the wavelength change and strain induced on the FBG. A hydrogen sensor set up have been fabricated which consists of SS vessel of capacity 10 litres, provided with pressure gauge, Argon filling line with a valve, Hydrogen injection line with flange, a vent line with valve and Hydrogen sensor fixing point. The Palladium coated FBG based Hydrogen sensor is tested in this experimental facility in the exposure of hydrogen in

  2. POF based glucose sensor incorporating grating wavelength filters

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Aasmul, Søren; Bang, Ole

    2014-01-01

    AND RESEARCH IN POLYMER OPTICAL DEVICES; TRIPOD. Within the domain of TRIPOD, research is conducted on "Plastic Optical Fiber based Glucose Sensors Incorporating Grating Wavelength Filters". Research will be focused to optimized fiber tips for better coupling efficiency, reducing the response time of sensor...

  3. A smart sensor-based vision system: implementation and evaluation

    International Nuclear Information System (INIS)

    Elouardi, A; Bouaziz, S; Dupret, A; Lacassagne, L; Klein, J O; Reynaud, R

    2006-01-01

    One of the methods of solving the computational complexity of image-processing is to perform some low-level computations on the sensor focal plane. This paper presents a vision system based on a smart sensor. PARIS1 (Programmable Analog Retina-like Image Sensor1) is the first prototype used to evaluate the architecture of an on-chip vision system based on such a sensor coupled with a microcontroller. The smart sensor integrates a set of analog and digital computing units. This architecture paves the way for a more compact vision system and increases the performances reducing the data flow exchanges with a microprocessor in control. A system has been implemented as a proof-of-concept and has enabled us to evaluate the performance requirements for a possible integration of a microcontroller on the same chip. The used approach is compared with two architectures implementing CMOS active pixel sensors (APS) and interfaced to the same microcontroller. The comparison is related to image processing computation time, processing reliability, programmability, precision, bandwidth and subsequent stages of computations

  4. A smart sensor-based vision system: implementation and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Elouardi, A; Bouaziz, S; Dupret, A; Lacassagne, L; Klein, J O; Reynaud, R [Institute of Fundamental Electronics, Bat. 220, Paris XI University, 91405 Orsay (France)

    2006-04-21

    One of the methods of solving the computational complexity of image-processing is to perform some low-level computations on the sensor focal plane. This paper presents a vision system based on a smart sensor. PARIS1 (Programmable Analog Retina-like Image Sensor1) is the first prototype used to evaluate the architecture of an on-chip vision system based on such a sensor coupled with a microcontroller. The smart sensor integrates a set of analog and digital computing units. This architecture paves the way for a more compact vision system and increases the performances reducing the data flow exchanges with a microprocessor in control. A system has been implemented as a proof-of-concept and has enabled us to evaluate the performance requirements for a possible integration of a microcontroller on the same chip. The used approach is compared with two architectures implementing CMOS active pixel sensors (APS) and interfaced to the same microcontroller. The comparison is related to image processing computation time, processing reliability, programmability, precision, bandwidth and subsequent stages of computations.

  5. Wheel-Based Ice Sensors for Road Vehicles

    Science.gov (United States)

    Arndt, G. Dickey; Fink, Patrick W.; Ngo, Phong H.; Carl, James R.

    2011-01-01

    Wheel-based sensors for detection of ice on roads and approximate measurement of the thickness of the ice are under development. These sensors could be used to alert drivers to hazardous local icing conditions in real time. In addition, local ice-thickness measurements by these sensors could serve as guidance for the minimum amount of sand and salt required to be dispensed locally onto road surfaces to ensure safety, thereby helping road crews to utilize their total supplies of sand and salt more efficiently. Like some aircraft wing-surface ice sensors described in a number of previous NASA Tech Briefs articles, the wheelbased ice sensors are based, variously, on measurements of changes in capacitance and/or in radio-frequency impedance as affected by ice on surfaces. In the case of ice on road surfaces, the measurable changes in capacitance and/or impedance are attributable to differences among the electric permittivities of air, ice, water, concrete, and soil. In addition, a related phenomenon that can be useful for distinguishing between ice and water is a specific transition in the permittivity of ice at a temperature- dependent frequency. This feature also provides a continuous calibration of the sensor to allow for changing road conditions. Several configurations of wheel-based ice sensors are under consideration. For example, in a simple two-electrode capacitor configuration, one of the electrodes would be a circumferential electrode within a tire, and the ground would be used as the second electrode. Optionally, the steel belts that are already standard parts of many tires could be used as the circumferential electrodes. In another example (see figure), multiple electrodes would be embedded in rubber between the steel belt and the outer tire surface. These electrodes would be excited in alternating polarities at one or more suitable audio or radio frequencies to provide nearly continuous monitoring of the road surface under the tire. In still another

  6. Laboratory test of an APS-based sun sensor prototype

    Science.gov (United States)

    Rufino, Giancarlo; Perrotta, Alessandro; Grassi, Michele

    2017-11-01

    This paper deals with design and prototype development of an Active Pixel Sensor - based miniature sun sensor and a laboratory facility for its indoor test and calibration. The miniature sun sensor is described and the laboratory test facility is presented in detail. The major focus of the paper is on tests and calibration of the sensor. Two different calibration functions have been adopted. They are based, respectively, on a geometrical model, which has required least-squares optimisation of system physical parameters estimates, and on neural networks. Calibration results are presented for the above solutions, showing that accuracy in the order of 0.01° has been achieved. Neural calibration functions have attained better performance thanks to their intrinsic auto-adaptive structure.

  7. Smart gas sensors for mitigating environments

    International Nuclear Information System (INIS)

    Azad, A.M.

    1997-01-01

    From the viewpoint of industrial and automobile exhaust pollution control sensors capable of detecting and metering the concentration of harmful gasers such as carbon monoxide, hydrogen, hydrocarbons, NO sub x, SO sub x, etc, in the ambient are desired. Solid state gas sensors based on semiconducting metal oxides have been widely used for the detection and metering of a host of reducing gases, albeit with varying degrees of success. In this presentation, development aspects of new solid-state CO and H2 sensors are described. Benevolent effect of second phases and catalyst on the sensing characteristics, and the possible sensing mechanism are discussed. In the case of titania-based CO sensors, test results in a Ford V6 engine under programmed near-stoichiometric combustion conditions are also presented. Some new concepts in the area of reliable metering of humidity (water content) in the ambient are briefly highlighted. (author)

  8. High performance liquid-level sensor based on mPOFBG for aircraft applications

    DEFF Research Database (Denmark)

    Marques, C. A. F.; Pospori, A.; Saez-Rodriguez, D.

    2015-01-01

    A high performance liquid-level sensor based on microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors is reported in detail. The sensor sensitivity is found to be 98pm/cm of liquid, enhanced by more than a factor of 9 compared to a reported silica fiber-based sensor....

  9. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems.

    Science.gov (United States)

    Khan, Murad; Silva, Bhagya Nathali; Han, Kijun

    2017-02-09

    The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.

  10. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems

    Directory of Open Access Journals (Sweden)

    Murad Khan

    2017-02-01

    Full Text Available The Web of Things (WoT plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN, which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.

  11. Microcontroller based instrumentation for heater control circuit of tin oxide based hydrogen sensor

    International Nuclear Information System (INIS)

    Premalatha, S.; Krithika, P.; Gunasekaran, G.; Ramakrishnan, R.; Ramanarayanan, R.R.; Prabhu, E.; Jayaraman, V.; Parthasarathy, R.

    2015-01-01

    A thin film sensor based on tin oxide developed in IGCAR is used to monitor very low levels of hydrogen (concentration ranging from 2 ppm to 80 ppm). The heater and the sensor patterns are integrated on a miniature alumina substrate and necessary electrical leads are taken out. For proper functioning of the sensor, the heater has to be maintained at a constant temperature of 350°C. The sensor output (voltage signal) varies with H 2 concentration. In fast breeder reactors, liquid sodium is used as coolant. The sensor is used to detect water/steam leak in secondary sodium circuit. During the start up of the reactor, steam leak into sodium circuit generates hydrogen gas as a product that doesn't dissolve in sodium, but escapes to the surge tank containing argon i.e. in cover gas plenum of sodium circuit. On-line monitoring of hydrogen in cover gas is done to detect an event of water/steam leakage. The focus of this project is on the instrumentation pertaining to the temperature control for the sensor heater. The tin oxide based hydrogen sensor is embedded in a substrate which consists of a platinum heater, essentially a resistor. There is no provision of embedding a temperature sensor on the heater surface due to the physical constraints, without which maintaining a constant heater temperature is a complex task

  12. Nanomaterials-based electrochemical sensors for nitric oxide

    International Nuclear Information System (INIS)

    Dang, Xueping; Hu, Hui; Wang, Shengfu; Hu, Shengshui

    2015-01-01

    Electrochemical sensing has been demonstrated to represent an efficient way to quantify nitric oxide (NO) in challenging physiological environments. A sensing interface based on nanomaterials opens up new opportunities and broader prospects for electrochemical NO sensors. This review (with 141 refs.) gives a general view of recent advances in the development of electrochemical sensors based on nanomaterials. It is subdivided into sections on (i) carbon derived nanomaterials (such as carbon nanotubes, graphenes, fullerenes), (ii) metal nanoparticles (including gold, platinum and other metallic nanoparticles); (iii) semiconductor metal oxide nanomaterials (including the oxides of titanium, aluminum, iron, and ruthenium); and finally (iv) nanocomposites (such as those formed from carbon nanomaterials with nanoparticles of gold, platinum, NiO or TiO 2 ). The various strategies are discussed, and the advances of using nanomaterials and the trends in NO sensor technology are outlooked in the final section. (author)

  13. MEMS-based sensors for post-earthquake damage assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, M; Zonta, D; Trapani, D [DIMS, University of Trento, Via Mesiano 77, 38123, Trento (Italy); Athanasopoulos, N; Garetsos, A; Stratakos, Y E [Advanced Microwave Systems Ltd, 2, 25th Martiou Street, 17778 Athens (Greece); Amditis, A J; Bimpas, M [ICCS, National Technical University of Athens, 9 Iroon Polytechniou Street, 15773 Zografou (Greece); Ulieru, D, E-mail: daniele.zonta@unitn.it [SITEX 45 SRL, 114 Ghica Tei Blvd, 72235 Bucharest (Romania)

    2011-07-19

    The evaluation of seismic damage is today almost exclusively based on visual inspection, as building owners are generally reluctant to install permanent sensing systems, due to their high installation, management and maintenance costs. To overcome this limitation, the EU-funded MEMSCON project aims to produce small size sensing nodes for measurement of strain and acceleration, integrating Micro-Electro-Mechanical Systems (MEMS) based sensors and Radio Frequency Identification (RFID) tags in a single package that will be attached to reinforced concrete buildings and will transmit data using a wireless interface. During the first phase of the project completed so far, sensor prototypes were produced by assembling preexisting components. This paper outlines the device operating principles, production scheme and operation at both unit and network levels. It also reports on validation campaigns conducted in the laboratory to assess system performance. Accelerometer sensors were tested on a reduced scale metal frame mounted on a shaking table, while strain sensors were embedded in both reduced and full-scale reinforced concrete specimens undergoing increasing deformation cycles up to extensive damage and collapse. The performance of the sensors developed for the project and their applicability to long-term seismic monitoring are discussed.

  14. Triple-helix molecular switch-based aptasensors and DNA sensors.

    Science.gov (United States)

    Bagheri, Elnaz; Abnous, Khalil; Alibolandi, Mona; Ramezani, Mohammad; Taghdisi, Seyed Mohammad

    2018-07-15

    Utilization of traditional analytical techniques is limited because they are generally time-consuming and require high consumption of reagents, complicated sample preparation and expensive equipment. Therefore, it is of great interest to achieve sensitive, rapid and simple detection methods. It is believed that nucleic acids assays, especially aptamers, are very important in modern life sciences for target detection and biological analysis. Aptamers and DNA-based sensors have been widely used for the design of various sensors owing to their unique features. In recent years, triple-helix molecular switch (THMS)-based aptasensors and DNA sensors have been broadly utilized for the detection and analysis of different targets. The THMS relies on the formation of DNA triplex via Watson-Crick and Hoogsteen base pairings under optimal conditions. This review focuses on recent progresses in the development and applications of electrochemical, colorimetric, fluorescence and SERS aptasensors and DNA sensors, which are based on THMS. Also, the advantages and drawbacks of these methods are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Scaling up liquid state machines to predict over address events from dynamic vision sensors.

    Science.gov (United States)

    Kaiser, Jacques; Stal, Rainer; Subramoney, Anand; Roennau, Arne; Dillmann, Rüdiger

    2017-09-01

    Short-term visual prediction is important both in biology and robotics. It allows us to anticipate upcoming states of the environment and therefore plan more efficiently. In theoretical neuroscience, liquid state machines have been proposed as a biologically inspired method to perform asynchronous prediction without a model. However, they have so far only been demonstrated in simulation or small scale pre-processed camera images. In this paper, we use a liquid state machine to predict over the whole  [Formula: see text]  event stream provided by a real dynamic vision sensor (DVS, or silicon retina). Thanks to the event-based nature of the DVS, the liquid is constantly fed with data when an object is in motion, fully embracing the asynchronicity of spiking neural networks. We propose a smooth continuous representation of the event stream for the short-term visual prediction task. Moreover, compared to previous works (2002 Neural Comput. 2525 282-93 and Burgsteiner H et al 2007 Appl. Intell. 26 99-109), we scale the input dimensionality that the liquid operates on by two order of magnitudes. We also expose the current limits of our method by running experiments in a challenging environment where multiple objects are in motion. This paper is a step towards integrating biologically inspired algorithms derived in theoretical neuroscience to real world robotic setups. We believe that liquid state machines could complement current prediction algorithms used in robotics, especially when dealing with asynchronous sensors.

  16. Fleet Protection Using a Small UAV Based IR Sensor

    National Research Council Canada - National Science Library

    Buss, James R; Ax, Jr, George R

    2005-01-01

    A study was performed to define candidate electro-optical and infrared (EO/IR) sensor configurations and assess their potential utility as small UAV-based sensors surveilling a perimeter around surface fleet assets...

  17. YSZ-based sensor using Cr-Fe-based spinel-oxide electrodes for selective detection of CO.

    Science.gov (United States)

    Anggraini, Sri Ayu; Fujio, Yuki; Ikeda, Hiroshi; Miura, Norio

    2017-08-22

    A selective carbon monoxide (CO) sensor was developed by the use of both of CuCrFeO 4 and CoCrFeO 4 as the sensing electrode (SE) for yttria-stabilized zirconia (YSZ)-based potentiometric sensor. The sensing-characteristic examinations of the YSZ-based sensors using each of spinel oxides as the single-SE sensor showed that CuCrFeO 4 -SE had the ability to detect CO, hydrocarbons and NO x gases, while CoCrFeO 4 -SE was sensitive to hydrocarbons and NO x gases. Thus, when both SEs were paired as a combined-SEs sensor, the resulting sensor could generate a selective response to CO at 450 °C under humid conditions. The sensor was also capable of detecting CO in the concentration range of 20-700 ppm. Its sensing mechanism that was examined via polarization-curve measurements was confirmed to be based on mixed-potential model. The CO response generated by the combined-SEs sensor was unaffected by the change of water vapor concentration in the range of 1.3-11.5 vol% H 2 O. Additionally, the sensing performance was stable during 13 days tested. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications

    Science.gov (United States)

    Wagner, Raymond S.

    2010-01-01

    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Recent advances in standards-based WSN protocols for industrial control applications have come a long way to solving many of the challenges facing practical WSN deployments. In this paper, we will overview two of the more promising candidates - WirelessHART from the HART Communication Foundation and ISA100.11a from the International Society of Automation - and present the architecture for a new standards-based sensor node for networking and applications research.

  19. CMOS image sensor-based immunodetection by refractive-index change.

    Science.gov (United States)

    Devadhasan, Jasmine P; Kim, Sanghyo

    2012-01-01

    A complementary metal oxide semiconductor (CMOS) image sensor is an intriguing technology for the development of a novel biosensor. Indeed, the CMOS image sensor mechanism concerning the detection of the antigen-antibody (Ag-Ab) interaction at the nanoscale has been ambiguous so far. To understand the mechanism, more extensive research has been necessary to achieve point-of-care diagnostic devices. This research has demonstrated a CMOS image sensor-based analysis of cardiovascular disease markers, such as C-reactive protein (CRP) and troponin I, Ag-Ab interactions on indium nanoparticle (InNP) substrates by simple photon count variation. The developed sensor is feasible to detect proteins even at a fg/mL concentration under ordinary room light. Possible mechanisms, such as dielectric constant and refractive-index changes, have been studied and proposed. A dramatic change in the refractive index after protein adsorption on an InNP substrate was observed to be a predominant factor involved in CMOS image sensor-based immunoassay.

  20. Novel ammonia sensor based on polyaniline/polylactic acid composite films

    International Nuclear Information System (INIS)

    Sotirov, S; Bodurov, I; Marudova, M

    2017-01-01

    We propose a new type of ammonia sensor based on composite film between polyaniline (emeraldine base) dissolved in dimethylformamide, and poly(DL-lactic) acid dissolved in chloroform. The two solutions were mixed in weight ratio of the components 1:1 and cast on Al 2 O 3 substrate, on which silver electrodes were deposited previously. The active layer structure and morphology were examined by atomic force microscopy. The sensor resistance at constant humidity and different ammonia concentrations was measured. It was found that an increase in the ammonia concentration leads to resistance increase. This result is explained in the terms of ionic interactions between the polyaniline and the ammonia, which change the permittivity of the sensor active media. A response between 2% and 590% was shown depending on the ammonia concentration. The sensor is reversible and possesses response time of typically 100 s. Based on the changes of the sensor resistance, ammonia concentration from 10 ppm to 1000 ppm could be detected. (paper)

  1. Novel ammonia sensor based on polyaniline/polylactic acid composite films

    Science.gov (United States)

    Sotirov, S.; Bodurov, I.; Marudova, M.

    2017-01-01

    We propose a new type of ammonia sensor based on composite film between polyaniline (emeraldine base) dissolved in dimethylformamide, and poly(DL-lactic) acid dissolved in chloroform. The two solutions were mixed in weight ratio of the components 1:1 and cast on Al2O3 substrate, on which silver electrodes were deposited previously. The active layer structure and morphology were examined by atomic force microscopy. The sensor resistance at constant humidity and different ammonia concentrations was measured. It was found that an increase in the ammonia concentration leads to resistance increase. This result is explained in the terms of ionic interactions between the polyaniline and the ammonia, which change the permittivity of the sensor active media. A response between 2% and 590% was shown depending on the ammonia concentration. The sensor is reversible and possesses response time of typically 100 s. Based on the changes of the sensor resistance, ammonia concentration from 10 ppm to 1000 ppm could be detected.

  2. Automated mode shape estimation in agent-based wireless sensor networks

    Science.gov (United States)

    Zimmerman, Andrew T.; Lynch, Jerome P.

    2010-04-01

    Recent advances in wireless sensing technology have made it possible to deploy dense networks of sensing transducers within large structural systems. Because these networks leverage the embedded computing power and agent-based abilities integral to many wireless sensing devices, it is possible to analyze sensor data autonomously and in-network. In this study, market-based techniques are used to autonomously estimate mode shapes within a network of agent-based wireless sensors. Specifically, recent work in both decentralized Frequency Domain Decomposition and market-based resource allocation is leveraged to create a mode shape estimation algorithm derived from free-market principles. This algorithm allows an agent-based wireless sensor network to autonomously shift emphasis between improving mode shape accuracy and limiting the consumption of certain scarce network resources: processing time, storage capacity, and power consumption. The developed algorithm is validated by successfully estimating mode shapes using a network of wireless sensor prototypes deployed on the mezzanine balcony of Hill Auditorium, located on the University of Michigan campus.

  3. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles.

    Science.gov (United States)

    Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang

    2016-08-19

    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists.

  4. Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles

    Science.gov (United States)

    Shengbo, Sang; Lihua, Liu; Aoqun, Jian; Qianqian, Duan; Jianlong, Ji; Qiang, Zhang; Wendong, Zhang

    2018-06-01

    Here, we propose a highly sensitive and stretchable strain sensor based on silver nanoparticles and nanowires (Ag NPs and NWs), advancing the rapid development of electronic skin. To improve the sensitivity of strain sensors based on silver nanowires (Ag NWs), Ag NPs and NWs were added to polydimethylsiloxane (PDMS) as an aid filler. Silver nanoparticles (Ag NPs) increase the conductive paths for electrons, leading to the low resistance of the resulting sensor (14.9 Ω). The strain sensor based on Ag NPs and NWs showed strong piezoresistivity with a tunable gauge factor (GF) at 3766, and a change in resistance as the strain linearly increased from 0% to 28.1%. The high GF demonstrates the irreplaceable role of Ag NPs in the sensor. Moreover, the applicability of our high-performance strain sensor has been demonstrated by its ability to sense movements caused by human talking, finger bending, wrist raising and walking.

  5. PALLADIUM DOPED TIN OXIDE BASED HYDROGEN GAS SENSORS FOR SAFETY APPLICATIONS

    International Nuclear Information System (INIS)

    Kasthurirengan, S.; Behera, Upendra; Nadig, D. S.

    2010-01-01

    Hydrogen is considered to be a hazardous gas since it forms a flammable mixture between 4 to 75% by volume in air. Hence, the safety aspects of handling hydrogen are quite important. For this, ideally, highly selective, fast response, small size, hydrogen sensors are needed. Although sensors based on different technologies may be used, thin-film sensors based on palladium (Pd) are preferred due to their compactness and fast response. They detect hydrogen by monitoring the changes to the electrical, mechanical or optical properties of the films. We report the development of Pd-doped tin-oxide based gas sensors prepared on thin ceramic substrates with screen printed platinum (Pt) contacts and integrated nicrome wire heaters. The sensors are tested for their performances using hydrogen-nitrogen gas mixtures to a maximum of 4%H 2 in N 2 . The sensors detect hydrogen and their response times are less than a few seconds. Also, the sensor performance is not altered by the presence of helium in the test gas mixtures. By the above desired performance characteristics, field trials of these sensors have been undertaken. The paper presents the details of the sensor fabrication, electronic circuits, experimental setup for evaluation and the test results.

  6. Carbon nanotube based pressure sensor for flexible electronics

    International Nuclear Information System (INIS)

    So, Hye-Mi; Sim, Jin Woo; Kwon, Jinhyeong; Yun, Jongju; Baik, Seunghyun; Chang, Won Seok

    2013-01-01

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate

  7. Carbon nanotube based pressure sensor for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    So, Hye-Mi [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of); Sim, Jin Woo [Advanced Nano Technology Ltd., Seoul 132-710 (Korea, Republic of); Kwon, Jinhyeong [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Yun, Jongju; Baik, Seunghyun [SKKU Advanced Institute of Nanotechnology (SAINT), Department of Energy Science and School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Chang, Won Seok, E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of)

    2013-12-15

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate.

  8. Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Shinar, Joseph [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Ruth [Microelectronics Research Center, Iowa State University, Ames, IA 50011 (United States)

    2008-07-07

    The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of {approx}2 x 10{sup 5} h ({approx}23 yr) at {approx}150 Cd m{sup -2} (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m{sup -2}). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor. (topical review)

  9. Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites.

    Science.gov (United States)

    Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen

    2018-06-08

    Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human-machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF sensors is ascribed to the sliding of individual fragmentized-CNT/PDMS-composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.

  10. Hydrogel-based piezoresistive sensor for the detection of ethanol

    Directory of Open Access Journals (Sweden)

    J. Erfkamp

    2018-04-01

    Full Text Available This article describes a low-cost sensor for the detection of ethanol in alcoholic beverages, which combines alcohol-sensitive hydrogels based on acrylamide and bisacrylamide and piezoresistive sensors. For reproducible measurements, the reversible swelling and deswelling of the hydrogel were shown via microscopy. The response time of the sensor depends on the swelling kinetics of the hydrogel. The selectivity of the hydrogel was tested in different alcohols. In order to understand the influence of monomer and crosslinker content on the swelling degree and on the sensitivity of the hydrogels, gels with variable concentrations of acrylamide and bisacrylamide were synthesized and characterized in different aqueous solutions with alcohol contents. The first measurements of such hydrogel-based piezoresistive ethanol sensors demonstrated a high sensitivity and a short response time over several measuring cycles.

  11. Feasibility Study on a Microwave-Based Sensor for Measuring Hydration Level Using Human Skin Models.

    Science.gov (United States)

    Brendtke, Rico; Wiehl, Michael; Groeber, Florian; Schwarz, Thomas; Walles, Heike; Hansmann, Jan

    2016-01-01

    Tissue dehydration results in three major types of exsiccosis--hyper-, hypo-, or isonatraemia. All three types entail alterations of salt concentrations leading to impaired biochemical processes, and can finally cause severe morbidity. The aim of our study was to demonstrate the feasibility of a microwave-based sensor technology for the non-invasive measurement of the hydration status. Electromagnetic waves at high frequencies interact with molecules, especially water. Hence, if a sample contains free water molecules, this can be detected in a reflected microwave signal. To develop the sensor system, human three-dimensional skin equivalents were instituted as a standardized test platform mimicking reproducible exsiccosis scenarios. Therefore, skin equivalents with a specific hydration and density of matrix components were generated and microwave measurements were performed. Hydration-specific spectra allowed deriving the hydration state of the skin models. A further advantage of the skin equivalents was the characterization of the impact of distinct skin components on the measured signals to investigate mechanisms of signal generation. The results demonstrate the feasibility of a non-invasive microwave-based hydration sensor technology. The sensor bears potential to be integrated in a wearable medical device for personal health monitoring.

  12. Feasibility Study on a Microwave-Based Sensor for Measuring Hydration Level Using Human Skin Models.

    Directory of Open Access Journals (Sweden)

    Rico Brendtke

    Full Text Available Tissue dehydration results in three major types of exsiccosis--hyper-, hypo-, or isonatraemia. All three types entail alterations of salt concentrations leading to impaired biochemical processes, and can finally cause severe morbidity. The aim of our study was to demonstrate the feasibility of a microwave-based sensor technology for the non-invasive measurement of the hydration status. Electromagnetic waves at high frequencies interact with molecules, especially water. Hence, if a sample contains free water molecules, this can be detected in a reflected microwave signal. To develop the sensor system, human three-dimensional skin equivalents were instituted as a standardized test platform mimicking reproducible exsiccosis scenarios. Therefore, skin equivalents with a specific hydration and density of matrix components were generated and microwave measurements were performed. Hydration-specific spectra allowed deriving the hydration state of the skin models. A further advantage of the skin equivalents was the characterization of the impact of distinct skin components on the measured signals to investigate mechanisms of signal generation. The results demonstrate the feasibility of a non-invasive microwave-based hydration sensor technology. The sensor bears potential to be integrated in a wearable medical device for personal health monitoring.

  13. A solid-state sensor based on ruthenium (II) complex immobilized on polytyramine film for the simultaneous determination of dopamine, ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Khudaish, Emad A.; Al-Ajmi, Khawla Y.; Al-Harthi, Salim H.

    2014-01-01

    A solid-state sensor based on a polytyramine (Pty) film deposited on a glassy carbon electrode doped with a tris(2,2′-bipyridyl)Ru(II) complex (Ru/Pty/GCE) was constructed electrochemically. The surface morphology of the film modified electrode was characterized using electrochemical and surface scanning techniques. A redox property represented by a [Ru(bpy) 3 ] 3+/2+ couple immobilized at the Pty moiety was characterized using typical voltammetric techniques. A distinct Ru 3d peak obtained at 280.9 eV confirms doping of the Ru species onto the Pty moiety characterized by X-ray photoelectron (XPS). Atomic force microscopy (AFM) images demonstrate that incorporation of Ru decreases the surface roughness of the native Pty film modified electrode. The Ru/Pty/GCE exhibits efficient electrochemical sensing toward the oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) in their mixture. Three well-defined peaks were resolved with a large peak to peak separation and the detection limits of AA, DA and UA are brought down to 0.31, 0.08 and 0.58 μM, respectively. Interference studies and application for DA determination in real samples were conducted with satisfactory results. - Highlights: • XPS data confirm doping of ruthenium onto the polytyramine moiety. • The voltammetric signals of ascorbic acid, dopamine and uric acid are well defined. • The sensor is stable and offers a large adsorption facility for all species. • The sensor is highly sensitive to dopamine oxidation. • The sensor is applied to a real sample with a satisfactory recovery percentage

  14. A solid-state sensor based on ruthenium (II) complex immobilized on polytyramine film for the simultaneous determination of dopamine, ascorbic acid and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Khudaish, Emad A., E-mail: ejoudi@squ.edu.om [Sultan Qaboos University, College of Science, Chemistry Department, PO Box 36, PC 123 Muscat (Oman); Al-Ajmi, Khawla Y. [Sultan Qaboos University, College of Science, Chemistry Department, PO Box 36, PC 123 Muscat (Oman); Al-Harthi, Salim H. [Sultan Qaboos University, College of Science, Department of Physics, PO Box 36, PC 123 Muscat (Oman)

    2014-08-01

    A solid-state sensor based on a polytyramine (Pty) film deposited on a glassy carbon electrode doped with a tris(2,2′-bipyridyl)Ru(II) complex (Ru/Pty/GCE) was constructed electrochemically. The surface morphology of the film modified electrode was characterized using electrochemical and surface scanning techniques. A redox property represented by a [Ru(bpy){sub 3}]{sup 3+/2+} couple immobilized at the Pty moiety was characterized using typical voltammetric techniques. A distinct Ru 3d peak obtained at 280.9 eV confirms doping of the Ru species onto the Pty moiety characterized by X-ray photoelectron (XPS). Atomic force microscopy (AFM) images demonstrate that incorporation of Ru decreases the surface roughness of the native Pty film modified electrode. The Ru/Pty/GCE exhibits efficient electrochemical sensing toward the oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) in their mixture. Three well-defined peaks were resolved with a large peak to peak separation and the detection limits of AA, DA and UA are brought down to 0.31, 0.08 and 0.58 μM, respectively. Interference studies and application for DA determination in real samples were conducted with satisfactory results. - Highlights: • XPS data confirm doping of ruthenium onto the polytyramine moiety. • The voltammetric signals of ascorbic acid, dopamine and uric acid are well defined. • The sensor is stable and offers a large adsorption facility for all species. • The sensor is highly sensitive to dopamine oxidation. • The sensor is applied to a real sample with a satisfactory recovery percentage.

  15. Toward CMOS image sensor based glucose monitoring.

    Science.gov (United States)

    Devadhasan, Jasmine Pramila; Kim, Sanghyo

    2012-09-07

    Complementary metal oxide semiconductor (CMOS) image sensor is a powerful tool for biosensing applications. In this present study, CMOS image sensor has been exploited for detecting glucose levels by simple photon count variation with high sensitivity. Various concentrations of glucose (100 mg dL(-1) to 1000 mg dL(-1)) were added onto a simple poly-dimethylsiloxane (PDMS) chip and the oxidation of glucose was catalyzed with the aid of an enzymatic reaction. Oxidized glucose produces a brown color with the help of chromogen during enzymatic reaction and the color density varies with the glucose concentration. Photons pass through the PDMS chip with varying color density and hit the sensor surface. Photon count was recognized by CMOS image sensor depending on the color density with respect to the glucose concentration and it was converted into digital form. By correlating the obtained digital results with glucose concentration it is possible to measure a wide range of blood glucose levels with great linearity based on CMOS image sensor and therefore this technique will promote a convenient point-of-care diagnosis.

  16. Towards Scalable Strain Gauge-Based Joint Torque Sensors

    Science.gov (United States)

    D’Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G.; Cuschieri, Alfred

    2017-01-01

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS), the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot-MiniHyQ. This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR). PMID:28820446

  17. ANALYTICAL MODELING OF INNOVATIVE SENSOR PLACEMENT STRATEGY FOR CORONA-BASED WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    HASSAN H. EKAL

    2017-09-01

    Full Text Available Wireless Sensor Networks (WSNs applications are increasing rapidly, thanks to their broad potential in ecological monitoring, biomedical health monitoring, data gathering and many others. Imbalance energy of sensors causes significant reduction in the lifetime of the network. In many-to-one communication (corona WSNs, sensor nodes located nearby the data collector (sink forward data sensed data received from other nodes, hence, having heavier workloads. These nodes consume more energy than the others, leading to quicker energy depletion.Consequently, this results in energy hole problem, where the network becomes separate islands, which affect the lifetime of the network negatively. When this situation occurs, the sensed data will not be forwarded to the intended sink; accordingly, the network will not be able to completely fulfil its required tasks. In this paper, an effective sensors placement strategy is proposed to avoid or alleviate energy hole problem in such type of WSNs. The proposed strategy aims to improve, scale, and balance the energy consumption among sensor nodes and to maximize the network lifetime, by sustaining the network coverage and connectivity. To achieve this aim, the number of sensors should be optimized to create sub-balanced coronas in the sense of energy consumption, while satisfying the network coverage and connectivity requirements. The theoretical design and modelling of the proposed sensors placement strategy promise a considerable improvement in the lifetime of corona-based networks. The Experimental evaluation results have shown that the proposed sensors placement strategy is capable to increase the network lifetime considerably compared to conventional uniform strategy.

  18. Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors.

    Science.gov (United States)

    Lee, Kwan Woo; Yoon, Hyo Sik; Song, Jong Min; Park, Kang Ryoung

    2018-03-23

    Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.

  19. Electrochemical Sensors Based on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Md. Aminur Rahman

    2009-03-01

    Full Text Available This review focuses on recent contributions in the development of the electrochemical sensors based on carbon nanotubes (CNTs. CNTs have unique mechanical and electronic properties, combined with chemical stability, and behave electrically as a metal or semiconductor, depending on their structure. For sensing applications, CNTs have many advantages such as small size with larger surface area, excellent electron transfer promoting ability when used as electrodes modifier in electrochemical reactions, and easy protein immobilization with retention of its activity for potential biosensors. CNTs play an important role in the performance of electrochemical biosensors, immunosensors, and DNA biosensors. Various methods have been developed for the design of sensors using CNTs in recent years. Herein we summarize the applications of CNTs in the construction of electrochemical sensors and biosensors along with other nanomaterials and conducting polymers.

  20. Fabrication of strain gauge based sensors for tactile skins

    Science.gov (United States)

    Baptist, Joshua R.; Zhang, Ruoshi; Wei, Danming; Saadatzi, Mohammad Nasser; Popa, Dan O.

    2017-05-01

    Fabricating cost effective, reliable and functional sensors for electronic skins has been a challenging undertaking for the last several decades. Application of such skins include haptic interfaces, robotic manipulation, and physical human-robot interaction. Much of our recent work has focused on producing compliant sensors that can be easily formed around objects to sense normal, tension, or shear forces. Our past designs have involved the use of flexible sensors and interconnects fabricated on Kapton substrates, and piezoresistive inks that are 3D printed using Electro Hydro Dynamic (EHD) jetting onto interdigitated electrode (IDE) structures. However, EHD print heads require a specialized nozzle and the application of a high-voltage electric field; for which, tuning process parameters can be difficult based on the choice of inks and substrates. Therefore, in this paper we explore sensor fabrication techniques using a novel wet lift-off photolithographic technique for patterning the base polymer piezoresistive material, specifically Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) or PEDOT:PSS. Fabricated sensors are electrically and thermally characterized, and temperaturecompensated designs are proposed and validated. Packaging techniques for sensors in polymer encapsulants are proposed and demonstrated to produce a tactile interface device for a robot.

  1. CMOS image sensors: State-of-the-art

    Science.gov (United States)

    Theuwissen, Albert J. P.

    2008-09-01

    This paper gives an overview of the state-of-the-art of CMOS image sensors. The main focus is put on the shrinkage of the pixels : what is the effect on the performance characteristics of the imagers and on the various physical parameters of the camera ? How is the CMOS pixel architecture optimized to cope with the negative performance effects of the ever-shrinking pixel size ? On the other hand, the smaller dimensions in CMOS technology allow further integration on column level and even on pixel level. This will make CMOS imagers even smarter that they are already.

  2. Potential use of ground-based sensor technologies for weed detection.

    Science.gov (United States)

    Peteinatos, Gerassimos G; Weis, Martin; Andújar, Dionisio; Rueda Ayala, Victor; Gerhards, Roland

    2014-02-01

    Site-specific weed management is the part of precision agriculture (PA) that tries to effectively control weed infestations with the least economical and environmental burdens. This can be achieved with the aid of ground-based or near-range sensors in combination with decision rules and precise application technologies. Near-range sensor technologies, developed for mounting on a vehicle, have been emerging for PA applications during the last three decades. These technologies focus on identifying plants and measuring their physiological status with the aid of their spectral and morphological characteristics. Cameras, spectrometers, fluorometers and distance sensors are the most prominent sensors for PA applications. The objective of this article is to describe-ground based sensors that have the potential to be used for weed detection and measurement of weed infestation level. An overview of current sensor systems is presented, describing their concepts, results that have been achieved, already utilized commercial systems and problems that persist. A perspective for the development of these sensors is given. © 2013 Society of Chemical Industry.

  3. Research on Bridge Sensor Validation Based on Correlation in Cluster

    Directory of Open Access Journals (Sweden)

    Huang Xiaowei

    2016-01-01

    Full Text Available In order to avoid the false alarm and alarm failure caused by sensor malfunction or failure, it has been critical to diagnose the fault and analyze the failure of the sensor measuring system in major infrastructures. Based on the real time monitoring of bridges and the study on the correlation probability distribution between multisensors adopted in the fault diagnosis system, a clustering algorithm based on k-medoid is proposed, by dividing sensors of the same type into k clusters. Meanwhile, the value of k is optimized by a specially designed evaluation function. Along with the further study of the correlation of sensors within the same cluster, this paper presents the definition and corresponding calculation algorithm of the sensor’s validation. The algorithm is applied to the analysis of the sensor data from an actual health monitoring system. The result reveals that the algorithm can not only accurately measure the failure degree and orientate the malfunction in time domain but also quantitatively evaluate the performance of sensors and eliminate error of diagnosis caused by the failure of the reference sensor.

  4. Chemical sensors based on molecularly modified metallic nanoparticles

    International Nuclear Information System (INIS)

    Haick, Hossam

    2007-01-01

    This paper presents a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to the use of molecularly modified metal nanoparticles in or as chemical sensors. This paper attempts to pull together different views and terminologies used in sensors based on molecularly modified metal nanoparticles, including those established upon electrochemical, optical, surface Plasmon resonance, piezoelectric and electrical transduction approaches. Finally, this paper discusses briefly the main advantages and disadvantages of each of the presented class of sensors. (review article)

  5. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    Science.gov (United States)

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-08-28

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  6. Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jeongyeup Paek

    2014-08-01

    Full Text Available This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet’s built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Jacinto Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  7. A general framework for sensor-based human activity recognition.

    Science.gov (United States)

    Köping, Lukas; Shirahama, Kimiaki; Grzegorzek, Marcin

    2018-04-01

    Today's wearable devices like smartphones, smartwatches and intelligent glasses collect a large amount of data from their built-in sensors like accelerometers and gyroscopes. These data can be used to identify a person's current activity and in turn can be utilised for applications in the field of personal fitness assistants or elderly care. However, developing such systems is subject to certain restrictions: (i) since more and more new sensors will be available in the future, activity recognition systems should be able to integrate these new sensors with a small amount of manual effort and (ii) such systems should avoid high acquisition costs for computational power. We propose a general framework that achieves an effective data integration based on the following two characteristics: Firstly, a smartphone is used to gather and temporally store data from different sensors and transfer these data to a central server. Thus, various sensors can be integrated into the system as long as they have programming interfaces to communicate with the smartphone. The second characteristic is a codebook-based feature learning approach that can encode data from each sensor into an effective feature vector only by tuning a few intuitive parameters. In the experiments, the framework is realised as a real-time activity recognition system that integrates eight sensors from a smartphone, smartwatch and smartglasses, and its effectiveness is validated from different perspectives such as accuracies, sensor combinations and sampling rates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Pristine carbon nanotubes based resistive temperature sensor

    International Nuclear Information System (INIS)

    Alam, Md Bayazeed; Saini, Sudhir Kumar; Sharma, Daya Shankar; Agarwal, Pankaj B.

    2016-01-01

    A good sensor must be highly sensitive, faster in response, of low cost cum easily producible, and highly reliable. Incorporation of nano-dimensional particles/ wires makes conventional sensors more effective in terms of fulfilling the above requirements. For example, Carbon Nanotubes (CNTs) are promising sensing element because of its large aspect ratio, unique electronic and thermal properties. In addition to their use for widely reported chemical sensing, it has also been explored for temperature sensing. This paper presents the fabrication of CNTs based temperature sensor, prepared on silicon substrate using low cost spray coating method, which is reliable and reproducible method to prepare uniform CNTs thin films on any substrate. Besides this, simple and inexpensive method of preparation of dispersion of single walled CNTs (SWNTs) in 1,2 dichlorobenzene by using probe type ultrasonicator for debundling the CNTs for improving sensor response were used. The electrical contacts over the dispersed SWNTs were taken using silver paste electrodes. Fabricated sensors clearly show immediate change in resistance as a response to change in temperature of SWNTs. The measured sensitivity (change in resistance with temperature) of the sensor was found ∼ 0.29%/°C in the 25°C to 60°C temperature range.

  9. Pristine carbon nanotubes based resistive temperature sensor

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Md Bayazeed, E-mail: bayazeed786@gmail.com [CSIR-Central Electronics Engineering Research Institute (CEERI, Pilani, India) (India); Jamia Millia Islamia (New Delhi, India) (India); Saini, Sudhir Kumar, E-mail: sudhirsaini1310@gmail.com [CSIR-Central Electronics Engineering Research Institute (CEERI, Pilani, India) (India); Sharma, Daya Shankar, E-mail: dssharmanit15@gmail.com [CSIR-Central Electronics Engineering Research Institute (CEERI, Pilani, India) (India); Maulana Azad National Institute of Technology (MANIT, Bhopal, India) (India); Agarwal, Pankaj B., E-mail: agarwalbpankj@gmail.com [CSIR-Central Electronics Engineering Research Institute (CEERI, Pilani, India) (India); Academy for Scientific and Innovative Research (AcSIR, Delhi, India) (India)

    2016-04-13

    A good sensor must be highly sensitive, faster in response, of low cost cum easily producible, and highly reliable. Incorporation of nano-dimensional particles/ wires makes conventional sensors more effective in terms of fulfilling the above requirements. For example, Carbon Nanotubes (CNTs) are promising sensing element because of its large aspect ratio, unique electronic and thermal properties. In addition to their use for widely reported chemical sensing, it has also been explored for temperature sensing. This paper presents the fabrication of CNTs based temperature sensor, prepared on silicon substrate using low cost spray coating method, which is reliable and reproducible method to prepare uniform CNTs thin films on any substrate. Besides this, simple and inexpensive method of preparation of dispersion of single walled CNTs (SWNTs) in 1,2 dichlorobenzene by using probe type ultrasonicator for debundling the CNTs for improving sensor response were used. The electrical contacts over the dispersed SWNTs were taken using silver paste electrodes. Fabricated sensors clearly show immediate change in resistance as a response to change in temperature of SWNTs. The measured sensitivity (change in resistance with temperature) of the sensor was found ∼ 0.29%/°C in the 25°C to 60°C temperature range.

  10. Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites

    Science.gov (United States)

    Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen

    2018-06-01

    Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human–machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.

  11. Graphene Squeeze-Film Pressure Sensors.

    Science.gov (United States)

    Dolleman, Robin J; Davidovikj, Dejan; Cartamil-Bueno, Santiago J; van der Zant, Herre S J; Steeneken, Peter G

    2016-01-13

    The operating principle of squeeze-film pressure sensors is based on the pressure dependence of a membrane's resonance frequency, caused by the compression of the surrounding gas which changes the resonator stiffness. To realize such sensors, not only strong and flexible membranes are required, but also minimization of the membrane's mass is essential to maximize responsivity. Here, we demonstrate the use of a few-layer graphene membrane as a squeeze-film pressure sensor. A clear pressure dependence of the membrane's resonant frequency is observed, with a frequency shift of 4 MHz between 8 and 1000 mbar. The sensor shows a reproducible response and no hysteresis. The measured responsivity of the device is 9000 Hz/mbar, which is a factor 45 higher than state-of-the-art MEMS-based squeeze-film pressure sensors while using a 25 times smaller membrane area.

  12. Multifunctional (NOx/CO/O2) Solid-State Sensors For Coal Combustion Control

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Wachsman

    2006-12-31

    Solid-state sensors were developed for coal combustion control and the understanding of sensing mechanisms was advanced. Several semiconducting metal oxides (p-type and n-type) were used to fabricate sensor electrodes. The adsorption/desorption characteristics and catalytic activities of these materials were measured with Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction (TPR) experiments. The sensitivity, selectivity, and response time of these sensors were measured for steps of NO, NO{sub 2}, CO, CO{sub 2}, O{sub 2}, and H{sub 2}O vapor in simple N{sub 2}-balanced and multi-component, simulated combustion-exhaust streams. The role of electrode microstructure and fabrication parameters on sensing performance was investigated. Proof for the proposed sensing mechanism, Differential Electrode Equilibria, was demonstrated by relating the sensing behavior (sensitivities and cross-sensitivities) of the various electrode materials to their gas adsorption/desorption behaviors and catalytic activities. A multifunctional sensor array consisting of three sensing electrodes and an integrated heater and temperature sensors was fabricated with tape-casting and screen-printing and its NO{sub x} sensing performance was measured. The multifunctional sensor demonstrated it was possible to measure NO{sub 2} independent of NO by locally heating one of the sensing electrodes. The sensor technology was licensed to Fuel FX International, Inc. Fuel FX has obtained investor funding and is developing prototype sensors as a first step in their commercialization strategy for this technology.

  13. Ether gas-sensor based on Au nanoparticles-decorated ZnO microstructures

    Directory of Open Access Journals (Sweden)

    Roberto López

    Full Text Available An ether gas-sensor was fabricated based on gold nanoparticles (Au-NPs decorated zinc oxide microstructures (ZnO-MS. Scanning electron microscope (SEM and high-resolution transmission electron microscope (HRTEM measurements were performed to study morphological and structural properties, respectively, of the ZnO-MS. The gas sensing response was evaluated in a relatively low temperature regime, which ranged between 150 and 250 °C. Compared with a sensor fabricated from pure ZnO-MS, the sensor based on Au-NPs decorated ZnO-MS showed much better ether gas response at the highest working temperature. In fact, pure ZnO-MS based sensor only showed a weak sensitivity of about 25%. The improvement of the ether gas response for sensor fabricated with Au-NPs decorated ZnO-MS was attributed to the catalytic activity of the Au-NPs. Keywords: ZnO microstructures, Au nanoparticles, Ether, Gas sensor

  14. Environmentally Sensitive Fluorescent Sensors Based on Synthetic Peptides

    Directory of Open Access Journals (Sweden)

    Laurence Choulier

    2010-03-01

    Full Text Available Biosensors allow the direct detection of molecular analytes, by associating a biological receptor with a transducer able to convert the analyte-receptor recognition event into a measurable signal. We review recent work aimed at developing synthetic fluorescent molecular sensors for a variety of analytes, based on peptidic receptors labeled with environmentally sensitive fluorophores. Fluorescent indicators based on synthetic peptides are highly interesting alternatives to protein-based sensors, since they can be synthesized chemically, are stable, and can be easily modified in a site-specific manner for fluorophore coupling and for immobilization on solid supports.

  15. Performance of solid-state sensors for continuous, real-time measurement of soil CO2 concentrations

    Science.gov (United States)

    Recent advances in sensor technology provide a robust capability for continuous measurement of soil gases. The performance of solid-state CO2 sensors (Model GMM220 series, Vaisala, Finland) was evaluated in laboratory, greenhouse, and irrigated wheat (Triticum aestivum L.). In ambient CO2 concentrat...

  16. Optical fiber sensors: Systems and applications. Volume 2

    Science.gov (United States)

    Culshaw, Brian; Dakin, John

    State-of-the-art fiber-optic (FO) sensors and their applications are described in chapters contributed by leading experts. Consideration is given to interferometers, FO gyros, intensity- and wavelength-based sensors and optical actuators, Si in FO sensors, point-sensor multiplexing principles, and distributed FO sensor systems. Also examined are chemical, biochemical, and medical sensors; physical and chemical sensors for process control; FO-sensor applications in the marine and aerospace industries; FO-sensor monitoring systems for security and safety, structural integrity, NDE, and the electric-power industry; and the market situation for FO-sensor technology. Diagrams, drawings, graphs, and photographs are provided.

  17. Temperature characteristics research of SOI pressure sensor based on asymmetric base region transistor

    Science.gov (United States)

    Zhao, Xiaofeng; Li, Dandan; Yu, Yang; Wen, Dianzhong

    2017-07-01

    Based on the asymmetric base region transistor, a pressure sensor with temperature compensation circuit is proposed in this paper. The pressure sensitive structure of the proposed sensor is constructed by a C-type silicon cup and a Wheatstone bridge with four piezoresistors ({R}1, {R}2, {R}3 and {R}4) locating on the edge of a square silicon membrane. The chip was designed and fabricated on a silicon on insulator (SOI) wafer by micro electromechanical system (MEMS) technology and bipolar transistor process. When the supply voltage is 5.0 V, the corresponding temperature coefficient of the sensitivity (TCS) for the sensor before and after temperature compensation are -1862 and -1067 ppm/°C, respectively. Through varying the ratio of the base region resistances {r}1 and {r}2, the TCS for the sensor with the compensation circuit is -127 ppm/°C. It is possible to use this compensation circuit to improve the temperature characteristics of the pressure sensor. Project supported by the National Natural Science Foundation of China (No. 61471159), the Natural Science Foundation of Heilongjiang Province (No. F201433), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. 2015018), and the Special Funds for Science and Technology Innovation Talents of Harbin in China (No. 2016RAXXJ016).

  18. Location-Based Self-Adaptive Routing Algorithm for Wireless Sensor Networks in Home Automation

    Directory of Open Access Journals (Sweden)

    Hong SeungHo

    2011-01-01

    Full Text Available The use of wireless sensor networks in home automation (WSNHA is attractive due to their characteristics of self-organization, high sensing fidelity, low cost, and potential for rapid deployment. Although the AODVjr routing algorithm in IEEE 802.15.4/ZigBee and other routing algorithms have been designed for wireless sensor networks, not all are suitable for WSNHA. In this paper, we propose a location-based self-adaptive routing algorithm for WSNHA called WSNHA-LBAR. It confines route discovery flooding to a cylindrical request zone, which reduces the routing overhead and decreases broadcast storm problems in the MAC layer. It also automatically adjusts the size of the request zone using a self-adaptive algorithm based on Bayes' theorem. This makes WSNHA-LBAR more adaptable to the changes of the network state and easier to implement. Simulation results show improved network reliability as well as reduced routing overhead.

  19. Sensor Integration Using State Estimators

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1991-04-01

    Full Text Available Means for including very different types of sensors using one single unit are described. Accumulated data are represented using an updatable dynamic model, a Kalman filter. The scheme handles common phenomena such as skewed sampling, finite resolution measurements and information delays. Included is an example where 3D motion information is collected by one or more vision sensors.

  20. Aptamer based electrochemical sensors for emerging environmental pollutants

    Directory of Open Access Journals (Sweden)

    Akhtar eHAYAT

    2014-06-01

    Full Text Available Environmental contaminants monitoring is one of the key issues in understanding and managing hazards to human health and ecosystems. In this context, aptamer based electrochemical sensors have achieved intense significance because of their capability to resolve a potentially large number of problems and challenges in environmental contamination. An aptasensor is a compact analytical device incorporating an aptamer (oligonulceotide as the sensing element either integrated within or intimately associated with a physiochemical transducer surface. Nucleic acid is well known for the function of carrying and passing genetic information, however, it has found a key role in analytical monitoring during recent years. Aptamer based sensors represent a novelty in environmental analytical science and there are great expectations for their promising performance as alternative to conventional analytical tools. This review paper focuses on the recent advances in the development of aptamer based electrochemical sensors for environmental applications with special emphasis on emerging pollutants.

  1. Temperature and pH sensors based on graphenic materials.

    Science.gov (United States)

    Salvo, P; Calisi, N; Melai, B; Cortigiani, B; Mannini, M; Caneschi, A; Lorenzetti, G; Paoletti, C; Lomonaco, T; Paolicchi, A; Scataglini, I; Dini, V; Romanelli, M; Fuoco, R; Di Francesco, F

    2017-05-15

    Point-of-care applications and patients' real-time monitoring outside a clinical setting would require disposable and durable sensors to provide better therapies and quality of life for patients. This paper describes the fabrication and performances of a temperature and a pH sensor on a biocompatible and wearable board for healthcare applications. The temperature sensor was based on a reduced graphene oxide (rGO) layer that changed its electrical resistivity with the temperature. When tested in a human serum sample between 25 and 43°C, the sensor had a sensitivity of 110±10Ω/°C and an error of 0.4±0.1°C compared with the reference value set in a thermostatic bath. The pH sensor, based on a graphene oxide (GO) sensitive layer, had a sensitivity of 40±4mV/pH in the pH range between 4 and 10. Five sensor prototypes were tested in a human serum sample over one week and the maximum deviation of the average response from reference values obtained by a glass electrode was 0.2pH units. For biological applications, the temperature and pH sensors were successfully tested for in vitro cytotoxicity with human fibroblast cells (MRC-5) over 24h. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. ESB-Based Sensor Web Integration for the Prediction of Electric Power Supply System Vulnerability

    Directory of Open Access Journals (Sweden)

    Milos Bogdanovic

    2013-08-01

    Full Text Available Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application.

  3. ESB-based Sensor Web integration for the prediction of electric power supply system vulnerability.

    Science.gov (United States)

    Stoimenov, Leonid; Bogdanovic, Milos; Bogdanovic-Dinic, Sanja

    2013-08-15

    Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application.

  4. ESB-Based Sensor Web Integration for the Prediction of Electric Power Supply System Vulnerability

    Science.gov (United States)

    Stoimenov, Leonid; Bogdanovic, Milos; Bogdanovic-Dinic, Sanja

    2013-01-01

    Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application. PMID:23955435

  5. Highly selective gas sensor arrays based on thermally reduced graphene oxide.

    Science.gov (United States)

    Lipatov, Alexey; Varezhnikov, Alexey; Wilson, Peter; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander

    2013-06-21

    The electrical properties of reduced graphene oxide (rGO) have been previously shown to be very sensitive to surface adsorbates, thus making rGO a very promising platform for highly sensitive gas sensors. However, poor selectivity of rGO-based gas sensors remains a major problem for their practical use. In this paper, we address the selectivity problem by employing an array of rGO-based integrated sensors instead of focusing on the performance of a single sensing element. Each rGO-based device in such an array has a unique sensor response due to the irregular structure of rGO films at different levels of organization, ranging from nanoscale to macroscale. The resulting rGO-based gas sensing system could reliably recognize analytes of nearly the same chemical nature. In our experiments rGO-based sensor arrays demonstrated a high selectivity that was sufficient to discriminate between different alcohols, such as methanol, ethanol and isopropanol, at a 100% success rate. We also discuss a possible sensing mechanism that provides the basis for analyte differentiation.

  6. Monitoring tetracycline through a solid-state nanopore sensor

    Science.gov (United States)

    Zhang, Yuechuan; Chen, Yanling; Fu, Yongqi; Ying, Cuifeng; Feng, Yanxiao; Huang, Qimeng; Wang, Chao; Pei, De-Sheng; Wang, Deqiang

    2016-06-01

    Antibiotics as emerging environmental contaminants, are widely used in both human and veterinary medicines. A solid-state nanopore sensing method is reported in this article to detect Tetracycline, which is based on Tet-off and Tet-on systems. rtTA (reverse tetracycline-controlled trans-activator) and TRE (Tetracycline Responsive Element) could bind each other under the action of Tetracycline to form one complex. When the complex passes through nanopores with 8 ~ 9 nanometers in diameter, we could detect the concentrations of Tet from 2 ng/mL to 2000 ng/mL. According to the Logistic model, we could define three growth zones of Tetracycline for rtTA and TRE. The slow growth zone is 0-39.5 ng/mL. The rapid growth zone is 39.5-529.7 ng/mL. The saturated zone is > 529.7 ng/mL. Compared to the previous methods, the nanopore sensor could detect and quantify these different kinds of molecule at the single-molecule level.

  7. A resonant force sensor based on ionic polymer metal composites

    International Nuclear Information System (INIS)

    Bonomo, Claudia; Fortuna, Luigi; Giannone, Pietro; Graziani, Salvatore; Strazzeri, Salvatore

    2008-01-01

    In this paper a novel force sensor, based on ionic polymer metal composites (IPMCs), is presented. The system has DC sensing capabilities and is able to work in the range of a few millinewtons. IPMCs are emerging materials used to realize motion actuators and sensors. An IPMC strip is activated in a beam fixed/simply-supported configuration. The beam is tightened at the simply-supported end by a force. This influences the natural resonant frequency of the beam; the value of the resonant frequency is used in the proposed system to estimate the force applied in the axial direction. The performance of the system based on the IPMC material has proved to be comparable with that of sensors based on other sensing mechanisms. This suggests the possibility of using this class of polymeric devices to realize PMEMS (plastic micro electrical mechanical systems) sensors

  8. A resonant force sensor based on ionic polymer metal composites

    Science.gov (United States)

    Bonomo, Claudia; Fortuna, Luigi; Giannone, Pietro; Graziani, Salvatore; Strazzeri, Salvatore

    2008-02-01

    In this paper a novel force sensor, based on ionic polymer metal composites (IPMCs), is presented. The system has DC sensing capabilities and is able to work in the range of a few millinewtons. IPMCs are emerging materials used to realize motion actuators and sensors. An IPMC strip is activated in a beam fixed/simply-supported configuration. The beam is tightened at the simply-supported end by a force. This influences the natural resonant frequency of the beam; the value of the resonant frequency is used in the proposed system to estimate the force applied in the axial direction. The performance of the system based on the IPMC material has proved to be comparable with that of sensors based on other sensing mechanisms. This suggests the possibility of using this class of polymeric devices to realize PMEMS (plastic micro electrical mechanical systems) sensors.

  9. Comparative studies of praseodymium(III) selective sensors based on newly synthesized Schiff's bases

    International Nuclear Information System (INIS)

    Gupta, Vinod K.; Goyal, Rajendra N.; Pal, Manoj K.; Sharma, Ram A.

    2009-01-01

    Praseodymium ion selective polyvinyl chloride (PVC) membrane sensors, based on two new Schiff's bases 1,3-diphenylpropane-1,3-diylidenebis(azan-1-ylidene)diphenol (M 1 ) and N,N'-bis(pyridoxylideneiminato) ethylene (M 2 ) have been developed and studied. The sensor having membrane composition of PVC: o-NPOE: ionophore (M 1 ): NaTPB (w/w; mg) of 150: 300: 8: 5 showed best performances in comparison to M 2 based membranes. The sensor based on (M 1 ) exhibits the working concentration range 1.0 x 10 -8 to 1.0 x 10 -2 M with a detection limit of 5.0 x 10 -9 M and a Nernstian slope 20.0 ± 0.3 mV decade -1 of activity. It exhibited a quick response time as <8 s and its potential responses were pH independent across the range of 3.5-8.5.The influence of the membrane composition and possible interfering ions have also been investigated on the response properties of the electrode. The sensor has been found to work satisfactorily in partially non-aqueous media up to 15% (v/v) content of methanol, ethanol or acetonitrile and could be used for a period of 3 months. The selectivity coefficients determined by using fixed interference method (FIM) indicate high selectivity for praseodymium(III) ions over wide variety of other cations. To asses its analytical applicability the prepared sensor was successfully applied for determination of praseodymium(III) in spiked water samples.

  10. Elastomeric polymer resonant waveguide grating based pressure sensor

    International Nuclear Information System (INIS)

    Song, Fuchuan; Xie, Antonio Jou; Seo, Sang-Woo

    2014-01-01

    In this paper, we demonstrate an elastomeric polymer resonant waveguide grating structure to be used as a pressure sensor. The applied pressure is measured by optical resonance spectrum peak shift. The sensitivity—as high as 86.74 pm psi −1 or 12.58 pm kPa −1 —has been experimentally obtained from a fabricated sensor. Potentially, the sensitivity of the demonstrated sensor can be tuned to different pressure ranges by the choices of elastic properties and layer thicknesses of the waveguide and cladding layers. The simulation results agree well with experimental results and indicate that the dominant effect on the sensor is the change of grating period when external pressure is applied. Based on the two-dimensional planar structure, the demonstrated sensor can be used to measure applied surface pressure optically, which has potential applications for optical ultrasound imaging and pressure wave detection/mapping

  11. Structural Engineering for High Sensitivity, Ultrathin Pressure Sensors Based on Wrinkled Graphene and Anodic Aluminum Oxide Membrane.

    Science.gov (United States)

    Chen, Wenjun; Gui, Xuchun; Liang, Binghao; Yang, Rongliang; Zheng, Yongjia; Zhao, Chengchun; Li, Xinming; Zhu, Hai; Tang, Zikang

    2017-07-19

    Nature-motivated pressure sensors have been greatly important components integrated into flexible electronics and applied in artificial intelligence. Here, we report a high sensitivity, ultrathin, and transparent pressure sensor based on wrinkled graphene prepared by a facile liquid-phase shrink method. Two pieces of wrinkled graphene are face to face assembled into a pressure sensor, in which a porous anodic aluminum oxide (AAO) membrane with the thickness of only 200 nm was used to insulate the two layers of graphene. The pressure sensor exhibits ultrahigh operating sensitivity (6.92 kPa -1 ), resulting from the insulation in its inactive state and conduction under compression. Formation of current pathways is attributed to the contact of graphene wrinkles through the pores of AAO membrane. In addition, the pressure sensor is also an on/off and energy saving device, due to the complete isolation between the two graphene layers when the sensor is not subjected to any pressure. We believe that our high-performance pressure sensor is an ideal candidate for integration in flexible electronics, but also paves the way for other 2D materials to be involved in the fabrication of pressure sensors.

  12. Sensor Fusion-based Event Detection in Wireless Sensor Networks

    NARCIS (Netherlands)

    Bahrepour, M.; Meratnia, Nirvana; Havinga, Paul J.M.

    2009-01-01

    Recently, Wireless Sensor Networks (WSN) community has witnessed an application focus shift. Although, monitoring was the initial application of wireless sensor networks, in-network data processing and (near) real-time actuation capability have made wireless sensor networks suitable candidate for

  13. Ceramic thermal wind sensor based on advanced direct chip attaching package

    International Nuclear Information System (INIS)

    Zhou Lin; Qin Ming; Chen Shengqi; Chen Bei

    2014-01-01

    An advanced direct chip attaching packaged two-dimensional ceramic thermal wind sensor is studied. The thermal wind sensor chip is fabricated by metal lift-off processes on the ceramic substrate. An advanced direct chip attaching (DCA) packaging is adopted and this new packaged method simplifies the processes of packaging further. Simulations of the advanced DCA packaged sensor based on computational fluid dynamics (CFD) model show the sensor can detect wind speed and direction effectively. The wind tunnel testing results show the advanced DCA packaged sensor can detect the wind direction from 0° to 360° and wind speed from 0 to 20 m/s with the error less than 0.5 m/s. The nonlinear fitting based least square method in Matlab is used to analyze the performance of the sensor. (semiconductor devices)

  14. Implementation of software-based sensor linearization algorithms on low-cost microcontrollers.

    Science.gov (United States)

    Erdem, Hamit

    2010-10-01

    Nonlinear sensors and microcontrollers are used in many embedded system designs. As the input-output characteristic of most sensors is nonlinear in nature, obtaining data from a nonlinear sensor by using an integer microcontroller has always been a design challenge. This paper discusses the implementation of six software-based sensor linearization algorithms for low-cost microcontrollers. The comparative study of the linearization algorithms is performed by using a nonlinear optical distance-measuring sensor. The performance of the algorithms is examined with respect to memory space usage, linearization accuracy and algorithm execution time. The implementation and comparison results can be used for selection of a linearization algorithm based on the sensor transfer function, expected linearization accuracy and microcontroller capacity. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Phage-based magnetoelastic sensor for the detection of Salmonella typhimurium

    Science.gov (United States)

    Lakshmanan, Ramji S.

    In recent years, food-borne illness have garnered the attention of mainstream America with calls now coming from the media for more inspections to ensure the safety of our food supply. Food borne illness from the ingestion of S. typhimurium has been of great concern due to its common occurrence in food products of daily consumption. Annually approximately 80 million cases of food poisoning are reported in the United States alone. The ever growing need for rapid detection of pathogenic microorganisms present in food, environmental and clinical samples has invoked an increased interest in research efforts towards the development of novel diagnostic methodologies. Currently, the detection of bacteria in contaminated food relies on conventional microbiological methods that are time consuming and manpower intensive. This study presents the results of the characterization of a phage-based magnetoelastic biosensor for the detection of Salmonella typhimurium . This affinity-based biosensensor is comprised of a magnetoelastic material as the transducer and filamentous phage as the bio-recognition element. Magnetoelastic materials are ferromagnetic amorphous alloys that change dimensions in the presence of a magnetic field. This effect in combination with the reverse effect (inverse magnetostriction) is utilized in a typical sensor application. A time varying magnetic field causes these sensors to oscillate at a characteristic resonance frequency. The characteristic resonance frequency is dependent on the initial dimensions and physical properties of the material. These materials are of particular interest owing to their unique capability to perform remote (without direct wire contacts to the sensor) sensing, making in-vivo detection and detection in closed containers possible. The phage-immobilized magnetoelastic biosensor was characterized for specificity; dose response in water, spiked apple juice and in spiked milk; selectivity; and longevity. The sensor's sensitivity is

  16. Resonant Magnetic Field Sensors Based On MEMS Technology

    Directory of Open Access Journals (Sweden)

    Elías Manjarrez

    2009-09-01

    Full Text Available Microelectromechanical systems (MEMS technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.

  17. Resonant Magnetic Field Sensors Based On MEMS Technology

    Science.gov (United States)

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  18. A sensitive, handheld vapor sensor based on microcantilevers

    Science.gov (United States)

    Pinnaduwage, L. A.; Hedden, D. L.; Gehl, A.; Boiadjiev, V. I.; Hawk, J. E.; Farahi, R. H.; Thundat, T.; Houser, E. J.; Stepnowski, S.; McGill, R. A.; Deel, L.; Lareau, R. T.

    2004-11-01

    We report the development of a handheld sensor based on piezoresistive microcantilevers that does not depend on optical detection, yet has high detection sensitivity. The sensor is able to detect vapors from the plastic explosives pentaerythritol tetranitrate and hexahydro-1,3,5-triazine at levels below 10 parts per trillion within few seconds of exposure under ambient conditions. A differential measurement technique has yielded a rugged sensor that is unaffected by vibration and is able to function as a "sniffer." The microelectromechanical system sensor design allows for the incorporation of hundreds of microcantilevers with suitable coatings in order to achieve sufficient selectivity in the future, and thus could provide an inexpensive, unique platform for the detection of chemical, biological, and explosive materials.

  19. Immunizations on small worlds of tree-based wireless sensor networks

    DEFF Research Database (Denmark)

    Li, Qiao; Zhang, Bai-Hai; Cui, Ling-Guo

    2012-01-01

    , are conducted on small worlds of tree-based wireless sensor networks to combat the sensor viruses. With the former strategy, the infection extends exponentially, although the immunization effectively reduces the contagion speed. With the latter strategy, recurrent contagion oscillations occur in the small world......The sensor virus is a serious threat, as an attacker can simply send a single packet to compromise the entire sensor network. Epidemics become drastic with link additions among sensors when the small world phenomena occur. Two immunization strategies, uniform immunization and temporary immunization...

  20. A Nodes Deployment Algorithm in Wireless Sensor Network Based on Distribution

    Directory of Open Access Journals (Sweden)

    Song Yuli

    2014-07-01

    Full Text Available Wireless sensor network coverage is a basic problem of wireless sensor network. In this paper, we propose a wireless sensor network node deployment algorithm base on distribution in order to form an efficient wireless sensor network. The iteratively greedy algorithm is used in this paper to choose priority nodes into active until the entire network is covered by wireless sensor nodes, the whole network to multiply connected. The simulation results show that the distributed wireless sensor network node deployment algorithm can form a multiply connected wireless sensor network.

  1. Impedance-based damage assessment using piezoelectric sensors

    Science.gov (United States)

    Rim, Mi-Sun; Yoo, Seung-Jae; Lee, In; Song, Jae-Hoon; Yang, Jae-Won

    2011-04-01

    Recently structural health monitoring (SHM) systems are being focused because they make it possible to assess the health of structures at real-time in many application fields such as aircraft, aerospace, civil and so on. Piezoelectric materials are widely used for sensors of SHM system to monitor damage of critical parts such as bolted joints. Bolted joints could be loosened by vibration, thermal cycling, shock, corrosion, and they cause serious mechanical failures. In this paper, impedance-based method using piezoelectric sensors was applied for real-time SHM. A steel beam specimen fastened by bolts was tested, and polymer type piezoelectric materials, PVDFs were used for sensors to monitor the condition of bolted joint connections. When structure has some damage, for example loose bolts, the impedance of PVDF sensors showed different tendency with normal structure which has no loose bolts. In the case of loose bolts, impedance values are decreased and admittance values are increased.

  2. Proposed Robust Entanglement-Based Magnetic Field Sensor Beyond the Standard Quantum Limit.

    Science.gov (United States)

    Tanaka, Tohru; Knott, Paul; Matsuzaki, Yuichiro; Dooley, Shane; Yamaguchi, Hiroshi; Munro, William J; Saito, Shiro

    2015-10-23

    Recently, there have been significant developments in entanglement-based quantum metrology. However, entanglement is fragile against experimental imperfections, and quantum sensing to beat the standard quantum limit in scaling has not yet been achieved in realistic systems. Here, we show that it is possible to overcome such restrictions so that one can sense a magnetic field with an accuracy beyond the standard quantum limit even under the effect of decoherence, by using a realistic entangled state that can be easily created even with current technology. Our scheme could pave the way for the realizations of practical entanglement-based magnetic field sensors.

  3. Polymer-based blood vessel models with micro-temperature sensors in EVE

    Science.gov (United States)

    Mizoshiri, Mizue; Ito, Yasuaki; Hayakawa, Takeshi; Maruyama, Hisataka; Sakurai, Junpei; Ikeda, Seiichi; Arai, Fumihito; Hata, Seiichi

    2017-04-01

    Cu-based micro-temperature sensors were directly fabricated on poly(dimethylsiloxane) (PDMS) blood vessel models in EVE using a combined process of spray coating and femtosecond laser reduction of CuO nanoparticles. CuO nanoparticle solution coated on a PDMS blood vessel model are thermally reduced and sintered by focused femtosecond laser pulses in atmosphere to write the sensors. After removing the non-irradiated CuO nanoparticles, Cu-based microtemperature sensors are formed. The sensors are thermistor-type ones whose temperature dependences of the resistance are used for measuring temperature inside the blood vessel model. This fabrication technique is useful for direct-writing of Cu-based microsensors and actuators on arbitrary nonplanar substrates.

  4. Optical fiber pressure sensor based on fiber Bragg grating

    Science.gov (United States)

    Song, Dongcao

    In oil field, it is important to measure the high pressure and temperature for down-hole oil exploration and well-logging, the available traditional electronic sensor is challenged due to the harsh, flammable environment. Recently, applications based on fiber Bragg grating (FBG) sensor in the oil industry have become a popular research because of its distinguishing advantages such as electrically passive operation, immunity to electromagnetic interference, high resolution, insensitivity to optical power fluctuation etc. This thesis is divided into two main sections. In the first section, the design of high pressure sensor based on FBG is described. Several sensing elements based on FBG for high pressure measurements have been proposed, for example bulk-modulus or free elastic modulus. But the structure of bulk-modulus and free elastic modulus is relatively complex and not easy to fabricate. In addition, the pressure sensitivity is not high and the repeatability of the structure has not been investigated. In this thesis, a novel host material of carbon fiber laminated composite (CFLC) for high pressure sensing is proposed. The mechanical characteristics including principal moduli in three directions and the shape repeatability are investigated. Because of it's Young's modulus in one direction and anisotropic characteristics, the pressure sensor made by CFLC has excellent sensitivity. This said structure can be used in very high pressure measurement due to carbon fiber composite's excellent shape repetition even under high pressure. The experimental results show high pressure sensitivity of 0.101nm/MPa and high pressure measurement up to 70MPa. A pressure sensor based on CFLC and FBG with temperature compensation has been designed. In the second section, the design of low pressure sensor based on FBG is demonstrated. Due to the trade off between measurement range and sensitivity, a sensor for lower pressure range needs more sensitivity. A novel material of carbon

  5. Carbon nanotube-based ethanol sensors

    International Nuclear Information System (INIS)

    Brahim, Sean; Colbern, Steve; Gump, Robert; Moser, Alex; Grigorian, Leonid

    2009-01-01

    Sensors containing metal-carbon nanotube (CNT) hybrid materials as the active sensing layer were demonstrated for ethanol vapor detection at room temperature. The metal-CNT hybrid materials were synthesized by infiltrating single wall carbon nanotubes (SWNTs) with the transition metals Ti, Mn, Fe, Co, Ni, Pd or Pt. Each sensor was prepared by drop-casting dilute dispersions of a metal-CNT hybrid onto quartz substrate electrodes and the impedimetric responses to varying ethanol concentration were recorded. Upon exposure to ethanol vapor, the ac impedance (Z') of the sensors was found to decrease to different extents. The sensor containing pristine CNT material was virtually non-responsive at low ethanol concentrations (<50 ppm). In contrast, all metal-CNT hybrid sensors showed extremely high sensitivity to trace ethanol levels with 100-fold or more gains in sensitivity relative to the starting SWNT sensor. All hybrid sensors, with the exception of Ni filled CNT, exhibited significantly larger sensor responses to ethanol vapor up to 250 ppm compared to the starting SWNT sensor.

  6. A capacitive rf power sensor based on mems technology

    NARCIS (Netherlands)

    Fernandez, L.J.

    2005-01-01

    Existing power sensors for RF signals are based on thermistors, diodes and thermocouples. These power sensors are used as terminating devices and therefore they dissipate the complete incoming signal. Furthermore, new telecommunication systems require low weight, volume and power consumption and a

  7. Dynamic Sensor Management Algorithm Based on Improved Efficacy Function

    Directory of Open Access Journals (Sweden)

    TANG Shujuan

    2016-01-01

    Full Text Available A dynamic sensor management algorithm based on improved efficacy function is proposed to solve the multi-target and multi-sensory management problem. The tracking task precision requirements (TPR, target priority and sensor use cost were considered to establish the efficacy function by weighted sum the normalized value of the three factors. The dynamic sensor management algorithm was accomplished through control the diversities of the desired covariance matrix (DCM and the filtering covariance matrix (FCM. The DCM was preassigned in terms of TPR and the FCM was obtained by the centralized sequential Kalman filtering algorithm. The simulation results prove that the proposed method could meet the requirements of desired tracking precision and adjust sensor selection according to target priority and cost of sensor source usage. This makes sensor management scheme more reasonable and effective.

  8. Smartphone-based quantitative measurements on holographic sensors.

    Directory of Open Access Journals (Sweden)

    Gita Khalili Moghaddam

    Full Text Available The research reported herein integrates a generic holographic sensor platform and a smartphone-based colour quantification algorithm in order to standardise and improve the determination of the concentration of analytes of interest. The utility of this approach has been exemplified by analysing the replay colour of the captured image of a holographic pH sensor in near real-time. Personalised image encryption followed by a wavelet-based image compression method were applied to secure the image transfer across a bandwidth-limited network to the cloud. The decrypted and decompressed image was processed through four principal steps: Recognition of the hologram in the image with a complex background using a template-based approach, conversion of device-dependent RGB values to device-independent CIEXYZ values using a polynomial model of the camera and computation of the CIEL*a*b* values, use of the colour coordinates of the captured image to segment the image, select the appropriate colour descriptors and, ultimately, locate the region of interest (ROI, i.e. the hologram in this case, and finally, application of a machine learning-based algorithm to correlate the colour coordinates of the ROI to the analyte concentration. Integrating holographic sensors and the colour image processing algorithm potentially offers a cost-effective platform for the remote monitoring of analytes in real time in readily accessible body fluids by minimally trained individuals.

  9. Smartphone-based quantitative measurements on holographic sensors.

    Science.gov (United States)

    Khalili Moghaddam, Gita; Lowe, Christopher Robin

    2017-01-01

    The research reported herein integrates a generic holographic sensor platform and a smartphone-based colour quantification algorithm in order to standardise and improve the determination of the concentration of analytes of interest. The utility of this approach has been exemplified by analysing the replay colour of the captured image of a holographic pH sensor in near real-time. Personalised image encryption followed by a wavelet-based image compression method were applied to secure the image transfer across a bandwidth-limited network to the cloud. The decrypted and decompressed image was processed through four principal steps: Recognition of the hologram in the image with a complex background using a template-based approach, conversion of device-dependent RGB values to device-independent CIEXYZ values using a polynomial model of the camera and computation of the CIEL*a*b* values, use of the colour coordinates of the captured image to segment the image, select the appropriate colour descriptors and, ultimately, locate the region of interest (ROI), i.e. the hologram in this case, and finally, application of a machine learning-based algorithm to correlate the colour coordinates of the ROI to the analyte concentration. Integrating holographic sensors and the colour image processing algorithm potentially offers a cost-effective platform for the remote monitoring of analytes in real time in readily accessible body fluids by minimally trained individuals.

  10. Fabrication and performance of all-solid-state chloride sensors in synthetic concrete pore solutions.

    Science.gov (United States)

    Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei

    2010-01-01

    One type of all-solid-state chloride sensor was fabricated using a MnO(2) electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K(+), Ca(2+), Na(+) and SO(4) (2-) ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments.

  11. Fabrication and Performance of All-Solid-State Chloride Sensors in Synthetic Concrete Pore Solutions

    Directory of Open Access Journals (Sweden)

    Hongwei Deng

    2010-11-01

    Full Text Available One type of all-solid-state chloride sensor was fabricated using a MnO2 electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M, and the potential value remains stable with increasing immersion time. The existence of K+, Ca2+, Na+ and SO42− ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments.

  12. Adaptive Opportunistic Cooperative Control Mechanism Based on Combination Forecasting and Multilevel Sensing Technology of Sensors for Mobile Internet of Things

    Directory of Open Access Journals (Sweden)

    Yong Jin

    2014-01-01

    Full Text Available In mobile Internet of Things, there are many challenges, including sensing technology of sensors, how and when to join cooperative transmission, and how to select the cooperative sensors. To address these problems, we studied the combination forecasting based on the multilevel sensing technology of sensors, building upon which we proposed the adaptive opportunistic cooperative control mechanism based on the threshold values such as activity probability, distance, transmitting power, and number of relay sensors, in consideration of signal to noise ratio and outage probability. More importantly, the relay sensors would do self-test real time in order to judge whether to join the cooperative transmission, for maintaining the optimal cooperative transmission state with high performance. The mathematical analyses results show that the proposed adaptive opportunistic cooperative control approach could perform better in terms of throughput ratio, packet error rate and delay, and energy efficiency, compared with the direct transmission and opportunistic cooperative approaches.

  13. Optical Sensor based Chemical Modification as a Porous Cellulose Acetate Film and Its Application for Ethanol Sensor

    Science.gov (United States)

    Mulijani, S.; Iswantini, D.; Wicaksono, R.; Notriawan, D.

    2018-03-01

    A new approach to design and construction of an optical ethanol sensor has been developed by immobilizing a direct dye at a porous cellulosic polymer fllm. This sensor was fabricated by binding Nile Red to a cellulose acetate membrane that had previously been subjected to an exhaustive base hydrolysis. The prepared optical ethanol sensor was enhanced by adding pluronic as a porogen in the membrane. The addition of pluronic surfactant into cellulose acetate membrane increased the hydrophilic and porous properties of membrane. Advantageous features of the design include simple and easy of fabrication. Variable affecting sensor performance of dye concentration have been fully evaluated and optimized. The rapid response results from the porous structure of the polymeric support, which minimizes barriers to mass transport. Signal of optical sensor based on reaction of dye nile red over the membrane with ethanol and will produce the purple colored product. Result was obtained that maximum intensity of dye nile red reacted with alcohol is at 630-640 nm. Linear regression equation (r2), limit of detection, and limit of quantitation of membrane with 2% dye was 0.9625, 0.29%, and 0.97%. Performance of optical sensor was also evaluated through methanol, ethanol and propanol. This study was purposed to measure the polarity and selectivity of optic sensor toward the alcohol derivatives. Fluorescence intensity of optic sensor membrane for methanol 5%, ethanol 5% and propanol 5% was 15113.56, 16573.75 and 18495.97 respectively.

  14. Characterization and application of a new pH sensor based on magnetron sputtered porous WO3 thin films deposited at oblique angles

    International Nuclear Information System (INIS)

    Salazar, Pedro; Garcia-Garcia, Francisco J.; Yubero, Francisco; Gil-Rostra, Jorge; González-Elipe, Agustín R.

    2016-01-01

    Highlights: • A solid-state pH sensor based on WO 3 amorphous thin film electrode is reported. • Cyclic voltammetry and XRD confirmed the amorphous nature of tungsten. • Potentiometric response of the WO 3 electrode revealed a quasi-Nernstian behavior. • The interference of the most common ions (Li + , Na + , K + and NH 4 + ) was negligible. • A full solid state pH sensor is developed. - Abstract: In this communication we report about an outstanding solid-state pH sensor based on amorphous nanocolumnar porous thin film electrodes. Transparent WO 3 thin films were deposited by reactive magnetron sputtering in an oblique angle configuration to enhance their porosity onto indium tin oxide (ITO) and screen printed electrodes (SPE). The potentiometric pH response of the nanoporous WO 3 -modified ITO electrode revealed a quasi-Nernstian behaviour, i.e. a linear working range from pH 1 to 12 with a slope of about −57.7 mV/pH. pH detection with this electrode was quite reproducible, displayed excellent anti-interference properties and a high stable response that remained unaltered over at least 3 months. Finally, a pH sensor was developed using nanoporous WO 3 -modified screen printed electrode (SPE) using a polypyrrole-modified Ag/AgCl electrode as internal reference electrode. This full solid state pH sensor presented a Nernstian behaviour with a slope of about −59 mV/pH and offered important analytical and operation advantages for decentralized pH measurements in different applications.

  15. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    OpenAIRE

    Rheaume, Jonathan Michael

    2010-01-01

    Solid state electrochemical sensors that measure nitrogen oxides (NOx) in lean exhaust have been investigated in order to help meet future on-board diagnostic (OBD) regulations for diesel vehicles. This impedancemetric detection technology consists of a planar, single cell sensor design with various sensing electrode materials and yttria-stabilized zirconia (YSZ) as the electrolyte. No reference to ambient air is required. An impedance analysis method yields a signal that is proportional to t...

  16. CMOS Imaging of Pin-Printed Xerogel-Based Luminescent Sensor Microarrays.

    Science.gov (United States)

    Yao, Lei; Yung, Ka Yi; Khan, Rifat; Chodavarapu, Vamsy P; Bright, Frank V

    2010-12-01

    We present the design and implementation of a luminescence-based miniaturized multisensor system using pin-printed xerogel materials which act as host media for chemical recognition elements. We developed a CMOS imager integrated circuit (IC) to image the luminescence response of the xerogel-based sensor array. The imager IC uses a 26 × 20 (520 elements) array of active pixel sensors and each active pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. The imager includes a correlated double sampling circuit and pixel address/digital control circuit; the image data is read-out as coded serial signal. The sensor system uses a light-emitting diode (LED) to excite the target analyte responsive luminophores doped within discrete xerogel-based sensor elements. As a prototype, we developed a 4 × 4 (16 elements) array of oxygen (O 2 ) sensors. Each group of 4 sensor elements in the array (arranged in a row) is designed to provide a different and specific sensitivity to the target gaseous O 2 concentration. This property of multiple sensitivities is achieved by using a strategic mix of two oxygen sensitive luminophores ([Ru(dpp) 3 ] 2+ and ([Ru(bpy) 3 ] 2+ ) in each pin-printed xerogel sensor element. The CMOS imager consumes an average power of 8 mW operating at 1 kHz sampling frequency driven at 5 V. The developed prototype system demonstrates a low cost and miniaturized luminescence multisensor system.

  17. Convolutional Neural Network-Based Classification of Driver’s Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors

    Directory of Open Access Journals (Sweden)

    Kwan Woo Lee

    2018-03-01

    Full Text Available Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG or electrocardiogram (ECG sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver’s body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver’s emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN-based method of detecting emotion to identify aggressive driving using input images of the driver’s face, obtained using near-infrared (NIR light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed driving. Our proposed method demonstrates better performance than existing methods.

  18. Polydimethylsiloxane (PDMS-Based Flexible Resistive Strain Sensors for Wearable Applications

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2018-02-01

    Full Text Available There is growing attention and rapid development on flexible electronic devices with electronic materials and sensing technology innovations. In particular, strain sensors with high elasticity and stretchability are needed for several potential applications including human entertainment technology, human–machine interface, personal healthcare, and sports performance monitoring, etc. This article presents recent advancements in the development of polydimethylsiloxane (PDMS-based flexible resistive strain sensors for wearable applications. First of all, the article shows that PDMS-based stretchable resistive strain sensors are successfully fabricated by different methods, such as the filtration method, printing technology, micromolding method, coating techniques, and liquid phase mixing. Next, strain sensing performances including stretchability, gauge factor, linearity, and durability are comprehensively demonstrated and compared. Finally, potential applications of PDMS-based flexible resistive strain sensors are also discussed. This review indicates that the era of wearable intelligent electronic systems has arrived.

  19. Carbon Nanotube-Based Chemical Sensors.

    Science.gov (United States)

    Meyyappan, M

    2016-04-27

    The need to sense gases and vapors arises in numerous scenarios in industrial, environmental, security and medical applications. Traditionally, this activity has utilized bulky instruments to obtain both qualitative and quantitative information on the constituents of the gas mixture. It is ideal to use sensors for this purpose since they are smaller in size and less expensive; however, their performance in the field must match that of established analytical instruments in order to gain acceptance. In this regard, nanomaterials as sensing media offer advantages in sensitivity, preparation of chip-based sensors and construction of electronic nose for selective detection of analytes of interest. This article provides a review of the use of carbon nanotubes in gas and vapor sensing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Data Fusion Based on Node Trust Evaluation in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhou Jianming

    2014-01-01

    Full Text Available Abnormal behavior detection and trust evaluation mode of traditional sensor node have a single function without considering all the factors, and the trust value algorithm is relatively complicated. To avoid these above disadvantages, a trust evaluation model based on the autonomous behavior of sensor node is proposed in this paper. Each sensor node has the monitoring privilege and obligation. Neighboring sensor nodes can monitor each other. Their direct and indirect trust values can be achieved by using a relatively simple calculation method, the synthesis trust value of which could be got according to the composition rule of D-S evidence theory. Firstly, the cluster head assigns different weighted value for the data from each sensor node, then the weight vector is set according to the synthesis trust value, the data fusion processing is executed, and finally the cluster head sensor node transmits the fused result to the base station. Simulation experiment results demonstrate that the trust evaluation model can rapidly, exactly, and effectively recognize malicious sensor node and avoid malicious sensor node becoming cluster head sensor node. The proposed algorithm can greatly increase the safety and accuracy of data fusion, improve communication efficiency, save energy of sensor node, suit different application fields, and deploy environments.

  1. In plane optical sensor based on organic electronic devices

    NARCIS (Netherlands)

    Koetse, M.M; Rensing, P.A.; Heck, G.T. van; Sharpe, R.B.A.; Allard, B.A.M.; Wieringa, F.P.; Kruijt, P.G.M.; Meulendijks, N.M.M.; Jansen, H.; Schoo, H.F.M.

    2008-01-01

    Sensors based on organic electronic devices are emerging in a wide range of application areas. Here we present a sensor platform using organic light emitting diodes (OLED) and organic photodiodes (OPD) as active components. By means of lamination and interconnection technology the functional foils

  2. ECCE Toolkit: Prototyping Sensor-Based Interaction

    Directory of Open Access Journals (Sweden)

    Andrea Bellucci

    2017-02-01

    Full Text Available Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators. Prototyping physical interaction is hindered by the challenges of: (1 programming interactions among physical sensors/actuators and digital interfaces; (2 implementing functionality for different platforms in different programming languages; and (3 building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems, a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit.

  3. Optical Graphene Gas Sensors Based on Microfibers: A Review

    Directory of Open Access Journals (Sweden)

    Yu Wu

    2018-03-01

    Full Text Available Graphene has become a bridge across optoelectronics, mechanics, and bio-chemical sensing due to its unique photoelectric characteristics. Moreover, benefiting from its two-dimensional nature, this atomically thick film with full flexibility has been widely incorporated with optical waveguides such as fibers, realizing novel photonic devices including polarizers, lasers, and sensors. Among the graphene-based optical devices, sensor is one of the most important branch, especially for gas sensing, as rapid progress has been made in both sensing structures and devices in recent years. This article presents a comprehensive and systematic overview of graphene-based microfiber gas sensors regarding many aspects including sensing principles, properties, fabrication, interrogating and implementations.

  4. Solid state magnetic field sensors for micro unattended ground networks using spin dependent tunneling

    Science.gov (United States)

    Tondra, Mark; Nordman, Catherine A.; Lange, Erik H.; Reed, Daniel; Jander, Albrect; Akou, Seraphin; Daughton, James

    2001-09-01

    Micro Unattended Ground Sensor Networks will likely employ magnetic sensors, primarily for discrimination of objects as opposed to initial detection. These magnetic sensors, then, must fit within very small cost, size, and power budgets to be compatible with the envisioned sensor suites. Also, a high degree of sensitivity is required to minimize the number of sensor cells required to survey a given area in the field. Solid state magnetoresistive sensors, with their low cost, small size, and ease of integration, are excellent candidates for these applications assuming that their power and sensitivity performance are acceptable. SDT devices have been fabricated into prototype magnetic field sensors suitable for use in micro unattended ground sensor networks. They are housed in tiny SOIC 8-pin packages and mounted on a circuit board with required voltage regulation, signal amplification and conditioning, and sensor control and communications functions. The best sensitivity results to date are 289 pT/rt. Hz at 1 Hz, and and 7 pT/rt. Hz at f > 10 kHz. Expected near term improvements in performance would bring these levels to approximately 10 pT/rt Hz at 1 Hz and approximately 1 pT/rt. Hz at > 1 kHz.

  5. Recent machine learning advancements in sensor-based mobility analysis: Deep learning for Parkinson's disease assessment.

    Science.gov (United States)

    Eskofier, Bjoern M; Lee, Sunghoon I; Daneault, Jean-Francois; Golabchi, Fatemeh N; Ferreira-Carvalho, Gabriela; Vergara-Diaz, Gloria; Sapienza, Stefano; Costante, Gianluca; Klucken, Jochen; Kautz, Thomas; Bonato, Paolo

    2016-08-01

    The development of wearable sensors has opened the door for long-term assessment of movement disorders. However, there is still a need for developing methods suitable to monitor motor symptoms in and outside the clinic. The purpose of this paper was to investigate deep learning as a method for this monitoring. Deep learning recently broke records in speech and image classification, but it has not been fully investigated as a potential approach to analyze wearable sensor data. We collected data from ten patients with idiopathic Parkinson's disease using inertial measurement units. Several motor tasks were expert-labeled and used for classification. We specifically focused on the detection of bradykinesia. For this, we compared standard machine learning pipelines with deep learning based on convolutional neural networks. Our results showed that deep learning outperformed other state-of-the-art machine learning algorithms by at least 4.6 % in terms of classification rate. We contribute a discussion of the advantages and disadvantages of deep learning for sensor-based movement assessment and conclude that deep learning is a promising method for this field.

  6. Range-Based Localization in Mobile Sensor Networks

    NARCIS (Netherlands)

    Dil, B.J.; Dil, B.; Dulman, S.O.; Havinga, Paul J.M.; Romer, K.; Karl, H.; Mattern, F.

    2006-01-01

    Localization schemes for wireless sensor networks can be classified as range-based or range-free. They differ in the information used for localization. Range-based methods use range measurements, while range-free techniques only use the content of the messages. None of the existing algorithms

  7. A Wildlife Monitoring System Based on Wireless Image Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junguo Zhang

    2014-10-01

    Full Text Available Survival and development of wildlife sustains the balance and stability of the entire ecosystem. Wildlife monitoring can provide lots of information such as wildlife species, quantity, habits, quality of life and habitat conditions, to help researchers grasp the status and dynamics of wildlife resources, and to provide basis for the effective protection, sustainable use, and scientific management of wildlife resources. Wildlife monitoring is the foundation of wildlife protection and management. Wireless Sensor Networks (WSN technology has become the most popular technology in the field of information. With advance of the CMOS image sensor technology, wireless sensor networks combined with image sensors, namely Wireless Image Sensor Networks (WISN technology, has emerged as an alternative in monitoring applications. Monitoring wildlife is one of its most promising applications. In this paper, system architecture of the wildlife monitoring system based on the wireless image sensor networks was presented to overcome the shortcomings of the traditional monitoring methods. Specifically, some key issues including design of wireless image sensor nodes and software process design have been studied and presented. A self-powered rotatable wireless infrared image sensor node based on ARM and an aggregation node designed for large amounts of data were developed. In addition, their corresponding software was designed. The proposed system is able to monitor wildlife accurately, automatically, and remotely in all-weather condition, which lays foundations for applications of wireless image sensor networks in wildlife monitoring.

  8. Measuring intracellular redox conditions using GFP-based sensors

    DEFF Research Database (Denmark)

    Björnberg, Olof; Ostergaard, Henrik; Winther, Jakob R

    2006-01-01

    Recent years have seen the development of methods for analyzing the redox conditions in specific compartments in living cells. These methods are based on genetically encoded sensors comprising variants of Green Fluorescent Protein in which vicinal cysteine residues have been introduced at solvent......-exposed positions. Several mutant forms have been identified in which formation of a disulfide bond between these cysteine residues results in changes of their fluorescence properties. The redox sensors have been characterized biochemically and found to behave differently, both spectroscopically and in terms...... of redox properties. As genetically encoded sensors they can be expressed in living cells and used for analysis of intracellular redox conditions; however, which parameters are measured depends on how the sensors interact with various cellular redox components. Results of both biochemical and cell...

  9. Mass Tracking with a MEMS-based Gravity Sensor

    Science.gov (United States)

    Pike, W. T.; Mukherjee, A.; Warren, T.; Charalambous, C.; Calcutt, S. B.; Standley, I.

    2017-12-01

    We achieve the first demonstration of the dynamic location of a moving mass using a MEMS sensor to detect gravity. The sensor is based on a microseismometer developed for planetary geophysics. In an updated version of the original Cavendish experiment the noise floor of the sensor, at 0.25 µgal/rtHz, allows the determination of the dynamic gravitational field from the motion of the mass of an oscillating pendulum. Using the determined noise floor we show that this performance should be sufficient for practical subsurface gravity surveying, in particular detection of 50-cm diameter pipes up to 10 m below the surface. Beyond this specific application, this sensor with a mass of less than 250 g per axis represents a new technology that opens up the possibility of drone deloyments for gravity mapping.

  10. Research of detection depth for graphene-based optical sensor

    Science.gov (United States)

    Yang, Yong; Sun, Jialve; Liu, Lu; Zhu, Siwei; Yuan, Xiaocong

    2018-03-01

    Graphene-based optical sensors have been developed for research into the biological intercellular refractive index (RI) because they offer greater detection depths than those provided by the surface plasmon resonance technique. In this Letter, we propose an experimental approach for measurement of the detection depth in a graphene-based optical sensor system that uses transparent polydimethylsiloxane layers with different thicknesses. The experimental results show that detection depths of 2.5 μm and 3 μm can be achieved at wavelengths of 532 nm and 633 nm, respectively. These results prove that graphene-based optical sensors can realize long-range RI detection and are thus promising for use as tools in the biological cell detection field. Additionally, we analyze the factors that influence the detection depth and provide a feasible approach for detection depth control based on adjustment of the wavelength and the angle of incidence. We believe that this approach will be useful in RI tomography applications.

  11. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    Science.gov (United States)

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-01-01

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes. PMID:26712766

  12. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    Directory of Open Access Journals (Sweden)

    Marwah Almasri

    2015-12-01

    Full Text Available Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes.

  13. Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors.

    Science.gov (United States)

    Amjadi, Morteza; Turan, Mehmet; Clementson, Cameron P; Sitti, Metin

    2016-03-02

    There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to their various potential applications. However, achieving strain sensors with both high sensitivity and high stretchability is still a grand challenge. Here, we propose highly sensitive and stretchable strain sensors based on the reversible microcrack formation in composite thin films. Controllable parallel microcracks are generated in graphite thin films coated on elastomer films. Sensors made of graphite thin films with short microcracks possess high gauge factors (maximum value of 522.6) and stretchability (ε ≥ 50%), whereas sensors with long microcracks show ultrahigh sensitivity (maximum value of 11,344) with limited stretchability (ε ≤ 50%). We demonstrate the high performance strain sensing of our sensors in both small and large strain sensing applications such as human physiological activity recognition, human body large motion capturing, vibration detection, pressure sensing, and soft robotics.

  14. Low Humidity Characteristics of Polymer-Based Capacitive Humidity Sensors

    OpenAIRE

    Majewski Jacek

    2017-01-01

    Polymer-based capacitive humidity sensors emerged around 40 years ago; nevertheless, they currently constitute large part of sensors’ market within a range of medium (climatic and industrial) humidity 20−80%RH due to their linearity, stability and cost-effectiveness. However, for low humidity values (0−20%RH) that type of sensor exhibits increasingly nonlinear characteristics with decreasing of humidity values. This paper presents the results of some experimental trials of CMOS polymer-based ...

  15. Vision communications based on LED array and imaging sensor

    Science.gov (United States)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  16. Optical sensor array platform based on polymer electronic devices

    Science.gov (United States)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  17. Optical stimulator for vision-based sensors

    DEFF Research Database (Denmark)

    Rössler, Dirk; Pedersen, David Arge Klevang; Benn, Mathias

    2014-01-01

    We have developed an optical stimulator system for vision-based sensors. The stimulator is an efficient tool for stimulating a camera during on-ground testing with scenes representative of spacecraft flights. Such scenes include starry sky, planetary objects, and other spacecraft. The optical...

  18. A Heme-based Redox Sensor in the Methanogenic Archaeon Methanosarcina acetivorans*

    Science.gov (United States)

    Molitor, Bastian; Stassen, Marc; Modi, Anuja; El-Mashtoly, Samir F.; Laurich, Christoph; Lubitz, Wolfgang; Dawson, John H.; Rother, Michael; Frankenberg-Dinkel, Nicole

    2013-01-01

    Based on a bioinformatics study, the protein MA4561 from the methanogenic archaeon Methanosarcina acetivorans was originally predicted to be a multidomain phytochrome-like photosensory kinase possibly binding open-chain tetrapyrroles. Although we were able to show that recombinantly produced and purified protein does not bind any known phytochrome chromophores, UV-visible spectroscopy revealed the presence of a heme tetrapyrrole cofactor. In contrast to many other known cytoplasmic heme-containing proteins, the heme was covalently attached via one vinyl side chain to cysteine 656 in the second GAF domain. This GAF domain by itself is sufficient for covalent attachment. Resonance Raman and magnetic circular dichroism data support a model of a six-coordinate heme species with additional features of a five-coordination structure. The heme cofactor is redox-active and able to coordinate various ligands like imidazole, dimethyl sulfide, and carbon monoxide depending on the redox state. Interestingly, the redox state of the heme cofactor has a substantial influence on autophosphorylation activity. Although reduced protein does not autophosphorylate, oxidized protein gives a strong autophosphorylation signal independent from bound external ligands. Based on its genomic localization, MA4561 is most likely a sensor kinase of a two-component system effecting regulation of the Mts system, a set of three homologous corrinoid/methyltransferase fusion protein isoforms involved in methyl sulfide metabolism. Consistent with this prediction, an M. acetivorans mutant devoid of MA4561 constitutively synthesized MtsF. On the basis of our results, we postulate a heme-based redox/dimethyl sulfide sensory function of MA4561 and propose to designate it MsmS (methyl sulfide methyltransferase-associated sensor). PMID:23661702

  19. Molecularly Imprinted Polypyrrole Based Impedimentric Sensor for Theophylline Determination

    International Nuclear Information System (INIS)

    Ratautaite, Vilma; Janssens, Stoffel D.; Haenen, Ken; Nesládek, Milos; Ramanaviciene, Almira; Baleviciute, Ieva; Ramanavicius, Arunas

    2014-01-01

    Highlights: • Sensor based on polypyrrole imprinted by theophylline (MIP) deposited on oxygen terminated boron-doped nanocrystalline diamond was developed. • This structure was applied as impedimetric sensor sensitive for theophylline. • Optimal polymer formation conditions suitable for MIP formation were elaborated. • Some analytical parameters were determined and evaluated. - Abstract: In this study development of impedimetric sensor based on oxygen terminated boron-doped nanocrystalline diamond (B:NCD:O) modified with theophylline imprinted polypyrrole is described. Hydrogen peroxide induced chemical formation of polypyrrole molecularly imprinted by theophylline was applied for the modification of conducting silicon substrate covered by B:NCD:O film. Non-imprinted polypyrrole layer was formed on similar substrate in order to prove efficiency of imprinted polypyrrole. Electrochemical impedance spectroscopy was applied for the evaluation of analyte-induced changes in electrochemical capacitance/resistance. The impact of polymerization duration on the capacitance of impedimetric sensor was estimated. A different impedance behavior was observed at different ratio of polymerized monomer and template molecule in the polymerization media. The influence of ethanol as additive to polymerization media on registered changes in capacitance/resistance was evaluated. Degradation of sensor stored in buffer solution was evaluated

  20. Model based, sensor directed remediation of underground storage tanks

    International Nuclear Information System (INIS)

    Christensen, B.; Drotning, W.; Thunborg, S.

    1991-01-01

    Sensor rich, intelligent robots which function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories is performing experimental investigations into the application of intelligent robot control technology to the problem of removing waste stored tanks. This paper describes the experimental environment employed at Saudi with particular attention to the computing and software control environment. Intelligent system control is achieved though the integration of extensive geometric and kinematic world models with real-time sensor based control. All operator interactions with the system are validate all operator commands before execution to provide a safe operation. Sensing is used to add information to the robot system's world model and to allow sensor based sensor control during selected operations. The results of a first Critical Feature Test are reported and the potential for applying advanced intelligent control concepts to the removal of waste in storage tanks is discussed

  1. Investigation based on nano-electromechanical system double Si3N4 resonant beam pressure sensor.

    Science.gov (United States)

    Yang, Chuan; Guo, Can; Yuan, Xiaowei

    2011-12-01

    This paper presents a type of NEMS (Nano-Electromechanical System) double Si3N4 resonant beams pressure sensor. The mathematical models are established in allusion to the Si3N4 resonant beams and pressure sensitive diaphragm. The distribution state of stress has been analyzed theoretically based on the mathematical model of pressure sensitive diaphragm; from the analysis result, the position of the Si3N4 resonant beams above the pressure sensitive diaphragm was optimized and then the dominance observed after the double resonant beams are adopted is illustrated. From the analysis result, the position of the Si3N4 resonant beams above the pressure sensitive diaphragm is optimized, illustrating advantages in the adoption of double resonant beams. The capability of the optimized sensor was generally analyzed using the ANSYS software of finite element analysis. The range of measured pressure is 0-400 Kpa, the coefficient of linearity correlation is 0.99346, and the sensitivity of the sensor is 498.24 Hz/Kpa, higher than the traditional sensors. Finally the processing techniques of the sensor chip have been designed with sample being successfully processed.

  2. Ultra-high density out-of-plane strain sensor 3D architecture based on sub-20 nm PMOS FinFET

    KAUST Repository

    Ghoneim, Mohamed T.; Alfaraj, Nasir; Sevilla, Galo T.; Hussain, Muhammad Mustafa

    2016-01-01

    Future wearable electronics require not only flexibility but also preservation of the perks associated with today's high-performance, traditional silicon electronics. In this work we demonstrate a state-of-the-art fin-shaped field-effect transistor (FinFET)-based, out-of-plane strain sensor on flexible silicon through transforming the bulk device in a transfer-less process. The device preserves the functionality and high performance associated with its bulk, inflexible state. Furthermore, gate leakage current shows sufficient dependence on the value of the applied out-of-plane strain that enables permits use of the flexible device as a switching device as well as a strain sensor.

  3. Ultra-high density out-of-plane strain sensor 3D architecture based on sub-20 nm PMOS FinFET

    KAUST Repository

    Ghoneim, Mohamed T.

    2016-02-03

    Future wearable electronics require not only flexibility but also preservation of the perks associated with today\\'s high-performance, traditional silicon electronics. In this work we demonstrate a state-of-the-art fin-shaped field-effect transistor (FinFET)-based, out-of-plane strain sensor on flexible silicon through transforming the bulk device in a transfer-less process. The device preserves the functionality and high performance associated with its bulk, inflexible state. Furthermore, gate leakage current shows sufficient dependence on the value of the applied out-of-plane strain that enables permits use of the flexible device as a switching device as well as a strain sensor.

  4. Design and Fabrication of Full Wheatstone-Bridge-Based Angular GMR Sensors

    Directory of Open Access Journals (Sweden)

    Shaohua Yan

    2018-06-01

    Full Text Available Since the discovery of the giant magnetoresistive (GMR effect, GMR sensors have gained much attention in last decades due to their high sensitivity, small size, and low cost. The full Wheatstone-bridge-based GMR sensor is most useful in terms of the application point of view. However, its manufacturing process is usually complex. In this paper, we present an efficient and concise approach to fabricate a full Wheatstone-bridge-based angular GMR sensor by depositing one GMR film stack, utilizing simple patterned processes, and a concise post-annealing procedure based on a special layout. The angular GMR sensor is of good linear performance and achieves a sensitivity of 0.112 mV/V/Oe at the annealing temperature of 260 °C in the magnetic field range from −50 to +50 Oe. This work provides a design and method for GMR-sensor manufacturing that is easy for implementation and suitable for mass production.

  5. Ionic Liquid based polymer electrolytes for electrochemical sensors

    Directory of Open Access Journals (Sweden)

    Jakub Altšmíd

    2015-09-01

    Full Text Available Amperometric NO2 printed sensor with a new type of solid polymer electrolyte and a carbon working electrode has been developed. The electrolytes based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonylimide [EMIM][N(Tf2], 1-butyl-3-methylimidazolium trifluoromethanesulfonate [BMIM][CF3SO3] and 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4] ionic liquids were immobilized in poly(vinylidene fluoride matrix [PVDF]. The analyte, gaseous nitrogen dioxide, was detected by reduction at -500 mV vs. platinum pseudoreference electrode. The sensors showed a linear behavior in the whole tested range, i.e., 0 - 5 ppm and their sensitivities were in order of 0.3 x∙10-6 A/ppm. The sensor sensitivity was influenced by the electric conductivity of printing formulation; the higher the conductivity, the higher the sensor sensitivity. The rise/recovery times were in order of tens of seconds. The use of  screen printing technology and platinum pseudoreference electrode simplify the sensor fabrication and it does not have any negative effect on the sensor stability.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7371

  6. Combine harvester monitor system based on wireless sensor network

    Science.gov (United States)

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  7. Long-term monitoring FBG-based cable load sensor

    Science.gov (United States)

    Zhang, Zhichun; Zhou, Zhi; Wang, Chuan; Ou, Jinping

    2006-03-01

    Stay cables are the main load-bearing components of stayed-cable bridges. The cables stress status is an important factor to the stayed-cable bridge structure safety evaluation. So it's very important not only to the bridge construction, but also to the long-term safety evaluation for the bridge structure in-service. The accurate measurement for cable load depends on an effective sensor, especially to meet the long time durability and measurement demand. FBG, for its great advantage of corrosion resistance, absolute measurement, high accuracy, electro-magnetic resistance, quasi-distribution sensing, absolute measurement and so on, is the most promising sensor, which can cater for the cable force monitoring. In this paper, a load sensor has been developed, which is made up of a bushing elastic supporting body, 4 FBGs uniformly-spaced attached outside of the bushing supporting body, and a temperature compensation FBG for other four FBGs, moreover a cover for protection of FBGs. Firstly, the sensor measuring principle is analyzed, and relationship equation of FBG wavelength shifts and extrinsic load has also been gotten. And then the sensor calibration experiments of a steel cable stretching test with the FBG load sensor and a reference electric pressure sensor is finished, and the results shows excellent linearity of extrinsic load and FBG wavelength shifts, and good repeatability, which indicates that such kind of FBG-based load sensor is suitable for load measurement, especially for long-term, real time monitoring of stay-cables.

  8. Ultrasensitive, Stretchable Strain Sensors Based on Fragmented Carbon Nanotube Papers

    KAUST Repository

    Zhou, Jian; Yu, Hu; Xu, Xuezhu; Han, Fei; Lubineau, Gilles

    2017-01-01

    The development of strain sensors featuring both ultra high sensitivity and high stretchability is still a challenge. We demonstrate that strain sensors based on fragmented single-walled carbon nanotube (SWCNT) paper embedded in poly

  9. Smart sensor: a platform for an interactive human physiological state recognition study

    Directory of Open Access Journals (Sweden)

    Andrej Gorochovik

    2013-03-01

    Full Text Available This paper describes a concept of making interactive human state recognition systems based on smart sensor design. The token measures on proper ADC signal processing had significantly lowered the interference level. A more reliable way of measuring human skin temperature was offered by using Maxim DS18B20 digital thermometers. They introduced a more sensible response to temperature changes compared to previously used analog LM35 thermometers. An adaptive HR measuring algorithm was introduced to suppress incorrect ECG signal readings caused by human muscular activities. User friendly interactive interface for touch sensitive GLCD screen was developed to present real time physiological data readings both in numerals and graphics. User was granted an ability to dynamically customize data processing methods according to his needs. Specific procedures were developed to simplify physiological state recording for further analysis. The introduced physiological data sampling and preprocessing platform was optimized to be compatible with “ATmega Oscilloscope” PC data collecting and visualizing software.

  10. Design Methodology for Magnetic Field-Based Soft Tri-Axis Tactile Sensors.

    Science.gov (United States)

    Wang, Hongbo; de Boer, Greg; Kow, Junwai; Alazmani, Ali; Ghajari, Mazdak; Hewson, Robert; Culmer, Peter

    2016-08-24

    Tactile sensors are essential if robots are to safely interact with the external world and to dexterously manipulate objects. Current tactile sensors have limitations restricting their use, notably being too fragile or having limited performance. Magnetic field-based soft tactile sensors offer a potential improvement, being durable, low cost, accurate and high bandwidth, but they are relatively undeveloped because of the complexities involved in design and calibration. This paper presents a general design methodology for magnetic field-based three-axis soft tactile sensors, enabling researchers to easily develop specific tactile sensors for a variety of applications. All aspects (design, fabrication, calibration and evaluation) of the development of tri-axis soft tactile sensors are presented and discussed. A moving least square approach is used to decouple and convert the magnetic field signal to force output to eliminate non-linearity and cross-talk effects. A case study of a tactile sensor prototype, MagOne, was developed. This achieved a resolution of 1.42 mN in normal force measurement (0.71 mN in shear force), good output repeatability and has a maximum hysteresis error of 3.4%. These results outperform comparable sensors reported previously, highlighting the efficacy of our methodology for sensor design.

  11. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  12. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  13. Textile-Based, Interdigital, Capacitive, Soft-Strain Sensor for Wearable Applications

    Directory of Open Access Journals (Sweden)

    Ozgur Atalay

    2018-05-01

    Full Text Available The electronic textile area has gained considerable attention due to its implementation of wearable devices, and soft sensors are the main components of these systems. In this paper, a new sensor design is presented to create stretchable, capacitance-based strain sensors for human motion tracking. This involves the use of stretchable, conductive-knit fabric within the silicone elastomer matrix, as interdigitated electrodes. While conductive fabric creates a secure conductive network for electrodes, a silicone-based matrix provides encapsulation and dimensional-stability to the structure. During the benchtop characterization, sensors show linear output, i.e., R2 = 0.997, with high response time, i.e., 50 ms, and high resolution, i.e., 1.36%. Finally, movement of the knee joint during the different scenarios was successfully recorded.

  14. Ultrasensitive, Stretchable Strain Sensors Based on Fragmented Carbon Nanotube Papers

    KAUST Repository

    Zhou, Jian

    2017-01-17

    The development of strain sensors featuring both ultra high sensitivity and high stretchability is still a challenge. We demonstrate that strain sensors based on fragmented single-walled carbon nanotube (SWCNT) paper embedded in poly(dimethylsiloxane) (PDMS) can sustain their sensitivity even at very high strain levels (with a gauge factor of over 10(7) at 50% strain). This record sensitivity is ascribed to the low initial electrical resistance (5-28 Omega) of the SWCNT paper and the wide change in resistance (up to 10(6) Omega) governed by the percolated network of SWCNT in the cracked region. The sensor response remains nearly unchanged after 10 000 strain cycles at 20% proving the robustness of this technology. This fragmentation based sensing system brings opportunities to engineer highly sensitive stretchable sensors.

  15. Study of photoconductor-based radiological image sensors

    International Nuclear Information System (INIS)

    Beaumont, Francois

    1989-01-01

    Because of the evolution of medical imaging techniques to digital Systems, it is necessary to replace radiological film which has many drawbacks, by a detector quite as efficient and quickly giving a digitizable signal. The purpose of this thesis is to find new X-ray digital imaging processes using photoconductor materials such as amorphous selenium. After reviewing the principle of direct radiology and functions to be served by the X-ray sensor (i.e. detection, memory, assignment, visualization), we explain specification. We especially show the constraints due to the object to be radiographed (condition of minimal exposure), and to the reading signal (electronic noise detection associated with a reading frequency). As a result of this study, a first photoconductor sensor could be designed. Its principle is based on photo-carrier trapping at dielectric-photoconductor structure interface. The reading System needs the scanning of a laser beam upon the sensor surface. The dielectric-photoconductor structure enabled us to estimate the possibilities offered by the sensor and to build a complete x-ray imaging System. The originality of thermo-dielectric sensor, that was next studied, is to allow a thermal assignment reading. The chosen System consists in varying the ferroelectric polymer capacity whose dielectric permittivity is weak at room temperature. The thermo-dielectric material was studied by thermal or Joule effect stimulation. During our experiments, trapping was found in a sensor made of amorphous selenium between two electrodes. This new effect was performed and enabled us to expose a first interpretation. Eventually, the comparison of these new sensor concepts with radiological film shows the advantage of the proposed solution. (author) [fr

  16. In-fiber torsion sensor based on dual polarized Mach-Zehnder interference.

    Science.gov (United States)

    Chen, Lei; Zhang, Wei-Gang; Wang, Li; Zhang, Hao; Sieg, Jonathan; Zhou, Quan; Zhang, Li-Yu; Wang, Biao; Yan, Tie-Yi

    2014-12-29

    This paper presents a novel optical fiber torsion sensor based on dual polarized Mach-Zehnder interference (DPMZI). Unlike the conventional fiber sensor, the proposed sensor is composed of a sensor part and a demodulator. The demodulator is made by a bared single mode fiber (SMF) loop, and the sensor part is a segment of a coated SMF placed before the loop. A mathematical model is proposed based on DPMZI mechanism and from the model when the sensor part is twisted, the E-field rotational angle will bring a quasi-linear impact on the resonance dip wavelength in their matched detecting range. A proof-of-concept experiment was performed to verify the theoretical prediction. From the experimental data, a sensitivity of -0.3703, -1.00962, and -0.59881 nm•m/rad is achieved with the determining range of 12.0936, 7.6959, and 10.4444 rad/m respectively. The sensor which is composed only of the SMF has the advantages of low insertion loss (~-2dB), healthy structure, low manufacture cost, and easy assembly and application.

  17. A Deployment Scheme Based Upon Virtual Force for Directional Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chiu-Kuo Liang

    2015-11-01

    Full Text Available A directional sensor network is composed of many directional sensor nodes. Unlike conventional omni-directional sensors that always have an omni-angle of sensing range; directional sensors may have a limited angle of sensing range due to technical constraints or cost considerations. Area coverage is still an essential issue in a directional sensor network. In this paper, we study the area coverage problem in directional sensor networks with mobile sensors, which can move to the correct places to get high coverage. We present distributed self-deployment schemes of mobile sensors. After sensors are randomly deployed, each sensor calculates its next new location to move in order to obtain a better coverage than previous one. The locations of sensors are adjusted round by round so that the coverage is gradually improved. Based on the virtual force of the directional sensors, we design a scheme, namely Virtual force scheme. Simulation results show the effectiveness of our scheme in term of the coverage improvement.

  18. Designing and testing a laser-based vibratory sensor

    Science.gov (United States)

    Nath, G.

    2018-04-01

    Sensor technology has proved its importance, not only in the range of few-meter applications in different fields, but in micro, nano, atomic and sub-atomic-sized objects. The present work describes the designing of a laser-based vibratory sensor using a He-Ne laser as the signal source. The received characteristics of the signal are mainly the frequency and amplitude of the vibration from which the physical parameters such as energy, power and absorption coefficients of the material are determined, which enables us to provide information of the hidden target or object. This laboratory-designed sensor finds application in different local phenomena as well as laboratory practical activity for students.

  19. A Polymer Optical Fiber Temperature Sensor Based on Material Features.

    Science.gov (United States)

    Leal-Junior, Arnaldo; Frizera-Netoc, Anselmo; Marques, Carlos; Pontes, Maria José

    2018-01-19

    This paper presents a polymer optical fiber (POF)-based temperature sensor. The operation principle of the sensor is the variation in the POF mechanical properties with the temperature variation. Such mechanical property variation leads to a variation in the POF output power when a constant stress is applied to the fiber due to the stress-optical effect. The fiber mechanical properties are characterized through a dynamic mechanical analysis, and the output power variation with different temperatures is measured. The stress is applied to the fiber by means of a 180° curvature, and supports are positioned on the fiber to inhibit the variation in its curvature with the temperature variation. Results show that the sensor proposed has a sensitivity of 1.04 × 10 -3 °C -1 , a linearity of 0.994, and a root mean squared error of 1.48 °C, which indicates a relative error of below 2%, which is lower than the ones obtained for intensity-variation-based temperature sensors. Furthermore, the sensor is able to operate at temperatures up to 110 °C, which is higher than the ones obtained for similar POF sensors in the literature.

  20. Graphene-Based Reversible Nano-Switch/Sensor Schottky Diode

    Science.gov (United States)

    Miranda, Felix A.; Meador, Michael A.; Theofylaktos, Onoufrios; Pinto, Nicholas J.; Mueller, Carl H.; Santos-Perez, Javier

    2010-01-01

    This proof-of-concept device consists of a thin film of graphene deposited on an electrodized doped silicon wafer. The graphene film acts as a conductive path between a gold electrode deposited on top of a silicon dioxide layer and the reversible side of the silicon wafer, so as to form a Schottky diode. By virtue of the two-dimensional nature of graphene, this device has extreme sensitivity to different gaseous species, thereby serving as a building block for a volatile species sensor, with the attribute of having reversibility properties. That is, the sensor cycles between active and passive sensing states in response to the presence or absence of the gaseous species.

  1. Landslide and Flood Warning System Prototypes based on Wireless Sensor Networks

    Science.gov (United States)

    Hloupis, George; Stavrakas, Ilias; Triantis, Dimos

    2010-05-01

    Wireless sensor networks (WSNs) are one of the emerging areas that received great attention during the last few years. This is mainly due to the fact that WSNs have provided scientists with the capability of developing real-time monitoring systems equipped with sensors based on Micro-Electro-Mechanical Systems (MEMS). WSNs have great potential for many applications in environmental monitoring since the sensor nodes that comprised from can host several MEMS sensors (such as temperature, humidity, inertial, pressure, strain-gauge) and transducers (such as position, velocity, acceleration, vibration). The resulting devices are small and inexpensive but with limited memory and computing resources. Each sensor node contains a sensing module which along with an RF transceiver. The communication is broadcast-based since the network topology can change rapidly due to node failures [1]. Sensor nodes can transmit their measurements to central servers through gateway nodes without any processing or they make preliminary calculations locally in order to produce results that will be sent to central servers [2]. Based on the above characteristics, two prototypes using WSNs are presented in this paper: A Landslide detection system and a Flood warning system. Both systems sent their data to central processing server where the core of processing routines exists. Transmission is made using Zigbee and IEEE 802.11b protocol but is capable to use VSAT communication also. Landslide detection system uses structured network topology. Each measuring node comprises of a columnar module that is half buried to the area under investigation. Each sensing module contains a geophone, an inclinometer and a set of strain gauges. Data transmitted to central processing server where possible landslide evolution is monitored. Flood detection system uses unstructured network topology since the failure rate of sensor nodes is expected higher. Each sensing module contains a custom water level sensor

  2. Development of Fabric-Based Chemical Gas Sensors for Use as Wearable Electronic Noses

    Directory of Open Access Journals (Sweden)

    Thara Seesaard

    2015-01-01

    Full Text Available Novel gas sensors embroidered into fabric substrates based on polymers/ SWNT-COOH nanocomposites were proposed in this paper, aiming for their use as a wearable electronic nose (e-nose. The fabric-based chemical gas sensors were fabricated by two main processes: drop coating and embroidery. Four potential polymers (PVC, cumene-PSMA, PSE and PVP/functionalized-SWCNT sensing materials were deposited onto interdigitated electrodes previously prepared by embroidering conductive thread on a fabric substrate to make an optimal set of sensors. After preliminary trials of the obtained sensors, it was found that the sensors yielded a electrical resistance in the region of a few kilo-Ohms. The sensors were tested with various volatile compounds such as ammonium hydroxide, ethanol, pyridine, triethylamine, methanol and acetone, which are commonly found in the wastes released from the human body. These sensors were used to detect and discriminate between the body odors of different regions and exist in various forms such as the urine, armpit and exhaled breath odor. Based on a simple pattern recognition technique, we have shown that the proposed fabric-based chemical gas sensors can discriminate the human body odor from two persons.

  3. Development of fabric-based chemical gas sensors for use as wearable electronic noses.

    Science.gov (United States)

    Seesaard, Thara; Lorwongtragool, Panida; Kerdcharoen, Teerakiat

    2015-01-16

    Novel gas sensors embroidered into fabric substrates based on polymers/ SWNT-COOH nanocomposites were proposed in this paper, aiming for their use as a wearable electronic nose (e-nose). The fabric-based chemical gas sensors were fabricated by two main processes: drop coating and embroidery. Four potential polymers (PVC, cumene-PSMA, PSE and PVP)/functionalized-SWCNT sensing materials were deposited onto interdigitated electrodes previously prepared by embroidering conductive thread on a fabric substrate to make an optimal set of sensors. After preliminary trials of the obtained sensors, it was found that the sensors yielded a electrical resistance in the region of a few kilo-Ohms. The sensors were tested with various volatile compounds such as ammonium hydroxide, ethanol, pyridine, triethylamine, methanol and acetone, which are commonly found in the wastes released from the human body. These sensors were used to detect and discriminate between the body odors of different regions and exist in various forms such as the urine, armpit and exhaled breath odor. Based on a simple pattern recognition technique, we have shown that the proposed fabric-based chemical gas sensors can discriminate the human body odor from two persons.

  4. A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends

    Science.gov (United States)

    Ruiz-Garcia, Luis; Lunadei, Loredana; Barreiro, Pilar; Robla, Jose Ignacio

    2009-01-01

    The aim of the present paper is to review the technical and scientific state of the art of wireless sensor technologies and standards for wireless communications in the Agri-Food sector. These technologies are very promising in several fields such as environmental monitoring, precision agriculture, cold chain control or traceability. The paper focuses on WSN (Wireless Sensor Networks) and RFID (Radio Frequency Identification), presenting the different systems available, recent developments and examples of applications, including ZigBee based WSN and passive, semi-passive and active RFID. Future trends of wireless communications in agriculture and food industry are also discussed. PMID:22408551

  5. A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends

    Directory of Open Access Journals (Sweden)

    Ignacio Robla

    2009-06-01

    Full Text Available The aim of the present paper is to review the technical and scientific state of the art of wireless sensor technologies and standards for wireless communications in the Agri-Food sector. These technologies are very promising in several fields such as environmental monitoring, precision agriculture, cold chain control or traceability. The paper focuses on WSN (Wireless Sensor Networks and RFID (Radio Frequency Identification, presenting the different systems available, recent developments and examples of applications, including ZigBee based WSN and passive, semi-passive and active RFID. Future trends of wireless communications in agriculture and food industry are also discussed.

  6. A Calibration Report for Wireless Sensor-Based Weatherboards

    Directory of Open Access Journals (Sweden)

    Muthoni Masinde

    2015-03-01

    Full Text Available Sub-Saharan Africa contains the highest number of people affected by droughts. Although this can easily be mitigated through the provision of timely, reliable and relevant weather forecasts, the sparse network of weather stations in most of these countries makes this difficult. Rapid development in wireless sensor networks has resulted in weatherboards capable of capturing weather parameters at the micro-level. Although these weatherboards offer a viable solution to Africa’s drought, the acceptability of such data by meteorologists is only possible if these sensors are calibrated and their field readiness scientifically evaluated. This is the contribution of this paper; we present results of a calibration exercise that was carried out to: (1 measure and correct lag, random and systematic errors; (2 determine if Perspex was an ideal material for building sensor boards’ enclosures; and (3 identify sensor boards’ battery charging and depletion rates. The result is a calibration report detailing actual error and uncertainty values for atmospheric pressure, humidity and temperature sensors, as well as the recharge and discharge curves of the batteries. The results further ruled out the use of Perspex for enclosing the sensor boards. These experiments pave the way for the design and implementation of a sensor-based weather monitoring system (SenseWeather that was piloted in two regions in Kenya.

  7. Simulations of Propane and Butane Gas Sensor Based on Pristine Armchair Graphene Nanoribbon

    Science.gov (United States)

    Rashid, Haroon; Koel, Ants; Rang, Toomas

    2018-05-01

    Over the last decade graphene and its derivatives have gained a remarkable place in research field. As silicon technology is approaching to its geometrical limits so there is a need of alternate that can replace it. Graphene has emerged as a potential candidate for future nano-electronics applications due to its exceptional and extraordinary chemical, optical, electrical and mechanical properties. Graphene based sensors have gained significance for a wide range of sensing applications like detection of biomolecules, chemicals and gas molecules. It can be easily used to make electrical contacts and manipulate them according to the requirements as compared to the other nanomaterials. The intention of the work presented in this article is to contribute in this field by simulating a novel and cheap graphene nanoribbon sensor for the household gas leakage detection. QuantumWise Atomistix (ATK) software is used for the simulations of propane and butane gas sensor. Projected device density of the states (PDDOS) and the transmission spectrum of the device in the proximity of gas molecules are calculated and discussed. The change in the electric current through the device in the presence of the gas molecules is used as a gas detection mechanism for the simulated sensor.

  8. Soft Sensors and Actuators based on Nanomaterials

    Science.gov (United States)

    Yao, Shanshan

    The focus of this research is using novel bottom-up synthesized nanomaterials and structures to build up devices for wearable sensors and soft actuators. The applications of the wearable sensors towards motion detection and health monitoring are investigated. In addition, flexible heaters for bimorph actuators and stretchable patches made of microgel depots containing drug-loaded nanoparticles (NPs) for stretch-triggered wearable drug delivery are studied. Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to 1 MPa) and finger touch with good sensitivity, fast response time ( 40 ms) and good pressure mapping function were developed. The sensors were demonstrated for several wearable applications including monitoring thumb movements and knee motions, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels. In addition to mechanical sensors, a wearable skin hydration sensor made of silver nanowires (AgNWs) in a polydimethylsiloxane (PDMS) matrix was demonstrated based on skin impedance measurement. The hydration sensors were packaged into a flexible wristband for skin hydration monitoring and a chest patch consisting of a strain sensor, three electrocardiogram (ECG) electrodes and a skin hydration sensor for multimodal sensing. The wearable wristband and chest patch may be used for low-cost, wireless and continuous sensing of skin hydration and other health parameters. Two representative applications of the nanomaterials for soft actuators were investigated. In the first application on bimorph actuation, low-voltage and extremely flexible electrothermal bimorph actuators were fabricated in a simple, efficient and scalable process. The bimorph actuators were made of flexible Ag

  9. Assessing Motor Fluctuations in Parkinson's Disease Patients Based on a Single Inertial Sensor.

    Science.gov (United States)

    Pérez-López, Carlos; Samà, Albert; Rodríguez-Martín, Daniel; Català, Andreu; Cabestany, Joan; Moreno-Arostegui, Juan Manuel; de Mingo, Eva; Rodríguez-Molinero, Alejandro

    2016-12-15

    Altered movement control is typically the first noticeable symptom manifested by Parkinson's disease (PD) patients. Once under treatment, the effect of the medication is very patent and patients often recover correct movement control over several hours. Nonetheless, as the disease advances, patients present motor complications. Obtaining precise information on the long-term evolution of these motor complications and their short-term fluctuations is crucial to provide optimal therapy to PD patients and to properly measure the outcome of clinical trials. This paper presents an algorithm based on the accelerometer signals provided by a waist sensor that has been validated in the automatic assessment of patient's motor fluctuations (ON and OFF motor states) during their activities of daily living. A total of 15 patients have participated in the experiments in ambulatory conditions during 1 to 3 days. The state recognised by the algorithm and the motor state annotated by patients in standard diaries are contrasted. Results show that the average specificity and sensitivity are higher than 90%, while their values are higher than 80% of all patients, thereby showing that PD motor status is able to be monitored through a single sensor during daily life of patients in a precise and objective way.

  10. SENSORS FAULT DIAGNOSIS ALGORITHM DESIGN OF A HYDRAULIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Matej ORAVEC

    2017-06-01

    Full Text Available This article presents the sensors fault diagnosis system design for the hydraulic system, which is based on the group of the three fault estimation filters. These filters are used for estimation of the system states and sensors fault magnitude. Also, this article briefly stated the hydraulic system state control design with integrator, which is important assumption for the fault diagnosis system design. The sensors fault diagnosis system is implemented into the Matlab/Simulink environment and it is verified using the controlled hydraulic system simulation model. Verification of the designed fault diagnosis system is realized by series of experiments, which simulates sensors faults. The results of the experiments are briefly presented in the last part of this article.

  11. Structural health monitoring system for bridges based on skin-like sensor

    Science.gov (United States)

    Loupos, Konstantinos; Damigos, Yannis; Amditis, Angelos; Gerhard, Reimund; Rychkov, Dmitry; Wirges, Werner; Schulze, Manuel; Lenas, Sotiris-Angelos; Chatziandreoglou, Christos; Malliou, Christina M.; Tsaoussidis, Vassilis; Brady, Ken; Frankenstein, Bernd

    2017-09-01

    Structural health monitoring activities are of primal importance for managing transport infrastructure, however most SHM methodologies are based on point-based sensors that have limitations in terms of their spatial positioning requirements, cost of development and measurement range. This paper describes the progress on the SENSKIN EC project whose objective is to develop a dielectric-elastomer and micro-electronics-based sensor, formed from a large highly extensible capacitance sensing membrane supported by advanced microelectronic circuitry, for monitoring transport infrastructure bridges. Such a sensor could provide spatial measurements of strain in excess of 10%. The actual sensor along with the data acquisition module, the communication module and power electronics are all integrated into a compact unit, the SENSKIN device, which is energy-efficient, requires simple signal processing and it is easy to install over various surface types. In terms of communication, SENSKIN devices interact with each other to form the SENSKIN system; a fully distributed and autonomous wireless sensor network that is able to self-monitor. SENSKIN system utilizes Delay-/Disruption-Tolerant Networking technologies to ensure that the strain measurements will be received by the base station even under extreme conditions where normal communications are disrupted. This paper describes the architecture of the SENSKIN system and the development and testing of the first SENSKIN prototype sensor, the data acquisition system, and the communication system.

  12. Chemical sensors

    International Nuclear Information System (INIS)

    Hubbard, C.W.; Gordon, R.L.

    1987-05-01

    The revolution in analytical chemistry promised by recent developments in the field of chemical sensors has potential for significant positive impact on both research and production activities conducted by and for the Department of Energy. Analyses which were, in the past, performed only with a roomful of expensive equipment can now be performed with miniature solid-state electronic devices or small optical probes. Progress in the development of chemical sensors has been rapid, and the field is currently growing at a great rate. In accordance, Pacific Northwest Laboratory initiated a survey of recent literature so that contributors to active programs in research on analytical methods could be made aware of principles and applications of this new technology. This report presents the results of that survey. The sensors discussed here are divided into three types: micro solid-state devices, optical sensors, and piezoelectric crystal devices. The report is divided into three corresponding sections. The first section, ''Micro Solid-State Devices,'' discusses the design, operation, and application of electronic sensors that are produced in much the same way as standard solid-state electronic devices. The second section, ''Optrodes,'' covers the design and operation of chemical sensors that use fiber optics to detect chemically induced changes in optical properties. The final section, ''Piezoelectric Crystal Detectors,'' discusses two types of chemical sensors that depend on the changes in the properties of an oscillating piezoelectric crystal to detect the presence of certain materials. Advantages and disadvantages of each type of sensor are summarized in each section

  13. Sensors based on GMR'S for detection of subsurface defects

    International Nuclear Information System (INIS)

    Cordon, J.; Ribes, B.; Vazquez, J.

    2010-01-01

    The use of magneto resistive sensors, GMR, as receptors in eddy current probe has certain advantages over the use of conventional inductive sensors, which puts an alternative for the detection of subsurface defects in metal components with thick materials. It has carried out a study of the most important characteristics of these sensors, which has enabled the manufacture of several probes based on OMR. In this paper we analyze different configurations and present the results of the analysis on several blocks with different defects in materials.

  14. Inertial sensor-based smoother for gait analysis.

    Science.gov (United States)

    Suh, Young Soo

    2014-12-17

    An off-line smoother algorithm is proposed to estimate foot motion using an inertial sensor unit (three-axis gyroscopes and accelerometers) attached to a shoe. The smoother gives more accurate foot motion estimation than filter-based algorithms by using all of the sensor data instead of using the current sensor data. The algorithm consists of two parts. In the first part, a Kalman filter is used to obtain initial foot motion estimation. In the second part, the error in the initial estimation is compensated using a smoother, where the problem is formulated in the quadratic optimization problem. An efficient solution of the quadratic optimization problem is given using the sparse structure. Through experiments, it is shown that the proposed algorithm can estimate foot motion more accurately than a filter-based algorithm with reasonable computation time. In particular, there is significant improvement in the foot motion estimation when the foot is moving off the floor: the z-axis position error squared sum (total time: 3.47 s) when the foot is in the air is 0.0807 m2 (Kalman filter) and 0.0020 m2 (the proposed smoother).

  15. Thick-film textile-based amperometric sensors and biosensors.

    Science.gov (United States)

    Yang, Yang-Li; Chuang, Min-Chieh; Lou, Shyh-Liang; Wang, Joseph

    2010-06-01

    The incorporation of amperometric sensors into clothing through direct screen-printing onto the textile substrate is described. Particular attention is given to electrochemical sensors printed directly on the elastic waist of underwear that offers tight direct contact with the skin. The textile-based printed carbon electrodes have a well-defined appearance with relatively smooth conductor edges and no apparent defects or cracks. Convenient voltammetric and chronoamperometric measurements of 0-3 mM ferrocyanide, 0-25 mM hydrogen peroxide, and 0-100 muM NADH have been documented. The favorable electrochemical behavior is maintained under folding or stretching stress, relevant to the deformation of clothing. The electrochemical performance and tolerance to mechanical stress are influenced by the physical characteristics of the textile substrate. The results indicate the potential of textile-based screen-printed amperometric sensors for future healthcare, sport or military applications. Such future applications would benefit from tailoring the ink composition and printing conditions to meet the specific requirements of the textile substrate.

  16. Mobility-based Time References for Wireless Sensor Networks

    CERN Document Server

    Sebastiano, Fabio; Makinwa, Kofi A A

    2013-01-01

     This book describes the use of low-power low-cost and extremely small radios to provide essential time reference for wireless sensor networks.  The authors explain how to integrate such radios in a standard CMOS process to reduce both cost and size, while focusing on the challenge of designing a fully integrated time reference for such radios. To enable the integration of the time reference, system techniques are proposed and analyzed, several kinds of integrated time references are reviewed, and mobility-based references are identified as viable candidates to provide the required accuracy at low-power consumption. Practical implementations of a mobility-based oscillator and a temperature sensor are also presented, which demonstrate the required accuracy over a wide temperature range, while drawing 51-uW from a 1.2-V supply in a 65-nm CMOS process. Provides system analysis to understand requirements for time/frequency accuracy in wireless sensor networks; Describes system optimization for time references i...

  17. Kalman filter-based EM-optical sensor fusion for needle deflection estimation.

    Science.gov (United States)

    Jiang, Baichuan; Gao, Wenpeng; Kacher, Daniel; Nevo, Erez; Fetics, Barry; Lee, Thomas C; Jayender, Jagadeesan

    2018-04-01

    In many clinical procedures such as cryoablation that involves needle insertion, accurate placement of the needle's tip at the desired target is the major issue for optimizing the treatment and minimizing damage to the neighboring anatomy. However, due to the interaction force between the needle and tissue, considerable error in intraoperative tracking of the needle tip can be observed as needle deflects. In this paper, measurements data from an optical sensor at the needle base and a magnetic resonance (MR) gradient field-driven electromagnetic (EM) sensor placed 10 cm from the needle tip are used within a model-integrated Kalman filter-based sensor fusion scheme. Bending model-based estimations and EM-based direct estimation are used as the measurement vectors in the Kalman filter, thus establishing an online estimation approach. Static tip bending experiments show that the fusion method can reduce the mean error of the tip position estimation from 29.23 mm of the optical sensor-based approach to 3.15 mm of the fusion-based approach and from 39.96 to 6.90 mm, at the MRI isocenter and the MRI entrance, respectively. This work established a novel sensor fusion scheme that incorporates model information, which enables real-time tracking of needle deflection with MRI compatibility, in a free-hand operating setup.

  18. Precise shape reconstruction by active pattern in total-internal-reflection-based tactile sensor.

    Science.gov (United States)

    Saga, Satoshi; Taira, Ryosuke; Deguchi, Koichiro

    2014-03-01

    We are developing a total-internal-reflection-based tactile sensor in which the shape is reconstructed using an optical reflection. This sensor consists of silicone rubber, an image pattern, and a camera. It reconstructs the shape of the sensor surface from an image of a pattern reflected at the inner sensor surface by total internal reflection. In this study, we propose precise real-time reconstruction by employing an optimization method. Furthermore, we propose to use active patterns. Deformation of the reflection image causes reconstruction errors. By controlling the image pattern, the sensor reconstructs the surface deformation more precisely. We implement the proposed optimization and active-pattern-based reconstruction methods in a reflection-based tactile sensor, and perform reconstruction experiments using the system. A precise deformation experiment confirms the linearity and precision of the reconstruction.

  19. Using permalloy based planar hall effect sensors to capture and detect superparamagnetic beads for lab on a chip applications

    International Nuclear Information System (INIS)

    Volmer, Marius; Avram, Marioara

    2015-01-01

    Experimental studies have been carried out on planar Hall effect (PHE) sensors used to detect magnetic nanoparticles employed as labels for biodetection applications. Disk shaped sensors, 1 mm diameter, were structured on Permalloy film, 20 nm thick. To control the sensor magnetisation state and thus the field sensitivity and linearity, a DC biasing field has been applied parallel to the driving current. Maghemite nanoparticles (10 nm) functionalised with Polyethylene glycol (PEG) 6000 were immobilised over the sensor surface using particular magnetisation state and applied magnetic fields. In order to obtain a higher response from the magnetic nanoparticles, it was used a detection setup which allows the application of magnetic fields larger than 100 Oe but avoiding saturation of the PHE signal. Based on this setup, two field scanning methods are presented in this paper. During our experiments, low magnetic moments, of about 1.87×10 −5 emu, have been easily detected. This value corresponds to a mass of 9.35 µg of maghemite nanoparticles functionalised with PEG 6000. The results suggest that this type of structure is feasible for building low cost micrometer sized PHE sensors to be used for high-resolution bio sensing applications. - Highlights: • Disk-shaped Permalloy planar Hall effect sensors have been obtained and tested. • Two field scanning methods have been proposed. • The magnetic nanoparticles can be trapped on the sensor surface. • High detection sensitivity has been obtained

  20. Radionuclide Sensors for Environmental Monitoring: From Flow Injection Solid-Phase Absorptiometry to Equilibration-Based Preconcentrating Minicolumn Sensors with Radiometric Detection

    International Nuclear Information System (INIS)

    Grate, Jay W.; Egorov, Oleg B.; O'Hara, Matthew J.; Devol, Timothy A.

    2008-01-01

    The development of in situ sensors for ultratrace detection applications in process control and environmental monitoring remains a significant challenge. Such sensors must meet difficult detection limit requirements while selectively detecting the analyte of interest in complex or otherwise challenging sample matrixes. Nowhere are these requirements more daunting than in the field of radionuclide sensing. The detection limit requirements can be extremely low. Nevertheless, a promising approach to radionuclide sensing based on preconcentrating minicolumn sensors has been developed. In addition, a method of operating such sensors, which we call equilibration-based sensing, has been developed that provides substantial preconcentration and a signal that is proportional to analyte concentration, while eliminating the need for reagents to regenerate the sorbent medium following each measurement. While this equilibration-based sensing method was developed for radionuclide sensing, it can be applied to nonradioactive species as well, given a suitable on-column detection system. By replacing costly sampling and laboratory analysis procedures, in situ sensors could have a significant impact on monitoring and long term stewardship applications. The aim of this review is to cover radionuclide sensors that combine some form of selective sorption with a radiometric detection method, and, as a primary aim, to comprehensively review preconcentrating minicolumn sensors for radionuclide detection. As a secondary aim, we will cover radionuclide sensors that combine sorption and scintillation in formats other than minicolumn sensors. We are particularly concerned with the detection of alpha- and beta-emitting radionuclides, which present particular challenges for measurements in liquid media

  1. Graphene Electronic Device Based Biosensors and Chemical Sensors

    Science.gov (United States)

    Jiang, Shan

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through pi-pi stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their

  2. A new smart traffic monitoring method using embedded cement-based piezoelectric sensors

    International Nuclear Information System (INIS)

    Zhang, Jinrui; Lu, Youyuan; Lu, Zeyu; Liu, Chao; Sun, Guoxing; Li, Zongjin

    2015-01-01

    Cement-based piezoelectric composites are employed as the sensing elements of a new smart traffic monitoring system. The piezoelectricity of the cement-based piezoelectric sensors enables powerful and accurate real-time detection of the pressure induced by the traffic flow. To describe the mechanical-electrical conversion mechanism between traffic flow and the electrical output of the embedded piezoelectric sensors, a mathematical model is established based on Duhamel’s integral, the constitutive law and the charge-leakage characteristics of the piezoelectric composite. Laboratory tests show that the voltage magnitude of the sensor is linearly proportional to the applied pressure, which ensures the reliability of the cement-based piezoelectric sensors for traffic monitoring. A series of on-site road tests by a 10 tonne truck and a 6.8 tonne van show that vehicle weight-in-motion can be predicted based on the mechanical-electrical model by taking into account the vehicle speed and the charge-leakage property of the piezoelectric sensor. In the speed range from 20 km h −1 to 70 km h −1 , the error of the repeated weigh-in-motion measurements of the 6.8 tonne van is less than 1 tonne. The results indicate that the embedded cement-based piezoelectric sensors and associated measurement setup have good capability of smart traffic monitoring, such as traffic flow detection, vehicle speed detection and weigh-in-motion measurement. (paper)

  3. A near-optimal low complexity sensor fusion technique for accurate indoor localization based on ultrasound time of arrival measurements from low-quality sensors

    Science.gov (United States)

    Mitilineos, Stelios A.; Argyreas, Nick D.; Thomopoulos, Stelios C. A.

    2009-05-01

    A fusion-based localization technique for location-based services in indoor environments is introduced herein, based on ultrasound time-of-arrival measurements from multiple off-the-shelf range estimating sensors which are used in a market-available localization system. In-situ field measurements results indicated that the respective off-the-shelf system was unable to estimate position in most of the cases, while the underlying sensors are of low-quality and yield highly inaccurate range and position estimates. An extensive analysis is performed and a model of the sensor-performance characteristics is established. A low-complexity but accurate sensor fusion and localization technique is then developed, which consists inof evaluating multiple sensor measurements and selecting the one that is considered most-accurate based on the underlying sensor model. Optimality, in the sense of a genie selecting the optimum sensor, is subsequently evaluated and compared to the proposed technique. The experimental results indicate that the proposed fusion method exhibits near-optimal performance and, albeit being theoretically suboptimal, it largely overcomes most flaws of the underlying single-sensor system resulting in a localization system of increased accuracy, robustness and availability.

  4. Signal transmission in a human body medium-based body sensor network using a Mach-Zehnder electro-optical sensor.

    Science.gov (United States)

    Song, Yong; Hao, Qun; Zhang, Kai; Wang, Jingwen; Jin, Xuefeng; Sun, He

    2012-11-30

    The signal transmission technology based on the human body medium offers significant advantages in Body Sensor Networks (BSNs) used for healthcare and the other related fields. In previous works we have proposed a novel signal transmission method based on the human body medium using a Mach-Zehnder electro-optical (EO) sensor. In this paper, we present a signal transmission system based on the proposed method, which consists of a transmitter, a Mach-Zehnder EO sensor and a corresponding receiving circuit. Meanwhile, in order to verify the frequency response properties and determine the suitable parameters of the developed system, in-vivo measurements have been implemented under conditions of different carrier frequencies, baseband frequencies and signal transmission paths. Results indicate that the proposed system will help to achieve reliable and high speed signal transmission of BSN based on the human body medium.

  5. Gas Sensors Based on Molecular Imprinting Technology.

    Science.gov (United States)

    Zhang, Yumin; Zhang, Jin; Liu, Qingju

    2017-07-04

    Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological macromolecules. Owing to its unique features of structure specificity; predictability; recognition and universal application; there has been exploration of the possible application of MIPs in the field of highly selective gas sensors. In this present study; we outline the recent advances in gas sensors based on MIT; classify and introduce the existing molecularly imprinted gas sensors; summarize their advantages and disadvantages; and analyze further research directions.

  6. A ph sensor based on a flexible substrate

    Science.gov (United States)

    Huang, Wen-Ding

    pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages. Glass electrodes are easily affected by alkaline or HF solution, they require a high input impedance pH meter, they often exhibit a sluggish response. In some specific applications, it is also difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to the difficulty of size miniaturization, planarization and polymerization based on current manufacturing technologies. In this work, we have demonstrated a novel flexible pH sensor based on low-cost sol-gel fabrication process of iridium oxide (IrOx) sensing film (IROF). A pair of flexible miniature IrOx/AgCl electrode generated the action potential from the solution by electrochemical mechanism to obtain the pH level of the reagent. The fabrication process including sol-gel, thermal oxidation, and the electro-plating process of the silver chloride (AgCl) reference electrode were reported in the work. The IrOx film was verified and characterized using electron dispersive analysis (EDAX), scanning electron microscope (SEM), and x-ray diffraction (XRD). The flexible pH sensor's performance and characterization have been investigated with different testing parameters such as sensitivity, response time, stability, reversibility, repeatability, selectivity and temperature dependence. The flexible IrOx pH sensors exhibited promising sensing performance with a near-Nernstian response of sensitivity which is between --51.1mV/pH and --51.7mV/pH in different pH levels ranging from 1.5 to 12 at 25°C. Two applications including gastroesophageal reflux disease (GERD) diagnosis and food freshness wireless monitoring using our micro-flexible IrOx pH sensors were demonstrated. For the GERD diagnosing system, we embedded the micro flexible pH sensor on a 1.2cmx3.8cm of the capsule size of wireless sensor

  7. A Novel Particulate Matter 2.5 Sensor Based on Surface Acoustic Wave Technology

    Directory of Open Access Journals (Sweden)

    Jiuling Liu

    2018-01-01

    Full Text Available Design, fabrication and experiments of a miniature particulate matter (PM 2.5 sensor based on the surface acoustic wave (SAW technology were proposed. The sensor contains a virtual impactor (VI for particle separation, a thermophoretic precipitator (TP for PM2.5 capture and a SAW sensor chip for PM2.5 mass detection. The separation performance of the VI was evaluated by using the finite element method (FEM model and the PM2.5 deposition characteristic in the TP was obtained by analyzing the thermophoretic theory. Employing the coupling-of-modes (COM model, a low loss and high-quality SAW resonator was designed. By virtue of the micro electro mechanical system (MEMS technology and semiconductor technology, the SAW based PM2.5 sensor detecting probe was fabricated. Then, combining a dual-port SAW oscillator and an air sampler, the experimental platform was set up. Exposing the PM2.5 sensor to the polystyrene latex (PSL particles in a chamber, the sensor performance was evaluated. The results show that by detecting the PSL particles with a certain diameter of 2 μm, the response of the SAW based PM2.5 sensor is linear, and in accordance with the response of the light scattering based PM2.5 monitor. The developed SAW based PM2.5 sensor has great potential for the application of airborne particle detection.

  8. Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Egawa, Yuya; Seki, Toshinobu [Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295 (Japan); Takahashi, Shigehiro [Graduate School of Pharmaceutical Sciecnes, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Anzai, Jun-ichi, E-mail: junanzai@mail.pharm.tohoku.ac.jp [Graduate School of Pharmaceutical Sciecnes, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan)

    2011-10-10

    Recent progress in electrochemical and optical sugar sensors based on phenylboronic acid (PBA) and its derivatives as recognition components is reviewed. PBAs are known to bind diol compounds including sugars to form cyclic boronate esters that are negatively charged as a result of the addition of OH{sup -} ions from solution. Based on the formation of PBA charged species, sugars and their derivatives can be detected by means of electrochemical and optical techniques. For the development of PBA-based electrochemical sensing systems or sensors, PBA is modified with a redox-active marker, because PBA itself is electrochemically inactive, and ferrocene derivatives are often employed for this purpose. Ferrocene-modified PBAs have been used as redox-active additives in solution for the electrochemical detection of sugars and derivatives. PBA-modified electrodes have also been constructed as reagentless electrochemical sensors, where PBAs are immobilized on the surface of metal and carbon electrodes through mainly two routes: as a self-assembled monolayer film and as a polymer thin film. PBA-modified electrodes can be successfully used to detect sugars and derivatives through potentiometric and voltammetric responses. In addition, PBA-modified electrodes can be used for the immobilization of glycoenzymes on an electrode surface by the formation of boronate esters with carbohydrate chains in the glycoenzymes, thus resulting in enzyme biosensors. For the development of PBA-based optical sensors, a variety of chromophores and fluorophores have been coupled with PBA. Azobenzene dyes have been most frequently used for the preparation of colorimetric sugar sensors, in which the absorption wavelength and intensity of the dye are dependent on the type and concentration of added sugars. The sensitivity of the sensors is significantly improved based on multi-component systems in which alizalin red S, pyrocatechol violet, starch-iodine complex, and cyclodextrin are employed as

  9. Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives

    International Nuclear Information System (INIS)

    Egawa, Yuya; Seki, Toshinobu; Takahashi, Shigehiro; Anzai, Jun-ichi

    2011-01-01

    Recent progress in electrochemical and optical sugar sensors based on phenylboronic acid (PBA) and its derivatives as recognition components is reviewed. PBAs are known to bind diol compounds including sugars to form cyclic boronate esters that are negatively charged as a result of the addition of OH - ions from solution. Based on the formation of PBA charged species, sugars and their derivatives can be detected by means of electrochemical and optical techniques. For the development of PBA-based electrochemical sensing systems or sensors, PBA is modified with a redox-active marker, because PBA itself is electrochemically inactive, and ferrocene derivatives are often employed for this purpose. Ferrocene-modified PBAs have been used as redox-active additives in solution for the electrochemical detection of sugars and derivatives. PBA-modified electrodes have also been constructed as reagentless electrochemical sensors, where PBAs are immobilized on the surface of metal and carbon electrodes through mainly two routes: as a self-assembled monolayer film and as a polymer thin film. PBA-modified electrodes can be successfully used to detect sugars and derivatives through potentiometric and voltammetric responses. In addition, PBA-modified electrodes can be used for the immobilization of glycoenzymes on an electrode surface by the formation of boronate esters with carbohydrate chains in the glycoenzymes, thus resulting in enzyme biosensors. For the development of PBA-based optical sensors, a variety of chromophores and fluorophores have been coupled with PBA. Azobenzene dyes have been most frequently used for the preparation of colorimetric sugar sensors, in which the absorption wavelength and intensity of the dye are dependent on the type and concentration of added sugars. The sensitivity of the sensors is significantly improved based on multi-component systems in which alizalin red S, pyrocatechol violet, starch-iodine complex, and cyclodextrin are employed as

  10. Recognition of dual targets by a molecular beacon-based sensor: subtyping of influenza A virus.

    Science.gov (United States)

    Lee, Chun-Ching; Liao, Yu-Chieh; Lai, Yu-Hsuan; Lee, Chang-Chun David; Chuang, Min-Chieh

    2015-01-01

    A molecular beacon (MB)-based sensor to offer a decisive answer in combination with information originated from dual-target inputs is designed. The system harnesses an assistant strand and thermodynamically favored designation of unpaired nucleotides (UNs) to process the binary targets in "AND-gate" format and report fluorescence in "off-on" mechanism via a formation of a DNA four-way junction (4WJ). By manipulating composition of the UNs, the dynamic fluorescence difference between the binary targets-coexisting circumstance and any other scenario was maximized. Characteristic equilibrium constant (K), change of entropy (ΔS), and association rate constant (k) between the association ("on") and dissociation ("off") states of the 4WJ were evaluated to understand unfolding behavior of MB in connection to its sensing capability. Favorable MB and UNs were furthermore designed toward analysis of genuine genetic sequences of hemagglutinin (HA) and neuraminidase (NA) in an influenza A H5N2 isolate. The MB-based sensor was demonstrated to yield a linear calibration range from 1.2 to 240 nM and detection limit of 120 pM. Furthermore, high-fidelity subtyping of influenza virus was implemented in a sample of unpurified amplicons. The strategy opens an alternative avenue of MB-based sensors for dual targets toward applications in clinical diagnosis.

  11. Traffic Congestion Evaluation and Signal Control Optimization Based on Wireless Sensor Networks: Model and Algorithms

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2012-01-01

    Full Text Available This paper presents the model and algorithms for traffic flow data monitoring and optimal traffic light control based on wireless sensor networks. Given the scenario that sensor nodes are sparsely deployed along the segments between signalized intersections, an analytical model is built using continuum traffic equation and develops the method to estimate traffic parameter with the scattered sensor data. Based on the traffic data and principle of traffic congestion formation, we introduce the congestion factor which can be used to evaluate the real-time traffic congestion status along the segment and to predict the subcritical state of traffic jams. The result is expected to support the timing phase optimization of traffic light control for the purpose of avoiding traffic congestion before its formation. We simulate the traffic monitoring based on the Mobile Century dataset and analyze the performance of traffic light control on VISSIM platform when congestion factor is introduced into the signal timing optimization model. The simulation result shows that this method can improve the spatial-temporal resolution of traffic data monitoring and evaluate traffic congestion status with high precision. It is helpful to remarkably alleviate urban traffic congestion and decrease the average traffic delays and maximum queue length.

  12. Probabilistic Location-based Routing Protocol for Mobile Wireless Sensor Networks with Intermittent Communication

    Directory of Open Access Journals (Sweden)

    Sho KUMAGAI

    2015-02-01

    Full Text Available In a sensor network, sensor data messages reach the nearest stationary sink node connected to the Internet by wireless multihop transmissions. Recently, various mobile sensors are available due to advances of robotics technologies and communication technologies. A location based message-by-message routing protocol, such as Geographic Distance Routing (GEDIR is suitable for such mobile wireless networks; however, it is required for each mobile wireless sensor node to know the current locations of all its neighbor nodes. On the other hand, various intermittent communication methods for a low power consumption requirement have been proposed for wireless sensor networks. Intermittent Receiver-driven Data Transmission (IRDT is one of the most efficient methods; however, it is difficult to combine the location based routing and the intermittent communication. In order to solve this problem, this paper proposes a probabilistic approach IRDT-GEDIR with the help of one of the solutions of the secretaries problem. Here, each time a neighbor sensor node wakes up from its sleep mode, an intermediate sensor node determines whether it forwards its buffered sensor data messages to it or not based on an estimation of achieved pseudo speed of the messages. Simulation experiments show that IRDT-GEDIR achieves higher pseudo speed of sensor data message transmissions and shorter transmission delay than achieves shorter transmission delay than the two naive combinations of IRDT and GEDIR in sensor networks with mobile sensor nodes and a stationary sink node. In addition, the guideline of the estimated numbers of the neighbor nodes of each intermediate sensor node is provided based on the results of the simulation experiments to apply the probabilistic approach IRDT-GEDIR.

  13. A scalable pressure sensor based on an electrothermally and electrostatically operated resonator

    KAUST Repository

    Hajjaj, Amal Z.; Alcheikh, Nouha; Hafiz, Md Abdullah Al; Ilyas, Saad; Younis, Mohammad I.

    2017-01-01

    We present a pressure sensor based on the convective cooling of the air surrounding an electrothermally heated resonant bridge. Unlike conventional pressure sensors that rely on diaphragm deformation in response to pressure, the sensor does

  14. Autonomous star tracker based on active pixel sensors (APS)

    Science.gov (United States)

    Schmidt, U.

    2017-11-01

    Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.

  15. A Microring Resonator Based Negative Permeability Metamaterial Sensor

    Directory of Open Access Journals (Sweden)

    Yao-Zhong Lan

    2011-08-01

    Full Text Available Metamaterials are artificial multifunctional materials that acquire their material properties from their structure, rather than inheriting them directly from the materials they are composed of, and they may provide novel tools to significantly enhance the sensitivity and resolution of sensors. In this paper, we derive the dispersion relation of a cylindrical dielectric waveguide loaded on a negative permeability metamaterial (NPM layer, and compute the resonant frequencies and electric field distribution of the corresponding Whispering-Gallery-Modes (WGMs. The theoretical resonant frequency and electric field distribution results are in good agreement with the full wave simulation results. We show that the NPM sensor based on a microring resonator possesses higher sensitivity than the traditional microring sensor since with the evanescent wave amplification and the increase of NPM layer thickness, the sensitivity will be greatly increased. This may open a door for designing sensors with specified sensitivity.

  16. Algorithm for Wireless Sensor Networks Based on Grid Management

    Directory of Open Access Journals (Sweden)

    Geng Zhang

    2014-05-01

    Full Text Available This paper analyzes the key issues for wireless sensor network trust model and describes a method to build a wireless sensor network, such as the definition of trust for wireless sensor networks, computing and credibility of trust model application. And for the problem that nodes are vulnerable to attack, this paper proposed a grid-based trust algorithm by deep exploration trust model within the framework of credit management. Algorithm for node reliability screening and rotation schedule to cover parallel manner based on the implementation of the nodes within the area covered by trust. And analyze the results of the size of trust threshold has great influence on the safety and quality of coverage throughout the coverage area. The simulation tests the validity and correctness of the algorithm.

  17. X-ray detectors based on image sensors

    International Nuclear Information System (INIS)

    Costa, A.P.R.

    1983-01-01

    X-ray detectors based on image sensors are described and a comparison is made between the advantages and the disadvantages of such a kind of detectors with the position sensitive detectors. (L.C.) [pt

  18. A novel method of temperature compensation for piezoresistive microcantilever-based sensors.

    Science.gov (United States)

    Han, Jianqiang; Wang, Xiaofei; Yan, Tianhong; Li, Yan; Song, Meixuan

    2012-03-01

    Microcantilever with integrated piezoresistor has been applied to in situ surface stress measurement in the field of biochemical sensors. It is well known that piezoresistive cantilever-based sensors are sensitive to ambient temperature changing due to highly temperature-dependent piezoresistive effect and mismatch in thermal expansion of composite materials. This paper proposes a novel method of temperature drift compensation for microcantilever-based sensors with a piezoresistive full Wheatstone bridge integrated at the clamped ends by subtracting the amplified output voltage of the reference cantilever from the output voltage of the sensing cantilever through a simple temperature compensating circuit. Experiments show that the temperature drift of microcantilever sensors can be significantly reduced by the method.

  19. Understanding the Potential of WO3 Based Sensors for Breath Analysis

    Science.gov (United States)

    Staerz, Anna; Weimar, Udo; Barsan, Nicolae

    2016-01-01

    Tungsten trioxide is the second most commonly used semiconducting metal oxide in gas sensors. Semiconducting metal oxide (SMOX)-based sensors are small, robust, inexpensive and sensitive, making them highly attractive for handheld portable medical diagnostic detectors. WO3 is reported to show high sensor responses to several biomarkers found in breath, e.g., acetone, ammonia, carbon monoxide, hydrogen sulfide, toluene, and nitric oxide. Modern material science allows WO3 samples to be tailored to address certain sensing needs. Utilizing recent advances in breath sampling it will be possible in the future to test WO3-based sensors in application conditions and to compare the sensing results to those obtained using more expensive analytical methods. PMID:27801881

  20. Wearable-Sensor-Based Classification Models of Faller Status in Older Adults.

    Directory of Open Access Journals (Sweden)

    Jennifer Howcroft

    Full Text Available Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521. Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.

  1. Sensor data security level estimation scheme for wireless sensor networks.

    Science.gov (United States)

    Ramos, Alex; Filho, Raimir Holanda

    2015-01-19

    Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE), a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates.

  2. Novel gas sensors based on carbon nanotube networks

    International Nuclear Information System (INIS)

    Sayago, I; Aleixandre, M; Horrillo, M C; Fernandez, M J; Gutierrez, J; Terrado, E; Lafuente, E; Maser, W K; Benito, A M; Martinez, M T; Munoz, E; Urriolabeitia, E P; Navarro, R

    2008-01-01

    Novel resistive gas sensors based on single-walled carbon nanotube (SWNT) networks as the active sensing element nave been investigated for gas detection. SWNTs networks were fabricated by airbrushing on alumina substrates. As-produced- and Pd-decorated SWNT materials were used as sensitive layers for the detection of NO 2 and H 2 , respectively. The studied sensors provided good response to NO 2 and H 2 as well as excellent selectivities to interfering gases.

  3. Measurement of reaction heats using a polysilicon-based microcalorimetric sensor

    NARCIS (Netherlands)

    Vereshchagina, E.; Wolters, Robertus A.M.; Gardeniers, Johannes G.E.

    2011-01-01

    In this work we present a low-cost, low-power, small sample volume microcalorimetric sensor for the measurement of reaction heats. The polysilicon-based microcalorimetric sensor combines several advantages: (i) complementary metal oxide semiconductor technology (CMOS) for future integration; (ii)

  4. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    International Nuclear Information System (INIS)

    Rizzi, Giovanni; Østerberg, Frederik W.; Henriksen, Anders D.; Dufva, Martin; Hansen, Mikkel F.

    2015-01-01

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface. The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover, we demonstrate that a single sensor bridge can be used to genotype a SNP. - Highlights: • We apply magnetoresistive sensors to study solid-surface hybridization kinetics of DNA. • We measure DNA melting profiles for perfectly matching DNA duplexes and for a single base mismatch. • We present a procedure to correct for temperature dependencies of the sensor output. • We reliably extract melting temperatures for the DNA hybrids. • We demonstrate direct measurement of differential binding signal for two probes on a single sensor

  5. Roadmap on optical sensors

    Science.gov (United States)

    Ferreira, Mário F. S.; Castro-Camus, Enrique; Ottaway, David J.; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M.; Pellegrino, Paul M.; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin

    2017-08-01

    Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both

  6. Roadmap on optical sensors.

    Science.gov (United States)

    Ferreira, Mário F S; Castro-Camus, Enrique; Ottaway, David J; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M; Pellegrino, Paul M; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin

    2017-08-01

    Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both

  7. Fish-inspired self-powered microelectromechanical flow sensor with biomimetic hydrogel cupula

    Science.gov (United States)

    Bora, M.; Kottapalli, A. G. P.; Miao, J. M.; Triantafyllou, M. S.

    2017-10-01

    Flow sensors inspired from lateral line neuromasts of cavefish have been widely investigated over decades to develop artificial sensors. The design and function of these natural sensors have been mimicked using microelectromechanical systems (MEMS) based sensors. However, there is more to the overall function and performance of these natural sensors. Mimicking the morphology and material properties of specialized structures like a cupula would significantly help to improve the existing designs. Toward this goal, the paper reports development of a canal neuromast inspired piezoelectric sensor and investigates the role of a biomimetic cupula in influencing the performance of the sensor. The sensor was developed using microfabrication technology and tested for the detection of the steady-state and oscillatory flows. An artificial cupula was synthesized using a soft hydrogel material and characterized for morphology and mechanical properties. Results show that the artificial cupula had a porous structure and high mechanical strength similar to the biological canal neuromast. Experimental results show the ability of these sensors to measure the steady-state flows accurately, and for oscillatory flows, an increase in the sensor output was detected in the presence of the cupula structure. This is the first time a MEMS based piezoelectric sensor is demonstrated to detect steady-state flows using the principle of vortex-induced vibrations. The bioinspired sensor developed in this work would be investigated further to understand the role of the cupula structure in biological flow sensing mechanisms, thus contributing toward the design of highly sensitive and efficient sensors for various applications such as underwater robotics, microfluidics, and biomedical devices.

  8. Electrospinning cellulose based nanofibers for sensor applications

    Science.gov (United States)

    Nartker, Steven

    2009-12-01

    Bacterial pathogens have recently become a serious threat to the food and water supply. A biosensor based on an electrochemical immunoassay has been developed for detecting food borne pathogens, such as Escherichia coli (E. coli) O157:H7. These sensors consist of several materials including, cellulose, cellulose nitrate, polyaniline and glass fibers. The current sensors have not been optimized in terms of microscale architecture and materials. The major problem associated with the current sensors is the limited concentration range of pathogens that provides a linear response on the concentration conductivity chart. Electrospinning is a process that can be used to create a patterned fiber mat design that will increase the linear range and lower the detection limit of these sensors by improving the microscale architecture. Using the electrospinning process to produce novel mats of cellulose nitrate will offer improved surface area, and the cellulose nitrate can be treated to further improve chemical interactions required for sensor activity. The macro and micro architecture of the sensor is critical to the performance of the sensors. Electrospinning technology can be used to create patterned architectures of nanofibers that will enhance sensor performance. To date electrospinning of cellulose nitrate has not been performed and optimization of the electrospinning process will provide novel materials suitable for applications such as filtration and sensing. The goal of this research is to identify and elucidate the primary materials and process factors necessary to produce cellulose nitrate nanofibers using the electrospinning process that will improve the performance of biosensors. Cellulose nitrate is readily dissolved in common organic solvents such as acetone, tetrahydrofuran (THF) and N,N dimethylformamide (DMF). These solvents can be mixed with other latent solvents such as ethanol and other alcohols to provide a solvent system with good electrospinning behavior

  9. A spectrofluorimetric sensor based on grape skin tissue for ...

    African Journals Online (AJOL)

    A spectrofluorimetric method based on the grape skin has been developed for the determination of Fe3+ at pH 5.0. The emission wavelength of the grape skin sensor occurs at 680 nm and the excitation wavelength at 421 nm. The fluorescence of sensor could be quenched by Fe3+ due to the complexing ability of ...

  10. Photocured thiol-ene based optical fluorescence sensor for determination of gold(III)

    Energy Technology Data Exchange (ETDEWEB)

    Çubuk, Soner, E-mail: sonercubuk@marmara.edu.tr; Kahraman, Memet Vezir; Yetimoğlu, Ece Kök; Kenan, Sibel

    2014-02-17

    Graphical abstract: -- Highlights: •Photopolymerized fluorescence sensor for Au(III) analysis has been developed. •Preparation of polymeric sensor is simple and quick. •Fluorescence sensor used for analysis of Au(III) in real samples. -- Abstract: This study describes the preparation and the characterization of a new thiol-ene based polymeric fluorescence sensor by photo initiated polymerization of trimethylolpropane tris(3-mercaptopropionate), 2-hydroxyethylacrylate, and 2,4,6-triallyloxy-1,3,5-triazine which are used as monomers and also a photo initiator (2,2-dimethoxy-2-phenylacetophenone) for its usage as optical sensor for gold ions. The thiol-ene based polymeric membrane sensor was characterized by using attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM). The response characteristics of the sensors including dynamic range, pH effect, response time, and the effect of foreign ions were investigated. Fluorescence spectra showed that the excitation/emission maxima of the membrane were at 379/425 nm, respectively.

  11. Photocured thiol-ene based optical fluorescence sensor for determination of gold(III)

    International Nuclear Information System (INIS)

    Çubuk, Soner; Kahraman, Memet Vezir; Yetimoğlu, Ece Kök; Kenan, Sibel

    2014-01-01

    Graphical abstract: -- Highlights: •Photopolymerized fluorescence sensor for Au(III) analysis has been developed. •Preparation of polymeric sensor is simple and quick. •Fluorescence sensor used for analysis of Au(III) in real samples. -- Abstract: This study describes the preparation and the characterization of a new thiol-ene based polymeric fluorescence sensor by photo initiated polymerization of trimethylolpropane tris(3-mercaptopropionate), 2-hydroxyethylacrylate, and 2,4,6-triallyloxy-1,3,5-triazine which are used as monomers and also a photo initiator (2,2-dimethoxy-2-phenylacetophenone) for its usage as optical sensor for gold ions. The thiol-ene based polymeric membrane sensor was characterized by using attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM). The response characteristics of the sensors including dynamic range, pH effect, response time, and the effect of foreign ions were investigated. Fluorescence spectra showed that the excitation/emission maxima of the membrane were at 379/425 nm, respectively

  12. Focused Ion Beam Nanopatterning for Carbon Nanotube Ropes Based Sensor

    Directory of Open Access Journals (Sweden)

    Vera LA FERRARA

    2007-11-01

    Full Text Available Focused Ion Beam (FIB technology has been used to realize electrode patterns for contacting Single Walled Carbon Nanotubes (SWCNTs ropes for chemical gas sensor applications. Two types of transducers, based on a single rope and on bundles, have been realized starting from silicon/Si3N4 substrate. Electrical behaviour, at room temperature, in toxic gas environments, has been investigated and compared to evaluate contribution of a single rope based sensor respect to bundles one. For all the devices, upon exposure to NO2 and NH3, the conductance has been found to increase or decrease respectively. Conductance signal is stronger for sensor based on bundles, but it also evident that response time in NO2 is faster for device based on a single rope. FIB technology offers, then, the possibility to contact easily a single sensitive nanowire, as carbon nanotube rope.

  13. A vacuum pressure sensor based on ZnO nanobelt film

    International Nuclear Information System (INIS)

    Zheng, X J; Cao, X C; Sun, J; Yuan, B; Zhu, Z; Zhang, Y; Li, Q H

    2011-01-01

    A vacuum pressure sensor was fabricated by assembling ZnO nanobelt film on the interdigital electrodes, and the current-voltage characteristics were measured with an Agilent semiconductor parameter tester. Under different pressures of 1.0 x 10 3 , 6.7 x 10 -3 , 8.2 x 10 -4 and 9.5 x 10 -5 mbar, the currents are 8.71, 28.1, 46.1 and 89.6 nA, and the pressure sensitive resistances are 1150, 356, 217 and 112 MΩ, respectively. In the range of 10 -5 -10 3 mbar the smaller the pressure is, the higher the current is. The pressure sensitive resistance of the vacuum pressure sensor increases linearly with the logarithmic pressure, and the measurement range is at least one order of magnitude wider than that of the previous sensors. Under the final pressure, the vacuum pressure sensor has maximum sensitivity (9.29) and power consumption of 0.9 μW. The sensitivity is larger than that of the previous sensor based on a ZnO single nanowire at that pressure, and the power consumption is much lower than that for the sensor based on a ZnO nanowire array. The pressure sensitive mechanism is reasonably explained by using oxygen chemisorption and energy band theory.

  14. Multi-Level Wavelet Shannon Entropy-Based Method for Single-Sensor Fault Location

    Directory of Open Access Journals (Sweden)

    Qiaoning Yang

    2015-10-01

    Full Text Available In actual application, sensors are prone to failure because of harsh environments, battery drain, and sensor aging. Sensor fault location is an important step for follow-up sensor fault detection. In this paper, two new multi-level wavelet Shannon entropies (multi-level wavelet time Shannon entropy and multi-level wavelet time-energy Shannon entropy are defined. They take full advantage of sensor fault frequency distribution and energy distribution across multi-subband in wavelet domain. Based on the multi-level wavelet Shannon entropy, a method is proposed for single sensor fault location. The method firstly uses a criterion of maximum energy-to-Shannon entropy ratio to select the appropriate wavelet base for signal analysis. Then multi-level wavelet time Shannon entropy and multi-level wavelet time-energy Shannon entropy are used to locate the fault. The method is validated using practical chemical gas concentration data from a gas sensor array. Compared with wavelet time Shannon entropy and wavelet energy Shannon entropy, the experimental results demonstrate that the proposed method can achieve accurate location of a single sensor fault and has good anti-noise ability. The proposed method is feasible and effective for single-sensor fault location.

  15. Ontology and modeling patterns for state-based behavior representation

    Science.gov (United States)

    Castet, Jean-Francois; Rozek, Matthew L.; Ingham, Michel D.; Rouquette, Nicolas F.; Chung, Seung H.; Kerzhner, Aleksandr A.; Donahue, Kenneth M.; Jenkins, J. Steven; Wagner, David A.; Dvorak, Daniel L.; hide

    2015-01-01

    This paper provides an approach to capture state-based behavior of elements, that is, the specification of their state evolution in time, and the interactions amongst them. Elements can be components (e.g., sensors, actuators) or environments, and are characterized by state variables that vary with time. The behaviors of these elements, as well as interactions among them are represented through constraints on state variables. This paper discusses the concepts and relationships introduced in this behavior ontology, and the modeling patterns associated with it. Two example cases are provided to illustrate their usage, as well as to demonstrate the flexibility and scalability of the behavior ontology: a simple flashlight electrical model and a more complex spacecraft model involving instruments, power and data behaviors. Finally, an implementation in a SysML profile is provided.

  16. Solid State Sensor for Simultaneous Measurement of Total Alkalinity and pH of Seawater.

    Science.gov (United States)

    Briggs, Ellen M; Sandoval, Sergio; Erten, Ahmet; Takeshita, Yuichiro; Kummel, Andrew C; Martz, Todd R

    2017-09-22

    A novel design is demonstrated for a solid state, reagent-less sensor capable of rapid and simultaneous measurement of pH and Total Alkalinity (A T ) using ion sensitive field effect transistor (ISFET) technology to provide a simplified means of characterization of the aqueous carbon dioxide system through measurement of two "master variables": pH and A T . ISFET-based pH sensors that achieve 0.001 precision are widely used in various oceanographic applications. A modified ISFET is demonstrated to perform a nanoliter-scale acid-base titration of A T in under 40 s. This method of measuring A T , a Coulometric Diffusion Titration, involves electrolytic generation of titrant, H + , through the electrolysis of water on the surface of the chip via a microfabricated electrode eliminating the requirement of external reagents. Characterization has been performed in seawater as well as titrating individual components (i.e., OH - , HCO 3 - , CO 3 2- , B(OH) 4 - , PO 4 3- ) of seawater A T . The seawater measurements are consistent with the design in reaching the benchmark goal of 0.5% precision in A T over the range of seawater A T of ∼2200-2500 μmol kg -1 which demonstrates great potential for autonomous sensing.

  17. Whitelists Based Multiple Filtering Techniques in SCADA Sensor Networks

    Directory of Open Access Journals (Sweden)

    DongHo Kang

    2014-01-01

    Full Text Available Internet of Things (IoT consists of several tiny devices connected together to form a collaborative computing environment. Recently IoT technologies begin to merge with supervisory control and data acquisition (SCADA sensor networks to more efficiently gather and analyze real-time data from sensors in industrial environments. But SCADA sensor networks are becoming more and more vulnerable to cyber-attacks due to increased connectivity. To safely adopt IoT technologies in the SCADA environments, it is important to improve the security of SCADA sensor networks. In this paper we propose a multiple filtering technique based on whitelists to detect illegitimate packets. Our proposed system detects the traffic of network and application protocol attacks with a set of whitelists collected from normal traffic.

  18. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    Directory of Open Access Journals (Sweden)

    Xiang He

    2015-12-01

    Full Text Available Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer, wireless signal strength indicators (WiFi, Bluetooth, Zigbee, and visual sensors (LiDAR, camera. People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.

  19. Integrated active sensor system for real time vibration monitoring.

    Science.gov (United States)

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  20. Optical acetylcholine sensor based on free base porphyrin as a chromoionophore.

    Science.gov (United States)

    Mroczkiewicz, Monika; Pietrzak, Mariusz; Górski, Łukasz; Malinowska, Elżbieta

    2011-09-21

    In this work, the possibility of application of free base porphyrin as a lipophilic pH chromoionophore for the preparation of optical cation-selective sensors was investigated. The properties of polymeric membranes, containing porphyrins of different structures, namely tetraphenylporphyrin (TPP) and octaethylporphyrin (OEP), were compared. Changes in equilibrium between protonated and deprotonated form of porphyrin, resulting from variations in ACh concentration, were evaluated. The influence of various factors (kind and quantity of anionic additive and porphyrin in the membrane phase, pH of sample solution) on initial equilibrium was studied. The best membrane composition was chosen as: TPP 3 wt.%, KTFPB 175 mol.% relative to ionophore, PVC:o-NPOE (1 : 4) and measuring buffer solution: 0.05 M MES, pH 4.5. Selectivity, response stability, reversibility and repeatability tests were carried out for chosen sensor. Developed sensor allowed for the determination of a model analyte, acetylcholine, at the concentration range of 10(-5) to 10(-2) M, both in stationary and flow-injection system. Sensor response was reversible and repeatable in the mentioned concentration range.

  1. Compressive sensing based wireless sensor for structural health monitoring

    Science.gov (United States)

    Bao, Yuequan; Zou, Zilong; Li, Hui

    2014-03-01

    Data loss is a common problem for monitoring systems based on wireless sensors. Reliable communication protocols, which enhance communication reliability by repetitively transmitting unreceived packets, is one approach to tackle the problem of data loss. An alternative approach allows data loss to some extent and seeks to recover the lost data from an algorithmic point of view. Compressive sensing (CS) provides such a data loss recovery technique. This technique can be embedded into smart wireless sensors and effectively increases wireless communication reliability without retransmitting the data. The basic idea of CS-based approach is that, instead of transmitting the raw signal acquired by the sensor, a transformed signal that is generated by projecting the raw signal onto a random matrix, is transmitted. Some data loss may occur during the transmission of this transformed signal. However, according to the theory of CS, the raw signal can be effectively reconstructed from the received incomplete transformed signal given that the raw signal is compressible in some basis and the data loss ratio is low. This CS-based technique is implemented into the Imote2 smart sensor platform using the foundation of Illinois Structural Health Monitoring Project (ISHMP) Service Tool-suite. To overcome the constraints of limited onboard resources of wireless sensor nodes, a method called random demodulator (RD) is employed to provide memory and power efficient construction of the random sampling matrix. Adaptation of RD sampling matrix is made to accommodate data loss in wireless transmission and meet the objectives of the data recovery. The embedded program is tested in a series of sensing and communication experiments. Examples and parametric study are presented to demonstrate the applicability of the embedded program as well as to show the efficacy of CS-based data loss recovery for real wireless SHM systems.

  2. Redox Cycling Realized in Paper-Based Biochemical Sensor for Selective Detection of Reversible Redox Molecules Without Micro/Nano Fabrication Process.

    Science.gov (United States)

    Yamamoto, So; Uno, Shigeyasu

    2018-02-28

    This paper describes a paper-based biochemical sensor that realizes redox cycling with close interelectrode distance. Two electrodes, the generator and collector electrodes, can detect steady-state oxidation and reduction currents when suitable potential is held at each electrode. The sensor has two gold plates on both sides of a piece of chromatography paper and defines the interelectrode distance by the thickness of the paper (180 μm) without any micro-fabrication processes. Our proposed sensor geometry has successfully exhibited signatures of redox cycling. As a result, the concentration of ferrocyanide as reversible redox molecules was successfully quantified under the interference by ascorbic acid as a strong irreversible reducing agent. This was possible because the ascorbic acids are completely consumed by the irreversible reaction, while maintaining redox cycling of reversible ferrocyanide. This suggests that a sensor based on the redox cycling method will be suitable for detecting target molecules at low concentration.

  3. Wireless Prototype Based on Pressure and Bending Sensors for Measuring Gate Quality

    Science.gov (United States)

    Grenez, Florent; Villarejo, María Viqueira; Zapirain, Begoña García; Zorrilla, Amaia Méndez

    2013-01-01

    This paper presents a technological solution based on sensors controlled remotely in order to monitor, track and evaluate the gait quality in people with or without associated pathology. Special hardware simulating a shoe was developed, which consists of three pressure sensors, two bending sensors, an Arduino mini and a Bluetooth module. The obtained signals are digitally processed, calculating the standard deviation and establishing thresholds obtained empirically. A group of users was chosen with the aim of executing two modalities: natural walking and dragging the left foot. The gait was parameterized with the following variables: as far as pressure sensors are concerned, one pressure sensor under the first metatarsal (right sensor), another one under the fifth metatarsal (left) and a third one under the heel were placed. With respect to bending sensors, one bending sensor was placed for the ankle movement and another one for the foot sole. The obtained results show a rate accuracy oscillating between 85% (right sensor) and 100% (heel and bending sensors). Therefore, the developed prototype is able to differentiate between healthy gait and pathological gait, and it will be used as the base of a more complex and integral technological solution, which is being developed currently. PMID:23899935

  4. Wireless Prototype Based on Pressure and Bending Sensors for Measuring Gate Quality

    Directory of Open Access Journals (Sweden)

    Amaia Méndez Zorrilla

    2013-07-01

    Full Text Available This paper presents a technological solution based on sensors controlled remotely in order to monitor, track and evaluate the gait quality in people with or without associated pathology. Special hardware simulating a shoe was developed, which consists of three pressure sensors, two bending sensors, an Arduino mini and a Bluetooth module. The obtained signals are digitally processed, calculating the standard deviation and establishing thresholds obtained empirically. A group of users was chosen with the aim of executing two modalities: natural walking and dragging the left foot. The gait was parameterized with the following variables: as far as pressure sensors are concerned, one pressure sensor under the first metatarsal (right sensor, another one under the fifth metatarsal (left and a third one under the heel were placed. With respect to bending sensors, one bending sensor was placed for the ankle movement and another one for the foot sole. The obtained results show a rate accuracy oscillating between 85% (right sensor and 100% (heel and bending sensors. Therefore, the developed prototype is able to differentiate between healthy gait and pathological gait, and it will be used as the base of a more complex and integral technological solution, which is being developed currently.

  5. SensorDB: a virtual laboratory for the integration, visualization and analysis of varied biological sensor data.

    Science.gov (United States)

    Salehi, Ali; Jimenez-Berni, Jose; Deery, David M; Palmer, Doug; Holland, Edward; Rozas-Larraondo, Pablo; Chapman, Scott C; Georgakopoulos, Dimitrios; Furbank, Robert T

    2015-01-01

    To our knowledge, there is no software or database solution that supports large volumes of biological time series sensor data efficiently and enables data visualization and analysis in real time. Existing solutions for managing data typically use unstructured file systems or relational databases. These systems are not designed to provide instantaneous response to user queries. Furthermore, they do not support rapid data analysis and visualization to enable interactive experiments. In large scale experiments, this behaviour slows research discovery, discourages the widespread sharing and reuse of data that could otherwise inform critical decisions in a timely manner and encourage effective collaboration between groups. In this paper we present SensorDB, a web based virtual laboratory that can manage large volumes of biological time series sensor data while supporting rapid data queries and real-time user interaction. SensorDB is sensor agnostic and uses web-based, state-of-the-art cloud and storage technologies to efficiently gather, analyse and visualize data. Collaboration and data sharing between different agencies and groups is thereby facilitated. SensorDB is available online at http://sensordb.csiro.au.

  6. Evaluation of a "Smart" Pedestrian Counting System Based on Echo State Networks

    Directory of Open Access Journals (Sweden)

    Poigné Axel

    2009-01-01

    Full Text Available Abstract We have designed an inexpensive intelligent pedestrian counting system. The pedestrian counting system consists of several counters that can be connected together in a distributed fashion and communicate over the wireless channel. The motion pattern is recorded using a set of passive infrared (PIR sensors. Each counter has one wireless sensor node that processes the PIR sensor data and transmits it to a base station. Then echo state network, a special kind of recurrent neural network, is used to predict the pedestrian count from the input pattern. The evaluation of the performance of such networks in a novel kind of application is one focus of this work. The counter gave a performance of 80.4% which is better than the commercially available low-priced pedestrian counters. The article reports the experiments we did for analyzing the counterperformance and lists the strengths and limitations of the current implementation. It will also report the preliminary test results obtained by substituting the PIR sensors with low-cost active IR distance sensors which can improve the counter performance further.

  7. Comparative VOCs sensing performance for conducting polymer and porphyrin functionalized carbon nanotubes based sensors

    Science.gov (United States)

    Datta, Kunal; Rushi, Arti; Ghosh, Prasanta; Shirsat, Mahendra

    2018-05-01

    We report sensors for detection of ethyl alcohol, a prominent volatile organic compound (VOC). Single walled carbon nanotubes were selected as main sensing backbone. As efficiency of sensor is dependent upon the choice of sensing materials, the performances of conducting polymer and porphyrin based sensors were compared. Chemiresistive sensing modality was adopted to observe the performance of sensors. It has been found that porphyrin based sensor shows higher affinity towards ethyl alcohol.

  8. Linear all-fiber temperature sensor based on macro-bent erbium doped fiber

    International Nuclear Information System (INIS)

    Hajireza, P; Cham, C L; Kumar, D; Abdul-Rashid, H A; Emami, S D; Harun, S W

    2010-01-01

    A new all fiber temperature sensor is proposed and demonstrated based on a pair of 1 meter erbium-doped fiber (EDF), which are respectively macro-bent and straight. The sensor has a linear normalized loss (dB) response to temperature at 6.5 mm bending radius and 1580 nm input wavelength. The main advantage of this sensor is high temperature resolution (less than 1°C) and sensitivity (0.03 dB/°C) due to combination of temperature dependence of EDF and bending loss. The proposed silica based sensor, has the potential for wide range and high temperature applications in harsh environments

  9. MB-OFDM-UWB Based Wireless Multimedia Sensor Networks for Underground Coalmine: A Survey

    Science.gov (United States)

    Han, Ruisong; Yang, Wei; You, Kaiming

    2016-01-01

    Safety production of coalmines is a task of top priority which plays an important role in guaranteeing, supporting and promoting the continuous development of the coal industry. Since traditional wireless sensor networks (WSNs) cannot fully meet the requirements of comprehensive environment monitoring of underground coalmines, wireless multimedia sensor networks (WMSNs), enabling the retrieval of multimedia information, are introduced to realize fine-grained and precise environment surveillance. In this paper, a framework for designing underground coalmine WMSNs based on Multi-Band Orthogonal Frequency-Division Multiplexing Ultra-wide Band (MB-OFDM-UWB) is presented. The selection of MB-OFDM-UWB wireless transmission solution is based on the characteristics of underground coalmines. Network structure and design challenges are analyzed first, which is the foundation for further discussion. Then, key supporting technologies and open research areas in different layers are surveyed, and we provide a detailed literature review of the state of the art strategies, algorithms and general solutions in these issues. Finally, other research issues like localization, information processing, and network management are discussed. PMID:27999258

  10. MB-OFDM-UWB Based Wireless Multimedia Sensor Networks for Underground Coalmine: A Survey.

    Science.gov (United States)

    Han, Ruisong; Yang, Wei; You, Kaiming

    2016-12-16

    Safety production of coalmines is a task of top priority which plays an important role in guaranteeing, supporting and promoting the continuous development of the coal industry. Since traditional wireless sensor networks (WSNs) cannot fully meet the requirements of comprehensive environment monitoring of underground coalmines, wireless multimedia sensor networks (WMSNs), enabling the retrieval of multimedia information, are introduced to realize fine-grained and precise environment surveillance. In this paper, a framework for designing underground coalmine WMSNs based on Multi-Band Orthogonal Frequency-Division Multiplexing Ultra-wide Band (MB-OFDM-UWB) is presented. The selection of MB-OFDM-UWB wireless transmission solution is based on the characteristics of underground coalmines. Network structure and design challenges are analyzed first, which is the foundation for further discussion. Then, key supporting technologies and open research areas in different layers are surveyed, and we provide a detailed literature review of the state of the art strategies, algorithms and general solutions in these issues. Finally, other research issues like localization, information processing, and network management are discussed.

  11. State Estimation for Robots with Complementary Redundant Sensors

    Directory of Open Access Journals (Sweden)

    Daniele Carnevale

    2015-10-01

    Full Text Available In this paper, robots equipped with two complementary typologies of redundant sensors are considered: one typology provides sharp measures of some geometrical entity related to the robot pose (e.g., distance or angle but is not univocally associated with this quantity; the other typology is univocal but is characterized by a low level of precision. A technique is proposed to properly combine these two kinds of measurement both in a stochastic and in a deterministic context. This framework may occur in robotics, for example, when the distance from a known landmark is detected by two different sensors, one based on the signal strength or time of flight of the signal, while the other one measures the phase-shift of the signal, which has a sharp but periodical dependence on the robot-landmark distance. In the stochastic case, an effective solution is a two-stage extended Kalman filter (EKF which exploits the precise periodic signal only when the estimate of the robot position is sufficiently precise. In the deterministic setting, an approach based on a switching hybrid observer is proposed, and results are analyzed via simulation examples.

  12. Optical and Electronic NOx Sensors for Applications in Mechatronics

    Directory of Open Access Journals (Sweden)

    Scott D. Wolter

    2009-05-01

    Full Text Available Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i Quantum cascade lasers (QCL based photoacoustic (PA systems; ii gold nanoparticles as catalytically active materials in field-effect transistor (FET sensors, and iii functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling.

  13. Optical and Electronic NOx Sensors for Applications in Mechatronics

    Science.gov (United States)

    Di Franco, Cinzia; Elia, Angela; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugarà, Pietro Mario; Ieva, Eliana; Cioffi, Nicola; Torsi, Luisa; Bruno, Giovanni; Losurdo, Maria; Garcia, Michael A.; Wolter, Scott D.; Brown, April; Ricco, Mario

    2009-01-01

    Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling. PMID:22412315

  14. MEMS based Low Cost Piezoresistive Microcantilever Force Sensor and Sensor Module.

    Science.gov (United States)

    Pandya, H J; Kim, Hyun Tae; Roy, Rajarshi; Desai, Jaydev P

    2014-03-01

    In the present work, we report fabrication and characterization of a low-cost MEMS based piezoresistive micro-force sensor with SU-8 tip using laboratory made silicon-on-insulator (SOI) substrate. To prepare SOI wafer, silicon film (0.8 µm thick) was deposited on an oxidized silicon wafer using RF magnetron sputtering technique. The films were deposited in Argon (Ar) ambient without external substrate heating. The material characteristics of the sputtered deposited silicon film and silicon film annealed at different temperatures (400-1050°C) were studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The residual stress of the films was measured as a function of annealing temperature. The stress of the as-deposited films was observed to be compressive and annealing the film above 1050°C resulted in a tensile stress. The stress of the film decreased gradually with increase in annealing temperature. The fabricated cantilevers were 130 µm in length, 40 µm wide and 1.0 µm thick. A series of force-displacement curves were obtained using fabricated microcantilever with commercial AFM setup and the data were analyzed to get the spring constant and the sensitivity of the fabricated microcantilever. The measured spring constant and sensitivity of the sensor was 0.1488N/m and 2.7mV/N. The microcantilever force sensor was integrated with an electronic module that detects the change in resistance of the sensor with respect to the applied force and displays it on the computer screen.

  15. High performance flexible pH sensor based on polyaniline nanopillar array electrode.

    Science.gov (United States)

    Yoon, Jo Hee; Hong, Seok Bok; Yun, Seok-Oh; Lee, Seok Jae; Lee, Tae Jae; Lee, Kyoung G; Choi, Bong Gill

    2017-03-15

    Flexible pH sensor technologies have attracted a great deal of attention in many applications, such as, wearable health care devices and monitors for chemical and biological processes. Here, we fabricated flexible and thin pH sensors using a two electrode configuration comprised of a polyaniline nanopillar (PAN) array working electrode and an Ag/AgCl reference electrode. In order to provide nanostructure, soft lithography using a polymeric blend was employed to create a flexible nanopillar backbone film. Polyaniline-sensing materials were deposited on a patterned-nanopillar array by electrochemical deposition. The pH sensors produced exhibited a near-Nernstian response (∼60.3mV/pH), which was maintained in a bent state. In addition, pH sensors showed other excellent sensor performances in terms of response time, reversibility, repeatability, selectivity, and stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback

    Directory of Open Access Journals (Sweden)

    Haoting Liu

    2017-02-01

    Full Text Available An imaging sensor-based intelligent Light Emitting Diode (LED lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes.

  17. Cluster-based Data Gathering in Long-Strip Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    FANG, W.

    2012-02-01

    Full Text Available This paper investigates a special class of wireless sensor networks that are different from traditional ones in that the sensor nodes in this class of networks are deployed along narrowly elongated geographical areas and form a long-strip topology. According to hardware capabilities of current sensor nodes, a cluster-based protocol for reliable and efficient data gathering in long-strip wireless sensor networks (LSWSN is proposed. A well-distributed cluster-based architecture is first formed in the whole network through contention-based cluster head election. Cluster heads are responsible for coordination among the nodes within their clusters and aggregation of their sensory data, as well as transmission the data to the sink node on behalf of their own clusters. The intra-cluster coordination is based on the traditional TDMA schedule, in which the inter-cluster interference caused by the border nodes is solved by the multi-channel communication technique. The cluster reporting is based on the CSMA contention, in which a connected overlay network is formed by relay nodes to forward the data from the cluster heads through multi-hops to the sink node. The relay nodes are non-uniformly deployed to resolve the energy-hole problem which is extremely serious in the LSWSN. Extensive simulation results illuminate the distinguished performance of the proposed protocol.

  18. Bio-Inspired PVDF-Based, Mouse Whisker Mimicking, Tactile Sensor

    Directory of Open Access Journals (Sweden)

    Mohsin Islam Tiwana

    2016-10-01

    Full Text Available The design and fabrication of a Polyvinylidene fluoride (PVDF based, mouse (or rodent whisker mimicking, tactile sensor is presented. Unlike previous designs reported in the literature, this sensor mimics the mouse whisker not only mechanically, but it also makes macro movements just like a real mouse whisker in a natural environment. We have developed a mathematical model and performed finite element analysis using COMSOL, in order to optimise the whisker to have the same natural frequency as that of a biological whisker. Similarly, we have developed a control system that enables the whisker mimicking sensor to vibrate at variable frequencies and conducted practical experiments to validate the response of the sensor. The natural frequency of the whisker can be designed anywhere between 35 and 110 Hz, the same as a biological whisker, by choosing different materials and physical dimensions. The control system of this sensor enables the whisker to vibrate between 5 and 236 Hz.

  19. Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor

    Science.gov (United States)

    Zhang, Zhiguo; Shen, Chunyan; Li, Luming

    2018-03-01

    Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.

  20. Facile fabrication of CNT-based chemical sensor operating at room temperature

    Science.gov (United States)

    Sheng, Jiadong; Zeng, Xian; Zhu, Qi; Yang, Zhaohui; Zhang, Xiaohua

    2017-12-01

    This paper describes a simple, low cost and effective route to fabricate CNT-based chemical sensors, which operate at room temperature. Firstly, the incorporation of silk fibroin in vertically aligned CNT arrays (CNTA) obtained through a thermal chemical vapor deposition (CVD) method makes the direct removal of CNT arrays from substrates without any rigorous acid or sonication treatment feasible. Through a simple one-step in situ polymerization of anilines, the functionalization of CNT arrays with polyaniline (PANI) significantly improves the sensing performance of CNT-based chemical sensors in detecting ammonia (NH3) and hydrogen chloride (HCl) vapors. Chemically modified CNT arrays also show responses to organic vapors like menthol, ethyl acetate and acetone. Although the detection limits of chemically modified CNT-based chemical sensors are of the same orders of magnitudes reported in previous studies, these CNT-based chemical sensors show advantages of simplicity, low cost and energy efficiency in preparation and fabrication of devices. Additionally, a linear relationship between the relative sensitivity and concentration of analyte makes precise estimations on the concentrations of trace chemical vapors possible.

  1. A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems

    Directory of Open Access Journals (Sweden)

    Kyeonghwan Park

    2017-04-01

    Full Text Available This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors.

  2. Monitoring system of hydraulic lifting device based on the fiber optic sensors

    Science.gov (United States)

    Fajkus, Marcel; Nedoma, Jan; Novak, Martin; Martinek, Radek; Vanus, Jan; Mec, Pavel; Vasinek, Vladimir

    2017-10-01

    This article deals with the description of the monitoring system of hydraulic lifting device based on the fiber-optic sensors. For minimize the financial costs of the proposed monitoring system, the power evaluation of measured signal has been chosen. The solution is based on an evaluation of the signal obtained using the single point optic fiber sensors with overlapping reflective spectra. For encapsulation of the sensors was used polydimethylsiloxane (PDMS) polymer. To obtain a information of loading is uses the action of deformation of the lifting device on the pair single point optic fiber sensors mounted on the lifting device of the tested car. According to the proposed algorithm is determined information of pressure with an accuracy of +/- 5 %. Verification of the proposed system was realized on the various types of the tested car with different loading. The original contribution of the paper is to verify the new low-cost system for monitoring the hydraulic lifting device based on the fiber-optic sensors.

  3. Prioritizing alarms from sensor-based detection models in livestock production

    DEFF Research Database (Denmark)

    Dominiak, Katarina Nielsen; Kristensen, Anders Ringgaard

    2017-01-01

    The objective of this review is to present, evaluate and discuss methods for reducing false alarms in sensor-based detection models developed for livestock production as described in the scientific literature. Papers included in this review are all peer-reviewed and present sensor-based detection...... models developed for modern livestock production with the purpose of optimizing animal health or managerial routines. The papers must present a performance for the model, but no criteria were specified for animal species or the condition sought to be detected. 34 papers published during the last 20 years...... (NBN) and Hidden phase-type Markov model, the NBN shows the greatest potential for future reduction of alerts from sensor-based detection models in livestock production. The included detection models are evaluated on three criteria; performance, time-window and similarity to determine whether...

  4. Steel Bar corrosion monitoring based on encapsulated piezoelectric sensors

    Science.gov (United States)

    Xu, Ying; Tang, Tianyou

    2018-05-01

    The durability of reinforced concrete has a great impact on the structural bearing capacity, while the corrosion of steel bars is the main reason for the degradation of structural durability. In this paper, a new type of encapsulated cement based piezoelectric sensor is developed and its working performance is verified. The consistency of the finite element simulation and the experimental results shows the feasibility of monitoring the corrosion of steel bars using encapsulated piezoelectric sensors. The research results show that the corrosion conditions of the steel bars can be determined by the relative amplitude of the measured signal through the encapsulated piezoelectric sensor.

  5. Nanoneedle transistor-based sensors for the selective detection of intracellular calcium ions.

    Science.gov (United States)

    Son, Donghee; Park, Sung Young; Kim, Byeongju; Koh, Jun Tae; Kim, Tae Hyun; An, Sangmin; Jang, Doyoung; Kim, Gyu Tae; Jhe, Wonho; Hong, Seunghun

    2011-05-24

    We developed a nanoneedle transistor-based sensor (NTS) for the selective detection of calcium ions inside a living cell. In this work, a single-walled carbon nanotube-based field effect transistor (swCNT-FET) was first fabricated at the end of a glass nanopipette and functionalized with Fluo-4-AM probe dye. The selective binding of calcium ions onto the dye molecules altered the charge state of the dye molecules, resulting in the change of the source-drain current of the swCNT-FET as well as the fluorescence intensity from the dye. We demonstrated the electrical and fluorescence detection of the concentration change of intracellular calcium ions inside a HeLa cell using the NTS.

  6. Improved laser-based triangulation sensor with enhanced range and resolution through adaptive optics-based active beam control.

    Science.gov (United States)

    Reza, Syed Azer; Khwaja, Tariq Shamim; Mazhar, Mohsin Ali; Niazi, Haris Khan; Nawab, Rahma

    2017-07-20

    Various existing target ranging techniques are limited in terms of the dynamic range of operation and measurement resolution. These limitations arise as a result of a particular measurement methodology, the finite processing capability of the hardware components deployed within the sensor module, and the medium through which the target is viewed. Generally, improving the sensor range adversely affects its resolution and vice versa. Often, a distance sensor is designed for an optimal range/resolution setting depending on its intended application. Optical triangulation is broadly classified as a spatial-signal-processing-based ranging technique and measures target distance from the location of the reflected spot on a position sensitive detector (PSD). In most triangulation sensors that use lasers as a light source, beam divergence-which severely affects sensor measurement range-is often ignored in calculations. In this paper, we first discuss in detail the limitations to ranging imposed by beam divergence, which, in effect, sets the sensor dynamic range. Next, we show how the resolution of laser-based triangulation sensors is limited by the interpixel pitch of a finite-sized PSD. In this paper, through the use of tunable focus lenses (TFLs), we propose a novel design of a triangulation-based optical rangefinder that improves both the sensor resolution and its dynamic range through adaptive electronic control of beam propagation parameters. We present the theory and operation of the proposed sensor and clearly demonstrate a range and resolution improvement with the use of TFLs. Experimental results in support of our claims are shown to be in strong agreement with theory.

  7. Researches on the Security of Cluster-based Communication Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yanhong Sun

    2014-08-01

    Full Text Available Along with the in-depth application of sensor networks, the security issues have gradually become the bottleneck of wireless sensor applications. To provide a solution for security scheme is a common concern not only of researchers but also of providers, integrators and users of wireless sensor networks. Based on this demand, this paper focuses on the research of strengthening the security of cluster-based wireless sensor networks. Based on the systematic analysis of the clustering protocol and its security enhancement scheme, the paper introduces the broadcast authentication scheme, and proposes an SA-LEACH network security enhancement protocol. The performance analysis and simulation experiments prove that the protocol consumes less energy with the same security requirements, and when the base station is comparatively far from the network deployment area, it is more advantageous in terms of energy consumption and t more suitable for wireless sensor networks.

  8. Highly Sensitive Flexible Magnetic Sensor Based on Anisotropic Magnetoresistance Effect.

    Science.gov (United States)

    Wang, Zhiguang; Wang, Xinjun; Li, Menghui; Gao, Yuan; Hu, Zhongqiang; Nan, Tianxiang; Liang, Xianfeng; Chen, Huaihao; Yang, Jia; Cash, Syd; Sun, Nian-Xiang

    2016-11-01

    A highly sensitive flexible magnetic sensor based on the anisotropic magnetoresistance effect is fabricated. A limit of detection of 150 nT is observed and excellent deformation stability is achieved after wrapping of the flexible sensor, with bending radii down to 5 mm. The flexible AMR sensor is used to read a magnetic pattern with a thickness of 10 μm that is formed by ferrite magnetic inks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Energy Efficient Position-Based Three Dimensional Routing for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jeongdae Kim

    2008-04-01

    Full Text Available In this paper, we focus on an energy efficient position-based three dimensional (3D routing algorithm using distance information, which affects transmission power consumption between nodes as a metric. In wireless sensor networks, energy efficiency is one of the primary objectives of research. In addition, recent interest in sensor networks is extended to the need to understand how to design networks in a 3D space. Generally, most wireless sensor networks are based on two dimensional (2D designs. However, in reality, such networks operate in a 3D space. Since 2D designs are simpler and easier to implement than 3D designs for routing algorithms in wireless sensor networks, the 2D assumption is somewhat justified and usually does not lead to major inaccuracies. However, in some applications such as an airborne to terrestrial sensor networks or sensor networks, which are deployed in mountains, taking 3D designs into consideration is reasonable. In this paper, we propose the Minimum Sum of Square distance (MSoS algorithm as an energy efficient position-based three dimensional routing algorithm. In addition, we evaluate and compare the performance of the proposed routing algorithm with other algorithms through simulation. Finally, the results of the simulation show that the proposed routing algorithm is more energy efficient than other algorithms in a 3D space.

  10. Chain-based communication in cylindrical underwater wireless sensor networks.

    Science.gov (United States)

    Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios

    2015-02-04

    Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate.

  11. Chain-Based Communication in Cylindrical Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadeem Javaid

    2015-02-01

    Full Text Available Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs. Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS and Congestion adjusted PEGASIS (C-PEGASIS. Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate.

  12. Nanocomposite-Based Microstructured Piezoresistive Pressure Sensors for Low-Pressure Measurement Range

    Directory of Open Access Journals (Sweden)

    Vasileios Mitrakos

    2018-01-01

    Full Text Available Piezoresistive pressure sensors capable of detecting ranges of low compressive stresses have been successfully fabricated and characterised. The 5.5 × 5 × 1.6 mm3 sensors consist of a planar aluminium top electrode and a microstructured bottom electrode containing a two-by-two array of truncated pyramids with a piezoresistive composite layer sandwiched in-between. The responses of two different piezocomposite materials, a Multiwalled Carbon Nanotube (MWCNT-elastomer composite and a Quantum Tunneling Composite (QTC, have been characterised as a function of applied pressure and effective contact area. The MWCNT piezoresistive composite-based sensor was able to detect pressures as low as 200 kPa. The QTC-based sensor was capable of detecting pressures as low as 50 kPa depending on the contact area of the bottom electrode. Such sensors could find useful applications requiring the detection of small compressive loads such as those encountered in haptic sensing or robotics.

  13. Optical Fibre Temperature Sensor Based On A Blackbody Radiation

    Science.gov (United States)

    Hypszer, Ryszard; Plucinski, Jerzy; Wierzba, Henryk J.

    1990-01-01

    The principle of operation of the fibre optical temperature sensor based on a blackbody radiation and its construction model is given in the paper. A quartz rod of 0.6 mm diameter and 20 cm length with a blackbody cavity at the one end was used to construct the sensor. The cavity was made by vacuum evaporation of a chromium layer and a silicone monooxide layer was used as a protection. Infrared radiation is transmitted by the fibre optic to the detection circuit. This sensor enables temperature measurement from 400 to 1200°C. The range of measurement is determined by the detection sensitivity and by rod softening. The resolution is of the order of 10-2°C. The sensor calibration was done by using PtRh1O-Pt thermocouple.

  14. Research on Stealthy Headphone Detector Based on Geomagnetic Sensor

    Directory of Open Access Journals (Sweden)

    Liu Ya

    2016-01-01

    Full Text Available A kind of stealth headphone detector based on geomagnetic sensor has been developed to deal with the stealth headphones which are small, extremely stealthy and hard to detect. The U.S. PNI geomagnetic sensor is chosen to obtain magnetic field considering the strong magnetic performance of stealth headphones. The earth’s magnetic field at the geomagnetic sensor is eliminated by difference between two geomagnetic sensors, and then weak variations of magnetic field is detected. STM8S103K2 is chosen as the central controlling chip, which is connected to LED, buzzer and LCD 1602. As shown by the experimental results, the probe is not liable to damage by the magnetic field and the developed device has high sensitivity, low False Positive Rate (FAR and satisfactory reliability.

  15. Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks.

    Science.gov (United States)

    Arunraja, Muruganantham; Malathi, Veluchamy; Sakthivel, Erulappan

    2015-11-01

    Wireless sensor networks are engaged in various data gathering applications. The major bottleneck in wireless data gathering systems is the finite energy of sensor nodes. By conserving the on board energy, the life span of wireless sensor network can be well extended. Data communication being the dominant energy consuming activity of wireless sensor network, data reduction can serve better in conserving the nodal energy. Spatial and temporal correlation among the sensor data is exploited to reduce the data communications. Data similar cluster formation is an effective way to exploit spatial correlation among the neighboring sensors. By sending only a subset of data and estimate the rest using this subset is the contemporary way of exploiting temporal correlation. In Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks, we construct data similar iso-clusters with minimal communication overhead. The intra-cluster communication is reduced using adaptive-normalized least mean squares based dual prediction framework. The cluster head reduces the inter-cluster data payload using a lossless compressive forwarding technique. The proposed work achieves significant data reduction in both the intra-cluster and the inter-cluster communications, with the optimal data accuracy of collected data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. A Piezoelectroluminescent Fiber-Optical Sensor for Diagnostics of the 3D Stress State in Composite Structures

    Science.gov (United States)

    Pan'kov, A. A.

    2018-05-01

    The mathematical model of a piezoelectroluminescent fiber-optical sensor is developed for diagnostics of the 3D stress state of composite structures. The sensor model is a coaxial sector-compound layered cylinder consisting of a central optical fiber with electroluminescent and piezoelectric layers and an external uniform elastic buffer layer. The electroluminescent and piezoelectric layers are separated by radial-longitudinal boundaries, common for both layers, into geometrically equal six "measuring elements" — cylindrical two-layered sectors. The directions of 3D polarization of the piezoelectric phases and the frequencies of luminous efficacy of the electroluminescent phases are different in each sector. In the sensor, a thin translucent "internal" controlling electrode is located between the optical fiber and the electroluminescent layer, and the piezoelectric layer is coated by a thin "external" controlling electrode. The results of numerical modeling of the nonuniform coupled electroelastic fields of the piezoelectroluminescent fiber-optical sensor in the loaded "representative volume" of a composite, taking into account the action of the controlling voltage on the internal and external electrodes, of a numerical calculation of "informative and controlling coefficients" of the sensor, and of testing of an arbitrary 3D stress of state of a unidirectional glass-fiber plastic by the finite-element method are presented.

  17. Case-Based Multi-Sensor Intrusion Detection

    Science.gov (United States)

    Schwartz, Daniel G.; Long, Jidong

    2009-08-01

    Multi-sensor intrusion detection systems (IDSs) combine the alerts raised by individual IDSs and possibly other kinds of devices such as firewalls and antivirus software. A critical issue in building a multi-sensor IDS is alert-correlation, i.e., determining which alerts are caused by the same attack. This paper explores a novel approach to alert correlation using case-based reasoning (CBR). Each case in the CBR system's library contains a pattern of alerts raised by some known attack type, together with the identity of the attack. Then during run time, the alert streams gleaned from the sensors are compared with the patterns in the cases, and a match indicates that the attack described by that case has occurred. For this purpose the design of a fast and accurate matching algorithm is imperative. Two such algorithms were explored: (i) the well-known Hungarian algorithm, and (ii) an order-preserving matching of our own device. Tests were conducted using the DARPA Grand Challenge Problem attack simulator. These showed that the both matching algorithms are effective in detecting attacks; but the Hungarian algorithm is inefficient; whereas the order-preserving one is very efficient, in fact runs in linear time.

  18. Graphene Oxide in Lossy Mode Resonance-Based Optical Fiber Sensors for Ethanol Detection

    Directory of Open Access Journals (Sweden)

    Miguel Hernaez

    2017-12-01

    Full Text Available The influence of graphene oxide (GO over the features of an optical fiber ethanol sensor based on lossy mode resonances (LMR has been studied in this work. Four different sensors were built with this aim, each comprising a multimode optical fiber core fragment coated with a SnO2 thin film. Layer by layer (LbL coatings made of 1, 2 and 4 bilayers of polyethyleneimine (PEI and graphene oxide were deposited onto three of these devices and their behavior as aqueous ethanol sensors was characterized and compared with the sensor without GO. The sensors with GO showed much better performance with a maximum sensitivity enhancement of 176% with respect to the sensor without GO. To our knowledge, this is the first time that GO has been used to make an optical fiber sensor based on LMR.

  19. Graphene Oxide in Lossy Mode Resonance-Based Optical Fiber Sensors for Ethanol Detection.

    Science.gov (United States)

    Hernaez, Miguel; Mayes, Andrew G; Melendi-Espina, Sonia

    2017-12-27

    The influence of graphene oxide (GO) over the features of an optical fiber ethanol sensor based on lossy mode resonances (LMR) has been studied in this work. Four different sensors were built with this aim, each comprising a multimode optical fiber core fragment coated with a SnO₂ thin film. Layer by layer (LbL) coatings made of 1, 2 and 4 bilayers of polyethyleneimine (PEI) and graphene oxide were deposited onto three of these devices and their behavior as aqueous ethanol sensors was characterized and compared with the sensor without GO. The sensors with GO showed much better performance with a maximum sensitivity enhancement of 176% with respect to the sensor without GO. To our knowledge, this is the first time that GO has been used to make an optical fiber sensor based on LMR.

  20. A piezoelectric-based infinite stiffness generation method for strain-type load sensors

    International Nuclear Information System (INIS)

    Zhang, Shuwen; Shao, Shubao; Xu, Minglong; Chen, Jie

    2015-01-01

    Under certain application conditions like nanoindentation technology and the mechanical property measurement of soft materials, the elastic deformation of strain-type load sensors affects their displacement measurement accuracy. In this work, a piezoelectric-based infinite stiffness generation method for strain-type load sensors that compensates for this elastic deformation is presented. The piezoelectric material-based deformation compensation method is proposed. An Hottinger Baldwin Messtechnik GmbH (HBM) Z30A/50N load sensor acts as the foundation of the method presented in this work. The piezoelectric stack is selected based on its size, maximum deformation value, blocking force and stiffness. Then, a clamping and fixing structure is designed to integrate the HBM sensor with the piezoelectric stack. The clamping and fixing structure, piezoelectric stack and HBM load sensor comprise the sensing part of the enhanced load sensor. The load-deformation curve and the voltage-deformation curve of the enhanced load sensor are then investigated experimentally. Because a hysteresis effect exists in the piezoelectric structure, the relationship between the control signal and the deformation value of the piezoelectric material is nonlinear. The hysteresis characteristic in a quasi-static condition is studied and fitted using a quadratic polynomial, and its coefficients are analyzed to enable control signal prediction. Applied arithmetic based on current theory and the fitted data is developed to predict the control signal. Finally, the experimental effects of the proposed method are presented. It is shown that when a quasi-static load is exerted on this enhanced strain-type load sensor, the deformation is reduced and the equivalent stiffness appears to be almost infinite. (paper)

  1. Development of sensor system for indoor location based service implementation

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Joo Heon; Lee, Kyung Ho [Kookmin Univ., Seoul (Korea, Republic of)

    2012-11-15

    This paper introduces a sensor system based on indoor locations in order to implement the Building Energy Management System. This system consists of a thermopile sensor and an ultrasonic sensor. The sensor module is rotated by 360 .deg. and yawed up and down by two electric motors. Therefore, it can simultaneously detect the number and location of the inhabitants in the room. It uses wireless technology to communicate with the building manager or the smart home server, and it can save electric energy by controlling the lighting system or heating/air conditioning equipment automatically. We also demonstrate the usefulness of the proposed system by applying it to a real environment.

  2. Development of sensor system for indoor location based service implementation

    International Nuclear Information System (INIS)

    Cha, Joo Heon; Lee, Kyung Ho

    2012-01-01

    This paper introduces a sensor system based on indoor locations in order to implement the Building Energy Management System. This system consists of a thermopile sensor and an ultrasonic sensor. The sensor module is rotated by 360 .deg. and yawed up and down by two electric motors. Therefore, it can simultaneously detect the number and location of the inhabitants in the room. It uses wireless technology to communicate with the building manager or the smart home server, and it can save electric energy by controlling the lighting system or heating/air conditioning equipment automatically. We also demonstrate the usefulness of the proposed system by applying it to a real environment

  3. Miniaturized optical sensors based on lens arrays

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Jakobsen, M.L.; Larsen, H.E.

    2005-01-01

    A suite of optical sensors based on the use of lenticular arrays for probing mechanical deflections will be displayed. The optical systems are well suited for miniaturization, and utilize speckles as the information-carriers. This implementation allows for acquiring directional information...

  4. Uninterrupted thermoelectric energy harvesting using temperature-sensor-based maximum power point tracking system

    International Nuclear Information System (INIS)

    Park, Jae-Do; Lee, Hohyun; Bond, Matthew

    2014-01-01

    Highlights: • Feedforward MPPT scheme for uninterrupted TEG energy harvesting is suggested. • Temperature sensors are used to avoid current measurement or source disconnection. • MPP voltage reference is generated based on OCV vs. temperature differential model. • Optimal operating condition is maintained using hysteresis controller. • Any type of power converter can be used in the proposed scheme. - Abstract: In this paper, a thermoelectric generator (TEG) energy harvesting system with a temperature-sensor-based maximum power point tracking (MPPT) method is presented. Conventional MPPT algorithms for photovoltaic cells may not be suitable for thermoelectric power generation because a significant amount of time is required for TEG systems to reach a steady state. Moreover, complexity and additional power consumption in conventional circuits and periodic disconnection of power source are not desirable for low-power energy harvesting applications. The proposed system can track the varying maximum power point (MPP) with a simple and inexpensive temperature-sensor-based circuit without instantaneous power measurement or TEG disconnection. This system uses TEG’s open circuit voltage (OCV) characteristic with respect to temperature gradient to generate a proper reference voltage signal, i.e., half of the TEG’s OCV. The power converter controller maintains the TEG output voltage at the reference level so that the maximum power can be extracted for the given temperature condition. This feedforward MPPT scheme is inherently stable and can be implemented without any complex microcontroller circuit. The proposed system has been validated analytically and experimentally, and shows a maximum power tracking error of 1.15%

  5. Modeling Sensor Reliability in Fault Diagnosis Based on Evidence Theory

    Directory of Open Access Journals (Sweden)

    Kaijuan Yuan

    2016-01-01

    Full Text Available Sensor data fusion plays an important role in fault diagnosis. Dempster–Shafer (D-R evidence theory is widely used in fault diagnosis, since it is efficient to combine evidence from different sensors. However, under the situation where the evidence highly conflicts, it may obtain a counterintuitive result. To address the issue, a new method is proposed in this paper. Not only the statistic sensor reliability, but also the dynamic sensor reliability are taken into consideration. The evidence distance function and the belief entropy are combined to obtain the dynamic reliability of each sensor report. A weighted averaging method is adopted to modify the conflict evidence by assigning different weights to evidence according to sensor reliability. The proposed method has better performance in conflict management and fault diagnosis due to the fact that the information volume of each sensor report is taken into consideration. An application in fault diagnosis based on sensor fusion is illustrated to show the efficiency of the proposed method. The results show that the proposed method improves the accuracy of fault diagnosis from 81.19% to 89.48% compared to the existing methods.

  6. Immunizations on small worlds of tree-based wireless sensor networks

    International Nuclear Information System (INIS)

    Li Qiao; Zhang Bai-Hai; Cui Ling-Guo; Fan Zhun; Vasilakos Athanasios, V.

    2012-01-01

    The sensor virus is a serious threat, as an attacker can simply send a single packet to compromise the entire sensor network. Epidemics become drastic with link additions among sensors when the small world phenomena occur. Two immunization strategies, uniform immunization and temporary immunization, are conducted on small worlds of tree-based wireless sensor networks to combat the sensor viruses. With the former strategy, the infection extends exponentially, although the immunization effectively reduces the contagion speed. With the latter strategy, recurrent contagion oscillations occur in the small world when the spatial-temporal dynamics of the epidemic are considered. The oscillations come from the small-world structure and the temporary immunization. Mathematical analyses on the small world of the Cayley tree are presented to reveal the epidemic dynamics with the two immunization strategies. (general)

  7. Sensor network based vehicle classification and license plate identification system

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, Janette Rose [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Rosten, Edward J [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Kulathumani, Vinod K [WEST VIRGINIA UNIV.

    2009-01-01

    Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.

  8. Miniature piezoresistive solid state integrated pressure sensors

    Science.gov (United States)

    Kahng, S. K.

    1980-01-01

    The characteristics of silicon pressure sensors with an ultra-small diaphragm are described. The pressure sensors utilize rectangular diaphragm as small as 0.0127 x 0.0254 cm and a p-type Wheatstone bridge consisting of diffused piezoresistive elements, 0.000254 cm by 0.00254 cm. These sensors exhibit as high as 0.5 MHz natural frequency and 1 mV/V/psi pressure sensitivity. Fabrication techniques and high frequency results from shock tube testing and low frequency comparison with microphones are presented.

  9. Adaptive inferential sensors based on evolving fuzzy models.

    Science.gov (United States)

    Angelov, Plamen; Kordon, Arthur

    2010-04-01

    A new technique to the design and use of inferential sensors in the process industry is proposed in this paper, which is based on the recently introduced concept of evolving fuzzy models (EFMs). They address the challenge that the modern process industry faces today, namely, to develop such adaptive and self-calibrating online inferential sensors that reduce the maintenance costs while keeping the high precision and interpretability/transparency. The proposed new methodology makes possible inferential sensors to recalibrate automatically, which reduces significantly the life-cycle efforts for their maintenance. This is achieved by the adaptive and flexible open-structure EFM used. The novelty of this paper lies in the following: (1) the overall concept of inferential sensors with evolving and self-developing structure from the data streams; (2) the new methodology for online automatic selection of input variables that are most relevant for the prediction; (3) the technique to detect automatically a shift in the data pattern using the age of the clusters (and fuzzy rules); (4) the online standardization technique used by the learning procedure of the evolving model; and (5) the application of this innovative approach to several real-life industrial processes from the chemical industry (evolving inferential sensors, namely, eSensors, were used for predicting the chemical properties of different products in The Dow Chemical Company, Freeport, TX). It should be noted, however, that the methodology and conclusions of this paper are valid for the broader area of chemical and process industries in general. The results demonstrate that well-interpretable and with-simple-structure inferential sensors can automatically be designed from the data stream in real time, which predict various process variables of interest. The proposed approach can be used as a basis for the development of a new generation of adaptive and evolving inferential sensors that can address the

  10. Highly selective thiocyanate optochemical sensor based on manganese(III)-salophen ionophore

    International Nuclear Information System (INIS)

    Abdel-Haleem, Fatehy M.; Rizk, Mahmoud S.

    2017-01-01

    We report on the development of optochemical sensor based on Mn(III)-salophen ionophore. The sensor was prepared by embedding the ionophore in a plasticized poly (vinyl chloride) impregnated with the chromoionophore ETH7075. Optical response to thiocyanate occurred due to thiocyanate extraction into the polymer via formation of strong complex with the ionophore and simultaneous protonation of the indicator dye yielding the optical response at 545 nm. The developed optochemical sensor exhibited high selectivity for thiocyanate over other anions including the most lipophilic species such as salicylate and perchlorate. For instance, the optical selectivity coefficients, logK SCN,anion opt , were as follow: ClO 4 − = − 5.8; Sal − = − 4.0; NO 3 − ˂ − 6. Further, the thiocyanate optical selectivity obtained using the present optochemical sensor was greatly enhanced in comparison with that obtained using an anion-exchanger based sensor. Also, the optimized optochemical sensor exhibited micro-molar detection limit with 2 min response time at pH 4.5 using acetate buffer. The reversibility of the optimized sensor was poor due to strong ligation of the thiocyanate to the central Metal ion, log K = 14.1, which can be overcome by soaking the optode in sodium hydroxide followed by soaking in buffer solution. The developed sensor was utilized successfully for the determination of thiocyanate in human saliva and in spiked saliva samples. - Highlights: • Preparation of different optodes using different compositions • Mechanism depends on co-extraction of thiocyanate and protons to membrane. • Sensor showed excellent selectivity. • Sensor could be applied for thiocyanate determination in real saliva.

  11. Highly selective thiocyanate optochemical sensor based on manganese(III)-salophen ionophore

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Haleem, Fatehy M., E-mail: fatehy@sci.cu.edu.eg; Rizk, Mahmoud S.

    2017-06-01

    We report on the development of optochemical sensor based on Mn(III)-salophen ionophore. The sensor was prepared by embedding the ionophore in a plasticized poly (vinyl chloride) impregnated with the chromoionophore ETH7075. Optical response to thiocyanate occurred due to thiocyanate extraction into the polymer via formation of strong complex with the ionophore and simultaneous protonation of the indicator dye yielding the optical response at 545 nm. The developed optochemical sensor exhibited high selectivity for thiocyanate over other anions including the most lipophilic species such as salicylate and perchlorate. For instance, the optical selectivity coefficients, logK{sub SCN,anion}{sup opt}, were as follow: ClO{sub 4}{sup −} = − 5.8; Sal{sup −} = − 4.0; NO{sub 3}{sup −} ˂ − 6. Further, the thiocyanate optical selectivity obtained using the present optochemical sensor was greatly enhanced in comparison with that obtained using an anion-exchanger based sensor. Also, the optimized optochemical sensor exhibited micro-molar detection limit with 2 min response time at pH 4.5 using acetate buffer. The reversibility of the optimized sensor was poor due to strong ligation of the thiocyanate to the central Metal ion, log K = 14.1, which can be overcome by soaking the optode in sodium hydroxide followed by soaking in buffer solution. The developed sensor was utilized successfully for the determination of thiocyanate in human saliva and in spiked saliva samples. - Highlights: • Preparation of different optodes using different compositions • Mechanism depends on co-extraction of thiocyanate and protons to membrane. • Sensor showed excellent selectivity. • Sensor could be applied for thiocyanate determination in real saliva.

  12. Micro technology based sun sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Pedersen, Martin; Fléron, René

    2003-01-01

    various payloads and platforms. The conventional and commercial actuators and attitude sensors are in most cases not suited for these satellites, which again lead to new design considerations. Another important property is the launch cost, which can be kept relatively low as a result of the concept....... This fact enables students to get hands-on experience with satellite systems design and project management. This paper describes the attitude control and determination system of a Danish student satellite (DTUsat), with main focus on the two-axis MOEMS sun sensor developed. On the magnetotorquer controlled...... DTUsat sun sensors are needed along with a magnetometer to obtain unambiguous attitude determination for the ACDS and the payloads - an electrodynamic tether and a camera. The accuracy needed was not obtainable by employing conventional attitude sensors. Hence a linear slit sensor was designed...

  13. Plasmonic Switches and Sensors Based on PANI-Coated Gold Nanostructures

    Science.gov (United States)

    Jiang, Nina

    Gold nanostructures have been received intense and growing attention due to their unique properties associated with localized surface plasmon resonance (LSPR). The frequency and strength of the LSPR are highly dependent on the dielectric properties of the surrounding environment around gold nanostructures. Such dependence offers the essential basis for the achievement of plasmonic switching and sensing. While the plasmonic response of gold nanostructures is tuned by changing their dielectric environment, the external stimuli inducing the changes in the dielectric environment will be read out through the plasmonic response of gold nanostructures. As a consequence, plasmonic sensors and switches can be engineered by integrating active media that can respond to external stimuli with gold nanostructures. In this thesis research, I have achieved the coating of polyaniline (PANI) ' a conductive polymer, on gold nanostructures, and exploited the application of the core/shell nanostructures in plasmonic switching and sensing. Large modulation of the longitudinal plasmon resonance of single gold nanorods is achieved by coating PANI shell onto gold nanorods to produce colloidal plasmonic switches. The dielectric properties of PANI shell can be tuned by changing the proton-doping levels, which allows for the modulation of the plasmonic response of gold nanorods. The coated nanorods are sparsely housed in a simple microfluidic chamber. HCl and NaOH solutions are alternately pumped through the chamber for the realization of proton doping and dedoping. The plasmonic switching behavior is examined by monitoring the single-particle scattering spectra under the proton-doped and dedoped state of PANI. The coated nanorods exhibit a remarkable switching performance, with the modulation depth and scattering peak shift reaching 10 dB and 100 nm, respectively. Electrodynamic simulations are employed to confirm the plasmon switching behavior. I have further investigated the modulation of

  14. Novel membrane-based electrochemical sensor for real-time bio-applications

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya; Dimaki, Maria

    2014-01-01

    This article presents a novel membrane-based sensor for real-time electrochemical investigations of cellular- or tissue cultures. The membrane sensor enables recording of electrical signals from a cell culture without any signal dilution, thus avoiding loss of sensitivity. Moreover, the porosity...... of the membrane provides optimal culturing conditions similar to existing culturing techniques allowing more efficient nutrient uptake and molecule release. The patterned sensor electrodes were fabricated on a porous membrane by electron-beam evaporation. The electrochemical performance of the membrane electrodes...

  15. Sodium tripolyphosphate cross-linked chitosan based sensor for enhacing sensing properties towards acetone

    Science.gov (United States)

    Nasution, T. I.; Asrosa, R.; Nainggolan, I.; Balyan, M.; Indah, R.; Wahyudi, A.

    2018-02-01

    In this report, sensing properties of sodium tripolyphosphate (TPP) cross-linked chitosan based sensor has been successfully enhanced towards acetone. Chitosan solutions were cross-linked with sodium TPP in variation of 0.1%, 0.5%, 1% and 1.5% w/v, respectively. The sensors were fabricated in film form using an electrochemical deposition method. The sensing properties of the sensors were observed by exposing the pure chitosan and sodium TPP cross-linked chitosan sensors towards acetone concentrations of 5, 10, 50, 100 and 200 ppm. The measurement results revealed that the maximum response in output voltage value of pure chitosan sensor was 0.35 V while sodium TPP crosslinked chitosan sensors were above 0.35 V towards 5 ppm acetone concentration. When the sensors were exposed towards acetone concentration of 200 ppm, the maximum response of pure chitosan was 0.45 V while sodium TPP crosslinked chitosan sensors were above 0.45 V. Amongst the variation of sodium TPP, the maximum response of 1% sodium TPP was the highest since the maximum response was 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration, respectively. While the maximum responses of other sodium TPP concentrations were under 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration. Moreover, 1% sodium TPP cross-linked chitosan based sensor showed good reproducibility and outstanding lifetime. Therefore, 1% sodium TPP cross-linked chitosan based sensor has exhibited remarkable sensing properties as a novel acetone sensor.

  16. Business model for sensor-based fall recognition systems.

    Science.gov (United States)

    Fachinger, Uwe; Schöpke, Birte

    2014-01-01

    AAL systems require, in addition to sophisticated and reliable technology, adequate business models for their launch and sustainable establishment. This paper presents the basic features of alternative business models for a sensor-based fall recognition system which was developed within the context of the "Lower Saxony Research Network Design of Environments for Ageing" (GAL). The models were developed parallel to the R&D process with successive adaptation and concretization. An overview of the basic features (i.e. nine partial models) of the business model is given and the mutual exclusive alternatives for each partial model are presented. The partial models are interconnected and the combinations of compatible alternatives lead to consistent alternative business models. However, in the current state, only initial concepts of alternative business models can be deduced. The next step will be to gather additional information to work out more detailed models.

  17. Wireless Sensor Network Based Smart Parking System

    Directory of Open Access Journals (Sweden)

    Jeffrey JOSEPH

    2014-01-01

    Full Text Available Ambient Intelligence is a vision in which various devices come together and process information from multiple sources in order to exert control on the physical environment. In addition to computation and control, communication plays a crucial role in the overall functionality of such a system. Wireless Sensor Networks are one such class of networks, which meet these criteria. These networks consist of spatially distributed sensor motes which work in a co-operative manner to sense and control the environment. In this work, an implementation of an energy-efficient and cost-effective, wireless sensor networks based vehicle parking system for a multi-floor indoor parking facility has been introduced. The system monitors the availability of free parking slots and guides the vehicle to the nearest free slot. The amount of time the vehicle has been parked is monitored for billing purposes. The status of the motes (dead/alive is also recorded. Information like slot allocated, directions to the slot and billing data is sent as a message to customer’s mobile phones. This paper extends our previous work 1 with the development of a low cost sensor mote, about one tenth the cost of a commercially available mote, keeping in mind the price sensitive markets of the developing countries.

  18. Deployment-based lifetime optimization model for homogeneous Wireless Sensor Network under retransmission.

    Science.gov (United States)

    Li, Ruiying; Liu, Xiaoxi; Xie, Wei; Huang, Ning

    2014-12-10

    Sensor-deployment-based lifetime optimization is one of the most effective methods used to prolong the lifetime of Wireless Sensor Network (WSN) by reducing the distance-sensitive energy consumption. In this paper, data retransmission, a major consumption factor that is usually neglected in the previous work, is considered. For a homogeneous WSN, monitoring a circular target area with a centered base station, a sensor deployment model based on regular hexagonal grids is analyzed. To maximize the WSN lifetime, optimization models for both uniform and non-uniform deployment schemes are proposed by constraining on coverage, connectivity and success transmission rate. Based on the data transmission analysis in a data gathering cycle, the WSN lifetime in the model can be obtained through quantifying the energy consumption at each sensor location. The results of case studies show that it is meaningful to consider data retransmission in the lifetime optimization. In particular, our investigations indicate that, with the same lifetime requirement, the number of sensors needed in a non-uniform topology is much less than that in a uniform one. Finally, compared with a random scheme, simulation results further verify the advantage of our deployment model.

  19. Performance of a carbon monoxide sensor based on zirconia-doped ceria

    Directory of Open Access Journals (Sweden)

    Noriya Izu

    2016-06-01

    Full Text Available Resistive-type carbon monoxide sensors were fabricated using zirconia-doped ceria, and their sensing properties were evaluated and compared with equivalent devices based on non-doped ceria. The response of both sensor types was found to increase with decreasing temperature, while the response at 450 °C of a sensor fired at 950 °C was greater than that of a sensor fired at 1100 °C. When fired at 950 °C, however, the response at 450 °C of a sensor created using zirconia-doped ceria was slightly less than that of a sensor constructed from non-doped ceria. Multivariate analysis confirmed that the response of both sensor types is proportional to the resistance raised to the power of about 0.5, and inversely proportional to the particle size raised to a power of about 0.8. The sensor response time can be considered almost the same regardless of whether zirconia doping is used or not.

  20. Multipoint dynamically reconfigure adaptive distributed fiber optic acoustic emission sensor (FAESense) system for condition based maintenance

    Science.gov (United States)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar

    2010-09-01

    This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.