WorldWideScience

Sample records for state phase solubility

  1. Pure Phase Solubility Limits: LANL

    International Nuclear Information System (INIS)

    C. Stockman

    2001-01-01

    concentration in the aqueous phase is controlled by the radionuclide-bearing solid phase and by the complexation reactions with ligands present in solution. Meaningful and acceptable thermodynamic data resulting from solubility and speciation data should meet the following criteria: (1) Approach to equilibrium from both under- and over-saturation; (2) Accurate determinations of solution concentrations; (3) Well-characterized solubility controlling solid phase; and (4) Knowledge of the nature (oxidation state, coordination environment) of the species involved in the equilibrium reactions under consideration

  2. Pure Phase Solubility Limits: LANL

    Energy Technology Data Exchange (ETDEWEB)

    C. Stockman

    2001-01-26

    concentration in the aqueous phase is controlled by the radionuclide-bearing solid phase and by the complexation reactions with ligands present in solution. Meaningful and acceptable thermodynamic data resulting from solubility and speciation data should meet the following criteria: (1) Approach to equilibrium from both under- and over-saturation; (2) Accurate determinations of solution concentrations; (3) Well-characterized solubility controlling solid phase; and (4) Knowledge of the nature (oxidation state, coordination environment) of the species involved in the equilibrium reactions under consideration.

  3. Solubility data for cement hydrate phases (25oC)

    International Nuclear Information System (INIS)

    Atkins, M.; Glasser, F.P.; Kindness, A.; Macphee, D.E.

    1991-05-01

    Solubility measurements were performed on most of the more thermodynamically-stable cement hydrate phases, at 25 o C. The results for each hydrate phase are summarised in the form of datasheets. Solubility properties are discussed, and where possible a K sp value is calculated. The data are compared with the data in the literature. (author)

  4. Eutectic, monotectic and immiscibility systems of nimesulide with water-soluble carriers: phase equilibria, solid-state characterisation and in-vivo/pharmacodynamic evaluation.

    Science.gov (United States)

    Abdelkader, Hamdy; Abdallah, Ossama Y; Salem, Hesham; Alani, Adam W G; Alany, Raid G

    2014-10-01

    The solid-state interactions of fused mixtures nimesulide (ND) with polyethylene glycol (PEG) 4000, urea or mannitol were studied through constructing thaw-melt phase equilibrium diagrams. The solid-state characteristics were investigated using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Various types of interactions were identified such as the formation of a eutectic system of ND-PEG 4000, monotectic system of ND-urea and complete solid immiscibility of ND with mannitol. The effects of carrier concentrations on the equilibrium solubility and in-vitro dissolution characteristics were studied. Linear increases (R(2)  > 0.99) in the aqueous solubility of ND in various concentrations of PEG 4000 and urea were obtained, whereas mannitol did not exhibit any effect on the solubility of ND. Similar trends were obtained with the dissolution efficiency of the fused mixtures of ND with PEG 4000 and urea compared with the corresponding physical mixtures and untreated drug. The analgesic effects of untreated ND and the selected formulations were investigated by evaluating the drug's ability to inhibit the acetic acid-induced writhing response. The analgesic effect of ND in a eutectic mixture with PEG 4000 and a monotectic mixture with urea was potentiated by 3.2 and 2.7-fold respectively compared with the untreated drug. © 2014 Royal Pharmaceutical Society.

  5. Solubility of gases and solvents in silicon polymers: molecular simulation and equation of state modeling

    DEFF Research Database (Denmark)

    Economou, Ioannis; Makrodimitri, Zoi A.; Kontogeorgis, Georgios

    2007-01-01

    of gas and solvent solubilities using the test particle insertion method of Widom. Polymer chains are modelled using recently developed realistic atomistic force fields. Calculations are performed at various temperatures and ambient pressure. A crossover in the temperature dependence of solubility......) and also the phase equilibria of these mixtures over a wide composition range. In all cases, the agreement between model predictions/correlations and literature experimental data, when available, is excellent.......The solubility of n-alkanes, perfluoroalkanes, noble gases and light gases in four elastomer polymers containing silicon is examined based on molecular simulation and macroscopic equation of state modelling. Polymer melt samples generated from molecular dynamics ( MD) are used for the calculation...

  6. Correlation between ionic size and valence state of tetra, penta and hexavalent B-site substitution with solubility limit, phase transformation and multiferroic properties of Bi0.875Eu0.125FeO3

    Science.gov (United States)

    Mumtaz, Fiza; Jaffari, G. Hassnain; Hassan, Qadeer ul; Shah, S. Ismat

    2018-06-01

    We present detailed comparative study of effect of isovalent i.e. Eu+3 substitution at A-site and tetra (Ti+4, Zr+4), penta (V+5) and hexavalent (W+6) substitutions at B-site in BiFeO3. Eu+3 substitution led to phase transformation and exhibited mixed phases i.e. rhombohedral and orthorhombic, while tetravalent substituents (Ti+4 and Zr+4) led to stabilization of cubic phase. In higher valent (i.e. V+5 and W+6) cases solubility limit was significantly reduced where orthorhombic phase was observed as in the case of parent compound. Phase transformation as a consequence of increase in microstrain and chemical pressure induced by the substituent has been discussed. Solubility limit of different B-site dopants i.e. Zr, W and V was extracted to 5%, 2% and 2%, respectively. Extra phases in various cases were Bi2Fe4O9, Bi25FeO40, Bi14W2O27, and Bi23V4O44.5 and their fractional amount have been quantified. Ti was substituted up to 15% and has been observed to be completely soluble in the parent compound. Solubility limits depends on ionic radii mismatch and valance difference of Fe+3 and dopant, in which valance difference plays more dominant role. Solubility limit and phase transformation has been explained in terms of change in bond strength and tolerance factor induced by incorporation of dopant which depend on its size and valence state. Detail optical, dielectric, ferroelectric, magnetic and transport properties of Eu and Ti co-doped samples and selected low concentration B-site doped compositions (i.e. 2%) have presented and discussed. Two d-d transitions and three charge transfer transitions were observed within UV-VIS range. Both change in cell volume for the same phase and transformation in crystal structure affects the band gap. Increase in room temperature dielectric constant and saturation polarization was also found to increase in case of Eu-Ti co-doped samples with increasing concentration of Ti. Substitution of Eu at A-site and Ti at B-site led to

  7. Solubility and phase behaviors of DGA compounds in supercritical CO2

    International Nuclear Information System (INIS)

    Li Jia; Meng Qingyang

    2010-01-01

    Solubility and phase behaviors of DGA compounds in supercritical CO 2 (Sc-CO 2 ) was investigated. The results indicated: The dissolving ability of these six DGA compounds in Sc-CO 2 is TEDGA> TBDGA>THDGA>TODGA>TDDGA >TDdDGA; The solubility of DGA in Sc-CO 2 increase with increasing density of CO 2 , pressure and δ CO 2 ; The structure of DGA compounds is the mainly factor effected on solubility of DGA compounds in Sc-CO 2 , and the effect of hydrophobicity on solubility is much smaller than that of DGA's structure. In Sc-CO 2 , TDDGA and TDdDGA can't form the available extraction system; TEDGA and TBDGA are useful for extraction of solid powder; TODGA and THDGA are both useful for extraction of solid powder and solution contained some kind of actinide metal. (authors)

  8. Solid-state phase equilibria in the Fe-Pt-Pr ternary system at 1173 K

    International Nuclear Information System (INIS)

    Ren Jing; Gu Zhengfei; Cheng Gang; Zhou Huaiying

    2005-01-01

    The solid-state phase equilibria in the Fe-Pt-Pr ternary system at 1173 K (Pr ≤ 70%) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS) techniques. The 1173 K isothermal section consists of 13 single-phase regions, 22 two-phase regions and 10 three-phase regions. At 1173 K, we have observed that the maximum solid solubility of Pt in α-Fe is below 1.5 at.% and the solid solution region of Pt in γ-Fe is from 2 to 35 at.%; the maximum solid solubility of Fe in Pt is 18 at.%. The maximum solubility of Fe in PrPt 5 , PrPt 3 , PrPt 2 , Pr 3 Pt 4 , PrPt, Pr 3 Pt 2 and Pr 7 Pt 3 is below 1 at.%. The maximum solubility of Pr in α-(Fe, Pt), γ-(Fe, Pt), FePt, FePt 3 and (Pt, Fe) (the solid solution of Fe in Pt) is 6, 2, 4, 4.5 and 1.5 at.%, respectively. In this work, it is found that the phase Pr 3 Pt 4 does not exist in the ternary system. The binary compounds Fe 7 Pr and Fe 2 Pr and any new ternary compounds were not observed

  9. The effects of disordered structure on the solubility and dissolution rates of some hydrophilic, sparingly soluble drugs.

    Science.gov (United States)

    Mosharraf, M; Sebhatu, T; Nyström, C

    1999-01-15

    The effects of experimental design on the apparent solubility of two sparingly soluble hydrophilic compounds (barium sulphate and calcium carbonate) were studied in this paper. The apparent solubility appeared to be primarily dependent on the amount of solute added to the solvent in each experiment, increasing with increased amounts. This effect seems to be due to the existence of a peripheral disordered layer. However physico-chemical methods used in the present study were not able to unambiguously verify the existence of any disorder in the solid state structure of the drugs. At higher proportions of solute to solvent, the solubility reached a plateau corresponding to the solubility of the disordered or amorphous molecular form of the material. Milling the powders caused the plateau to be reached at lower proportions of solute to solvent, since this further disordered the surface of the drug particles. It was also found that the apparent solubility of the drugs tested decreased after storage at high relative humidities. A model for describing the effects of a disordered surface layer of varying thickness and continuity on the solubility of a substance is presented. This model may be used as a method for detection of minute amount of disorder, where no other technique is capable of detecting the disordered structure. It is suggested that recrystallisation of the material occurs via slow solid-state transition at the surface of the drug particle; this would slowly reduce the apparent solubility of the substance at the plateau level to the thermodynamically stable value. A biphasic dissolution rate profile was obtained. The solubility of the disordered surface of the particles appeared to be the rate-determining factor during the initial dissolution phase, while the solubility of the crystalline core was the rate-determining factor during the final slower phase.

  10. Multi-Phase Equilibrium and Solubilities of Aromatic Compounds and Inorganic Compounds in Sub- and Supercritical Water: A Review.

    Science.gov (United States)

    Liu, Qinli; Ding, Xin; Du, Bowen; Fang, Tao

    2017-11-02

    Supercritical water oxidation (SCWO), as a novel and efficient technology, has been applied to wastewater treatment processes. The use of phase equilibrium data to optimize process parameters can offer a theoretical guidance for designing SCWO processes and reducing the equipment and operating costs. In this work, high-pressure phase equilibrium data for aromatic compounds+water systems and inorganic compounds+water systems are given. Moreover, thermodynamic models, equations of state (EOS) and empirical and semi-empirical approaches are summarized and evaluated. This paper also lists the existing problems of multi-phase equilibria and solubility studies on aromatic compounds and inorganic compounds in sub- and supercritical water.

  11. Issues concerning the determination of solubility products of sparingly soluble crystalline solids. Solubility of HfO2(cr)

    International Nuclear Information System (INIS)

    Rai, Dhanpat; Kitamura, Akira; Rosso, Kevin M.; Sasaki, Takayuki; Kobayashi, Taishi

    2016-01-01

    Solubility studies were conducted with HfO 2 (cr) solid as a function HCl and ionic strength ranging from 2.0 to 0.004 mol kg -1 . These studies involved (1) using two different amounts of the solid phase, (2) acid washing the bulk solid phase, (3) preheating the solid phase to 1400 C, and (4) heating amorphous HfO 2 (am) suspensions to 90 C to ascertain whether the HfO 2 (am) converts to HfO 2 (cr) and to determine the solubility from the oversaturation direction. Based on the results of these treatments it is concluded that the HfO 2 (cr) contains a small fraction of less crystalline, but not amorphous, material [HfO 2 (lcr)] and this, rather than the HfO 2 (cr), is the solubility-controlling phase in the range of experimental variables investigated in this study. The solubility data are interpreted using both the Pitzer and SIT models and they provide log 10 K 0 values of -(59.75±0.35) and -(59.48±0.41), respectively, for the solubility product of HfO 2 (lcr)[HfO 2 (lcr) + 2H 2 O ↔ Hf 4+ + 4OH - ]. The log 10 of the solubility product of HfO 2 (cr) is estimated to be < -63. The observation of a small fraction of less crystalline higher solubility material is consistent with the general picture that mineral surfaces are often structurally and/or compositionally imperfect leading to a higher solubility than the bulk crystalline solid. This study stresses the urgent need, during interpretation of solubility data, of taking precautions to make certain that the observed solubility behavior for sparingly-soluble solids is assigned to the proper solid phase.

  12. Issues concerning the determination of solubility products of sparingly soluble crystalline solids. Solubility of HfO{sub 2}(cr)

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Dhanpat [Rai Enviro-Chem, LLC, Yachats, OR (United States); Kitamura, Akira [Japan Atomic Energy Agency, Ibaraki (Japan); Rosso, Kevin M. [Pacific Northwest National Laboratory, Richland, WA (United States); Sasaki, Takayuki; Kobayashi, Taishi [Kyoto Univ. (Japan)

    2016-11-01

    Solubility studies were conducted with HfO{sub 2}(cr) solid as a function HCl and ionic strength ranging from 2.0 to 0.004 mol kg{sup -1}. These studies involved (1) using two different amounts of the solid phase, (2) acid washing the bulk solid phase, (3) preheating the solid phase to 1400 C, and (4) heating amorphous HfO{sub 2}(am) suspensions to 90 C to ascertain whether the HfO{sub 2}(am) converts to HfO{sub 2}(cr) and to determine the solubility from the oversaturation direction. Based on the results of these treatments it is concluded that the HfO{sub 2}(cr) contains a small fraction of less crystalline, but not amorphous, material [HfO{sub 2}(lcr)] and this, rather than the HfO{sub 2}(cr), is the solubility-controlling phase in the range of experimental variables investigated in this study. The solubility data are interpreted using both the Pitzer and SIT models and they provide log{sub 10} K{sup 0} values of -(59.75±0.35) and -(59.48±0.41), respectively, for the solubility product of HfO{sub 2}(lcr)[HfO{sub 2}(lcr) + 2H{sub 2}O ↔ Hf{sup 4+} + 4OH{sup -}]. The log{sub 10} of the solubility product of HfO{sub 2}(cr) is estimated to be < -63. The observation of a small fraction of less crystalline higher solubility material is consistent with the general picture that mineral surfaces are often structurally and/or compositionally imperfect leading to a higher solubility than the bulk crystalline solid. This study stresses the urgent need, during interpretation of solubility data, of taking precautions to make certain that the observed solubility behavior for sparingly-soluble solids is assigned to the proper solid phase.

  13. Resveratrol cocrystals with enhanced solubility and tabletability.

    Science.gov (United States)

    Zhou, Zhengzheng; Li, Wanying; Sun, Wei-Jhe; Lu, Tongbu; Tong, Henry H Y; Sun, Changquan Calvin; Zheng, Ying

    2016-07-25

    Two new 1:1 cocrystals of resveratrol (RES) with 4-aminobenzamide (RES-4ABZ) and isoniazid (RES-ISN) were synthesized by liquid assisted grinding (LAG) and rapid solvent removal (RSR) methods using ethanol as solvent. Their physiochemical properties were characterized using PXRD, DSC, solid state and solution NMR, FT-IR, and HPLC. Pharmaceutically relevant properties, including tabletability, solubility, intrinsic dissolution rate, and hygroscopicity, were evaluated. Temperature-composition phase diagram for RES-ISN cocrystal system was constructed from DSC data. Both cocrystals show higher solubility than resveratrol over a broad range of pH. They are phase stable and non-hygroscopic even under high humidity conditions. Importantly, both cocrystals exhibit improved solubility and tabletability compared with RES, which make them more suitable candidates for tablet formulation development. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Potential for radionuclide immobilization in the EBS/NFE: solubility limiting phases for neptunium, plutonium, and uranium

    Energy Technology Data Exchange (ETDEWEB)

    Rard, J. A., LLNL

    1997-10-01

    Retardation and dispersion in the far field of radionuclides released from the engineered barrier system/near field environment (EBS/NFE) may not be sufficient to prevent regulatory limits being exceeded at the accessible environment. Hence, a greater emphasis must be placed on retardation and/or immobilization of radionuclides in the EBS/NFE. The present document represents a survey of radionuclide-bearing solid phases that could potentially form in the EBS/NFE and immobilize radionuclides released from the waste package and significantly reduce the source term. A detailed literature search was undertaken for experimental solubilities of the oxides, hydroxides, and various salts of neptunium, plutonium, and uranium in aqueous solutions as functions of pH, temperature, and the concentrations of added electrolytes. Numerous solubility studies and reviews were identified and copies of most of the articles were acquired. However, this project was only two months in duration, and copies of some the identified solubility studies could not be obtained at short notice. The results of this survey are intended to be used to assess whether a more detailed study of identified low- solubility phase(s) is warranted, and not as a data base suitable for predicting radionuclide solubility. The results of this survey may also prove useful in a preliminary evaluation of the efficacy of incorporating chemical additives to the EBS/NFE that will enhance radionuclide immobilization.

  15. Mesoporous calcium carbonate as a phase stabilizer of amorphous celecoxib--an approach to increase the bioavailability of poorly soluble pharmaceutical substances.

    Science.gov (United States)

    Forsgren, Johan; Andersson, Mattias; Nilsson, Peter; Mihranyan, Albert

    2013-11-01

    The bioavailability of crystalline pharmaceutical substances is often limited by their poor aqueous solubility but it can be improved by formulating the active substance in the amorphous state that is featured with a higher apparent solubility. Although the possibility of stabilizing amorphous drugs inside nano-sized pores of carbon nanotubes and ordered mesoporous silica has been shown, no conventional pharmaceutical excipients have so far been shown to possess this property. This study demonstrates the potential of using CaCO3 , a widely used excipient in oral drug formulations, to stabilize the amorphous state of active pharmaceutical ingredients, in particular celecoxib. After incorporation of celecoxib in the vaterite particles, a five to sixfold enhancement in apparent solubility of celecoxib is achieved due to pore-induced amorphization. To eliminate the possibility of uncontrolled phase transitions, the vaterite particles are stored in an inert atmosphere at 5 °C throughout the study. Also, to demonstrate that the amorphization effect is indeed associated with vaterite mesopores, accelerated stress conditions of 100% relative humidity are employed to impose transition from mesoporous vaterite to an essentially non-porous aragonite phase of CaCO3 , which shows only limited amorphization ability. Further, an improvement in solubility is also confirmed for ketoconazole when formulated with the mesoporous vaterite. Synthesis of the carrier particles and the incorporation of the active substances are carried out simultaneously in a one-step procedure, enabling easy fabrication. These results represent a promising approach to achieve enhanced bioavailability in new formulations of Type II BCS drugs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A level-set method for two-phase flows with soluble surfactant

    Science.gov (United States)

    Xu, Jian-Jun; Shi, Weidong; Lai, Ming-Chih

    2018-01-01

    A level-set method is presented for solving two-phase flows with soluble surfactant. The Navier-Stokes equations are solved along with the bulk surfactant and the interfacial surfactant equations. In particular, the convection-diffusion equation for the bulk surfactant on the irregular moving domain is solved by using a level-set based diffusive-domain method. A conservation law for the total surfactant mass is derived, and a re-scaling procedure for the surfactant concentrations is proposed to compensate for the surfactant mass loss due to numerical diffusion. The whole numerical algorithm is easy for implementation. Several numerical simulations in 2D and 3D show the effects of surfactant solubility on drop dynamics under shear flow.

  17. A Phase Blending Study on Rubber Blends Based on the Solubility Preference of Curatives

    NARCIS (Netherlands)

    Guo, R.; Talma, Auke; Datta, Rabin; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.

    2009-01-01

    Using previously obtained data on the solubilities of curatives in SBR, EPDM and in NBR, different mixing procedures were performed on 50/50 SBR/EPDM and NBR/EPDM blends. In contrast to a previous phase-mixing study, the curatives were added to separate phases before final blending, in an attempt to

  18. Use of two-phase aqueous systems based on water-soluble polymers in thin-layer and extraction chromatography for recovery and separtion of actinides

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Shkinev, V.M.; Myasoedov, B.F.

    1995-01-01

    The feasibility has been demonstrated of using two-phase aqueous systems based on water-soluble polymers, polyethylene glycol and dextran sulfate, in thin-layer and extraction chromatography for recovery and separation of actinides. A convenient method has been proposed for continuous recovery of 239 Np from 243 Am, originating from differences in sorption of tri- and pentavalent actinides from sulfate solutions containing potassium phosphotungstate by silica gel impregnated with polyethylene glycol. New plates for thin-layer chromatography using water-soluble polymers have been developed. These plates were used to study behavior of americium in various oxidation states in thin sorbent layers

  19. On the solubility advantage of a pharmaceutical’s glassy state over the crystal state, and of its crystal polymorphs

    International Nuclear Information System (INIS)

    Johari, G.P.; Shanker, Ravi M.

    2014-01-01

    Highlights: • Heat capacity data do not yield the solubility advantage of amorphous and metastable crystal pharmaceuticals. • There is no reversible equilibrium of an amorphous solid with its saturated solution. • Solubility advantage of an amorphous solid depends upon the solvent and other interactions. - Abstract: At equilibrium, the saturation solubility and vapor pressure of a material in a state of high free energy are greater than in its state of low free energy. This knowledge from classical thermodynamics is currently used for increasing the solubility of crystalline pharmaceuticals by producing them in their glassy state, or in other solid states of high free energy. The ratio of the apparent saturation solubility of these solids to that of a crystal, calculated from the thermodynamic data of the pure solute, ϕ cal , is called the solubility advantage, and it is used as a guide for increasing the solubility of a pharmaceutical. We argue that the ϕ cal differs from the measured solubility ratio, ϕ meas , because, (i) ϕ cal is independent of the solvent, but ϕ meas is not so, (ii) ϕ cal would increase with the dissolution time monotonically to a constant value, but ϕ meas would first reach a maximum and then decrease, and (iii) approximations are made in estimating ϕ cal and the effect of thermal history on high free energy solids is ignored. On the other hand, ϕ meas is affected by, (a) another chemical equilibrium in the solution, e.g., hydrogen-bond formation and ionic dissociation, (b) the production method and thermal history of a glass or an amorphous samples, and (c) mutarotation in the solution, isomerization or tautomeric conversion in the solid. We also discuss the effects of structural relaxation and crystallization on ϕ meas . The ϕ meas value of a (crystal) polymorph would be affected by all the three, and further if the polymorph is orientationally disordered. We provide evidence for these effects from analysis of the known

  20. Cell-free soluble-phase radioimmunoassay for Thy-1 antigen

    Energy Technology Data Exchange (ETDEWEB)

    Shalev, A.; Zuckerman, F. (Ben-Gurion Univ. of the Negev, Beersheba (Israel))

    1983-12-01

    A cell-free, soluble-phase, radioimmunoassay has been developed for Thy-1 antigen. The method is based on immunoprecipitation of radiolabelled Thy-1 molecules with specific antibodies, antiimmunoglobulin serum and polyethyleneglycol (PEG). The method can be used with convenience to screen for the presence of Thy-1 in various fluids as well as on cell surfaces for qualitative or quantitative purposes. Presence of antibodies or autoantibodies against Thy-1 can also be detected specifically. Evidence that the dog, carp, hamster and goldfish carry Thy-1-like molecules on neuronal (brain) cells is demonstrated by this method.

  1. Pb solubility of the high-temperature superconducting phase Bi2Sr2Ca2Cu3O10+d

    International Nuclear Information System (INIS)

    Kaesche, S.; Majewski, P.; Aldinger, F.

    1994-01-01

    For the nominal composition of Bi 2.27x Pb x Sr 2 Ca 2 Cu 3 O 10+d the lead content was varied from x=0.05 to 0.45. The compositions were examined between 830 degrees C and 890 degrees C which is supposed to be the temperature range over which the so-called 2223 phase (Bi 2 Sr 2 Ca 2 Cu 3 O 10+d ) is stable. Only compositions between x=0.18 to 0.36 could be synthesized in a single phase state. For x>0.36 a lead containing phase with a stoichiometry of Pb 4 (Sr,Ca) 5 CuO d is formed, for x 2 Sr 2 CaCu 2 O 8+d and cuprates are the equilibrium phases. The temperature range for the 2223 phase was found to be 830 degrees C to 890 degrees C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase

  2. Enhanced Iron Solubility at Low pH in Global Aerosols

    Directory of Open Access Journals (Sweden)

    Ellery D. Ingall

    2018-05-01

    Full Text Available The composition and oxidation state of aerosol iron were examined using synchrotron-based iron near-edge X-ray absorption spectroscopy. By combining synchrotron-based techniques with water leachate analysis, impacts of oxidation state and mineralogy on aerosol iron solubility were assessed for samples taken from multiple locations in the Southern and the Atlantic Oceans; and also from Noida (India, Bermuda, and the Eastern Mediterranean (Crete. These sampling locations capture iron-containing aerosols from different source regions with varying marine, mineral dust, and anthropogenic influences. Across all locations, pH had the dominating influence on aerosol iron solubility. When aerosol samples were approximately neutral pH, iron solubility was on average 3.4%; when samples were below pH 4, the iron solubility increased to 35%. This observed aerosol iron solubility profile is consistent with thermodynamic predictions for the solubility of Fe(III oxides, the major iron containing phase in the aerosol samples. Source regions and transport paths were also important factors affecting iron solubility, as samples originating from or passing over populated regions tended to contain more soluble iron. Although the acidity appears to affect aerosol iron solubility globally, a direct relationship for all samples is confounded by factors such as anthropogenic influence, aerosol buffer capacity, mineralogy and physical processes.

  3. Gibbs Energy Modeling of Digenite and Adjacent Solid-State Phases

    Science.gov (United States)

    Waldner, Peter

    2017-08-01

    All sulfur potential and phase diagram data available in the literature for solid-state equilibria related to digenite have been assessed. Thorough thermodynamic analysis at 1 bar total pressure has been performed. A three-sublattice approach has been developed to model the Gibbs energy of digenite as a function of composition and temperature using the compound energy formalism. The Gibbs energies of the adjacent solid-state phases covelitte and high-temperature chalcocite are also modeled treating both sulfides as stoichiometric compounds. The novel model for digenite offers new interpretation of experimental data, may contribute from a thermodynamic point of view to the elucidation of the role of copper species within the crystal structure and allows extrapolation to composition regimes richer in copper than stoichiometric digenite Cu2S. Preliminary predictions into the ternary Cu-Fe-S system at 1273 K (1000 °C) using the Gibbs energy model of digenite for calculating its iron solubility are promising.

  4. Thermodynamic evaluation of Cu-H-O-S-P system - Phase stabilities and solubilities for OFP-copper

    International Nuclear Information System (INIS)

    Magnusson, Hans; Frisk, Karin

    2013-04-01

    A thermodynamic evaluation for Cu-H-O-S-P has been made, with special focus on the phase stabilities and solubilities for OFP-copper. All binary systems including copper have been reviewed. Gaseous species and stoichiometric crystalline phases have been included for higher systems. Sulphur in OFP-copper will be found in sulphides. The sulphide can take different morphologies but constant stoichiometry Cu 2 S. The solubility of sulphur in FCC-copper reaches ppm levels already at 550 deg C and decreases with lower temperature. No phosphorus-sulphide will be stable, although the copper sulphide can be replaced by copper sulphates at high partial pressure oxygen like in the oxide scale. Phosphorus has a high affinity to oxygen, and phosphorus oxide P 4 O 10 and copper phosphates (Cu 2 P 2 O 7 and Cu 3 (PO 4 ) 2 ) are all more stable than copper oxide Cu 2 O. With hydrogen present at atmospheric pressure, copper phosphates Cu 2 P 2 O 7 and Cu 3 (P 2 O 6 OH) 2 are both more stable than water vapour or aqueous water at temperatures below 400 deg C. At high pressure conditions, the copper phosphates can be reduced giving water. However, the phosphates are still more stable than water vapour. The solubility limit of phosphorus in FCC-copper at 25 deg C is 510 ppm, in equilibrium with copper phosphide Cu 3 P. The major part of phosphorus in OFP-copper will be in solid solution. Oxygen in FCC-copper has a very low solubility. In the presence of a strong oxide forming element such as phosphorus in OFP-copper, the solubility decreases even more. Copper oxides will become stable first when all phosphorus has been consumed, which takes place at twice the phosphorus content, calculated in weight. Hydrogen has a low solubility in copper, calculated as 0.1 ppm at 675 deg C. No crystalline hydrogen phase has been found stable at atmospheric pressures and above 400 deg C. At lower temperatures the hydrogen containing phosphate Cu 3 (P 2 O 6 OH) 2 can become stable. Measured hydrogen

  5. Distribution of six radionuclides between soluble and particulate phase at the sea-freshwater interface

    International Nuclear Information System (INIS)

    Peres, J.M.

    1984-01-01

    The distribution of the soluble and particulate phases of radionuclides has been studied in water samples of various salinities (0 per mill; 3.8 per mill; 7.6 per mill; 15.2 per mill; 22.8 per mill; 30.4 per mill; 34 per mill). Cesium 137, cobalt 60, manganese 54, zinc 65, chromium 51 and sodium 22 were investigated. The results are expressed as retention percentages or distribution coefficients (Kd). Increased salinities resulted in decreased retention rates varying with the radionuclides; this appeared with the lowest salinities, and the evolution was small beyond 7 per mill. Other parameters were considered beside salinity, viz.: the suspended matter characteristics (mineralogy, particle size distribution); particulate load of water; organic content, whether associated to the soluble or particulate phase; physico-chemical forms of the radionuclides. To determine the particle size spectra of the suspended matter in the experimental samples, a laser granulometer was used [fr

  6. Pareto-optimal reversed-phase chromatography separation of three insulin variants with a solubility constraint.

    Science.gov (United States)

    Arkell, Karolina; Knutson, Hans-Kristian; Frederiksen, Søren S; Breil, Martin P; Nilsson, Bernt

    2018-01-12

    With the shift of focus of the regulatory bodies, from fixed process conditions towards flexible ones based on process understanding, model-based optimization is becoming an important tool for process development within the biopharmaceutical industry. In this paper, a multi-objective optimization study of separation of three insulin variants by reversed-phase chromatography (RPC) is presented. The decision variables were the load factor, the concentrations of ethanol and KCl in the eluent, and the cut points for the product pooling. In addition to the purity constraints, a solubility constraint on the total insulin concentration was applied. The insulin solubility is a function of the ethanol concentration in the mobile phase, and the main aim was to investigate the effect of this constraint on the maximal productivity. Multi-objective optimization was performed with and without the solubility constraint, and visualized as Pareto fronts, showing the optimal combinations of the two objectives productivity and yield for each case. Comparison of the constrained and unconstrained Pareto fronts showed that the former diverges when the constraint becomes active, because the increase in productivity with decreasing yield is almost halted. Consequently, we suggest the operating point at which the total outlet concentration of insulin reaches the solubility limit as the most suitable one. According to the results from the constrained optimizations, the maximal productivity on the C 4 adsorbent (0.41 kg/(m 3  column h)) is less than half of that on the C 18 adsorbent (0.87 kg/(m 3  column h)). This is partly caused by the higher selectivity between the insulin variants on the C 18 adsorbent, but the main reason is the difference in how the solubility constraint affects the processes. Since the optimal ethanol concentration for elution on the C 18 adsorbent is higher than for the C 4 one, the insulin solubility is also higher, allowing a higher pool concentration

  7. Thermodynamic evaluation of Cu-H-O-S-P system - Phase stabilities and solubilities for OFP-copper

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Hans; Frisk, Karin [Swerea KIMAB, Kista (Sweden)

    2013-04-15

    A thermodynamic evaluation for Cu-H-O-S-P has been made, with special focus on the phase stabilities and solubilities for OFP-copper. All binary systems including copper have been reviewed. Gaseous species and stoichiometric crystalline phases have been included for higher systems. Sulphur in OFP-copper will be found in sulphides. The sulphide can take different morphologies but constant stoichiometry Cu{sub 2}S. The solubility of sulphur in FCC-copper reaches ppm levels already at 550 deg C and decreases with lower temperature. No phosphorus-sulphide will be stable, although the copper sulphide can be replaced by copper sulphates at high partial pressure oxygen like in the oxide scale. Phosphorus has a high affinity to oxygen, and phosphorus oxide P{sub 4}O{sub 10} and copper phosphates (Cu{sub 2}P{sub 2}O{sub 7} and Cu{sub 3}(PO{sub 4}){sub 2}) are all more stable than copper oxide Cu{sub 2}O. With hydrogen present at atmospheric pressure, copper phosphates Cu{sub 2}P{sub 2}O{sub 7} and Cu{sub 3}(P{sub 2}O{sub 6}OH){sub 2} are both more stable than water vapour or aqueous water at temperatures below 400 deg C. At high pressure conditions, the copper phosphates can be reduced giving water. However, the phosphates are still more stable than water vapour. The solubility limit of phosphorus in FCC-copper at 25 deg C is 510 ppm, in equilibrium with copper phosphide Cu{sub 3}P. The major part of phosphorus in OFP-copper will be in solid solution. Oxygen in FCC-copper has a very low solubility. In the presence of a strong oxide forming element such as phosphorus in OFP-copper, the solubility decreases even more. Copper oxides will become stable first when all phosphorus has been consumed, which takes place at twice the phosphorus content, calculated in weight. Hydrogen has a low solubility in copper, calculated as 0.1 ppm at 675 deg C. No crystalline hydrogen phase has been found stable at atmospheric pressures and above 400 deg C. At lower temperatures the hydrogen

  8. Steady-state oxygen-solubility in niobium

    International Nuclear Information System (INIS)

    Schulze, K.; Jehn, H.

    1977-01-01

    During annealing of niobium in oxygen in certain temperature and pressure ranges steady states are established between the absorption of molecular oxygen and the evaporation of volatile oxides. The oxygen concentration in the niobium-oxygen α-solid solution is a function of oxygen pressure and temperature and has been redetermined in the ranges 10 -5 - 10 -2 Pa O 2 and 2,070 - 2,470 K. It follows differing from former results the equation csub(o) = 9.1 x 10 -6 x sub(po2) x exp (502000/RT) with csub(o) in at.-ppm, sub(po2) in Pa, T in K, R = 8.31 J x mol -1 x K -1 . The existence of steady states is limited to a temperature range from 1870 to 2470 K and to oxygen concentrations below the solubility limit given by solidus and solvus lines in the T-c diagram. In the experiments high-purity niobium wires with a specific electrical ratio rho (273 K)/rho(4.2 K) > 5,000 have been gassed under isothermal-isobaric conditions until the steady state has been reached. The oxygen concentration has been determined analytically by vacuum fusion extraction with platinum-flux technique as well as by electrical residual resistivity measurements at 4.2 K. (orig.) [de

  9. HIGH PRESSURE PHASE EQUILIBRIUM: PREDICTION OF ESSENTIAL OIL SOLUBILITY

    Directory of Open Access Journals (Sweden)

    Lúcio CARDOZO-FILHO

    1997-12-01

    Full Text Available This work describes a method to predict the solubility of essential oils in supercritical carbon dioxide. The method is based on the formulation proposed in 1979 by Asselineau, Bogdanic and Vidal. The Peng-Robinson and Soave-Redlich-Kwong cubic equations of state were used with the van der Waals mixing rules with two interaction parameters. Method validation was accomplished calculating orange essential oil solubility in pressurized carbon dioxide. The solubility of orange essential oil in carbon dioxide calculated at 308.15 K for pressures of 50 to 70 bar varied from 1.7± 0.1 to 3.6± 0.1 mg/g. For same the range of conditions, experimental solubility varied from 1.7± 0.1 to 3.6± 0.1 mg/g. Predicted values were not very sensitive to initial oil composition.Este trabalho descreve uma metodologia para o cálculo da solubilidade de óleos essenciais em dióxido de carbono a altas pressões baseada na formulação proposta em 1979 por Asselineau, Bogdanic e Vidal. Foram utilizadas as equações cúbicas de estado de Peng-Robinson e Soave-Redlich-Kwong com regras de mistura de van der Waals com dois parâmetros de interação. O cálculo da solubilidade do óleo essencial de laranja em dióxido de carbono pressurizado foi usado para validação do método. A solubilidade calculada a 308,15 K para pressões entre 50 e 70 bar variou entre 1,5 e 4,1 mg/g. Valores experimentais para as mesmas condições variam entre 1,7± 0.1 a 3,6± 0.1 mg/g. Os valores preditos não são muito sensíveis à composição inicial do óleo essencial.

  10. Selectivity differences of water-soluble vitamins separated on hydrophilic interaction stationary phases.

    Science.gov (United States)

    Yang, Yuanzhong; Boysen, Reinhard I; Hearn, Milton T W

    2013-06-01

    In this study, the retention behavior and selectivity differences of water-soluble vitamins were evaluated with three types of polar stationary phases (i.e. an underivatized silica phase, an amide phase, and an amino phase) operated in the hydrophilic interaction chromatographic mode with ESI mass spectrometric detection. The effects of mobile phase composition, including buffer pH and concentration, on the retention and selectivity of the vitamins were investigated. In all stationary phases, the neutral or weakly charged vitamins exhibited very weak retention under each of the pH conditions, while the acidic and more basic vitamins showed diverse retention behaviors. With the underivatized silica phase, increasing the salt concentration of the mobile phase resulted in enhanced retention of the acidic vitamins, but decreased retention of the basic vitamins. These observations thus signify the involvement of secondary mechanisms, such as electrostatic interaction in the retention of these analytes. Under optimized conditions, a baseline separation of all vitamins was achieved with excellent peak efficiency. In addition, the effects of water content in the sample on retention and peak efficiency were examined, with sample stacking effects observed when the injected sample contained a high amount of water. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Solid solubility, phase transitions, thermal expansion, and compressibility in Sc{sub 1−x}Al{sub x}F{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Morelock, Cody R.; Gallington, Leighanne C. [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)

    2015-02-15

    With the goal of thermal expansion control, the synthesis and properties of Sc{sub 1−x}Al{sub x}F{sub 3} were investigated. The solubility limit of AlF{sub 3} in ScF{sub 3} at ∼1340 K is ∼50%. Solid solutions (x≤0.50) were characterized by synchrotron powder diffraction at ambient pressure between 100 and 900 K and at pressures <0.414 GPa while heating from 298 to 523 K. A phase transition from cubic to rhombohedral is observed. The transition temperature increases smoothly with Al{sup 3+} content, approaching 500 K at the solid solubility limit, and also upon compression at fixed Al{sup 3+} content. The slope of the pressure–temperature phase boundary is ∼0.5 K MPa{sup −1}, which is steep relative to that for most symmetry-lowering phase transitions in perovskites. The volume coefficient of thermal expansion (CTE) for the rhombohedral phase is strongly positive, but the cubic-phase CTE varies from negative (x<0.15) to near-zero (x=0.15) to positive (x>0.20) between ∼600 and 800 K. The cubic solid solutions elastically stiffen on heating, while Al{sup 3+} substitution causes softening at a given temperature. - Graphical abstract: The cubic-phase coefficient of thermal expansion for Sc{sub 1−x}Al{sub x}F{sub 3}(solubility limit ∼50% at ∼1340 K) becomes more positive with increased Al{sup 3+} substitution, but the average isothermal bulk modulus decreases (elastic softening). - Highlights: • The solubility limit of AlF{sub 3} in ScF{sub 3} at ∼1340 K is ∼50%. • The phase transition temperature of Sc{sub 1−x}Al{sub x}F{sub 3} increases smoothly with x. • The cubic-phase volume CTE varies from negative to positive with increasing x. • The cubic solid solutions elastically stiffen on heating. • Al{sup 3+} substitution causes softening at a given temperature.

  12. Preparation, characterization and solubility product constant of AmOHCO3

    International Nuclear Information System (INIS)

    Silva, R.J.

    1985-01-01

    An investigation into the nature and solubility of a stable solid phase formed by a trivalent actinide, 243 Am 3+ , in dilute aqueous carbonate solutions was conducted. The compound exhibited an x-ray powder diffraction pattern which was nearly identical to that reported for NdOHCO 3 - type A. The pattern could be indexed in the orthorhombic system with unit cell parameters a = 4.958, b = 8.487, and c = 7.215 A. The steady-state solubility of the compound was determined from the results of both dissolution and precipitation experiments. The average solubility product quotient for 0.1M ionic strength, 25 +- 1 0 C and 1 atmosphere pressure was found to be 583 +- 206. The solubility product constant for zero ionic strength was estimated to be 335 +- 120. 22 references, 3 tables

  13. Phase equilibria and phase structures of polymer blends

    International Nuclear Information System (INIS)

    Chalykh, Anatolii E; Gerasimov, Vladimir K

    2004-01-01

    Experimental, methodical and theoretical studies dealing with phase equilibria and phase structures of polymer blends are generalised. The general and specific features of the change in solubility of polymers with changes in the molecular mass and copolymer composition and upon the formation of three-dimensional cross-linked networks are described. The results of the effect of the prehistory on the phase structure and the non-equilibrium state of polymer blends are considered in detail.

  14. Applications of SSAFT EOS for determination of the solubilities of ...

    African Journals Online (AJOL)

    Applications of SSAFT EOS for determination of the solubilities of solid compounds in supercritical CO 2 . ... Using statistical thermodynamics such as Simplified SAFT equation of state (SSAFTEoS) for estimating phase equilibrium and fluid properties of different materials have been used widely. SSAFT EoS has been ...

  15. Thermodynamics of the sorption of water-soluble vitamins in reverse-phase high performance liquid chromatography

    Science.gov (United States)

    Chirkin, V. A.; Karpov, S. I.; Selemenev, V. F.

    2012-12-01

    The thermodynamics of the sorption of certain water-soluble vitamins on a C18 reverse phase from water-acetonitrile solutions of different compositions is studied. The thermodynamic characteristics of the investigated chromatographic systems are calculated. The dependences of standard molar enthalpy and changes in entropy when the sorbate transfers from the bulk solution to the surface layer on the concentration of the organic component in the mobile phase are analyzed. The boundaries for applying the main retention models describing the sorption of the investigated compounds are discussed.

  16. Solid-state phase relationships in the calcia-titania-zirconia system at 1200 C

    International Nuclear Information System (INIS)

    Swenson, D.; Nieh, T.G.; Fournelle, J.H.

    1998-01-01

    Phase relationships were investigated in the CaO-TiO 2 -ZrO 2 system at 1200 C for compositions containing 2 O 7 ) and calzirtite (Ca 2 Zr 5 Ti 2 O 16 ), was confirmed. Each of these phases exhibited a significant range of homogeneity between TiO 2 and ZrO 2 , while maintaining a nearly constant concentration of CaO. The ternary solubilities of the constituent binary phases were found to be small (typically 3 and CaZrO 3 ). These latter phases displayed mutual solubilities of at least 22 mol% but exhibited significant variations in composition from grain to grain. Thermodynamic equilibrium was clearly not established in several samples, although most of the phase relationship information obtained was self-consistent

  17. Solid solubility in 1:13 phase of doping element for La(Fe,Si13 alloys

    Directory of Open Access Journals (Sweden)

    S. T. Zong

    2016-05-01

    Full Text Available The influences of Ni, Cr and Nb as substitution elements for Fe were investigated. The change in microstructure and the magnetic properties have been discussed in detail. Substitution elements Ni, Cr and Nb not only have limited solubility in NaZn13-type (1:13 phase, but also hinder the peritectoid reaction. Ni element mainly enters into La-rich phase while Cr element mainly concentrates in α-Fe phase, which both have detriment effect on the peritectoid reaction, leading to a large residual of impurity phases after annealing and a decrease of magnetic entropy change. Besides, Ni and Cr participated in peritectoid reaction by entering parent phases but slightly entering 1:13 phase, which would cause the disappearance of first order magnetic phase transition. A new phase (Fe,Si2Nb was found when Nb element substitutes Fe in La(Fe,Si13, suggesting that Nb does not participate in peritectoid reaction and only exists in (Fe,Si2Nb phase after annealing. The alloy with Nb substitution maintains the first order magnetic phase transition character.

  18. Study of variables that affect hydrogen solubility in α + β Zr-alloys

    Energy Technology Data Exchange (ETDEWEB)

    Parodi, Santiago A. [Instituto Sabato, UNSAM–CNEA, Av. Gral. Paz 1499, San Martín B1650KNA, Buenos Aires (Argentina); Ponzoni, Lucio M.E.; De Las Heras, M. Evangelina [División Hidrógeno en Materiales, Gerencia Materiales, GAEN, Centro Atómico Constituyentes, Av. Gral. Paz 1499, San Martín, B1650KNA, Buenos Aires (Argentina); Mieza, J. Ignacio [Instituto Sabato, UNSAM–CNEA, Av. Gral. Paz 1499, San Martín B1650KNA, Buenos Aires (Argentina); División Hidrógeno en Materiales, Gerencia Materiales, GAEN, Centro Atómico Constituyentes, Av. Gral. Paz 1499, San Martín, B1650KNA, Buenos Aires (Argentina); Domizzi, Gladys, E-mail: domizzi@cnea.gov.ar [Instituto Sabato, UNSAM–CNEA, Av. Gral. Paz 1499, San Martín B1650KNA, Buenos Aires (Argentina); División Hidrógeno en Materiales, Gerencia Materiales, GAEN, Centro Atómico Constituyentes, Av. Gral. Paz 1499, San Martín, B1650KNA, Buenos Aires (Argentina)

    2016-08-15

    Zr–2.5Nb and Excel pressure tubes, both containing α and β phases were submitted to different heat treatments. Then, hydrogen Terminal Solid Solubility for Dissolution (TSSD) and Precipitation (TSSP) curves were measured by Differential Scanning Calorimetry (DSC). The solvus of Excel heat treated at 380 °C–24 h or 750 °C–0.5 h exceeds the solvus of Zr–2.5Nb in standard conditions of CANDU pressure tubes. Aging at 500 °C–168 h decreases the limit of solubility. The lowest solubility was obtained in Excel aged at 500°C–168 h. In DSC measurements the effect of maximum temperature and hold time at such temperature on solubility curves were studied. The TSSD decreases when thermal cycle causes decomposition of the β phase, and is recuperated when α → α + β transformation temperature is exceeded. The TSSP is affected not only by βZr phase decomposition but also by the relief of defects produced during hydride precipitation. - Highlights: • We heat treated Zr-2.5Nb and Excel to change α and β-phase fraction and composition. • We measured Hydrogen solvus after each heat treatment with different thermal cycles. • We found that dissolution and precipitation solvus depend on the β phase state. • Precipitation is also affected by the relief of memory effect during the thermal cycle. • Excel treated at 750 °C 0.5 h or 380 °C 24 h showed highest solubility.

  19. Solubilities of gases in ionic liquids using a corresponding-states approach to Kirkwood-Buff solution theory

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela; Abildskov, Jens; O’Connell, John P.

    2011-01-01

    The solubilities of gases in ionic liquids and compressed liquid densities have been successfully described over a wide range of conditions using a reformulated corresponding-states formulation for direct correlation function integrals. In addition, comparisons with experimental data show reliabl...... prediction of ionic liquid characteristic properties from simple rules.......The solubilities of gases in ionic liquids and compressed liquid densities have been successfully described over a wide range of conditions using a reformulated corresponding-states formulation for direct correlation function integrals. In addition, comparisons with experimental data show reliable...

  20. Novel furosemide cocrystals and selection of high solubility drug forms.

    Science.gov (United States)

    Goud, N Rajesh; Gangavaram, Swarupa; Suresh, Kuthuru; Pal, Sharmistha; Manjunatha, Sulur G; Nambiar, Sudhir; Nangia, Ashwini

    2012-02-01

    Furosemide was screened in cocrystallization experiments with pharmaceutically acceptable coformer molecules to discover cocrystals of improved physicochemical properties, that is high solubility and good stability. Eight novel equimolar cocrystals of furosemide were obtained by liquid-assisted grinding with (i) caffeine, (ii) urea, (iii) p-aminobenzoic acid, (iv) acetamide, (v) nicotinamide, (vi) isonicotinamide, (vii) adenine, and (viii) cytosine. The product crystalline phases were characterized by powder x-ray diffraction, differential scanning calorimetry, infrared, Raman, near IR, and (13) C solid-state NMR spectroscopy. Furosemide-caffeine was characterized as a neutral cocrystal and furosemide-cytosine an ionic salt by single crystal x-ray diffraction. The stability of furosemide-caffeine, furosemide-adenine, and furosemide-cytosine was comparable to the reference drug in 10% ethanol-water slurry; there was no evidence of dissociation of the cocrystal to furosemide for up to 48 h. The other five cocrystals transformed to furosemide within 24 h. The solubility order for the stable forms is furosemide-cytosine > furosemide-adenine > furosemide-caffeine, and their solubilities are approximately 11-, 7-, and 6-fold higher than furosemide. The dissolution rates of furosemide cocrystals were about two times faster than the pure drug. Three novel furosemide compounds of higher solubility and good phase stability were identified in a solid form screen. Copyright © 2011 Wiley Periodicals, Inc.

  1. Preparation, characterization and solubility product constant of AmOHCO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.J.

    1985-01-12

    An investigation into the nature and solubility of a stable solid phase formed by a trivalent actinide, /sup 243/Am/sup 3 +/, in dilute aqueous carbonate solutions was conducted. The compound exhibited an x-ray powder diffraction pattern which was nearly identical to that reported for NdOHCO/sub 3/ - type A. The pattern could be indexed in the orthorhombic system with unit cell parameters a = 4.958, b = 8.487, and c = 7.215 A. The steady-state solubility of the compound was determined from the results of both dissolution and precipitation experiments. The average solubility product quotient for 0.1M ionic strength, 25 +- 1/sup 0/C and 1 atmosphere pressure was found to be 583 +- 206. The solubility product constant for zero ionic strength was estimated to be 335 +- 120. 22 references, 3 tables.

  2. Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO4.

    Science.gov (United States)

    Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P; Brownrigg, Alex; Wright, Jonathan P; van Dijk, Niels H; Wagemaker, Marnix

    2014-05-14

    The impact of ultrahigh (dis)charge rates on the phase transition mechanism in LiFePO4 Li-ion electrodes is revealed by in situ synchrotron diffraction. At high rates the solubility limits in both phases increase dramatically, causing a fraction of the electrode to bypass the first-order phase transition. The small transforming fraction demonstrates that nucleation rates are consequently not limiting the transformation rate. In combination with the small fraction of the electrode that transforms at high rates, this indicates that higher performances may be achieved by further optimizing the ionic/electronic transport in LiFePO4 electrodes.

  3. Structure-phase states evolution in Al-Si alloy under electron-beam treatment and high-cycle fatigue

    International Nuclear Information System (INIS)

    Konovalov, Sergey; Alsaraeva, Krestina; Gromov, Victor; Semina, Olga; Ivanov, Yurii

    2015-01-01

    By methods of scanning and transmission electron diffraction microscopy the analysis of structure-phase states and defect substructure of silumin subjected to high-intensity electron beam irradiation in various regimes and subsequent fatigue loading up to failure was carried out. It is revealed that the sources of fatigue microcracks are silicon plates of micron and submicron size are not soluble in electron beam processing. The possible reasons of the silumin fatigue life increase under electron-beam treatment are discussed

  4. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers.

    Science.gov (United States)

    Ahuja, Naveen; Katare, Om Prakash; Singh, Bhupinder

    2007-01-01

    Role of various water-soluble carriers was studied for dissolution enhancement of a poorly soluble model drug, rofecoxib, using solid dispersion approach. Diverse carriers viz. polyethylene glycols (PEG 4000 and 6000), polyglycolized fatty acid ester (Gelucire 44/14), polyvinylpyrollidone K25 (PVP), poloxamers (Lutrol F127 and F68), polyols (mannitol, sorbitol), organic acid (citric acid) and hydrotropes (urea, nicotinamide) were investigated for the purpose. Phase-solubility studies revealed AL type of curves for each carrier, indicating linear increase in drug solubility with carrier concentration. The sign and magnitude of the thermodynamic parameter, Gibbs free energy of transfer, indicated spontaneity of solubilization process. All the solid dispersions showed dissolution improvement vis-à-vis pure drug to varying degrees, with citric acid, PVP and poloxamers as the most promising carriers. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsemeyer-Peppas model and the drug release kinetics primarily as Fickian diffusion. Solid state characterization of the drug-poloxamer binary system using XRD, FTIR, DSC and SEM techniques revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement in dissolution rate.

  5. Soluble and stable heptazethrenebis(dicarboximide) with a singlet open-shell ground state

    KAUST Repository

    Sun, Zhe; Huang, Kuo-Wei; Wu, Jishan

    2011-01-01

    A soluble and stable heptazethrene derivative was synthesized and characterized for the first time. This molecule exhibits a singlet biradical character in the ground state, which is the first case among zethrene homologue series. Exceptional stability of this heptazethrenebis(dicarboximide) raises the likelihood of its practical applications in materials science. © 2011 American Chemical Society.

  6. Soluble and stable heptazethrenebis(dicarboximide) with a singlet open-shell ground state

    KAUST Repository

    Sun, Zhe

    2011-08-10

    A soluble and stable heptazethrene derivative was synthesized and characterized for the first time. This molecule exhibits a singlet biradical character in the ground state, which is the first case among zethrene homologue series. Exceptional stability of this heptazethrenebis(dicarboximide) raises the likelihood of its practical applications in materials science. © 2011 American Chemical Society.

  7. Effect of Difference in Fatty Acid Chain Lengths of Medium- Chain Lipids on Lipid/Surfactant/Water Phase Diagrams and Drug Solubility

    Directory of Open Access Journals (Sweden)

    Hetal N. Prajapati

    2011-09-01

    Full Text Available Lipids consisting of medium chain fatty acids are commonly used in the development of lipid-based selfemulsifying and self-microemulsifying drug delivery systems. However, no systematic approach to selecting one lipid over another has been reported in the literature. In this study, propylene glycol (PG monoester (PG monocaprylate, Capmul PG-8® and PG diester (PG dicaprylocaprate, Captex 200P® of C8-fatty acids were compared with PG monoester (PG monolaurate, Capmul PG-12® and PG diester (PG dilaurate, Capmul PG-2L® of C12-fatty acids with respect to their phase diagrams, and especially for their ability to form microemulsions in the presence of a common surfactant, Cremophor EL®, and water. The solubility of two model drugs, danazol and probucol, in the lipids and lipid/surfactant mixtures were also compared. The effect of the chain length of medium-chain fatty acids (C8 versus C12 on the phase diagrams of the lipids was minimal. Both shorter and longer chain lipids formed essentially similar microemulsion and emulsion regions in the presence of Cremophor EL® and water, although the C12-fatty acid esters formed larger gel regions in the phase diagrams than the C8-fatty acid esters. When monoesters were mixed with their respective diesters at 1:1 ratios, larger microemulsion regions with lower lipid particle sizes were observed compared to those obtained with individual lipids alone. While the solubility of both danazol and probucol increased greatly in all lipids studied, compared to their aqueous solubility, the solubility in C12-fatty acid esters was found to be lower than in C8-fatty acid esters when the lipids were used alone. This difference in solubility due to the difference in fatty acid chain length, practically disappeared when the lipids were combined with the surfactant.

  8. Major Source of Error in QSPR Prediction of Intrinsic Thermodynamic Solubility of Drugs: Solid vs Nonsolid State Contributions?

    Science.gov (United States)

    Abramov, Yuriy A

    2015-06-01

    The main purpose of this study is to define the major limiting factor in the accuracy of the quantitative structure-property relationship (QSPR) models of the thermodynamic intrinsic aqueous solubility of the drug-like compounds. For doing this, the thermodynamic intrinsic aqueous solubility property was suggested to be indirectly "measured" from the contributions of solid state, ΔGfus, and nonsolid state, ΔGmix, properties, which are estimated by the corresponding QSPR models. The QSPR models of ΔGfus and ΔGmix properties were built based on a set of drug-like compounds with available accurate measurements of fusion and thermodynamic solubility properties. For consistency ΔGfus and ΔGmix models were developed using similar algorithms and descriptor sets, and validated against the similar test compounds. Analysis of the relative performances of these two QSPR models clearly demonstrates that it is the solid state contribution which is the limiting factor in the accuracy and predictive power of the QSPR models of the thermodynamic intrinsic solubility. The performed analysis outlines a necessity of development of new descriptor sets for an accurate description of the long-range order (periodicity) phenomenon in the crystalline state. The proposed approach to the analysis of limitations and suggestions for improvement of QSPR-type models may be generalized to other applications in the pharmaceutical industry.

  9. Solubility of hydrogen in bio-oil compounds

    International Nuclear Information System (INIS)

    Qureshi, Muhammad Saad; Touronen, Jouni; Uusi-Kyyny, Petri; Richon, Dominique; Alopaeus, Ville

    2016-01-01

    Highlights: • Solubility of Hydrogen was measured in bio-oil compounds in the at temperatures from 342 to 473 K and pressures up to 16 MPa. • Phase equilibrium data were acquired using a visualization enabled continuous flow synthetic apparatus. • The measured solubility is modeled with Peng-Robinson EoS. - Abstract: The knowledge of accurate hydrogen solubility values in bio-oil compounds is essential for the design and optimization of hydroprocesses relevant to biofuel industry. This work reports the solubility of hydrogen in three industrially relevant bio-oil compounds (allyl alcohol, furan, and eugenol) at temperatures from 342 to 473 K and pressures up to 16 MPa. Phase equilibrium data were acquired using a continuous flow synthetic method. The method is based on the visual observation of the bubble point using a high resolution camera. The measured solubility is modeled with Peng-Robinson EoS with classical van der Waals one fluid mixing rules.

  10. Pb solubility of the high-temperature superconducting phase Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d}

    Energy Technology Data Exchange (ETDEWEB)

    Kaesche, S.; Majewski, P.; Aldinger, F. [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany)] [and others

    1994-12-31

    For the nominal composition of Bi{sub 2.27x}Pb{sub x}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d} the lead content was varied from x=0.05 to 0.45. The compositions were examined between 830{degrees}C and 890{degrees}C which is supposed to be the temperature range over which the so-called 2223 phase (Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d}) is stable. Only compositions between x=0.18 to 0.36 could be synthesized in a single phase state. For x>0.36 a lead containing phase with a stoichiometry of Pb{sub 4}(Sr,Ca){sub 5}CuO{sub d} is formed, for x<0.18 mainly Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+d} and cuprates are the equilibrium phases. The temperature range for the 2223 phase was found to be 830{degrees}C to 890{degrees}C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase.

  11. Enzymatic hydrolysis of short-chain lecithin/long-chain phospholipid unilamellar vesicles: sensitivity of phospholipases to matrix phase state.

    Science.gov (United States)

    Gabriel, N E; Agman, N V; Roberts, M F

    1987-11-17

    Short-chain lecithin/long-chain phospholipid unilamellar vesicles (SLUVs), unlike pure long-chain lecithin vesicles, are excellent substrates for water-soluble phospholipases. Hemolysis assays show that greater than 99.5% of the short-chain lecithin is partitioned in the bilayer. In these binary component vesicles, the short-chain species is the preferred substrate, while the long-chain phospholipid can be treated as an inhibitor (phospholipase C) or poor substrate (phospholipase A2). For phospholipase C Bacillus cereus, apparent Km and Vmax values show that bilayer-solubilized diheptanoylphosphatidylcholine (diheptanoyl-PC) is nearly as good a substrate as pure micellar diheptanoyl-PC, although the extent of short-chain lecithin hydrolysis depends on the phase state of the long-chain lipid. For phospholipase A2 Naja naja naja, both Km and Vmax values show a greater range: in a gel-state matrix, diheptanoyl-PC is hydrolyzed with micellelike kinetic parameters; in a liquid-crystalline matrix, the short-chain lecithin becomes comparable to the long-chain component. Both enzymes also show an anomalous increase in specific activity toward diheptanoyl-PC around the phase transition temperature of the long-chain phospholipid. Since the short-chain lecithin does not exhibit a phase transition, this must reflect fluctuations in head-group area or vertical motions of the short-chain lecithin caused by surrounding long-chain lecithin molecules. These results are discussed in terms of a specific model for SLUV hydrolysis and a general explanation for the "interfacial activation" observed with water-soluble phospholipases.

  12. The solubilities and solubility products of zirconium hydroxide and oxide after aging at 278, 313, and 333 K

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Taishi; Uemura, Takuya; Sasaki, Takayuki; Takagi, Ikuji [Kyoto Univ. (Japan). Dept. of Nuclear Engineering; Moriyama, Hirotake [Kyoto Univ. (Japan). Research Reactor Inst.

    2016-07-01

    The solubilities of zirconium hydroxide and oxide after aging at 278, 313, and 333 K were measured at 278, 298, 313, and 333 K in the pH{sub c} range of 0.3-7 in a 0.5 M ionic strength solution of NaClO{sub 4} and HClO{sub 4}. Size distributions of the colloidal species were investigated by ultrafiltration using membranes with different pore sizes, and the solid phases were examined by X-ray diffraction. The apparent solubility of zirconium amorphous hydroxide (Zr(OH){sub 4}(am)), prepared by the oversaturation method, decreased with increasing aging temperature (T{sub a}), and the size distributions obtained after aging at elevated temperatures indicated the growth of the colloidal species. We, therefore, suggested that agglomeration of the colloidal species and dehydration and crystallization of Zr(OH){sub 4}(am) as the solubility-limiting solid phase occurred over the course of aging at elevated temperatures. For sample solutions of the crystalline oxide (ZrO{sub 2}(cr)), the aging temperature had no significant effect on the solubility, but the solubility data at lower temperatures were found to be slightly higher than those at higher temperatures, implying a small fraction of the amorphous components. In the analysis of different solid phases (Zr(OH){sub 4}(s,T{sub a}), T{sub a} = 278, 313, and 333 K) depending on the aging temperatures, the solubility products (K{sub sp}, T{sub a}) were determined at different measurement temperatures, and the enthalpy change (Δ{sub r}H {sup circle}) for Zr{sup 4+} 4OH{sup -} <=> Zr(OH){sub 4}(s,T{sub a}) was calculated using the van't Hoff equation. The solid-phase-transformation process at elevated temperatures was also analyzed based on the obtained K{sub sp}, T{sub a} and Δ{sub r}H {sup circle} values.

  13. Simultaneous separation and analysis of water- and fat-soluble vitamins on multi-modal reversed-phase weak anion exchange material by HPLC-UV.

    Science.gov (United States)

    Dabre, Romain; Azad, Nazanin; Schwämmle, Achim; Lämmerhofer, Michael; Lindner, Wolfgang

    2011-04-01

    Several methods for the separation of vitamins on HPLC columns were already validated in the last 20 years. However, most of the techniques focus on separating either fat- or water-soluble vitamins and only few methods are intended to separate lipophilic and hydrophilic vitamins simultaneously. A mixed-mode reversed-phase weak anion exchange (RP-WAX) stationary phase was developed in our laboratory in order to address such mixture of analytes with different chemical characteristics, which are difficult to separate on standard columns. The high versatility in usage of the RP-WAX chromatographic material allowed a baseline separation of ten vitamins within a single run, seven water-soluble and three fat-soluble, using three different chromatographic modes: some positively charged vitamins are eluted in ion exclusion and ion repulsion modes whereas the negatively charged molecules are eluted in the ion exchange mechanism. The non-charged molecules are eluted in a classical reversed-phase mode, regarding their polarities. The method was validated for the vitamin analysis in tablets, evaluating selectivity, robustness, linearity, accuracy, and precision. The validated method was finally employed for the analysis of the vitamin content of some commercially available supplement tablets. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis of LiBOB Fine Powder to Increase Solubility

    Directory of Open Access Journals (Sweden)

    Etty Marti Wigayati

    2017-04-01

    Full Text Available Lithium bis (oxalate borate or LiBOB compound has captured interest of researchers, because it is potentially viable to be used as electrolyte salt in lithium-ion battery system. This compound is easy to synthesize and considered to be more environmentally friendly compared to conventional electrolyte salt because LiBOB does not contain halogen element. This research focused on the synthesis of LiBOB fine powder, which main purpose is improving LiBOB salt solubility in liquid electrolyte solution. This will aid the ion transfer between electrodes which in turn will increase the electrolyte performance. Solid state reaction was employed in this experiment. Synthesis of LiBOB compound was performed by reacting oxalic acid dihydrate, lithium hydroxide monohydrate, and boric acid. The resulting powder was then processed into fine powder using ball milling technique with varying milling time (0, 6, 10, and 13 hour. Microstructure of the sample was then analyzed to obtain information regarding phase formation, functional groups, grain surface morphology, surface area, pore volume, solubility, and ionic conductivity. The analysis shown that LiBOB and LiBOB hydrate phase was formed during the reaction, there was no changed in existing phase during milling process, crystallinity index was shifted to lower value but there was no difference in functional groups. Highest value in surface area was found to be 83.11 m2/g, with pore volume of 1.21311e+02 A at 10 hours milling. Smaller powder size resulted in higher solubility, unfortunately the ionic conductivity was found to be decreased.

  15. Effect of cyclodextrin complexation on the aqueous solubility and solubility/dose ratio of praziquantel.

    Science.gov (United States)

    Maragos, Stratos; Archontaki, Helen; Macheras, Panos; Valsami, Georgia

    2009-01-01

    Praziquantel (PZQ), the primary drug of choice in the treatment of schistosomiasis, is a highly lipophilic drug that possesses high permeability and low aqueous solubility and is, therefore, classified as a Class II drug according to the Biopharmaceutics Classification System (BCS). In this work, beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) were used in order to determine whether increasing the aqueous solubility of a drug by complexation with CDs, a BCS-Class II compound like PZQ could behave as BCS-Class I (highly soluble/highly permeable) drug. Phase solubility and the kneading and lyophilization techniques were used for inclusion complex preparation; solubility was determined by UV spectroscopy. The ability of the water soluble polymer polyvinylpyrolidone (PVP) to increase the complexation and solubilization efficiency of beta-CD and HP-beta-CD for PZQ was examined. Results showed significant improvement of PZQ solubility in the presence of both cyclodextrins but no additional effect in the presence of PVP. The solubility/dose ratios values of PZQ-cyclodextrin complexes calculated considering the low (150 mg) and the high dose (600 mg) of PZQ, used in practice, indicate that PZQ complexation with CDs may result in drug dosage forms that would behave as a BCS-Class I depending on the administered dose.

  16. Experimental and modeling investigations of solubility and saturated liquid densities and viscosities for binary systems (methane +, ethane +, and carbon dioxide + 2-propanol)

    International Nuclear Information System (INIS)

    Nourozieh, Hossein; Kariznovi, Mohammad; Abedi, Jalal

    2013-01-01

    Highlights: • Solubilities of CH 4 , C 2 H 6 , and CO 2 in 2-propanol and saturated density and viscosity. • Solubility of C 2 H 6 in 2-propanol is higher than CH 4 and CO 2 . • Dissolution of CO 2 increases liquid density and reduces liquid viscosity. • Liquid density and viscosity reduces with dissolution of CH 4 and C 2 H 6 . • Solubilities and saturated liquid densities were predicted with SRK and PR EOS. -- Abstract: Solubilities of methane, ethane, and carbon dioxide in 2-propanol have been measured at the temperatures (303 and 323) K and at the pressures up to 6 MPa using an in-house designed PVT apparatus. The saturated liquid properties, density and viscosity, were also measured in each experiment. Prior to the phase equilibrium measurements, the density and viscosity of pure 2-propanol were measured at the temperatures (303 and 323) K over the pressure range (0.1 to 10) MPa. The dissolution of carbon dioxide in 2-propanol caused a decline in the viscosity of saturated liquid phase while an increase in the density of gas-expanded liquid was observed. The viscosity-pressure trends for methane- and ethane-saturated liquid viscosities were similar to carbon dioxide, but the saturated liquid densities decreased with the dissolution of methane and ethane in 2-propanol. Solubility increased with pressure and decreased with temperature for all compressed gases (methane, ethane and carbon dioxide). The experimental data were well correlated using Soave–Redlich–Kwong and Peng–Robinson equations of state. The solubilities and saturated liquid densities were well represented with both equations of state, and there is no superior equation of state for the modeling of the phase compositions and saturated liquid densities

  17. Iron solubility driven by speciation in dust sources to the ocean

    Science.gov (United States)

    Schroth, A.W.; Crusius, John; Sholkovitz, E.R.; Bostick, B.C.

    2009-01-01

    Although abundant in the Earths crust, iron is present at trace concentrations in sea water and is a limiting nutrient for phytoplankton in approximately 40% of the ocean. Current literature suggests that aerosols are the primary external source of iron to offshore waters, yet controls on iron aerosol solubility remain unclear. Here we demonstrate that iron speciation (oxidation state and bonding environment) drives iron solubility in arid region soils, glacial weathering products (flour) and oil combustion products (oil fly ash). Iron speciation varies by aerosol source, with soils in arid regions dominated by ferric (oxy)hydroxides, glacial flour by primary and secondary ferrous silicates and oil fly ash by ferric sulphate salts. Variation in iron speciation produces systematic differences in iron solubility: less than 1% of the iron in arid soils was soluble, compared with 2-3% in glacial products and 77-81% in oil combustion products, which is directly linked to fractions of more soluble phases. We conclude that spatial and temporal variations in aerosol iron speciation, driven by the distribution of deserts, glaciers and fossil-fuel combustion, could have a pronounced effect on aerosol iron solubility and therefore on biological productivity and the carbon cycle in the ocean. ?? 2009 Macmillan Publishers Limited.

  18. Synthesis gas solubility in Fischer-Tropsch slurry: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chao, K.C.; Lin, H.M.

    1988-01-01

    The objective is to investigate the phase equilibrium behavior of synthesis gases and products in a Fischer-Tropsch slurry reactor. A semi-flow apparatus has been designed and constructed for this purpose. Measurements have been made for hydrogen, cabon monoxide, methane, ethane, ethylene, and carbon dioxide in a heavy n-paraffin at temperatures from 100 to 300)degree)C and pressures 10 to 50 atm. Three n-paraffin waxes: n-eicosane (n-C/sub 20/), n-octacosane )n-C/sub 28/), and n-hexatriacontane (n-C/sub 36/), were studied to model the industrial wax. Solubility of synthesis gas mixtures of H/sub 2/ and CO in n-C/sub 28/ was also determined at two temperatures (200 and 300)degree)C) for each of three gas compositions (40.01, 50.01, and 66.64 mol%) of hydrogen). Measurements were extended to investigate the gas solubility in two industrial Fischer-Tropsch waxes: Mobilwax and SASOL wax. Observed solubility increases in the order: H/sub 2/, CO, CH/sub 4/, CO/sub 2/, C/sub 2/H/sub 4/, C/sub 2/H/sub 6/, at a given temperature pressure, and in the same solvent. Solubility increases with increasing pressure for all the gases. Lighter gases H/sub 2/ and CO show increased solubility with increasing temperature, while the heavier gases CO/sub 2/, ethane, and ethylene show decreased solubility with increasing temperature. The solubility of methane, the intermediate gas, changes little with temperature, and shows a shallow minimum at about 200)degrees)C or somewhat above. Henry's constant and partial molal volume of the gas solute at infinite dilution are determinedfrom the gas solubility data. A correlation is developed from the experimental data in the form on an equation of state. A computer program has been prepared to implement the correlation. 19 refs., 66 figs., 39 tabs.

  19. Geometric Phases for Mixed States in Trapped Ions

    International Nuclear Information System (INIS)

    Lu Hongxia

    2006-01-01

    The generalization of geometric phase from the pure states to the mixed states may have potential applications in constructing geometric quantum gates. We here investigate the mixed state geometric phases and visibilities of the trapped ion system in both non-degenerate and degenerate cases. In the proposed quantum system, the geometric phases are determined by the evolution time, the initial states of trapped ions, and the initial states of photons. Moreover, special periods are gained under which the geometric phases do not change with the initial states changing of photon parts in both non-degenerate and degenerate cases. The high detection efficiency in the ion trap system implies that the mixed state geometric phases proposed here can be easily tested.

  20. 450 {sup o}C isothermal section of the Fe-Zn-Si ternary phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xuping [Inst. of Materials Research, School of Mechanical Engineering, Xiangtan Univ., Xiangtan, Hunan (China); Univ. of Toronto, Dept. of Materials Science and Engineering, Toronto, Ontario (Canada); Tang, Nai-Yong [Cominco Ltd., Product Technology Centre, Mississauga, Ontario (Canada); Toguri, J.M. [Univ. of Toronto, Dept. of Materials Science and Engineering, Toronto, Ontario (Canada)

    2001-07-01

    The 450 {sup o}C isothermal section of the Fe-Zn-Si ternary phase diagram has been determined experimentally using optical microscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry. The focus of the work has been concentrated on the Zn-rich corner which is relevant to general galvanizing. The present study has confirmed the existence of the equilibrium state between the liquid, the {zeta} phase and the FeSi phase. This three phase equilibrium state prevents the equilibrium between the liquid and the {delta} phase suggested by some researchers. Experimental results indicate that Si solubility in all four binary Zn-Fe compounds is limited. The Fe solubility in molten Zn was found to decrease with increasing Si content in the melt. The liquid phase boundary was determined using a model based phenomenological approach. (author)

  1. Chimera States in Two Populations with Heterogeneous Phase-lag

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Bick, Christian; Panaggio, Mark

    2016-01-01

    The simplest network of coupled phase-oscillators exhibiting chimera states is given by two populations with disparate intra- and inter-population coupling strengths. We explore the effects of heterogeneous coupling phase-lags between the two populations. Such heterogeneity arises naturally......-uniform synchronization, including in-phase and anti-phase synchrony, full incoherence (splay state), chimera states with phase separation of 0 or π between populations, and states where both populations remain desynchronized. These desynchronized states exhibit stable, oscillatory, and even chaotic dynamics. Moreover......, we identify the bifurcations through which chimera and desynchronized states emerge. Stable chimera states and desynchronized solutions, which do not arise for homogeneous phase-lag parameters, emerge as a result of competition between synchronized in-phase, anti-phase equilibria, and fully...

  2. Study of nitrogen solubility in multicomponent iron alloys at its pressure in gaseous phase up to 1000kPa

    International Nuclear Information System (INIS)

    Pomarin, Yu.M.; Grigorenko, G.M.; Latash, Yu.V.; Kanibolotskij, S.A.

    1983-01-01

    A facility in which metal is melted in a weighed state and nitrogen partical pressure during relting may be charge from 0 to 1000 kPa is developed to investigate nitrogen solubility is liquim metals and alloys. Investigation of nitrogen solubility was performed using samples of 03Kh25N5AM3 steel and Kh20N5, Kh20N10, Kh40N10, Kh40N20 alloys. Positive deflection of [N]=f(√Psub(Nsub(2))) dependence from the Henry law is shown to be observed in the Kh40N10 alloy in the 100-1000 kPa pressure range. In this case the vatue of positive deflection decreases with temperature growth and at T=2273 K nitrogen solubility in the alloy submits to the law of square root. An equation permitting to calculate nitrogen solubility in alloys of Fe-Cr-Ni and Fe-Cr-Mn systems in the 0 to 1000 kPa range of nitrogen partial pressures is obtained

  3. Phase squeezed states

    International Nuclear Information System (INIS)

    Chizhov, A.V.; Paris, M.G.A.

    1998-01-01

    Phase squeezed states of a single mode radiation field have been introduced as eigenstates of a linear combination of lowering and raising operators. The explicit expression in the Fock basis has been obtained and some relevant properties have been illustrated. (author)

  4. Solubility behavior and biopharmaceutical classification of novel high-solubility ciprofloxacin and norfloxacin pharmaceutical derivatives.

    Science.gov (United States)

    Breda, Susana A; Jimenez-Kairuz, Alvaro F; Manzo, Ruben H; Olivera, María E

    2009-04-17

    The hydrochlorides of the 1:3 aluminum:norfloxacin and aluminum:ciprofloxacin complexes were characterized according to the Biopharmaceutics Classification System (BCS) premises in comparison with their parent compounds. The pH-solubility profiles of the complexes were experimentally determined at 25 and 37 degrees C in the range of pH 1-8 and compared to that of uncomplexed norfloxacin and ciprofloxacin. Both complexes are clearly more soluble than the antibiotics themselves, even at the lowest solubility pHs. The increase in solubility was ascribed to the species controlling solubility, which were analyzed in the solid phases at equilibrium at selected pHs. Additionally, permeability was set as low, based on data reported in the scientific literature regarding oral bioavailability, intestinal and cell cultures permeabilities and also considering the influence of stoichiometric amounts of aluminum. The complexes fulfill the BCS criterion to be classified as class 3 compounds (high solubility/low permeability). Instead, the active pharmaceutical ingredients (APIs) currently used in solid dosage forms, norfloxacin and ciprofloxacin hydrochloride, proved to be BCS class 4 (low solubility/low permeability). The solubility improvement turns the complexes as potential biowaiver candidates from the scientific point of view and may be a good way for developing more dose-efficient formulations. An immediate release tablet showing very rapid dissolution was obtained. Its dissolution profile was compared to that of the commercial ciprofloxacin hydrochloride tablets allowing to dissolution of the complete dose at a critical pH such as 6.8.

  5. Study of solubility of some metal cyclohexane carbonates

    International Nuclear Information System (INIS)

    Niyazov, A.N.; Amanov, K.B.; Trapeznikova, V.F.; Kul'maksimov, A.; Kolosova, N.

    1978-01-01

    The solubility of calcium, magnesium, strontium, barium, cabalt, copper and aluminium cyclohexane, carbonates (CHC) in water has been studied at 25 deg C. The salt solubility has been calculated according to the metal ion concentration in saturated solutions. It has been established, that the cobalt and rare earth cyclohexane carbonates are relatively very soluble in water and have solubility products of SP > 1x10 -5 . The solubility of CHC of multivalent metals increases with the decrease of pH values. Each salt has some ''limiting'' pH value of a solution, below which it decomposes completely and can not exist in a solution in the form of solid phase

  6. Reversible, reagentless solubility changes in phosphatidylcholine-stabilized gold nanoparticles

    International Nuclear Information System (INIS)

    Mackiewicz, Marilyn R; Ayres, Benjamin R; Reed, Scott M

    2008-01-01

    Phosphatidylcholine (PC) is a versatile ligand for synthesizing gold nanoparticles that are soluble in either organic or aqueous media. Here we report a novel route to organic-soluble, PC-stabilized gold nanoparticles that can be re-suspended in water after removal of the organic solvent. Similarly, we show that PC-stabilized gold nanoparticles synthesized in water can be re-suspended in organic solvents after complete removal of water. Without complete removal of the solvent, the nanoparticles retain their original solubility and do not phase transfer. This change in solvent preference from organic to aqueous and vice versa without the use of an additional phase transfer reagent is novel, visually striking, and of utility for synthetic modification of nanoparticles. This approach allows chemical reactions to be performed on nanoparticles in organic solvents followed by conversion of the products to water-soluble materials. A narrow distribution of PC-stabilized gold nanoparticles was obtained after phase transfer to water as characterized by UV-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM), demonstrating that the narrow distribution obtained from the organic synthesis is retained after transfer to water. This method produces water-soluble nanoparticles with a narrower dispersity than is possible with direct aqueous synthesis

  7. Operational geometric phase for mixed quantum states

    International Nuclear Information System (INIS)

    Andersson, O; Heydari, H

    2013-01-01

    The geometric phase has found a broad spectrum of applications in both classical and quantum physics, such as condensed matter and quantum computation. In this paper, we introduce an operational geometric phase for mixed quantum states, based on spectral weighted traces of holonomies, and we prove that it generalizes the standard definition of the geometric phase for mixed states, which is based on quantum interferometry. We also introduce higher order geometric phases, and prove that under a fairly weak, generically satisfied, requirement, there is always a well-defined geometric phase of some order. Our approach applies to general unitary evolutions of both non-degenerate and degenerate mixed states. Moreover, since we provide an explicit formula for the geometric phase that can be easily implemented, it is particularly well suited for computations in quantum physics. (paper)

  8. Rapid analysis of water- and fat-soluble vitamins by electrokinetic chromatography with polymeric micelle as pseudostationary phase.

    Science.gov (United States)

    Ni, Xinjiong; Xing, Xiaoping; Cao, Yuhua; Cao, Guangqun

    2014-11-28

    A novel polymeric micelle, formed by random copolymer poly (stearyl methacrylate-co-methacrylic acid) (P(SMA-co-MAA)) has been used as pseudostationary phase (PSP) in electrokinetic chromatography (EKC) for simultaneous and rapid determination of 11 kinds of water- and fat-soluble vitamins in this work. The running buffer consisting of 1% (w/v) P(SMA-co-MAA), 10% (v/v) 1-butanol, 20% (v/v) acetonitrile, and 30 mM Palitzsch buffer solution (pH 9.2) was applied to improve the selectivity and efficiency, as well as to shorten analysis time. 1-Butanol and acetonitrile as the organic solvent modifiers played the most important roles for rapid separation of these vitamins. The effects of organic solvents on microstructure of the polymeric micelle were investigated. The organic solvents swell the polymeric micelle by three folds, lower down the surface charge density and enhance the microenviromental polarity of the polymeric micelle. The 11 kinds of water- and fat-soluble vitamins could be baseline separated within 13 min. The method was applied to determine water- and fat-soluble vitamins in commercial vitamin sample; the recoveries were between 93% and 111% with the relative standard derivations (RSDs) less than 5%. The determination results matched the label claim. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Cocrystal of Ibuprofen–Nicotinamide: Solid-State Characterization and In Vivo Analgesic Activity Evaluation

    Directory of Open Access Journals (Sweden)

    Yori Yuliandra

    2018-06-01

    Full Text Available Ibuprofen is classified as a BCS class II drug which has low solubility and high permeability. We conducted the formation of the cocrystalline phase of ibuprofen with coformer nicotinamide to increase its solubility. The purpose of this study was to characterize the solid state of cocrystalline phase of ibuprofen-nicotinamide, determine the solubility, and evaluate its in vivo analgesic activity. The cocrystal of ibuprofen-nicotinamide was prepared by a slow evaporation method. The solid-state characterization was conducted by powder X-ray diffraction (PXRD analysis, differential thermal analysis (DTA, and scanning electron microscopy (SEM. To investigate the in vivo analgesic activity, 28 male Swiss-Webster mice were injected with acetic acid 0.5% following oral administration of intact ibuprofen, physical mixture, and its cocrystalline phase with nicotinamide (equivalent to 26 mg/kg ibuprofen. The number of writhes was counted, and pain inhibition was calculated. All data were analyzed with one-way ANOVA followed by Duncan’s Multiple Range Test (95% confidence interval. The results revealed that a new cocrystalline phase was successfully formed. The solubility testing showed that the cocrystal formation enhanced the solubility significantly as compared with the physical mixture and intact ibuprofen. A significant increase in the analgesic activity of cocrystal ibuprofen-nicotinamide was also confirmed.

  10. Diagnosing solubility limitations – the example of hydrate formation

    Directory of Open Access Journals (Sweden)

    Joerg Berghausen

    2014-07-01

    Full Text Available Solubility is regarded as one of the key challenges in many drug discovery projects. Thus, it’s essential to support the lead finding and optimization efforts by appropriate solubility data. In silico solubility prediction remains challenging and therefore a screening assay is used as a first filter, followed by selected follow-up assays to reveal what causes the low solubility of a specific compound or chemotype. Results from diagnosing the underlying reason for solubility limitation are discussed. As lipophilicity and crystal lattice forces are regarded as main contributors to limiting solubility, changes in solid state are important to be recognized. Solubility limitation by various factors will be presented and the impact of the solid-state is exemplified by compounds that are able to form hydrates.

  11. Solubility and hydrolysis of Np(V) in dilute to concentrated alkaline NaCl solutions. Formation of Na-Np(V)-OH solid phases at 22 C

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Vladimir G. [Lomonosov Moscow State Univ. (Russian Federation). Dept. of Chemistry; Fellhauer, David; Gaona, Xavier; Dardenne, Kathy; Rothe, Joerg; Altmaier, Marcus [Karlsruhe Institute of Technology (Germany). Inst. for Nuclear Waste Disposal; Kalmykov, Stepan N. [Lomonosov Moscow State Univ. (Russian Federation). Dept. of Chemistry; NRC Kurchatov Institute, Moscow (Russian Federation)

    2017-03-01

    The solubility of Np(V) was investigated at T=22±2 C in alkaline NaCl solutions of different ionic strength (0.1-5.0 M). The solid phases controlling the solubility at different -log{sub 10} m{sub H{sup +}}(pH{sub m}) and NaCl concentration were characterized by XRD, quantitative chemical analysis, SEM-EDS and XAFS (both XANES and EXAFS). Aqueous phases in equilibrium with Np(V) solids were investigated for selected samples within 8.9≤pH{sub m}≤10.3 by UV-vis/NIR absorption spectroscopy. In 0.1 M NaCl, the experimental solubility of the initial greenish NpO{sub 2}OH(am) solid phase is in good agreement with previous results obtained in NaClO{sub 4} solutions, and is consistent with model calculations for fresh NpO{sub 2}OH(am) using the thermodynamic data selection in NEA-TDB. Below pH{sub m}∝11.5 and for all NaCl concentrations studied, Np concentration in equilibrium with the solid phase remained constant during the timeframe of this study (∝2 years). This observation is in contrast to the aging of the initial NpO{sub 2}OH(am) into a more crystalline modification with the same stoichiometry, NpO{sub 2}OH(am, aged), as reported in previous studies for concentrated NaClO{sub 4} and NaCl. Instead, the greenish NpO{sub 2}OH(am) transforms into a white solid phase in those systems with [NaCl]≥1.0 M and pH{sub m}≥11.5, and into two different pinkish phases above pH{sub m}∝13.2. The solid phase transformation is accompanied by a drop in Np solubility of 0.5-2 log{sub 10}-units (depending upon NaCl concentration). XANES analyses of green, white and pink phases confirm the predominance of Np(V) in all cases. Quantitative chemical analysis shows the incorporation of Na{sup +} in the original NpO{sub 2}OH(am) material, with Na:Np ≤ 0.3 for the greenish solids and 0.8 ≤ Na:Np ≤ 1.6 for the white and pinkish phases. XRD data confirms the amorphous character of the greenish phase, whereas white and pink solids show well-defined but discrepant XRD patterns

  12. Geometric phases for mixed states during cyclic evolutions

    International Nuclear Information System (INIS)

    Fu Libin; Chen Jingling

    2004-01-01

    The geometric phases of cyclic evolutions for mixed states are discussed in the framework of unitary evolution. A canonical 1-form is defined whose line integral gives the geometric phase, which is gauge invariant. It reduces to the Aharonov and Anandan phase in the pure state case. Our definition is consistent with the phase shift in the proposed experiment (Sjoeqvist et al 2000 Phys. Rev. Lett. 85 2845) for a cyclic evolution if the unitary transformation satisfies the parallel transport condition. A comprehensive geometric interpretation is also given. It shows that the geometric phases for mixed states share the same geometric sense with the pure states

  13. High pressure measurement and CPA equation of state for solubility of carbon dioxide and hydrogen sulfide in 1-butyl-3-methylimidazolium acetate

    International Nuclear Information System (INIS)

    Haghtalab, Ali; Kheiri, Alireza

    2015-01-01

    Highlights: • Solubility of carbon dioxide in pure [bmim][acetate] is measured. • Simultaneous solubility of CO 2 + H 2 S in [bmim][acetate] is measured. • Both physical and chemical models are applied to modelling the (acid gas + IL) systems. • The CPA EoS is used for phase equilibrium calculation. • A reaction thermodynamic equilibrium model is used in liquid phase. - Abstract: Removal of acid gases such as CO 2 and H 2 S from natural gas is essential for commercial, safety and environmental protection that demonstrate the importance of gas sweetening process. Ionic liquids (IL) have been highly demanded as a green solvent to remove acid gases from sour natural gas and capturing of CO 2 from flue gases. In this work, the solubility of CO 2 in 1-butyl-3-methylimidazolium acetate ([bmim][Ac]) is measured at temperatures (303.15, 328.15, 343.15) K and pressure range of (0.1 to 3.9) MPa. Moreover, the experiments are carried out for simultaneous measurements of (CO 2 + H 2 S) (70% + 30% on a mole basis) solubility in the same ionic liquid at T = (303.15, 323.15, 343.15) K and a pressure range of (0.1 to 2.2) MPa. To model the solubility of acid gases in IL, both physical and chemical equilibria are applied so that the (vapour + liquid) equilibrium calculation is carried out through Cubic-Plus-Association (CPA) EoS. The reaction equilibrium thermodynamic model is used in liquid phase so that the chemical reaction is taking place between IL and acid gasses. The Henry’s and reaction equilibrium constants are obtained though optimization of the solubility data. Using CPA EOS, the pure parameters of [bmim][acetate] are optimised and consequently using these parameters, gas partial pressure calculation is performed for the (CO 2 + IL) and (CO 2 + H 2 S + IL) systems. For the (CO 2 + IL) system, the percent average absolute deviation (AAD%) of 4.83 is resulted and for the (H 2 S + CO 2 + IL) system the values of 18.8 and 13.7 are obtained for H 2 S and CO 2

  14. Sibutramine characterization and solubility, a theoretical study

    Science.gov (United States)

    Aceves-Hernández, Juan M.; Nicolás Vázquez, Inés; Hinojosa-Torres, Jaime; Penieres Carrillo, Guillermo; Arroyo Razo, Gabriel; Miranda Ruvalcaba, René

    2013-04-01

    Solubility data from sibutramine (SBA) in a family of alcohols were obtained at different temperatures. Sibutramine was characterized by using thermal analysis and X-ray diffraction technique. Solubility data were obtained by the saturation method. The van't Hoff equation was used to obtain the theoretical solubility values and the ideal solvent activity coefficient. No polymorphic phenomena were found from the X-ray diffraction analysis, even though this compound is a racemic mixture of (+) and (-) enantiomers. Theoretical calculations showed that the polarisable continuum model was able to reproduce the solubility and stability of sibutramine molecule in gas phase, water and a family of alcohols at B3LYP/6-311++G (d,p) level of theory. Dielectric constant, dipolar moment and solubility in water values as physical parameters were used in those theoretical calculations for explaining that behavior. Experimental and theoretical results were compared and good agreement was obtained. Sibutramine solubility increased from methanol to 1-octanol in theoretical and experimental results.

  15. Geometric phases for nonlinear coherent and squeezed states

    International Nuclear Information System (INIS)

    Yang Dabao; Chen Ying; Chen Jingling; Zhang Fulin

    2011-01-01

    The geometric phases for standard coherent states which are widely used in quantum optics have attracted considerable attention. Nevertheless, few physicists consider the counterparts of nonlinear coherent states, which are useful in the description of the motion of a trapped ion. In this paper, the non-unitary and non-cyclic geometric phases for two nonlinear coherent and one squeezed states are formulated, respectively. Moreover, some of their common properties are discussed, such as gauge invariance, non-locality and nonlinear effects. The nonlinear functions have dramatic impacts on the evolution of the corresponding geometric phases. They speed the evolution up or down. So this property may have an application in controlling or measuring geometric phase. For the squeezed case, when the squeezed parameter r → ∞, the limiting value of the geometric phase is also determined by a nonlinear function at a given time and angular velocity. In addition, the geometric phases for standard coherent and squeezed states are obtained under a particular condition. When the time evolution undergoes a period, their corresponding cyclic geometric phases are achieved as well. And the distinction between the geometric phases of the two coherent states may be regarded as a geometric criterion.

  16. Reversibility of magnetic field driven transition from electronic phase separation state to single-phase state in manganites: A microscopic view

    Science.gov (United States)

    Liu, Hao; Lin, Lingfang; Yu, Yang; Lin, Hanxuan; Zhu, Yinyan; Miao, Tian; Bai, Yu; Shi, Qian; Cai, Peng; Kou, Yunfang; Lan, Fanli; Wang, Wenbin; Zhou, Xiaodong; Dong, Shuai; Yin, Lifeng; Shen, Jian

    2017-11-01

    Electronic phase separation (EPS) is a common phenomenon in strongly correlated oxides. For colossal magnetoresistive (CMR) manganites, the EPS is so pronounced that not only does it govern the CMR behavior, but also raises a question whether EPS exists as a ground state for systems or a metastable state. While it has been well known that a magnetic field can drive the transition of the EPS state into a single-phase state in manganites, the reversibility of this transition is not well studied. In this work we use magnetic force microscopy (MFM) to directly visualize the reversibility of the field driven transition between the EPS state and the single-phase state at different temperatures. The MFM images correspond well with the global magnetic and transport property measurements, uncovering the underlying mechanism of the field driven transition between the EPS state and the single-phase state. We argue that EPS state is a consequence of system quenching whose response to an external magnetic field is governed by a local energy landscape.

  17. Thin-layer chromatography with stationary phase gradient as a method for separation of water-soluble vitamins.

    Science.gov (United States)

    Cimpoiu, Claudia; Hosu, Anamaria; Puscas, Anitta

    2012-02-03

    The group of hydrophilic vitamins play an important role in human health, and their lack or excess produces specific diseases. Therefore, the analysis of these compounds is indispensable for monitoring their content in pharmaceuticals and food in order to prevent some human diseases. TLC was successfully applied in the analysis of hydrophilic vitamins, but the most difficult problem in the simultaneous analysis of all these compounds is to find an optimum stationary phase-mobile phase system due to different chemical characteristics of analytes. Unfortunately structural analogues are difficult to separate in one chromatographic run, and this is the case in hydrophilic vitamins investigations. TLC gives the possibility to perform two-dimensional separations by using stationary phase gradient achieving the highest resolution by combining two systems with different selectivity. The goal of this work was to develop a method of analysis enabling separation of hydrophilic vitamins using TLC with adsorbent gradient. The developed method was used for identifying the water-soluble vitamins in alcoholic extracts of Hippophae rhamnoides and of Ribes nigrum. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Solubility of Methane, Ethane, and Propane in Pure Water Using New Binary Interaction Parameters

    Directory of Open Access Journals (Sweden)

    Masoud Behrouz

    2015-07-01

    Full Text Available Solubility of hydrocarbons in water is important due to ecological concerns and new restrictions on the existence of organic pollutants in water streams. Also, the creation of a thermodynamic model has required an advanced study of the phase equilibrium between water (as a basis for the widest spread muds and amines and gas hydrocarbon phases in wide temperature and pressure ranges. Therefore, it is of great interest to develop semi-empirical correlations, charts, or thermodynamic models for estimating the solubility of hydrocarbons in liquid water. In this work, a thermodynamic model based on Mathias modification of Sova-Redlich-Kwong (SRK equation of state is suggested using classical mixing rules with new binary interaction parameters which were used for two-component systems of hydrocarbons and water. Finally, the model results and their deviations in comparison with the experimental data are presented; these deviations were equal to 5.27, 6.06, and 4.1% for methane, ethane, and propane respectively.

  19. Solubility and phase separation of 4-morpholinepropanesulfonic acid (MOPS), and 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO) in aqueous 1,4-dioxane and ethanol solutions

    International Nuclear Information System (INIS)

    Taha, Mohamed; Lee, Ming-Jer

    2011-01-01

    Highlights: → Solubilities of MOPS and MOPSO buffers in aqueous 1,4-dioxane and ethanol solutions. → We found that MOPS-induced phase separation of aqueous solution of 1,4-dioxane. → The phase diagram of (MOPS + water + 1,4-dioxane) system at 298.15 K is documented. → The tie-lines within the two-liquid phase region were also determined at 298.15 K. → The effective excluded volume theory was applied to correlate the binodal LLE data. - Abstract: The buffers 4-morpholinepropanesulfonic acid (MOPS) and 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO) are useful biological zwitterionic buffers within the pH range of 6.5 to 7.9 and 6.2 to 7.6, respectively. The solubilities of these buffers were determined in binary mixtures (1,4-dioxane + water) and (ethanol + water) at T = 298.15 K by using the results of density measurements. It has been observed that MOPS induced liquid-liquid phase splitting for the mixtures of 40% to 90% (w/w) 1,4-dioxane in water. The two-liquid phase formation was visualized with disperse orange 25. The phase equilibrium boundaries, including the regions of one liquid, two liquids, (one liquid + one solid) and (two liquids + one solid), for the (MOPS + water + 1,4-dioxane) system have been determined experimentally at T = 298.15 K. The tie lines of the (liquid + liquid) equilibrium were also measured. The Othmer-Tobias and Bancroft equation were used to evaluate the reliability of the tie-line data. The binodal curve was fitted to an empirical equation and the effective excluded volume (EEV) model. The apparent free energies of transfer (ΔG tr ' ) of MOPS and MOPSO from water to 1,4-dioxane and ethanol solutions have been calculated from the solubility data. These ΔG tr ' values were compared with those of some related biological buffers (TRIS, TAPS, TAPSO, and TABS). Furthermore, we also calculated the contribution of transfer free energies (Δg tr ' ) of -OH group from water to 1,4-dioxane and ethanol solutions.

  20. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

    Energy Technology Data Exchange (ETDEWEB)

    Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S

    2004-04-01

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered.

  1. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

    International Nuclear Information System (INIS)

    Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S.

    2004-01-01

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered

  2. Calculation of solubility of salts in binary aqueous solutions

    International Nuclear Information System (INIS)

    Kolker, A.R.

    1990-01-01

    The possibility of theoretical calculation of solubility of some salts of the MX-type, where M - Na, K, Cs; X - F-I, as well as CsNO 3 and others forming no crystal hydrates in the solid phase, and the azeotropic composition in the water-HNO 3 system is studied. The calculational results of solubility are shown to depend very much on the values accepted for the standard free energies of component formation, melting heats and crystallization and on the difference in heat capacity of the melt and the solid phase

  3. Solubilities of uranium for TILA-99

    International Nuclear Information System (INIS)

    Ollila, K.; Ahonen, L.

    1998-11-01

    This report presents the evaluation of the uranium solubilities in the reference waters of TILA-99. The behaviour of uranium has been discussed separately in the near-field and far-field conditions. The bentonite/groundwater interactions have been considered in the compositions of the fresh and saline near-field reference waters. The far-field groundwaters' compositions include fresh, brackish, saline and very saline, almost brine-type compositions. The pH and redox conditions, as the main parameters affecting the solubilities, are considered. A literature study was made in order to obtain information on the recent dissolution and leaching experiments of UO 2 and spent fuel. The latest literature includes studies on UO 2 solubility under anoxic conditions, in which the methods for simulating the reducing conditions of deep groundwater have been improved. Studies on natural uraninite and its alteration products give a valuable insight into the long-term behaviour of spent fuel. Also the solubility equilibria for some relevant poorly known uranium minerals have been determined. The solubilities of the selected solubility-limiting phases were calculated using the geochemical code, EQ3/6. The NEA database for uranium was the basis for the modelling. The recently extended and updated SR '97 database was used for comparison. The solubility products for uranophane were taken from the latest literature. The recommended values for solubilities were given after a comparison between the calculated solubilities, experimental information and measured concentrations in natural groundwaters. The experiments include several UO 2 dissolution studies in synthetic groundwaters with compositions close to the reference groundwaters. (author)

  4. Solubilities of uranium for TILA-99

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, K. [VTT Chemical Technology, Espoo (Finland); Ahonen, L. [Geological Survey of Finland, Espoo (Finland)

    1998-11-01

    This report presents the evaluation of the uranium solubilities in the reference waters of TILA-99. The behaviour of uranium has been discussed separately in the near-field and far-field conditions. The bentonite/groundwater interactions have been considered in the compositions of the fresh and saline near-field reference waters. The far-field groundwaters` compositions include fresh, brackish, saline and very saline, almost brine-type compositions. The pH and redox conditions, as the main parameters affecting the solubilities, are considered. A literature study was made in order to obtain information on the recent dissolution and leaching experiments of UO{sub 2} and spent fuel. The latest literature includes studies on UO{sub 2} solubility under anoxic conditions, in which the methods for simulating the reducing conditions of deep groundwater have been improved. Studies on natural uraninite and its alteration products give a valuable insight into the long-term behaviour of spent fuel. Also the solubility equilibria for some relevant poorly known uranium minerals have been determined. The solubilities of the selected solubility-limiting phases were calculated using the geochemical code, EQ3/6. The NEA database for uranium was the basis for the modelling. The recently extended and updated SR `97 database was used for comparison. The solubility products for uranophane were taken from the latest literature. The recommended values for solubilities were given after a comparison between the calculated solubilities, experimental information and measured concentrations in natural groundwaters. The experiments include several UO{sub 2} dissolution studies in synthetic groundwaters with compositions close to the reference groundwaters. (author) 81 refs.

  5. Off-diagonal generalization of the mixed-state geometric phase

    International Nuclear Information System (INIS)

    Filipp, Stefan; Sjoeqvist, Erik

    2003-01-01

    The concept of off-diagonal geometric phases for mixed quantal states in unitary evolution is developed. We show that these phases arise from three basic ideas: (1) fulfillment of quantum parallel transport of a complete basis, (2) a concept of mixed-state orthogonality adapted to unitary evolution, and (3) a normalization condition. We provide a method for computing the off-diagonal mixed-state phases to any order for unitarities that divide the parallel transported basis of Hilbert space into two parts: one part where each basis vector undergoes cyclic evolution and one part where all basis vectors are permuted among each other. We also demonstrate a purification based experimental procedure for the two lowest-order mixed-state phases and consider a physical scenario for a full characterization of the qubit mixed-state geometric phases in terms of polarization-entangled photon pairs. An alternative second order off-diagonal mixed-state geometric phase, which can be tested in single-particle experiments, is proposed

  6. Phase-shift calculation using continuum-discretized states

    International Nuclear Information System (INIS)

    Suzuki, Y.; Horiuchi, W.; Arai, K.

    2009-01-01

    We present a method for calculating scattering phase shifts which utilizes continuum-discretized states obtained in a bound-state type calculation. The wrong asymptotic behavior of the discretized state is remedied by means of the Green's function formalism. Test examples confirm the accuracy of the method. The α+n scattering is described using realistic nucleon-nucleon potentials. The 3/2 - and 1/2 - phase shifts obtained in a single-channel calculation are too small in comparison with experiment. The 1/2 + phase shifts are in reasonable agreement with experiment, and gain contributions both from the tensor and central components of the nucleon-nucleon potential.

  7. Determination of radionuclide solubility limits to be used in SR 97. Uncertainties associated to calculated solubilities

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, J.; Cera, E.; Duro, L.; Jordana, S. [QuantiSci S.L., Barcelona (Spain); Pablo, J. de [DEQ-UPC, Barcelona (Spain); Savage, D. [QuantiSci Ltd., Henley-on-Thames (United Kingdom)

    1997-12-01

    The thermochemical behaviour of 24 critical radionuclides for the forthcoming SR97 PA exercise is discussed. The available databases are reviewed and updated with new data and an extended database for aqueous and solid species of the radionuclides of interest is proposed. We have calculated solubility limits for the radionuclides of interest under different groundwater compositions. A sensitivity analysis of the calculated solubilities with the composition of the groundwater is presented. Besides selecting the most likely solubility limiting phases, in this work we have used coprecipitation approaches in order to calculate more realistic solubility limits for minor radionuclides, such as Ra, Am and Cm. The comparison between the calculated solubilities and the concentrations measured in relevant natural systems (NA) and in spent fuel leaching experiments helps to assess the validity of the methodology used and to derive source term concentrations for the radionuclides studied. The uncertainties associated to the solubilities of the main radionuclides involved in the spent nuclear fuel have also been discussed in this work. The variability of the groundwater chemistry; redox conditions and temperature of the system have been considered the main factors affecting the solubilities. In this case, a sensitivity analysis has been performed in order to study solubility changes as a function of these parameters. The uncertainties have been calculated by including the values found in a major extent in typical granitic groundwaters. The results obtained from this analysis indicate that there are some radionuclides which are not affected by these parameters, i.e. Ag, Cm, Ho, Nb, Ni, Np, Pu, Se, Sm, Sn, Sr, Tc and U

  8. Unsteady State Two Phase Flow Pressure Drop Calculations

    OpenAIRE

    Ayatollahi, Shahaboddin

    1992-01-01

    A method is presented to calculate unsteady state two phase flow in a gas-liquid line based on a quasi-steady state approach. A computer program for numerical solution of this method was prepared. Results of calculations using the computer program are presented for several unsteady state two phase flow systems

  9. Solubility of carbon dioxide, methane, and ethane in 1-butanol and saturated liquid densities and viscosities

    International Nuclear Information System (INIS)

    Kariznovi, Mohammad; Nourozieh, Hossein; Abedi, Jalal

    2013-01-01

    Highlights: • Experimental solubilities of CH 4 , C 2 H 6 , and CO 2 in 1-butanol and saturated liquid properties. • Solubilities and saturated liquid densities were predicted with SRK and PR EOS. • Solubility of C 2 H 6 in 1-butanol is higher than CH 4 and CO 2 . • Liquid density and viscosity reduces with dissolution of CH 4 and C 2 H 6 . • Dissolution of CO 2 increases liquid density and reduces liquid viscosity. -- Abstract: A designed pressure–volume–temperature (PVT) apparatus has been used to measure the (vapor + liquid) equilibrium properties of three binary mixtures (methane +, ethane +, and carbon dioxide + 1-butanol) at two temperatures (303 and 323) K and at the pressures up to 6 MPa. The solubility of the compressed gases in 1-butanol and the saturated liquid densities and viscosities were measured. In addition, the density and viscosity of pure 1-butanol were measured at two temperatures (303 and 323) K and at the pressures up to 10 MPa. The experimental results show that the solubility of the gases in 1-butanol increases with pressure and decreases with temperature. The dissolution of gases in 1-butanol causes a decline in the viscosity of liquid phase. The saturated liquid density follows a decreasing trend with the solubility of methane and ethane. However, the dissolution of carbon dioxide in 1-butanol leads to an increase in the density of liquid phase. The experimental data are well correlated with Soave–Redlich–Kwong (SRK) and Peng–Robinson (PR) equations of state (EOSs). SRK EOS was slightly superior for correlating the saturated liquid densities

  10. Review on theoretical calculation of the magnetite solubility

    International Nuclear Information System (INIS)

    Kim, Myongjin; Kim, Hongpyo

    2013-01-01

    FAC is influenced by many factors such as water chemistry (temperature, pH, dissolved oxygen (D. O.) in a solution, and etc.), chemical composition of carbon steel, and fluid dynamics. Magnetite is formed at the inner surface of carbon steel, and protects the integrity of pipes from the damage. The magnetite has a stable state at each equilibrium condition, so that it can be dissolved into the fluid under conditions that satisfy the equilibrium state. The iron solubility can be calculated by considering the reaction equilibrium constants for prediction of a change in the magnetite layer. In the present work, studies on the magnetite solubility were reviewed for the theoretical calculation of magnetite, and iron solubility data were compared to find the proper solubility values of each study

  11. Thermodynamic properties of soddyite from solubility and calorimetry measurements

    International Nuclear Information System (INIS)

    Gorman-Lewis, Drew; Mazeina, Lena; Fein, Jeremy B.; Szymanowski, Jennifer E.S.; Burns, Peter C.; Navrotsky, Alexandra

    2007-01-01

    The release of uranium from geologic nuclear waste repositories under oxidizing conditions can only be modeled if the thermodynamic properties of the secondary uranyl minerals that form in the repository setting are known. Toward this end, we synthesized soddyite ((UO 2 ) 2 (SiO 4 )(H 2 O) 2 ), and performed solubility measurements from both undersaturation and supersaturation. The solubility measurements rigorously constrain the value of the solubility product of synthetic soddyite, and consequently its standard-state Gibbs free energy of formation. The log solubility product (lg K sp ) with its error (1σ) is (6.43 + 0.20/-0.37), and the standard-state Gibbs free energy of formation is (-3652.2 ± 4.2 (2σ)) kJ mol -1 . High-temperature drop solution calorimetry was conducted, yielding a calculated standard-state enthalpy of formation of soddyite of (-4045.4 ± 4.9 (2σ)) kJ . mol -1 . The standard-state Gibbs free energy and enthalpy of formation yield a calculated standard-state entropy of formation of soddyite of (-1318.7 ± 21.7 (2σ)) J . mol -1 . K -1 . The measurements and associated thermodynamic calculations not only describe the T = 298 K stability and solubility of soddyite, but they also can be used in predictions of repository performance through extrapolation of these properties to repository temperatures

  12. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes

    International Nuclear Information System (INIS)

    Caffrey, Martin

    2015-01-01

    A comprehensive and up-to-date review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes is reported. Recent applications of the method for in situ serial crystallography at X-ray free-electron lasers and synchrotrons are described. The lipid cubic phase or in meso method is a robust approach for crystallizing membrane proteins for structure determination. The uptake of the method is such that it is experiencing what can only be described as explosive growth. This timely, comprehensive and up-to-date review introduces the reader to the practice of in meso crystallogenesis, to the associated challenges and to their solutions. A model of how crystallization comes about mechanistically is presented for a more rational approach to crystallization. The possible involvement of the lamellar and inverted hexagonal phases in crystallogenesis and the application of the method to water-soluble, monotopic and lipid-anchored proteins are addressed. How to set up trials manually and automatically with a robot is introduced with reference to open-access online videos that provide a practical guide to all aspects of the method. These range from protein reconstitution to crystal harvesting from the hosting mesophase, which is noted for its viscosity and stickiness. The sponge phase, as an alternative medium in which to perform crystallization, is described. The compatibility of the method with additive lipids, detergents, precipitant-screen components and materials carried along with the protein such as denaturants and reducing agents is considered. The powerful host and additive lipid-screening strategies are described along with how samples that have low protein concentration and cell-free expressed protein can be used. Assaying the protein reconstituted in the bilayer of the cubic phase for function is an important element of quality control and is detailed. Host lipid design for crystallization at low temperatures and for

  13. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Martin, E-mail: martin.caffrey@tcd.ie [Trinity College Dublin, Dublin (Ireland)

    2015-01-01

    A comprehensive and up-to-date review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes is reported. Recent applications of the method for in situ serial crystallography at X-ray free-electron lasers and synchrotrons are described. The lipid cubic phase or in meso method is a robust approach for crystallizing membrane proteins for structure determination. The uptake of the method is such that it is experiencing what can only be described as explosive growth. This timely, comprehensive and up-to-date review introduces the reader to the practice of in meso crystallogenesis, to the associated challenges and to their solutions. A model of how crystallization comes about mechanistically is presented for a more rational approach to crystallization. The possible involvement of the lamellar and inverted hexagonal phases in crystallogenesis and the application of the method to water-soluble, monotopic and lipid-anchored proteins are addressed. How to set up trials manually and automatically with a robot is introduced with reference to open-access online videos that provide a practical guide to all aspects of the method. These range from protein reconstitution to crystal harvesting from the hosting mesophase, which is noted for its viscosity and stickiness. The sponge phase, as an alternative medium in which to perform crystallization, is described. The compatibility of the method with additive lipids, detergents, precipitant-screen components and materials carried along with the protein such as denaturants and reducing agents is considered. The powerful host and additive lipid-screening strategies are described along with how samples that have low protein concentration and cell-free expressed protein can be used. Assaying the protein reconstituted in the bilayer of the cubic phase for function is an important element of quality control and is detailed. Host lipid design for crystallization at low temperatures and for

  14. Hydration states of AFm cement phases

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  15. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    Directory of Open Access Journals (Sweden)

    Rongning Liang

    2018-03-01

    Full Text Available Nowadays, it is still difficult for molecularly imprinted polymers (MIPs to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  16. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    Science.gov (United States)

    Liang, Rongning; Wang, Tiantian; Zhang, Huan; Yao, Ruiqing; Qin, Wei

    2018-03-01

    Nowadays, it is still difficult for molecularly imprinted polymer (MIPs) to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  17. Gaussian cloning of coherent states with known phases

    International Nuclear Information System (INIS)

    Alexanian, Moorad

    2006-01-01

    The fidelity for cloning coherent states is improved over that provided by optimal Gaussian and non-Gaussian cloners for the subset of coherent states that are prepared with known phases. Gaussian quantum cloning duplicates all coherent states with an optimal fidelity of 2/3. Non-Gaussian cloners give optimal single-clone fidelity for a symmetric 1-to-2 cloner of 0.6826. Coherent states that have known phases can be cloned with a fidelity of 4/5. The latter is realized by a combination of two beam splitters and a four-wave mixer operated in the nonlinear regime, all of which are realized by interaction Hamiltonians that are quadratic in the photon operators. Therefore, the known Gaussian devices for cloning coherent states are extended when cloning coherent states with known phases by considering a nonbalanced beam splitter at the input side of the amplifier

  18. Extended solid solubility of a Co–Cr system by mechanical alloying

    International Nuclear Information System (INIS)

    Betancourt-Cantera, J.A.; Sánchez-De Jesús, F.; Torres-Villaseñor, G.; Bolarín-Miró, A.M.; Cortés-Escobedo, C.A.

    2012-01-01

    Highlights: ► Solubility of the Co–Cr system is modified by means of Mechanical Alloying (MA). ► MA induces the formation of new solid solutions of Co–Cr system in non-equilibrium. ► MA promote the formation of metastable Co–Cr phases with greater solubility. - Abstract: Mechanical alloying, MA, has been successfully used to extend the limits of solid solubility in many commercially important metallic systems. The aim of this work is to demonstrate that MA modifies the solid solubility of the Co–Cr system. Co and Cr elemental powders were used as precursors and mixed in an adequate weight ratio to obtain Co 100−x Cr x (0 ≤ x ≤ 100, Δx = 10) to study the effect of mechanical processing in the solubility of the Co–Cr system. Processing was carried out at room temperature in a shaker mixer mill using vials and balls of hardened steel as milling media with a ball:powder weight ratio of 10:1. Crystalline structure characterization of the milled powders was conducted using X-ray diffraction, and phase transformations as a function of composition were analyzed. Thermal analysis confirmed structural changes occurred in the mechanically alloyed powders. The evolution of the phase transformations with composition is reported for each composition. The results showed that after high energy ball milling for 7 h, the solid solubility between Co and Cr could be evidently extended, despite the low solid solubility at the equilibrium conditions of this system. Additionally, the micrographs of the milled powders showed that increasing composition of chromium changes the shape and size of the particles while simultaneously reducing their agglomeration; this effect is possibly attributed to the brittleness of elemental chrome.

  19. Extended solid solubility of a Co-Cr system by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt-Cantera, J.A. [Area Academica de Ciencias de la Tierra y Materiales, UAEH Carr. Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Sanchez-De Jesus, F., E-mail: fsanchez@uaeh.edu.mx [Area Academica de Ciencias de la Tierra y Materiales, UAEH Carr. Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Torres-Villasenor, G. [Instituto de Investigaciones en Materiales-UNAM, Apdo. Postal 70-360, 04510 Mexico, DF (Mexico); Bolarin-Miro, A.M. [Area Academica de Ciencias de la Tierra y Materiales, UAEH Carr. Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Cortes-Escobedo, C.A. [Centro de Investigacion e Innovacion Tecnologica del IPN Cda. CECATI S/N, Col. Sta. Catarina, Azcapotzalco, 02250 Mexico, DF (Mexico)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Solubility of the Co-Cr system is modified by means of Mechanical Alloying (MA). Black-Right-Pointing-Pointer MA induces the formation of new solid solutions of Co-Cr system in non-equilibrium. Black-Right-Pointing-Pointer MA promote the formation of metastable Co-Cr phases with greater solubility. - Abstract: Mechanical alloying, MA, has been successfully used to extend the limits of solid solubility in many commercially important metallic systems. The aim of this work is to demonstrate that MA modifies the solid solubility of the Co-Cr system. Co and Cr elemental powders were used as precursors and mixed in an adequate weight ratio to obtain Co{sub 100-x}Cr{sub x} (0 {<=} x {<=} 100, {Delta}x = 10) to study the effect of mechanical processing in the solubility of the Co-Cr system. Processing was carried out at room temperature in a shaker mixer mill using vials and balls of hardened steel as milling media with a ball:powder weight ratio of 10:1. Crystalline structure characterization of the milled powders was conducted using X-ray diffraction, and phase transformations as a function of composition were analyzed. Thermal analysis confirmed structural changes occurred in the mechanically alloyed powders. The evolution of the phase transformations with composition is reported for each composition. The results showed that after high energy ball milling for 7 h, the solid solubility between Co and Cr could be evidently extended, despite the low solid solubility at the equilibrium conditions of this system. Additionally, the micrographs of the milled powders showed that increasing composition of chromium changes the shape and size of the particles while simultaneously reducing their agglomeration; this effect is possibly attributed to the brittleness of elemental chrome.

  20. Water-soluble phosphine-protected Au9 clusters: Electronic structures and nuclearity conversion via phase transfer

    Science.gov (United States)

    Yao, Hiroshi; Tsubota, Shuhei

    2017-08-01

    In this article, isolation, exploration of electronic structures, and nuclearity conversion of water-soluble triphenylphosphine monosulfonate (TPPS)-protected nonagold (Au9) clusters are outlined. The Au9 clusters are obtained by the reduction of solutions containing TPPS and HAuCl4 and subsequent electrophoretic fractionation. Mass spectrometry and elemental analysis reveal the formation of [Au9(TPPS)8]5- nonagold cluster. UV-vis absorption and magnetic circular dichroism (MCD) spectra of aqueous [Au9(TPPS)8]5- are quite similar to those of [Au9(PPh3)8]3+ in organic solvent, so the solution-phase structures are likely similar for both systems. Simultaneous deconvolution analysis of absorption and MCD spectra demonstrates the presence of some weak electronic transitions that are essentially unresolved in the UV-vis absorption. Quantum chemical calculations for a model compound [Au9(pH3)8]3+ show that the possible (solution-phase) skeletal structure of the nonagold cluster has D2h core symmetry rather than C4-symmetrical centered crown conformation, which is known as the crystal form of the Au9 compound. Moreover, we find a new nuclearity conversion route from Au9 to Au8; that is, phase transfer of aqueous [Au9(TPPS)8]5- into chloroform using tetraoctylammonium bromide yields [Au8(TPPS)8]6- clusters in the absence of excess phosphine.

  1. Phase transitions, solubility, and crystallization kinetics of phytosterols and phytosterol-oil blends.

    Science.gov (United States)

    Vaikousi, Hariklia; Lazaridou, Athina; Biliaderis, Costas G; Zawistowski, Jerzy

    2007-03-07

    The thermal properties, solubility characteristics, and crystallization kinetics of four commercial phytosterol preparations (soy and wood sterols and stanols) and their blends with corn oil were examined. Differential scanning calorimetry (DSC) revealed narrow melting peaks between 138 and 145 degrees C for all phytosterol samples, reversible on rescan. Broader and less symmetrical melting transitions at lower temperatures with increasing oil content were observed for two samples of phytosterol-oil admixtures. The estimated, from the solubility law, deltaH values (34.7 and 70.7 mJ/mg for wood sterols and stanols, respectively), were similar to the DSC experimental data. Fatty acid esters of soy stanols differing in the chain length of the acyl groups (C2-C12) exhibited suppression of the melting point and increase of the fusion enthalpy with increasing chain length of the acyl group; the propionate ester exhibited the highest melting point (Tm: 151 degrees C) among all stanol-fatty acid esters. Solubility of phytosterols in corn oil was low (2-3% w/w at 25 degrees C) and increased slightly with a temperature rise. Plant sterols appeared more soluble than stanols with higher critical concentrations at saturation. The induction time for recrystallization of sterol-oil liquid blends, as determined by spectrophotometry, depended on the supersaturation ratio. The calculated interfacial free energies between crystalline sediments and oil were smaller for sterol samples (3.80 and 3.85 mJ/m2) than stanol mixtures (5.95 and 6.07 mJ/m2), in accord with the higher solubility of the sterol crystals in corn oil. The XRD patterns and light microscopy revealed some differences in the characteristics among the native and recrystallized in oil phytosterol preparations.

  2. (Solid + liquid) phase diagram for (indomethacin + nicotinamide)-methanol or methanol/ethyl acetate mixture and solubility behavior of 1:1 (indomethacin + nicotinamide) co-crystal at T = (298.15 and 313.15) K

    International Nuclear Information System (INIS)

    Sun, Xiaowei; Yin, Qiuxiang; Ding, Suping; Shen, Zhiming; Bao, Ying; Gong, Junbo; Hou, Baohong; Hao, Hongxun; Wang, Yongli; Wang, Jingkang; Xie, Chuang

    2015-01-01

    Highlights: • Ternary phase diagrams of (IMC + NCT)-methanol or methanol/ethyl acetate mixture at T = (298.15 and 313.15) K were measured. • The effects of temperature and introduced ethyl acetate on solid phase stability were discussed. • Solubility of (IMC + NCT) cocrystals was first correlated using a model considering solubility product and complexation. • Solubility of (IMC + NCT) cocrystals as a function of co-former concentration was evaluated. - Abstract: (Solid + liquid) equilibrium data for indomethacin (IMC) and nicotinamide (NCT) in both methanol (MeOH) and methanol/ethyl acetate (EA) mixture were determined using a static method at T = (298.15 and 313.15) K under atmospheric pressure. The 1:1 (IMC + NCT) co-crystal and IMC·MeOH were found in both systems under conditions investigated. The solubility of the 1:1 (IMC + NCT) co-crystal was correlated using a mathematical model consisting of both solubility product and a complexation process. Solubility of (IMC + NCT) co-crystals as a function of co-former (NCT) concentration was evaluated. It was found that temperature has a significant effect on the formation of methanol solvate in the systems investigated. Solvate formation could be suppressed either by increasing temperature or using solvent mixtures. Additionally, the solvent mixture could level out the solubility differences between IMC and NCT, resulting in larger and more symmetric regions for the (IMC + NCT) co-crystal, which would be helpful to the development of the co-crystallization process for the 1:1 (IMC + NCT) co-crystal

  3. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate.

    Science.gov (United States)

    Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon

    2016-01-01

    The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil(®) M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of water-soluble fenofibrate.

  4. Effect of the structure, solid state and lipophilicity on the solubility of novel bicyclic derivatives

    International Nuclear Information System (INIS)

    Blokhina, Svetlana V.; Ol’khovich, Marina V.; Sharapova, Angelica V.; Volkova, Tatyana V.; Proshin, Alexey N.; Perlovich, German L.

    2014-01-01

    Highlights: • The solubility in buffer pH 7.4 of novel bicyclo-derivatives of amine were measured. • The influence of melting parameters and lipophilicity on the solubility was studied. • The thermodynamic parameters of the solubility process were calculated. - Abstract: Novel bicyclic derivatives have been synthesized. The solubility of drug-like substances in phosphate buffer rH 7.4 has been measured within the range of (9.02 · 10 −5 to 1.05 · 10 −4 ) mol/l. The relationship between the chemical nature and the structure of the aryl substituents and the solubility parameter was investigated. The fusion temperatures, enthalpies and entropies have been determined experimentally. The influence of thermophysical characteristics and lipophilicity on the solubility was studied using regression analysis. The calculations by the solubility/lipophilicity equation showed an overall improvement of the predictions equal to 0.5 log units. It was concluded that the solvation has a considerable influence on the solubility of the compounds under consideration. It was also determined that the alkyl- and halogen-derivatives solubility values correlate with HYBOT descriptors characterizing the (donor + acceptor) properties of the substances. The thermodynamic parameters of the solubility process were calculated using the temperature dependences. The study also revealed that the solubility of the bicyclic compounds is characterized by high endothermicity of the processes and negative entropies

  5. Bioinspired co-crystals of Imatinib providing enhanced kinetic solubility.

    Science.gov (United States)

    Reggane, Maude; Wiest, Johannes; Saedtler, Marco; Harlacher, Cornelius; Gutmann, Marcus; Zottnick, Sven H; Piechon, Philippe; Dix, Ina; Müller-Buschbaum, Klaus; Holzgrabe, Ulrike; Meinel, Lorenz; Galli, Bruno

    2018-05-04

    Realizing the full potential of co-crystals enhanced kinetic solubility demands a comprehensive understanding of the mechanisms of dissolution, phase conversion, nucleation and crystal growth, and of the complex interplay between the active pharmaceutical ingredient (API), the coformer and co-existing forms in aqueous media. One blueprint provided by nature to keep poorly water-soluble bases in solution is the complexation with phenolic acids. Consequently, we followed a bioinspired strategy for the engineering of co-crystals of a poorly water-soluble molecule - Imatinib - with a phenolic acid, syringic acid (SYA). The dynamics of dissolution and solution-mediated phase transformations were monitored by Nuclear Magnetic Resonance (NMR) spectroscopy, providing mechanistic insights into the 60 fold-increased long lasting concentrations achieved by the syringate co-crystals as compared to Imatinib base and Imatinib mesylate. This lasting effect was linked to SYA's ability to delay the formation and nucleation of Imatinib hydrate - the thermodynamically stable form in aqueous media - through a metastable association of SYA with Imatinib in solution. Results from permeability studies evidenced that SYA did not impact Imatinib's permeability across membranes while suggesting improved bioavailability through higher kinetic solubility at the biological barriers. These results reflect that some degree of hydrophobicity of the coformer might be key to extend the kinetic solubility of co-crystals with hydrophobic APIs. Understanding how kinetic supersaturation can be shaped by the selection of an interactive coformer may help achieving the needed performance of new forms of poorly water-soluble, slowly dissolving APIs. Copyright © 2018. Published by Elsevier B.V.

  6. Solubility of polyvalent cations in fogwater at an urban site in Strasbourg (France)

    Science.gov (United States)

    Millet, M.; Wortham, H.; Mirabel, Ph.

    The concentrations in the soluble and total (soluble + insoluble) fractions of Mg, Ca, Fe, Mn, Zn, Al, Cd and Pb have been analysed by "inductively coupled plasma (ICP)" in 14 fog events collected in 1992 at an urban site in France (Strasbourg). For each fog event, two droplet size categories (2-6 μm and 5-8 μm) have been collected separately. For the analysis of the polyvalent cations in the soluble and total fractions, an analytical procedure using ICP and filtration on cellulose/PVC filters has been developed. The study of the solubility of some polyvalent cations has shown that two of the most important factors controlling the partitioning between the soluble and insoluble fraction are the nature of the particles and the pH of the fogwater. The influence of pH depended on the element. The solubility of Pb, Cd, Al, Fe, Mg, and Ca were pH dependent whereas, Zn and Mn solubility varied but no relationship with pH existed, ranging between 25 and 100% and 10 and 100%, respectively. On the other hand, Mg, Pb and Ca were predominantly present in the soluble phase, whereas Al was prevalent in the insoluble fraction. In the case of Cd and Fe., the presence in the soluble or insoluble phase depended largely on the fogwater pH.

  7. Study of N-cinnamoylphenylhydroxylaminate solubility in water and organic solvents

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Shpak, Eh.A.; Samchuk, A.I.

    1975-01-01

    The composition of complexes of N-cinnamoylphenylhydroxylamine with copper, cadmium, lead, indium, iron, gallium, titanium, zirconium, hafnium, niobium, tantalum, tungsten, molybdenum and vanadium was determined. The solubility products of the N-cinnamoylphenylhydroxylaminates of copper, cadmium, indium, gallium and iron were determined by the method of measuring the solubility of precipitates in acid. The solubility of N-cinnamoylphenylhydroxalaminates of cadmium, indium, iron, titanium, zirconium, hafnium, niobium, tantalum, vanadium, molybdenum and tungsten in organic solvents was studied. Two-phase constants for the stability of the complexes were calculated. (author)

  8. Antiferrodistortive phase transitions and ground state of PZT ceramics

    International Nuclear Information System (INIS)

    Pandey, Dhananjai

    2013-01-01

    The ground state of the technologically important Pb(Zr x Ti (1-x) )O 3 , commonly known as PZT, ceramics is currently under intense debate. The phase diagram of this material shows a morphotropic phase boundary (MPB) for x∼0.52 at 300K, across which a composition induced structural phase transition occurs leading to maximization of the piezoelectric properties. In search for the true ground state of the PZT in the MPB region, Beatrix Noheda and coworkers first discovered a phase transition from tetragonal (space group P4mm) to an M A type monoclinic phase (space group Cm) at low temperatures for x=0.52. Soon afterwards, we discovered yet another low temperature phase transition for the same composition in which the M A type (Cm) monoclinic phase transforms to another monoclinic phase with Cc space group. We have shown that the Cm to Cc phase transition is an antiferrodistortive (AFD) transition involving tilting of oxygen octahedra leading to unit cell doubling and causing appearance of superlattice reflections which are observable in the electron and neutron diffraction patterns only and not in the XRD patterns, as a result of which Noheda and coworkers missed the Cc phase in their synchrotron XRD studies at low temperatures. Our findings were confirmed by leading groups using neutron, TEM, Raman and high pressure diffraction studies. The first principles calculations also confirmed that the true ground state of PZT in the MPB region has Cc space group. However, in the last couple of years, the Cc space group of the ground state has become controversial with an alternative proposal of R3c as the space group of the ground state phase which is proposed to coexist with the metastable Cm phase. In order to resolve this controversy, we recently revisited the issue using pure PZT and 6% Sr 2+ substituted PZT, the latter samples show larger tilt angle on account of the reduction in the average cationic radius at the Pb 2+ site. Using high wavelength neutrons and high

  9. 3 and 4 oxidation state element solubilities in borosilicate glasses. Implement to actinides in nuclear glasses

    International Nuclear Information System (INIS)

    Cachia, J.N.

    2005-12-01

    In order to ensure optimal radionuclides containment, the knowledge of the actinide loading limits in nuclear waste glasses and also the comprehension of the solubilization mechanisms of these elements are essential. A first part of this manuscript deals with the study of the differences in solubility of the tri and tetravalent elements (actinides and surrogates) particularly in function of the melting temperature. The results obtained indicate that trivalent elements (La, Gd, Nd, Am, Cm) exhibit a higher solubility than tetravalent elements (Hf, Th, Pu). Consequently, it was planned to reduce plutonium at the oxidation state (III), the later being essentially tetravalent in borosilicate glasses. An innovating reduction process of multi-valent elements (cerium, plutonium) using silicon nitride has been developed in a second part of this work. Reduced plutonium-bearing glasses synthesized by Si 3 N 4 addition made it possible to double the plutonium solubility from 2 to 4 wt% at 1200 deg C. A structural approach to investigate the differences between tri and tetravalent elements was finally undertaken. These investigations were carried out by X-rays Absorption Spectroscopy (EXAFS) and NMR. Trivalent rare earth and actinide elements seem to behave as network modifiers while tetravalent elements rather present true intermediaries' behaviour. (author)

  10. Radionuclide solubility control by solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, F.; Klinkenberg, M.; Rozov, K.; Bosbach, D. [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy and Climate Research - Nuclear Waste Management and Reactor Safety (IEK-6); Vinograd, V. [Frankfurt Univ. (Germany). Inst. of Geosciences

    2015-07-01

    The migration of radionuclides in the geosphere is to a large extend controlled by sorption processes onto minerals and colloids. On a molecular level, sorption phenomena involve surface complexation, ion exchange as well as solid solution formation. The formation of solid solutions leads to the structural incorporation of radionuclides in a host structure. Such solid solutions are ubiquitous in natural systems - most minerals in nature are atomistic mixtures of elements rather than pure compounds because their formation leads to a thermodynamically more stable situation compared to the formation of pure compounds. However, due to a lack of reliable data for the expected scenario at close-to equilibrium conditions, solid solution systems have so far not been considered in long-term safety assessments for nuclear waste repositories. In recent years, various solid-solution aqueous solution systems have been studied. Here we present state-of-the art results regarding the formation of (Ra,Ba)SO{sub 4} solid solutions. In some scenarios describing a waste repository system for spent nuclear fuel in crystalline rocks {sup 226}Ra dominates the radiological impact to the environment associated with the potential release of radionuclides from the repository in the future. The solubility of Ra in equilibrium with (Ra,Ba)SO{sub 4} is much lower than the one calculated with RaSO{sub 4} as solubility limiting phase. Especially, the available literature data for the interaction parameter W{sub BaRa}, which describes the non-ideality of the solid solution, vary by about one order of magnitude (Zhu, 2004; Curti et al., 2010). The final {sup 226}Ra concentration in this system is extremely sensitive to the amount of barite, the difference in the solubility products of the end-member phases, and the degree of non-ideality of the solid solution phase. Here, we have enhanced the fundamental understanding regarding (1) the thermodynamics of (Ra,Ba)SO{sub 4} solid solutions and (2) the

  11. Observation of nonadditive mixed-state phases with polarized neutrons.

    Science.gov (United States)

    Klepp, Jürgen; Sponar, Stephan; Filipp, Stefan; Lettner, Matthias; Badurek, Gerald; Hasegawa, Yuji

    2008-10-10

    In a neutron polarimetry experiment the mixed-state relative phases between spin eigenstates are determined from the maxima and minima of measured intensity oscillations. We consider evolutions leading to purely geometric, purely dynamical, and combined phases. It is experimentally demonstrated that the sum of the individually determined geometric and dynamical phases is not equal to the associated total phase which is obtained from a single measurement, unless the system is in a pure state.

  12. Solubility of mixed monomers of tetrafluoroethylene and propylene in water and latex

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Okamoto, Jiro

    1978-03-01

    For kinetical analysis of the emulsion copolymerization of tetrafluoroethylene with propylene and selection of the optimum reaction conditions, the monomer concentrations and composition of the polymer particle were measured and the relations with reaction conditions were determined. Solubilities of tetrafluoroethylene and propylene in water increase with pressure. solubility of propylene is larger than that of tetrafluoroethylene. Solubility of the mixed monomers in water and latex increases with pressure and propylene concentration and decreases with temperature. Propylene concentration in the dissolved monomers is dependent on its concentration in the gas phase and independent of pressure and temperature. The monomer concentrations and the composition were estimated from measurements. Under propylene concentration in the gas phase of 0 to 40 wt % at 30 Kg/cm 2 G and 40 0 C, the monomer concentration and propylene fraction of the polymer particle are 17 -- 27% and 0 -- 62% respectively. The amount of propylene in the particle increases with its fraction in the gas phase, but the amount of tetrafluoroethylene is independent of its fraction in the gas phase. Monomer composition of the polymer particle is dependent on monomer composition of the gas phase and independent of temperature and pressure. The concentration in the polymer particle is 17% at propylene concentration 10 mole % in the gas phase. (auth.)

  13. Thermodynamic model of Ni(II) solubility, hydrolysis and complex formation with ISA

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Siso, Maria Rosa; Duro, Lara; Bruno, Jordi [Amphos21, Barcelona (Spain); Gaona, Xavier; Altmaier, Marcus [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Nuclear Waste Disposal

    2018-04-01

    The solubility of β-Ni(OH){sub 2}(cr) was investigated at T=(22±2) C in the absence and presence of α-isosaccharinic acid (ISA), the main degradation product of cellulose under alkaline pH conditions. Batch solubility experiments were performed from undersaturation conditions under inert gas (Ar) atmosphere. Solubility experiments in the absence of ISA were conducted in 0.5 and 3.0 M NaCl-NaOH solutions at 7.5 ≤ pH{sub m} ≤ 13 (with pH{sub m} = -log{sub 10}[H{sup +}]). XRD analyses of selected solid phases collected after completing the solubility experiments (∼300 days) confirmed that β-Ni(OH){sub 2}(cr) remains as solid phase controlling the solubility of Ni(II) in all investigated conditions. Based on the slope analysis (log{sub 10}[Ni] vs. pH{sub m}) of the solubility data and solid phase characterization, the equilibrium reactions β-Ni(OH){sub 2}(cr)+2 H{sup +} <=> Ni{sup 2+}+2 H{sub 2}O(l) and β-Ni(OH){sub 2}(cr) <=> Ni(OH){sub 2}(aq) were identified as controlling the solubility of Ni(II) within the investigated pH{sub m} region. The conditional equilibrium constants determined from the solubility experiments at different ionic strengths were evaluated with the specific ion interaction theory (SIT). In contrast to the current thermodynamic selection in the NEA-TDB, solubility data collected in the present work does not support the formation of the anionic hydrolysis species Ni(OH){sub 3}{sup -} up to pH{sub m} ≤ 13.0. Solubility experiments in the presence of ISA were conducted in 0.5 M NaCl-NaOH-NaISA solutions with 0.01 M ≤ [NaISA] ≤ 0.2 M and 9 ≤ pH{sub m} ≤ 13. XRD analyses confirmed that β-Ni(OH){sub 2}(cr) is also the solid phase controlling the solubility of Ni(II) in the presence of ISA. Solubility data of all investigated systems can be properly explained with chemical and thermodynamic models including the formation of the complexes NiOHISA(aq), Ni(OH){sub 2}ISA{sup -} and Ni(OH){sub 3}ISA{sup 2-}. The reported data confirm

  14. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate

    Directory of Open Access Journals (Sweden)

    Yousaf AM

    2016-01-01

    Full Text Available Abid Mehmood Yousaf,1,2 Omer Mustapha,1 Dong Wuk Kim,1 Dong Shik Kim,1 Kyeong Soo Kim,1 Sung Giu Jin,1 Chul Soon Yong,3 Yu Seok Youn,4 Yu-Kyoung Oh,5 Jong Oh Kim,3 Han-Gon Choi1 1College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, South Korea; 2Faculty of Pharmacy, University of Central Punjab, Johar, Lahore, Pakistan; 3College of Pharmacy, Yeungnam University, Gyongsan, North Gyeongsang, 4School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi, 5College of Pharmacy, Seoul National University, Seoul, South Korea Purpose: The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate.Methods: Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion.Results: All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1

  15. Stochastic Kuramoto oscillators with discrete phase states

    Science.gov (United States)

    Jörg, David J.

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  16. Stochastic Kuramoto oscillators with discrete phase states.

    Science.gov (United States)

    Jörg, David J

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  17. A new soluble and bioactive polymorph of praziquantel.

    Science.gov (United States)

    Zanolla, Debora; Perissutti, Beatrice; Passerini, Nadia; Chierotti, Michele R; Hasa, Dritan; Voinovich, Dario; Gigli, Lara; Demitri, Nicola; Geremia, Silvano; Keiser, Jennifer; Cerreia Vioglio, Paolo; Albertini, Beatrice

    2018-01-30

    Praziquantel is the only available drug to treat Schistosomiasis. However, its utilization is limited by many drawbacks, including the high therapeutic dose needed, resulting in large tablets and capsules difficult to be swallowed, especially from pediatric patients. In this study, an alternative option to overcome these disadvantages is proposed: to switch to a novel crystalline polymorph of racemic compound praziquantel. The preparation of the crystalline polymorph was realized via a neat grinding process in a vibrational mill. The new phase (Form B) was chemically identical to the starting material (as proved by HPLC, 1 H-NMR, and polarimetry), but showed different physical properties (as evaluated by SEM, differential scanning calorimetry, thermogravimetry, ATR-FTIR spectroscopy, X-ray powder diffraction, and solid-state NMR). Furthermore, the crystal structure of the new phase was solved from the powder synchrotron X-ray diffraction pattern, resulting in a monoclinic C2/c cell and validated by DFT-D calculation. Moreover the simulated solid-state NMR 13 C chemical shifts were in excellent agreement with the experimental data. The conversion of original praziquantel into Form B showed to affect positively the water solubility and the intrinsic dissolution rate of praziquantel. Both the in vitro and in vivo activity against Schistosoma mansoni were maintained. Our findings suggest that the new phase, that proved to be physically stable for at least one year, is a promising product for designing a new praziquantel formulation. Copyright © 2018. Published by Elsevier B.V.

  18. Equations of State and Phase Diagrams of Ammonia

    Science.gov (United States)

    Glasser, Leslie

    2009-01-01

    We present equations of state relating the phases and a three-dimensional phase diagram for ammonia with its solid, liquid, and vapor phases, based on fitted authentic experimental data and including recent information on the high-pressure solid phases. This presentation follows similar articles on carbon dioxide and water published in this…

  19. Solubility of magnetite in high temperature water and an approach to generalized solubility computations

    International Nuclear Information System (INIS)

    Dinov, K.; Ishigure, K.; Matsuura, C.; Hiroishi, D.

    1993-01-01

    Magnetite solubility in pure water was measured at 423 K in a fully teflon-covered autoclave system. A fairly good agreement was found to exist between the experimental data and calculation results obtained from the thermodynamical model, based on the assumption of Fe 3 O 4 dissolution and Fe 2 O 3 deposition reactions. A generalized thermodynamical approach to the solubility computations under complex conditions on the basis of minimization of the total system Gibbs free energy was proposed. The forms of the chemical equilibria were obtained for various systems initially defined and successfully justified by the subsequent computations. A [Fe 3+ ] T -[Fe 2+ ] T phase diagram was introduced as a tool for systematic understanding of the magnetite dissolution phenomena in pure water and under oxidizing and reducing conditions. (orig.)

  20. Facilitating Conceptual Change in Understanding State of Matter and Solubility Concepts by Using 5E Learning Cycle Model

    Science.gov (United States)

    Ceylan, Eren; Geban, Omer

    2009-01-01

    The main purpose of the study was to compare the effectiveness of 5E learning cycle model based instruction and traditionally designed chemistry instruction on 10th grade students' understanding of state of matter and solubility concepts. In this study, 119 tenth grade students from chemistry courses instructed by same teacher from an Anatolian…

  1. DEPENDENCY OF SULFATE SOLUBILITY ON MELT COMPOSITION AND MELT POLYMERIZATION

    International Nuclear Information System (INIS)

    JANTZEN, CAROL M.

    2004-01-01

    Sulfate and sulfate salts are not very soluble in borosilicate waste glass. When sulfate is present in excess it can form water soluble secondary phases and/or a molten salt layer (gall) on the melt pool surface which is purported to cause steam explosions in slurry fed melters. Therefore, sulfate can impact glass durability while formation of a molten salt layer on the melt pool can impact processing. Sulfate solubility has been shown to be compositionally dependent in various studies, (e.g. , B2O3, Li2O, CaO, MgO, Na2O, and Fe2O3 were shown to increase sulfate solubility while Al2O3 and SiO2 decreased sulfate solubility). This compositional dependency is shown to be related to the calculated melt viscosity at various temperatures and hence the melt polymerization

  2. Phase-change related epigenetic and physiological changes in Pinus radiata D. Don.

    Science.gov (United States)

    Fraga, Mario F; Cañal, Maria Jesús; Rodríguez, Roberto

    2002-08-01

    DNA methylation and polyamine levels were analysed before and after Pinus radiata D. Don. phase change in order to identify possible molecular and physiological phase markers. Juvenile individuals (without reproductive ability) were characterised by a degree of DNA methylation of 30-35% and a ratio of free polyamines to perchloric acid-soluble polyamine conjugates greater than 1, while mature trees (with reproductive ability) had 60% 5-methylcytosine and a ratio of free polyamines to perchloric acid-soluble polyamine conjugates of less than 1. Results obtained with trees that attained reproductive capacity during the experimental period confirmed that changes in the degree of DNA methylation and polyamine concentrations found among juvenile and mature states come about immediately after the phase change. We suggest that both indicators may be associated with the loss of morphogenic ability during ageing, particularly after phase change, through a number of molecular interactions, which are subsequently discussed.

  3. Solubility of ocular therapeutic agents in self-emulsifying oils. I. Self-emulsifying oils for ocular drug delivery: solubility of indomethacin, aciclovir and hydrocortisone.

    Science.gov (United States)

    Czajkowska-Kośnik, Anna; Sznitowska, Małgorzata

    2009-01-01

    Self-emulsifying drug delivery systems (SEDDS) were prepared by dissolving Cremophor EL, Tween 20, Tween 80 and Span 80 (1% or 5%) in oils (Miglyol 812 or castor oil). Solubilities of three ophthalmic drugs, namely aciclovir, hydrocortisone and indomethacin were determined in these systems. In addition, the effect of a small amount of water (0.5% and 2%) on solubilization properties of the systems was estimated. Of the three substances, indomethacin showed the best solubility in Miglyol while aciclovir was practically insoluble in this oil. The surfactants usually increased drug solubility in the oily phase. Only Tween 20 was found to decrease the solubility of aciclovir and hydrocortisone in Miglyol. Addition of a small amount of water to the oil/surfactant system increased solubility of hydrocortisone, but not of indomethacin. The results of the current study may be utilized to design a suitable composition of SEDDS and allow continuation of research on this type of drug carriers.

  4. Nickel Solubility and Precipitation in Soils: A Thermodynamic Study

    International Nuclear Information System (INIS)

    Peltier, E.; Allada, R.; Navrotsky, A.; Sparks, D.

    2006-01-01

    The formation of mixed-metal-Al layered double hydroxide (LDH) phases similar to hydrotalcite has been identified as a significant mechanism for immobilization of trace metals in some environmental systems. These precipitate phases become increasingly stable as they age, and their formation may therefore be an important pathway for sequestration of toxic metals in contaminated soils. However, the lack of thermodynamic data for LDH phases makes it difficult to model their behavior in natural systems. In this work, enthalpies of formation for Ni LDH phases with nitrate and sulfate interlayers were determined and compared to recently published data on carbonate interlayer LDHs. Differences in the identity of the anion interlayer resulted in substantial changes in the enthalpies of formation of the LDH phases, in the order of increasing enthalpy carbonatephases. Modeling results based on these thermodynamic data indicated that the formation of LDH phases on soil mineral substrates decreased Ni solubility compared to Ni(OH)2 over pH 5-9 when soluble Al is present in the soil substrate. Over time, both of these precipitate phases will transform to more stable Ni phyllosilicates

  5. Thermodynamic and kinetic theory of nucleation, deliquescence and efflorescence transitions in the ensemble of droplets on soluble particles.

    Science.gov (United States)

    Shchekin, Alexander K; Shabaev, Ilya V; Hellmuth, Olaf

    2013-02-07

    Thermodynamic and kinetic peculiarities of nucleation, deliquescence and efflorescence transitions in the ensemble of droplets formed on soluble condensation nuclei from a solvent vapor have been considered. The interplay of the effects of solubility and the size of condensation nuclei has been analyzed. Activation barriers for the deliquescence and phase transitions and for the reverse efflorescence transition have been determined as functions of the relative humidity of the vapor-gas atmosphere, initial size, and solubility of condensation nuclei. It has been demonstrated that, upon variations in the relative humidity of the atmosphere, the crossover in thermodynamically stable and unstable variables of the droplet state takes place. The physical meaning of stable and unstable variables has been clarified. The kinetic equations for establishing equilibrium and steady distributions of binary droplets have been solved. The specific times for relaxation, deliquescence and efflorescence transitions have been calculated.

  6. Investigation of Cyclodextrin-Based Nanosponges for Solubility and Bioavailability Enhancement of Rilpivirine.

    Science.gov (United States)

    Rao, Monica R P; Chaudhari, Jagruti; Trotta, Francesco; Caldera, Fabrizio

    2018-06-04

    Rilpivrine is BCS class II drug used for treatment of HIV infection. The drug has low aqueous solubility (0.0166 mg/ml) and dissolution rate leading to low bioavailability (32%). Aim of this work was to enhance solubility and dissolution of rilpivirine using beta-cyclodextrin-based nanosponges. These nanosponges are biocompatible nanoporous particles having high loading capacity to form supramolecular inclusion and non-inclusion complexes with hydrophilic and lipophilic drugs for solubility enhancement. Beta-cyclodextrin was crosslinked with carbonyl diimidazole and pyromellitic dianhydride to prepare nanosponges. The nanosponges were loaded with rilpivirine by solvent evaporation method. Binary and ternary complexes of drug with β-CD, HP-β-CD, nanosponges, and tocopherol polyethylene glycol succinate were prepared and characterized by phase solubility, saturation solubility in different media, in vitro dissolution, and in vivo pharmacokinetics. Spectral analysis by Fourier transform infrared spectroscopy, powder X-ray diffraction, and differential scanning calorimetry was performed. Results obtained from spectral characterization confirmed inclusion complexation. Phase solubility studies indicated stable complex formation. Saturation solubility was found to be 10-13-folds higher with ternary complexes in distilled water and 12-14-fold higher in 0.1 N HCl. Solubility enhancement was evident in biorelevant media. Molecular modeling studies revealed possible mode of entrapment of rilpivirine within β-CD cavities. A 3-fold increase in dissolution with ternary complexes was observed. Animal studies revealed nearly 2-fold increase in oral bioavailability of rilpivirine. It was inferred that electronic interactions, hydrogen bonding, and van der Waals forces are involved in the supramolecular interactions.

  7. 40 CFR 72.73 - State issuance of Phase II permits.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false State issuance of Phase II permits. 72.73 Section 72.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.73 State issuance of Phase II permits...

  8. Understanding the role of lithium polysulfide solubility in limiting lithium-sulfur cell capacity

    International Nuclear Information System (INIS)

    Shen, Chao; Xie, Jianxin; Zhang, Mei; Andrei, Petru; Hendrickson, Mary; Plichta, Edward J.; Zheng, Jim P.

    2017-01-01

    Highlights: •At normal rate, LiPS soluble reaction pathway dominates the discharge process. •Reduction of sulfur to Li 2 S 8 is not inhibited by high Li 2 S 8 concentration. •Subsequent LiPS electrochemical reactions are restricted by LiPS solubility. •Specific energy of the Li-S cell was reevaluated considering LiPS solubility. -- Abstract: Although the cathode of lithium-sulfur (Li-S) batteries has a theoretical specific capacity of 1,672 mAh g −1 , its practical capacity is much smaller than this value and depends on the electrolyte/sulfur ratio. The operation of Li-S batteries under lean electrolyte conditions can be challenging, especially in the case when the solubility of lithium polysulfide (LiPS) sets an upper bound for polysulfide dissolution. In this work, specially designed cathode structures and electrolyte configurations were built in order to analyze the effects of LiPS solubility on cell capacity. Two reaction pathways involving the reduction of LiPS in liquid and solid phase are proposed and analyzed. We show that at discharge rates above 0.4 mA cm −2 the reaction in the liquid phase dominates the discharge process. Once the electrolyte becomes saturated, the solid phase LiPS cannot be further reduced and does not contribute to the capacity of the cells. This phenomenon prevents Li-S batteries from achieving their high theoretical specific capacity. Finally, the specific energy of the Li-S cell is reevaluated and discussed considering the limitation imposed by LiPS solubility.

  9. A Phase of Liposomes with Entangled Tubular Vesicles

    Science.gov (United States)

    Chiruvolu, Shivkumar; Warriner, Heidi E.; Naranjo, Edward; Idziak, Stefan H. J.; Radler, Joachim O.; Plano, Robert J.; Zasadzinski, Joseph A.; Safinya, Cyrus R.

    1994-11-01

    An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and optical microscopy reveal the phase, labeled Ltv, to be composed of highly entangled tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar with the lipids in the chain-melted state. Macroscopic observations show that the Ltv phase coexists with the well-known L_4 phase of spherical vesicles and a bulk L_α phase. However, the defining characteristic of the Ltv phase is the Weissenberg rod climbing effect under shear, which results from its polymer-like entangled microstructure.

  10. Phase equilibrium of (CO2 + 1-aminopropyl-3-methylimidazolium bromide + water) electrolyte system and effects of aqueous medium on CO2 solubility: Experiment and modeling

    International Nuclear Information System (INIS)

    Chen, Ying; Guo, Kaihua; Bi, Yin; Zhou, Lan

    2017-01-01

    Highlights: • Phase and chemical equilibrium data for (CO 2 + [APMIm]Br + H 2 O) electrolyte system. • A modified eNRTL model for CO 2 solubility in the amino-based IL aqueous solution. • Effects of aqueous medium on both chemical and physical dissolution of CO 2 . • The correlative coefficient, R s ∗ , for the Henry’s constant of the solution. • New parameters for the segments interaction and the chemical equilibrium constants. - Abstract: New experimental data for solubility of carbon dioxide (CO 2 ) in the aqueous solution of 1-aminopropyl-3-methylimidazolium bromide ([APMIm]Br) with four different water mass fractions (0.559, 0.645, 0.765 and 0.858) at T = (278.15–348.15) K with an interval of T = 10 K and p = (0.1237–6.9143) MPa were presented. The electrolyte nonrandom two-liquid (eNRTL) model was modified to be applicable for an ionic liquid (IL) aqueous solution system, by introducing an idle factor β to illustrate the association effect of IL molecules. A solution Henry’s constant for CO 2 solubility in the IL aqueous solution was defined by introducing a correlative coefficient R s ∗ . The vapor-liquid phase equilibrium of the [APMIm]Br-H 2 O-CO 2 ternary system was successfully calculated with the modified eNRTL model. The chemical and physical mechanisms for the ionized CO 2 formation and the molecular CO 2 dissolved in the solution were identified. The effects of aqueous medium on both chemical and physical dissolution of CO 2 in the [APMIm]Br aqueous solution were studied, and a considerable enhancement of the solubility of CO 2 with increase of the water content in the solution was observed.

  11. Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules

    Directory of Open Access Journals (Sweden)

    Sonam Choudhary

    2017-05-01

    Full Text Available Adequate aqueous solubility has been one of the desired properties while selecting drug molecules and other bio-actives for product development. Often solubility of a drug determines its pharmaceutical and therapeutic performance. Majority of newly synthesized drug molecules fail or are rejected during the early phases of drug discovery and development due to their limited solubility. Sufficient permeability, aqueous solubility and physicochemical stability of the drug are important for achieving adequate bioavailability and therapeutic outcome. A number of different approaches including co-solvency, micellar solubilization, micronization, pH adjustment, chemical modification, and solid dispersion have been explored toward improving the solubility of various poorly aqueous-soluble drugs. Dendrimers, a new class of polymers, possess great potential for drug solubility improvement, by virtue of their unique properties. These hyper-branched, mono-dispersed molecules have the distinct ability to bind the drug molecules on periphery as well as to encapsulate these molecules within the dendritic structure. There are numerous reported studies which have successfully used dendrimers to enhance the solubilization of poorly soluble drugs. These promising outcomes have encouraged the researchers to design, synthesize, and evaluate various dendritic polymers for their use in drug delivery and product development. This review will discuss the aspects and role of dendrimers in the solubility enhancement of poorly soluble drugs. The review will also highlight the important and relevant properties of dendrimers which contribute toward drug solubilization. Finally, hydrophobic drugs which have been explored for dendrimer assisted solubilization, and the current marketing status of dendrimers will be discussed.

  12. β-Cyclodextrin-dextran polymers for the solubilization of poorly soluble drugs.

    Science.gov (United States)

    di Cagno, Massimiliano; Terndrup Nielsen, Thorbjørn; Lambertsen Larsen, Kim; Kuntsche, Judith; Bauer-Brandl, Annette

    2014-07-01

    The aim of this study was to assess the potential of novel β-cyclodextrin (βCD)-dextran polymers for drug delivery. The size distribution of βCD-dextrans (for eventual parenteral administration), the influence of the dextran backbones on the stability of the βCD/drug complex, the solubilization efficiency of poorly soluble drugs and drug release properties were investigated. Size analysis of different βCD-dextrans was measured by size exclusion chromatography (SEC) and asymmetrical flow field-flow fractionation (AF4). Stability of drug/βCD-dextrans was assessed by isothermal titration calorimetry (ITC) and molar enthalpies of complexation and equilibrium constants compared to some commercially available βCD derivatives. For evaluation of the solubilization efficiency, phase-solubility diagrams were made employing hydrocortisone (HC) as a model of poorly soluble drugs, whereas reverse dialysis was used to detect potential drug supersaturation (increased molecularly dissolved drug concentration) as well as controlled release effects. Results indicate that all investigated βCD-polymers are of appropriate sizes for parenteral administration. Thermodynamic results demonstrate that the presence of the dextran backbone structure does not affect the stability of the βCD/drug complex, compared to native βCD and commercially available derivatives. Solubility studies evidence higher solubilizing abilities of these new polymers in comparison to commercially available βCDs, but no supersaturation states were induced. Moreover, drug release studies evidenced that diffusion of HC was influenced by the solubilization induced by the βCD-derivatives. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Mutual Solubility of MEG, Water and Reservoir Fluid: Experimental Measurements and Modeling using the CPA Equation of State

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2011-01-01

    This work presents new experimental phase equilibrium data of binary MEG-reservoir fluid and ternary MEG-water-reservoir fluid systems at temperatures 275-326 K and at atmospheric pressure. The reservoir fluid consists of a natural gas condensate from a Statoil operated gas field in the North Sea...... compounds. It has also been extended to reservoir fluids in presence of water and polar chemicals using a Pedersen like characterization method with modified correlations for critical temperature, pressure and acentric factor. In this work CPA is applied to the prediction of mutual solubility of reservoir...

  14. String-net condensation: A physical mechanism for topological phases

    International Nuclear Information System (INIS)

    Levin, Michael A.; Wen Xiaogang

    2005-01-01

    We show that quantum systems of extended objects naturally give rise to a large class of exotic phases--namely topological phases. These phases occur when extended objects, called ''string-nets,'' become highly fluctuating and condense. We construct a large class of exactly soluble 2D spin Hamiltonians whose ground states are string-net condensed. Each ground state corresponds to a different parity invariant topological phase. The models reveal the mathematical framework underlying topological phases: tensor category theory. One of the Hamiltonians--a spin-1/2 system on the honeycomb lattice--is a simple theoretical realization of a universal fault tolerant quantum computer. The higher dimensional case also yields an interesting result: we find that 3D string-net condensation naturally gives rise to both emergent gauge bosons and emergent fermions. Thus, string-net condensation provides a mechanism for unifying gauge bosons and fermions in 3 and higher dimensions

  15. Facile synthesis of functionalized ionic surfactant templated mesoporous silica for incorporation of poorly water-soluble drug.

    Science.gov (United States)

    Li, Jing; Xu, Lu; Yang, Baixue; Wang, Hongyu; Bao, Zhihong; Pan, Weisan; Li, Sanming

    2015-08-15

    The present paper reported amino group functionalized anionic surfactant templated mesoporous silica (Amino-AMS) for loading and release of poorly water-soluble drug indomethacin (IMC) and carboxyl group functionalized cationic surfactant templated mesoporous silica (Carboxyl-CMS) for loading and release of poorly water-soluble drug famotidine (FMT). Herein, Amino-AMS and Carboxyl-CMS were facilely synthesized using co-condensation method through two types of silane coupling agent. Amino-AMS was spherical nanoparticles, and Carboxyl-CMS was well-formed spherical nanosphere with a thin layer presented at the edge. Drug loading capacity was obviously enhanced when using Amino-AMS and Carboxyl-CMS as drug carriers due to the stronger hydrogen bonding force formed between surface modified carrier and drug. Amino-AMS and Carboxyl-CMS had the ability to transform crystalline state of loaded drug from crystalline phase to amorphous phase. Therefore, IMC loaded Amino-AMS presented obviously faster release than IMC because amorphous phase of IMC favored its dissolution. The application of asymmetric membrane capsule delayed FMT release significantly, and Carboxyl-CMS favored sustained release of FMT due to its long mesoporous channels and strong interaction formed between its carboxyl group and amino group of FMT. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Thermodynamic analysis and evaluation of the nitrogen solubility in liquid Nb and Fe-Nb alloys

    International Nuclear Information System (INIS)

    Qiu Caian

    1994-01-01

    Experimental information on the nitrogen solubility in liquid Nb and Fe-Nb alloys has been critically analysed and then utilized to evaluate the thermodynamic properties of the Nb-N and Fe-Nb-N liquid phases on the basis of thermodynamic models of Gibbs energy. A thermodynamic description of the Fe-Nb-N liquid phase was obtained, which has been used to calculate the N solubility in comparison with experimental results. The effect of an addition of Nb on the temperature dependence of the N solubility in liquid Fe has been examined by comparing with the effect of the Cr and V additions. It has been shown that the N solubility in liquid Nb and Fe-Nb alloys under various conditions is well described by the present calculation. (orig.)

  17. Wax encapsulation of water-soluble compounds for application in foods.

    Science.gov (United States)

    Mellema, M; Van Benthum, W A J; Boer, B; Von Harras, J; Visser, A

    2006-11-01

    Water-soluble ingredients have been successfully encapsulated in wax using two preparation techniques. The first technique ('solid preparation') leads to relatively large wax particles. The second technique ('liquid preparation') leads to relatively small wax particles immersed in vegetable oil. On the first technique: stable encapsulation of water-soluble colourants (dissolved at low concentration in water) has been achieved making use of beeswax and PGPR. The leakage from the capsules, for instance of size 2 mm, is about 30% after 16 weeks storage in water at room temperature. To form such capsules a minimum wax mass of 40% relative to the total mass is needed. High amounts of salt or acids at the inside water phase causes more leaking, probably because of the osmotic pressure difference. Osmotic matching of inner and outer phase can lead to a dramatic reduction in leakage. Fat capsules are less suitable to incorporate water soluble colourants. The reason for this could be a difference in crystal structure (fat is less ductile and more brittle). On the second technique: stable encapsulation of water-soluble colourants (encapsulated in solid wax particles) has been achieved making use of carnauba wax. The leakage from the capsules, for instance of size 250 mm, is about 40% after 1 weeks storage in water at room temperature.

  18. Probabilistic cloning of coherent states without a phase reference

    DEFF Research Database (Denmark)

    Müller, Christian R.; Wittmann, Christoffer; Marek, Petr

    2012-01-01

    We present a probabilistic cloning scheme operating independently of any phase reference. The scheme is based solely on a phase-randomized displacement and photon counting, omitting the need for nonclassical resources and nonlinear materials. In an experimental implementation, we employ the scheme...... to clone coherent states from a phase covariant alphabet and demonstrate that the cloner is capable of outperforming the hitherto best-performing deterministic scheme. An analysis of the covariances between the output states shows that uncorrelated clones can be approached asymptotically...

  19. Structural Characterization of Febuxostat/l-Pyroglutamic Acid Cocrystal Using Solid-State 13C-NMR and Investigational Study of Its Water Solubility

    Directory of Open Access Journals (Sweden)

    Ji-Hun An

    2017-12-01

    Full Text Available Febuxostat (FB is a poorly water-soluble drug that belongs to BCS class II. The drug is employed for the treatment of inflammatory disease arthritis urica (gout, and the free base, FB form-A, is most preferred for drug formulation. In order to achieve a goal of improving the water solubility of FB form-A, this study was carried out using the cocrystallization technique called the liquid-assisted grinding method to produce FB cocrystals. Here, five amino acids containing amine (NH, oxygen (O, and hydroxyl (OH functional groups, and possessing difference of pKa less than 3 with FB, were selected as coformers. Then, solvents including methanol, ethanol, isopropyl alcohol, n-hexane, dichloromethane, and acetone were used for the cocrystal screening. As a result, a cocrystal was obtained when acetone and l-pyroglutamic acid (PG of 0.5 eq. were employed as solvent and coformer, respectively. The ratio of 2:1, which is the ratio of FB to PG within FB-PG cocrystal, was predicted by means of solid-state CP/MAS 13C-NMR, solution-state NMR (1H, 13C, and 2D and FT-IR. Moreover, Powder X-ray Diffraction (PXRD, Differential Scanning Calorimetry (DSC, and Thermogravimetric Analysis (TGA were used to investigate the characteristics of FB-PG cocrystal. In addition, comparative solubility tests between FB-PG cocrystal and FB form-A were conducted in deionized water and under simulated gastrointestinal pH (1.2, 4, and 6.8 conditions. The result revealed that FB-PG cocrystal has a solubility of four-fold higher than FB form-A in deionized water and two-fold and five-fold greater than FB form-A at simulated gastrointestinal pH 1.2 and pH 4, respectively. Besides, solubilities of FB-PG cocrystal and FB form-A at pH 6.8 were similar to the results measured in deionized water. Therefore, it is postulated that FB-PG cocrystal has a potential overcoming the limitations related to the low aqueous solubility of FB form-A. Accordingly, FB-PG cocrystal is suggested as an

  20. Kinetic measurements of the hydrolytic degradation of cefixime: effect of Captisol complexation and water-soluble polymers.

    Science.gov (United States)

    Mallick, Subrata; Mondal, Arijit; Sannigrahi, Santanu

    2008-07-01

    We have taken kinetic measurements of the hydrolytic degradation of cefixime, and have studied the effect of Captisol complexation and water-soluble polymers on that degradation. The phase solubility of cefixime in Captisol was determined. Kinetic measurements were carried out as a function of pH and temperature. High-performance liquid chromatography (HPLC) was performed to assay all the samples of phase-solubility analysis and kinetic measurements. Chromatographic separation of the degradation products was also performed by HPLC. FT-IR spectroscopy was used to investigate the presence of any interaction between cefixime and Captisol and soluble polymer. The phase-solubility study showed A(L)-type behaviour. The pH-rate profile of cefixime exhibited a U-shaped profile whilst the degradation of cefixime alone was markedly accelerated with elevated temperature. A strong stabilizing influence of the cefixime-Captisol complexation and hypromellose was observed against aqueous mediated degradation, as compared with povidone and macrogol. The unfavourable effect of povidone and macrogol may have been due to the steric hindrance, which prevented the guest molecule from entering the cyclodextrin cavity, whereas hypromellose did not produce any steric hindrance.

  1. The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Scott [Los Alamos National Laboratory; Bridgewater, Jon S [Los Alamos National Laboratory; Ward, John W [Los Alamos National Laboratory; Allen, Thomas A [Los Alamos National Laboratory

    2009-01-01

    Pressure-Composition-Temperature (PCT) data are presented for the plutonium-hydrogen (Pu-H) and plutonium-deuterium (Pu-D) systems in the solubility region up to terminal solubility (precipitation of PuH{sub 2}). The heats of solution for PuH{sub s} and PuD{sub s} are determined from PCT data in the ranges 350-625 C for gallium alloyed Pu and 400-575 C for unalloyed Pu. The solubility of high purity plutonium alloyed with 2 at.% gallium is compared to high purity unalloyed plutonium. Significant differences are found in hydrogen solubility for unalloyed Pu versus gallium alloyed Pu. Differences in hydrogen solubility due to an apparent phase change are observable in the alloyed and unalloyed solubilities. The effect of iron impurities on Pu-Ga alloyed Pu is shown via hydrogen solubility data as preventing complete homogenization.

  2. The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal

    International Nuclear Information System (INIS)

    Richmond, S; Bridgewater, J S; Ward, J W; Allen, T H

    2010-01-01

    Pressure-Composition-Temperature (PCT) data are presented for the plutonium-hydrogen (Pu-H) and plutonium-deuterium (Pu-D) systems in the solubility region up to terminal solubility (precipitation of PuH 2 ). The heats of solution for PuH S and PuD S are determined from PCT data in the ranges 350-625 deg. C for gallium alloyed Pu and 400-575 deg. C for unalloyed Pu. The solubility of high purity plutonium alloyed with 2 at.% gallium is compared to high purity unalloyed plutonium. Significant differences are found in hydrogen solubility for unalloyed Pu versus gallium alloyed Pu. Differences in hydrogen solubility due to an apparent phase change are observable in the alloyed and unalloyed solubilities. The effect of iron impurities on Pu-Ga alloyed Pu is shown via hydrogen solubility data as preventing complete homogenization.

  3. Effects on auto-irradiation on the solubility of mineral phases enriched by actinides

    International Nuclear Information System (INIS)

    Prot, T.

    1993-07-01

    The scope of the present work is to investigate possible effects of self-irradiation damage induced by α-decay (α-recoil nucleus and α-particle) on the hydrated layer formed by aqueous corrosion of nuclear glass and on alteration phases of a granitic geological repository (calcium carbonate or iron oxides and oxihydroxide) which would be likely irradiated in the framework of high-level radioactive waste disposal, for sufficient concentration of actinides and age. Our experimental procedure relies on a bombardment with external beams of 1.5 to 1.8 MeV He ions and 200 KeV Pb ions, which respectively simulate the radiation effects of α-particles and of α-recoil nuclei. We have observed in a first step, direct irradiation effects (change of volume and refractive index, chemical modification) by means of optical microscopy, microtopographical analysis (surface profilometer) and R.B.S. and X.P.S. In a second step, corrosion tests were performed in static conditions to observe a possible indirect effect (increase of the hydratation rate, actinide release) on the later evolution as for example, a marked increase in solubility (calcium carbonate case)

  4. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    CERN Document Server

    Topolov, Vitaly

    2012-01-01

    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  5. CCN activation experiments with adipic acid: effect of particle phase and adipic acid coatings on soluble and insoluble particles

    Directory of Open Access Journals (Sweden)

    S. S. Hings

    2008-07-01

    Full Text Available Slightly soluble atmospherically relevant organic compounds may influence particle CCN activity and therefore cloud formation. Adipic acid is a frequently employed surrogate for such slightly soluble organic materials. The 11 published experimental studies on the CCN activity of adipic acid particles are not consistent with each other nor do they, in most cases, agree with the Köhler theory. The CCN activity of adipic acid aerosol particles was studied over a significantly wider range of conditions than in any previous single study. The work spans the conditions of the previous studies and also provides alternate methods for producing "wet" (deliquesced solution droplets and dry adipic acid particles without the need to produce them by atomization of aqueous solutions. The experiments suggest that the scatter in the previously published CCN measurements is most likely due to the difficulty of producing uncontaminated adipic acid particles by atomization of solutions and possibly also due to uncertainties in the calibration of the instruments. The CCN activation of the small (dm<150 nm initially dry particles is subject to a deliquescence barrier, while for the larger particles the activation follows the Köhler curve. Wet adipic acid particles follow the Köhler curve over the full range of particle diameters studied. In addition, the effect of adipic acid coatings on the CCN activity of both soluble and insoluble particles has also been studied. When a water-soluble core is coated by adipic acid, the CCN-hindering effect of particle phase is eliminated. An adipic acid coating on hydrophobic soot yields a CCN active particle. If the soot particle is relatively small (dcore≤102 nm, the CCN activity of the coated particles approaches the deliquescence line of adipic acid, suggesting that the total size of the particle determines CCN activation and the soot core acts as a scaffold.

  6. Solubility limit of methyl red and methylene blue in microemulsions and liquid crystals of water, sds and pentanol systems

    OpenAIRE

    Beri, D.; Pratami, A.; Gobah, P. L.; Dwimala, P.; Amran, A.

    2017-01-01

    Solubility of dyes in amphiphilic association structures of water, SDS and penthanol system (i.e. in the phases of microemulsions and liquid crystals) was attracted much interest due to its wide industrial and technological applications. This research was focused on understanding the solubility limitation of methyl red and methylene blue in microemulsion and liquid crystal phases. Experimental results showed that the highest solubility of methyl red was in LLC, followed by w/o microemulsion a...

  7. Solubility of neptunium and technetium dioxides in a Yucca Mountain simulated groundwaters

    International Nuclear Information System (INIS)

    Kulyako, Yu.; Perevalov, S.; Malikov, D.; Myasoedov, B.; Atkins-Duffin, Cynthia E.

    2005-01-01

    Full text of publication follows: Solubility of NpO 2 and TcO 2 in the Yucca Mountain simulated ground waters J-13 and UE-25p-1 were studied. It is shown that contents of the dissolved neptunium and technetium in simulated groundwater (SGW) depend on solid/liquid phase ratio in these systems under ambient conditions. Average values of NpO 2 solubility in the suspensions of J-13 SGW are equal to (1.1±0.2) x 10 -6 M, (4.7±0.5) x 10 -6 M and (1.3±0.2) x 10 -5 M at solid/liquid ratios (mg/mL) of 0.4, 2.5 and 9.8 respectively. Average solubility values of NpO 2 in the suspensions of UE-25p-1 SGW are equal to (1.6±0.2) x 10 -7 M, (4.3±0.7) x 10 -7 M and (4.2±1.2) x 10 -6 M for solid/liquid ratios (mg/mL) of 1.2, 3.7 and 18.6, respectively. At equal solid/liquid ratios the solubility of NpO 2 in J-13 SGW is higher than that in UE-25p-1 SGW. At equal contents of solid phase in the suspensions solubility of TcO 2 in J-13 SGW are close to those in UE-25p-1 SGW and they are approximately proportional to the solid/liquid ratio. Average values of TcO 2 solubility in the suspensions of J-13 SGW are equal to (3.0±0.2) x 10 -5 M, (1.7±0.2) x 10 -4 , (6.2±0.2) x 10 -4 M at solid/liquid ratios (mg/mL) of 0.6, 4.8 and 15.5 respectively. Average values of TcO 2 solubility in the suspensions of UE-25p-1 SGW are equal to (5.8±0.3) x 10 -5 M, (2.2±0.1) x 10 -4 M and (3.8±0.2) x 10 -4 M at solid/liquid ratios 1.6, 7.0 and 13.6 (mg/mL) respectively. The dependence of solubility of NpO 2 and TcO 2 on solid/liquid ratio may be explained by the fact that transition of the neptunium and technetium from solid phase into the liquid one occurs on phase interface owing to the dissolving of Np(V) and Tc(VII) compounds being formed under ambient conditions. (authors)

  8. State of the art: two-phase flow calibration techniques

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1977-01-01

    The nuclear community faces a particularly difficult problem relating to the calibration of instrumentation in a two-phase flow steam/water environment. The rationale of the approach to water reactor safety questions in the United States demands that accurate measurements of mass flows in a decompressing two-phase flow be made. An accurate measurement dictates an accurate calibration. This paper addresses three questions relating to the state of the art in two-phase calibration: (1) What do we mean by calibration. (2) What is done now. (3) What should be done

  9. Towards improved solubility of poorly water-soluble drugs: cryogenic co-grinding of piroxicam with carrier polymers.

    Science.gov (United States)

    Penkina, Anna; Semjonov, Kristian; Hakola, Maija; Vuorinen, Sirpa; Repo, Timo; Yliruusi, Jouko; Aruväli, Jaan; Kogermann, Karin; Veski, Peep; Heinämäki, Jyrki

    2016-01-01

    Amorphous solid dispersions (SDs) open up exciting opportunities in formulating poorly water-soluble active pharmaceutical ingredients (APIs). In the present study, novel catalytic pretreated softwood cellulose (CPSC) and polyvinylpyrrolidone (PVP) were investigated as carrier polymers for preparing and stabilizing cryogenic co-ground SDs of poorly water-soluble piroxicam (PRX). CPSC was isolated from pine wood (Pinus sylvestris). Raman and Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) were used for characterizing the solid-state changes and drug-polymer interactions. High-resolution scanning electron microscope (SEM) was used to analyze the particle size and surface morphology of starting materials and final cryogenic co-ground SDs. In addition, the molecular aspects of drug-polymer interactions and stabilization mechanisms are presented. The results showed that the carrier polymer influenced both the degree of amorphization of PRX and stabilization against crystallization. The cryogenic co-ground SDs prepared from PVP showed an enhanced dissolution rate of PRX, while the corresponding SDs prepared from CPSC exhibited a clear sustained release behavior. In conclusion, cryogenic co-grinding provides a versatile method for preparing amorphous SDs of poorly water-soluble APIs. The solid-state stability and dissolution behavior of such co-ground SDs are to a great extent dependent on the carrier polymer used.

  10. KRISTALLIN-I: estimates of solubility limits for safety relevant radionuclides

    International Nuclear Information System (INIS)

    Berner, U.

    1995-04-01

    The safety concept for the Swiss high level radioactive waste repository is based on a multiple barrier system. Within the concept of the safety analysis KRISTALLIN-I, the waste glass starts corroding after failure of the massive steel canister and nuclides are released to the bentonite backfill. This release is limited by restricted solubility of solid phases. The present work quantifies the maximum expected concentrations of the elements Th, Pa, U, Np, Pu, Am, Cm, Tc, Ni, Pd, Se, Ra, Zr, Nb, Sn, Pb, Sb, Bi and Sm within the reference bentonite porewater with pH = 9, Eh = -400 mV and I = 0.08 M at 50 o C. In a first step, maximum expected concentrations were calculated with a geochemical speciation code (MINEQL) based on a documented thermodynamic database. In a second step, the values obtained in this way were carefully reviewed and modified, based on extended geochemical considerations and system-dependent parameters. Thereby, the relevance of potentially limiting solids, chemical analogies, absolute and relative inventories and recent experimental findings from laboratory and natural systems were particularly considered. The expected groundwater composition in the crystalline host rock (modified by the barrier material bentonite) covers a rather narrow pH range from 8.5 to 9. Within this narrow pH range, solubility limits may be termed as pH independent since computable pH effects are never significant compared to the general uncertainty of the solubility limits. The chemical model defining the reference groundwater predicts a system-wide Eh ranging from -400 mV up to +100 mV. A slightly oxidising near-field will stabilize the generally more soluble higher oxidation states of redox sensitive radionuclides. Based on the available thermodynamic data the elements U, Tc, Se and Pa are predicted not to be solubility limited at +75 mV. Therefore, a more detailed investigation of the redox behaviour of critical elements and, much more importantly, a very careful

  11. A multi-phase equation of state for solid and liquid lead

    International Nuclear Information System (INIS)

    Robinson, C.M.

    2004-01-01

    This paper considers a multi-phase equation of state for solid and liquid lead. The thermodynamically consistent equation of state is constructed by calculating separate equations of state for the solid and liquid phases. The melt curve is the curve in the pressure, temperature plane where the Gibb's free energy of the solid and liquid phases are equal. In each phase a complete equation of state is obtained using the assumptions that the specific heat capacity is constant and that the Grueneisen parameter is proportional to the specific volume. The parameters for the equation of state are obtained from experimental data. In particular they are chosen to match melt curve and principal Hugoniot data. Predictions are made for the shock pressure required for melt to occur on shock and release

  12. Oil-soluble and water-soluble BTPhens and their europium complexes in octanol/water solutions: interface crossing studied by MD and PMF simulations.

    Science.gov (United States)

    Benay, G; Wipff, G

    2013-01-31

    Bistriazinyl-phenantroline "BTPhen" ligands L display the remarkable feature to complex trivalent lanthanide and actinide ions, with a marked selectivity for the latter. We report on molecular dynamics studies of tetrasubstituted X(4)BTPhens: L(4+) (X = (+)Et(3)NCH(2)-), L(4-) (X = (-)SO(3)Ph-), and L(0) (X = CyMe(4)) and their complexes with Eu(III) in binary octanol/water solutions. Changes in free energies upon interface crossing are also calculated for typical solutes by potential of mean force PMF simulations. The ligands and their complexes partition, as expected, to either the aqueous or the oil phase, depending on the "solubilizing" group X. Furthermore, most of them are found to be surface active. The water-soluble L(4+) and L(4-) ligands and their (L)Eu(NO(3))(3) complexes adsorb at the aqueous side of the interface, more with L(4-) than with L(4+). The oil soluble ligand L(0) is not surface active in its endo-endo form but adsorbs on the oil side of the interface in its most polar endo-exo form, as well as in its protonated L(0)H(+) and complexed (L(0))Eu(NO(3))(3) states. Furthermore, comparing PMFs of the Eu(III) complexes with and without nitric acid shows that acidifying the aqueous phase has different effects, depending on the ligand charge. In particular, acid promotes the Eu(III) extraction by L(0) via the (L(0))(2)Eu(NO(3))(2+) complex, as observed experimentally. Overall, the results point to the importance of interfacial adsorption for the liquid-liquid extraction of trivalent lanthanide and actinide cations by BTPhens and analogues.

  13. Uranium solubility and speciation in ground water

    International Nuclear Information System (INIS)

    Ollila, K.

    1985-04-01

    The purpose of this study has been to assess the solubility and possible species of uranium in groundwater at the disposal conditions of spent fuel. The effects of radiolysis and bentonite are considered. The assessment is based on the theoretical calculations found in the literature. The Finnish experimental results are included. The conservative estimate for uranium solubility under the oxidizing conditions caused by alpha radiolysis is based on the oxidation of uranium to the U(VI) state and formation of carbonate complex. For the groundwater with the typical carbonate content of 275 mg/l and the high carbonate content of 485 mg/l due to bentonite, the solubility values of 360 mg u/l and 950 mg U/l, are obtained, respectively. The experimental results predict considerably lower values, 0.5-20 mg U/l. The solubility of uranium under the undisturbed reducing conditions may be calculated based on the hydrolysis, carbonate complexation and redox reactions. The results vary considerably depending on the thermodynamic data used. The wide ranges of the most important groundwater parameters are seen in the solubility values. The experimental results show the same trends. As a conservative value for the solubility in reducing groundwater 50-500 μg U/l is estimated. (author)

  14. Split degenerate states and stable p+ip phases from holography

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Zhang-Yu; Zeng, Hui [Kunming University of Science and Technology, Kunming (China); Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing (China); Pan, Qiyuan [Hunan Normal Univ., Key Lab. of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Dept. of Physics, Changsha (China); Zeng, Hua-Bi [Yangzhou University, College of Physics Science and Technology, Yangzhou, Jiangsu (China); National Central University, Department of Physics, Chungli (China)

    2017-02-15

    In this paper, we investigate the p+ip superfluid phases in the complex vector field holographic p-wave model. We find that in the probe limit, the p+ip phase and the p-wave phase are equally stable, hence the p and ip orders can be mixed with an arbitrary ratio to form more general p+λip phases, which are also equally stable with the p-wave and p+ip phases. As a result, the system possesses a degenerate thermal state in the superfluid region. We further study the case on considering the back-reaction on the metric, and we find that the degenerate ground states will be separated into p-wave and p+ip phases, and the p-wave phase is more stable. Finally, due to the different critical temperature of the zeroth order phase transitions from p-wave and p+ip phases to the normal phase, there is a temperature region where the p+ip phase exists but the p-wave phase does not. In this region we find the stable holographic p+ip phase for the first time. (orig.)

  15. Plutonium solubilities

    International Nuclear Information System (INIS)

    Puigdomnech, I.; Bruno, J.

    1991-02-01

    Thermochemical data has been selected for plutonium oxide, hydroxide, carbonate and phosphate equilibria. Equilibrium constants have been evaluated in the temperature range 0 to 300 degrees C at a pressure of 1 bar to T≤100 degrees C and at the steam saturated pressure at higher temperatures. Measured solubilities of plutonium that are reported in the literature for laboratory experiments have been collected. Solubility data on oxides, hydroxides, carbonates and phosphates have been selected. No solubility data were found at temperatures higher than 60 degrees C. The literature solubility data have been compared with plutonium solubilities calculated with the EQ3/6 geochemical modelling programs, using the selected thermodynamic data for plutonium. (authors)

  16. Enhancement of Curcumin Solubility by Phase Change from Crystalline to Amorphous in Cur-TPGS Nanosuspension.

    Science.gov (United States)

    Shin, Gye Hwa; Li, Jinglei; Cho, Jin Hun; Kim, Jun Tae; Park, Hyun Jin

    2016-02-01

    Nanosuspensions (NSs) were fabricated to enhance water solubility, dissolution rate, and oral adsorption of water insoluble curcumin using sonoprecipitation method. As a good stabilizer, d-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) was used to improve the stability of curcumin-TPGS NSs (Cur-TPGS NSs). Ultrasonic homogenization (UH) could effectively enhance the solubility of curcumin and to produce homogeneous NSs with small particle sizes. Water solubility of curcumin was significantly improved from 0.6 μg/mL in pure water to 260 μg/mL in the mixture of curcumin and TPGS (1:10) with UH treatment. The mean particle size of Cur-TPGS NSs was decreased significantly after UH and maintained between 208 and 246 nm. Lyophilized powder of Cur-TPGS NSs was dissolved about 91.08% whereas the pristine curcumin powder was dissolved only 6.5% at pH 7.4. This study showed a great potential of Cur-TPGS NSs as a good nano-formulation of curcumin with enhanced solubility and improved oral adsorption. © 2016 Institute of Food Technologists®

  17. The calculated solubilities of hematite, magnetite and lepidocrocite in steam generator feedtrains

    International Nuclear Information System (INIS)

    Jobe, D.

    1997-05-01

    The solubility of three iron oxides [hematite (α-Fe 2 O 3 (s)), magnetite (Fe 3 O 4 (s)) and lepidocrocite (γ-FeOOH(s))] under representative steam generator feedtrain conditions were calculated using a thermodynamic database for these oxides and the associated aqueous species. Using this database, we calculated the solubility of iron for both Fe 3 O 4 (s) in equilibrium with other iron oxides and for the individual oxides in the presence of various oxygen partial pressures. The results indicate that the solubility of iron is strongly dependent on redox conditions, represented either by dissolved H 2 or O 2 concentration, or by the presence of other iron oxides (stable or metastable). The solubility behaviour of these oxides can be explained by changes in the aqueous-phase speciation of iron with temperature and pH. Similar calculations for the individual oxides in the presence Of O 2 (g) are also presented and were used to construct temperature-dependent phase diagrams for these oxides in equilibrium (including metastable conditions) with 1 ppb (ppb - μg·kg -1 ) of soluble iron. Calculations were also performed for feedtrain solutions containing 5 ppb of dissolved oxygen and pH buffered using mixtures of amines. From these calculations it was concluded that, relative to the oxidation potential and temperature of the feedtrain solution, changing the pH-buffer has only a minor effect on iron solubility. The effect of the variation in iron solubility along the feedtrain with solution pH, temperature and redox potential on corrosion-product transport to the boiler is also discussed. (author)

  18. Solubility enhancement of benfotiamine, a lipid derivative of thiamine by solid dispersion technique.

    Science.gov (United States)

    Patel, S M; Patel, R P; Prajapati, B G

    2012-03-01

    The present study was aimed to increase the solubility of the poorly water soluble drug benfotiamine using hydrophilic polymers (PVP K-30 and HPMC E4). Solid dispersions were prepared by kneading method. Phase solubility study, in-vitro dissolution of pure drug, physical mixtures and solid dispersions were carried out. PVP and HPMC were found to be effective in increasing the dissolution of Benfotiamine in solid dispersions when compared to pure drug. FT-IR, differential scanning calorimetry and X-ray diffractometry studies were carried out in order to characterize the drug and solid dispersion. To conclude that, the prepared solid dispersion of PVP-30 may to effectively used for the enhancement of solubility of poorly water soluble drugs such as benfotiamine.

  19. Solubility enhancement of benfotiamine, a lipid derivative of thiamine by solid dispersion technique

    Directory of Open Access Journals (Sweden)

    S M Patel

    2012-01-01

    Full Text Available The present study was aimed to increase the solubility of the poorly water soluble drug benfotiamine using hydrophilic polymers (PVP K-30 and HPMC E4. Solid dispersions were prepared by kneading method. Phase solubility study, in-vitro dissolution of pure drug, physical mixtures and solid dispersions were carried out. PVP and HPMC were found to be effective in increasing the dissolution of Benfotiamine in solid dispersions when compared to pure drug. FT-IR, differential scanning calorimetry and X-ray diffractometry studies were carried out in order to characterize the drug and solid dispersion. To conclude that, the prepared solid dispersion of PVP-30 may to effectively used for the enhancement of solubility of poorly water soluble drugs such as benfotiamine.

  20. Coherent and squeezed states in phase space

    International Nuclear Information System (INIS)

    Jannussis, A.; Bartzis, V.; Vlahos, E.

    1990-01-01

    In the present paper, the coherent and the squeezed states in phase space have been studied. From the wave functions of the coherent and the squeezed state, their corresponding Wigner distribution functions are calculated. Especially the calculation of the corresponding Wigner functions for the above states permits the determination of the mean values of position and momentum and thus the Heisenberg uncertainty relation. In fact, from the related results, it is concluded that the uncertainty relation of the coherent and associated squeezed states is the same

  1. All solid-state SBS phase conjugate mirror

    Science.gov (United States)

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  2. Progress in the research of neptunium solubility

    International Nuclear Information System (INIS)

    Jiang Tao; Liu Yongye; Yao Jun

    2012-01-01

    237 Np is considered a possible long-term potential threat for environment, because of its long half-life, high toxicity and its mobile nature under aerobic conditions due to the high chemical stability of its pentavalent state. Therefore 237 Np is considered as one of high-level radioactive waste and need to be disposed in deep geologic disposal repository. The dissolution behavior is an important aspect of migration research. The solubility is considered very important for high level waste geological disposal safety and environmental evaluation. The solubility determines the maximum concentration of the discharge, and then it is initial concentration of the radionuclides migration to the environment. The solubility impact directly on radionuclides migration in host rock, and can be used to predict the concentration and speciation of radionuclides in groundwater around disposal sites many years later. This paper focused on research results of the solubility, some proposals for Np dissolution chemistry research were also been suggested. (authors)

  3. Buckminsterfullerene's (C60) octanol-water partition coefficient (Kow) and aqueous solubility.

    Science.gov (United States)

    Jafvert, Chad T; Kulkarni, Pradnya P

    2008-08-15

    To assess the risk and fate of fullerene C60 in the environment, its water solubility and partition coefficients in various systems are useful. In this study, the log Kow of C60 was measured to be 6.67, and the toluene-water partition coefficient was measured at log Ktw = 8.44. From these values and the respective solubilities of C60 in water-saturated octanol and water-saturated toluene, C60's aqueous solubility was calculated at 7.96 ng/L(1.11 x 10(-11) M) for the organic solvent-saturated aqueous phase. Additionally, the solubility of C60 was measured in mixtures of ethanol-water and tetrahydrofuran-water and modeled with Wohl's equation to confirm the accuracy of the calculated solubility value. Results of a generator column experiment strongly support the hypothesis that clusters form at aqueous concentrations below or near this calculated solubility. The Kow value is compared to those of other hydrophobic organic compounds, and bioconcentration factors for C60 were estimated on the basis of Kow.

  4. Effect of Phase Shift in Dual-Rail Perfect State Transfer

    International Nuclear Information System (INIS)

    Wang Zhao-Ming; Zhang Zhong-Jun; Gu Yong-Jian

    2014-01-01

    We investigate the effect of phase shift on the perfect state transfer through two parallel one-dimensional ring-shaped spin chains. We find that the total success probability can be significantly enhanced by phase shift control when the communication channel consists of two odd chains. The average time to gain unit success probability is discussed, showing that a proper phase shift can be used to enhance the efficiency of state transmission. (general)

  5. Number-Phase Wigner Representation and Entropic Uncertainty Relations for Binomial and Negative Binomial States

    International Nuclear Information System (INIS)

    Amitabh, J.; Vaccaro, J.A.; Hill, K.E.

    1998-01-01

    We study the recently defined number-phase Wigner function S NP (n,θ) for a single-mode field considered to be in binomial and negative binomial states. These states interpolate between Fock and coherent states and coherent and quasi thermal states, respectively, and thus provide a set of states with properties ranging from uncertain phase and sharp photon number to sharp phase and uncertain photon number. The distribution function S NP (n,θ) gives a graphical representation of the complimentary nature of the number and phase properties of these states. We highlight important differences between Wigner's quasi probability function, which is associated with the position and momentum observables, and S NP (n,θ), which is associated directly with the photon number and phase observables. We also discuss the number-phase entropic uncertainty relation for the binomial and negative binomial states and we show that negative binomial states give a lower phase entropy than states which minimize the phase variance

  6. Supercritical fluid chromatographic resolution of water soluble isomeric carboxyl/amine terminated peptides facilitated via mobile phase water and ion pair formation.

    Science.gov (United States)

    Patel, M A; Riley, F; Ashraf-Khorassani, M; Taylor, L T

    2012-04-13

    Both analytical scale and preparative scale packed column supercritical fluid chromatography (SFC) have found widespread applicability for chiral separations of multiple polar pharmaceutical candidates. However, SFC is rapidly becoming an achiral technique. More specifically, ion pair SFC is finding greater utility for separation of ionic analytes such as amine salts and organic sulfonates. The key to this success is, in part, the incorporation of additives such as trifluoroacetic acid and ammonium acetate into the mobile phase in association with a wide variety of both bonded silica stationary phases and high purity bare silica. Ion pairing SFC coupled with evaporative light scattering detection and mass spectrometric detection is presented here for the separation of water soluble, uncapped, isomeric peptide pairs that differ in amino acid arrangement. The separation is best achieved on either diol-bonded silica or bare silica with 1-5% (w/w) water as a significant ingredient in the mobile phase. Nitrogenous stationary phases such as 2-ethylpyridine, which had been very successful for the separation of capped peptides failed to yield the desired separation regardless of the mobile phase composition. A HILIC type retention mechanism is postulated for the separation of both isomeric uncapped peptide pairs. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Influence of milling process on efavirenz solubility

    Directory of Open Access Journals (Sweden)

    Erizal Zaini

    2017-01-01

    Full Text Available Introduction: The aim of this study was to investigate the influence of the milling process on the solubility of efavirenz. Materials and Methods: Milling process was done using Nanomilling for 30, 60, and 180 min. Intact and milled efavirenz were characterized by powder X-ray diffraction, scanning electron microscopy (SEM, spectroscopy infrared (IR, differential scanning calorimetry (DSC, and solubility test. Results: The X-ray diffractogram showed a decline on peak intensity of milled efavirenz compared to intact efavirenz. The SEM graph depicted the change from crystalline to amorphous habit after milling process. The IR spectrum showed there was no difference between intact and milled efavirenz. Thermal analysis which performed by DSC showed a reduction on endothermic peak after milling process which related to decreasing of crystallinity. Solubility test of intact and milled efavirenz was conducted in distilled water free CO2with 0.25% sodium lauryl sulfate media and measured using high-performance liquid chromatography method with acetonitrile: distilled water (80:20 as mobile phases. The solubility was significantly increased (P < 0.05 after milling processes, which the intact efavirenz was 27.12 ± 2.05, while the milled efavirenz for 30, 60, and 180 min were 75.53 ± 1.59, 82.34 ± 1.23, and 104.75 ± 0.96 μg/mL, respectively. Conclusions: Based on the results, the solubility of efavirenz improved after milling process.

  8. Modeling of metastable phase formation diagrams for sputtered thin films.

    Science.gov (United States)

    Chang, Keke; Music, Denis; To Baben, Moritz; Lange, Dennis; Bolvardi, Hamid; Schneider, Jochen M

    2016-01-01

    A method to model the metastable phase formation in the Cu-W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu-W and Cu-V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering.

  9. Thermodynamics of Highly Supersaturated Aqueous Solutions of Poorly Water-Soluble Drugs-Impact of a Second Drug on the Solution Phase Behavior and Implications for Combination Products.

    Science.gov (United States)

    Trasi, Niraj S; Taylor, Lynne S

    2015-08-01

    There is increasing interest in formulating combination products that contain two or more drugs. Furthermore, it is also common for different drug products to be taken simultaneously. This raises the possibility of interactions between different drugs that may impact formulation performance. For poorly water-soluble compounds, the supersaturation behavior may be a critical factor in determining the extent of oral absorption. The goal of the current study was to evaluate the maximum achievable supersaturation for several poorly water-soluble compounds alone, and in combination. Model compounds included ritonavir, lopinavir, paclitaxel, felodipine, and diclofenac. The "amorphous solubility" for the pure drugs was determined using different techniques and the change in this solubility was then measured in the presence of differing amounts of a second drug. The results showed that "amorphous solubility" of each component in aqueous solution is substantially decreased by the second component, as long as the two drugs are miscible in the amorphous state. A simple thermodynamic model could be used to predict the changes in solubility as a function of composition. This information is of great value when developing co-amorphous or other supersaturating formulations and should contribute to a broader understanding of drug-drug physicochemical interactions in in vitro assays as well as in the gastrointestinal tract. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Surface phase transformations, surface complexation and solubilities of hydroxyapatite in the absence/presence of Cd(II) and EDTA

    International Nuclear Information System (INIS)

    Viipsi, Karin; Sjöberg, Staffan; Shchukarev, Andrey; Tõnsuaadu, Kaia

    2012-01-01

    The removal of Cd from aqueous solutions by hydroxyapatite (HAP) was investigated with and without EDTA being present. Batch experiments were carried out using synthetic hydroxyapatite with Ca/P 1.57 and a specific surface area of 37.5 m 2 /g in the pH range 4–9 (25 °C; 0.1 M KNO 3 ). The surface composition of the solid phases were analysed by X-ray Photoelectron Spectroscopy (XPS). The surface layer of HAP was found to undergo a phase transformation with a (Ca + Cd)/P atomic ratio of 1.4 and the involvement of an ion exchange process (Ca 2+ ↔ Cd 2+ ). The amount of Cd removed from the solution increased with increasing pH, reaching ≈100% at pH 9. In the presence of EDTA Cd removal was reduced due to the formation of [CdEDTA] 2− in solution. The solubility of HAP increases in the presence of EDTA at pH values above 5, mainly due to the formation of [CaEDTA] 2− . In contrast to this, the solubility was found to decrease in the presence of Cd 2+ and CdEDTA 2− . Using XPS the formation of a Cd-enriched HAP surface was found, which was interpreted as the formation of a solid solution of the general composition: Ca 8.4-x Cd x (HPO 4 ) 1.6 (PO 4 ) 4.4 (OH) 0.4 . The information from the chemical analyses and XPS data was used to design an equilibrium model that takes into account dissolution, solution and surface complexation, as well as possible phase transformations. The total concentration of Ca, phosphate, EDTA, and Cd in solution were used in the equilibrium analysis. In the calculations the computer code WinSGW, which is based on the SOLGASWATER algorithm, was used. The following equilibria and compositions of the solid solutions were found to give the best fit to experimental data: logK s (Ca 7.6 Cd 0.8 (HPO 4 ) 1.6 (PO 4 ) 4.4 (OH) 0.4 (s)+4.8H + ⇋7.6Ca 2+ +0.8Cd 2+ +6HPO 4 2- +0.4H 2 O)=-28.03±0.07. The corresponding value for the composition Ca 5.6 Cd 2.8 (HPO 4 ) 1.6 (PO 4 ) 4.4 (OH) 0.4 (s) is −27.39 ± 0.06. The proposed model can be used

  11. Evolution Of Chemical Conditions And Estimated Plutonium Solubility In The Residual Waste Layer During Post-Closure Aging Of Tank 18

    International Nuclear Information System (INIS)

    Denham, M.

    2012-01-01

    This document updates the Eh-pH transitions from grout aging simulations and the plutonium waste release model of Denham (2007, Rev. 1) based on new data. New thermodynamic data for cementitious minerals are used for the grout simulations. Newer thermodynamic data, recommended by plutonium experts (Plutonium Solubility Peer Review Report, LA-UR-12-00079), are used to estimate solubilities of plutonium at various pore water compositions expected during grout aging. In addition, a new grout formula is used in the grout aging simulations and apparent solubilities of coprecipitated plutonium are estimated using data from analysis of Tank 18 residual waste. The conceptual model of waste release and the grout aging simulations are done in a manner similar to that of Denham (2007, Rev. 1). It is assumed that the pore fluid composition passing from the tank grout into the residual waste layer controls the solubility, and hence the waste release concentration of plutonium. Pore volumes of infiltrating fluid of an assumed composition are reacted with a hypothetical grout block using The Geochemist's Workbench(reg s ign) and changes in pore fluid chemistry correspond to the number of pore fluid volumes reacted. As in the earlier document, this results in three states of grout pore fluid composition throughout the simulation period that are termed Reduced Region II, Oxidized Region II, and Oxidized Region III. The one major difference from the earlier document is that pyrite is used to account for reducing capacity of the tank grout rather than pyrrhotite. This poises Eh at -0.47 volts during Reduced Region II. The major transitions in pore fluid composition are shown. Plutonium solubilities are estimated for discrete PuO2(am,hyd) particles and for plutonium coprecipitated with iron phases in the residual waste. Thermodynamic data for plutonium from the Nuclear Energy Agency are used to estimate the solubilities of the discrete particles for the three stages of pore fluid

  12. Analysis of chemical concepts as the basic of virtual laboratory development and process science skills in solubility and solubility product subject

    Science.gov (United States)

    Syafrina, R.; Rohman, I.; Yuliani, G.

    2018-05-01

    This study aims to analyze the concept characteristics of solubility and solubility products that will serve as the basis for the development of virtual laboratory and students' science process skills. Characteristics of the analyzed concepts include concept definitions, concept attributes, and types of concepts. The concept analysis method uses concept analysis according to Herron. The results of the concept analysis show that there are twelve chemical concepts that become the prerequisite concept before studying the solubility and solubility and five core concepts that students must understand in the solubility and Solubility product. As many as 58.3% of the definitions of the concepts contained in high school textbooks support students' science process skills, the rest of the definition of the concept is memorized. Concept attributes that meet three levels of chemical representation and can be poured into a virtual laboratory have a percentage of 66.6%. Type of concept, 83.3% is a concept based on principle; and 16.6% concepts that state the process. Meanwhile, the science process skills that can be developed based on concept analysis are the ability to observe, calculate, measure, predict, interpret, hypothesize, apply, classify, and inference.

  13. Solubility of chromate in a hydrated OPC

    International Nuclear Information System (INIS)

    Leisinger, Sabine M.; Bhatnagar, Amit; Lothenbach, Barbara; Johnson, C. Annette

    2014-01-01

    Highlights: • Solid solutions exist between gypsum and calcium chromate. • The cementitious matrix can bind chromate concentrations up to 0.1 mol/kg. • The chromate binding phase in the cementitious matrix is CrO 4 -ettringite. - Abstract: The knowledge of the chromate binding mechanisms is essential for the prediction of the long-term leachability of cement-based solidified waste containing increased chromate concentrations because of its toxicity and high mobility. In this paper pore water concentrations from OPC doped with varying CaCrO 4 concentrations (0.01–0.8 mol/kg), equilibrated for 28 days were reported. It could be shown that the cementitious matrix can bind chromate concentrations up to 0.1 mol/kg and that the chromate solubility limiting phase was CrO 4 -ettringite, while chromate containing AFm (monochromate) was unstable. Comparison with thermodynamic modelling indicated that at lower chromate dosages chromate was mainly bound by CrO 4 -ettringite while at very high dosages also a mixed CaCrO 4 –CaSO 4 ·2H 2 O phase precipitated. Additional experiments indicated a solubility product of 10 −3.66 for CaCrO 4 and verified the solid solution formation with CaSO 4 ·2H 2 O. Leaching tests indicated a strong chromate binding mainly in the pH range 10.5–13.5, while at pH < 10 very little chromate was bound as ettringite, monocarbonate and C–S–H phases were destabilized. Generally the thermodynamic modeling underestimated chromate uptake indicating that an additional chromate binding possibly on C–S–H or on mixed chromate–carbonate–hydroxide AFm phases

  14. Aqueous solubility, dispersibility and toxicity of biodiesels

    International Nuclear Information System (INIS)

    Hollebone, B.P.; Fieldhouse, B.; Lumley, T.C.; Landriault, M.; Doe, K.; Jackman, P.

    2007-01-01

    The renewed interest in the use of biological fuels can be attributed to that fact that feedstocks for fatty-acid ester biodiesels are renewable and can be reclaimed from waste. Although there are significant benefits to using biodiesels, their increased use leaves potential for accidental release to the environment. Therefore, their environmental behaviours and impacts must be evaluated along with the risk associated with their use. Biodiesel fuels may be made from soy oil, canola oil, reclaimed restaurant grease, fish oil and animal fat. The toxicological fate of biofuel depends on the variability of its chemical composition. This study provided an initial assessment of the aqueous fate and effects of biodiesel from a broad range of commonly available feedstocks and their blends with petroleum diesels. The study focused primarily on the fate and impact of these fuels in fresh-water. The use of chemical dispersion as a countermeasure for saltwater was also investigated. The exposure of aquatic ecosystems to biodiesels and petroleum diesel occurs via the transfer of material from the non-aqueous phase liquid (NAPL) into the aqueous phase, as both soluble and dispersed components. The aqueous solubilities of the fuels were determined from the equilibrium water-accommodated fraction concentrations. The acute toxicities of many biodiesels were reported for 3 test species used by Environment Canada for toxicological evaluation, namely rainbow trout, the water flea and a luminescent bacterium. This study also evaluated the natural potential for dispersion of the fuels in the water column in both low and high-energy wave conditions. Chemical dispersion as a potential countermeasure for biodiesel spills was also evaluated using solubility testing, acute toxicity testing, and dispersibility testing. It was shown that biodiesels have much different fates and impacts from petroleum diesels. The compounds partitioning into the water column are also very different for each

  15. Solubilities of some gases in four immidazolium-based ionic liquids

    International Nuclear Information System (INIS)

    Afzal, Waheed; Liu, Xiangyang; Prausnitz, John M.

    2013-01-01

    Graphical abstract: Experimental apparatus based on the synthetic-volumetric method for measuring solubilities of gases in liquids. Highlights: • We constructed an apparatus for measuring solubilities of sparingly-soluble gases. • We measured solubilities of five gases in four immidazolium-based ionic liquids. • We calculated Henry’s constants for gases in the ionic liquids studied in this work. -- Abstract: The synthetic-volumetric method is used for rapidly measuring solubilities of sparingly-soluble gases in monoethylene glycol and in four ionic liquids. Known molar quantities of solute and solvent are charged into an equilibrium vessel. Measured quantities at equilibrium include: temperature, pressure, quantities of fluids, and volumes of the gas and liquid phases in the equilibrium vessel. These measurements enable calculation of equilibrium compositions using material balances. No sampling or chemical analyses are required. Solubilities are reported for carbon dioxide, krypton, oxygen, and hydrogen in monoethylene glycol, l-n-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4], l-n-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][Tf 2 N], or 1-ethyl-3-methylimidazolium acetate [EMIM][AC]. Solubilities were measured over the temperature range (298 to 355) K and for pressures up to about 7 MPa using two different pieces of equipment, both based on the volumetric method: a low-pressure glass apparatus and a high-pressure stainless-steel apparatus. Special emphasis is given to experimental reliability to assure consistent data

  16. Enhancing interferometer phase estimation, sensing sensitivity, and resolution using robust entangled states

    Science.gov (United States)

    Smith, James F.

    2017-11-01

    With the goal of designing interferometers and interferometer sensors, e.g., LADARs with enhanced sensitivity, resolution, and phase estimation, states using quantum entanglement are discussed. These states include N00N states, plain M and M states (PMMSs), and linear combinations of M and M states (LCMMS). Closed form expressions for the optimal detection operators; visibility, a measure of the state's robustness to loss and noise; a resolution measure; and phase estimate error, are provided in closed form. The optimal resolution for the maximum visibility and minimum phase error are found. For the visibility, comparisons between PMMSs, LCMMS, and N00N states are provided. For the minimum phase error, comparisons between LCMMS, PMMSs, N00N states, separate photon states (SPSs), the shot noise limit (SNL), and the Heisenberg limit (HL) are provided. A representative collection of computational results illustrating the superiority of LCMMS when compared to PMMSs and N00N states is given. It is found that for a resolution 12 times the classical result LCMMS has visibility 11 times that of N00N states and 4 times that of PMMSs. For the same case, the minimum phase error for LCMMS is 10.7 times smaller than that of PMMS and 29.7 times smaller than that of N00N states.

  17. Chimera states in nonlocally coupled phase oscillators with biharmonic interaction

    Science.gov (United States)

    Cheng, Hongyan; Dai, Qionglin; Wu, Nianping; Feng, Yuee; Li, Haihong; Yang, Junzhong

    2018-03-01

    Chimera states, which consist of coexisting domains of coherent and incoherent parts, have been observed in a variety of systems. Most of previous works on chimera states have taken into account specific form of interaction between oscillators, for example, sinusoidal coupling or diffusive coupling. Here, we investigate chimera dynamics in nonlocally coupled phase oscillators with biharmonic interaction. We find novel chimera states with features such as that oscillators in the same coherent cluster may split into two groups with a phase difference around π/2 and that oscillators in adjacent coherent clusters may have a phase difference close to π/2. The different impacts of the coupling ranges in the first and the second harmonic interactions on chimera dynamics are investigated based on the synchronous dynamics in globally coupled phase oscillators. Our study suggests a new direction in the field of chimera dynamics.

  18. Effect of triolein addition on the solubility of capsanthin in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Araus, Karina A.; Valle, José M. del; Robert, Paz S.; Fuente, Juan C. de la

    2012-01-01

    Highlights: ► We isolated capsanthin from red pepper (Capsicum annuum L.). ► We measured its solubility in pure CO 2 and with triolein as cosolvent. ► We model the solubility of capsanthin in pure CO 2 and with triolein. ► Solubility of triolein in mixtures CO 2 + capsanthin was similar to pure CO 2 . ► Triolein has cosolvent effect over solubility of capsanthin in CO 2 . - Abstract: This manuscript presents new phase equilibrium data for capsanthin in pure and triolein-entrained Supercritical (SC) carbon dioxide (CO 2 ). The aim of the work was to determine the cosolvent effect of triolein on capsanthin by comparing solubility results in a ternary (CO 2 + triolein + capsanthin) system and binary (CO 2 + capsanthin) system at (313 or 333) K and (19 to 34) MPa. For this, authors isolated capsanthin from red pepper (Capsicum annuum L.) and tested it using a dynamic-analytical method in an apparatus with recirculation and online analysis of the CO 2 -rich phase. Within the experimental region, the solubility of capsanthin in pure SC–CO 2 increased with system temperature at isobaric conditions and also increased with pressure at isothermal conditions. Solubilities ranged from a minimal of 0.65 μmol/mol at 313 K and 19 MPa to a maximal of 1.97 μmol/mol at 333 K and 32 MPa. The concentration of triolein in the ternary system was equivalent to that its solubility in pure SC–CO 2 depending on system temperature and pressure conditions. Crossover pressure was determined experimentally at 29.6 MPa, below which solubility of triolein decreased with temperature (effect of density). Above the crossover pressure, solubility of triolein increased with temperature (vapor pressure effect). Values of solubility within this range were 0.16 mmol/mol at 19 MPa and 313 K to 0.41 mmol/mol at 33 MPa and 333 K. Independent of system temperature and pressure, capsanthin solubility in triolein-entrained SC–CO 2 increased by a factor of about 3 (triolein-induced enhancement

  19. Soluble Non-ammonia Nitrogen in Ruminal and Omasal Digesta of Korean Native Steers Supplemented with Soluble Proteins

    Directory of Open Access Journals (Sweden)

    C. W. Choi

    2012-09-01

    Full Text Available An experiment was conducted to study the effect of soluble protein supplements on concentration of soluble non-ammonia nitrogen (SNAN in the liquid phase of ruminal (RD and omasal digesta (OD of Korean native steers, and to investigate diurnal pattern in SNAN concentration in RD and OD. Three ruminally cannulated Korean native steers in a 3×3 Latin square design consumed a basal diet of rice straw and corn-based concentrate (control, and that supplemented (kg/d DM basis with intact casein (0.24; IC or acid hydrolyzed casein (0.46; AHC. Ruminal digesta was sampled using a vacuum pump, whereas OD was collected using an omasal sampling system at 2.0 h intervals after a morning feeding. The SNAN fractions (free amino acid (AA, peptide and soluble protein in RD and OD were assessed using the ninhydrin assay. Concentrations of free AA and total SNAN in RD were significantly (p<0.05 lower than those in OD. Although free AA concentration was relatively high, mean peptide was quantitatively the most important fraction of total SNAN in both RD and OD, indicating that degradation of peptide to AA rather than hydrolysis of soluble protein to peptide or deamination may be the most limiting step in rumen proteolysis of Korean native steers. Diurnal variation in peptide concentration in OD for the soluble protein supplemented diets during the feeding cycle peaked 2 h post-feeding and decreased thereafter whereas that for the control was relatively constant during the entire feeding cycle. Diurnal variation in peptide concentration was rather similar between RD and OD.

  20. Particulate and soluble 210Pd activities in the deep sea

    International Nuclear Information System (INIS)

    Somayajulu, B.L.K.; Craig, H.

    1976-01-01

    Particulate and soluble, 210 Pb activities have been measured by filtration of large-volume water samples at two stations in the South Atlantic. Particulate phase 210 Pb (caught by a 0.4-μm filter) varies from 0.3% of total 210 Pb in equatorial surface water to 15% in the bottom water. The 'absolute activity' of 210 Pb per unit mass of particulate matter is about 10 7 times the activity of soluble 210 Pb per unit mass of water, but because the mass ratio of particulate matter to water is about 10 -8 , the particulate phase carries only about 10% of the total activity. In Antarctic surface water the particulate phase carries 40% of the total 210 Pb activity; the absolute activity of this material is about the same as in other water masses and the higher fraction is due to the much larger concentration of suspended matter in surface water in this region. In the equatorial Atlantic the particulate phase 210 Pb activity increases with depth, by a factor of 40 from surface to bottom, and by a factor of 4 from the Antarctic Intermediate water core to the Antarctic Bottom Water. (Auth.)

  1. A Multi-Phase Equation of State and Strength Model for Tin

    International Nuclear Information System (INIS)

    Cox, G. A.

    2006-01-01

    This paper considers a multi-phase equation of state and a multi-phase strength model for tin in the β, γ and liquid phases. At a phase transition there are changes in volume, energy, and properties of a material that should be included in an accurate model. The strength model will also be affected by a solid-solid phase transition. For many materials there is a lack of experimental data for strength at high pressures making the derivation of strength parameters for some phases difficult. In the case of tin there are longitudinal sound speed data on the Hugoniot available that have been used here in conjunction with a multi-phase equation of state to derive strength parameters for the γ phase, a phase which does not exist at room temperature and pressure

  2. Dual Activity of Hydroxypropyl-β-Cyclodextrin and Water-Soluble Carriers on the Solubility of Carvedilol.

    Science.gov (United States)

    Zoghbi, Abdelmoumin; Geng, Tianjiao; Wang, Bo

    2017-11-01

    Carvedilol (CAR) is a non-selective α and β blocker categorized as class II drug with low water solubility. Several recent studies have investigated ways to overcome this problem. The aim of the present study was to combine two of these methods: the inclusion complex using hydroxypropyl-β-cyclodextrin (HPβCD) with solid dispersion using two carriers: Poloxamer 188 (PLX) and Polyvinylpyrrolidone K-30 (PVP) to enhance the solubility, bioavailability, and the stability of CAR. Kneading method was used to prepare CAR-HPβCD inclusion complex (KD). The action of different carriers separately and in combination on Carvedilol solubility was investigated in three series. CAR-carrier and KD-carrier solid dispersions were prepared by solvent evaporation method. In vitro dissolution test was conducted in three different media: double-distilled water (DDW), simulative gastric fluid (SGF), and PBS pH 6.8 (PBS). The interactions between CAR, HPβCD, and different carriers were explored by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffractometry (XRD), and differential scanning colorimetry (DSC). The results showed higher solubility of CAR in KD-PVP solid dispersions up to 70, 25, and 22 fold compared to pure CAR in DDW, SGF, and PBS, respectively. DSC and XRD analyses indicated an improved degree of transformation of CAR in KD-PVP solid dispersion from crystalline to amorphous state. This study provides a new successful combination of two polymers with the dual action of HPβCD and PLX/PVP on water solubility and bioavailability of CAR.

  3. In vitro chemical and cellular tests applied to uranium trioxide with different hydration states

    International Nuclear Information System (INIS)

    Ansoborlo, E.; Chalabreysse, J.; Henge-Napoli, M.H.; Pujol, E.

    1992-01-01

    A simple and rapid in vitro chemical solubility test applicable to industrial uranium trioxide (UO 3 ) was developed together with two in vitro cellular tests using rat alveolar macrophages maintained either in gas phase or in alginate beads at 37 degrees C. Industrial UO 3 was characterized by particle size, X-ray, and IR spectra, and chemical transformation (e.g., aging and hydration of the dust) was also studied. Solvents used for the in vitro chemical solubility study included carbonates, citrates, phosphates, water, Eagle's basal medium, and Gamble's solution (simulated lung fluid), alone, with oxygen, or with superoxide ions. Results, expressed in terms of the half-time of dissolution, according to International Commission on Radiological Protection (ICRP) classification (D,W,Y), varied for different hydration states of UO 3 , showing a lower solubility of hydrated UO 3 in solvents compared to basic UO 3 or UO 3 heated at 450 degrees C. Two in vitro cellular tests on cultured rat alveolar macrophages (cells maintained in gas phase and cells immobilized in alginate beads) were used on the same UO 3 samples and generally showed a lower solution transfer rate in the presence of macrophages than in the culture medium alone. The results of in vitro chemical and cellular tests were compared, with four main conclusions; a good reproducibility of the three tests in Eagle's basal medium of the effect of hydration state on solubility, the classification of UO 3 in terms of ICRP solubility criteria, and the ability of macrophoges to decrease uranium solubility in medium. 16 refs., 3 figs., 4 tabs

  4. Effect of amides on sodium tetraborate solubility

    International Nuclear Information System (INIS)

    Tsekhanskij, R.S.; Skvortsov, V.G.; Molodkin, A.K.; Sadetdinov, Sh.V.

    1986-01-01

    Methods of solubility and refractometry at 25 deg C were applied to investigate sodium tetraborate - formamide (dimethylformamide) - water systems. It is stated that they are of simple eutonic type as well as the earlier described sodium tetraborate-acetamide-water system. Amides reduce solubility of the salt. The effect of contact interaction between dissolved substances on salt cation hydration and thus on the value of liotropic amide effect is confirmed. This value is found to be also depend on the number of molecules of coordination water in the initial crystalline hydrate

  5. Effect of amides on sodium tetraborate solubility

    Energy Technology Data Exchange (ETDEWEB)

    Tsekhanskij, R S; Skvortsov, V G; Molodkin, A K; Sadetdinov, Sh V

    1986-11-01

    Methods of solubility and refractometry at 25 deg C were applied to investigate sodium tetraborate - formamide (dimethylformamide) - water systems. It is stated that they are of simple eutonic type as well as the earlier described sodium tetraborate-acetamide-water system. Amides reduce solubility of the salt. The effect of contact interaction between dissolved substances on salt cation hydration and thus on the value of liotropic amide effect is confirmed. This value is found to be also depend on the number of molecules of coordination water in the initial crystalline hydrate.

  6. Solubility of nicotinic acid in water, ethanol, acetone, diethyl ether, acetonitrile, and dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Gonçalves, Elsa M.; Minas da Piedade, Manuel E.

    2012-01-01

    Highlights: ► We determined the solubility of nicotinic acid in six solvents by the gravimetric method. ► We found that, regardless of the solvent, the same monoclinic solid phase was in equilibrium with the solution. ► We determined the activity coefficients of nicotinic acid in the six solvents. ► We found that the solubility trends seem to be determined by the polarity and polarizability of the solvent. - Abstract: The mole fraction equilibrium solubility of nicotinic acid in six solvents (water, ethanol, dimethyl sulfoxide, acetone, acetonitrile and diethyl ether) differing in polarity, polarizability, and hydrogen-bonding ability, was determined over the temperature range (283 to 333) K, using the gravimetric method. The results obtained led to the solubility order dimethyl sulfoxide (DMSO) ≫ ethanol > water > acetone > diethyl ether > acetonitrile. An analysis based on various solvent descriptors, indicated that this trend seems to be mainly determined by the polarity and polarizability of the solvent. The activity coefficients of nicotinic acid in the different solvents, under saturation conditions, were determined as a function of the temperature and it was found that DMSO exhibits enhanced solubility relative to an ideal solution while the opposite is observed for all other solvents. Both the solvent and the fact that nicotinic acid is primarily zwitterionic in aqueous solution and non-zwitterionic in non-aqueous media, did not affect the nature of the solid phases in equilibrium with the different solutions. Indeed, X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and differential scanning calorimetry analysis indicated that, despite some differences in particle size and morphology, the starting material and the solid products obtained at the end of the solubility studies in the six solvents used in this work were all crystalline and corresponded to the same monoclinic phase.

  7. Edge states and phase diagram for graphene under polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Xiang, E-mail: wangyixiang@jiangnan.edu.cn [School of Science, Jiangnan University, Wuxi 214122 (China); Li, Fuxiang [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-07-01

    In this work, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, the number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.

  8. Experimental determination and modeling of the solubility phase diagram of the ternary system (Li{sub 2}SO{sub 4} + K{sub 2}SO{sub 4} + H{sub 2}O) at 288.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shiqiang, E-mail: wangshiqiang@tust.edu.cn [Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 (China); Guo, Yafei [Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 (China); Li, Dongchan [Engineering Research Center of Seawater Utilization Technology of Ministry of Education, Hebei University of Technology, Tianjin 300130 (China); Tang, Peng; Deng, Tianlong [Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2015-02-10

    Highlights: • Solubility of the ternary system Li{sub 2}SO{sub 4} + K{sub 2}SO{sub 4} + H{sub 2}O at 288.15 K has been measured. • Phase diagram of this system was simulated and calculated by a thermodynamic model. • Li{sub 2}SO{sub 4}·K{sub 2}SO{sub 4} belongs to the incongruent double salt in this system. • Solution density was calculated using empirical equation. - Abstract: The solubility and density in the thermodynamic phase equilibria ternary system (Li{sub 2}SO{sub 4} + K{sub 2}SO{sub 4} + H{sub 2}O) at 288.15 K and 0.1 MPa were investigated experimentally with the method of isothermal dissolution equilibrium. This system at 288.15 K consists of two invariant points, three univariant isothermal dissolution curves; and three crystallization regions. The salt Li{sub 2}SO{sub 4}·K{sub 2}SO{sub 4} belongs to the incongruent double salt, and no solid solution was found. Based on the Pitzer model and its extended Harvie–Weare (HW) model, the mixing ion-interaction parameters of θ{sub Li,K}, ψ{sub Li,K,SO4} at 288.15 K and the solubility equilibrium constants K{sub sp} of solid phases Li{sub 2}SO{sub 4}·H{sub 2}O and Li{sub 2}SO{sub 4}·K{sub 2}SO{sub 4}, which are not reported in the literature were acquired. A comparison between the calculated and experimental results at 288.15 K for the ternary system shows that the calculated solubilities obtained with the extended HW model agree well with experimental data.

  9. Chemistry of tetravalent plutonium and zirconium. Hydrolysis, solubility, colloid formation and redox reactions

    International Nuclear Information System (INIS)

    Cho, Hye-Ryun

    2006-01-01

    The chemical properties of plutonium and zirconium are important in order to assess nuclear waste disposals with respect to isolation and immobilization of radionuclides. In this study, the hydrolysis, solubility and colloid formation of tetravalent plutonium and zirconium are investigated in 0.5 M HCl/NaCl solution using several complementary methods and the redox behavior of plutonium is investigated in acidic conditions as well. The solubilities of Pu(IV) and Zr(IV) are determined from the onset of colloid formation as a function of pH and metal concentration using LIBD (laser-induced breakdown detection). The investigation of the solubility of Zr(IV) is carried out at different concentrations (log [Zr] = -3 ∝ -7.6) and in a wide pH range (pH = 3 - 9) yielding log K sp (Zr(IV)) = -53.1 ± 0.5 based on the assumption that only mononuclear hydrolysis species exist in solution. Comparing the present results with literature data, the solubilities of Zr can be split in two groups, a crystalline phase with lower solubility and an amorphous phase (Zr(OH) 4 (am)) with higher solubility. The data obtained in the present work set an upper limit for the solubility of freshly formed Zr(OH) 4 (am). To understand this difference of solubilities, the geometrical structure of the dominant solution species is investigated as a function of pH using XAFS (X-ray absorption fine structure). The samples at pH >2, still below the solubility limit determined by LIBD, contain the polynuclear Zr(IV) species probably due to the high concentration ([Zr] = 1 mM) and their structure do not resemble any reported simple ZrO 2 structure. The Zr(IV) colloid species in oversaturated solution under this experimental condition resembles amorphous Zr(IV) hydroxide rather than crystalline ZrO 2 . The solubility of Pu(IV) is investigated in acidic solution below pH 2. Considering only mononuclear hydrolysis species, log K sp (Pu(IV)) = -58.3 ± 0.4 is obtained. Since Pu(IV) is not redox stable even

  10. Role of metal ion solubility in leaching of nuclear waste glasses

    International Nuclear Information System (INIS)

    Grambow, B.

    1982-04-01

    From the results of a variety of experiments it can be concluded that reaction of the matrix is the fundamental process that occurs in the leaching of PNL 76-68 glass. This reaction has two aspects. Without solubility restrictions, congruent leaching behavior occurs at all pH values and leachant compositions. When this reaction raises solution concentrations of certain elements to the level at which new solid phases form, these phases will regulate the solution concentration. These solid phases are dominant constituents of the leached layer. For the leaching of PNL 76-68 glass, the solubilities of these reaction products regulate the solution concentration as if the solution is in equilibrium with pure Fe(OH) 3 (amorphous), Zn(OH) 2 (amorphous), Nd(OH) 3 , SrCO 3 or CaCO 3 . The experimental conditions, in particular the pH value, that govern the formation of solid reaction products and control of the solution concentrations can be identified

  11. Linear entropy in quantum phase space

    International Nuclear Information System (INIS)

    Rosales-Zarate, Laura E. C.; Drummond, P. D.

    2011-01-01

    We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. The preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.

  12. Linear entropy in quantum phase space

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Zarate, Laura E. C.; Drummond, P. D. [Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia)

    2011-10-15

    We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. The preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.

  13. Limited solubility of iron in the Sun's interior

    International Nuclear Information System (INIS)

    Pollock, E.L.; Alder, B.J.

    1978-01-01

    Stripped iron nuclei in a hydrogen plasma under central solar conditions, according to the classical Debye-Huckel model, would undergo phase separation for concentrations well below the cosmic abundance value. The higher concentration corrections, needed to characterise the iron-rich phase, lead to enhanced solubility for a simplified model where the electrons form a uniform background. Support for an iron-rich phase coalescing in the solar interior requires more accurate treatment of bound and partially bound electrons in such a mixture. The results of the Debye-Huckel model where the electrons are treated discretely and as a continuum, are reported here and support the possibility of phase separation. The physical cause of that phase separation is simply that the potential energy is lower in the separated phase than in the mixture because the local charge neutralisation is much better satisfied in the two separated phases. (author)

  14. Spectroscopy, modeling and computation of metal chelate solubility in supercritical CO2

    International Nuclear Information System (INIS)

    Brennecke, J.F.; Stadtherr, M.A.

    1999-01-01

    The overall objectives of this project were to gain a fundamental understanding of the solubility and phase behavior of metal chelates in supercritical CO 2 . Extraction with CO 2 is an excellent way to remove organic compounds from soils, sludges and aqueous solutions, and recent research has demonstrated that, together with chelating agents, it is a viable way to remove metals, as well. In this project the authors sought to gain fundamental knowledge that is vital to computing phase behavior, and modeling and designing processes using CO 2 to separate organics and metal compounds from DOE mixed wastes. The overall program was a comprehensive one to measure, model and compute the solubility of metal chelate complexes in supercritical CO 2 and CO 2 /cosolvent mixtures. Through a combination of phase behavior measurements, spectroscopy and the development of a new computational technique, the authors have achieved a completely reliable way to model metal chelate solubility in supercritical CO 2 and CO 2 /co-contaminant mixtures. Thus, they can now design and optimize processes to extract metals from solid matrices using supercritical CO 2 , as an alternative to hazardous organic solvents that create their own environmental problems, even while helping in metals decontamination

  15. Enhancing the Solubility and Oral Bioavailability of Poorly Water-Soluble Drugs Using Monoolein Cubosomes.

    Science.gov (United States)

    Ali, Md Ashraf; Kataoka, Noriko; Ranneh, Abdul-Hackam; Iwao, Yasunori; Noguchi, Shuji; Oka, Toshihiko; Itai, Shigeru

    2017-01-01

    Monoolein cubosomes containing either spironolactone (SPI) or nifedipine (NI) were prepared using a high-pressure homogenization technique and characterized in terms of their solubility and oral bioavailability. The mean particle size, polydispersity index (PDI), zeta potential, solubility and encapsulation efficiency (EE) values of the SPI- and NI-loaded cubosomes were determined to be 90.4 nm, 0.187, -13.4 mV, 163 µg/mL and 90.2%, and 91.3 nm, 0.168, -12.8 mV, 189 µg/mL and 93.0%, respectively, which were almost identical to those of the blank cubosome. Small-angle X-ray scattering analyses confirmed that the SPI-loaded, NI-loaded and blank cubosomes existed in the cubic space group Im3̄m. The lattice parameters of the SPI- and NI-loaded cubosomes were 147.6 and 151.6 Å, respectively, making them almost identical to that of blank cubosome (151.0 Å). The in vitro release profiles of the SPI- and NI-loaded cubosomes showed that they released less than 5% of the drugs into various media over 12-48 h, indicating that most of the drug remained encapsulated within the cubic phase of their lipid bilayer. Furthermore, the in vivo pharmacokinetic results suggested that these cubosomes led to a considerable increase in the systemic oral bioavailability of the drugs compared with pure dispersions of the same materials. Notably, the stability results indicated that the mean particle size and PDI values of these cubosomes were stable for at least 4 weeks. Taken together, these results demonstrate that monoolein cubosomes represent promising drug carriers for enhancing the solubility and oral bioavailability of poorly water-soluble drugs.

  16. Water-Soluble Phosphine-Protected Au₁₁ Clusters: Synthesis, Electronic Structure, and Chiral Phase Transfer in a Synergistic Fashion.

    Science.gov (United States)

    Yao, Hiroshi; Iwatsu, Mana

    2016-04-05

    Synthesis of atomically precise, water-soluble phosphine-protected gold clusters is still currently limited probably due to a stability issue. We here present the synthesis, magic-number isolation, and exploration of the electronic structures as well as the asymmetric conversion of triphenylphosphine monosulfonate (TPPS)-protected gold clusters. Electrospray ionization mass spectrometry and elemental analysis result in the primary formation of Au11(TPPS)9Cl undecagold cluster compound. Magnetic circular dichroism (MCD) spectroscopy clarifies that extremely weak transitions are present in the low-energy region unresolved in the UV-vis absorption, which can be due to the Faraday B-terms based on the magnetically allowed transitions in the cluster. Asymmetric conversion without changing the nuclearity is remarkable by the chiral phase transfer in a synergistic fashion, which yields a rather small anisotropy factor (g-factor) of at most (2.5-7.0) × 10(-5). Quantum chemical calculations for model undecagold cluster compounds are then used to evaluate the optical and chiroptical responses induced by the chiral phase transfer. On this basis, we find that the Au core distortion is ignorable, and the chiral ion-pairing causes a slight increase in the CD response of the Au11 cluster.

  17. Subcutaneous insulin absorption explained by insulin's physicochemical properties. Evidence from absorption studies of soluble human insulin and insulin analogues in humans.

    Science.gov (United States)

    Kang, S; Brange, J; Burch, A; Vølund, A; Owens, D R

    1991-11-01

    To study the influence of molecular aggregation on rates of subcutaneous insulin absorption and to attempt to elucidate the mechanism of absorption of conventional soluble human insulin in humans. Seven healthy male volunteers aged 22-43 yr and not receiving any drugs comprised the study. This study consisted of a single-blind randomized comparison of equimolar dosages of 125I-labeled forms of soluble hexameric 2 Zn2+ human insulin and human insulin analogues with differing association states at pharmaceutical concentrations (AspB10, dimeric; AspB28, mixture of monomers and dimers; AspB9, GluB27, monomeric). After an overnight fast and a basal period of 1 h, 0.6 nmol/kg of either 125I-labeled human soluble insulin (Actrapid HM U-100) or 125I-labeled analogue was injected subcutaneously on 4 separate days 1 wk apart. Absorption was assessed by measurement of residual radioactivity at the injection site by external gamma-counting. The mean +/- SE initial fractional disappearance rates for the four preparations were 20.7 +/- 1.9 (hexameric soluble human insulin), 44.4 +/- 2.5 (dimeric analogue AspB10), 50.6 +/- 3.9 (analogue AspB28), and 67.4 +/- 7.4%/h (monomeric analogue AspB9, GluB27). Absorption of the dimeric analogue was significantly faster than that of hexameric human insulin (P less than 0.001); absorption of monomeric insulin analogue AspB9, GluB27 was significantly faster than that of dimeric analogue AspB10 (P less than 0.01). There was an inverse linear correlation between association state and the initial fractional disappearance rates (r = -0.98, P less than 0.02). Analysis of the disappearance data on a log linear scale showed that only the monomeric analogue had a monoexponential course throughout. Two phases in the rates of absorption were identified for the dimer and three for hexameric human insulin. The fractional disappearance rates (%/h) calculated by log linear regression analysis were monomer 73.3 +/- 6.8; dimer 44.4 +/- 2.5 from 0 to 2 h and

  18. Modeling and design of reacting systems with phase transfer catalysis

    DEFF Research Database (Denmark)

    Piccolo, Chiara; Hodges, George; Piccione, Patrick M.

    2011-01-01

    Issues related to the design of biphasic (liquid) catalytic reaction operations are discussed. A chemical system involving the reaction of an organic-phase soluble reactant (A) with an aqueous-phase soluble reactant (B) in the presence of phase transfer catalyst (PTC) is modeled and based on it......, some of the design issues related to improved reaction operation are analyzed. Since the solubility of the different forms of the PTC in the organic solvent affects ultimately the catalyst partition coefficients, therefore, the organic solvent plays an important role in the design of PTC-based reacting...

  19. Phase Equilibria of Sn-Co-Cu Ternary System

    Science.gov (United States)

    Chen, Yu-Kai; Hsu, Chia-Ming; Chen, Sinn-Wen; Chen, Chih-Ming; Huang, Yu-Chih

    2012-10-01

    Sn-Co-Cu ternary alloys are promising lead-free solders, and isothermal sections of Sn-Co-Cu phase equilibria are fundamentally important for the alloys' development and applications. Sn-Co-Cu ternary alloys were prepared and equilibrated at 523 K, 1073 K, and 1273 K (250 °C, 800 °C, and 1000 °C), and the equilibrium phases were experimentally determined. In addition to the terminal solid solutions and binary intermetallic compounds, a new ternary compound, Sn3Co2Cu8, was found. The solubilities of Cu in the α-CoSn3 and CoSn2 phases at 523 K (250 °C) are 4.2 and 1.6 at. pct, respectively, while the Cu solubility in the α-Co3Sn2 phase is as high as 20.0 at. pct. The Cu solubility increases with temperature and is around 30.0 at. pct in the β-Co3Sn2 at 1073 K (800 °C). The Co solubility in the η-Cu6Sn5 phase is also significant and is 15.5 at. pct at 523 K (250 °C).

  20. Comparison of time/phase lags in the hard state and plateau state of GRS 1915+105

    Energy Technology Data Exchange (ETDEWEB)

    Pahari, Mayukh; Yadav, J. S. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, India (MP) (India); Neilsen, Joseph [Boston University, Boston, MA 02215 (United States); Misra, Ranjeev [Inter University Center for Astronomy and Astrophysics, Pune (India); Uttley, Phil, E-mail: mp@tifr.res.in [Astronomical Institute, " Anton Pannekoek," University of Amsterdam, Science Park 904, 1098-XH Amsterdam (Netherlands)

    2013-12-01

    We investigate the complex behavior of energy- and frequency-dependent time/phase lags in the plateau state and the radio-quiet hard (χ) state of GRS 1915+105. In our timing analysis, we find that when the source is faint in the radio, quasi-periodic oscillations (QPOs) are observed above 2 Hz and typically exhibit soft lags (soft photons lag hard photons), whereas QPOs in the radio-bright plateau state are found below 2.2 Hz and consistently show hard lags. The phase lag at the QPO frequency is strongly anti-correlated with that frequency, changing sign at 2.2 Hz. However, the phase lag at the frequency of the first harmonic is positive and nearly independent of that frequency at ∼0.172 rad, regardless of the radio emission. The lag energy dependence at the first harmonic is also independent of radio flux. However, the lags at the QPO frequency are negative at all energies during the radio-quiet state, but lags at the QPO frequency during the plateau state are positive at all energies and show a 'reflection-type' evolution of the lag energy spectra with respect to the radio-quiet state. The lag energy dependence is roughly logarithmic, but there is some evidence for a break around 4-6 keV. Finally, the Fourier-frequency-dependent phase lag spectra are fairly flat during the plateau state, but increase from negative to positive during the radio-quiet state. We discuss the implications of our results in light of some generic models.

  1. Breathing multichimera states in nonlocally coupled phase oscillators

    Science.gov (United States)

    Suda, Yusuke; Okuda, Koji

    2018-04-01

    Chimera states for the one-dimensional array of nonlocally coupled phase oscillators in the continuum limit are assumed to be stationary states in most studies, but a few studies report the existence of breathing chimera states. We focus on multichimera states with two coherent and incoherent regions and numerically demonstrate that breathing multichimera states, whose global order parameter oscillates temporally, can appear. Moreover, we show that the system exhibits a Hopf bifurcation from a stationary multichimera to a breathing one by the linear stability analysis for the stationary multichimera.

  2. The solubilities of significant organic compounds in HLW tank supernate solutions

    International Nuclear Information System (INIS)

    Barney, G.S.

    1994-08-01

    Large quantities of organic chemicals used in reprocessing spent nuclear-fuels at the Hanford Site have accumulated in underground high-level radioactive waste tanks. The organic content of these tanks must he known so that the potential for hazardous reactions between organic components and sodium nitrate/nitrite salts in the waste can he evaluated. The solubilities of organic compounds described in this report will help determine if they are present in the solid phases (salt cake and sludges) as well as the liquid phase (interstitial liquor/supernate) in the tanks. The solubilities of five significant sodium salts of carboxylic acids and aminocarboxylic acids [sodium oxalate, formate, citrate, nitrilotriacetate (NTA) and ethylendiaminetetraacetate (EDTA)] were measured in a simulated supernate solution at 25 degrees C, 30 degrees C, 40 degrees C, and 50 degrees C

  3. Persistent chimera states in nonlocally coupled phase oscillators

    OpenAIRE

    Suda, Yusuke; Okuda, Koji

    2015-01-01

    Chimera states in the systems of nonlocally coupled phase oscillators are considered stable in the continuous limit of spatially distributed oscillators. However, it is reported that in the numerical simulations without taking such limit, chimera states are chaotic transient and finally collapse into the completely synchronous solution. In this Rapid Communication, we numerically study chimera states by using the coupling function different from the previous studies and obtain the result that...

  4. On the solubility of yttrium in RuO2

    International Nuclear Information System (INIS)

    Music, Denis; Zumdick, Naemi A.; Hallstedt, Bengt; Schneider, Jochen M.

    2011-01-01

    We have investigated the solubility of Y in rutile RuO 2 using experimental and theoretical methods. Nanostructured Ru-Y-O thin films were synthesized via combinatorial reactive sputtering with an O/metal ratio of 2.6 and a Y content of 0.3 to 12.6 at. %. A solubility limit of 1.7 at. % was identified using x-ray photoelectron spectroscopy and x-ray diffraction. Based on ab initio and thermodynamic modeling, the solubility of Y can be understood. Smaller Y amounts are incorporated into the lattice, forming a metastable film, with local structural deformations due to size effects. As the Y content is increased, extensive local structural deformations are observed, but phase separation does not occur due to kinetic limitations. Nanostructured RuO 2 alloyed with Y might lead to enhanced phonon scattering and quantum confinement effects, which in turn improve the thermoelectric efficiency.

  5. Kinematic approach to off-diagonal geometric phases of nondegenerate and degenerate mixed states

    International Nuclear Information System (INIS)

    Tong, D.M.; Oh, C.H.; Sjoeqvist, Erik; Filipp, Stefan; Kwek, L.C.

    2005-01-01

    Off-diagonal geometric phases have been developed in order to provide information of the geometry of paths that connect noninterfering quantal states. We propose a kinematic approach to off-diagonal geometric phases for pure and mixed states. We further extend the mixed-state concept proposed in [Phys. Rev. Lett. 90, 050403 (2003)] to degenerate density operators. The first- and second-order off-diagonal geometric phases are analyzed for unitarily evolving pairs of pseudopure states

  6. Two novel heat-soluble protein families abundantly expressed in an anhydrobiotic tardigrade.

    Directory of Open Access Journals (Sweden)

    Ayami Yamaguchi

    Full Text Available Tardigrades are able to tolerate almost complete dehydration by reversibly switching to an ametabolic state. This ability is called anhydrobiosis. In the anhydrobiotic state, tardigrades can withstand various extreme environments including space, but their molecular basis remains largely unknown. Late embryogenesis abundant (LEA proteins are heat-soluble proteins and can prevent protein-aggregation in dehydrated conditions in other anhydrobiotic organisms, but their relevance to tardigrade anhydrobiosis is not clarified. In this study, we focused on the heat-soluble property characteristic of LEA proteins and conducted heat-soluble proteomics using an anhydrobiotic tardigrade. Our heat-soluble proteomics identified five abundant heat-soluble proteins. All of them showed no sequence similarity with LEA proteins and formed two novel protein families with distinct subcellular localizations. We named them Cytoplasmic Abundant Heat Soluble (CAHS and Secretory Abundant Heat Soluble (SAHS protein families, according to their localization. Both protein families were conserved among tardigrades, but not found in other phyla. Although CAHS protein was intrinsically unstructured and SAHS protein was rich in β-structure in the hydrated condition, proteins in both families changed their conformation to an α-helical structure in water-deficient conditions as LEA proteins do. Two conserved repeats of 19-mer motifs in CAHS proteins were capable to form amphiphilic stripes in α-helices, suggesting their roles as molecular shield in water-deficient condition, though charge distribution pattern in α-helices were different between CAHS and LEA proteins. Tardigrades might have evolved novel protein families with a heat-soluble property and this study revealed a novel repertoire of major heat-soluble proteins in these anhydrobiotic animals.

  7. Calculated solubility isotherm of a system of alkaline earth sulfates and hydroxides in water

    International Nuclear Information System (INIS)

    MOshinskii, A.S.; TIkomirova, K.A.

    1986-01-01

    Tis paper examines the calculation of the isothermal solubility diagram of a system of alkaline earth sulfates and hydroxides in water which makes it possible to substantiate, to a considerable extent, the natural physicochemical mineralization of natural waters, in particular water from geochemical sources. The present paper investigates the solubility of the equilibrium solid phases of a system of alkaline earth sulfates and hydroxides in water. A projection is shown of the composition prism of the quinary reciprocal system with demarcation of the crystallization areas of each sulfate and hydroxide of the component subsystems. The computational formulas for calculating solubility were derived from the solubility product principle, with allowance for ion activity coefficients in saturated hydroxide solutions

  8. FACTORS AFFECTING THE RELEASE RATE OF A HIGHLY SOLUBLE DRUG FROM A PROGRAMMED RELEASE MEGALOPOROUS SYSTEM

    NARCIS (Netherlands)

    VANDERVEEN, C; MENGER, NR; LERK, CF

    The present study reports on the successful incorporation of a highly soluble drug, procaine HCl, in a programmed-release megaloporous system. This solid two-phase system is composed of housing phase matrix granules (HMG), controlling liquid penetration into the system, and of restraining phase

  9. Gas solubilities widespread applications

    CERN Document Server

    Gerrard, William

    1980-01-01

    Gas Solubilities: Widespread Applications discusses several topics concerning the various applications of gas solubilities. The first chapter of the book reviews Henr's law, while the second chapter covers the effect of temperature on gas solubility. The third chapter discusses the various gases used by Horiuti, and the following chapters evaluate the data on sulfur dioxide, chlorine data, and solubility data for hydrogen sulfide. Chapter 7 concerns itself with solubility of radon, thoron, and actinon. Chapter 8 tackles the solubilities of diborane and the gaseous hydrides of groups IV, V, and

  10. Solubility of plutonium dioxide aerosols, in vitro

    International Nuclear Information System (INIS)

    Newton, G.J.; Kanapilly, G.M.

    1976-01-01

    Solubility of plutonium aerosols is an important parameter in establishing risk estimates for industrial workers who might accidentally inhale these materials and in evaluating environmental health impacts associated with Pu. In vitro solubility of industrial plutonium aerosols in a simulated lung fluid is compared to similar studies with ultrafine aerosols from laser ignition of delta phase plutonium metal and laboratory-produced spherical particles of 238 PuO 2 and 239 PuO 2 . Although relatively insoluble, industrial plutonium-mixed oxide aerosols were much more soluble than laboratory-produced plutonium dioxide particles. Chain agglomerate aerosols from laser ignition of metallic Pu indicated in vitro dissolution half-times of 10 and 50 days for activity median aerodynamic diameter (AMAD) of 0.7 and 2.3 μm, respectively. Plutonium-containing mixed oxide aerosols indicated dissolution half-times of 40 to 500 days for particles formed by industrial powder comminution and blending. Centerless grinding of fuel pellets yielded plutonium-containing aerosols with dissolution half-times of 1200 to 8000 days. All mixed oxide particles were in the size range 1.0 μm to 2.5 μm AMAD

  11. Near-field solubility studies

    International Nuclear Information System (INIS)

    Thomason, H.P.; Williams, S.J.

    1992-02-01

    Experimental determinations of the solubilities of americium, plutonium, neptunium, protactinium, thorium, radium, lead, tin, palladium and zirconium are reported. These elements have radioactive isotopes of concern in assessments of radioactive waste disposal. All measurements were made under the highly alkaline conditions typical of the near field of a radioactive waste repository which uses cementitious materials for many of the immobilisation matrices, the backfill and the engineered structures. Low redox potentials, typical of those resulting from the corrosion of iron and steel, were simulated for those elements having more than one accessible oxidation state. The dissolved concentrations of the elements were defined using ultrafiltration. In addition, the corrosion of iron and stainless steel was shown to generate low redox potentials in solution and the solubility of iron(II) at high pH was measured and found to be sufficient for it to act as a redox buffer with respect to neptunium and plutonium. (author)

  12. Loss-induced limits to phase measurement precision with maximally entangled states

    International Nuclear Information System (INIS)

    Rubin, Mark A.; Kaushik, Sumanth

    2007-01-01

    The presence of loss limits the precision of an approach to phase measurement using maximally entangled states, also referred to as NOON states. A calculation using a simple beam-splitter model of loss shows that, for all nonzero values L of the loss, phase measurement precision degrades with increasing number N of entangled photons for N sufficiently large. For L above a critical value of approximately 0.785, phase measurement precision degrades with increasing N for all values of N. For L near zero, phase measurement precision improves with increasing N down to a limiting precision of approximately 1.018L radians, attained at N approximately equal to 2.218/L, and degrades as N increases beyond this value. Phase measurement precision with multiple measurements and a fixed total number of photons N T is also examined. For L above a critical value of approximately 0.586, the ratio of phase measurement precision attainable with NOON states to that attainable by conventional methods using unentangled coherent states degrades with increasing N, the number of entangled photons employed in a single measurement, for all values of N. For L near zero this ratio is optimized by using approximately N=1.279/L entangled photons in each measurement, yielding a precision of approximately 1.340√(L/N T ) radians

  13. Review of speciation and solubility of radionuclides in the near and far field. Pt. 2

    International Nuclear Information System (INIS)

    Smith-Briggs, J.L.

    1992-01-01

    This report represents Part 2 in a series of three reports which review the speciation and solubility of radionuclides in the near and far field. Part 2 is a general bibliography from 1978 to 1991. This report contains the bibliography for the review of speciation and solubility radionuclides in the near and far field from 1978 to 1991. The importance of the solubility and speciation of radionuclides in relation to the safety assessment of the repository is discussed. Solubility is defined, both theoretically and pragmatically, and the factors which influence solubility and speciation are discussed. The literature search was performed using the INIS database. The UKAEA RECAP database, the NIREX report bibliography and a list of DOE reports provided by the DOE were also used. The bibliography is divided into five sections, solubility and speciation experimental data, basic thermodynamic data, solubility limiting solid phases, experimental design and review and overview articles. Some references appear in more than one section. (Author)

  14. Prediction of transport phenomena in near and far field: interaction solid phase/fluid phase

    International Nuclear Information System (INIS)

    Mingarro, E.

    1995-01-01

    The prediction of transport phenomena in near and far field is presented in the present report. The study begins with the analysis of solid phases stability: solubility of storage waste: UO 2 and solubility of radionuclides the redox and sorption-desorption conditions are the last aspects studied to predict the transport phenomena

  15. Solubility of salicylic acid in pure alcohols at different temperatures

    International Nuclear Information System (INIS)

    Lim, Junhyuk; Jang, Sunghyun; Cho, Hye Kyoung; Shin, Moon Sam; Kim, Hwayong

    2013-01-01

    Highlights: ► Solubility data of salicylic acid in pure alkanols were measured. ► The experimental data were correlated with NRTL, UNIQUAC and Wilson models. ► The data are fit well with all three models for the six pure alcohols studied. ► Adjustable interaction parameters were suggested. - Abstract: This work focused on the experimental measurements and the numerical calculations of the solubility of salicylic acid in various alcohols. The solubility of salicylic acid in pure alcohols was determined using a (solid + liquid) equilibrium measurement apparatus at temperatures ranging from (278.15 to 318.15) K. Also, the melting temperature and fusion enthalpy of salicylic acid were determined by a differential scanning calorimeter (TA instrument Q100). The experimental results were correlated with the equation for solubility of a solid in a liquid with the nonrandom two liquid (NRTL), universal quasi-chemical (UNIQUAC) and Wilson models for liquid phase activity coefficients to validate the quality of the data taken. Adjustable interaction parameters were also provided. The experimental data fit appropriately with all three models for the pure alcohols studied.

  16. Analyzing water soluble soil organics as Trifluoroacetyl derivatives by liquid state proton nuclear magnetic resonance

    Science.gov (United States)

    Felipe Garza Sanchez; Zakiya Holmes Leggett; Sabapathy Sankar

    2005-01-01

    In forested ecosystems, water soluble organics play an important role in soil processes including carbon and nutrient turnover, microbial activity and pedogenesis. The quantity and quality (i.e., chemistry) of these materials is sensitive to land management practices. Monitoring alterations in the chemistry of water soluble organics resulting from land management...

  17. Soluble Collectin-12 (CL-12) Is a Pattern Recognition Molecule Initiating Complement Activation via the Alternative Pathway

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Hein, Estrid; Munthe-Fog, Lea

    2015-01-01

    and may recognize certain bacteria and fungi, leading to opsonophagocytosis. However, based on its structural and functional similarities with soluble collectins, we hypothesized the existence of a fluid-phase analog of CL-12 released from cells, which may function as a soluble pattern-recognition...... of the terminal complement complex. These results demonstrate the existence of CL-12 in a soluble form and indicate a novel mechanism by which the alternative pathway of complement may be triggered directly by a soluble pattern-recognition molecule....... nonreducing conditions it presented multimeric assembly forms. Immunoprecipitation and Western blot analysis of human umbilical cord plasma enabled identification of a natural soluble form of CL-12 having an electrophoretic mobility pattern close to that of shed soluble recombinant CL-12. Soluble CL-12 could...

  18. Topological quantum phase transitions and edge states in spin-orbital coupled Fermi gases.

    Science.gov (United States)

    Zhou, Tao; Gao, Yi; Wang, Z D

    2014-06-11

    We study superconducting states in the presence of spin-orbital coupling and Zeeman field. It is found that a phase transition from a Fulde-Ferrell-Larkin-Ovchinnikov state to the topological superconducting state occurs upon increasing the spin-orbital coupling. The nature of this topological phase transition and its critical property are investigated numerically. Physical properties of the topological superconducting phase are also explored. Moreover, the local density of states is calculated, through which the topological feature may be tested experimentally.

  19. Solubility of drugs in aqueous polymeric solution: effect of ovalbumin on microencapsulation process.

    Science.gov (United States)

    Aziz, Hesham Abdul; Tan, Yvonne Tze Fung; Peh, Kok Khiang

    2012-03-01

    Microencapsulation of water-soluble drugs using coacervation-phase separation method is very challenging, as these drugs partitioned into the aqueous polymeric solution, resulting in poor drug entrapment. For evaluating the effect of ovalbumin on the microencapsulation of drugs with different solubility, pseudoephedrine HCl, verapamil HCl, propranolol HCl, paracetamol, and curcuminoid were used. In addition, drug mixtures comprising of paracetamol and pseudoephedrine HCl were also studied. The morphology, encapsulation efficiency, particle size, and in vitro release profile were investigated. The results showed that the solubility of the drug determined the ratio of ovalbumin to be used for successful microencapsulation. The optimum ratios of drug, ovalbumin, and gelatin for water-soluble (pseudoephedrine HCl, verapamil HCl, and propranolol HCl), sparingly water-soluble (paracetamol), and water-insoluble (curcuminoid) drugs were found to be 1:1:2, 2:3:5, and 1:3:4. As for the drug mixture, the optimum ratio of drug, ovalbumin, and gelatin was 2:3:5. Encapsulated particles prepared at the optimum ratios showed high yield, drug loading, entrapment efficiency, and sustained release profiles. The solubility of drug affected the particle size of the encapsulated particle. Highly soluble drugs resulted in smaller particle size. In conclusion, addition of ovalbumin circumvented the partitioning effect, leading to the successful microencapsulation of water-soluble drugs.

  20. Equilibrium solubility measurement of ionizable drugs – consensus recommendations for improving data quality

    Directory of Open Access Journals (Sweden)

    Alex Avdeef

    2016-06-01

    Full Text Available This commentary addresses data quality in equilibrium solubility measurement in aqueous solution. Broadly discussed is the “gold standard” shake-flask (SF method used to measure equilibrium solubility of ionizable drug-like molecules as a function of pH. Many factors affecting the quality of the measurement are recognized. Case studies illustrating the analysis of both solution and solid state aspects of solubility measurement are presented. Coverage includes drug aggregation in solution (sub-micellar, micellar, complexation, use of mass spectrometry to assess aggregation in saturated solutions, solid state characterization (salts, polymorphs, cocrystals, polymorph creation by potentiometric method, solubility type (water, buffer, intrinsic, temperature, ionic strength, pH measurement, buffer issues, critical knowledge of the pKa, equilibration time (stirring and sedimentation, separating solid from saturated solution, solution handling and adsorption to untreated surfaces, solubility units, and tabulation/graphic presentation of reported data. The goal is to present cohesive recommendations that could lead to better assay design, to result in improved quality of measurements, and to impart a deeper understanding of the underlying solution chemistry in suspensions of drug solids.

  1. Phase Properties of Photon-Added Coherent States for Nonharmonic Oscillators in a Nonlinear Kerr Medium

    Science.gov (United States)

    Jahanbakhsh, F.; Honarasa, G.

    2018-04-01

    The potential of nonharmonic systems has several applications in the field of quantum physics. The photon-added coherent states for annharmonic oscillators in a nonlinear Kerr medium can be used to describe some quantum systems. In this paper, the phase properties of these states including number-phase Wigner distribution function, Pegg-Barnett phase distribution function, number-phase squeezing and number-phase entropic uncertainty relations are investigated. It is found that these states can be considered as the nonclassical states.

  2. Experimental density, viscosity, interfacial tension and water solubility of ethyl benzene-α-methyl benzyl alcohol–water system

    International Nuclear Information System (INIS)

    Barega, Esayas W.; Zondervan, Edwin; Haan, André B. de

    2013-01-01

    Highlights: • Properties were measured for MBA (methyl benzyl alcohol)-EB (ethyl benzene)-water. • MBA concentration was found to influence all the properties strongly. • The water solubility, density, and viscosity increased at high MBA concentration. • The interfacial tension decreased sharply at high MBA concentration. • MBA dictates the phase separation and mass transfer of the ternary system. -- Abstract: Density, viscosity, interfacial tension, and water solubility were measured for the (α-methyl benzyl alcohol (MBA) + Ethyl benzene (EB)) system at different concentrations of MBA in contact with water and sodium hydroxide solution (0.01 mol · kg −1 ) as aqueous phases. The properties were measured to identify the component which plays a governing role in changing the physical properties relevant to mass transfer and phase separation of the ternary system. The concentration of MBA was found to be the major factor influencing all the properties. The water solubility, the density, and the viscosity increased notably at higher concentrations of MBA; while, the interfacial tension decreased strongly. The use of 0.01 mol · kg −1 NaOH as an aqueous phase resulted in a decrease of the interfacial tension and a minor decrease in the water solubility. The density data were correlated using a quadratic mixing rule to describe the influence of concentration at any temperature. The viscosity data are correlated using the Nissan and Grunberg and Katti-Chaudhri equations. The Szyzkowski’s equation was used to correlate the interfacial tension data. The water solubility data were described using an exponential relationship. All the correlations described the experimental physical property data adequately

  3. Phase solubility, 1H NMR and molecular modelling studies of bupivacaine hydrochloride complexation with different cyclodextrin derivates

    Science.gov (United States)

    Jug, Mario; Mennini, Natascia; Melani, Fabrizio; Maestrelli, Francesca; Mura, Paola

    2010-11-01

    A novel method, which simultaneously exploits experimental (NMR) and theoretically calculated data obtained by a molecular modelling technique, was proposed, to obtain deeper insight into inclusion geometry and possible stereoselective binding of bupivacaine hydrochloride with selected cyclodextrin derivatives. Sulphobuthylether-β-cyclodextrin and water soluble polymeric β-cyclodextrin demonstrated to be the best complexing agents for the drug, resulting in formation of the most stable inclusion complexes with the highest increase in aqueous drug solubility. The drug-carrier binding modes with these cyclodextrins and phenomena which may be directly related to the higher stability and better aqueous solubility of complexes formed were discussed in details.

  4. In vitro dynamic solubility test: influence of various parameters.

    Science.gov (United States)

    Thélohan, S; de Meringo, A

    1994-10-01

    This article discusses the dissolution of mineral fibers in simulated physiological fluids (SPF), and the parameters that affect the solubility measurement in a dynamic test where an SPF runs through a cell containing fibers (Scholze and Conradt test). Solutions simulate either the extracellular fluid (pH 7.6) or the intracellular fluid (pH 4.5). The fibers have various chemical compositions and are either continuously drawn or processed as wool. The fiber solubility is determined by the amount of SiO2 (and occasionally other ions) released in the solution. Results are stated as percentage of the initial silica content released or as dissolution rate v in nm/day. The reproducibility of the test is higher with the less soluble fibers (10% solubility), than with highly soluble fibers (20% solubility). The influence of test parameters, including SPF, test duration, and surface area/volume (SA/V), has been studied. The pH and the inorganic buffer salts have a major influence: industrial glasswool composition is soluble at pH 7.6 but not at pH 4.5. The opposite is true for rock- (basalt) wool composition. For slightly soluble fibers, the dissolution rate v remains constant with time, whereas for highly soluble fibers, the dissolution rate decreases rapidly. The dissolution rates believed to occur are v1, initial dissolution rate, and v2, dissolution rate of the residual fibers. The SA of fibers varies with the mass of the fibers tested, or with the fiber diameter at equal mass. Volume, V, is the chosen flow rate. An increase in the SA/V ratio leads to a decrease in the dissolution rate.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Investigation of the solubility and the potentials for purification of serum amyloid A (SAA) from equine acute phase serum

    DEFF Research Database (Denmark)

    Christensen, Michelle Brønniche; Sørensen, Jens Christian; Jacobsen, Stine

    2013-01-01

    BACKGROUND: Serum amyloid A (SAA) is useful as a diagnostic marker of systemic inflammation in horses, but only heterologous assays based on non-equine calibration and standardization are available for measurements of equine SAA. More accurate measurements could be obtained using purified species......-specific SAA in native conformation for assay calibration and standardization. Further knowledge about the biochemical properties of SAA would facilitate a future production of native species-specific calibration material Therefore, the aim of the study was an investigation of the solubility and potentials...... for purification of equine SAA based on biochemical properties.Freeze dried equine acute phase serum was dissolved in 70% 2-propanol, 8 M urea, and milli-Q water, respectively. Supercritical fluid extraction (SFE), size-exclusive chromatography (FPLC-SEC), and preparative isoelectric focusing (IEF) were performed...

  6. The solubility limit of SiO2 in α-alumina at 1600 °C

    International Nuclear Information System (INIS)

    Moshe, Ruth; Berner, Alex; Kaplan, Wayne D.

    2014-01-01

    The solubility limit of Si in α-alumina was measured using wavelength-dispersive spectroscopy on a scanning electron microscope. Samples were doped with Si such that the equilibrated material would contain two phases: mullite (3Al 2 O 3 ·2SiO 2 ) and alumina saturated with Si. Thus the amount of Si measured in the alumina grains represents the solubility limit. Measurements were conducted on water-quenched and furnace-cooled samples. For the quenched samples the Si solubility limit in Al 2 O 3 was found to be 188 ± 7 ppm at 1600 °C

  7. Survey on synthesis and reaction of environmentally benign water-soluble metal complex catalysts; Kankyo chowagata suiyosei sakutai shokubai no gosei hanno no chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report describes the research trend survey results on the synthesis and reaction of water-soluble metal complexes which are regarded as environmentally benign catalysts. For the synthesis and catalysis of water-soluble complexes, synthetic methods of water-soluble phosphines, such as sulfonated TPPMS and TPPTS, are described in detail. Synthesis and reactivity of hydroxymethylphosphines are introduced, and the application of electrospray mass spectroscopy is elucidated as a tool for the analysis of them. Changes of the application of transition metal complexes with water-soluble phosphines to catalysis are described. Dual catalysts which have both functions of phase transfer catalysts and homogeneous catalysts are introduced. Concept of counter phase transfer catalysts is also introduced, and some catalytic reactions are described. In addition, this report introduces catalysis of water-soluble polymer-supported metal complexes, immobilization of metal colloids with water-soluble ligands and their analysis, and water-soluble complexes as hybrid catalysts. 144 refs., 94 figs., 10 tabs.

  8. β-Cyclodextrin-dextran polymers for the solubilization of poorly soluble drugs

    DEFF Research Database (Denmark)

    Di Cagno, Massimiliano; Nielsen, Thorbjørn Terndrup; Lambertsen Larsen, Kim

    2014-01-01

    The aim of this work was to assess the potential of β-cyclodextrin (β-CD)-dextran polymers for drug delivery, in terms of molecular mass, the complexation reaction mechanism using a model drug, and solubilization efficiency for examples of poorly soluble model drugs. For this purpose size analysis...... of different β-CD-dextrans was carried out by both size exclusion chromatography (SEC) and flow field-flow fractionation (FFF). All investigated polymers were of appropriate sizes for potential parenteral administration. Mass/mass percentage ratio between β-CD units and dextran backbones where measured by both...... of solubilization efficiencies, phase-solubility diagrams where made employing two poorly soluble model drugs, one dissociating (ibuprofen, IBP) and one pH independent (hydrocortisone, HC). Thermodynamic results demonstrated that the presence of the dextran-back bone structure improves complexation efficiency...

  9. From Single Microparticles to Microfluidic Emulsification: Fundamental Properties (Solubility, Density, Phase Separation from Micropipette Manipulation of Solvent, Drug and Polymer Microspheres

    Directory of Open Access Journals (Sweden)

    Koji Kinoshita

    2016-11-01

    Full Text Available The micropipette manipulation technique is capable of making fundamental single particle measurements and analyses. This information is critical for establishing processing parameters in systems such as microfluidics and homogenization. To demonstrate what can be achieved at the single particle level, the micropipette technique was used to form and characterize the encapsulation of Ibuprofen (Ibp into poly(lactic-co-glycolic acid (PLGA microspheres from dichloromethane (DCM solutions, measuring the loading capacity and solubility limits of Ibp in typical PLGA microspheres. Formed in phosphate buffered saline (PBS, pH 7.4, Ibp/PLGA/DCM microdroplets were uniformly solidified into Ibp/PLGA microparticles up to drug loadings (DL of 41%. However, at DL 50 wt% and above, microparticles showed a phase separated pattern. Working with single microparticles, we also estimated the dissolution time of pure Ibp microspheres in the buffer or in detergent micelle solutions, as a function of the microsphere size and compare that to calculated dissolution times using the Epstein-Plesset (EP model. Single, pure Ibp microparticles precipitated as liquid phase microdroplets that then gradually dissolved into the surrounding PBS medium. Analyzing the dissolution profiles of Ibp over time, a diffusion coefficient of 5.5 ± 0.2 × 10−6 cm2/s was obtained by using the EP model, which was in excellent agreement with the literature. Finally, solubilization of Ibp into sodium dodecyl sulfate (SDS micelles was directly visualized microscopically for the first time by the micropipette technique, showing that such micellization could increase the solubility of Ibp from 4 to 80 mM at 100 mM SDS. We also introduce a particular microfluidic device that has recently been used to make PLGA microspheres, showing the importance of optimizing the flow parameters. Using this device, perfectly smooth and size-homogeneous microparticles were formed for flow rates of 0.167 mL/h for

  10. Status of solubility data for selected elements (U, Mp, Pu, Am, Te, Ni, and Zr)

    International Nuclear Information System (INIS)

    Moll, H.; Brachmann, A.; Wruck, D.; Palmer, C.

    1997-01-01

    This report is an evaluation of solubility data for U, Np, Pu, Am, Tc, Ni and Zr compounds at ambient and elevated temperatures. We review the status of such data in light of the most recently reported experimental results. The focus is on the solid phases that may control solubilities under expected conditions in and near a potential nuclear waste repository at Yucca Mountain, Nevada. Solubility data or reliable predictions over the temperature range 20 to 150 degrees C will be used in geochemical modeling studies of the Yucca Mountain Project [96PAL

  11. Fe-solubility of Ni7S6 and Ni9S8: Thermodynamic analysis

    International Nuclear Information System (INIS)

    Waldner, P.

    2011-01-01

    Experimental data on phase equilibria have been used for thermodynamic analysis of the iron solubility of the nickel sulfides Ni 7 S 6 and Ni 9 S 8 . For both compounds, a two-sublattice approach within the framework of the compound energy formalism has been applied to perform Gibbs free energy modelling at 0.1 MPa total pressure consistently embedded in recent thermodynamic assessment studies of other iron-nickel-sulfides. The predicted maxima of iron solubility around 3 at% of Ni 7 S 6 and 5.5 at% of Ni 9 S 8 are confirmed by experimental data. The calculations of complex ternary phase relations with Fe-bearing Ni 7 S 6 and Ni 9 S 8 gain further improvement. The first internally consistent description of all thermodynamically stable phases known in the literature for the iron-nickel-sulfur system is completed.

  12. On the solubility of yttrium in RuO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Music, Denis; Zumdick, Naemi A.; Hallstedt, Bengt; Schneider, Jochen M. [Materials Chemistry, RWTH Aachen University, D-52056 Aachen (Germany)

    2011-09-01

    We have investigated the solubility of Y in rutile RuO{sub 2} using experimental and theoretical methods. Nanostructured Ru-Y-O thin films were synthesized via combinatorial reactive sputtering with an O/metal ratio of 2.6 and a Y content of 0.3 to 12.6 at. %. A solubility limit of 1.7 at. % was identified using x-ray photoelectron spectroscopy and x-ray diffraction. Based on ab initio and thermodynamic modeling, the solubility of Y can be understood. Smaller Y amounts are incorporated into the lattice, forming a metastable film, with local structural deformations due to size effects. As the Y content is increased, extensive local structural deformations are observed, but phase separation does not occur due to kinetic limitations. Nanostructured RuO{sub 2} alloyed with Y might lead to enhanced phonon scattering and quantum confinement effects, which in turn improve the thermoelectric efficiency.

  13. Solubility of DCH18C6 and n-octanol in nitric acid system

    International Nuclear Information System (INIS)

    He Qiange; Wang Jianchen; Chen Jing

    2011-01-01

    Equilibrium solubility of DCH18C6 and n-octanol in aqueous solution were determined by GC. And effects of temperature, concentration of Sr 2+ or HNO 3 were studied. The results indicate that solubility of DCH18C6 is substantial and make the crown ether continually drain from organic phase which could be 3% at most. As diluent, n-octanol could dissolve in water with certain quantity. So n-octanol, and then kerosene should be used to extract DCH18C6 and n-octanol from aqueous phase. Or toluene is taken to recover DCH18C6 and n-octanol at the same time. Above extractants could recover more than 99% of solute from aqueous solution in the volume ratio 1:1. (author)

  14. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid.

    Science.gov (United States)

    Yuvaraja, K; Khanam, Jasmina

    2014-08-05

    Aim of the present work is to enhance aqueous solubility of carvedilol (CV) by solid dispersion technique using wide variety of carriers such as: β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA), polyvinyl pyrrolidone K-30 (PVP K-30) and poloxamer-407 (PLX-407). Various products of 'CV-solid dispersion' had been studied extensively in various pH conditions to check enhancement of solubility and dissolution characteristics of carvedilol. Any physical change upon interaction between CV and carriers was confirmed by instrumental analysis: XRD, DSC, FTIR and SEM. Negative change of Gibb's free energy and complexation constants (Kc, 75-240M(-1), for cyclodextrins and 1111-20,365M(-1), for PVP K-30 and PLX-407) were the evidence of stable nature of the binding between CV and carriers. 'Solubility enhancement factor' of ionized-CV was found high enough (340 times) with HPβCD in presence of TA. TA increases the binding efficiency of cyclodextrin and changing the pH of microenvironment in dissolution medium. In addition, ionization process was used to increase the apparent intrinsic solubility of drug. In vitro, dissolution time of CV was remarkably reduced in the solid dispersion system compared to that of pure drug. This may be attributed to increased wettability, dispersing ability and transformation of crystalline state of drug to amorphous one. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A soluble star-shaped silsesquioxane-cored polymer-towards novel stabilization of pH-dependent high internal phase emulsions.

    Science.gov (United States)

    Xing, Yuxiu; Peng, Jun; Xu, Kai; Gao, Shuxi; Gui, Xuefeng; Liang, Shengyuan; Sun, Longfeng; Chen, Mingcai

    2017-08-30

    A well-defined pH-responsive star-shaped polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMA) arms and a cage-like methacryloxypropyl silsesquioxane (CMSQ-T 10 ) core was used as an interfacial stabilizer for emulsions consisting of m-xylene and water. We explored the properties of the CMSQ/PDMA star-shaped polymer using the characteristic results of nuclear magnetic resonance (NMR) spectroscopy, size exclusion chromatography (SEC), dynamic light scattering (DLS), and zeta potential and conductivity measurements. The interfacial tension results showed that the CMSQ/PDMA star-shaped polymer reduced the interfacial tension between water and oil in a pH-dependent manner. Gelled high internal phase emulsions (HIPEs) including o/w and w/o types were formed in the pH ranges of 1.2-5.8 and 9.1-12.3 with the CMSQ/PDMA star-shaped polymer as a stabilizer, when the oil fractions were 80-90 vol% and 10-20 vol%, respectively. The soluble star-shaped polymer aggregated spontaneously to form a microgel that adsorbed to the two immiscible phases. Images of the fluorescently labeled polymers demonstrated that there was a star-shaped polymer in the continuous phase, and the non-Pickering stabilization based on the percolating network of the star-shaped polymer also contributed to the stabilization of the HIPE. This pH-dependent HIPE was prepared with a novel stabilization mechanism consisting of microgel adsorption and non-Pickering stabilization. Moreover, the preparation of HIPEs provided the possibility of their application in porous materials and responsive materials.

  16. Exact ground-state phase diagrams for the spin-3/2 Blume-Emery-Griffiths model

    Energy Technology Data Exchange (ETDEWEB)

    Canko, Osman; Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr

    2008-05-15

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and J<0, respectively, on the diatomic lattice and have found the conditions for the existence of uniform and intermediate or non-uniform phases. We have also constructed the exact ground-state phase diagrams of the model on the triangular lattice and found 20 and 59 fundamental phase diagrams for J>0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found.

  17. Mutual Solubility Study in Supercritical Fluid Extraction of Tocopherols from Crude Palm Oil Using CO2 Solvent

    Directory of Open Access Journals (Sweden)

    Suhairi A. Sata

    2010-09-01

    Full Text Available In this article, the mutual solubility of tocopherols from crude palm oil was studied using carbon dioxide as a solvent at the temperatures of 80, 100 and 120 ºC. Each sample from the phase equilibrium unit contained two parts. The liquid part was analyzed by gas chromatography (GC in order to measure the tocopherol composition and, on the other hand, the vapor phase was conducted in an expansion vessel in order to measure the pressure increment during the expansion process. Two phase equilibrium data was calculated using the liquid phase composition and pressure increments during the expansion process. Results showed that the maximum solubility of tocopherols was around 2.27% at a temperature of 120 ºC and at pressure of 5.44 MPa.

  18. Solubility of ferrocyanide compounds. Ferrocyanide Safety Project, Interim report FY1994

    International Nuclear Information System (INIS)

    Rai, D.; Felmy, A.R.; Smith, S.C.; Ryan, J.L.

    1994-10-01

    The solubility of Cs 2 NiFe(CN) 6 (c) [1] as a function of NaOH and temperature was determined to ascertain whether [1] shows retrograde solubility (i.e., decreasing solubility with increasing temperature), which would have bearing on the possible formation of ''hot spots'' in the tanks and thus the safety of the ferrocyanide tanks. The results show that the aqueous concentrations of Cs in equilibrium with [1] at 25, 60, 75 and 90 C are similar (within the limits of experimental error), indicating that [1] does not show retrograde solubility. To understand general solubility relationships of Ni 2 Fe(CN) 6 (c) [2] and to determine the influence on solubility of high electrolyte concentrations (e.g., NaNO 3 ) that are commonly encountered in the ferrocyanide tanks, the solubility of [2] as a function of CsNO 3 , NiCl 2 , and NaNO 3 was determined. In general, [2] is fairly insoluble and shows slightly increased solubility at high electrolyte concentrations only. For [2] in NiCl 2 , the aqueous Fe concentrations show first a decrease and then an increase with the increase in NiCl 2 concentrations. The increase in Fe concentrations at high Ni concentrations appears to be the result of replacement of Fe by Ni in the [2] structure. For [2] in CsNO 3 and at 0.001 M Na 4 Fe(CN) 6 , the Cs is quantitatively removed from solution at low added Cs concentrations and appears to approach the final solid composition of [1]. The solubility of [2] in NaNO 3 and at 0.001 M Na 4 Fe(CN) 6 shows an increase in Ni concentrations to about 0.5 mg/l at NaNO 3 concentrations > 1.0 M. These increased Ni concentrations may be the result of substitution of Na for Ni in the solid phase

  19. Induced phase transformations and nature of metastable states in ZTLL ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ishchuk, V M; Zavadskij, Eh A

    1987-12-01

    Phase transitions in ZTLL ceramics with zirconium content being 65%, titanium content - 35%, are considered. Peculiarities in the ZTLL behaviour are shown to be caused by the existence of an intermediate range between ferroelectric and antiferroelectric states. The state of samples in the range is determined by their prehistory. It is emphasized that phase transitions in ZTLL can be explained in the framework of the existing models.

  20. High-Pressure Phase Equilibria in Systems Containing CO2 and Ionic Liquid of the [Cnmim][Tf2N] Type

    OpenAIRE

    Sedláková, Z. (Zuzana); Wagner, Z. (Zdeněk)

    2012-01-01

    In this review, we present a comparison of the high-pressure phase behaviour of binary systems constituted of CO2 and ionic liquids of the [Cn(m)mim][Tf2N] type. The comparative study shows that the solubility of CO2 in ionic liquids of the [Cnmim][Tf2N] type generally increases with increasing pressure and decreasing temperature, but some peculiarities have been observed. The solubility of CO2 in ionic liquid solvents was correlated using the Soave–Redlich–Kwong equation of state. The result...

  1. Influence of solid state fermentation by Trichoderma spp. on solubility, phenolic content, antioxidant, and antimicrobial activities of commercial turmeric.

    Science.gov (United States)

    Mohamed, Saleh A; Saleh, Rashad M; Kabli, Saleh A; Al-Garni, Saleh M

    2016-05-01

    The influence of solid state fermentation (SSF) by Trichoderma spp. on the solubility, total phenolic content, antioxidant, and antibacterial activities of turmeric was determined and compared with unfermented turmeric. The solubility of turmeric was monitored by increase in its phenolic content. The total phenolic content of turmeric extracted by 80% methanol and water after SSF by six species of Trichoderma spp. increased significantly from 2.5 to 11.3-23.3 and from 0.5 to 13.5-20.4 GAE/g DW, respectively. The antioxidant activities of fermented turmeric were enhanced using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS), and ferric ion-reducing antioxidant power (FRAP) assays. The antibacterial activity of fermented turmeric against human-pathogenic bacteria Escherichia coli, Streptococcus agalactiae, Staphylococcus aureus, Entreococcus faecalis, Methicillin-Resistant S. aureus, Klebsiella pneumonia, and Pseudomonas aeruginosae showed a broad spectrum inhibitory effect. In conclusion, the results indicated the potentials of using fermented turmeric as natural antioxidant and antimicrobial material for food applications.

  2. Local wettability reversal during steady-state two-phase flow in porous media.

    Science.gov (United States)

    Sinha, Santanu; Grøva, Morten; Ødegården, Torgeir Bryge; Skjetne, Erik; Hansen, Alex

    2011-09-01

    We study the effect of local wettability reversal on remobilizing immobile fluid clusters in steady-state two-phase flow in porous media. We consider a two-dimensional network model for a porous medium and introduce a wettability alteration mechanism. A qualitative change in the steady-state flow patterns, destabilizing the percolating and trapped clusters, is observed as the system wettability is varied. When capillary forces are strong, a finite wettability alteration is necessary to move the system from a single-phase to a two-phase flow regime. When both phases are mobile, we find a linear relationship between fractional flow and wettability alteration.

  3. Compositions, methods, and systems comprising fluorous-soluble polymers

    Science.gov (United States)

    Swager, Timothy M.; Lim, Jeewoo; Takeda, Yohei

    2015-10-13

    The present invention generally relates to compositions, methods, and systems comprising polymers that are fluorous-soluble and/or organize at interfaces between a fluorous phase and a non-fluorous phase. In some embodiments, emulsions or films are provided comprising a polymer. The polymers, emulsions, and films can be used in many applications, including for determining, treating, and/or imaging a condition and/or disease in a subject. The polymer may also be incorporated into various optoelectronic device such as photovoltaic cells, organic light-emitting diodes, organic field effect transistors, or the like. In some embodiments, the polymers comprise pi-conjugated backbones, and in some cases, are highly emissive.

  4. The Apparent Solubility Of Aluminum(III) In Hanford High-Level Waste Tanks

    International Nuclear Information System (INIS)

    Reynolds, J.G.

    2012-01-01

    The solubility of aluminum in Hanford nuclear waste impacts on the process ability of the waste by a number of proposed treatment options. For many years, Hanford staff has anecdotally noted that aluminum appears to be considerably more soluble in Hanford waste than the simpler electrolyte solutions used as analogues. There has been minimal scientific study to confirm these anecdotal observations, however. The present study determines the apparent solubility product for gibbsite in 50 tank samples. The ratio of hydroxide to aluminum in the liquid phase for the samples is calculated and plotted as a function of total sodium molarity. Total sodium molarity is used as a surrogate for ionic strength, because the relative ratios of mono, di and trivalent anions are not available for all of the samples. These results were compared to the simple NaOH-NaAl(OH 4 )H 2 O system, and the NaOH-NaAl(OH 4 )NaCl-H 2 O system data retrieved from the literature. The results show that gibbsite is apparently more soluble in the samples than in the simple systems whenever the sodium molarity is greater than two. This apparent enhanced solubility cannot be explained solely by differences in ionic strength. The change in solubility with ionic strength in simple systems is small compared to the difference between aluminum solubility in Hanford waste and the simple systems. The reason for the apparent enhanced solubility is unknown, but could include. kinetic or thermodynamic factors that are not present in the simple electrolyte systems. Any kinetic explanation would have to explain why the samples are always supersaturated whenever the sodium molarity is above two. Real waste characterization data should not be used to validate thermodynamic solubility models until it can be confirmed that the apparent enhanced gibbsite solubility is a thermodynamic effect and not a kinetic effect.

  5. Nootkatone encapsulation by cyclodextrins: Effect on water solubility and photostability.

    Science.gov (United States)

    Kfoury, Miriana; Landy, David; Ruellan, Steven; Auezova, Lizette; Greige-Gerges, Hélène; Fourmentin, Sophie

    2017-12-01

    Nootkatone (NO) is a sesquiterpenoid volatile flavor, used in foods, cosmetics and pharmaceuticals, possessing also insect repellent activity. Its application is limited because of its low aqueous solubility and stability; this could be resolved by encapsulation in cyclodextrins (CDs). This study evaluated the encapsulation of NO by CDs using phase solubility studies, Isothermal Titration Calorimetry, Nuclear Magnetic Resonance spectroscopy and molecular modeling. Solid CD/NO inclusion complex was prepared and characterized for encapsulation efficiency and loading capacity using UV-Visible. Thermal properties were investigated by thermogravimetric-differential thermal analysis and release studies were performed using multiple headspace extraction. Formation constants (K f ) proved the formation of stable inclusion complexes. NO aqueous solubility, photo- and thermal stability were enhanced and the release could be insured from solid complex in aqueous solution. This suggests that CDs are promising carrier to improve NO properties and, consequently, to enlarge its use in foods, cosmetics, pharmaceuticals and agrochemicals preparations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. SITE-94. Radionuclide solubilities for SITE-94

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, R.; Apted, M. [QuantiSci, Denver, CO (United States)

    1996-12-01

    In this report, solubility constraints are evaluated on radioelement source-term concentrations supporting the SITE-94 performance assessment. Solubility models are based on heterogeneous-equilibrium, mass- and charge-balance constraints incorporated into the EQ3/6 geochemical software package, which is used to calculate the aqueous speciation behavior and solubilities of U, Th, Pu, Np, Am, Ni, Ra, Se, Sn, Sr, Tc and Zr in site groundwaters and near-field solutions. The chemical evolution of the near field is approximated using EQ3/6 in terms of limiting conditions at equilibrium, or steady state, in three closed systems representing fully saturated bentonite, Fe{sup o} corrosion products of the canister, and spent fuel. The calculations consider both low-temperature (15 deg C) and high-temperature (80 deg C) conditions in the near field, and the existence of either reducing or strongly oxidizing conditions in each of the bentonite, canister, and spent-fuel barriers. Heterogeneities in site characteristics are evaluated through consideration of a range of initial groundwaters and their interactions with engineered barriers. Aqueous speciation models for many radioelements are constrained by thermodynamic data that are estimated with varying degrees of accuracy. An important question, however, is how accurate do these models need to be for purposes of estimating source-term concentrations? For example, it is unrealistic to expect a high degree of accuracy in speciation models if such models predict solubilities that are below the analytical detection limit for a given radioelement. From a practical standpoint, such models are irrelevant if calculated solubilities cannot be tested by direct comparison to experimental data. In the absence of models that are both accurate and relevant for conditions of interest, the detection limit could define a pragmatic upper limit on radioelement solubility 56 refs, 25 tabs, 10 figs

  7. SITE-94. Radionuclide solubilities for SITE-94

    International Nuclear Information System (INIS)

    Arthur, R.; Apted, M.

    1996-12-01

    In this report, solubility constraints are evaluated on radioelement source-term concentrations supporting the SITE-94 performance assessment. Solubility models are based on heterogeneous-equilibrium, mass- and charge-balance constraints incorporated into the EQ3/6 geochemical software package, which is used to calculate the aqueous speciation behavior and solubilities of U, Th, Pu, Np, Am, Ni, Ra, Se, Sn, Sr, Tc and Zr in site groundwaters and near-field solutions. The chemical evolution of the near field is approximated using EQ3/6 in terms of limiting conditions at equilibrium, or steady state, in three closed systems representing fully saturated bentonite, Fe o corrosion products of the canister, and spent fuel. The calculations consider both low-temperature (15 deg C) and high-temperature (80 deg C) conditions in the near field, and the existence of either reducing or strongly oxidizing conditions in each of the bentonite, canister, and spent-fuel barriers. Heterogeneities in site characteristics are evaluated through consideration of a range of initial groundwaters and their interactions with engineered barriers. Aqueous speciation models for many radioelements are constrained by thermodynamic data that are estimated with varying degrees of accuracy. An important question, however, is how accurate do these models need to be for purposes of estimating source-term concentrations? For example, it is unrealistic to expect a high degree of accuracy in speciation models if such models predict solubilities that are below the analytical detection limit for a given radioelement. From a practical standpoint, such models are irrelevant if calculated solubilities cannot be tested by direct comparison to experimental data. In the absence of models that are both accurate and relevant for conditions of interest, the detection limit could define a pragmatic upper limit on radioelement solubility

  8. Solubility of gases in 1-alkyl-3methylimidazolium alkyl sulfate ionic liquids: Experimental determination and modeling

    International Nuclear Information System (INIS)

    Bermejo, María Dolores; Fieback, Tobias M.; Martín, Ángel

    2013-01-01

    Highlights: ► The solubility of CO 2 , CH 4 and C 2 H 6 in [emim][EtSO 4 ] is measured with a magnetic suspension balance. ► New data and literature results have been modeled with a Group Contribution equation of state. ► A specific group definition is required to model data of ionic liquids with a [MeSO 4 ] anion. ► Deviations between model and experiments are lower than 10% in most cases. ► Deviations of 34% are observed in the case of the solubility of ethane in the ionic liquid. -- Abstract: The solubility of different gases (carbon dioxide, methane, ethane, carbon monoxide and hydrogen) in ionic liquids with an alkyl sulfate anion has been modeled with the Group Contribution equation of state developed by Skjold-Jørgensen. New gas solubility measurements have been carried out with a high pressure magnetic suspension balance in order to cover pressure and temperature ranges not considered in previous studies and to obtain more experimental information for the correlation of parameters of the equation of state. New solubility measurements include the solubility of carbon dioxide in 1-ethyl 3-methyl imidazolium ethyl sulfate [emim][EtSO 4 ] at temperatures of 298 K and 348 K and pressures ranging from 0.3 MPa to 6.5 MPa, the solubility of methane in [emim][EtSO 4 ] at a temperature of 293 K and pressures ranging from 0.2 MPa to 10.2 MPa, and the solubility of ethane in [emim][EtSO 4 ] at temperatures of 323 K and 350 K and pressures ranging from 0.2 MPa to 4 MPa. Results show that the Group Contribution equation of state can be used to describe the solubility of gases in alkyl sulfate ionic liquids as well as infinite dilution coefficients of alkanes in the ionic liquids, with average deviations between experiments and calculations ranging from 1% to 10% in the case of mixtures with CO 2 , CO, CH 4 and H 2 with the alkyl sulfate ionic liquids to up to 34% in the case of the solubility of ethane in [emim][EtSO 4

  9. Structure-property relationships in halogenbenzoic acids: Thermodynamics of sublimation, fusion, vaporization and solubility.

    Science.gov (United States)

    Zherikova, Kseniya V; Svetlov, Aleksey A; Kuratieva, Natalia V; Verevkin, Sergey P

    2016-10-01

    Temperature dependences of vapor pressures for 2-, 3-, and 4-bromobenzoic acid, as well as for five isomeric bromo-methylbenzoic acids were studied by the transpiration method. Melting temperatures and enthalpies of fusion for all isomeric bromo-methylbenzoic acids and 4-bromobenzoic acid were measured with a DSC. The molar enthalpies of sublimation and vaporization were derived. These data together with results available in the literature were collected and checked for internal consistency using a group-additivity procedure and results from X-ray structural diffraction studies. Specific (hydrogen bonding) interactions in the liquid and in the crystal phase of halogenbenzoic acids were quantified based on experimental values of vaporization and sublimation enthalpies. Structure-property correlations of solubilities of halogenobenzoic acids with sublimation pressures and sublimation enthalpies were developed and solubilities of bromo-benzoic acids were estimated. These new results resolve much of the ambiguity in the available thermochemical and solubility data on bromobenzoic acids. The approach based on structure property correlations can be applied for the assessment of water solubility of sparingly soluble drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Solubilisation of poorly water-soluble drugs during in vitro lipolysis of medium- and long-chain triacylglycerols

    DEFF Research Database (Denmark)

    Christensen, Janne Ørskov; Schultz, Kirsten; Mollgaard, Birgitte

    2004-01-01

    The partitioning of poorly soluble drugs into an aqueous micellar phase was exploited using an in vitro lipid digestion model, simulating the events taking place during digestion of acylglycerols in the duodenum. The aqueous micellar phase was isolated after ultracentrifugation of samples obtaine...

  11. Solid State KA-Band, Solid State W-Band and TWT Amplifiers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase I of the proposal describes plans to develop a state of the art transmitter for the W-Band and KA -Band Cloud Radar system. Our focus will be concentrated in...

  12. Solubility of krypton in hydrofracture grout at elevated pressures

    International Nuclear Information System (INIS)

    Fitzgerald, C.L.; Mailen, J.C.

    1982-01-01

    The solubilities of krypton in water, simulated waste solution, and simulated grout at about 25 0 C and to pressures of 150 atm have been determined. The results of these studies show that preliminary calculations of krypton solubility based on the aqueous component of the hydrofracture grout were overly pessimistic. The volume of noble gas generated annually by the reference reprocessing plant would be soluble in the annual hydrofracture grout injection at ORNL at about 10 atm. The amount of krypton in the gas phase would depend on the amount of air in the hydrofracture grout mixture. At 34 atm, and with a small air volume relative to the injected krypton, the krypton would constitute about 30% of the gas bubbles. The disposal of krypton via injection with hydrofracture grout seems to be a viable process. The next logical steps would be to determine the krypton diffusion rate at injection conditions, and possibly to perform a test injection. At present, the schedule for future work is uncertain since funds for this project have been reduced significantly

  13. Nitrogen solubility in the deep mantle and the origin of Earth's primordial nitrogen budget

    Science.gov (United States)

    Yoshioka, Takahiro; Wiedenbeck, Michael; Shcheka, Svyatoslav; Keppler, Hans

    2018-04-01

    The solubility of nitrogen in the major minerals of the Earth's transition zone and lower mantle (wadsleyite, ringwoodite, bridgmanite, and Ca-silicate perovskite) coexisting with a reduced, nitrogen-rich fluid phase was measured. Experiments were carried out in multi-anvil presses at 14 to 24 GPa and 1100 to 1800 °C close to the Fe-FeO buffer. Starting materials were enriched in 15N and the nitrogen concentrations in run products were measured by secondary ion mass spectrometry. Observed nitrogen (15N) solubilities in wadsleyite and ringwoodite typically range from 10 to 250 μg/g and strongly increase with temperature. Nitrogen solubility in bridgmanite is about 20 μg/g, while Ca-silicate perovskite incorporates about 30 μg/g under comparable conditions. Partition coefficients of nitrogen derived from coexisting phases are DNwadsleyite/olivine = 5.1 ± 2.1, DNringwoodite/wadsleyite = 0.49 ± 0.29, and DNbridgmanite/ringwoodite = 0.24 (+ 0.30 / - 0.19). Nitrogen solubility in the solid, iron-rich metal phase coexisting with the silicates was also measured and reached a maximum of nearly 1 wt.% 15N at 23 GPa and 1400 °C. These data yield a partition coefficient of nitrogen between iron metal and bridgmanite of DNmetal/bridgmanite ∼ 98, implying that in a lower mantle containing about 1% of iron metal, about half of the nitrogen still resides in the silicates. The high nitrogen solubility in wadsleyite and ringwoodite may be responsible for the low nitrogen concentrations often observed in ultradeep diamonds from the transition zone. Overall, the solubility data suggest that the transition zone and the lower mantle have the capacity to store at least 33 times the mass of nitrogen presently residing in the atmosphere. By combining the nitrogen solubility data in minerals with data on nitrogen solubility in silicate melts, mineral/melt partition coefficients of nitrogen can be estimated, from which the behavior of nitrogen during magma ocean crystallization can

  14. Neptunium (IV) oxalate solubility

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1983-07-01

    The equilibrium solubility of neptunium (IV) oxalate in nitric/oxalic acid solutions was determined at 22 0 C, 45 0 C, and 60 0 C. The concentrations of nitric/oxalic acid solutions represented a wide range of free oxalate ion concentration. A mathematical solubility model was developed which is based on the formation of the known complexes of neptunium (IV) oxalate. the solubility model uses a simplified concentration parameter which is proportional to the free oxalate ion concentration. The solubility model can be used to estimate the equilibrium solubility of neptunium (IV) oxalate over a wide range of oxalic and nitric acid concentrations at each temperature

  15. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model

    International Nuclear Information System (INIS)

    Lian Jin-Ling; Zhang Yuan-Wei; Liang Jiu-Qing

    2012-01-01

    The energy spectrum of Dicke Hamiltonians with and without the rotating wave approximation for an arbitrary atom number is obtained analytically by means of the variational method, in which the effective pseudo-spin Hamiltonian resulting from the expectation value in the boson-field coherent state is diagonalized by the spin-coherent-state transformation. In addition to the ground-state energy, an excited macroscopic quantum-state is found corresponding to the south- and north-pole gauges of the spin-coherent states, respectively. Our results of ground-state energies in exact agreement with various approaches show that these models exhibit a zero-temperature quantum phase transition of the second order for any number of atoms, which was commonly considered as a phenomenon of the thermodynamic limit with the atom number tending to infinity. The critical behavior of the geometric phase is analyzed. (general)

  16. Development of a Henry's constant correlation and solubility measurements of n-pentane, i-pentane, cyclopentane, n-hexane, and toluene in water

    International Nuclear Information System (INIS)

    Chapoy, Antonin; Haghighi, Hooman; Tohidi, Bahman

    2008-01-01

    In this communication, we report new experimental data on n-pentane, i-pentane, cyclopentane, n-hexane, and toluene solubility in water at low temperature (below 298.15 K) and atmospheric pressure conditions. The new experimental data together with those reported in the literature have been used in developing a new equation for Henry's constants of normal alkanes (methane to decane), BETEX compounds, and acid gases in aqueous phase over a wide range of temperature (typically from 273.15 K to 373.15 K). The new equation is based on a thermodynamic model, which uses the Peng-Robinson equation of state combined with the classical quadratic mixing rules for modelling non-aqueous phases, while the NRTL model is used to calculate the water activity. The predictions of the developed thermodynamic model are compared to the experimental data and the results of a thermodynamic approach, which uses the Valderrama modification of the Patel-Teja equation of state and non-density dependent mixing rules for modelling all fluid phases. Good agreement is observed between the experimental data and the model predictions

  17. Critical behaviour of continuous phase transitions with infinitely many absorbing states

    International Nuclear Information System (INIS)

    Hua Dayin; Wang Lieyan; Chen Ting

    2006-01-01

    A lattice gas model is proposed for the A 2 + 2B 2 → 2B 2 A reaction system with particle diffusion. In the model, A 2 dissociates in the random dimer-filling mechanism and B 2 dissociation is in the end-on dimer-filling mechanism. A reactive window appears and the system exhibits a continuous phase transition from a reactive state to a covered state with infinitely many absorbing states. When the diffusion of particle A and AB is included, there are still infinitely many absorbing states for the continuous phase transition, but it is found that the critical behaviour changes from the directed percolation (DP) class to the pair contact process with diffusion (PCPD) class

  18. Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process

    International Nuclear Information System (INIS)

    Hai-Yan, Wang; Jian-Hua, Liu; Gui-Rong, Peng; Yan, Chen; Yu-Wen, Liu; Fei, Li; Wen-Kui, Wang

    2009-01-01

    Effects of high pressure (6 GPa) on the solid state phase transformation kinetic parameters of aluminum bronze during the cooling process are investigated, based on the measurement and calculation of its solid state phase transformation temperature, duration and activation energy and the observation of its microstructures. The results show that high pressure treatment can reduce the solid phase transformation temperature and activation energy in the cooling process and can shorten the phase transformation duration, which is favorable when forming fine-grained aluminum bronze

  19. Water soluble vitamins and peritoneal dialysis - State of the art.

    Science.gov (United States)

    Jankowska, Magdalena; Lichodziejewska-Niemierko, Monika; Rutkowski, Bolesław; Dębska-Ślizień, Alicja; Małgorzewicz, Sylwia

    2017-12-01

    This review presents the results of a systematic literature search concerning water soluble vitamins and peritoneal dialysis modality. We provide an overview of the data available on vitamin requirements, dietary intake, dialysis related losses, metabolism and the benefits of supplementation. We also summarise the current recommendations concerning the supplementation of vitamins in peritoneal dialysis and discuss the safety of an administration of vitamins in pharmacological doses. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  20. Ground state phase diagram of extended attractive Hubbard model

    International Nuclear Information System (INIS)

    Robaszkiewicz, S.; Chao, K.A.; Micnas, R.

    1980-08-01

    The ground state phase diagram of the extended Hubbard model with intraatomic attraction has been derived in the Hartree-Fock approximation formulated in terms of the Bogoliubov variational approach. For a given value of electron density, the nature of the ordered ground state depends essentially on the sign and the strength of the nearest neighbor coupling. (author)

  1. Uranium solubility and solubility controls in selected Needle's Eye groundwaters

    International Nuclear Information System (INIS)

    Falck, W.E.; Hooker, P.J.

    1991-01-01

    The solubility control of uranium in selected groundwater samples from the cliff and sediments at the Needle's Eye natural analogue site is investigated using the speciation code PHREEQE and the CHEMVAL thermodynamic database (release 3). Alkali-earth bearing uranyl carbonate secondary minerals are likely to exert influence on the solubility . Other candidates are UO 2 and arsenates, depending on the prevailing redox conditions. In the absence of literature data, solubility products for important arsenates have been estimated from analogy with other arsenates and phosphates. Phosphates themselves are unlikely to exert control owing to their comparatively high solubilities. The influence of seawater flooding into the sediments is also discussed. The importance of uranyl arsenates in the retardation of uranium in shallow sediments has been demonstrated in theory, but there are some significant gaps in the thermodynamic databases used. (author)

  2. Soluble porphyrin polymers

    Science.gov (United States)

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  3. The quantum state vector in phase space and Gabor's windowed Fourier transform

    International Nuclear Information System (INIS)

    Bracken, A J; Watson, P

    2010-01-01

    Representations of quantum state vectors by complex phase space amplitudes, complementing the description of the density operator by the Wigner function, have been defined by applying the Weyl-Wigner transform to dyadic operators, linear in the state vector and anti-linear in a fixed 'window state vector'. Here aspects of this construction are explored, and a connection is established with Gabor's 'windowed Fourier transform'. The amplitudes that arise for simple quantum states from various choices of windows are presented as illustrations. Generalized Bargmann representations of the state vector appear as special cases, associated with Gaussian windows. For every choice of window, amplitudes lie in a corresponding linear subspace of square-integrable functions on phase space. A generalized Born interpretation of amplitudes is described, with both the Wigner function and a generalized Husimi function appearing as quantities linear in an amplitude and anti-linear in its complex conjugate. Schroedinger's time-dependent and time-independent equations are represented on phase space amplitudes, and their solutions described in simple cases.

  4. Simultaneous estimation of multiple phases in digital holographic interferometry using state space analysis

    Science.gov (United States)

    Kulkarni, Rishikesh; Rastogi, Pramod

    2018-05-01

    A new approach is proposed for the multiple phase estimation from a multicomponent exponential phase signal recorded in multi-beam digital holographic interferometry. It is capable of providing multidimensional measurements in a simultaneous manner from a single recording of the exponential phase signal encoding multiple phases. Each phase within a small window around each pixel is appproximated with a first order polynomial function of spatial coordinates. The problem of accurate estimation of polynomial coefficients, and in turn the unwrapped phases, is formulated as a state space analysis wherein the coefficients and signal amplitudes are set as the elements of a state vector. The state estimation is performed using the extended Kalman filter. An amplitude discrimination criterion is utilized in order to unambiguously estimate the coefficients associated with the individual signal components. The performance of proposed method is stable over a wide range of the ratio of signal amplitudes. The pixelwise phase estimation approach of the proposed method allows it to handle the fringe patterns that may contain invalid regions.

  5. Effect of chloride concentration on the solubility of amorphous uranium dioxide at 25deg C under reducing conditions

    International Nuclear Information System (INIS)

    Aguilar, M.; Casas, I.; Pablo, J. de; Torrero, M.E.

    1991-01-01

    The dependence of the solubility of a microcrystalline uranium dioxide on the chloride concentration has been studied at 25deg C under reducing conditions. The concentration of uranium in solution has been found to be some orders of magnitude lower than in perchlorate media. Possible changes of both the morphology and the composition of the solid phase have been investigated by means of Energy Dispersive X-ray Analysis (EDX) and X-ray Powder Difraction (XPD). The formation of a secondary solid phase as a reason for the decrease of the solubility has been postulated. (orig.)

  6. Solubility measurement of uranium in uranium-contaminated soils

    International Nuclear Information System (INIS)

    Lee, S.Y.; Elless, M.; Hoffman, F.

    1993-08-01

    A short-term equilibration study involving two uranium-contaminated soils at the Fernald site was conducted as part of the In Situ Remediation Integrated Program. The goal of this study is to predict the behavior of uranium during on-site remediation of these soils. Geochemical modeling was performed on the aqueous species dissolved from these soils following the equilibration study to predict the on-site uranium leaching and transport processes. The soluble levels of total uranium, calcium, magnesium, and carbonate increased continually for the first four weeks. After the first four weeks, these components either reached a steady-state equilibrium or continued linearity throughout the study. Aluminum, potassium, and iron, reached a steady-state concentration within three days. Silica levels approximated the predicted solubility of quartz throughout the study. A much higher level of dissolved uranium was observed in the soil contaminated from spillage of uranium-laden solvents and process effluents than in the soil contaminated from settling of airborne uranium particles ejected from the nearby incinerator. The high levels observed for soluble calcium, magnesium, and bicarbonate are probably the result of magnesium and/or calcium carbonate minerals dissolving in these soils. Geochemical modeling confirms that the uranyl-carbonate complexes are the most stable and dominant in these solutions. The use of carbonate minerals on these soils for erosion control and road construction activities contributes to the leaching of uranium from contaminated soil particles. Dissolved carbonates promote uranium solubility, forming highly mobile anionic species. Mobile uranium species are contaminating the groundwater underlying these soils. The development of a site-specific remediation technology is urgently needed for the FEMP site

  7. Phase strength and super lattices

    Indian Academy of Sciences (India)

    Unknown

    much below the solubility limit, so that the short chain molecules do not behave as solvent molecules). Therefore enhanced phase separation and lesser incorporation of. C10-ol (which is however still higher than the value at point B) is responsible for the formation of relatively lesser βo phase and more βm phase at MR ...

  8. Chemical states of molybdenum in radioactive waste glass

    International Nuclear Information System (INIS)

    Ishiguro, Katsuhiko; Kawanishi, Nobuo; Nagaki, Hiroshi; Naito, Aritsune

    1982-01-01

    In order to confirm an expectation that the chemical state of molybdenum in glass reflects the phase separation tendency of the yellow solid from the melt of borosilicate glass, simulated waste glasses were prepared, and ESCA analysis was performed using a commercially available electron spectrometer (PHI550 E) with an excitation source consisting of Mg Kα-ray. The effects of the concentration of Mo and FE 2 O 3 and the melting atmosphere (oxidizing or reducing) in which the samples were prepared on the chemical state of Mo and the solubility of MoO 3 were examined. From the observation of Mo spectra, it was shown that Mo in waste glass had several valencies, e.g., Mo(3), Mo(4), Mo(5) and Mo(6), while Mo in the yellow solid separated from the melts exhibited hexa-valent state, the peak intensity of higher valencies increased relatively with the increase of MoO 3 concentration, but the chemical state of Mo did not change remarkably around the solubility limit of MoO 3 , the melting atmosphere influenced on the Mo state in the waste glass, the peak intensity of Mo(6) increased relatively with the increasing Fe 2 O 3 concentration, and Mo in devitrified glass exhibited hexa-valent state. (Yoshitake, I.)

  9. On solubility of perchloric (periodic) acid and α-cyanacetanmide in aqueous solutions at 25 deg C

    International Nuclear Information System (INIS)

    Omarova, R.A.; Balysbekov, S.M.; Erkasov, R.Sh.; Nikolenko, O.N.

    1996-01-01

    Acid-base interaction within perchloric (periodic) acid-α-cyanacetamide-water systems in studied by method of solubility under isothermal conditions at 25 deg C. Solubility regularities of crystalline α-cyanacetamide in perchloric and periodic acid solutions are determined, the concentration limits of formation of a new solid phase-tris(α-cyanacetamide) perchlorate within perchloric acid-α-cyanacetamide-water system are determined. The compound is identified by means of chemical and X-ray phase analyses, its density and melting temperature are determined. Iodic acid and α-cyanacetamide water solution base system is shown to belong to a simple eutonic type. 2 refs., 3 figs., 2 tabs

  10. Dispersed-phase catalysis in coal liquefaction

    International Nuclear Information System (INIS)

    Utz, B.R.; Cugini, A.V.; Frommell, E.A.

    1990-01-01

    This paper reports that the specific reaction (activation) conditions for the conversion of catalyst precursors to unsupported catalyst have a direct effect on the catalytic activity and dispersion. The importance of reaction intermediates in decomposition of ammonium heptamolybdate and ammonium tetrathiomolybdate, and the sensitivity of these intermediates to reaction conditions, were studied in coal liquefaction systems. Recent results indicate that optimization of activation conditions facilitates the formation of a highly dispersed and active form of molybdenum disulfide for coal liquefaction. The use of the catalyst precursors ammonium heptamolybdate, ammonium tetrathiomolybdate, and molybdenum trisulfide for the conversion of coal to soluble products will be discussed. The use of an unsupported dispersed-phase catalyst for direct coal liquefaction is not a novel concept and has been employed in may studies with varying success. Dispersed-phase catalysts soluble and oil-soluble salts, and as finely divided powders. While some methods of catalyst introduction give higher dispersion of the catalyst and greater activity for the liquefaction of coal, all of the techniques allow the formation of a finely dispersed inorganic phase

  11. A Promising New Method to Estimate Drug-Polymer Solubility at Room Temperature

    DEFF Research Database (Denmark)

    Knopp, Matthias Manne; Gannon, Natasha; Porsch, Ilona

    2016-01-01

    The established methods to predict drug-polymer solubility at room temperature either rely on extrapolation over a long temperature range or are limited by the availability of a liquid analogue of the polymer. To overcome these issues, this work investigated a new methodology where the drug-polymer...... solubility is estimated from the solubility of the drug in a solution of the polymer at room temperature using the shake-flask method. Thus, the new polymer in solution method does not rely on temperature extrapolations and only requires the polymer and a solvent, in which the polymer is soluble, that does...... not affect the molecular structure of the drug and polymer relative to that in the solid state. Consequently, as this method has the potential to provide fast and precise estimates of drug-polymer solubility at room temperature, we encourage the scientific community to further investigate this principle both...

  12. Lipid-protein nanodiscs for cell-free production of integral membrane proteins in a soluble and folded state: comparison with detergent micelles, bicelles and liposomes.

    Science.gov (United States)

    Lyukmanova, E N; Shenkarev, Z O; Khabibullina, N F; Kopeina, G S; Shulepko, M A; Paramonov, A S; Mineev, K S; Tikhonov, R V; Shingarova, L N; Petrovskaya, L E; Dolgikh, D A; Arseniev, A S; Kirpichnikov, M P

    2012-03-01

    Production of integral membrane proteins (IMPs) in a folded state is a key prerequisite for their functional and structural studies. In cell-free (CF) expression systems membrane mimicking components could be added to the reaction mixture that promotes IMP production in a soluble form. Here lipid-protein nanodiscs (LPNs) of different lipid compositions (DMPC, DMPG, POPC, POPC/DOPG) have been compared with classical membrane mimicking media such as detergent micelles, lipid/detergent bicelles and liposomes by their ability to support CF synthesis of IMPs in a folded and soluble state. Three model membrane proteins of different topology were used: homodimeric transmembrane (TM) domain of human receptor tyrosine kinase ErbB3 (TM-ErbB3, 1TM); voltage-sensing domain of K(+) channel KvAP (VSD, 4TM); and bacteriorhodopsin from Exiguobacterium sibiricum (ESR, 7TM). Structural and/or functional properties of the synthesized proteins were analyzed. LPNs significantly enhanced synthesis of the IMPs in a soluble form regardless of the lipid composition. A partial disintegration of LPNs composed of unsaturated lipids was observed upon co-translational IMP incorporation. Contrary to detergents the nanodiscs resulted in the synthesis of ~80% active ESR and promoted correct folding of the TM-ErbB3. None of the tested membrane mimetics supported CF synthesis of correctly folded VSD, and the protocol of the domain refolding was developed. The use of LPNs appears to be the most promising approach to CF production of IMPs in a folded state. NMR analysis of (15)N-Ile-TM-ErbB3 co-translationally incorporated into LPNs shows the great prospects of this membrane mimetics for structural studies of IMPs produced by CF systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Production of a water-soluble fertilizer containing amino acids by solid-state fermentation of soybean meal and evaluation of its efficacy on the rapeseed growth.

    Science.gov (United States)

    Wang, Jianlei; Liu, Zhemin; Wang, Yue; Cheng, Wen; Mou, Haijin

    2014-10-10

    Soybean meal is a by-product of soybean oil extraction and contains approximately 44% protein. We performed solid-state fermentation by using Bacillus subtilis strain N-2 to produce a water-soluble fertilizer containing amino acids. Strain N-2 produced a high yield of protease, which transformed the proteins in soybean meal into peptide and free amino acids that were dissolved in the fermentation products. Based on the Plackett-Burman design, the initial pH of the fermentation substrate, number of days of fermentation, and the ratio of liquid to soybean meal exhibited significant effects on the recovery of proteins in the resulting water-soluble solution. According to the predicted results of the central composite design, the highest recovery of soluble proteins (99.072%) was achieved at the optimum conditions. Under these conditions, the resulting solution contained 50.42% small peptides and 7.9% poly-γ-glutamic acid (γ-PGA). The water-soluble fertilizer robustly increased the activity of the rapeseed root system, chlorophyll content, leaf area, shoot dry weight, root length, and root weight at a concentration of 0.25% (w/v). This methodology offers a value-added use of soybean meal. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Simultaneous determination of water-soluble vitamins in beverages and dietary supplements by LC-MS/MS.

    Science.gov (United States)

    Kakitani, Ayano; Inoue, Tomonori; Matsumoto, Keiko; Watanabe, Jun; Nagatomi, Yasushi; Mochizuki, Naoki

    2014-01-01

    An LC-MS/MS method was developed for the simultaneous determination of 15 water-soluble vitamins that are widely used as additives in beverages and dietary supplements. This combined method involves the following simple pre-treatment procedures: dietary supplement samples were prepared by centrifugation and filtration after an extraction step, whereas beverage samples were diluted prior to injection. Chromatographic analysis in this method utilised a multi-mode ODS column, which provided reverse-phase, anion- and cation-exchange capacities, and therefore improved the retention of highly polar analytes such as water-soluble vitamins. Additionally, the multi-mode ODS column did not require adding ion pair reagents to the mobile phase. We optimised the chromatographic separation of 15 water-soluble vitamins by adjusting the mobile phase pH and the organic solvent. We also conducted an analysis of a NIST Standard Reference Material (SRM 3280 Multi-vitamin/Multi-element tablets) using this method to verify its accuracy. In addition, the method was applied to identify the vitamins in commercial beverages and dietary supplements. By comparing results with the label values and results obtained by official methods, it was concluded that the method could be used for quality control and to compose nutrition labels for vitamin-enriched products.

  15. Exact ground-state phase diagrams for the spin-3/2 Blume-Emery-Griffiths model

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa; Deviren, Bayram

    2008-01-01

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and J 0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found

  16. Sulfur Solubility Testing and Characterization of LAW Phase 1 Matrix Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-02-24

    In this report, the Savannah River National Laboratory (SRNL) provides chemical analysis results for a series of simulated low-activity waste (LAW) glass compositions. These data will be used in the development of improved sulfur solubility models for LAW glass. A procedure developed at Pacific Northwest National Laboratory (PNNL) for producing sulfur saturated melts (SSMs) was carried out at both SRNL and PNNL to fabricate the glasses characterized in this report. This method includes triplicate melting steps with excess sodium sulfate, followed by grinding and washing to remove unincorporated sulfur salts. The wash solutions were also analyzed as part of this study.

  17. The role of carbon solubility in Fe-C nano-clusters on the growth of small single-walled carbon nanotubes

    Science.gov (United States)

    Curtarolo, Stefano; Awasthy, Neha; Setyawan, Wahyu; Mora, Elena; Tokune, Toshio; Bolton, Kim; Harutyunyan, Avetik

    2008-03-01

    Various diameters of alumina-supported Fe catalysts are used to grow single-walled carbon nanotubes (SWCNTs) with chemical vapor decomposition. We find that the reduction of the catalyst size requires an increase of the minimum temperature necessary for the growth. We address this phenomenon in terms of solubility of C in Fe nanoclusters and, by using first principles calculations, we devise a simple model to predict the behavior of the phases competing for stability in Fe-C nanoclusters at low temperature. We show that, as a function particles size, there are three scenarios compatible with steady state-, limited- and no-growth of SWCNTs, corresponding to unaffected, reduced and no solubility of C in the particles. The result raises previously unknown concerns about the growth feasibility of small and very-long SWCNTs within the current Fe CVD technology, and suggests new strategies in the search of better catalysts. Research supported by Honda R.I. and NSF.

  18. Controlled phase gate for solid-state charge-qubit architectures

    International Nuclear Information System (INIS)

    Schirmer, S.G.; Oi, D.K.L.; Greentree, Andrew D.

    2005-01-01

    We describe a mechanism for realizing a controlled phase gate for solid-state charge qubits. By augmenting the positionally defined qubit with an auxiliary state, and changing the charge distribution in the three-dot system, we are able to effectively switch the Coulombic interaction, effecting an entangling gate. We consider two architectures, and numerically investigate their robustness to gate noise

  19. Solid dispersions, part I: recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs.

    Science.gov (United States)

    Bikiaris, Dimitrios N

    2011-11-01

    In recent years, the number of active pharmaceutical ingredients with high therapeutic impact, but very low water solubility, has increased significantly. Thus, a great challenge for pharmaceutical technology is to create new formulations and efficient drug-delivery systems to overcome these dissolution problems. Drug formulation in solid dispersions (SDs) is one of the most commonly used techniques for the dissolution rate enhancement of poorly water-soluble drugs. Generally, SDs can be defined as a dispersion of active ingredients in molecular, amorphous and/or microcrystalline forms into an inert carrier. This review covers literature which states that the dissolution enhancement of SDs is based on the fact that drugs in the nanoscale range, or in amorphous phase, dissolve faster and to a greater extent than micronized drug particles. This is in accordance to the Noyes-Whitney equation, while the wetting properties of the used polymer may also play an important role. The main factors why SD-based pharmaceutical products on the market are steadily increasing over the last few years are: the recent progress in various methods used for the preparation of SDs, the effect of evolved interactions in physical state of the drug and formulation stability during storage, the characterization of the physical state of the drug and the mechanism of dissolution rate enhancement.

  20. Iron solubility related to particle sulfur content in source emission and ambient fine particles.

    Science.gov (United States)

    Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J

    2012-06-19

    The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.

  1. Analysis of physicochemical properties of ternary systems of oxaprozin with randomly methylated-ß-cyclodextrin and l-arginine aimed to improve the drug solubility.

    Science.gov (United States)

    Mennini, Natascia; Maestrelli, Francesca; Cirri, Marzia; Mura, Paola

    2016-09-10

    The influence of l-arginine on the complexing and solubilizing power of randomly-methylated-β-cyclodextrin (RameβCD) towards oxaprozin, a very poorly soluble anti-inflammatory drug, was examined. The interactions between the components were investigated both in solution, by phase-solubility analysis, and in the solid state, by differential scanning calorimetry, FTIR and X-ray powder diffractometry. The morphology of the solid products was examined by Scanning Electron Microscopy. Results of phase-solubility studies indicated that addition of arginine enhanced the RameβCD complexing and solubilizing power of about 3.0 and 4.5 times, respectively, in comparison with the binary complex (both at pH≈6.8). The effect of arginine was not simply additive, but synergistic, being the ternary system solubility higher than the sum of those of the respective drug-CD and drug-arginine binary systems. Solid equimolar ternary systems were prepared by physical mixing, co-grinding, coevaporation and kneading techniques, to explore the effect of the preparation method on the physicochemical properties of the final products. The ternary co-ground product exhibited a dramatic increase in both drug dissolution efficiency and percent dissolved at 60min, whose values (83.6 and 97.1, respectively) were about 3 times higher than the sum of those given by the respective drug-CD and drug-aminoacid binary systems. Therefore, the ternary co-ground system with arginine and RameβCD appears as a very valuable product for the development of new more effective delivery systems of oxaprozin, with improved safety and bioavailability. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Phase Transitions in Definite Total Spin States of Two-Component Fermi Gases.

    Science.gov (United States)

    Yurovsky, Vladimir A

    2017-05-19

    Second-order phase transitions have no latent heat and are characterized by a change in symmetry. In addition to the conventional symmetric and antisymmetric states under permutations of bosons and fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical cavities. The present work shows that the symmetry reveals itself in spin-independent or coordinate-independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In weakly interacting Fermi gases, two phases appear associated with fermionic and non-Abelian symmetry under permutations of particle states, respectively. The second-order transitions between the phases are characterized by discontinuities in specific heat. Unlike other phase transitions, the present ones are not caused by interactions and can appear even in ideal gases. Similar effects in Bose gases and strong interactions are discussed.

  3. Hydrogen solubility measurements of analyzed tall oil fractions and a solubility model

    International Nuclear Information System (INIS)

    Uusi-Kyyny, Petri; Pakkanen, Minna; Linnekoski, Juha; Alopaeus, Ville

    2017-01-01

    Highlights: • Hydrogen solubility was measured in four tall oil fractions between 373 and 597 K. • Continuous flow synthetic isothermal and isobaric method was used. • A Henry’s law model was developed for the distilled tall oil fractions. • The complex composition of the samples was analyzed and is presented. - Abstract: Knowledge of hydrogen solubility in tall oil fractions is important for designing hydrotreatment processes of these complex nonedible biobased materials. Unfortunately measurements of hydrogen solubility into these fractions are missing in the literature. This work reports hydrogen solubility measured in four tall oil fractions between 373 and 597 K and at pressures from 5 to 10 MPa. Three of the fractions were distilled tall oil fractions their resin acids contents are respectively 2, 20 and 23 in mass-%. Additionally one fraction was a crude tall oil (CTO) sample containing sterols as the main neutral fraction. Measurements were performed using a continuous flow synthetic isothermal and isobaric method based on the visual observation of the bubble point. Composition of the flow was changed step-wise for the bubble point composition determination. We assume that the tall oil fractions did not react during measurements, based on the composition analysis performed before and after the measurements. Additionally the densities of the fractions were measured at atmospheric pressure from 293.15 to 323.15 K. A Henry’s law model was developed for the distilled tall oil fractions describing the solubility with an absolute average deviation of 2.1%. Inputs of the solubility model are temperature, total pressure and the density of the oil at 323.15 K. The solubility of hydrogen in the CTO sample can be described with the developed model with an absolute average deviation of 3.4%. The solubility of hydrogen increases both with increasing pressure and/or increasing temperature. The more dense fractions of the tall oil exhibit lower hydrogen

  4. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    Science.gov (United States)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  5. Phase characteristics of solid-state amplifiers in sub-harmonic bunchers

    International Nuclear Information System (INIS)

    Liu Rong; Ma Xinpeng; Zhao Fengli; Wang Xiangjian; Wang Guangwei; Huang Yongqing; Zhang Donghui

    2009-01-01

    To study the phase characteristics of solid-state amplifiers(20 kW/142.8 MHz,10 kW/571.2 MHz) in sub-harmonic bunchers(SHBs) of the BEPC II linear accelerator, phase shift in pulse and phase stability are measured using a digital measurement method based on field programmable gate array(FPGA). The hardware of the measurement system includes the frequency synthesizer, digital signal processing board(FPGA) and PC, and the software includes an internal algorithm on FPGA, communication procedures and PC client interface procedures. The measurement results of phase characteristics are consistent with the actual situation, which is the basis for the further implement of phase compensation in SHBs. (authors)

  6. Study of optical and electrical properties of water-soluble conjugated poly(3-hexylthiophene) on different grain-sized mesoporous TiO2 layers

    International Nuclear Information System (INIS)

    Thalluri, Gopala Krishna V.V.; Bolsée, Jean-Christophe; Madapati, Saipriya; Vanderzande, Dirk; Manca, Jean V.

    2014-01-01

    Solid-state hybrid solar cells are promising candidates for future low-cost photovoltaic energy generation that are based on polymer/metal oxide donor/acceptor heterojunctions. However, a critical drawback of hybrid solar cells is the usage of toxic and environmental unfriendly organic solvents in the phase of preparation. In terms of environmental impact, “green” and safer materials are required towards processing of eco-friendly hybrid solar cells. In this work, during processing phase of eco-friendly hybrid solar cells, aqueous-soluble conjugated poly(3-hexylthiophene) material is used as photo-active and hole transporting layer and TiO 2 layer as electron accepting layer. Optical, topographical and morphological characterizations on different grain-sized TiO 2 layers with polymer films are studied. The influence of eco-friendly hybrid solar cell electrical properties in combination with different grain-sized TiO 2 layers measured under N 2 and ambient conditions are discussed. It is important to understand these properties for further optimizations. - Highlights: • Morphological properties of different grain-sized TiO 2 layers. • Optical properties with and without water-soluble poly(3-hexylthiophene) on TiO 2 layers. • Electrical measurements. • Eco-friendly hybrid solar cells

  7. Solubility of crystalline organic compounds in high and low molecular weight amorphous matrices above and below the glass transition by zero enthalpy extrapolation.

    Science.gov (United States)

    Amharar, Youness; Curtin, Vincent; Gallagher, Kieran H; Healy, Anne Marie

    2014-09-10

    Pharmaceutical applications which require knowledge of the solubility of a crystalline compound in an amorphous matrix are abundant in the literature. Several methods that allow the determination of such data have been reported, but so far have only been applicable to amorphous polymers above the glass transition of the resulting composites. The current work presents, for the first time, a reliable method for the determination of the solubility of crystalline pharmaceutical compounds in high and low molecular weight amorphous matrices at the glass transition and at room temperature (i.e. below the glass transition temperature), respectively. The solubilities of mannitol and indomethacin in polyvinyl pyrrolidone (PVP) K15 and PVP K25, respectively were measured at different temperatures. Mixtures of undissolved crystalline solute and saturated amorphous phase were obtained by annealing at a given temperature. The solubility at this temperature was then obtained by measuring the melting enthalpy of the crystalline phase, plotting it as a function of composition and extrapolating to zero enthalpy. This new method yielded results in accordance with the predictions reported in the literature. The method was also adapted for the measurement of the solubility of crystalline low molecular weight excipients in amorphous active pharmaceutical ingredients (APIs). The solubility of mannitol, glutaric acid and adipic acid in both indomethacin and sulfadimidine was experimentally determined and successfully compared with the difference between their respective calculated Hildebrand solubility parameters. As expected from the calculations, the dicarboxylic acids exhibited a high solubility in both amorphous indomethacin and sulfadimidine, whereas mannitol was almost insoluble in the same amorphous phases at room temperature. This work constitutes the first report of the methodology for determining an experimentally measured solubility for a low molecular weight crystalline solute

  8. The measurement of metallic uranium solubility in lithium chloride molten salt

    International Nuclear Information System (INIS)

    Park, K. K.; Choi, I. K.; Yeon, J. W.; Choi, K. S.; Park, Y. J.

    2002-01-01

    For the purpose of more precise solubility measurement of metallic uranium in lithium chloride melt, the effect of lithium chloride on uranium determination and and the change of oxidation state of metallic uranium in the media were investigated. Uranium of higher than 10 μg/g could be directly determined by ICP-AES. In the case of the lower concentration, the separation and concentration of uranium by anion exchanger was followed by ICP-AES, thereby extending the measurable concentration to 0.1 μg/g. The effects of lithium oxide, uranium oxides(UO 2 or U 3 O 8 ) and metallic lithium on the solubility of metallic uranium were individually investigated in glassy carbon or stainless steel crucibles under argon gas atmosphere. Since metallic uranium is oxidized to uranium(III) in the absence of metallic lithium, causing an increase in the solubility, metallic lithium as reducing agent should be present in the reaction media to obtain the more precise solubility. The metallic uranium solubilities measured at 660 and 690 .deg. C were both lower than 10 μg/g

  9. Quantum phase transitions between a class of symmetry protected topological states

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Lokman; Jiang, Hong-Chen; Lu, Yuan-Ming; Lee, Dung-Hai

    2015-07-01

    The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, Hd+1(G,U(1)), contains at least one Z2n or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z2n or Z groups can be induced on the boundary of a (d+1)-dimensional View the MathML source-symmetric SPT by a View the MathML source symmetry breaking field. Moreover we show these boundary phase transitions can be “transplanted” to d dimensions and realized in lattice models as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.

  10. Investigation of the deuterium solubility in niobium using secondary ion mass spectrometry (SIMS)

    International Nuclear Information System (INIS)

    Zuechner, H.; Bruening, T.

    1991-01-01

    From SIMS measurements on deuterium charged niobium foils a pressure-composition isotherm was obtained. The plateau pressure of the α-β-two-phase region is in good agreement with that known from electrochemical p-n isotherm measurements. The solubility in the homogeneous α-phase measured by SIMS, however, is enhanced compared with the electrochemical p-n isotherm, i.e. the homogeneous α-phase is broadened. These results are due to the ion bombardment causing a lattice distortion within the near surface region during the SIMS experiment. (orig.)

  11. Heat capacity for systems with excited-state quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Cejnar, Pavel; Stránský, Pavel, E-mail: stransky@ipnp.troja.mff.cuni.cz

    2017-03-18

    Heat capacities of model systems with finite numbers of effective degrees of freedom are evaluated using canonical and microcanonical thermodynamics. Discrepancies between both approaches, which are observed even in the infinite-size limit, are particularly large in systems that exhibit an excited-state quantum phase transition. The corresponding irregularity of the spectrum generates a singularity in the microcanonical heat capacity and affects smoothly the canonical heat capacity. - Highlights: • Thermodynamics of systems with excited-state quantum phase transitions • ESQPT-generated singularities of the microcanonical heat capacity • Non-monotonous dependences of the canonical heat capacity • Discord between canonical and microcanonical pictures in the infinite-size limit.

  12. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    Science.gov (United States)

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Extraction vitamins of group B water-soluble polymers

    Directory of Open Access Journals (Sweden)

    Y. I. Korenman

    2012-01-01

    Full Text Available General lows of extraction of B vitamins in aquatic environments of the solution of polymers (poly-N-vinylpyrrolidone, poly-N-vinilkaprolaktam has been studied. The influence of polymer concentration and structure on the distribution coefficients and degree of extraction of vitamins has been established. As a result, the direct search of a stable two-phase systems based on water-soluble polymers has been developed effective systems for the extraction of vitamin B from aqueous salt solutions.

  14. Chimera and modulated drift states in a ring of nonlocally coupled oscillators with heterogeneous phase lags

    Science.gov (United States)

    Choe, Chol-Ung; Kim, Ryong-Son; Ri, Ji-Song

    2017-09-01

    We consider a ring of phase oscillators with nonlocal coupling strength and heterogeneous phase lags. We analyze the effects of heterogeneity in the phase lags on the existence and stability of a variety of steady states. A nonlocal coupling with heterogeneous phase lags that allows the system to be solved analytically is suggested and the stability of solutions along the Ott-Antonsen invariant manifold is explored. We present a complete bifurcation diagram for stationary patterns including the uniform drift and modulated drift states as well as chimera state, which reveals that the stable modulated drift state and a continuum of metastable drift states could occur due to the heterogeneity of the phase lags. We verify our theoretical results using the direct numerical simulations of the model system.

  15. Oral formulation strategies to improve solubility of poorly water-soluble drugs.

    Science.gov (United States)

    Singh, Abhishek; Worku, Zelalem Ayenew; Van den Mooter, Guy

    2011-10-01

    In the past two decades, there has been a spiraling increase in the complexity and specificity of drug-receptor targets. It is possible to design drugs for these diverse targets with advances in combinatorial chemistry and high throughput screening. Unfortunately, but not entirely unexpectedly, these advances have been accompanied by an increase in the structural complexity and a decrease in the solubility of the active pharmaceutical ingredient. Therefore, the importance of formulation strategies to improve the solubility of poorly water-soluble drugs is inevitable, thus making it crucial to understand and explore the recent trends. Drug delivery systems (DDS), such as solid dispersions, soluble complexes, self-emulsifying drug delivery systems (SEDDS), nanocrystals and mesoporous inorganic carriers, are discussed briefly in this review, along with examples of marketed products. This article provides the reader with a concise overview of currently relevant formulation strategies and proposes anticipated future trends. Today, the pharmaceutical industry has at its disposal a series of reliable and scalable formulation strategies for poorly soluble drugs. However, due to a lack of understanding of the basic physical chemistry behind these strategies, formulation development is still driven by trial and error.

  16. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs.

    Science.gov (United States)

    Dahan, Arik; Miller, Jonathan M

    2012-06-01

    While each of the two key parameters of oral drug absorption, the solubility and the permeability, has been comprehensively studied separately, the relationship and interplay between the two have been largely ignored. For instance, when formulating a low-solubility drug using various solubilization techniques: what are we doing to the apparent permeability when we increase the solubility? Permeability is equal to the drug's diffusion coefficient through the membrane times the membrane/aqueous partition coefficient divided by the membrane thickness. The direct correlation between the intestinal permeability and the membrane/aqueous partitioning, which in turn is dependent on the drug's apparent solubility in the GI milieu, suggests that the solubility and the permeability are closely associated, exhibiting a certain interplay between them, and the current view of treating the one irrespectively of the other may not be sufficient. In this paper, we describe the research that has been done thus far, and present new data, to shed light on this solubility-permeability interplay. It has been shown that decreased apparent permeability accompanies the solubility increase when using different solubilization methods. Overall, the weight of the evidence indicates that the solubility-permeability interplay cannot be ignored when using solubility-enabling formulations; looking solely at the solubility enhancement that the formulation enables may be misleading with regards to predicting the resulting absorption, and hence, the solubility-permeability interplay must be taken into account to strike the optimal solubility-permeability balance, in order to maximize the overall absorption.

  17. Bioremediation prospects of fungi isolated from water soluble ...

    African Journals Online (AJOL)

    The fungi associated with water soluble fraction (WSF) of crude oil from two different locations were investigated. The samples were collected from Ezibin oil well (Sample A), Okwagbe village in Ughelli South Local Government Area of Delta State and from NPDC laboratory (Sample B) in Benin City, Oredo Local ...

  18. Plasma concentrations of water.soluble vitamins in metabolic ...

    African Journals Online (AJOL)

    Context: Vitamins B1 (thiamine), B3 (niacin), B6 (pyridoxine), and C (ascorbic acid) are vital for energy, carbohydrate, lipid, and amino acid metabolism and in the regulation of the cellular redox state. Some studies have associated low levels of water.soluble vitamins with metabolic syndrome and its various components.

  19. Generalized Grover's Algorithm for Multiple Phase Inversion States

    Science.gov (United States)

    Byrnes, Tim; Forster, Gary; Tessler, Louis

    2018-02-01

    Grover's algorithm is a quantum search algorithm that proceeds by repeated applications of the Grover operator and the Oracle until the state evolves to one of the target states. In the standard version of the algorithm, the Grover operator inverts the sign on only one state. Here we provide an exact solution to the problem of performing Grover's search where the Grover operator inverts the sign on N states. We show the underlying structure in terms of the eigenspectrum of the generalized Hamiltonian, and derive an appropriate initial state to perform the Grover evolution. This allows us to use the quantum phase estimation algorithm to solve the search problem in this generalized case, completely bypassing the Grover algorithm altogether. We obtain a time complexity of this case of √{D /Mα }, where D is the search space dimension, M is the number of target states, and α ≈1 , which is close to the optimal scaling.

  20. Measurement of soluble nuclide dissolution rates from spent fuel

    International Nuclear Information System (INIS)

    Wilson, C.N.; Gray, W.J.

    1990-01-01

    Gaining a better understanding of the potential release behavior of water-soluble radionuclides is the focus of new laboratory spent fuel dissolution studies being planned in support of the Yucca Mountain Project. Previous studies have suggested that maximum release rates for actinide nuclides, which account for most of the long-term radioactivity in spent fuel, should be solubility-limited and should not depend on the characteristics or durability of the spent fuel waste form. Maximum actinide concentrations should be sufficiently low to meet the NRC (Nuclear Regulatory Commission) annual release limits. Potential release rates for soluble nuclides such as 99 Tc, 135 Cs, 14 C and 129 I, which account for about 1-2% of the activity in spent fuel at 1,000 years, are less certain and may depend on processes such as oxidation of the fuel in the repository air environment. Dissolution rates for several soluble nuclides have been measured from spent fuel specimens using static and semi-static methods. However, such tests do not provide a direct measurement of fuel matrix dissolution rates that may ultimately control soluble-nuclide release rates. Flow-through tests are being developed as a potential supplemental method for determining the matrix component of soluble-nuclide dissolution. Advantages and disadvantages of both semi-static and flow-through methods are discussed. Tests with fuel specimens representing a range of potential fuel states that may occur in the repository, including oxidized fuel, are proposed. Preliminary results from flow-through tests with unirradiated UO 2 suggesting that matrix dissolution rates are very sensitive to water composition are also presented

  1. State partnership in environmental health and safety phase of Plowshare projects

    Energy Technology Data Exchange (ETDEWEB)

    Kinsman, S [California State Department of Public Health, Berkeley, CA (United States)

    1969-07-01

    When experiments on projects involving Plowshare devices are conceived, the state chosen for the project should be invited to participate in planning the health and safety aspects and be prepared to actively participate in the D-Day phase as well as the post-detonation activity. In California nuclear science technology and competence have preceded the social acceptance and use of nuclear devices for large scale Plowshare projects. However, the environmental surveillance program of the Bureau of Radiological Health in the State Department of Public Health has established an operative program which will be ready and able to function as an active participant or in a support role in environmental health phases of nuclear projects scheduled in the State. A description of our present program will be included in this paper. This will enable the attendees and readers to realize capabilities which will be activated for participation and/or support roles during Plowshare activities in the State or in a neighboring state if the need arises. (author)

  2. State partnership in environmental health and safety phase of Plowshare projects

    International Nuclear Information System (INIS)

    Kinsman, S.

    1969-01-01

    When experiments on projects involving Plowshare devices are conceived, the state chosen for the project should be invited to participate in planning the health and safety aspects and be prepared to actively participate in the D-Day phase as well as the post-detonation activity. In California nuclear science technology and competence have preceded the social acceptance and use of nuclear devices for large scale Plowshare projects. However, the environmental surveillance program of the Bureau of Radiological Health in the State Department of Public Health has established an operative program which will be ready and able to function as an active participant or in a support role in environmental health phases of nuclear projects scheduled in the State. A description of our present program will be included in this paper. This will enable the attendees and readers to realize capabilities which will be activated for participation and/or support roles during Plowshare activities in the State or in a neighboring state if the need arises. (author)

  3. Head-To-Head Comparison of Different Solubility-Enabling Formulations of Etoposide and Their Consequent Solubility-Permeability Interplay.

    Science.gov (United States)

    Beig, Avital; Miller, Jonathan M; Lindley, David; Carr, Robert A; Zocharski, Philip; Agbaria, Riad; Dahan, Arik

    2015-09-01

    The purpose of this study was to conduct a head-to-head comparison of different solubility-enabling formulations, and their consequent solubility-permeability interplay. The low-solubility anticancer drug etoposide was formulated in several strengths of four solubility-enabling formulations: hydroxypropyl-β-cyclodextrin, the cosolvent polyethylene glycol 400 (PEG-400), the surfactant sodium lauryl sulfate, and an amorphous solid dispersion formulation. The ability of these formulations to increase the solubility of etoposide was investigated, followed by permeability studies using the parallel artificial membrane permeability assay (PAMPA) and examination of the consequent solubility-permeability interplay. All formulations significantly increased etoposide's apparent solubility. The cyclodextrin-, surfactant-, and cosolvent-based formulations resulted in a concomitant decreased permeability that could be modeled directly from the proportional increase in the apparent solubility. On the contrary, etoposide permeability remained constant when using the ASD formulation, irrespective of the increased apparent solubility provided by the formulation. In conclusion, supersaturation resulting from the amorphous form overcomes the solubility-permeability tradeoff associated with other formulation techniques. Accounting for the solubility-permeability interplay may allow to develop better solubility-enabling formulations, thereby maximizing the overall absorption of lipophilic orally administered drugs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Experimental determination of the phase equilibria in the Co-Fe-Zr ternary system

    International Nuclear Information System (INIS)

    Wang, C.P.; Yu, Y.; Zhang, H.H.; Hu, H.F.; Liu, X.J.

    2011-01-01

    Research highlights: → We determined four isothermal sections of the Co-Fe-Zr system from 1000 o C to 1300 o C. → No ternary compound was found in the Co-Fe-Zr ternary system. → The solubility of Fe in the liquid phase at 1300 o C is extremely large. → The (Co, Fe) 2 Zr phase form the continuous solution from Co-Zr side to Fe-Zr side. → The solubility of Zr in the fcc (Co, Fe) phase is extremely small. - Abstract: The phase equilibria in the Co-Fe-Zr ternary system were investigated by means of optical microscopy (OM), electron probe microanalysis (EPMA), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) on equilibrated ternary alloys. Four isothermal sections of the Co-Fe-Zr ternary system at 1300 o C, 1200 o C, 1100 o C and 1000 o C were experimentally established. The experimental results indicate that (1) no ternary compound was found in this system; (2) the solubility of Fe in the liquid phase of the Co-rich corner at 1300 o C is extremely large; (3) the liquid phase in the Zr-rich corner and the (Co,Fe) 2 Zr phase form the continuous solid solutions from the Co-Zr side to the Fe-Zr side; (4) the solubility of Zr in the fcc (Co, Fe) phase is extremely small.

  5. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water

    International Nuclear Information System (INIS)

    Kobayashi, Kazuya; Liang, Yunfeng; Matsuoka, Toshifumi; Sakka, Tetsuo

    2014-01-01

    The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules

  6. Design and In Vitro Evaluation of a New Nano-Microparticulate System for Enhanced Aqueous-Phase Solubility of Curcumin

    OpenAIRE

    Guzman-Villanueva, Diana; El-Sherbiny, Ibrahim M.; Herrera-Ruiz, Dea; Smyth, Hugh D. C.

    2013-01-01

    Curcumin, a yellow polyphenol derived from the turmeric Curcuma longa, has been associated with a diverse therapeutic potential including anti-inflammatory, antioxidant, antiviral, and anticancer properties. However, the poor aqueous solubility and low bioavailability of curcumin have limited its potential when administrated orally. In this study, curcumin was encapsulated in a series of novel nano-microparticulate systems developed to improve its aqueous solubility and stability. The nano-mi...

  7. Ultrafast electronic relaxation of excited state vitamin B12 in the gas phase

    International Nuclear Information System (INIS)

    Shafizadeh, Niloufar; Poisson, Lionel; Soep, Benoit

    2008-01-01

    The time evolution of electronically excited vitamin B 12 (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states

  8. Fluid phases of hydrogen-bound states and thermodynamical properties

    International Nuclear Information System (INIS)

    Ebeling, W.; Kraeft, W.D.

    1985-08-01

    The fluid phases of hydrogen and especially the existence of two critical points, the density dependence of the two - particle states and the effective interactions are discussed. An effective Schroedinger equation and a Saha equation are given. (author)

  9. Intercrystalline internal adsorption in systems with limiting solubility of components

    International Nuclear Information System (INIS)

    Krysova, S.K.; Stepanova, V.A.; Mozgovoj, M.V.

    1979-01-01

    The decrease of the excessive energy of the intercrystalline boundary of ion by additions of transitional elements having unlimited solubility in iron has been studied. The data obtained agree with the results of an earlier work based on materials of a less higher initial purity. For the systems studied (Fe-V, Fe-Cr, Fe-Mn, Fe-Ni) the degree of the intercrystalline interval adsorption is independent of either the annealing temperature or the cooling method. This corresponds to the notion of the relationship between the intercrystalline internal adsorption and the cubic solubility of the addition in a given solvent. For pure ion, a weak temperature dependence of the excessive energy of the intercrystalline boundries was found in the lower section of the examined temperature range. The constants of cumulative recrystallization of the alloys studied in α-phase show a stepwise dependence upon the atomic number of the solute component, what indicates the relationship between the cumulative recrystallization and the intercrystalline internal adsorption. A monotonous decrease of the constant of cumulative recrystallization is observed for the same alloys in α-phase, on both sides of iron

  10. Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase

    Directory of Open Access Journals (Sweden)

    C. Mouchel-Vallon

    2013-01-01

    Full Text Available The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (yield less than 2% on carbon atom basis under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation to 70% (octane oxidation of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively. Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.

  11. Chelating water-soluble polymers for waste minimization

    International Nuclear Information System (INIS)

    Smith, B.; Cournoyer, M.; Duran, B.; Ford, D.; Gibson, R.; Lin, M.; Meck, A.; Robinson, P.; Robison, T.

    1996-01-01

    Within the DOE complex and in industry there is a tremendous need for advanced metal ion recovery and waste minimization techniques. This project sought to employ capabilities for ligand-design and separations chemistry in which one can develop and evaluate water- soluble chelating polymers for recovering actinides and toxic metals from various process streams. Focus of this work was (1) to develop and select a set of water-soluble polymers suitable for a selected waste stream and (2) demonstrate this technology in 2 areas: removal of (a) actinides and toxic RCRA metals from waste water and (b) recovery of Cu and other precious metals from industrial process streams including from solid catalysts and aqueous waste streams. The R ampersand D was done in 4 phases for each of the 2 target areas: polymer synthesis for scaleup, equipment assembly, process demonstration at a DOE or industrial site, and advanced ligand/polymer synthesis. The TA- 50 site at Los Alamos was thought to be appropriate due to logistics and to its being representative of similar problems throughout the DOE complex

  12. State of the art of nanocrystals technology for delivery of poorly soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuqi; Du, Juan; Wang, Lulu; Wang, Yancai, E-mail: wangyancai1999@163.com [Qilu University of Technology, School of Chemistry and Pharmaceutical Engineering (China)

    2016-09-15

    Formulation of nanocrystals is a distinctive approach which can effectively improve the delivery of poorly water-soluble drugs, thus enticing the development of the nanocrystals technology. The characteristics of nanocrystals resulted in an exceptional drug delivery conductance, including saturation solubility, dissolution velocity, adhesiveness, and affinity. Nanocrystals were treated as versatile pharmaceuticals that could be delivered through almost all routes of administration. In the current review, oral, pulmonary, and intravenous routes of administration were presented. Also, the targeting of drug nanocrystals, as well as issues of efficacy and safety, were also discussed. Several methods were applied for nanocrystals production including top-down production strategy (media milling, high-pressure homogenization), bottom-up production strategy (antisolvent precipitation, supercritical fluid process, and precipitation by removal of solvent), and the combination approaches. Moreover, this review also described the evaluation and characterization of the drug nanocrystals and summarized the current commercial pharmaceutical products utilizing nanocrystals technology.

  13. Indomethacin solubility estimation in 1,4-dioxane + water mixtures by the extended hildebrand solubility approach

    Directory of Open Access Journals (Sweden)

    Miller A Ruidiaz

    2011-09-01

    Full Text Available Extended Hildebrand Solubility Approach (EHSA was successfully applied to evaluate the solubility of Indomethacin in 1,4-dioxane + water mixtures at 298.15 K. An acceptable correlation-performance of EHSA was found by using a regular polynomial model in order four of the W interaction parameter vs. solubility parameter of the mixtures (overall deviation was 8.9%. Although the mean deviation obtained was similar to that obtained directly by means of an empiric regression of the experimental solubility vs. mixtures solubility parameters, the advantages of EHSA are evident because it requires physicochemical properties easily available for drugs.

  14. Comparison of Time/Phase Lags in the Hard State and Plateau State of GRS 1915+105

    NARCIS (Netherlands)

    Pahari, M.; Neilsen, J.; Yadav, J.S.; Misra, R.; Uttley, P.

    2013-01-01

    We investigate the complex behavior of energy- and frequency-dependent time/phase lags in the plateau state and the radio-quiet hard (χ) state of GRS 1915+105. In our timing analysis, we find that when the source is faint in the radio, quasi-periodic oscillations (QPOs) are observed above 2 Hz and

  15. Materials research for passive solar systems: Solid-state phase-change materials

    Science.gov (United States)

    Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.

  16. Comment on ;First experimental determination of the solubility constant of coffinite; [Geochim. Cosmochim. Acta 181 (2016) 36-53

    Science.gov (United States)

    Konings, R. J. M.; Plyasunov, A.

    2017-09-01

    Coffinite - USiO4 - is a key mineral for the modelling of the chemistry of uranium in silica-rich rocks. It is of particular interest for the modelling of the final storage of used nuclear fuel in deep geological respositories, as coffinite may be the solubility-controlling solid phase for uranium. This was extensively discussed by Szenknect et al. (2016) in a recent publication of the determination of the solubility constant of coffinite. The availability of pure USiO4 samples made it possible for the first time to accurately determine the solubility of this phase in aqueous solution (under-saturated conditions with respect to silica in 0.1 mol L-1 HCl). The study by Szenknect et al. (2016) is very extensive and in combination with the calorimetric determination of the enthalpy of formation of USiO4 from the same material batch (Guo et al., 2015), allows a re-assessment of the thermodynamic properties of this phase, revising the values from the OECD/NEA review in 1992 (Grenthe et al., 1992) that were based on estimated values for the Gibbs energy of formation of USiO4 by Brookins (1975) and the standard entropy by Langmuir (1978).

  17. Enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide, and nalidixic acid in dioxane-water.

    Science.gov (United States)

    Bustamante, P; Romero, S; Pena, A; Escalera, B; Reillo, A

    1998-12-01

    In earlier work, a nonlinear enthalpy-entropy compensation was observed for the solubility of phenacetin in dioxane-water mixtures. This effect had not been earlier reported for the solubility of drugs in solvent mixtures. To gain insight into the compensation effect, the behavior of the apparent thermodynamic magnitudes for the solubility of paracetamol, acetanilide, and nalidixic acid is studied in this work. The solubility of these drugs was measured at several temperatures in dioxane-water mixtures. DSC analysis was performed on the original powders and on the solid phases after equilibration with the solvent mixture. The thermal properties of the solid phases did not show significant changes. The three drugs display a solubility maximum against the cosolvent ratio. The solubility peaks of acetanilide and nalidixic acid shift to a more polar region at the higher temperatures. Nonlinear van't Hoff plots were observed for nalidixic acid whereas acetanilide and paracetamol show linear behavior at the temperature range studied. The apparent enthalpies of solution are endothermic going through a maximum at 50% dioxane. Two different mechanisms, entropy and enthalpy, are suggested to be the driving forces that increase the solubility of the three drugs. Solubility is entropy controlled at the water-rich region (0-50% dioxane) and enthalpy controlled at the dioxane-rich region (50-100% dioxane). The enthalpy-entropy compensation analysis also suggests that two different mechanisms, dependent on cosolvent ratio, are involved in the solubility enhancement of the three drugs. The plots of deltaH versus deltaG are nonlinear, and the slope changes from positive to negative above 50% dioxane. The compensation effect for the thermodynamic magnitudes of transfer from water to the aqueous mixtures can be described by a common empirical nonlinear relationship, with the exception of paracetamol, which follows a separate linear relationship at dioxane ratios above 50%. The

  18. In situ high-pressure measurement of crystal solubility by using neutron diffraction

    Science.gov (United States)

    Chen, Ji; Hu, Qiwei; Fang, Leiming; He, Duanwei; Chen, Xiping; Xie, Lei; Chen, Bo; Li, Xin; Ni, Xiaolin; Fan, Cong; Liang, Akun

    2018-05-01

    Crystal solubility is one of the most important thermo-physical properties and plays a key role in industrial applications, fundamental science, and geoscientific research. However, high-pressure in situ measurements of crystal solubility remain very challenging. Here, we present a method involving high-pressure neutron diffraction for making high-precision in situ measurements of crystal solubility as a function of pressure over a wide range of pressures. For these experiments, we designed a piston-cylinder cell with a large chamber volume for high-pressure neutron diffraction. The solution pressures are continuously monitored in situ based on the equation of state of the sample crystal. The solubility at a high pressure can be obtained by applying a Rietveld quantitative multiphase analysis. To evaluate the proposed method, we measured the high-pressure solubility of NaCl in water up to 610 MPa. At a low pressure, the results are consistent with the previous results measured ex situ. At a higher pressure, more reliable data could be provided by using an in situ high-pressure neutron diffraction method.

  19. Solubility and stability enhancement of curcumin: Improving drug properties of natural pigment

    Directory of Open Access Journals (Sweden)

    M J Ansari

    2016-01-01

    Full Text Available Aim: Water insolubility, low potency, and instability are inherent problems of several herbal medicines. Identity, strength, quality, and purity of herbal products are further compromised during manufacturing and storage. The aim of present work was to evaluate solubility and stability of curcumin, a pigment obtained from dried rhizomes of plant Cucrcuma longa. Materials and Methods: The stoichiometric ratios for inclusion complexation of curcumin with various cyclodextrins (CDs were determined by phase solubility analysis. Grinding, kneading, and freeze-drying were employed to determine optimum complexation. Complexes were evaluated for drug inclusion, solubility, and stability. Results: Stability constants were 11200 M−1 , 1557 M−1 , 2858 M−1 , and 2206 M−1 for α-, β-, γ-CD, and dimethyl β-CD (DIMEB, respectively, thus indicating good complex formation. Theoretical amounts of curcumin in binary products were between 80% and 97% with a maximum of 96.8% in curcumin-β-CD freeze-dried product. The complexation resulted in a marked improvement in the solubility of curcumin up to 60, 55, 56, and 1500 folds by α-, β-, γ-CD, and DIMEB, respectively. Inclusion complexation protected the drug from hydrolytic degradations as only 20-40% degradation was observed at the end of 8 h as opposed to >70% for pure curcumin. Conclusion: A significant improvement in the solubility and stability was observed with curcumin-CD complex as compared to pure curcumin.

  20. Thermodynamic Approach to Boron Nitride Nanotube Solubility and Dispersion

    Science.gov (United States)

    Tiano, A. L.; Gibbons, L.; Tsui, M.; Applin, S. I.; Silva, R.; Park, C.; Fay, C. C.

    2016-01-01

    Inadequate dispersion of nanomaterials is a critical issue that significantly limits the potential properties of nanocomposites and when overcome, will enable further enhancement of material properties. The most common methods used to improve dispersion include surface functionalization, surfactants, polymer wrapping, and sonication. Although these approaches have proven effective, they often achieve dispersion by altering the surface or structure of the nanomaterial and ultimately, their intrinsic properties. Co-solvents are commonly utilized in the polymer, paint, and art conservation industries to selectively dissolve materials. These co-solvents are utilized based on thermodynamic interaction parameters and are chosen so that the original materials are not affected. The same concept was applied to enhance the dispersion of boron nitride nanotubes (BNNTs) to facilitate the fabrication of BNNT nanocomposites. Of the solvents tested, dimethylacetamide (DMAc) exhibited the most stable, uniform dispersion of BNNTs, followed by N,N-dimethylformamide (DMF), acetone, and N-methyl-2-pyrrolidone (NMP). Utilizing the known Hansen solubility parameters of these solvents in comparison to the BNNT dispersion state, a region of good solubility was proposed. This solubility region was used to identify co-solvent systems that led to improved BNNT dispersion in poor solvents such as toluene, hexane, and ethanol. Incorporating the data from the co-solvent studies further refined the proposed solubility region. From this region, the Hansen solubility parameters for BNNTs are thought to lie at the midpoint of the solubility sphere: 16.8, 10.7, and 9.0 MPa(exp 1/2) for delta d, delta p, and delta h, respectively, with a calculated Hildebrand parameter of 21.8 MPa)exp 1/2).

  1. Classification of cyclic initial states and geometric phase for the spin-j system

    Energy Technology Data Exchange (ETDEWEB)

    Skrynnikov, N.R.; Zhou, J.; Sanctuary, B.C. [Dept. of Chem., McGill Univ., Montreal, PQ (Canada)

    1994-09-21

    Quantum states which evolve cyclically in their projective Hilbert space give rise to a geometric (or Aharonov-Anandan) phase. An aspect of primary interest is stable cyclic behaviour as realized under a periodic Hamiltonian. The problem has been handled by use of time-dependent transformations treated along the lines of Floquet's theory as well as in terms of exponential operators with a goal to examine the variety of initial states exhibiting cyclic behaviour. A particular case of special cyclic initial states is described which is shown to be important for nuclear magnetic resonance experiments aimed at the study of the effects of the geometric phase. An example of arbitrary spin j in a precessing magnetic field and spin j=1 subject to both axially symmetric quadrupolar interaction and a precessing magnetic field are presented. The invariant (Kobe's) geometric phase is calculated for special cyclic states. (author)

  2. Measurement and correlation of solubility of anthraquinone dyestuffs in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Alwi, Ratna Surya; Tanaka, Tatsuro; Tamura, Kazuhiro

    2014-01-01

    Highlights: • Solubility of anthraquinone dyestuffs in supercritical carbon dioxide was obtained. • Measured at T = (323.15, 353.15, and 383.15) K and at (12.5 to 25.0) MPa. • Correlated with empirical equations expressed in terms of sc-CO 2 density. • Analyzed thermodynamically by solution model and PRSVera equation of state. • Good agreement between experimental and calculated solubilities was obtained. - Abstract: Solubility data of 1,4-diaminoanthraquinone (C.I. Disperse Violet 1) and 1,4-bis(ethylamino)anthraquinone (C.I. Solvent Blue 59) in supercritical carbon dioxide (sc-CO 2 ) have been measured at the temperatures of (323.15, 353.15, and 383.15) K and over the pressure range from (12.5 to 25.0) MPa by a flow-type apparatus. The solubility of two anthraquinone dyestuffs was obtained over the mole fraction ranges of (1.3 to 26.1) · 10 −7 for 1,4-diaminoanthraquinone (C.I. Disperse Violet 1) and (1.1 to 148.5) · 10 −7 for 1,4-bis(ethylamino)anthraquinone (C.I. Solvent Blue 59). The experimental results have been correlated with the empirical equations of Mendez-Santiago–Teja and Kumar–Johnston expressed in terms of the density of sc-CO 2 , and also analyzed thermodynamically by the regular solution model with the Flory–Huggins theory and the Peng–Robinson equation of state modified by Stryjek and Vera (PRSV-EOS) with the conventional mixing rules. Good agreement between the experimental and calculated solubilities of the dyestuffs was obtained

  3. Quantum phase transitions in matrix product states

    International Nuclear Information System (INIS)

    Zhu Jingmin

    2008-01-01

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous. (authors)

  4. Quantum Phase Transitions in Matrix Product States

    International Nuclear Information System (INIS)

    Jing-Min, Zhu

    2008-01-01

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous

  5. The chimera state in colloidal phase oscillators with hydrodynamic interaction

    Science.gov (United States)

    Hamilton, Evelyn; Bruot, Nicolas; Cicuta, Pietro

    2017-12-01

    The chimera state is the incongruous situation where coherent and incoherent populations coexist in sets of identical oscillators. Using driven non-linear oscillators interacting purely through hydrodynamic forces at low Reynolds number, previously studied as a simple model of motile cilia supporting waves, we find concurrent incoherent and synchronised subsets in small arrays. The chimeras seen in simulation display a "breathing" aspect, reminiscent of uniformly interacting phase oscillators. In contrast to other systems where chimera has been observed, this system has a well-defined interaction metric, and we know that the emergent dynamics inherit the symmetry of the underlying Oseen tensor eigenmodes. The chimera state can thus be connected to a superposition of eigenstates, whilst considering the mean interaction strength within and across subsystems allows us to make a connection to more generic (and abstract) chimeras in populations of Kuramoto phase oscillators. From this work, we expect the chimera state to emerge in experimental observations of oscillators coupled through hydrodynamic forces.

  6. Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives.

    Science.gov (United States)

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2017-07-03

    We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.

  7. Preparation of amorphous solid dispersions by rotary evaporation and KinetiSol Dispersing: approaches to enhance solubility of a poorly water-soluble gum extract.

    Science.gov (United States)

    Bennett, Ryan C; Brough, Chris; Miller, Dave A; O'Donnell, Kevin P; Keen, Justin M; Hughey, Justin R; Williams, Robert O; McGinity, James W

    2015-03-01

    Acetyl-11-keto-β-boswellic acid (AKBA), a gum resin extract, possesses poor water-solubility that limits bioavailability and a high melting point making it difficult to successfully process into solid dispersions by fusion methods. The purpose of this study was to investigate solvent and thermal processing techniques for the preparation of amorphous solid dispersions (ASDs) exhibiting enhanced solubility, dissolution rates and bioavailability. Solid dispersions were successfully produced by rotary evaporation (RE) and KinetiSol® Dispersing (KSD). Solid state and chemical characterization revealed that ASD with good potency and purity were produced by both RE and KSD. Results of the RE studies demonstrated that AQOAT®-LF, AQOAT®-MF, Eudragit® L100-55 and Soluplus with the incorporation of dioctyl sulfosuccinate sodium provided substantial solubility enhancement. Non-sink dissolution analysis showed enhanced dissolution properties for KSD-processed solid dispersions in comparison to RE-processed solid dispersions. Variances in release performance were identified when different particle size fractions of KSD samples were analyzed. Selected RE samples varying in particle surface morphologies were placed under storage and exhibited crystalline growth following solid-state stability analysis at 12 months in comparison to stored KSD samples confirming amorphous instability for RE products. In vivo analysis of KSD-processed solid dispersions revealed significantly enhanced AKBA absorption in comparison to the neat, active substance.

  8. Solubility of 1-aminoanthraquinone and 1-nitroanthraquinone in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Tamura, Kazuhiro; Alwi, Ratna Surya; Tanaka, Tatsuro; Shimizu, Keisuke

    2017-01-01

    Highlights: • Solubility of 1-aminoanthraquinone and 1-nitroanthraquinone in scCO 2 were measured. • Temperature ranges of (323.15–383.15) K and pressures of (12.5–25.0) MPa. • Solubility of 1-aminoanthraquinone was higher than that of 1-nitroanthraquinone. • Demonstrated effect of amino and nitro groups on the solubility of anthraquinones. • Correlated well by CO 2 density models and thermodynamic models. - Abstract: The solubility of 1-aminoanthraquinone (Smoke Orange G) and 1-nitroanthraquinone in supercritical carbon dioxide (scCO 2 ) was measured at the temperatures (323.15, 353.15 and 383.15) K and over the pressure range of (12.5–25.0) MPa by a flow type apparatus. Mole fraction solubility of 1-aminoanthraquinone, 3.51 × 10 −5 , was significantly higher than that of 1-nitroanthraquinone, 2.52 × 10 −5 , as compared at 383.15 K and 25 MPa. It was found that amino group in 1-aminoanthraquinone effects to enhance the solubility of anthraquinone derivatives in supercritical carbon dioxide in comparison with nitro group in 1-nitroanthraquinone. Seven different kinds of semi-empirical models, expressed in terms of CO 2 density, were used to correlate the experimental results. Moreover, the solubilities of anthraquinone derivatives were analysed thermodynamically by the regular solution model with the Flory–Huggins theory and by the Peng–Robinson equation of state with a modification of Stryjek and Vera (PRSV-EOS). Good agreement with slightly less than 15 per cent of relative deviation between the experimental and calculated solubilities of the anthraquinone derivatives was obtained.

  9. Producing superfluid circulation states using phase imprinting

    Science.gov (United States)

    Kumar, Avinash; Dubessy, Romain; Badr, Thomas; De Rossi, Camilla; de Goër de Herve, Mathieu; Longchambon, Laurent; Perrin, Hélène

    2018-04-01

    We propose a method to prepare states of given quantized circulation in annular Bose-Einstein condensates (BEC) confined in a ring trap using the method of phase imprinting without relying on a two-photon angular momentum transfer. The desired phase profile is imprinted on the atomic wave function using a short light pulse with a tailored intensity pattern generated with a spatial light modulator. We demonstrate the realization of "helicoidal" intensity profiles suitable for this purpose. Due to the diffraction limit, the theoretical steplike intensity profile is not achievable in practice. We investigate the effect of imprinting an intensity profile smoothed by a finite optical resolution onto the annular BEC with a numerical simulation of the time-dependent Gross-Pitaevskii equation. This allows us to optimize the intensity pattern for a given target circulation to compensate for the limited resolution.

  10. The physicochemical properties and solubility of pharmaceuticals – Methyl xanthines

    International Nuclear Information System (INIS)

    Pobudkowska, Aneta; Domańska, Urszula; Kryska, Justyna A.

    2014-01-01

    Highlights: • Solubility of methyl xanthines in water and alcohols was measured. • Solubility in water, or alcohols was of the order of 10 −4 in mole fraction. • Experimental aqueous pK a ’s values are reported for the selected drugs. • The basic thermodynamic functions were determined. - Abstract: The aim of this study was to evaluate the physio-chemical properties and solubility of three pharmaceuticals (Phs): theophylline, 7-(β-hydroxyethyl) theophylline, and theobromine in binary systems in different solvents. The solvents used were water, ethanol, and 1-octanol. Score of the solubility of these substances is being important for their dissolution effect inside the cell, the transportation by body fluids and the penetration possibility of lipid membranes. The Phs were classified to the group of methyl xanthines, which contain purine in their structure. Although they are mainly obtained via chemical synthesis, they can be also found in natural ingredients such as cocoa beans and tea leaves. These drugs are mainly acting on the central nervous system but are also used in the treatment of asthma or blood vessels. Solubility of 7 (β-hydroxyethyl) theophylline and theophylline were tested using synthetic method. In case of theobromine, which solubility is very small in the solvents noted, the spectrophotometric method has been used to measure its solubility. After designating phase diagrams of each of the solubility in the bipolar system, the experimental points have been correlated with the equations: Wilson, NRTL, UNIQUAC. Results show that theophylline and its derivatives show the best solubility from all tested Phs. Another method also used during this study was the differential scanning calorimetry (DSC), which allowed designation of the thermal properties of Phs. The fusion temperature and the enthalpy of melting were measured. Unfortunately, it was not possible to determine the fusion temperature and enthalpy of melting of theobromine, because of

  11. Water-soluble elements in atmospheric particulate matter over tropical and equatorial Atlantic

    International Nuclear Information System (INIS)

    Buat-Menard, Patrick; Morelli, Jacques; Chesselet, Roger

    1974-01-01

    Samples of water-soluble atmospheric particulate matter collected from R/V ''Jean Charcot'' (May to October 1971) and R/V ''James Gilliss'' (October 1972) over Tropical and Equatorial Atlantic were analyzed for Na, Mg, K and Ca by atomic absorption and for Cl and S as SO 4 by colorimetry. Data shows a strong geographical dependence of K and Ca enrichment relative to their elemental ratio to Na in sea-water. Ca enrichment is related to presence of identified soluble calcium minerals in continental dust originating from African deserts (Sahara-Kalahari). This dust does not influence amounts of K in the water-soluble phase. When observed, strong K enrichment appears tightly associated with high concentrations of surface-active organic material in the microlayer derived from high biological activity (Gulf of Guinea). Observed in same samples, SO 4 enrichment could also be controlled by the same source. This SO 4 enrichment balances the observed Cl loss in aerosols accordingly with gaseous HCl formation processes in marine atmosphere [fr

  12. Characterization of Soluble Organics in Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.

    2002-01-16

    -selective electrodes and inductively coupled plasma (ICP)-atomic emission spectrometry (AES). The WSO found in produced water samples was primarily polar in nature and distributed between the low and midrange carbon ranges. Typical levels of total extractable material (TEM) was about 20 mg/L; that associated with the aromatic fraction was present at 0.2 mg/L and that in the saturated hydrocarbon fraction was present at less than 0.02 mg/L. Formic, acetic, and propionic acids were also found in the produced water, occurring at a total concentration of 30 mg/L. It was estimated that the presence of 30 mg/L organic acids would artificially overstate TEM content by 2 mg/L. Of the five tested parameters, the factor that most controlled the total WSO in produced water was that of aqueous phase pH. Beyond a value of pH7 significant quantities of C{sub 10}-C{sub 20} range material become markedly soluble as they deprotonate in a basic aqueous phase. Both the absolute and relative volumes of GOM brine and crude additionally affected total WSO. Produced water appeared to reach a saturation level of WSO at a.50% water/oil ratio. Pressure slightly enhanced WSO by increasing the relative quantity of C{sub 6}-C{sub 10} range material. Temperature primarily altered the relative ratio of carbon ranges within the WSO without significantly elevating the total WSO in the GOM brine. Salinity had the least affect on the chemical character or the carbon size of WSO in produced water.

  13. Phase equilibrium of the Gd-Fe-Co system at 873 K

    International Nuclear Information System (INIS)

    Huang Jinli; Zhong Haichang; Xia Xiuwen; He Wei; Zhu Jinming; Deng Jianqiu; Zhuang Yinghong

    2009-01-01

    Phase equilibrium of the ternary Gd-Fe-Co system at 873 K was investigated by using X-ray diffraction technique, electron probe microanalysis, metallographic analysis and differential thermal analysis. The 873 K isothermal section of the phase diagram of the Gd-Fe-Co ternary system consists of 11 single-phase regions, 16 two-phase regions and 6 three-phase regions. Three pairs of corresponding compounds of Gd-Co and Gd-Fe, i.e., Gd 2 Co 17 and Gd 2 Fe 17 , GdCo 3 and GdFe 3 , GdCo 2 and GdFe 2 , form a continuous series of solid solution. The compound Gd 2 Co 7-x Fe x was found to have a broad solubility range from 0 to 31 at.% Fe. The maximum solubility of Co in Gd 6 Fe 23 is about 7 at.% Co. At 873 K, the maximum solubilities of Fe in Gd 3 Co and Gd 4 Co 3 are about 3 and 1 at.% Fe, respectively. No ternary compound was found in all ternary alloy samples

  14. Bio-Oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends.

    Science.gov (United States)

    Botella, Lucía; Stankovikj, Filip; Sánchez, José L; Gonzalo, Alberto; Arauzo, Jesús; Garcia-Pérez, Manuel

    2018-01-01

    The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel) have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325°C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons), middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds, and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here.

  15. Bio-oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends

    Science.gov (United States)

    Botella, Lucía; Stankovikj, Filip; Sánchez, José L.; Gonzalo, Alberto; Arauzo, Jesús; Garcia-Pérez, Manuel

    2018-04-01

    The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel) have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325 °C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons), middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here.

  16. Bio-Oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends

    Directory of Open Access Journals (Sweden)

    Lucía Botella

    2018-04-01

    Full Text Available The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325°C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons, middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds, and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here.

  17. Bio-Oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends

    Science.gov (United States)

    Botella, Lucía; Stankovikj, Filip; Sánchez, José L.; Gonzalo, Alberto; Arauzo, Jesús; Garcia-Pérez, Manuel

    2018-01-01

    The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel) have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325°C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons), middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds, and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here. PMID:29675406

  18. Phase separation and soluble pollutant removal by means of alternationg current electrocoagulation

    International Nuclear Information System (INIS)

    Farrell, C.W.; Gardner-Clayson, T.W.

    1992-01-01

    Electro-Pure Systems (EPS) has undertaken a two-year laboratory program to investigate the technical and economic viability of alternation current electrocoagulation technology (ACE Technology) for Superfund site remediation. Alternating current electrocoagulation was originally developed as a treatment technology in the early 1980s to break stable aqueous suspensions of clays and coal fines in the mining industry. The technology offers a replacement for primary chemical coagulant addition to simplify effluent treatment, realize cost savings, and facilitate recovery of fine grained products that would otherwise have been lost. The traditional approach for treatment of such effluents entails addition of organic polymers or inorganic salts to promote flocculation of fine particulates and colloidi-sized oil droplets in aqueous suspensions. These flocculated materials are than separated by sedimentation or filtration. Unfortunately, chemical coagulant addition generates voluminous, gelatinous sludges which are difficult to dewater and slow to filter. As an alternative to chemical conditioning, alternation current electrocoagulation introduces into an aqueous medium highly, charged polymetric aluminum hydroxide species which will neutralize the electrostatic charges on suspended solids and oil droplets to facilitate their agglomeration (or coagulation). These species will also coprecipitate many soluble ions. ACE Technology prompts coagulation without adding any soluble species and produces a sludge with a lower contained water content and which will filter more rapidly through separation of the hazardous components from an aqueous waste the volume of potentially toxic pollutants requiring special handling and disposal can be minimized. Waste reduction goals may be accomplished by integrating this technology into a variety of operations which generate contaminated water

  19. Standardization and application of the solid phase C1q radioimmunoassay using soluble tetanus toxoid-antitetanus immune complexes in sera of patients with chronic polyarthritis and Lupus erythematodes

    International Nuclear Information System (INIS)

    Menzel, E.J.; Steffen, C.; Smolen, J.

    1982-01-01

    Soluble tetanus-antitetanus immune complexes were prepared with affinity-chromatography and gel chromatography. Serial dilutions of these immune complex preparations were tested in a solid phase C1q radioimmunoassay. Soluble immune complexes as well as aggregated human gamma globulin of identical protein concentrations were comparatively investigated. Soluble immune complexes rendered a more sensitive standardization of RIA. According to these observations a relation between μg/ml equivalents of defined tetanus-antitetanus complexes and ng second antibody obtained in C1q-RIA was calculated. Upper limit of mean values and two standard deviations of ng second antibody obtained in investigations of 55 normal sera was designated as 1 unit immune complexes and regarded as border line of negative results. Multiplication of μg/ml immune complex equivalents of 1 unit led to a scale of 1 to 15 units, showing the area of positive results. According to these values a standardization curve was constructed allowing a conversion of ng-second antibody obtained in serum investigations into immune complex units equivalent to defined standard immune complexes. With this curve investigation results of 56 RA sera and 21 SLE sera were expressed in the range of units, making a distinct gradation of positive results and a clear cut separation of positive and negative results possible. SLE sera of patients in acute stage showed highly positive results. (orig.) [de

  20. Standardization and application of the solid phase C1q radioimmunoassay using soluble tetanus toxoid-antitetanus immune complexes in sera of patients with chronic polyarthritis and Lupus erythematodes

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, E J; Steffen, C; Smolen, J

    1982-11-22

    Soluble tetanus-antitetanus immune complexes were prepared with affinity-chromatography and gel chromatography. Serial dilutions of these immune complex preparations were tested in a solid phase C1q radioimmunoassay. Soluble immune complexes as well as aggregated human gamma globulin of identical protein concentrations were comparatively investigated. Soluble immune complexes rendered a more sensitive standardization of RIA. According to these observations a relation between ..mu..g/ml equivalents of defined tetanus-antitetanus complexes and ng second antibody obtained in C1q-RIA was calculated. Upper limit of mean values and two standard deviations of ng second antibody obtained in investigations of 55 normal sera was designated as 1 unit immune complexes and regarded as border line of negative results. Multiplication of ..mu..g/ml immune complex equivalents of 1 unit led to a scale of 1 to 15 units, showing the area of positive results. According to these values a standardization curve was constructed allowing a conversion of ng-second antibody obtained in serum investigations into immune complex units equivalent to defined standard immune complexes. With this curve investigation results of 56 RA sera and 21 SLE sera were expressed in the range of units, making a distinct gradation of positive results and a clear cut separation of positive and negative results possible. SLE sera of patients in acute stage showed highly positive results.

  1. The solubility of rhodochrosite (MnCO3) and siderite (FeCO3) in anaerobic aquatic environments

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Boddum, J.K.; Tjell, Jens Christian

    2002-01-01

    Natural groundwaters are often reported to be highly supersaturated with the carbonate minerals siderite (FeCO3) and rhodochrosite (MnCO3). The kinetics of precipitation and dissolution were determined in the light of new determinations of the solubility products of siderite and rhodochrosite...... steady state for rhodochrosite was reached after 140 days. Suspensions of siderite and rhodochrosite crystals reached steady state after 10 and 80 days, respectively. The solubility product of siderite (log KS0(FeCO3)) was 11.03 0.10 for dried crystals and 10.43 0.15 for wet crystals. For rhodochrosite...... the solubility product (log KS0(MnCO3)) was 11.39 0.14 for dried crystals and 12.51 0.07 for wet crystals. The solubility product determined from supersaturated solutions was log KS0(MnCO3)=11.65 0.14. The observed slow precipitation kinetics of siderite and rhodochrosite might explain the apparent...

  2. An effect of cation functionalization on thermophysical properties of ionic liquids and solubility of glucose in them – Measurements and PC-SAFT calculations

    International Nuclear Information System (INIS)

    Paduszyński, Kamil; Okuniewski, Marcin; Domańska, Urszula

    2016-01-01

    Highlights: • Density, viscosity and DSC thermograms for four ionic liquids were measured. • New data on solubility of glucose in ionic liquids were presented. • An impact of cation functionalization on solubility was established. • Apparent thermodynamic functions of dissolution were determined. • Modeling of the studied systems with PC-SAFT equation of state was performed. - Abstract: This contribution is concerned with thermodynamic investigation on thermophysical properties of four ionic liquids based on dicyanamide anion. The ionic liquids under study differ in substituent attached to imidazolium cation, so that an impact of terminal functional groups on the considered properties is established. Discussion is presented in terms of molecular packing and interactions (polarity, hydrogen bonding) between molecules forming system. Differential scanning calorimetry thermograms, density and viscosity were the investigated properties of pure ionic liquids. Moreover, new data sets on solubility of glucose in ionic liquids are presented. Analysis of the temperature-dependent solubility data by means of modified Van’t Hoff equation is given and apparent thermodynamic functions of dissolution are calculated. Thermodynamic modeling of the (solid + liquid) equilibrium phase diagrams was carried out by means of perturbed-chain statistical associating fluid theory (PC-SAFT). It is evidenced that consistent and accurate thermodynamic description of complex cross-associating {ionic liquid + sugar} systems can be achieved by using simple (but physically grounded) molecular schemes, assuming that two adjustable binary corrections are introduced.

  3. Solubility of chromium (III) oxide and metal chromates: development of MULTEQ models

    International Nuclear Information System (INIS)

    Dickinson, Shirley; Henshaw, Jim; Bachet Martin; Hussey, Dennis; Marks, Chuck; Tremaine, Peter; Eaker, Richard

    2012-09-01

    High-temperature solubility predictions for metal oxide systems are important for the understanding of corrosion processes, corrosion product behaviour and activity transport in PWR coolant systems. In the current work, literature data on chromium oxide and iron chromium solubility measurement have been used to derive equilibrium constant expressions for dissolution and hydrolysis reactions which have been incorporated in the latest revision of the EPRI MULTEQ database. Predicting the stable chromium phases in a PWR is important as these constitute the compact inner oxide layer that forms on most ex-core alloys used in this system. Likewise understanding the chromium chemistry is necessary for rationalising high chromium content crud that has been observed on several plant fuel pins. Chromium (III) oxide solubility measurements have shown that the equilibrium solid phase under hydrothermal conditions is CrOOH rather than Cr 2 O 3 . Expressions for the solubility product of this solid and the equilibrium constant for the 4. Cr (III) hydrolysis reaction Cr (OH) 3 (aq) + H 2 O = Cr (OH) 4 - + H + have been derived by fitting to the experimental solubility data in neutral to alkaline solution. The equilibrium constant for the 3rd hydrolysis reaction Cr (OH) 2 + +H 2 O = Cr (OH) 3 (aq) + H + has been revised for consistency with literature estimates of the hydrolysis constants at 298 K. There are insufficient high-quality solubility data at low pH to derive the lower hydrolysis constants so the existing MULTEQ entries, based on thermodynamic estimations, have been retained. This revised model gave reasonable agreement with the available data in acidic solution. A revised expression for the Cr 2 O 3 solubility product was derived from measurements of Fe concentrations produced from FeCr 2 O 4 dissolution, and this was used to obtain a consistent solubility product expression for FeCr 2 O 4 . The resulting model predicts that FeCr 2 O 4 would be unstable at temperatures

  4. An odd–even effect on solubility of dicarboxylic acids in organic solvents

    International Nuclear Information System (INIS)

    Zhang, Hui; Yin, Qiuxiang; Liu, Zengkun; Gong, Junbo; Bao, Ying; Zhang, Meijing; Hao, Hongxun; Hou, Baohong; Xie, Chuang

    2014-01-01

    Highlights: • The solubilities of the homologous series of C2–C10 dicarboxylic acids were determined in four selected solvents. • The experimental data were well correlated with the modified Apelblat equation. • The odd–even effect of solubility was found and explained. • The enthalpy, entropy and the molar Gibbs free energy of solution were predicted. - Abstract: The solubility of the homologous series of dicarboxylic acids, HOOC-(CH 2 ) n−2 -COOH (n = 2 to 10), in ethanol, acetic acid, acetone and ethyl acetate was measured at temperatures ranging from (278.15 to 323.15) K by a static analytic method at atmospheric pressure. Dicarboxylic acids with even number of carbon atoms exhibit lower values of solubility than adjacent homologues with odd carbon numbers. This odd–even effect of solubility is attributed to the twist of molecules and interlayer packing in solid state as explained in our previous work. The alternation varies in different solvents, which is believed to be associated with the properties of solvents. Finally, the dissolution enthalpy, dissolution entropy and the molar Gibbs free energy were calculated using the fitting parameters of the modified Apelblat equation. The molar Gibbs free energy also showed apparent odd–even alternation in keeping with the alternation of solubility

  5. Argon solubility in liquid steel

    NARCIS (Netherlands)

    Boom, R; Dankert, O; Van Veen, A; Kamperman, AA

    2000-01-01

    Experiments have been performed to establish the solubility of argon in liquid interstitial-free steel. The solubility appears to be lower than 0.1 at ppb, The results are in line with argon solubilities reported in the literature on liquid iron. Semiempirical theories and calculations based on the

  6. Thermodynamic phase behavior of API/polymer solid dispersions.

    Science.gov (United States)

    Prudic, Anke; Ji, Yuanhui; Sadowski, Gabriele

    2014-07-07

    To improve the bioavailability of poorly soluble active pharmaceutical ingredients (APIs), these materials are often integrated into a polymer matrix that acts as a carrier. The resulting mixture is called a solid dispersion. In this work, the phase behaviors of solid dispersions were investigated as a function of the API as well as of the type and molecular weight of the carrier polymer. Specifically, the solubility of artemisinin and indomethacin was measured in different poly(ethylene glycol)s (PEG 400, PEG 6000, and PEG 35000). The measured solubility data and the solubility of sulfonamides in poly(vinylpyrrolidone) (PVP) K10 and PEG 35000 were modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The results show that PC-SAFT predictions are in a good accordance with the experimental data, and PC-SAFT can be used to predict the whole phase diagram of an API/polymer solid dispersion as a function of the kind of API and polymer and of the polymer's molecular weight. This remarkably simplifies the screening process for suitable API/polymer combinations.

  7. The solubility of carbon dioxide in aqueous N-methyldiethanolamine solutions

    NARCIS (Netherlands)

    Huttenhuis, P. J. G.; Agrawal, N. J.; Solbraa, E.; Versteeg, G. F.

    2008-01-01

    In this study the electrolyte equation of state as proposed by Solbraa [E. Solbraa, Equilibrium and non-equilibrium thermodynamics of natural gas processing, Ph.D. thesis Norwegian University of Science and Technology, 2002] was systematically studied and improved to describe the solubility of

  8. Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation

    International Nuclear Information System (INIS)

    Tekavec, Patrick F.; Dyke, Thomas R.; Marcus, Andrew H.

    2006-01-01

    Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 deg. Our method effectively decouples the relative temporal phase from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system - atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility

  9. Coherent state approach for the Φ6-lattice model and phase transitions

    International Nuclear Information System (INIS)

    Aguero-Granados, M.A.; Makhan'kov, V.G.

    1991-01-01

    Phase transitions in the lattice version of the Φ 6 -field theory are studied. The generalized coherent states approach to is used. In such a way the roles of kinks and bubbles in phase transitions have been reexamined. It is shown via a numerical analysis that first and second order phase transitions appear due to the behaviour of kinks and bubbles excitations. 12 refs.; 10 figs

  10. [Determination of equilibrium solubility and n-octanol/water partition coefficient of pulchinenosiden D by HPLC].

    Science.gov (United States)

    Rao, Xiao-Yong; Yin, Shan; Zhang, Guo-Song; Luo, Xiao-Jian; Jian, Hui; Feng, Yu-Lin; Yang, Shi-Lin

    2014-05-01

    To determine the equilibrium solubility of pulchinenosiden D in different solvents and its n-octanol/water partition coefficients. Combining shaking flask method and high performance liquid chromatography (HPLC) to detect the n-octanol/water partition coefficients of pulchinenosiden D, the equilibrium solubility of pulchinenosiden D in six organic solvents and different pH buffer solution were determined by HPLC analysis. n-Octanol/water partition coefficients of pulchinenosiden D in different pH were greater than zero, the equilibrium solubility of pulchinenosiden D was increased with increase the pH of the buffer solution. The maximum equilibrium solubility of pulchinenosiden D was 255.89 g x L(-1) in methanol, and minimum equilibrium solubility of pulchinenosiden D was 0.20 g x L(-1) in acetonitrile. Under gastrointestinal physiological conditions, pulchinenosiden D exists in molecular state and it has good absorption but poor water-solubility, so increasing the dissolution rate of pulchinenosiden D may enhance its bioavailability.

  11. The solubility of nickel and its migration through the cementitious backfill of a geological disposal facility for nuclear waste.

    Science.gov (United States)

    Felipe-Sotelo, M; Hinchliff, J; Field, L P; Milodowski, A E; Holt, J D; Taylor, S E; Read, D

    2016-08-15

    This work describes the solubility of nickel under the alkaline conditions anticipated in the near field of a cementitious repository for intermediate level nuclear waste. The measured solubility of Ni in 95%-saturated Ca(OH)2 solution is similar to values obtained in water equilibrated with a bespoke cementitious backfill material, on the order of 5×10(-7)M. Solubility in 0.02M NaOH is one order of magnitude lower. For all solutions, the solubility limiting phase is Ni(OH)2; powder X-ray diffraction and scanning transmission electron microscopy indicate that differences in crystallinity are the likely cause of the lower solubility observed in NaOH. The presence of cellulose degradation products causes an increase in the solubility of Ni by approximately one order of magnitude. The organic compounds significantly increase the rate of Ni transport under advective conditions and show measurable diffusive transport through intact monoliths of the cementitious backfill material. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Iron in carbonate containing AFm phases

    International Nuclear Information System (INIS)

    Dilnesa, B.Z.; Lothenbach, B.; Le Saout, G.; Renaudin, G.; Mesbah, A.; Filinchuk, Y.; Wichser, A.; Wieland, E.

    2011-01-01

    One of the AFm phases in hydrated Portland cement is Ca 3 (Al x Fe 2 - x )O 6 .CaCO 3 .nH 2 O. It is based on hexagonal and platey structural elements and the interlayer structure incorporates CO 3 2- . The solid phases were experimentally synthesized and characterized by different techniques including X-ray techniques (XRD and EXAFS) and vibrational spectroscopy techniques (IR, Raman). Fe-monocarbonate (Fe-Mc) and Al-monocarbonate (Al-Mc) were found to be stable up to 50 o C, while Fe-hemicarbonate (Fe-Hc) was unstable with respect to Fe-Mc in the presence of calcite. Fe-Mc has a rhombohedral R3-barc symmetry which is different from the triclinic of the Al analogue. Both XRD and thermodynamic modelling of the liquid compositions indicated that Al-Mc and the Fe-Mc phases do not form solid solution. The solubility products were calculated experimentally at 20 o C and 50 o C. Under standards condition the solubility products and other thermodynamic parameters were estimated using temperature-solubility product extrapolation and found to be logK S0 (Fe-Mc) = -34.59 ± 0.50, logK S0 (Fe-Hc) = -30.83 ± 0.50 and logK S0 (Al-Mc) = -31.32 ± 0.50.

  13. Phase states of a 2D easy-plane ferromagnet with strong inclined anisotropy

    International Nuclear Information System (INIS)

    Fridman, Yu. A.; Klevets, F. N.; Gorelikov, G. A.; Meleshko, A. G.

    2012-01-01

    We investigate the spin states of a 2D film exhibiting easy-axis anisotropy and a strong single-ion inclined anisotropy whose axis forms a certain angle with the normal to the film surface. Such a system may have an angular ferromagnetic phase, a spatially inhomogeneous state, and a quadrupole phase, whose realization depends substantially on the inclined anisotropy and the orientation of the wavevector in the film plane.

  14. Lipid solubility of the platinum group metals Pt, Pd and Rh in dependence on the presence of complexing agents

    International Nuclear Information System (INIS)

    Zimmermann, Sonja; Menzel, Christoph M.; Stueben, Doris; Taraschewski, Horst; Sures, Bernd

    2003-01-01

    All complexing agents had a significant influence on octanol solubility of PGM. - Investigations on the bioaccumulation of the platinum group metals (PGM) Pt, Pd and Rh in aquatic organisms are of growing interest in environmental research due to the increasing emission of these metals by motor vehicles with catalytic converters. Until now, nothing is known about the possible influence of complexing agents on the bioaccumulation capacity of these precious metals. According to the partition coefficient between 1-octanol and water (P OW ) as a measure of bioaccumulation, in this study a simple shaking method was performed in order to investigate the effects of different complexing agents (L-methionine, thio urea, EDTA, humic substances, bile compounds) on the octanol solubility of the PGM. The results demonstrated a significant influence of all agents used. L-Methionine and thio urea decreased the lipid solubility. In contrast, the presence of EDTA, humic substances and especially bile caused a higher transfer of metals in the octanol phase. For most complexing agents tested, the transfer of Pd to the lipid phase was significantly higher compared with Rh and Pt, except for bile acid where the highest octanol solubility was found for Pt. Recent experimental results on PGM accumulation in zebra mussels confirm a high bioaccumulation of Pd which could be predicted from the lipid solubility

  15. Lipid solubility of the platinum group metals Pt, Pd and Rh in dependence on the presence of complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Sonja; Menzel, Christoph M.; Stueben, Doris; Taraschewski, Horst; Sures, Bernd

    2003-07-01

    All complexing agents had a significant influence on octanol solubility of PGM. - Investigations on the bioaccumulation of the platinum group metals (PGM) Pt, Pd and Rh in aquatic organisms are of growing interest in environmental research due to the increasing emission of these metals by motor vehicles with catalytic converters. Until now, nothing is known about the possible influence of complexing agents on the bioaccumulation capacity of these precious metals. According to the partition coefficient between 1-octanol and water (P{sub OW}) as a measure of bioaccumulation, in this study a simple shaking method was performed in order to investigate the effects of different complexing agents (L-methionine, thio urea, EDTA, humic substances, bile compounds) on the octanol solubility of the PGM. The results demonstrated a significant influence of all agents used. L-Methionine and thio urea decreased the lipid solubility. In contrast, the presence of EDTA, humic substances and especially bile caused a higher transfer of metals in the octanol phase. For most complexing agents tested, the transfer of Pd to the lipid phase was significantly higher compared with Rh and Pt, except for bile acid where the highest octanol solubility was found for Pt. Recent experimental results on PGM accumulation in zebra mussels confirm a high bioaccumulation of Pd which could be predicted from the lipid solubility.

  16. Environmentally friendly synthesis of organic-soluble silver nanoparticles for printed electronics

    International Nuclear Information System (INIS)

    Lee, Kwi Jong; Jun, Byung Ho; Choi, Junrak; Lee, Young Il; Joung, Jaewoo; Oh, Yong Soo

    2007-01-01

    In this study, we attempted to synthesize organic-soluble silver nanoparticles in the concentrated organic phase with an environmentally friendly method. The fully organic phase system contains silver acetate as a silver precursor, oleic acid as both a medium and a capping molecule, and tin acetate as a reducing agent. Monodisperse silver nanoparticles with average diameters of ca. 5 nm can be easily synthesized at large scale. Only a small usage of tin acetate ( 90%). Also, it was investigated that the residual tin atom does not exist in the synthesized silver nanoparticles. This implied that tin acetate acts as a reducing catalyst

  17. Hydroxylamine hydrochloride-acetic acid-soluble and -insoluble fractions of pelagic sediment: Readsorption revisited

    Science.gov (United States)

    Piper, D.Z.; Wandless, G.A.

    1992-01-01

    The extraction of the rare earth elements (REE) from deep-ocean pelagic sediment, using hydroxylamine hydrochloride-acetic acid, leads to the separation of approximately 70% of the bulk REE content into the soluble fraction and 30% into the insoluble fraction. The REE pattern of the soluble fraction, i.e., the content of REE normalized to average shale on an element-by-element basis and plotted against atomic number, resembles the pattern for seawater, whereas the pattern, as well as the absolute concentrations, in the insoluble fraction resembles the North American shale composite. These results preclude significant readsorption of the REE by the insoluble phases during the leaching procedure.

  18. Measurement of the quantum superposition state of an imaging ensemble of photons prepared in orbital angular momentum states using a phase-diversity method

    International Nuclear Information System (INIS)

    Uribe-Patarroyo, Nestor; Alvarez-Herrero, Alberto; Belenguer, Tomas

    2010-01-01

    We propose the use of a phase-diversity technique to estimate the orbital angular momentum (OAM) superposition state of an ensemble of photons that passes through an optical system, proceeding from an extended object. The phase-diversity technique permits the estimation of the optical transfer function (OTF) of an imaging optical system. As the OTF is derived directly from the wave-front characteristics of the observed light, we redefine the phase-diversity technique in terms of a superposition of OAM states. We test this new technique experimentally and find coherent results among different tests, which gives us confidence in the estimation of the photon ensemble state. We find that this technique not only allows us to estimate the square of the amplitude of each OAM state, but also the relative phases among all states, thus providing complete information about the quantum state of the photons. This technique could be used to measure the OAM spectrum of extended objects in astronomy or in an optical communication scheme using OAM states. In this sense, the use of extended images could lead to new techniques in which the communication is further multiplexed along the field.

  19. Ceramic membrane ozonator for soluble organics removal from produced water

    Science.gov (United States)

    Siagian, U. W. R.; Dwipramana, A. S.; Perwira, S. B.; Khoiruddin; Wenten, I. G.

    2018-01-01

    In this work, the performance of ozonation for degradation of soluble organic compounds in produced water was investigated. Tubular ceramic membrane diffuser (with and without a static mixer in the lumen side) was used to facilitate contact between ozone and produced water. The ozonation was conducted at ozone flow rate of 8 L.min-1, ozone concentration of 0.4 ppm, original pH of the solution, and pressure of 1.2 bar, while the flow rates of the produced water were varied (192, 378 and 830 mL.min-1). It was found that the reduction of benzene, toluene, ethylbenzene, and xylene were 85%, 99%, 85%, and 95%, respectively. A lower liquid flow rate in a laminar state showed a better component reduction due to the longer contacting time between the liquid and the gas phase. The introduction of the static mixer in the lumen side of the membrane as a turbulence promoter provided a positive effect on the performance of the membrane diffuser. The twisted static mixer exhibited the better removal rate than the spiral static mixer.

  20. Solubility enhancement of BCS Class II drug by solid phospholipid dispersions: Spray drying versus freeze-drying.

    Science.gov (United States)

    Fong, Sophia Yui Kau; Ibisogly, Asiye; Bauer-Brandl, Annette

    2015-12-30

    The poor aqueous solubility of BCS Class II drugs represents a major challenge for oral dosage form development. Using celecoxib (CXB) as model drug, the current study adopted a novel solid phospholipid nanoparticle (SPLN) approach and compared the effect of two commonly used industrial manufacturing methods, spray- and freeze-drying, on the solubility and dissolution enhancement of CXB. CXB was formulated with Phospholipoid E80 (PL) and trehalose at different CXB:PL:trehalose ratios, of which 1:10:16 was the optimal formulation. Spherical amorphous SPLNs with average diameters <1μm were produced by spray-drying; while amorphous 'matrix'-like structures of solid PL dispersion with larger particle sizes were prepared by freeze-drying. Formulations from both methods significantly enhanced the dissolution rates, apparent solubility, and molecularly dissolved concentration of CXB in phosphate buffer (PBS, pH 6.5) and in biorelevant fasted state simulated intestinal fluid (FaSSIF, pH 6.5) (p<0.05). While similar dissolution rates were found, the spray-dried SPLNs had a larger enhancement in apparent solubility (29- to 132-fold) as well as molecular solubility (18-fold) of CXB at equilibrium (p<0.05). The strong capability of the spray-dried SPLNs to attain 'true' supersaturation state makes them a promising approach for bioavailability enhancement of poorly soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The phase transition to an inhomogeneous condensate state

    International Nuclear Information System (INIS)

    Voskresensky, D.N.

    1984-01-01

    The Lagrangian (free energy) of the model with a complex scalar order parameter in which the phase transition to an inhomogeneous condensate state exists is constructed in the coordinate representation. In the case of condensation of charged particles (for example paired electrons) interaction with the electromagnetic field is included. The excitation spectrum in the presence of the condensate is found. The oscillations are strongly anisotropic. It is shown that superfluidity is absent for an uncharged system but that the charged one has the property of superconductivity. The important role of thermal fluctuations is demonstrated. They drastically change the behaviour of the condensate system. The condensation in a finite system is considered. A study is carried out for the behaviour of an inhomogeneous condensate in magnetic field. It is shown that the inhomogeneous condensate is a type II superconductor with Ginzburg-Landau parameter kappa >> 1, but that the structure of the mixed state of the system is unusual - consisting of plane layers of the normal phase, when Hsub(c1)< H< H'sub(c2). The distribution of condensate in the strong magnetic field H'sub(c2)< H< Hsub(c2) is also studied. (Auth.)

  2. Students’ misconceptions on solubility equilibrium

    Science.gov (United States)

    Setiowati, H.; Utomo, S. B.; Ashadi

    2018-05-01

    This study investigated the students’ misconceptions of the solubility equilibrium. The participants of the study consisted of 164 students who were in the science class of second year high school. Instrument used is two-tier diagnostic test consisting of 15 items. Responses were marked and coded into four categories: understanding, misconception, understand little without misconception, and not understanding. Semi-structured interviews were carried out with 45 students according to their written responses which reflected different perspectives, to obtain a more elaborated source of data. Data collected from multiple methods were analyzed qualitatively and quantitatively. Based on the data analysis showed that the students misconceptions in all areas in solubility equilibrium. They had more misconceptions such as in the relation of solubility and solubility product, common-ion effect and pH in solubility, and precipitation concept.

  3. Heterometallic molecular precursors for a lithium-iron oxide material: synthesis, solid state structure, solution and gas-phase behaviour, and thermal decomposition.

    Science.gov (United States)

    Han, Haixiang; Wei, Zheng; Barry, Matthew C; Filatov, Alexander S; Dikarev, Evgeny V

    2017-05-02

    Three heterometallic single-source precursors with a Li : Fe = 1 : 1 ratio for a LiFeO 2 oxide material are reported. Heterometallic compounds LiFeL 3 (L = tbaoac (1), ptac (2), and acac(3)) have been obtained on a large scale, in nearly quantitative yields by one-step reactions that employ readily available reagents. The heterometallic precursor LiFe(acac) 3 (3) with small, symmetric substituents on the ligand (acac = pentane-2,4-dionate), maintains a 1D polymeric structure in the solid state that limits its volatility and prevents solubility in non-coordinating solvents. The application of the unsymmetrical ligands, tbaoac (tert-butyl acetoacetate) and ptac (1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedionate), that exhibit different bridging properties at the two ends of the ligand, allowed us to change the connectivity pattern within the heterometallic assembly. The latter was demonstrated by structural characterization of heterometallic complexes LiFe(tbaoac) 3 (1) and LiFe(ptac) 3 (2) that consist of discrete heterocyclic tetranuclear molecules Li 2 Fe 2 L 6 . The compounds are highly volatile and exhibit a congruent sublimation character. DART mass spectrometric investigation revealed the presence of heterometallic molecules in the gas phase. The positive mode spectra are dominated by the presence of [M - L] + peaks (M = Li 2 Fe 2 L 6 ). In accord with their discrete molecular structure, complexes 1 and 2 are highly soluble in nearly all common solvents. In order to test the retention of the heterometallic structure in solution, the diamagnetic analog of 1, LiMg(tbaoac) 3 (4), has been isolated. Its tetranuclear molecular structure was found to be isomorphous to that of the iron counterpart. 1 H and 7 Li NMR spectroscopy unambiguously confirmed the presence of heterometallic molecules in solutions of non-coordinating solvents. The heterometallic precursor 1 was shown to exhibit clean thermal decomposition in air that results in phase-pure

  4. Cluster Mean-Field Approach to the Steady-State Phase Diagram of Dissipative Spin Systems

    Directory of Open Access Journals (Sweden)

    Jiasen Jin

    2016-07-01

    Full Text Available We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical origin, and is established only at very long times, whereas in thermodynamic equilibrium it arises from the properties of the (free energy. To this end, by combining the cluster methods extensively used in equilibrium phase transitions to quantum trajectories and tensor-network techniques, we extend them to nonequilibrium phase transitions in dissipative many-body systems. We analyze in detail a model of spin-1/2 on a lattice interacting through an XYZ Hamiltonian, each of them coupled to an independent environment that induces incoherent spin flips. In the steady-state phase diagram derived from our cluster approach, the location of the phase boundaries and even its topology radically change, introducing reentrance of the paramagnetic phase as compared to the single-site mean field where correlations are neglected. Furthermore, a stability analysis of the cluster mean field indicates a susceptibility towards a possible incommensurate ordering, not present if short-range correlations are ignored.

  5. Reconstruction of photon number conditioned states using phase randomized homodyne measurements

    International Nuclear Information System (INIS)

    Chrzanowski, H M; Assad, S M; Bernu, J; Hage, B; Lam, P K; Symul, T; Lund, A P; Ralph, T C

    2013-01-01

    We experimentally demonstrate the reconstruction of a photon number conditioned state without using a photon number discriminating detector. By using only phase randomized homodyne measurements, we reconstruct up to the three photon subtracted squeezed vacuum state. The reconstructed Wigner functions of these states show regions of pronounced negativity, signifying the non-classical nature of the reconstructed states. The techniques presented allow for complete characterization of the role of a conditional measurement on an ensemble of states, and might prove useful in systems where photon counting still proves technically challenging. (paper)

  6. Separation of three water-soluble vitamins by poly(dimethylsiloxane) microchannel electrophoresis with electrochemical detection.

    Science.gov (United States)

    Li, Xiang-Yun; Zhang, Qian-Li; Lian, Hong-Zhen; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A method for rapid separation and sensitive determination of three water-soluble vitamins, pyridoxine, ascorbic acid (VC), and p-aminobenzoic acid (PABA) has been developed by PDMS microchannel electrophoresis integrated with amperometric detection. After treatment of the microchip with oxygen plasma, the peak shapes of the three analytes were essentially improved. Pyridoxine, VC, and PABA were well separated within only 80 s in a running buffer of 20 mM borate solution (pH 8.5). Good linearity was obtained within the concentration range of 2-200 microM for the three water-soluble vitamins. The detection limits were 1.0 microM for pyridoxine and VC, and 1.5 microM for PABA. The proposed method has been successfully applied to real human urine sample, without solid phase extraction, with recoveries of 80-122% for the three water-soluble vitamins.

  7. Modeling and Analysis of a Three-Phase Solid-State Var ...

    African Journals Online (AJOL)

    Modeling and Analysis of a Three-Phase Solid-State Var Compensator (SSVC) ... Nigerian Journal of Technology. Journal Home ... The problems associated with the flow of reactive power in transmission and distribution lines are well known.

  8. Detecting critical state before phase transition of complex biological systems by hidden Markov model.

    Science.gov (United States)

    Chen, Pei; Liu, Rui; Li, Yongjun; Chen, Luonan

    2016-07-15

    Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e. before-transition state, pre-transition state and after-transition state, which can be considered as three different Markov processes. By exploring the rich dynamical information provided by high-throughput data, we present a novel computational method, i.e. hidden Markov model (HMM) based approach, to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e. the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin and HCV-induced dysplasia and hepatocellular carcinoma. Both functional and pathway enrichment analyses validate the computational results. The source code and some supporting files are available at https://github.com/rabbitpei/HMM_based-method lnchen@sibs.ac.cn or liyj@scut.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Optimizing solubility and permeability of a biopharmaceutics classification system (BCS) class 4 antibiotic drug using lipophilic fragments disturbing the crystal lattice.

    Science.gov (United States)

    Tehler, Ulrika; Fagerberg, Jonas H; Svensson, Richard; Larhed, Mats; Artursson, Per; Bergström, Christel A S

    2013-03-28

    Esterification was used to simultaneously increase solubility and permeability of ciprofloxacin, a biopharmaceutics classification system (BCS) class 4 drug (low solubility/low permeability) with solid-state limited solubility. Molecular flexibility was increased to disturb the crystal lattice, lower the melting point, and thereby improve the solubility, whereas lipophilicity was increased to enhance the intestinal permeability. These structural changes resulted in BCS class 1 analogues (high solubility/high permeability) emphasizing that simple medicinal chemistry may improve both these properties.

  10. Simultaneous quantification of 21 water soluble vitamin circulating forms in human plasma by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Meisser Redeuil, Karine; Longet, Karin; Bénet, Sylvie; Munari, Caroline; Campos-Giménez, Esther

    2015-11-27

    This manuscript reports a validated analytical approach for the quantification of 21 water soluble vitamins and their main circulating forms in human plasma. Isotope dilution-based sample preparation consisted of protein precipitation using acidic methanol enriched with stable isotope labelled internal standards. Separation was achieved by reversed-phase liquid chromatography and detection performed by tandem mass spectrometry in positive electrospray ionization mode. Instrumental lower limits of detection and quantification reached water soluble vitamins in human plasma single donor samples. The present report provides a sensitive and reliable approach for the quantification of water soluble vitamins and main circulating forms in human plasma. In the future, the application of this analytical approach will give more confidence to provide a comprehensive assessment of water soluble vitamins nutritional status and bioavailability studies in humans. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Simulated rat intestinal fluid improves oral exposure prediction for poorly soluble compounds over a wide dose range

    Directory of Open Access Journals (Sweden)

    Joerg Berghausen

    2016-03-01

    Full Text Available Solubility can be the absorption limiting factor for drug candidates and is therefore a very important input parameter for oral exposure prediction of compounds with limited solubility. Biorelevant media of the fasted and fed state have been published for humans, as well as for dogs in the fasted state. In a drug discovery environment, rodents are the most common animal model to assess the oral exposure of drug candidates. In this study a rat simulated intestinal fluid (rSIF is proposed as a more physiologically relevant media to describe drug solubility in rats. Equilibrium solubility in this medium was tested as input parameter for physiologically-based pharmacokinetics (PBPK simulations of oral pharmacokinetics in the rat. Simulations were compared to those obtained using other solubility values as input parameters, like buffer at pH 6.8, human simulated intestinal fluid and a comprehensive dissolution assay based on rSIF. Our study on nine different compounds demonstrates that the incorporation of rSIF equilibrium solubility values into PBPK models of oral drug exposure can significantly improve the reliability of simulations in rats for doses up to 300 mg/kg compared to other media. The comprehensive dissolution assay may help to improve further simulation outcome, but the greater experimental effort as compared to equilibrium solubility may limit its use in a drug discovery environment. Overall, PBPK simulations based on solubility in the proposed rSIF medium can improve prioritizing compounds in drug discovery as well as planning dose escalation studies, e.g. during toxicological investigations.

  12. Solubility and dissolution kinetics study of uranium phosphates and vanadates: implications for the front end of the electronuclear cycle

    International Nuclear Information System (INIS)

    Cretaz, F.

    2013-01-01

    In the current context of restart of the nuclear energy, the needs in uranium are expected to increase significantly. Moreover, in a perspective of sustainable development, the exploitation, the treatment and the purification of uranium ores need to be optimized. It is thus necessary to determine reliable thermodynamic data (and especially solubility constants) for the systems of interest, especially uranium(VI) phosphates and vanadates. In this aim, a multi parametric study of the dissolution of meta-torbernite Cu 0.8 (H 3 O) 0.2 (UO 2 ) 2 (PO 4 ) 2.8 H 2 O, meta-autunite Ca(UO 2 ) 2 (PO 4 ) 2.6 H 2 O, meta-ankoleite K 2 (UO 2 ) 2 (PO 4 ) 2.6 H 2 O and carnotite K 2 (UO 2 ) 2 (VO 4 ) 2.3 H 2 O was undertaken. First, analogues of these four minerals were synthesized, based only on dry chemistry process for carnotite or on wet chemistry methods for the phosphate phases. They were then extensively characterized (in terms of structure, microstructure and chemical composition). It particularly highlighted the similar structures of such compounds. The anionic groups (PO 4 3- or V 2 O 8 6- ) and uranyl form parallel layers between which counter cations (Cu 2+ , Ca 2+ or K + ) and water molecules are inserted. However, the counter cations present in the interlayer space of the three phosphate phases present different lability. The synthetic phases were also compared to their natural analogues, except for meta-ankoleite, which allowed us to point out significant differences in the composition (presence of impurities in natural samples) and the morphology (grain size). The dissolution of these phases was then studied from a kinetic and thermodynamic point of view, through leaching tests in static and dynamic conditions, in various acid media (sulfuric, nitric and hydrochloric) and at different temperatures. In these conditions, the dissolution of meta-autunite was found to be un-congruent due to the precipitation of uranyl phosphate then avoiding the determination of

  13. Improved state observers for sensorless single phase BLDC-PM motor drives

    DEFF Research Database (Denmark)

    Lepure, Liviu L.; Boldea, Ion; Andreescu, Gheorghe Daniel

    2010-01-01

    Two methods of extracting the rotor position and speed for a sensorless single phase BLDC-PM motor drive by measuring only the phase current are presented here. Both methods are based on a generated orthogonal flux system. The first method extracts the position information by using the tan−1...... function and then an improved observer is created by adding a 4th order harmonic term in the estimated position, while the second method uses a phase locked loop structure. The proposed state observers are detailed using simulation results and then validated by experimental results....

  14. Yu-Shiba-Rusinov states in phase-biased superconductor-quantum dot-superconductor junctions

    DEFF Research Database (Denmark)

    Kirsanskas, Gediminas; Goldstein, Moshe; Flensberg, Karsten

    2015-01-01

    supercurrent, and the differential conductance as measured by a normal-metal tunnel probe. In absence of a phase difference only one linear combination of the superconductor lead electrons couples to the spin, which gives a single YSR state. With finite phase difference, however, it is effectively a two...

  15. Phase fields of nickel silicides obtained by mechanical alloying in the nanocrystalline state

    Science.gov (United States)

    Datta, M. K.; Pabi, S. K.; Murty, B. S.

    2000-06-01

    Solid state reactions induced by mechanical alloying (MA) of elemental blends of Ni and Si have been studied over the entire composition range of the Ni-Si system. A monotonous increase of the lattice parameter of the Ni rich solid solution, Ni(Si), is observed with refinement of crystallite size. Nanocrystalline phase/phase mixtures of Ni(Si), Ni(Si)+Ni31Si12, Ni31Si12+Ni2Si, Ni2Si+NiSi and NiSi+Si, have been obtained during MA, over the composition ranges of 0-10, 10-28, 28-33, 33-50, and >50 at. % Si, respectively. The results clearly suggest that only congruent melting phases, Ni31Si12, Ni2Si, and NiSi form, while the formation of noncongruent melting phases, Ni3Si, Ni3Si2, and NiSi2, is bypassed in the nanocrystalline state. The phase formation during MA has been discussed based on thermodynamic arguments. The predicted phase fields obtained from effective free energy calculations are quite consistent with those obtained during MA.

  16. The coherent state variational algorithm and the QCD deconfinement phase transition

    International Nuclear Information System (INIS)

    Somsky, W.R.

    1989-01-01

    This thesis describes the coherent state variational algorithm, its implementation in a recently completed set of computer programs, and its application to the study of the QCD deconfinement phase transition. The coherent state variational algorithm is a computational method for studying the large-N limit of non-abelian gauge theories by direct exploitation of the classical nature of this limit. Unlike Monte Carlo methods, this technique is applicable to both euclidean and hamiltonian formulations of lattice gauge theories and is deterministic, rather than statistical, in nature. The first part of this thesis presents the theoretical basis of the coherent state algorithm and describes the application of the algorithm, to non-abelian lattice gauge theories. The second part describes the symbolic methods involved in the computer implementation of the coherent state algorithm and gives an overview of the programs which form the full coherent state implementation. The final part of this thesis discusses the application of the coherent state algorithm to the study of the QCD deconfinement phase transition at large N. The results obtained are indicative of a second-order transition for lattices of temporal extent N ν = 1 and N τ = 2 in both three and four space-time dimensions

  17. Extended random-phase approximation with three-body ground-state correlations

    International Nuclear Information System (INIS)

    Tohyama, M.; Schuck, P.

    2008-01-01

    An extended random-phase approximation (ERPA) which contains the effects of ground-state correlations up to a three-body level is applied to an extended Lipkin model which contains an additional particle-scattering term. Three-body correlations in the ground state are necessary to preserve the hermiticity of the Hamiltonian matrix of ERPA. Two approximate forms of ERPA which neglect the three-body correlations are also applied to investigate the importance of three-body correlations. It is found that the ground-state energy is little affected by the inclusion of the three-body correlations. On the contrary, three-body correlations for the excited states can become quite important. (orig.)

  18. Radiation heredity: unusual structural-phase states and metallic crystals properties

    International Nuclear Information System (INIS)

    Melikhov, V.D.; Skakov, M.K.

    1998-01-01

    Some experimental results allowing to judge about possibilities of unusual structural phase states formation during use irradiation and high temperature treatment of metallic crystals are considered. During study of pure (99.99 %) and especially pure (99.999 %) aluminium it was established, that after heating of preliminary irradiated samples in reactor, and non-irradiated ones up to temperatures above melting point (660 deg C), but not higher than 820 deg C, and cooling an microstructure and substructure of both irradiated and non-irradiated metals have been essentially distinguished with each other. If first of them had typically polycrystal construction, that second one was monocrystal with good developed initial substructure. Radiation effects have been preserved even in liquid metal if it was not overheated higher critical point, which is determined by phase transition from quasi-liquid state to true liquid one. During study of irradiation and postradiation treatment of structure and properties of intermetallides Fe 3 Al it was revealed, that in initially irradiated regulated alloys the radiation effect is preserving at heating of above 0.85 T melt (that essentially exceed order-disorder transition temperature) (550 deg C) in non-irradiated alloys of prolonged exposure and hardening. At that, irradiated-hardened alloy distinguishing from not hardened one by lattice parameter (on 0.1 %), by configuration of nearest surrounding of iron atoms in elementary cell, by regulating extent of different kind of atoms in lattice knocks. It was revealed, that at fluence (5·10 24 n·m 2 ) an appearance of new phases, distinguishing from matrix by component content. It was shown, that irradiation and post-radiation treatment are methods for creation unusual structural-phase states and attach to metals and alloys new properties

  19. The Solubility Parameters of Ionic Liquids

    Science.gov (United States)

    Marciniak, Andrzej

    2010-01-01

    The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated. PMID:20559495

  20. The Solubility Parameters of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Andrzej Marciniak

    2010-04-01

    Full Text Available The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated.

  1. Solubility of sparingly soluble drug derivatives of anthranilic acid.

    Science.gov (United States)

    Domańska, Urszula; Pobudkowska, Aneta; Pelczarska, Aleksandra

    2011-03-24

    This work is a continuation of our systematic study of the solubility of pharmaceuticals (Pharms). All substances here are derivatives of anthranilic acid, and have an anti-inflammatory direction of action (niflumic acid, flufenamic acid, and diclofenac sodium). The basic thermal properties of pure Pharms, i.e., melting and glass-transition temperatures as well as the enthalpy of melting, have been measured with the differential scanning microcalorimetry technique (DSC). Molar volumes have been calculated with the Barton group contribution method. The equilibrium mole fraction solubilities of three pharmaceuticals were measured in a range of temperatures from 285 to 355 K in three important solvents for Pharm investigations: water, ethanol, and 1-octanol using a dynamic method and spectroscopic UV-vis method. The experimental solubility data have been correlated by means of the commonly known G(E) equation: the NRTL, with the assumption that the systems studied here have revealed simple eutectic mixtures. pK(a) precise measurement values have been investigated with the Bates-Schwarzenbach spectrophotometric method. © 2011 American Chemical Society

  2. Influence of hydrogen on the oxygen solubility in Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Guilbert-Banti, Séverine, E-mail: severine.guilbert@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, SEREX/LE2M, Bâtiment 327, BP3, 13115 Saint Paul lez Durance (France); Lacote, Pauline; Taraud, Gaëlle [Institut de Radioprotection et de Sûreté Nucléaire, SEREX/LE2M, Bâtiment 327, BP3, 13115 Saint Paul lez Durance (France); Berger, Pascal [NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette (France); Desquines, Jean; Duriez, Christian [Institut de Radioprotection et de Sûreté Nucléaire, SEREX/LE2M, Bâtiment 327, BP3, 13115 Saint Paul lez Durance (France)

    2016-02-15

    Despite the influence of hydrogen on the behavior of zirconium fuel cladding in many nuclear safety issues, the pseudo-binary Zircaloy-4 – oxygen phase diagram still lacks of data, especially above 1000 °C. The aim of this study was to provide experimental data to better assess the influence of hydrogen on the oxygen solubility in Zircaloy-4. Homogenized two-phase Zircaloy-4 samples were elaborated from 300 to 1000 wppm pre-hydrided samples. Local distributions were characterized thoroughly using Electron Probe Micro-Analysis (EPMA) for oxygen and Elastic Recoil Detection Analysis (ERDA) for hydrogen. The data obtained in this work were included in the pseudo-binary Zircaloy-4 – oxygen phase diagram and have shown that hydrogen has limited influence on the α + β → β transus. Regarding the α → α + β transus, no influence of hydrogen concentration in the α phase below 400 wppm was evidenced.

  3. Prediction of the solubility in lipidic solvent mixture: Investigation of the modeling approach and thermodynamic analysis of solubility.

    Science.gov (United States)

    Patel, Shruti V; Patel, Sarsvatkumar

    2015-09-18

    Self-micro emulsifying drug delivery system (SMEDDS) is one of the methods to improve solubility and bioavailability of poorly soluble drug(s). The knowledge of the solubility of pharmaceuticals in pure lipidic solvents and solvent mixtures is crucial for designing the SMEDDS of poorly soluble drug substances. Since, experiments are very time consuming, a model, which allows for solubility predictions in solvent mixtures based on less experimental data is desirable for efficiency. Solvents employed were Labrafil® M1944CS and Labrasol® as lipidic solvents; Capryol-90®, Capryol-PGMC® and Tween®-80 as surfactants; Transcutol® and PEG-400 as co-solvents. Solubilities of both drugs were determined in single solvent systems at temperature (T) range of 283-333K. In present study, we investigated the applicability of the thermodynamic model to understand the solubility behavior of drugs in the lipiodic solvents. By using the Van't Hoff and general solubility theory, the thermodynamic functions like Gibbs free energy, enthalpy and entropy of solution, mixing and solvation for drug in single and mixed solvents were understood. The thermodynamic parameters were understood in the framework of drug-solvent interaction based on their chemical similarity and dissimilarity. Clotrimazole and Fluconazole were used as active ingredients whose solubility was measured in single solvent as a function of temperature and the data obtained were used to derive mathematical models which can predict solubility in multi-component solvent mixtures. Model dependent parameters for each drug were calculated at each temperature. The experimental solubility data of solute in mixed solvent system were measured experimentally and further correlated with the calculates values obtained from exponent model and log-linear model of Yalkowsky. The good correlation was observed between experimental solubility and predicted solubility. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Reactivity balance for a soluble boron-free small modular reactor

    Directory of Open Access Journals (Sweden)

    Lezani van der Merwe

    2018-06-01

    Full Text Available Elimination of soluble boron from reactor design eliminates boron-induced reactivity accidents and leads to a more negative moderator temperature coefficient. However, a large negative moderator temperature coefficient can lead to large reactivity feedback that could allow the reactor to return to power when it cools down from hot full power to cold zero power. In soluble boron-free small modular reactor (SMR design, only control rods are available to control such rapid core transient.The purpose of this study is to investigate whether an SMR would have enough control rod worth to compensate for large reactivity feedback. The investigation begins with classification of reactivity and completes an analysis of the reactivity balance in each reactor state for the SMR model.The control rod worth requirement obtained from the reactivity balance is a minimum control rod worth to maintain the reactor critical during the whole cycle. The minimum available rod worth must be larger than the control rod worth requirement to manipulate the reactor safely in each reactor state. It is found that the SMR does have enough control rod worth available during rapid transient to maintain the SMR at subcritical below k-effectives of 0.99 for both hot zero power and cold zero power. Keywords: Control Rod Worth, Reactivity Balance, Reactivity Feedback, Small Modular Reactor, Soluble Boron Free

  5. Solubility of xenon in liquid sodium

    International Nuclear Information System (INIS)

    Veleckis, E.; Cafasso, F.A.; Feder, H.M.

    1976-01-01

    The solubility of xenon in liquid sodium was measured as a function of pressure (2-8 atm) and temperature (350-600 0 C). Henry's law was obeyed with the value of the Henry's law constant, K/sub H/ = N/sub Xe//P, ranging from 1.38 x 10 -10 atm -1 at 350C, to 1.59 x 10 -8 atm -1 at 600 0 C where N/sub Xe/ and P are the atom fraction and the partial pressure of xenon, respectively. The temperature dependence of solubility may be represented by log 10 lambda = (0.663 +- 0.01) - (4500 +- 73) T -1 , where lambda is the Ostwald coefficient (the volume of xenon dissolved per unit volume of sodium at the temperature of the experiment). The heat of solution of xenon in sodium was 20.6 +- 0.7 kcal/mole, where the standard state of xenon is defined as that of 1 mole of an ideal gas, confined to a volume equal to the molar volume of sodium

  6. In meso in situ serial X-ray crystallography of soluble and membrane proteins

    International Nuclear Information System (INIS)

    Huang, Chia-Ying; Olieric, Vincent; Ma, Pikyee; Panepucci, Ezequiel; Diederichs, Kay; Wang, Meitian; Caffrey, Martin

    2015-01-01

    A method for performing high-throughput in situ serial X-ray crystallography with soluble and membrane proteins in the lipid cubic phase is described. It works with microgram quantities of protein and lipid (and ligand when present) and is compatible with the most demanding sulfur SAD phasing. The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins, including the β 2 -adrenoreceptor–G s protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at macromolecular

  7. Performance of Electropun Polyacrylonitrile Nanofibrous Phases, Shown for the Separation of Water-Soluble Food Dyes via UTLC-Vis-ESI-MS

    Directory of Open Access Journals (Sweden)

    Pimolpun Niamlang

    2017-08-01

    Full Text Available Research in the miniaturization of planar chromatography led to various approaches in manufacturing ultrathin-layer chromatography (UTLC layers of reduced thickness (<50 µm along with smaller instrumentation, as targeted in Office Chromatography. This novel concept merges 3D print & media technologies with miniaturized planar chromatography to realize an all-in-one instrument, in which all steps of UTLC are automated and integrated in the same tiny device. In this context, the development of electrospun polyacrylonitrile (PAN nanofiber phases was investigated as well as its performance. A nanofibrous stationary phase with fiber diameters of 150–225 nm and a thickness of ca. 25 µm was manufactured. Mixtures of water-soluble food dyes were printed on it using a modified office printer, and successfully separated to illustrate the capabilities of such UTLC media. The separation took 8 min for 30 mm and was faster (up to a factor of 2 than on particulate layers. The mean hRF values ranging from 25 to 90 for the five food dyes were well spread over the migration distance, with an overall reproducibility of 7% (mean %RSD over 5 different plates for 5 dyes. The individual mean plate numbers over 5 plates ranged between 8286 and 22,885 (mean of 11,722 over all 5 dyes. The single mean resolutions RS were between 1.7 and 6.5 (for the 5 food dyes over 5 plates, with highly satisfying reproducibilities (0.3 as mean deviation of RS. Using videodensitometry, different amounts separated in parallel led to reliable linear calibrations for each dye (sdv of 3.1–9.1% for peak heights and 2.4–9.3% for peak areas. Coupling to mass spectrometry via an elution head-based interface was successfully demonstrated for such ultrathin layers, showing several advantages such as a reduced cleaning process and a minimum zone distance. All these results underline the potential of electrospun nanofibrous phases to succeed as affordable stationary phase for quantitative

  8. Solubility of Carbon in Nanocrystalline -Iron

    OpenAIRE

    Alexander Kirchner; Bernd Kieback

    2012-01-01

    A thermodynamic model for nanocrystalline interstitial alloys is presented. The equilibrium solid solubility of carbon in -iron is calculated for given grain size. Inside the strained nanograins local variation of the carbon content is predicted. Due to the nonlinear relation between strain and solubility, the averaged solubility in the grain interior increases with decreasing grain size. The majority of the global solubility enhancement is due to grain boundary enrichment however. Therefor...

  9. Enhancing multi-step quantum state tomography by PhaseLift

    Science.gov (United States)

    Lu, Yiping; Zhao, Qing

    2017-09-01

    Multi-photon system has been studied by many groups, however the biggest challenge faced is the number of copies of an unknown state are limited and far from detecting quantum entanglement. The difficulty to prepare copies of the state is even more serious for the quantum state tomography. One possible way to solve this problem is to use adaptive quantum state tomography, which means to get a preliminary density matrix in the first step and revise it in the second step. In order to improve the performance of adaptive quantum state tomography, we develop a new distribution scheme of samples and extend it to three steps, that is to correct it once again based on the density matrix obtained in the traditional adaptive quantum state tomography. Our numerical results show that the mean square error of the reconstructed density matrix by our new method is improved to the level from 10-4 to 10-9 for several tested states. In addition, PhaseLift is also applied to reduce the required storage space of measurement operator.

  10. Solubility and partitioning of hydrogen in meta-stable ZR-based alloys used in the nuclear industry

    International Nuclear Information System (INIS)

    Khatamian, D.

    1998-11-01

    Terminal solubility and partitioning of hydrogen in Zr-Nb alloys with different Nb concentrations were examined using differential scanning calorimetry and hot vacuum extraction mass spectrometry. Specimens were charged to different concentrations of hydrogen and annealed at 1123 K to generate a two-phase structure consisting of α-Zr (Zr-0.6 wt.% Nb) and meta-stable β-Zr (Zr-20 wt.% Nb) within the alloy. Specimens were aged at 673 and 773 K for up to 1000 h to evaluate the effect of the decomposition of the meta-stable β-Zr to α-Zr + β-Nb on the solubility limit. The results show that the solubility limit for hydrogen in the annealed Zr-Nb alloys is higher than in unalloyed Zr and that the solubility limit increases with the Nb concentration of the alloy. They also show that the hydrogen solubility limits of the completely aged Zr-Nb alloys are similar and approach the values for pure α-Zr. The solubility ratio of hydrogen in β-Zr (Zr-20 wt.% Nb) to that in α-Zr (Zr-0.6 wt.% Nb) was found to range from 9 to 7 within the temperature range of 520 to 580 K. (author)

  11. Intrinsic solubility estimation and pH-solubility behavior of cosalane (NSC 658586), an extremely hydrophobic diprotic acid.

    Science.gov (United States)

    Venkatesh, S; Li, J; Xu, Y; Vishnuvajjala, R; Anderson, B D

    1996-10-01

    The selection of cosalane (NSC 658586) by the National Cancer Institute for further development as a potential drug candidate for the treatment of AIDS led to the exploration of the solubility behavior of this extremely hydrophobic drug, which has an intrinsic solubility (S0 approaching 1 ng/ml. This study describes attempts to reliably measure the intrinsic solubility of cosalane and examine its pH-solubility behavior. S0 was estimated by 5 different strategies: (a) direct determination in an aqueous suspension: (b) facilitated dissolution; (c) estimation from the octanol/water partition coefficient and octanol solubility (d) application of an empirical equation based on melting point and partition coefficient; and (e) estimation from the hydrocarbon solubility and functional group contributions for transfer from hydrocarbon to water. S0 estimates using these five methods varied over a 5 x 107-fold range Method (a) yielded the highest values, two-orders of magnitude greater than those obtained by method (b) (facilitated dissolution. 1.4 +/- 0.5 ng/ml). Method (c) gave a value 20-fold higher while that from method (d) was in fair agreement with that from facilitated dissolution. Method (e) yielded a value several orders-of-magnitude lower than other methods. A molecular dynamics simulation suggests that folded conformations not accounted for by group contributions may reduce cosalane's effective hydrophobicity. Ionic equilibria calculations for this weak diprotic acid suggested a 100-fold increase in solubility per pH unit increase. The pH-solubility profile of cosalane at 25 degrees C agreed closely with theory. These studies highlight the difficulty in determining solubility of very poorly soluble compounds and the possible advantage of the facilitated dissolution method. The diprotic nature of cosalane enabled a solubility enhancement of > 107-fold by simple pH adjustment.

  12. Development of a solid self-microemulsifying drug delivery system (SMEDDS) for solubility enhancement of naproxen.

    Science.gov (United States)

    Čerpnjak, Katja; Zvonar, Alenka; Vrečer, Franc; Gašperlin, Mirjana

    2015-01-01

    Comparative evaluation of liquid and solid self-microemulsifying drug delivery systems (SMEDDS) as promising approaches for solubility enhancement. The aim of this work was to develop, characterize, and evaluate a solid SMEDDS prepared via spray-drying of a liquid SMEDDS based on Gelucire® 44/14 to improve the solubility and dissolution rate of naproxen. Various oils and co-surfactants in combination with Gelucire® 44/14 were evaluated during excipient selection study, solubility testing, and construction of (pseudo)ternary diagrams. The selected system was further evaluated for naproxen solubility, self-microemulsification ability, and in vitro dissolution of naproxen. In addition, its transformation into a solid SMEDDS by spray-drying using maltodextrin as a solid carrier was performed. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to evaluate the physical characteristics of the solid SMEDDS obtained. The selected formulation of SMEDDS was comprised of Miglyol 812®, Peceol™, Gelucire® 44/14, and Solutol® HS 15. The liquid and solid SMEDDS formed a microemulsion after dilution with comparable average droplet size and exhibited uniform droplet size distribution. In the solid SMEDDS, liquid SMEDDS was adsorbed onto the surface of maltodextrin and formed smooth granular particles with the encapsulated drug predominantly in a dissolved state and partially in an amorphous state. Overall, incorporation of naproxen in SMEDDS, either liquid or solid, resulted in improved solubility and dissolution rate compared to pure naproxen. This study indicates that a liquid and solid SMEDDS is a strategy for solubility enhancement in the future development of orally delivered dosage forms.

  13. Uhlenbeck-Ford model: Phase diagram and corresponding-states analysis

    Science.gov (United States)

    Paula Leite, Rodolfo; Santos-Flórez, Pedro Antonio; de Koning, Maurice

    2017-09-01

    Using molecular dynamics simulations and nonequilibrium thermodynamic-integration techniques we compute the Helmholtz free energies of the body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal close-packed, and fluid phases of the Uhlenbeck-Ford model (UFM) and use the results to construct its phase diagram. The pair interaction associated with the UFM is characterized by an ultrasoft, purely repulsive pair potential that diverges logarithmically at the origin. We find that the bcc and fcc are the only thermodynamically stable crystalline phases in the phase diagram. Furthermore, we report the existence of two reentrant transition sequences as a function of the number density, one featuring a fluid-bcc-fluid succession and another displaying a bcc-fcc-bcc sequence near the triple point. We find strong resemblances to the phase behavior of other soft, purely repulsive systems such as the Gaussian-core model (GCM), inverse-power-law, and Yukawa potentials. In particular, we find that the fcc-bcc-fluid triple point and the phase boundaries in its vicinity are in good agreement with the prediction supplied by a recently proposed corresponding-states principle [J. Chem. Phys. 134, 241101 (2011), 10.1063/1.3605659; Europhys. Lett. 100, 66004 (2012), 10.1209/0295-5075/100/66004]. The particularly strong resemblance between the behavior of the UFM and GCM models are also discussed.

  14. Simultaneous separation of water- and fat-soluble vitamins in isocratic pressure-assisted capillary electrochromatography using a methacrylate-based monolithic column.

    Science.gov (United States)

    Yamada, Hiroki; Kitagawa, Shinya; Ohtani, Hajime

    2013-06-01

    A method of simultaneous separation of water- and fat-soluble vitamins using pressure-assisted CEC with a methacrylate-based capillary monolithic column was developed. In the proposed method, water-soluble vitamins were mainly separated electrophoretically, while fat soluble-ones were separated chromatographically by the interaction with a methacrylate-based monolith. A mixture of six water-soluble and four fat-soluble vitamins was separated simultaneously within 20 min with an isocratic elution using 1 M formic acid (pH 1.9)/acetonitrile (30:70, v/v) containing 10 mM ammonium formate as a mobile phase. When the method was applied to a commercial multivitamin tablet and a spiked one, the vitamins were successfully analyzed, and no influence of the matrix contained in the tablet was observed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins.

    Science.gov (United States)

    Kurdi, Said El; Muaileq, Dina Abu; Alhazmi, Hassan A; Bratty, Mohammed Al; Deeb, Sami El

    2017-06-27

    HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5) and precision (RSD ≤ 0.6 %). Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.

  16. The thermal Z-isomerization-induced change in solubility and physical properties of (all-E)-lycopene.

    Science.gov (United States)

    Murakami, Kazuya; Honda, Masaki; Takemura, Ryota; Fukaya, Tetsuya; Kubota, Mitsuhiro; Wahyudiono; Kanda, Hideki; Goto, Motonobu

    2017-09-16

    The effect of Z-isomerization of (all-E)-lycopene on its solubility in organic solvents and physical properties was investigated. Lycopene samples containing different Z-isomer contents (23.8%, 46.9%, and 75.6% of total lycopene) were prepared from high-purity (all-E)-lycopene by thermal Z-isomerization in dichloromethane (CH 2 Cl 2 ). As the Z-isomer content increased, the relative solubility of lycopene significantly improved. Although (all-E)-lycopene barely dissolved in ethanol (0.6 mg/L), the solubilities of lycopene containing 23.8%, 46.9%, and 75.6% Z-isomers were 484.5, 914.7, and 2401.7 mg/L, respectively. Furthermore, differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses clearly indicated that (all-E)-lycopene was present in the crystal state, while Z-isomers of lycopene were present in amorphous states. A number of studies have suggested that Z-isomers of lycopene are better absorbed in the human body than the all-E-isomer. This may be due to the change in solubility and physical properties of lycopene by the Z-isomerization. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Investigation of solubility of carbon dioxide in anhydrous milk fat by lab-scale manometric method.

    Science.gov (United States)

    Truong, Tuyen; Palmer, Martin; Bansal, Nidhi; Bhandari, Bhesh

    2017-12-15

    This study aims to examine the solubility of CO 2 in anhydrous milk fat (AMF) as functions of partial pressure, temperature, chemical composition and physical state of AMF. AMF was fractionated at 21°C to obtain stearin and olein fractions. The CO 2 solubility was measured using a home-made experimental apparatus based on changes of CO 2 partial pressures. The apparatus was found to be reliable as the measured and theoretical values based on the ideal gas law were comparable. The dissolved CO 2 concentration in AMF increased with an increase in CO 2 partial pressure (0-101kPa). The apparent CO 2 solubility coefficients (molkg -1 Pa -1 ) in the AMF were 5.75±0.16×10 -7 , 3.9±0.19×10 -7 and 1.19±0.14×10 -7 at 35, 24 and 4°C, respectively. Higher liquid oil proportions resulted in higher CO 2 solubility in the AMF. There was insignificant difference in the dissolved CO 2 concentration among the AMF, stearin and olein fractions in their liquid state at 40°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The solubilities of significant organic compounds in HLW tank supernate solutions -- FY 1995 progress report

    International Nuclear Information System (INIS)

    Barney, G.S.

    1996-01-01

    At the Hanford Site organic compounds were measured in tank supernate simulant solutions during FY 1995. This solubility information will be used to determine if these organic salts could exist in solid phases (saltcake or sludges) in the waste where they might react violently with the nitrate or nitrite salts present in the tanks. Solubilities of sodium glycolate, succinate, and caproate salts; iron and aluminum and butylphosphate salts; and aluminum oxalate were measured in simulated waste supernate solutions at 25 degree C, 30 degree C, 40 degree C, and 50 degree C. The organic compounds were selected because they are expected to exist in relatively high concentrations in the tanks. The solubilities of sodium glycolate, succinate, caproate, and butylphosphate in HLW tank supernate solutions were high over the temperature and sodium hydroxide concentration ranges expected in the tanks. High solubilities will prevent solid sodium salts of these organic acids from precipitating from tank supernate solutions. The total organic carbon concentrations (YOC) of actual tank supernates are generally much lower than the TOC ranges for simulated supernate solutions saturated (at the solubility limit) with the organic salts. This is so even if all the dissolved carbon in a given tank and supernate is due to only one of these eight soluble compounds (an unlikely situation). Metal ion complexes of and butylphosphate and oxalate in supernate solutions were not stable in the presence of the hydroxide concentrations expected in most tanks. Iron and aluminum dibutylphosphate compounds reacted with hydroxide to form soluble sodium dibutylphosphate and precipitated iron and aluminum hydroxides. Aluminum oxalate complexes were also not stable in the basic simulated supernate solutions. Solubilities of all the organic salts decrease with increasing sodium hydroxide concentration because of the common ion effect of Na+. Increasing temperatures raised the solubilities of the organic

  19. Opposite Effects of Soluble Factors Secreted by Adipose Tissue on Proliferating and Quiescent Osteosarcoma Cells.

    Science.gov (United States)

    Avril, Pierre; Duteille, Franck; Ridel, Perrine; Heymann, Marie-Françoise; De Pinieux, Gonzague; Rédini, Françoise; Blanchard, Frédéric; Heymann, Dominique; Trichet, Valérie; Perrot, Pierre

    2016-03-01

    Autologous adipose tissue transfer may be performed for aesthetic needs following resection of osteosarcoma, the most frequent primary malignant tumor of bone, excluding myeloma. The safety of autologous adipose tissue transfer regarding the potential risk of cancer recurrence must be addressed. Adipose tissue injection was tested in a human osteosarcoma preclinical model induced by MNNG-HOS cells. Culture media without growth factors from fetal bovine serum were conditioned with adipose tissue samples and added to two osteosarcoma cell lines (MNNG-HOS and MG-63) that were cultured in monolayer or maintained in nonadherent spheres, favoring a proliferation or quiescent stage, respectively. Proliferation and cell cycle were analyzed. Adipose tissue injection increased local growth of osteosarcoma in mice but was not associated with aggravation of lung metastasis or osteolysis. Adipose tissue-derived soluble factors increased the in vitro proliferation of osteosarcoma cells up to 180 percent. Interleukin-6 and leptin were measured in higher concentrations in adipose tissue-conditioned medium than in osteosarcoma cell-conditioned medium, but the authors' results indicated that they were not implicated alone. Furthermore, adipose tissue-derived soluble factors did not favor a G0-to-G1 phase transition of MNNG-HOS cells in nonadherent oncospheres. This study indicates that adipose tissue-soluble factors activate osteosarcoma cell cycle from G1 to mitosis phases, but do not promote the transition from quiescent G0 to G1 phases. Autologous adipose tissue transfer may not be involved in the activation of dormant tumor cells or cancer stem cells.

  20. On the americium oxalate solubility

    International Nuclear Information System (INIS)

    Zakolupin, S.A.; Korablin, Eh.V.

    1977-01-01

    The americium oxalate solubility at different nitric (0.0-1 M) and oxalic (0.0-0.4 M) acid concentrations was investigated in the temperature range from 14 to 60 deg C. The dependence of americium oxalate solubility on the oxalic acid concentration was determined. Increasing oxalic acid concentration was found to reduce the americium oxalate solubility. The dependence of americium oxalate solubility on the oxalic acid concentration was noted to be a minimum at low acidity (0.1-0.3 M nitric acid). This is most likely due to Am(C 2 O 4 ) + , Am(C 2 O 4 ) 2 - and Am(C 2 O 4 ) 3 3- complex ion formation which have different unstability constants. On the basis of the data obtained, a preliminary estimate was carried out for the product of americium oxalate solubility in nitric acid medium (10 -29 -10 -31 ) and of the one in water (6.4x10 -20 )

  1. Hacking on decoy-state quantum key distribution system with partial phase randomization

    Science.gov (United States)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-01

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  2. Hacking on decoy-state quantum key distribution system with partial phase randomization.

    Science.gov (United States)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-23

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  3. Speciation and Oxidative Stability of Alkaline Soluble, Non-Pertechnetate Technetium

    Energy Technology Data Exchange (ETDEWEB)

    Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rapko, Brian M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Amity [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Peterson, James M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chatterjee, Sayandev [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walter, Eric D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cho, Herman M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Washton, Nancy M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-30

    The long half-life, complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes, and high mobility in subsurface environments make technetium (Tc) one of the most difficult contaminants to dispose of and/or remediate. Technetium exists predominantly in the liquid tank waste phase as the relatively mobile form of pertechnetate, TcO4-. However, based on experimentation to date a significant fraction of the soluble Tc cannot be effectively separated from the wastes and may be present as a non- pertechnetate species. The presence of a non-pertechnetate species significantly complicates disposition of low-activity waste (LAW), and the development of methods to either convert them to pertechnetate or to separate directly is needed. The challenge is the uncertainty regarding the chemical form of the alkaline-soluble low-valent non-pertechnetate species in the liquid tank waste. This report summarizes work done in fiscal year (FY) 2014 exploring the chemistry of a low-valence technetium(I) species, [(CO)3Tc(H2O)3]+, a compound of interest due to its implication in the speciation of alkaline-soluble technetium in several Hanford tank waste supernatants.

  4. NEARSOL, Aqueous Speciation and Solubility of Actinides for Waste Disposal

    International Nuclear Information System (INIS)

    Leach, S.J.; Pryke, D.C.

    1989-01-01

    A - Description of program or function: NEARSOL models the aqueous speciation and solubility of actinides under near-field conditions for disposal using a simple thermodynamic approach. B - Method of solution: The program draws information from a thermodynamic data base consisting of solubility products and complex formation constants for all known species, and standard electrode potentials, at 25 C, corrected for ionic strength effects. By minimising the free energy of the system through a series of iterations, a precipitating solid phase is predicted which limits the solubility, and the concentration of the main aqueous species are calculated as a function of pH. Initially the program evaluates only hydroxide and carbonate species, but the effect of sulphate, phosphate and fluoride anions can also be included. The program is simple to use, requiring inputs of: 1. Actinide(s); 2. pH range; 3. Ionic strength; 4. Redox conditions; 5. Ligand concentrations. Functions are included to calculate the distribution of the protonated and un-protonated forms of carbonate and phosphate and the value of Eh as a function of pH under disposal conditions as required. The program can further evaluate the role of free calcium ions. C - Restrictions on the complexity of the problem: None

  5. Improvement of aqueous solubility and rectal absorption of 6-mercaptopurine by addition of sodium benzoate.

    Science.gov (United States)

    Takeichi, Y; Kimura, T

    1994-10-01

    The solubility of 6-mercaptopurine (6-MP) in water increased as the concentration of sodium benzoate or sodium hippurate in the solution increased. The solubility of 6-MP in 20% (w/v) sodium benzoate or sodium hippurate solution was about 6-fold larger than that of 6-MP alone. The stability constant of the soluble complex of 6-MP with sodium benzoate was estimated to be 2-8 M-1 from (1) phase-solubility study and (2) analysis of chemical shifts observed in 1H-NMR. Partition of 6-MP from the saturated solution to n-octanol was also greatly increased by the addition of sodium benzoate or sodium hippurate, the degree being less in the latter. Administration of 6-MP with 20% (w/v) sodium benzoate to rat rectum resulted in enhanced absorption and the area under the plasma concentration-time curve was comparable to that obtained by intravenous administration (bioavailability = 100%), while the bioavailability after intrarectal administration of 6-MP with 20% (w/v) sodium hippurate was only 9%. The reason for the difference was discussed.

  6. Enhanced solubility and targeted delivery of curcumin by lipopeptide micelles.

    Science.gov (United States)

    Liang, Ju; Wu, Wenlan; Lai, Danyu; Li, Junbo; Fang, Cailin

    2015-01-01

    A lipopeptide (LP)-containing KKGRGDS as the hydrophilic heads and lauric acid (C12) as the hydrophobic tails has been designed and prepared by standard solid-phase peptide synthesis technique. LP can self-assemble into spherical micelles with the size of ~30 nm in PBS (phosphate buffer saline) (pH 7.4). Curcumin-loaded LP micelles were prepared in order to increase the water solubility, sustain the releasing rate, and improve the tumor targeted delivery of curcumin. Water solubility, cytotoxicity, in vitro release behavior, and intracellular uptake of curcumin-loaded LP micelles were investigated. The results showed that LP micelles can increase the water solubility of curcumin 1.1 × 10(3) times and sustain the release of curcumin in a low rate. Curcumin-loaded LP micelles showed much higher cell inhibition than free curcumin on human cervix carcinoma (HeLa) and HepG2 cells. When incubating these curcumin-loaded micelles with HeLa and COS7 cells, due to the over-expression of integrins on cancer cells, the micelles can efficiently use the tumor-targeting function of RGD (functionalized peptide sequences: Arg-Gly-Asp) sequence to deliver the drug into HeLa cells, and better efficiency of the self-assembled LP micelles for curcumin delivery than crude curcumin was also confirmed by LCSM (laser confocal scanning microscope) assays. Combined with the enhanced solubility and higher cell inhibition, LP micelles reported in this study may be promising in clinical application for targeted curcumin delivery.

  7. Phase formation in titanium alloys during their quenching from liquid state

    International Nuclear Information System (INIS)

    Golub, S.Ya.; Kotko, A.V.; Kuz'menko, N.N.; Kulak, L.D.; Firstov, S.A.; Khaenko, B.V.

    1992-01-01

    Methods of X-ray diffractin analysis, light and electron microscopy were applied to study structural state of titanium base alloys quenched from liquid state by spinning with cooling in inert gas or at the surface of solid heat exchanger. Phase formation under rapid cooling conditions was considered. The morphology of phases and mutual orientation of their crystal lattices were investigated along with the character of crystallization texture. It was revealed that on melt quenching with 10 5 -10 6 K/s cooling rates the growth of columnar branches of degenerated dendrites was accopanied by Si atoms movement of the order of 0.1 μm. Structure and crack resistance of compacted articles produced from rapidly solidified powders were under study

  8. On coherent-state representations of quantum mechanics: Wave mechanics in phase space

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Jørgensen, Thomas Godsk; Torres-Vega, Gabino

    1997-01-01

    In this article we argue that the state-vector phase-space representation recently proposed by Torres-Vega and co-workers [introduced in J. Chem. Phys. 98, 3103 (1993)] coincides with the totality of coherent-state representations for the Heisenberg-Weyl group. This fact leads to ambiguities when...

  9. [Emission Characteristics of Water-Soluble Ions in Fumes of Coal Fired Boilers in Beijing].

    Science.gov (United States)

    Hu, Yue-qi; Ma, Zhao-hui; Feng, Ya-jun; Wang, Chen; Chen, Yuan-yuan; He, Ming

    2015-06-01

    Selecting coal fired boilers with typical flue gas desulfurization and dust extraction systems in Beijing as the study objects, the issues and characteristics of the water-soluble ions in fumes of coal fired boilers and theirs influence factors were analyzed and evaluated. The maximum mass concentration of total water-soluble ions in fumes of coal fired boilers in Beijing was 51.240 mg x m(-3) in the benchmark fume oxygen content, the minimum was 7.186 mg x m(-3), and the issues of the water-soluble ions were uncorrelated with the fume moisture content. SO4(2-) was the primary characteristic water-soluble ion for desulfurization reaction, and the rate of contribution of SO4(2-) in total water-soluble ions ranged from 63.8% to 81.0%. F- was another characteristic water-soluble ion in fumes of thermal power plant, and the rate of contribution of F- in total water-soluble ions ranged from 22.2% to 32.5%. The fume purification technologies significantly influenced the issues and the emission characteristics of water-soluble ions in fumes of coal fired boilers. Na+ was a characteristic water-soluble ion for the desulfurizer NaOH, NH4+ and NO3+ were characteristic for the desulfurizer NH4HCO3, and Mg2+ was characteristic for the desulfurizer MgO, but the Ca2+ emission was not increased by addition of the desulfurizer CaO or CaCO3 The concentrations of NH4+ and NO3- in fumes of thermal power plant were lower than those in fumes of industrial or heating coal fired boilers. The form of water-soluble ions was significantly correlated with fume temperature. The most water-soluble ions were in superfine state at higher fume temperature and were not easily captured by the filter membrane.

  10. Scaling of the steady state and stability behaviour of single and two-phase natural circulation systems

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Nayak, A.K.; Bade, M.H.; Kumar, N.; Saha, D.; Sinha, R.K.

    2002-01-01

    Scaling methods for both single-phase and two-phase natural circulation systems have been presented. For single-phase systems, simulation of the steady state flow can be achieved by preserving just one nondimensional parameter. For uniform diameter two-phase systems also, it is possible to simulate the steady state behaviour with just one non-dimensional parameter. Simulation of the stability behaviour requires geometric similarity in addition to the similarity of the physical parameters appearing in the governing equations. The scaling laws proposed have been tested with experimental data in case of single-phase natural circulation. (author)

  11. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 3. Heavy Lanthanides (Gd–Lu)

    Energy Technology Data Exchange (ETDEWEB)

    Mioduski, Tomasz [Institute of Nuclear Chemistry and Technology, 03195 Warszawa (Poland); Gumiński, Cezary, E-mail: cegie@chem.uw.edu.pl [Department of Chemistry, University of Warsaw, 02093 Warszawa (Poland); Zeng, Dewen, E-mail: dewen-zeng@hotmail.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2015-06-15

    This is the third part of the volume devoted to solubility data for the rare earth metal (REM) fluorides in water and in aqueous ternary and multicomponent systems. It covers experimental results of trivalent fluorides of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu (so-called heavy lanthanides), since no quantitative data on solubilities of TbF{sub 4} and YbF{sub 2} (the most stable compounds at these valencies) are available. The related literature has been covered through the end of 2014. Compilations of all available papers with the solubility data are introduced for each REM fluoride with a corresponding critical evaluation. Every such assessment contains a collection of all solubility results in aqueous solution, a selection of suggested solubility data, a solubility equation, and a brief discussion of the multicomponent systems. Only simple fluorides (no complexes or double salts) are treated as the input substances in this report. General features of the systems, such as nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, solution pH, mixed solvent medium on the solubility, quality of the solubility results, and the solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.

  12. In vitro and in vivo studies on the complexes of glipizide with water-soluble β-cyclodextrin-epichlorohydrin polymers.

    Science.gov (United States)

    Nie, Shufang; Zhang, Shu; Pan, Weisan; Liu, Yanli

    2011-05-01

    The purpose of this study was to evaluate the potential of a newly modified cyclodextrin derivative, water-soluble β-cyclodextrin-epichlorohydrin polymer (β-CDP), as an effective drug carrier to enhance the dissolution rate and oral bioavailability of glipizide as a poorly water-soluble model drug. Inclusion complexes of glipizide with β-CDP were prepared by the co-evaporation method and characterized by phase solubility, dissolution, and differential scanning calorimetry. The solubility curve was classified as type A(L), which indicated the formation of 1:1 complex between glipizide and β-CDP. β-CDP had better properties of increasing the aqueous solubility of glipizide compared with HP-β-CD. The dissolution rate of drug from the β-CDP complexes was significantly greater than that of the corresponding physical mixtures indicating that the formation of amorphous complex increased the solubility of glipizide. Moreover, the increment in drug dissolution rate from the glipizide/β-CDP systems was higher than that from the corresponding ones with HP-β-CD, which indicated that β-CDP could provide greater capability of solubilization for poorly soluble drugs. Furthermore, in vivo study revealed that the bioavailability of glipizide was significantly improved by glipizide /β-CDP inclusion complex after oral administration to beagle dogs.

  13. New investigation of phase equilibria in the system Al-Cu-Si.

    Science.gov (United States)

    Ponweiser, Norbert; Richter, Klaus W

    2012-01-25

    The phase equilibria and invariant reactions in the system Al-Cu-Si were investigated by a combination of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and electron probe micro analysis (EPMA). Isothermal phase equilibria were investigated within two isothermal sections. The isothermal section at 500 °C covers the whole ternary composition range and largely confirms the findings of previous phase diagram investigations. The isothermal section at 700 °C describes phase equilibria only in the complex Cu-rich part of the phase diagram. A new ternary compound τ was found in the region between (Al,Cu)-γ(1) and (Cu,Si)-γ and its solubility range was determined. The solubility of Al in κ-CuSi was found to be extremely high at 700 °C. In contrast, no ternary solubility in the β-phase of Cu-Al was found, although this phase is supposed to form a complete solid solution according to previous phase diagram assessments. Two isopleths, at 10 and 40 at.% Si, were investigated by means of DTA and a partial ternary reaction scheme (Scheil diagram) was constructed, based on the current work and the latest findings in the binary systems Al-Cu and Cu-Si. The current study shows that the high temperature equilibria in the Cu-rich corner are still poorly understood and additional studies in this area would be favorable.

  14. A Systematic Study of Molecular Interactions of Anionic Drugs with a Dimethylaminoethyl Methacrylate Copolymer Regarding Solubility Enhancement.

    Science.gov (United States)

    Saal, Wiebke; Ross, Alfred; Wyttenbach, Nicole; Alsenz, Jochem; Kuentz, Martin

    2017-04-03

    The methacrylate-copolymer Eudragit EPO (EPO) has raised interest in solubility enhancement of anionic drugs. Effects on aqueous drug solubility at rather low polymer concentrations are barely known despite their importance upon dissolution and dilution of oral dosage forms. We provide evidence for substantial enhancement (factor 4-230) of aqueous solubility of poorly water-soluble anionic drugs induced by low (0.1-5% (w/w)) concentration of EPO for a panel of seven acidic crystalline drugs. Diffusion data (determined by 1 H nuclear magnetic resonance spectroscopy) indicate that the solubility increasing effect monitored by quantitative ultraperformance liquid chromatography was caused primarily by molecular API polymer interactions in the bulk liquid phase. Residual solid API remained unaltered as tested by X-ray powder diffraction. The solubility enhancement (SE) revealed a significant rank correlation (r Spearman = -0.83) with rDiff API , where SE and rDiff API are defined ratios of solubility and diffusion coefficient in the presence and absence of EPO. SE decreased in the order of indomethacin, mefenamic acid, warfarin, piroxicam, furosemide, bezafibrate, and tolbutamide. The solubilizing effect was attributed to both ionic and hydrophobic interactions between drugs and EPO. The excellent solubilizing properties of EPO are highly promising for pharmaceutical development, and the data set provides first steps toward an understanding of drug-excipient interaction mechanisms.

  15. Quantum double-well chain: Ground-state phases and applications to hydrogen-bonded materials

    International Nuclear Information System (INIS)

    Wang, X.; Campbell, D.K.; Gubernatis, J.E.

    1994-01-01

    Extrapolating the results of hybrid quantum Monte Carlo simulations to the zero temperature and infinite-chain-length limits, we calculate the ground-state phase diagram of a system of quantum particles on a chain of harmonically coupled, symmetric, quartic double-well potentials. We show that the ground state of this quantum chain depends on two parameters, formed from the ratios of the three natural energy scales in the problem. As a function of these two parameters, the quantum ground state can exhibit either broken symmetry, in which the expectation values of the particle's coordinate are all nonzero (as would be the case for a classical chain), or restored symmetry, in which the expectation values of the particle's coordinate are all zero (as would be the case for a single quantum particle). In addition to the phase diagram as a function of these two parameters, we calculate the ground-state energy, an order parameter related to the average position of the particle, and the susceptibility associated with this order parameter. Further, we present an approximate analytic estimate of the phase diagram and discuss possible physical applications of our results, emphasizing the behavior of hydrogen halides under pressure

  16. Evaluation Of The Integrated Solubility Model, A Graded Approach For Predicting Phase Distribution In Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Kayla L.; Belsher, Jeremy D.; Seniow, Kendra R.

    2012-10-19

    The mission of the DOE River Protection Project (RPP) is to store, retrieve, treat and dispose of Hanford's tank waste. Waste is retrieved from the underground tanks and delivered to the Waste Treatment and Immobilization Plant (WTP). Waste is processed through a pretreatment facility where it is separated into low activity waste (LAW), which is primarily liquid, and high level waste (HLW), which is primarily solid. The LAW and HLW are sent to two different vitrification facilities and glass canisters are then disposed of onsite (for LAW) or shipped off-site (for HLW). The RPP mission is modeled by the Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulator and mass balance model that is used for mission analysis and strategic planning. The integrated solubility model (ISM) was developed to improve the chemistry basis in HTWOS and better predict the outcome of the RPP mission. The ISM uses a graded approach to focus on the components that have the greatest impact to the mission while building the infrastructure for continued future improvement and expansion. Components in the ISM are grouped depending upon their relative solubility and impact to the RPP mission. The solubility of each group of components is characterized by sub-models of varying levels of complexity, ranging from simplified correlations to a set of Pitzer equations used for the minimization of Gibbs Energy.

  17. Evaluation Of The Integrated Solubility Model, A Graded Approach For Predicting Phase Distribution In Hanford Tank Waste

    International Nuclear Information System (INIS)

    Pierson, Kayla L.; Belsher, Jeremy D.; Seniow, Kendra R.

    2012-01-01

    The mission of the DOE River Protection Project (RPP) is to store, retrieve, treat and dispose of Hanford's tank waste. Waste is retrieved from the underground tanks and delivered to the Waste Treatment and Immobilization Plant (WTP). Waste is processed through a pretreatment facility where it is separated into low activity waste (LAW), which is primarily liquid, and high level waste (HLW), which is primarily solid. The LAW and HLW are sent to two different vitrification facilities and glass canisters are then disposed of onsite (for LAW) or shipped off-site (for HLW). The RPP mission is modeled by the Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulator and mass balance model that is used for mission analysis and strategic planning. The integrated solubility model (ISM) was developed to improve the chemistry basis in HTWOS and better predict the outcome of the RPP mission. The ISM uses a graded approach to focus on the components that have the greatest impact to the mission while building the infrastructure for continued future improvement and expansion. Components in the ISM are grouped depending upon their relative solubility and impact to the RPP mission. The solubility of each group of components is characterized by sub-models of varying levels of complexity, ranging from simplified correlations to a set of Pitzer equations used for the minimization of Gibbs Energy

  18. Ground state of the U{sub 2}Mo compound: Physical properties of the Ω-phase

    Energy Technology Data Exchange (ETDEWEB)

    Losada, E.L. [SIM3, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (Argentina); Garcés, J.E., E-mail: garces@cab.cnea.gov.ar [GIA, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (Argentina)

    2016-10-15

    Using ab initio calculations, unexpected structural instability was recently found in the ground state of the U{sub 2} Mo compound. Instead of the unstable I4/mmm and the Pmmn structures, in this work the P6/mmm (#191) space group, usually called Ω-phase, is proposed as the fundamental state. Total energy calculations using Wien2k code slightly favoured the last structure. Electronic and elastic properties are studied in this work in order to characterize the physical properties of this new phase. The stability of the Ω-phase is studied by means of its elastic constants calculation and phonon dispersion spectrum. Analysis of isotropic indices shows that the new phase is a ductile material with a minimal degree of anisotropy, suggesting that U{sub 2} Mo in the P6/mmm structure is an elastic isotropic material. Analysis of charge density, density of electronic states (DOS) and the character of the bands revealed a high level of hybridization between d-molybdenum electronic states and d- and f-uranium ones.

  19. Phase separation in short-chain lecithin/gel-state long-chain lecithin aggregates

    International Nuclear Information System (INIS)

    Bian, J.; Roberts, M.F.

    1990-01-01

    Small bilayer particles for spontaneously from gel-state long-chain phospholipids such as dipalmitoylphosphatidylcholine and 0.2 mol fraction short-chain lecithins (e.g., diheptanoylphosphatidylcholine). When the particles are incubed at temperatures greater than the T m of the long-chain phosphatidylcholine (PC), the particles rapidly fuse (from 90-angstrom to ≥ 5,000-angstrom radius); this transition is reversible. A possible explanation for this behavior involves patching or phase separation of the short-chain component within the gel-state particle and randomization of both lipid species above T m . Differential scanning calorimetry, 1 H T 1 values of proteodiheptanoyl-PC in diheptanoyl-PC-d 26 /dipalmitoyl-PC-d 62 matrices of varying deuterium content, solid-state 2 H NMR spectroscopy as a function of temperature, and fluorescence pyrene excimer-to-monomer ratios as a function of mole fraction diheptanoyl-PC provide evidence that such phase separation must occur. These results are used to construct a phase diagram for the diheptanoyl-PC/dipalmitoyl-PC system, to propose detailed geometric models for the different lipid particles involved, and to understand phospholipase kinetics toward the different aggregates

  20. Application of PC-SAFT and cubic equations of state for the correlation of solubility of some pharmaceutical and statin drugs in SC-CO2

    Directory of Open Access Journals (Sweden)

    Abdallah El Hadj. A.

    2013-01-01

    Full Text Available In this work, the solubilities of some anti-inflammatory (nabumetone, phenylbutazone and salicylamide and statin drugs (fluvastatin, atorvastatin, lovastatin, simvastatin and rosuvastatin were correlated using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT with one-parameter mixing rule and commonly used cubic equations of state Peng-Robinson (PR and Soave-Redlich-Kwong (SRK combining with van-der Waals-1 parameter (VDW1 and van-der Waals-2 parameters (VDW2 mixing rules. The experimental data for studied compounds were taken from literature at temperature and pressure in ranges (308-348 K and (100-360 bar respectively. The critical properties required for the correlation with PR and SRK were estimated using Gani and Noonalol contribution group methods whereas, PC-SAFT pure-component parameters; segment number (m, segment diameter (σ and energy parameter (ε/k have been estimated by tihic’s group contribution method for nabumetone. For phenylbutazone and salicylamide those parameters were determined using a linear correlation. For statin drugs, PC-SAFT parameters were fitted to solubility data, and binary interaction parameters (kij and lij have been obtained by fitting the experimental data. The result was found to be in good agreement with the experimental data and showed that PC-SAFT approach can be used to model solid-SCF equilibrium with better correlation accuracy than cubic equations of state.

  1. Transportation properties of amorphous state InSb and its metastable middle phase

    International Nuclear Information System (INIS)

    Cao Xiaowen

    1990-09-01

    The variation of the substrate temperature induces the metal-semiconductor transition in the condensation InSb films at low temperatrue. The electron conduction is dominant in the metal-type amorphous InSb and the hole in semiconductor-type one. In the metal-type amorphous InSb the electron-electron is correlated under the field above 0.1T in the temperature region of liquid nitrogen. The structure relaxation leads to not only the increase of the short range order but also the change of electron structure in metal-type amorphous InSb. The first conductance jump originates mainly from the increase of Hall mobility of the carrier, i.e. the increase of the short range order, and the system relaxes from the liquid-like to the lattice-like amorphous state. The three types of the crystallization phase transition for the metal-type amorphous InSb present obviously different transportation behaviours. Both metal-type amorphous state and metastable middle phase of InSb all are one of superconducting system with the lowest carrier concentration (n 0 ∼10 18 cm -3 ). Superconducting T c of the metastable middle phase is related to the state density near Fermi surface, i.e. the higher T c corresponds to the higher state density. The quasi-two-dimensional structure is favourable to superconductivity

  2. Phase Equilibria Measurement of Binary Mixture for the Propoxylated Neopentyl Glycol Diacrylate in Supercritical Carbon Dioxide

    International Nuclear Information System (INIS)

    Byun, Hun-Soo

    2016-01-01

    Experimental data are reported on the phase equilibrium of propoxylated neopentyl glycol diacrylate in supercritical carbon dioxide. Phase equilibria data were measured in static method at a temperature of (313.2, 333.2, 353.2, 373.2 and 393.2) K and at pressures up to 27.82 MPa. At a constant pressure, the solubility of propoxylated neopentyl glycol diacrylate for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system increases as temperature increases. The (carbon dioxide + propoxylated neopentyl glycol diacrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system is correlated with Peng- Robinson equation of state using mixing rule. The critical property of propoxylated neopentyl glycol diacrylate is predicted with Joback and Lyderson method

  3. Phase Equilibria Measurement of Binary Mixture for the Propoxylated Neopentyl Glycol Diacrylate in Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hun-Soo [Chonnam National University, Yeosu (Korea, Republic of)

    2016-04-15

    Experimental data are reported on the phase equilibrium of propoxylated neopentyl glycol diacrylate in supercritical carbon dioxide. Phase equilibria data were measured in static method at a temperature of (313.2, 333.2, 353.2, 373.2 and 393.2) K and at pressures up to 27.82 MPa. At a constant pressure, the solubility of propoxylated neopentyl glycol diacrylate for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system increases as temperature increases. The (carbon dioxide + propoxylated neopentyl glycol diacrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system is correlated with Peng- Robinson equation of state using mixing rule. The critical property of propoxylated neopentyl glycol diacrylate is predicted with Joback and Lyderson method.

  4. Interaction between the intrinsic edge state and the helical boundary state of topological insulator phase in bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Xiaoling [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Jiang, Liwei [National Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012 (China); Zheng, Yisong, E-mail: zhengys@jlu.edu.cn [National Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012 (China)

    2016-04-22

    Graphene has intrinsic edge states localized at zigzag edge or lattice defect. Helical boundary states can also be established in such a two-dimensional carbon material at the boundary of topological insulator (TI) phase realized by the extrinsic Rashba spin–orbital coupling (SOC) in gated bilayer graphene. We theoretically investigate the interaction between these two kinds of edge (boundary) states when they coexist in a bilayer graphene. We find that this interaction gives rise to some very interesting results. In a zigzag edged nanoribbon of bilayer graphene, it is possible that the TI helical state does not localize at the TI phase boundary. Instead it moves to the nanoribbon edge even though the SOC is absent therein. In a bulk lattice of bilayer graphene embedded with two line defects, the numbers of helical state subbands at the two line defects are not equal to each other. In such a case, the backscattering lacking is still forbidden since the Kramers pairs are valley polarized. - Highlights: • The TI helical state moves to nanoribbon edge in a gated ZENR-BG. • The gapless modes of LD-BG at the two line defects are not equal to each other. • The Kramers pairs are still valley polarized in a gated LD-BG.

  5. Retrograde curves of solidus and solubility

    International Nuclear Information System (INIS)

    Vasil'ev, M.V.

    1979-01-01

    The investigation was concerned with the constitutional diagrams of the eutectic type with ''retrograde solidus'' and ''retrograde solubility curve'' which must be considered as diagrams with degenerate monotectic transformation. The solidus and the solubility curves form a retrograde curve with a common retrograde point representing the solubility maximum. The two branches of the Aetrograde curve can be described with the aid of two similar equations. Presented are corresponding equations for the Cd-Zn system and shown is the possibility of predicting the run of the solubility curve

  6. Coherent Behavior and the Bound State of Water and K(+) Imply Another Model of Bioenergetics: Negative Entropy Instead of High-energy Bonds.

    Science.gov (United States)

    Jaeken, Laurent; Vasilievich Matveev, Vladimir

    2012-01-01

    Observations of coherent cellular behavior cannot be integrated into widely accepted membrane (pump) theory (MT) and its steady state energetics because of the thermal noise of assumed ordinary cell water and freely soluble cytoplasmic K(+). However, Ling disproved MT and proposed an alternative based on coherence, showing that rest (R) and action (A) are two different phases of protoplasm with different energy levels. The R-state is a coherent metastable low-entropy state as water and K(+) are bound to unfolded proteins. The A-state is the higher-entropy state because water and K(+) are free. The R-to-A phase transition is regarded as a mechanism to release energy for biological work, replacing the classical concept of high-energy bonds. Subsequent inactivation during the endergonic A-to-R phase transition needs an input of metabolic energy to restore the low entropy R-state. Matveev's native aggregation hypothesis allows to integrate the energetic details of globular proteins into this view.

  7. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins

    Directory of Open Access Journals (Sweden)

    Kurdi Said El

    2017-06-01

    Full Text Available HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5 and precision (RSD ≤ 0.6 %. Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.

  8. Importance of critical micellar concentration for the prediction of solubility enhancement in biorelevant media.

    Science.gov (United States)

    Ottaviani, G; Wendelspiess, S; Alvarez-Sánchez, R

    2015-04-06

    This study evaluated if the intrinsic surface properties of compounds are related to the solubility enhancement (SE) typically observed in biorelevant media like fasted state simulated intestinal fluids (FaSSIF). The solubility of 51 chemically diverse compounds was measured in FaSSIF and in phosphate buffer and the surface activity parameters were determined. This study showed that the compound critical micellar concentration parameter (CMC) correlates strongly with the solubility enhancement (SE) observed in FaSSIF compared to phosphate buffer. Thus, the intrinsic capacity of molecules to form micelles is also a determinant for each compound's affinity to the micelles of biorelevant surfactants. CMC correlated better with SE than lipophilicity (logD), especially over the logD range typically covered by drugs (2 < logD < 4). CMC can become useful to guide drug discovery scientists to better diagnose, improve, and predict solubility in biorelevant media, thereby enhancing oral bioavailability of drug candidates.

  9. Solubility of magnetite in coolant of NPP boiling reactor

    International Nuclear Information System (INIS)

    Zarembo, V.I.; Kritskij, V.G.; Slobodov, A.A.; Puchkov, L.V.

    1988-01-01

    To improve water-chemical NPP regimes calculations of iron solubility up to 600 K temperature in Fe 3 O 4 -H 2 O-O 2 and Fe(OH) 3 -H 2 O systems are performed using a system of selected and consistent values of thermal constants of various chemical iron forms in standard aqueous solution state. Calculations have shown that up to 423 K in aqueous medium containing oxygen, magnetite is unstable and is oxidized first up to Fe(OH) 3 and then - up to Fe OOH and Fe 2 O 3 . Calculations complying with experimental data have demonstrated the presence of maximum on the curve solubility-temperature in desalinized water containing 10 μkg/kg of oxygen. A sequence of processes of oxygen effect on water regime and corrosion prduct deposition in a condensate-feed circuit of NPP boiling reactor is proposed. It is proved that under oxygen water chemistry of condensate-feed circuit after magnetite transfomation into gematite, reduction of soluble iron form inlet to reactor loop occurs, which allows one to expect reduction of γ-radiation dose rate buildup around the primary loop pipelines

  10. Interlaboratory validation of small-scale solubility and dissolution measurements of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Andersson, Sara B. E.; Alvebratt, Caroline; Bevernage, Jan

    2016-01-01

    The purpose of this study was to investigate the interlaboratory variability in determination of apparent solubility (Sapp) and intrinsic dissolution rate (IDR) using a miniaturized dissolution instrument. Three poorly water-soluble compounds were selected as reference compounds and measured at m...

  11. Cadmium solubility in paddy soils: Effects of soil oxidation, metal sulfides and competitive ions

    Energy Technology Data Exchange (ETDEWEB)

    Livera, Jennifer de, E-mail: Jennifer.deLivera@adelaide.edu.au [Soil Science, School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA (Australia); McLaughlin, Mike J. [Soil Science, School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA (Australia); CSIRO Land and Water, Environmental Biogeochemistry Program, Sustainable Agriculture Flagship, Adelaide, SA (Australia); Hettiarachchi, Ganga M. [CSIRO Land and Water, Environmental Biogeochemistry Program, Sustainable Agriculture Flagship, Adelaide, SA (Australia); Department of Agronomy, Kansas state University, Manhattan, KS (United States); Kirby, Jason K. [CSIRO Land and Water, Environmental Biogeochemistry Program, Sustainable Agriculture Flagship, Adelaide, SA (Australia); CSIRO Land and Water, Environmental Biogeochemistry Program, Water for a Healthy Country Flagship, Adelaide, SA (Australia); Beak, Douglas G. [CSIRO Land and Water, Environmental Biogeochemistry Program, Sustainable Agriculture Flagship, Adelaide, SA (Australia)

    2011-03-15

    Cadmium (Cd) is a non-essential element for human nutrition and is an agricultural soil contaminant. Cadmium solubility in paddy soils affects Cd accumulation in the grain of rice. This is a human health risk, exacerbated by the fact that rice grains are deficient in iron (Fe) and zinc (Zn) for human nutrition. To find ways of limiting this potential risk, we investigated factors influencing Cd solubility relative to Fe and Zn during pre-harvest drainage of paddy soils, in which soil oxidation is accompanied by the grain-filling stage of rice growth. This was simulated in temperature-controlled 'reaction cell' experiments by first excluding oxygen to incubate soil suspensions anaerobically, then inducing aerobic conditions. In treatments without sulfur addition, the ratios of Cd:Fe and Cd:Zn in solution increased during the aerobic phase while Cd concentrations were unaffected and the Fe and Zn concentrations decreased. However, in treatments with added sulfur (as sulfate), up to 34 % of sulfur (S) was precipitated as sulfide minerals during the anaerobic phase and the Cd:Fe and Cd:Zn ratios in solution during the aerobic phase were lower than for treatments without S addition. When S was added, Cd solubility decreased whereas Fe and Zn were unaffected. When soil was spiked with Zn the Cd:Zn ratio was lower in solution during the aerobic phase, due to higher Zn concentrations. Decreased Cd:Fe and Cd:Zn ratios during the grain filling stage could potentially limit Cd enrichment in paddy rice grain due to competitive ion effects for root uptake. - Research Highlights: {yields} Cd:Fe and Cd:Zn ratios increase in paddy soil solution during oxidation. {yields} Cd:Fe and Cd:Zn ratios increase because Fe and Zn concentrations decrease. {yields} Cd concentrations do not change during oxidation. {yields} Cd:Fe and Cd:Zn ratios in solution decrease when Zn is added to soil. {yields} Metal sulfide precipitation lowers Cd:Fe and Cd:Zn ratios in soil solution.

  12. Synthesis and characterization of a hyper-branched water-soluble β-cyclodextrin polymer

    Directory of Open Access Journals (Sweden)

    Francesco Trotta

    2014-11-01

    Full Text Available A new hyper-branched water-soluble polymer was synthesized by reacting β-cyclodextrin with pyromellitic dianhydride beyond the critical conditions that allow the phenomenon of gelation to occur. The molar ratio between the monomers is a crucial parameter that rules the gelation process. Nevertheless, the concentration of monomers in the solvent phase plays a key role as well. Hyper-branched β-cyclodextrin-based polymers were obtained performing the syntheses with excess of solvent and cross-linking agent, and the conditions for critical dilution were determined experimentally. A hyper-branched polymer with very high water solubility was obtained and fully characterized both as for its chemical structure and for its capability to encapsulate substances. Fluorescein was used as probe molecule to test the complexation properties of the new material.

  13. Solid phase radioimmunoassays

    International Nuclear Information System (INIS)

    Wide, L.

    1977-01-01

    Solid phase coupled antibodies were introduced to facilitate the separation of bound and free labelled ligand in the competitive inhibition radioimmunoassay. Originally, the solid matrix used was in the form of small particles and since then a number of different matrices have been used such as very fine powder particles, gels, paper and plastic discs, magnetic particles and the inside surface of plastic tubes. The coupling of antibodies may be that of a covalent chemical binding, a strong physical adsorbtion, or an immunological binding to a solid phase coupled antigen. New principles of radioimmunoassay such as the solid phase sandwich techniques and the immunoradiometric assay were developped from the use of solid phase coupled antigens and antibodies. The solid phase sandwich techniques are reagent excess methods with a very wide applicability. Several of the different variants of solid phase techniques are suitable for automation. Advantages and disadvantages of solid phase radioimmunoassays when compared with those using soluble reagents are discussed. (orig.) [de

  14. Solubility and selectivity of CO2 in ether-functionalized imidazolium ionic liquids

    International Nuclear Information System (INIS)

    Zhou, Lingyun; Shang, Xiaomin; Fan, Jing; Wang, Jianji

    2016-01-01

    Highlights: • Solubilities of CO 2 , N 2 and O 2 in [EOMmim][PF 6 ] and [EOMmim][Tf 2 N] were determined. • Introduction of ether group results in increase of CO 2 /N 2 and CO 2 /O 2 selectivity. • The solution of CO 2 in the ionic liquids is an exothermic and orderly process. • Experimental solubility data have been well correlated by Pitzer model. - Abstract: Ionic liquids are widely recognized new materials in carbon dioxide capture and separation technology. In this work, we synthesized and characterized two kinds of ether-functionalized imidazolium ionic liquids, 1-methoxyethyl-3-methylimidazolium hexafluoroborate ([EOMmim][PF 6 ]) and 1-methoxyethyl-3-methylimidazolium bis(trifluoro-methylsulfony)imide ([EOMmim][Tf 2 N]). Solubility values of CO 2 in these ionic liquids were determined by isometric weight method at the temperatures from 298.15 K to 343.15 K and the pressure up to 5.185 MPa. Furthermore, solubilities of other flue gases, N 2 and O 2 , in these two ionic liquids were also measured at 303.15 K. It was shown that little influence had been exerted on CO 2 solubility by the introduction of ether groups on the cation, but it decreased N 2 and O 2 solubility, resulting in the remarkable increase of CO 2 /N 2 and CO 2 /O 2 selectivity. In addition, the solubility data were well correlated by Pitzer model, and the standard state solution Gibbs energy, solution enthalpy and solution entropy of CO 2 in the two ionic liquids were reported. Regeneration characteristics of the investigated ionic liquids was also studied by vacuum desorption and atmospheric desorption, respectively.

  15. Solubility limits of importance to leaching

    International Nuclear Information System (INIS)

    Ogard, A.; Bentley, G.; Bryant, E.; Duffy, C.; Grisham, J.; Norris, E.; Orth, C.; Thomas, K.

    1981-01-01

    The solubilities of some radionuclides, especially rare earths and actinides, may be an important and controlling factor in leaching of waste forms. These solubilities should be measured accurately as a function of pH and not as a part of a multicomponent system. Individual solubilities should be measured as a function of temperature to determine if a kinetic effect is being observed in the data. A negative temperature coefficient of solubility for actinides and rare earths in water would have important consequences for nuclear reactor safety and for the management of nuclear wastes

  16. A Simple and Consistent Equation of State for Sodium in the Single Phase and Two Phase Regions

    International Nuclear Information System (INIS)

    Breton, J.P.

    1976-01-01

    An equation of state valid over an extended temperature and density range has been derived. Then, the following properties have been deduced: coefficient of thermal expansion, isothermal coefficient of bulk compressibility, thermal pressure coefficient, heat capacity at constant pressure, at constant volume, along the saturation curve for liquid, for vapor, heat of vaporization, speed of sound, and finally the Mollier diagram and the entropy diagram. All the obtained properties are thermodynamically consistent and satisfy the basic relations of thermodynamics for both single phase and two-phase regions. Experimental results were always used when available

  17. A simple and consistent equation of state for sodium in the single phase and two phase regions

    International Nuclear Information System (INIS)

    Breton, J.P.

    1976-01-01

    An equation of state valid over an extended temperature and density range has been derived. Then, the following properties have been deduced : coefficient of thermal expansion, isothermal coefficient of bulk compressibility, thermal pressure coefficient, heat capacity at constant pressure, at constant volume, along the saturation curve for liquid, for vapor, heat of vaporization, speed of sound, and finally the Mollier diagram and the entropy diagram. All the obtained properties are thermodynamically consistent and satisfy the basic relations of thermodynamics for both single phase and two-phase regions. Experimental results were always used when available. (auth.)

  18. Experimental investigation of phase equilibria in the Nb-Si-Ta ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Wang, Cuiping; Yao, Jun; Yang, Shuiyuan; Zhan Shi; Liu, Xingjun [Xiamen Univ. (China). Dept. of Materials Science and Engineering; Xiamen Univ. (China). Fujian Provincial Key Laboratory of Materials Genome; Kang, Yongwang [Beijing Institute of Aeronautical Materials (China). Science and Technology on Advanced High Temperature Structural Materials Lab.

    2016-12-15

    The phase equilibria in the Nb-Si-Ta ternary system at 1 373 K, 1 473 K and 1 573 K were investigated by means of back-scattered electron imaging, electron probe microanalysis and X-ray diffraction. The isothermal sections at 1 373 K, 1 473 K and 1 573 K consist of two three-phase regions and seven two-phase regions, without any ternary compounds. The compounds of NbSi{sub 2} and TaSi{sub 2}, αNb{sub 5}Si{sub 3} and αTa{sub 5}Si{sub 3} form continuous solid solutions, respectively. The solubilities of Nb in Ta{sub 3}Si and Ta{sub 2}Si phases are extremely large, whereas the solubility of Si in the β(Nb, Ta) phase is relatively small.

  19. Simultaneous analysis for water- and fat-soluble vitamins by a novel single chromatography technique unifying supercritical fluid chromatography and liquid chromatography.

    Science.gov (United States)

    Taguchi, Kaori; Fukusaki, Eiichiro; Bamba, Takeshi

    2014-10-03

    Chromatography techniques usually use a single state in the mobile phase, such as liquid, gas, or supercritical fluid. Chromatographers manage one of these techniques for their purpose but are sometimes required to use multiple methods, or even worse, multiple techniques when the target compounds have a wide range of chemical properties. To overcome this challenge, we developed a single method covering a diverse compound range by means of a "unified" chromatography which completely bridges supercritical fluid chromatography and liquid chromatography. In our method, the phase state was continuously changed in the following order; supercritical, subcritical and liquid. Moreover, the gradient of the mobile phase starting at almost 100% CO2 was replaced with 100% methanol at the end completely. As a result, this approach achieved further extension of the polarity range of the mobile phase in a single run, and successfully enabled the simultaneous analysis of fat- and water-soluble vitamins with a wide logP range of -2.11 to 10.12. Furthermore, the 17 vitamins were exceptionally separated in 4min. Our results indicated that the use of dense CO2 and the replacement of CO2 by methanol are practical approaches in unified chromatography covering diverse compounds. Additionally, this is a first report to apply the novel approach to unified chromatography, and can open another door for diverse compound analysis in a single chromatographic technique with single injection, single column and single system. Copyright © 2014. Published by Elsevier B.V.

  20. Determination of fat- and water-soluble vitamins by supercritical fluid chromatography: A review.

    Science.gov (United States)

    Tyśkiewicz, Katarzyna; Dębczak, Agnieszka; Gieysztor, Roman; Szymczak, Tomasz; Rój, Edward

    2018-01-01

    Vitamins are compounds that take part in all basic functions of an organism but also are subject of number of studies performed by different researchers. Two groups of vitamins are distinguished taking into consideration their solubility. Chromatography with supercritical CO 2 has found application in the determination, separation, and quantitative analyses of both fat- and water-soluble vitamins. The methods of vitamins separation have developed and improved throughout the years. Both groups of compounds were separated using supercritical fluid chromatography with different detection on different stationary phases. The main aim of this review is to provide an overview of the studies of vitamins separation that have been determined so far. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effects of deep cryogenic treatment on the solid-state phase transformation of Cu-Al alloy in cooling process

    Science.gov (United States)

    Wang, Yuhui; Liao, Bo; Liu, Jianhua; Chen, Shuqing; Feng, Yu; Zhang, Yanyan; Zhang, Ruijun

    2012-07-01

    The solid-state phase transformation temperature and duration of deep cryogenic treated and untreated Cu-Al alloys in cooling process were measured by differential scanning calorimetry measurement. The solid-state phase transformation activation energy and Avrami exponent were calculated according to these measurements. The effects of deep cryogenic treatment on the solid-state phase transformation were investigated based on the measurement and calculation as well as the observation of alloy's microstructure. The results show that deep cryogenic treatment can increase the solid-phase transformation activation energy and shorten the phase transformation duration, which is helpful to the formation of fine grains in Cu-Al alloy.

  2. The solubility of hydrogen sulfide in aqueous N-methyldiethanolamine solutions

    NARCIS (Netherlands)

    Huttenhuis, P.J.G.; Agrawal, N.J.; Versteeg, G.F.

    2008-01-01

    In this work the electrolyte equation of state as developed previously for the system MDEA-H2O-CO2-CH4 was further developed for the system MDEA-H2O-H2S-CH4. With this thermodynamic equilibrium model the total solubility of hydrogen sulfide and the speciation in aqueous solutions of

  3. Actinide Solubility and Speciation in the WIPP [PowerPoint

    International Nuclear Information System (INIS)

    Reed, Donald T.

    2015-01-01

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repository concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.

  4. Actinide Solubility and Speciation in the WIPP [PowerPoint

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Donald T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-02

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repository concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.

  5. A numerical study of aerosol influence on mixed-phase stratiform clouds through modulation of the liquid phase

    Directory of Open Access Journals (Sweden)

    G. de Boer

    2013-02-01

    Full Text Available Numerical simulations were carried out in a high-resolution two-dimensional framework to increase our understanding of aerosol indirect effects in mixed-phase stratiform clouds. Aerosol characteristics explored include insoluble particle type, soluble mass fraction, influence of aerosol-induced freezing point depression and influence of aerosol number concentration. Simulations were analyzed with a focus on the processes related to liquid phase microphysics, and ice formation was limited to droplet freezing. Of the aerosol properties investigated, aerosol insoluble mass type and its associated freezing efficiency was found to be most relevant to cloud lifetime. Secondary effects from aerosol soluble mass fraction and number concentration also alter cloud characteristics and lifetime. These alterations occur via various mechanisms, including changes to the amount of nucleated ice, influence on liquid phase precipitation and ice riming rates, and changes to liquid droplet nucleation and growth rates. Alteration of the aerosol properties in simulations with identical initial and boundary conditions results in large variability in simulated cloud thickness and lifetime, ranging from rapid and complete glaciation of liquid to the production of long-lived, thick stratiform mixed-phase cloud.

  6. Continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics

    International Nuclear Information System (INIS)

    Chen, Haixia; Zhang, Jing

    2007-01-01

    We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones and is regarded as irreversible quantum cloning

  7. Development of clinical dosage forms for a poorly water-soluble drug II: formulation and characterization of a novel solid microemulsion preconcentrate system for oral delivery of a poorly water-soluble drug.

    Science.gov (United States)

    Li, Ping; Hynes, Sara R; Haefele, Thomas F; Pudipeddi, Madhu; Royce, Alan E; Serajuddin, Abu T M

    2009-05-01

    The solution of a poorly water-soluble drug in a liquid lipid-surfactant mixture, which served as a microemulsion preconcentrate, was converted into a solid form by incorporating it in a solid polyethylene glycol (PEG) matrix. The solid microemulsion preconcentrates thus formed consisted of Capmul PG8 (propylene glycol monocaprylate) as oil, Cremophor EL (polyoxyl 35 castor oil) as surfactant, and hydrophilic polymer PEG 3350 as solid matrix. The drug (aqueous solubility: 0.17 microg/mL at pH 1-8 and 25 degrees C) was dissolved in a melt of the mixture at 65-70 degrees C and then the hot solution was filled into hard gelatin capsules; the liquid gradually solidified upon cooling below 55 degrees C. The solid system was characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), confocal Raman microscopy (CRM), and the dispersion testing in water. It was confirmed that a solid microemulsion preconcentrate is a two-phase system, where clusters of crystalline PEG 3350 formed the solid structure (m.p. 55-60 degrees C) and the liquid microemulsion preconcentrate dispersed in between PEG 3350 crystals as a separate phase. The drug remained dissolved in the liquid phase. In vitro release testing showed that the preconcentrate dispersed readily in water forming a microemulsion with the drug dissolved in the oil particles (PEG 3350 did not interfere with the process of self-microemulsification.

  8. Uranyl Oxalate Solubility

    Energy Technology Data Exchange (ETDEWEB)

    Leturcq, G.; Costenoble, S.; Grandjean, S. [CEA Marcoule DEN/DRCP/SCPS/LCA - BP17171 - 30207 Bagnols sur Ceze cedex (France)

    2008-07-01

    The solubility of uranyl oxalate was determined at ambient temperature by precipitation in oxalic-nitric solutions, using an initial uranyl concentration of 0.1 mol/L. Oxalic concentration varied from 0.075 to 0.3 mol/L while nitric concentration ranged between 0.75 and 3 mol/L. Dissolution tests, using complementary oxalic-nitric media, were carried out for 550 hours in order to study the kinetic to reach thermodynamic equilibrium. Similar solubility values were reached by dissolution and precipitation. Using the results, it was possible to draw the solubility surface versus oxalic and nitric concentrations and to determine both the apparent solubility constant of UO{sub 2}C{sub 2}O{sub 4}, 3H{sub 2}O (Ks) and the apparent formation constant of the first uranyl-oxalate complex UO{sub 2}C{sub 2}O{sub 4} (log {beta}1), for ionic strengths varying between 1 and 3 mol/L. Ks and log {beta}1 values were found to vary from 1.9 10{sup -8} to 9.2 10{sup -9} and from 5.95 to 6.06, respectively, when ionic strength varied from 1 to 3 mol/L. A second model may fit our data obtained at an ionic strength of 3 mol/L suggesting as reported by Moskvin et al. (1959) that no complexes are formed for [H{sup +}] at 3 M. The Ks value would then be 1.3 10{sup -8}. (authors)

  9. Solid solubility of fission product and other transition elements in carbides and nitrides of uranium and plutonium

    International Nuclear Information System (INIS)

    Benedict, U.

    1979-01-01

    Solubility studies were made in some MX-Me systems (M:U or Pu; X: C or N; Me: fission product or other transition element) by X-ray diffraction and partly by microprobe determination of solute concentrations. Up to 23 m/o ZrC and 17 m/o TaC dissolved in the PuC phases of sintered PuC-ZrC and PuC-TaC samples; the lattice parameter/concentration relationships were derived. The relative lattice parameter difference (RLPD) between MXy and MeXy (y: ratio X/(M+Me)) was used as a solubility criterion. NaCl type monocarbides with RLPD's from -10.2% to +7.8% are completely miscible with UC and PuC. NaCl type mononitrides with RLPD's from -7.5% to 8.5% are completely miscible with UN and PuN. The solubility in the sesquicarbides increases with decreasing RLPD and becomes complete in Pu 2 C 3 at RLPD =+4%, and in U 2 C 3 at RLPD ca. +1.5%. Solubilities are predicted on the basis of these rules for the cases where no experimental results are available. A general review on the experimental and predicted solubilities is given. (orig.) [de

  10. The 480 deg. C and 405 deg. C isothermal sections of the phase diagram of Fe-Zn-Si ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jianhua [Institute of Materials Research, School of Mechanical Engineering, Xiangtan University, Hunan 411105 (China)]. E-mail: super_wang111@hotmail.com; Su Xuping [Institute of Materials Research, School of Mechanical Engineering, Xiangtan University, Hunan 411105 (China); Yin Fucheng [Institute of Materials Research, School of Mechanical Engineering, Xiangtan University, Hunan 411105 (China); Li Zhi [Institute of Materials Research, School of Mechanical Engineering, Xiangtan University, Hunan 411105 (China); Zhao Manxiu [Institute of Materials Research, School of Mechanical Engineering, Xiangtan University, Hunan 411105 (China)

    2005-08-16

    The 480 deg. C and 405 deg. C isothermal sections of the Fe-Zn-Si ternary phase diagram have been determined experimentally using scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry. The research of the work has concentrated on the Zn-rich corner, which is relevant to general galvanizing. The present studies have confirmed the existence of equilibrium state between the liquid, the {zeta} phase and the FeSi phase at the 480 deg. C isothermal section. There exist some changes in the phase relationships compared with the isothermal section at 450 deg. C. Experimental results indicate that Si solubility in all four Zn-Fe compounds is also limited at 480 deg. C and 405 deg. C.

  11. Enhancement of solubility and oral bioavailability of manidipine by formation of ternary solid dispersion with d-α-tocopherol polyethylene glycol 1000 succinate and copovidone.

    Science.gov (United States)

    Chamsai, Benchawan; Limmatvapirat, Sontaya; Sungthongjeen, Srisagul; Sriamornsak, Pornsak

    2017-12-01

    Low bioavailability of oral manidipine (MDP) is due to its low water solubility. The objective of this study was to increase the solubility and bioavailability of MDP by fabricating ternary solid dispersion (tSD) with d-α-tocopherol polyethyleneglycol-1000-succinate and copovidone. In this study, solid ternary phase diagram was applied in order to check the homogeneity of tSD prepared by melting and solidifying with dry ice. The physicochemical properties of different formulations were determined by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and hot stage microscopy. Their solubility, dissolution, stability and bioavailability were also investigated. The results demonstrated that tSD obtained from ternary phase diagram divided into homogeneous and non-homogeneous regions. In the homogenous region, the transparent characteristics of tSD was observed and considered as a glass solution, which have a higher MDP solubility than that in non-homogenous region. The hot stage microscopy, DSC and PXRD confirmed that solid dispersion was formed in which MDP was molecularly dispersed in the carriers, especially in the homogenous region of phase diagram. FTIR analysis demonstrated strong hydrogen bonding between amine groups of MDP and carbonyl groups of copovidone, which supported a higher solubility and dissolution of tSD. The pharmacokinetic study in Wistar rats showed that the tSD had the greatest effect on oral bioavailability. Immediate hypotensive effect of tSD was also observed in vivo. The improvement of stability, dissolution and oral bioavailability of MDP could be achieved by using tSD technique.

  12. Two-phase ozonation of chlorinated organics

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Freshour, A.; West, D.

    1995-01-01

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO 3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O 3 ), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O 3 ) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O 3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  13. Solubility behavior of narcotic analgesics in aqueous media: solubilities and dissociation constants of morphine, fentanyl, and sufentanil.

    Science.gov (United States)

    Roy, S D; Flynn, G L

    1989-02-01

    The pH dependence of the aqueous solubility of morphine, fentanyl, and sufentanil was investigated at 35 degrees C. Dissociation constants and corresponding pKa' values of the drugs were obtained from measured free-base solubilities (determined at high pH's) and the concentrations of saturated solutions at intermediate pH's. Morphine, fentanyl, and sufentanil exhibited pKa' values of 8.08, 8.99, and 8.51, respectively. Over the pH range of 5 to 12.5 the apparent solubilities are determined by the intrinsic solubility of the free base plus the concentration of ionized drug necessary to satisfy the dissociation equilibrium at a given pH. Consequently, the drug concentrations of saturated aqueous solutions fall off precipitously as the pH is raised and ionization is suppressed. Further, at low pH's the aqueous solubility of morphine increased in a linear fashion with increases in the molar strength of citric acid which was added to acidify the medium, suggesting the formation of a soluble morphine-citrate complex.

  14. Solubility studies of Np(IV)

    International Nuclear Information System (INIS)

    Zhang Yingjie; Yao Jun; Jiao Haiyang; Ren Lihong; Zhou Duo; Fan Xianhua

    2001-01-01

    The solubility of Np(IV) in simulated underground water and redistilled water has been measured with the variations of pH(6-12) and storage time (0-100 d) in the presence of reductant (Na 2 S 2 O 4 , metallic Fe). All experiments are performed in a low oxygen concentration glove box containing high purity Ar(99.99%), with an oxygen content of less than 5 x 10 -6 mol/mol. Experimental results show that the variation of pH in solution has little effect on the solubility of Np(IV) in the two kinds of water; the measured solubility of Np(IV) is affected by the composition of solution; with Na 2 S 2 O 4 as a reductant, the solubility of Np(IV) in simulated underground water is (9.23 +- 0.48) x 10 -10 mol/L, and that in redistilled water is (8.31 +- 0.35) x 10 -10 mol/L; with metallic Fe as a reductant, the solubility of Np(IV) in simulated underground water is (1.85 +- 0.56) x 10 -9 mol/L, and that in redistilled water is (1.48 +- 0.66) x 10 -9 mol/L

  15. Humidity-dependent phase state of SOA particles from biogenic and anthropogenic precursors

    Directory of Open Access Journals (Sweden)

    E. Saukko

    2012-08-01

    Full Text Available The physical phase state (solid, semi-solid, or liquid of secondary organic aerosol (SOA particles has important implications for a number of atmospheric processes. We report the phase state of SOA particles spanning a wide range of oxygen to carbon ratios (O / C, used here as a surrogate for SOA oxidation level, produced in a flow tube reactor by photo-oxidation of various atmospherically relevant surrogate anthropogenic and biogenic volatile organic compounds (VOCs. The phase state of laboratory-generated SOA was determined by the particle bounce behavior after inertial impaction on a polished steel substrate. The measured bounce fraction was evaluated as a function of relative humidity and SOA oxidation level (O / C measured by an Aerodyne high resolution time of flight aerosol mass spectrometer (HR-ToF AMS.

    The main findings of the study are: (1 biogenic and anthropogenic SOA particles are found to be amorphous solid or semi-solid based on the measured bounced fraction (BF, which was typically higher than 0.6 on a 0 to 1 scale. A decrease in the BF is observed for most systems after the SOA is exposed to relative humidity of at least 80% RH, corresponding to a RH at impaction of 55%. (2 Long-chain alkanes have a low BF (indicating a "liquid-like", less viscous phase particles at low oxidation levels (BF < 0.2 ± 0.05 for O / C = 0.1. However, BF increases substantially upon increasing oxidation. (3 Increasing the concentration of sulphuric acid (H2SO4 in solid SOA particles (here tested for longifolene SOA causes a decrease in BF levels. (4 In the majority of cases the bounce behavior of the various SOA systems did not show correlation with the particle O / C. Rather, the molar mass of the gas-phase VOC precursor showed a positive correlation with the resistance to the RH-induced phase change of the formed SOA particles.

  16. Solubility of Nd in brine

    International Nuclear Information System (INIS)

    Khalili, F.I.; Symeopoulos, V.; Chen, J.F.; Choppin, G.R.

    1994-01-01

    The solubility of Nd(III) has been measured at 23±3 C in a synthetic brine at pcH 6.4, 8.4, 10.4 and 12.4. The brine consisted predominantly of (Na+K)Cl and MgCl 2 with an ionic strength of 7.8 M (9.4 m) a solid compound of Nd(III) at each pcH was assigned from X-ray diffraction patterns. The log values of the experimental solubilities decrease fomr -3 at pcH 6.4 to -5.8 at pcH 8.4; at pcH 10.4 and 12.4 the solubility was below the detection limit of -7.5. The experimental solubility does not follow closely the variation with pcH estimated from modeling of the species in solution in equilibrium with the Nd solid using S.I.T. (orig.)

  17. Solid dispersions: a strategy for poorly aqueous soluble drugs and technology updates.

    Science.gov (United States)

    Alam, Mohd Aftab; Ali, Raisuddin; Al-Jenoobi, Fahad Ibrahim; Al-Mohizea, Abdullah M

    2012-11-01

    Present article reviews solid dispersion (SD) technologies and other patented inventions in the area of pharmaceutical SDs, which provide stable amorphous SDs. The review briefly compiles different techniques for preparing SDs, their applications, characterization of SDs, types of SDs and also elaborates the carriers used to prepare SDs. The advantages of recently introduced SD technologies such as RightSize(™), closed-cycle spray drying (CSD), Lidose® are summarized. Stability-related issues like phase separation, re-crystallization and methods to curb these problems are also discussed. A patented carrier-screening tool for predicting physical stability of SDs on the basis of drug-carrier interaction is explained. Applications of SD technique in controlled drug delivery systems and cosmetics are explored. Review also summarizes the carriers such as Soluplus®, Neusilin®, Solumer(TM) used to prepare stable amorphous SD. Binary and ternary SDs are found to be more stable and provide better enhancement of solubility or dissolution of poorly water-soluble drugs. The use of surfactants in the carrier system of SD is a recent trend. Surfactants and polymers provide stability against re-crystallization of SDs, surfactants also improve solubility and dissolution of drug.

  18. Thermodynamic approach to improving solubility prediction of co-crystals in comparison with individual poorly soluble components

    International Nuclear Information System (INIS)

    Perlovich, German L.

    2014-01-01

    Highlights: • Thermodynamic approach for solubility improvement of co-crystal was developed. • The graphical technique for estimation of co-crystal solubility was elaborated. • Hydration enthalpies of some drugs and amino acids were calculated. • Applicability/operability of the approach was exemplified by some drugs and amino acids. - Abstract: A novel thermodynamic approach to compare poorly soluble components (active pharmaceutical ingredient (API)) both in co-crystals and individual compounds was developed. An algorithm of choosing potential co-crystals with improved solubility characteristics on the basis of the known solvation/hydration API and co-former enthalpies is described. The applicability and operability of the algorithm were tested exemplified by some drugs and amino acids

  19. Polarization states encoded by phase modulation for high bit rate quantum key distribution

    International Nuclear Information System (INIS)

    Liu Xiaobao; Tang Zhilie; Liao Changjun; Lu Yiqun; Zhao Feng; Liu Songhao

    2006-01-01

    We present implementation of quantum cryptography with polarization code by wave-guide type phase modulator. At four different low input voltages of the phase modulator, coder encodes pulses into four different polarization states, 45 o , 135 o linearly polarized or right, left circle polarized, while the decoder serves as the complementary polarizers

  20. Partially coherent twisted states in arrays of coupled phase oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Omel' chenko, Oleh E.; Wolfrum, Matthias [Weierstrass Institute, Mohrenstrasse 39, 10117 Berlin (Germany); Laing, Carlo R. [INMS, Massey University, Private Bag 102-904 NSMC, Auckland (New Zealand)

    2014-06-15

    We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly “twisted” in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system.

  1. Partially coherent twisted states in arrays of coupled phase oscillators

    International Nuclear Information System (INIS)

    Omel'chenko, Oleh E.; Wolfrum, Matthias; Laing, Carlo R.

    2014-01-01

    We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly “twisted” in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system

  2. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5.

    Science.gov (United States)

    Kuminek, Gislaine; Cao, Fengjuan; Bahia de Oliveira da Rocha, Alanny; Gonçalves Cardoso, Simone; Rodríguez-Hornedo, Naír

    2016-06-01

    Besides enhancing aqueous solubilities, cocrystals have the ability to fine-tune solubility advantage over drug, supersaturation index, and bioavailability. This review presents important facts about cocrystals that set them apart from other solid-state forms of drugs, and a quantitative set of rules for the selection of additives and solution/formulation conditions that predict cocrystal solubility, supersaturation index, and transition points. Cocrystal eutectic constants are shown to be the most important cocrystal property that can be measured once a cocrystal is discovered, and simple relationships are presented that allow for prediction of cocrystal behavior as a function of pH and drug solubilizing agents. Cocrystal eutectic constant is a stability or supersatuation index that: (a) reflects how close or far from equilibrium a cocrystal is, (b) establishes transition points, and (c) provides a quantitative scale of cocrystal true solubility changes over drug. The benefit of this strategy is that a single measurement, that requires little material and time, provides a principled basis to tailor cocrystal supersaturation index by the rational selection of cocrystal formulation, dissolution, and processing conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Sílica solúvel em solos Soluble silica in soils

    Directory of Open Access Journals (Sweden)

    Bernardo van Raij

    1973-01-01

    Full Text Available Determinou-se a silica solúvel nos horizontes superficial e B2 de 44 perfis de solos do Estado de São Paulo. A extração da silica com solução 0,0025M de cloreto de cálcio evitou a dispersão dos solos e forneceu resultados em média apenas 8% menores do que a silica solúvel em água. Os resultados variaram de 2,2 a 92,2 ppm de SiO2. Verificou-se que, para solos com teores semelhantes de argila, os teores de silica solúvel foram maiores para solos com horizonte B textural, quando comparados com solos de horizonte B latossólico. Dentro dos agrupamentos de solos com horizonte B textural e horizonte B latossólico, os teores de silica solúvel foram maiores para os solos mais argilosos. Não foi observada relação entre silica solúvel e o pH dos solos.The extraction of soluble silica of soils with 0.0025M calcium chloride solution avoided dispersion of clay and results were on the average only 8% lower than water soluble silica. The results for surface and B2 horizons of 44 soil profiles of the State of São Paulo varied between 2.2 and 92.9 ppm of SiO2. For soils with similar clay contents, soluble silica was higher for soil with argillic B horizons as compared with soils with oxic B horizons. Within each group of soils, higher soluble silica results were associated with higher clay contents. Soluble silica apparently was not related to soil pH.

  4. Polymorphic phase transitions: Macroscopic theory and molecular simulation.

    Science.gov (United States)

    Anwar, Jamshed; Zahn, Dirk

    2017-08-01

    Transformations in the solid state are of considerable interest, both for fundamental reasons and because they underpin important technological applications. The interest spans a wide spectrum of disciplines and application domains. For pharmaceuticals, a common issue is unexpected polymorphic transformation of the drug or excipient during processing or on storage, which can result in product failure. A more ambitious goal is that of exploiting the advantages of metastable polymorphs (e.g. higher solubility and dissolution rate) while ensuring their stability with respect to solid state transformation. To address these issues and to advance technology, there is an urgent need for significant insights that can only come from a detailed molecular level understanding of the involved processes. Whilst experimental approaches at best yield time- and space-averaged structural information, molecular simulation offers unprecedented, time-resolved molecular-level resolution of the processes taking place. This review aims to provide a comprehensive and critical account of state-of-the-art methods for modelling polymorph stability and transitions between solid phases. This is flanked by revisiting the associated macroscopic theoretical framework for phase transitions, including their classification, proposed molecular mechanisms, and kinetics. The simulation methods are presented in tutorial form, focusing on their application to phase transition phenomena. We describe molecular simulation studies for crystal structure prediction and polymorph screening, phase coexistence and phase diagrams, simulations of crystal-crystal transitions of various types (displacive/martensitic, reconstructive and diffusive), effects of defects, and phase stability and transitions at the nanoscale. Our selection of literature is intended to illustrate significant insights, concepts and understanding, as well as the current scope of using molecular simulations for understanding polymorphic

  5. Solubility database for TILA-99

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, U.; Carlsson, T. [VTT Chemical Technology, Espoo (Finland); Kulmala, S.; Hakanen, M. [Helsinki Univ. (Finland). Lab. of Radiochemistry; Ahonen, L. [Geological Survey of Finland, Espoo (Finland)

    1998-11-01

    The safety assessment of spent fuel disposal requires solubility values for several elements estimated in Finnish disposal conditions. In Finland four sites (Haestholmen, Kivetty, Olkiluoto and Romuvaara) are investigated for the disposal of spent fuel. Haestholmen and OLkiluoto are onshore sites, while Kivetty and Romuvaara are inland sites. Based on groundwater analysis and classification according to salinity at the planned disposal depth mainly fresh groundwater is encountered at Kivetty and Romuvaara, while brackish and saline water-types are met at Haestholmen and Olkiluoto. Very saline, almost brine-type water ({approx}70 g/l) has been found in the deepest parts of the investigated bedrock at one of the sites (Olkiluoto). The reference waters and conditions were chosen according to the water-types. The considered reference conditions incorporated both the near- and far-field, and both oxidizing and reducing conditions were considered. In the reference conditions, the changes in solubilities were also estimated as caused by possible variations in the pH, carbonate content and redox conditions. Uranium, which is the main component of spent fuel is dealt with in a separate report presenting the solubility of uranium and spent fuel dissolution. In this work the solubilities of all the other elements of concern (Am, Cu, Nb, Np, Pa, Pd, Pu, Ra, Se, Sn, Tc, Zr, Cm, Ni, Sr, Th, C, Cl, Cs, Fe, Ho, I, and Sm) in the safety assessment are considered. Some discussion on the corrosion of the spent fuel canister is also presented. For the estimation of solubilities of the elements in question, literature data was collected that mainly comprised experimentally measured concentrations. The sources used were spent fuel experiments, concentrations measured in solubility measurements, natural concentrations and concentrations from natural analogue sites (especially Palmottu and Hyrkkoelae in Finland) as well as the concentrations measured at the Finnish investigation sites

  6. Solubility database for TILA-99

    International Nuclear Information System (INIS)

    Vuorinen, U.; Carlsson, T.; Kulmala, S.; Hakanen, M.

    1998-11-01

    The safety assessment of spent fuel disposal requires solubility values for several elements estimated in Finnish disposal conditions. In Finland four sites (Haestholmen, Kivetty, Olkiluoto and Romuvaara) are investigated for the disposal of spent fuel. Haestholmen and OLkiluoto are onshore sites, while Kivetty and Romuvaara are inland sites. Based on groundwater analysis and classification according to salinity at the planned disposal depth mainly fresh groundwater is encountered at Kivetty and Romuvaara, while brackish and saline water-types are met at Haestholmen and Olkiluoto. Very saline, almost brine-type water (∼70 g/l) has been found in the deepest parts of the investigated bedrock at one of the sites (Olkiluoto). The reference waters and conditions were chosen according to the water-types. The considered reference conditions incorporated both the near- and far-field, and both oxidizing and reducing conditions were considered. In the reference conditions, the changes in solubilities were also estimated as caused by possible variations in the pH, carbonate content and redox conditions. Uranium, which is the main component of spent fuel is dealt with in a separate report presenting the solubility of uranium and spent fuel dissolution. In this work the solubilities of all the other elements of concern (Am, Cu, Nb, Np, Pa, Pd, Pu, Ra, Se, Sn, Tc, Zr, Cm, Ni, Sr, Th, C, Cl, Cs, Fe, Ho, I, and Sm) in the safety assessment are considered. Some discussion on the corrosion of the spent fuel canister is also presented. For the estimation of solubilities of the elements in question, literature data was collected that mainly comprised experimentally measured concentrations. The sources used were spent fuel experiments, concentrations measured in solubility measurements, natural concentrations and concentrations from natural analogue sites (especially Palmottu and Hyrkkoelae in Finland) as well as the concentrations measured at the Finnish investigation sites. The

  7. Characterization of soluble microbial products and their fouling impacts in membrane bioreactors

    KAUST Repository

    Jiang, Tao; Kennedy, Maria Dolores; Schepper, Veerle D.; Nam, Seongnam; Nopens, Ingmar; Vanrolleghem, Peter A.; Amy, Gary L.

    2010-01-01

    Membrane bioreactor (MBR) fouling is not only influenced by the soluble microbial products (SMP) concentration but by their characteristics. Experiments of separate producing biomass associated products (BAP) and utilization associated products (UAP) allowed the separation of BAP and UAP effects from sludge water (SW). Thus, filtration of individual SMP components and further characterization becomes possible. Unstirred cell filtration was used to study fouling mechanisms and liquid chromatography-organic carbon detection (LC-OCD) and fluorescence excitation-emission matrix (EEM) were used to characterize the foulant. Generally, the SMP exhibiting characteristics of higher molecular weight, greater hydrophilicity and a more reduced state showed a higher retention percentage. However, the higher retention does not always yield higher fouling effects. The UAP filtration showed the highest specific cake resistance and pore blocking resistance attributed to their higher percentage of low molecular weight molecules, although their retention percentage was lower than the SW and BAP filtration. The UAP produced in the cell proliferation phase appeared to have the highest fouling potential. © 2010 American Chemical Society.

  8. Characterization of soluble microbial products and their fouling impacts in membrane bioreactors

    KAUST Repository

    Jiang, Tao

    2010-09-01

    Membrane bioreactor (MBR) fouling is not only influenced by the soluble microbial products (SMP) concentration but by their characteristics. Experiments of separate producing biomass associated products (BAP) and utilization associated products (UAP) allowed the separation of BAP and UAP effects from sludge water (SW). Thus, filtration of individual SMP components and further characterization becomes possible. Unstirred cell filtration was used to study fouling mechanisms and liquid chromatography-organic carbon detection (LC-OCD) and fluorescence excitation-emission matrix (EEM) were used to characterize the foulant. Generally, the SMP exhibiting characteristics of higher molecular weight, greater hydrophilicity and a more reduced state showed a higher retention percentage. However, the higher retention does not always yield higher fouling effects. The UAP filtration showed the highest specific cake resistance and pore blocking resistance attributed to their higher percentage of low molecular weight molecules, although their retention percentage was lower than the SW and BAP filtration. The UAP produced in the cell proliferation phase appeared to have the highest fouling potential. © 2010 American Chemical Society.

  9. Overview of milling techniques for improving the solubility of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Zhi Hui Loh

    2015-07-01

    Full Text Available Milling involves the application of mechanical energy to physically break down coarse particles to finer ones and is regarded as a “top–down” approach in the production of fine particles. Fine drug particulates are especially desired in formulations designed for parenteral, respiratory and transdermal use. Most drugs after crystallization may have to be comminuted and this physical transformation is required to various extents, often to enhance processability or solubility especially for drugs with limited aqueous solubility. The mechanisms by which milling enhances drug dissolution and solubility include alterations in the size, specific surface area and shape of the drug particles as well as milling-induced amorphization and/or structural disordering of the drug crystal (mechanochemical activation. Technology advancements in milling now enable the production of drug micro- and nano-particles on a commercial scale with relative ease. This review will provide a background on milling followed by the introduction of common milling techniques employed for the micronization and nanonization of drugs. Salient information contained in the cited examples are further extracted and summarized for ease of reference by researchers keen on employing these techniques for drug solubility and bioavailability enhancement.

  10. Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic Tardigrade improve osmotic tolerance of human cells.

    Directory of Open Access Journals (Sweden)

    Sae Tanaka

    Full Text Available Tardigrades are able to tolerate almost complete dehydration through transition to a metabolically inactive state, called "anhydrobiosis". Late Embryogenesis Abundant (LEA proteins are heat-soluble proteins involved in the desiccation tolerance of many anhydrobiotic organisms. Tardigrades, Ramazzottius varieornatus, however, express predominantly tardigrade-unique heat-soluble proteins: CAHS (Cytoplasmic Abundant Heat Soluble and SAHS (Secretory Abundant Heat Soluble proteins, which are secreted or localized in most intracellular compartments, except the mitochondria. Although mitochondrial integrity is crucial to ensure cellular survival, protective molecules for mitochondria have remained elusive. Here, we identified two novel mitochondrial heat-soluble proteins, RvLEAM and MAHS (Mitochondrial Abundant Heat Soluble, as potent mitochondrial protectants from Ramazzottius varieornatus. RvLEAM is a group3 LEA protein and immunohistochemistry confirmed its mitochondrial localization in tardigrade cells. MAHS-green fluorescent protein fusion protein localized in human mitochondria and was heat-soluble in vitro, though no sequence similarity with other known proteins was found, and one region was conserved among tardigrades. Furthermore, we demonstrated that RvLEAM protein as well as MAHS protein improved the hyperosmotic tolerance of human cells. The findings of the present study revealed that tardigrade mitochondria contain at least two types of heat-soluble proteins that might have protective roles in water-deficient environments.

  11. A New 5-Phase Equation of State for Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Coe, Joshua Damon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Gammel, J. Tinka [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division

    2016-09-06

    We describe the development of SESAME 7835, a new tabular equation of state (EOS) for carbon containing the diamond, bc8, simple cubic, simple hexagonal, and liquid/plasma phases. We compare the EOS against a wide variety of experimental data and simulation results, including static compression, dynamic compression, specific heat, and thermal expansion. To the extent that the reference data agree amongst themselves, the results are satisfactory in all cases.

  12. OARSI Clinical Trials Recommendations: Soluble biomarker assessments in clinical trials in osteoarthritis.

    Science.gov (United States)

    Kraus, V B; Blanco, F J; Englund, M; Henrotin, Y; Lohmander, L S; Losina, E; Önnerfjord, P; Persiani, S

    2015-05-01

    The objective of this work was to describe requirements for inclusion of soluble biomarkers in osteoarthritis (OA) clinical trials and progress toward OA-related biomarker qualification. The Guidelines for Biomarkers Working Group, representing experts in the field of OA biomarker research from both academia and industry, convened to discuss issues related to soluble biomarkers and to make recommendations for their use in OA clinical trials based on current knowledge and anticipated benefits. This document summarizes current guidance on use of biomarkers in OA clinical trials and their utility at five stages, including preclinical development and phase I to phase IV trials. As demonstrated by this summary, biomarkers can provide value at all stages of therapeutics development. When resources permit, we recommend collection of biospecimens in all OA clinical trials for a wide variety of reasons but in particular, to determine whether biomarkers are useful in identifying those individuals most likely to receive clinically important benefits from an intervention; and to determine whether biomarkers are useful for identifying individuals at earlier stages of OA in order to institute treatment at a time more amenable to disease modification. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. Pluronic-Functionalized Silica-Lipid Hybrid Microparticles: Improving the Oral Delivery of Poorly Water-Soluble Weak Bases.

    Science.gov (United States)

    Rao, Shasha; Richter, Katharina; Nguyen, Tri-Hung; Boyd, Ben J; Porter, Christopher J H; Tan, Angel; Prestidge, Clive A

    2015-12-07

    A Pluronic-functionalized silica-lipid hybrid (Plu-SLH) microparticle system for the oral delivery of poorly water-soluble, weak base drugs is reported for the first time. A highly effective Plu-SLH microparticle system was composed of Labrasol as the lipid phase, Pluronic F127 as the polymeric precipitation inhibitor (PPI), and silica nanoparticles as the solid carrier. For the model drug cinnarizine (CIN), the Plu-SLH delivery system was shown to offer significant biopharmaceutical advantages in comparison with unformulated drug and drug in the silica-lipid hybrid (SLH) system. In vitro two-phase dissolution studies illustrated significantly reduced pH provoked CIN precipitation and an 8- to 14-fold improvement in the extent of dissolution in intestinal conditions. In addition, under simulated intestinal digesting conditions, the Plu-SLH provided approximately three times more drug solubilization than the SLH. Oral administration in rats resulted in superior bioavailability for Plu-SLH microparticles, i.e., 1.6- and 2.1-fold greater than the SLH and the unformulated CIN, respectively. A physical mixture of Pluronic and SLH (Plu&SLH), having the same composition as Plu-SLH, was also evaluated, but showed no significant increase in CIN absorption when compared to unmodified CIN or SLH. This work represents the first study where different methods of incorporating PPI to formulate solid-state lipid-based formulations were compared for the impact on the biopharmaceutical performance. The data suggest that the novel physicochemical properties and structure of the fabricated Plu-SLH microparticle delivery system play an important role in facilitating the synergistic advantage of Labrasol and Pluronic F127 in preventing drug precipitation, and the Plu-SLH provides efficient oral delivery of poorly water-soluble weak bases.

  14. Noble gases solubility in water

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Fernandez Prini, Roberto.

    1980-07-01

    The available experimental data of solubility of noble gases in water for temperatures smaller than 330 0 C have been critically surveyed. Due to the unique structure of the solvent, the solubility of noble gases in water decreases with temperature passing through a temperature of minimum solubility which is different for each gas, and then increases at higher temperatures. As aresult of the analysis of the experimental data and of the features of the solute-solvent interaction, a generalized equation is proposed which enables thecalculation of Henry's coefficient at different temperatures for all noble gases. (author) [es

  15. Equation of state, phase stability, and phase transformations of uranium-6 wt. % niobium under high pressure and temperature

    Science.gov (United States)

    Zhang, Jianzhong; Vogel, Sven; Brown, Donald; Clausen, Bjorn; Hackenberg, Robert

    2018-05-01

    In-situ time-of-flight neutron diffraction experiments were conducted on the uranium-niobium alloy with 6 wt. % Nb (U-6Nb) at pressures up to 4.7 GPa and temperatures up to 1073 K. Upon static compression at room temperature, the monoclinic structure of U-6Nb (α″ U-6Nb) remains stable up to the highest experimental pressure. Based on the pressure-volume measurements at room temperature, the least-squares fit using the finite-strain equation of state (EOS) yields an isothermal bulk modulus of B0 = 127 ± 2 GPa for the α″-phase of U-6Nb. The calculated zero-pressure bulk sound speed from this EOS is 2.706 ± 0.022 km/s, which is in good agreement with the linear extrapolation of the previous Hugoniot data above 12 GPa for α″ U-6Nb, indicating that the dynamic response under those shock-loading conditions is consistent with the stabilization of the initial monoclinic phase of U-6Nb. Upon heating at ambient and high pressures, the metastable α″ U-6Nb exhibits complex transformation paths leading to the diffusional phase decomposition, which are sensitive to applied pressure, stress state, and temperature-time path. These findings provide new insight into the behavior of atypical systems such as U-Nb and suggest that the different U-Nb phases are separated by rather small energies and hence highly sensitive to compositional, thermal, and mechanical perturbations.

  16. Quantum phase transitions in matrix product states of one-dimensional spin-1 chains

    International Nuclear Information System (INIS)

    Zhu Jingmin

    2014-01-01

    We present a new model of quantum phase transitions in matrix product systems of one-dimensional spin-1 chains and study the phases coexistence phenomenon. We find that in the thermodynamic limit the proposed system has three different quantum phases and by adjusting the control parameters we are able to realize any phase, any two phases equal coexistence and the three phases equal coexistence. At every critical point the physical quantities including the entanglement are not discontinuous and the matrix product system has long-range correlation and N-spin maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of certain directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-spin maximal entanglement. (author)

  17. Solubility of xenon in amino-acid solutions. II. Nine less-soluble amino acids

    Science.gov (United States)

    Kennan, Richard P.; Himm, Jeffrey F.; Pollack, Gerald L.

    1988-05-01

    Ostwald solubility (L) of xenon gas, as the radioisotope 133Xe, has been measured as a function of solute concentration, at 25.0 °C, in aqueous solutions of nine amino acids. The amino-acid concentrations investigated covered much of their solubility ranges in water, viz., asparagine monohydrate (0-0.19 M), cysteine (0-1.16 M), glutamine (0-0.22 M), histidine (0-0.26 M), isoleucine (0-0.19 M), methionine (0-0.22 M), serine (0-0.38 M), threonine (0-1.4 M), and valine (0-0.34 M). We have previously reported solubility results for aqueous solutions of six other, generally more soluble, amino acids (alanine, arginine, glycine, hydroxyproline, lysine, and proline), of sucrose and sodium chloride. In general, L decreases approximately linearly with increasing solute concentration in these solutions. If we postulate that the observed decreases in gas solubility are due to hydration, the results under some assumptions can be used to calculate hydration numbers (H), i.e., the number of H2O molecules associated with each amino-acid solute molecule. The average values of hydration number (H¯) obtained at 25.0 °C are 15.3±1.5 for asparagine, 6.8±0.3 for cysteine, 11.5±1.1 for glutamine, 7.3±0.7 for histidine, 5.9±0.4 for isoleucine, 10.6±0.8 for methionine, 11.2±1.3 for serine, 7.7± 1.0 for threonine, and 6.6±0.6 for valine. We have also measured the temperature dependence of solubility L(T) from 5-40 °C for arginine, glycine, and proline, and obtained hydration numbers H¯(T) in this range. Between 25-40 °C, arginine has an H¯ near zero. This may be evidence for an attractive interaction between xenon and arginine molecules in aqueous solution.

  18. Ground-state phase diagram of an (S, S') = (1, 2) spin-alternating chain with competing single-ion anisotropies

    International Nuclear Information System (INIS)

    Tonegawa, T; Okamoto, K; Sakai, T; Kaburagi, M

    2009-01-01

    Employing various numerical methods, we determine the ground-state phase diagram of an (S, S') = (1, 2) spin-alternating chain with antiferromagnetic nearest-neighboring exchange interactions and uniaxial single-ion anisotropies. The resulting phase diagram consists of eight kinds of phases including two phases which accompany the spontaneous breaking of the translational symmetry and a ferrimagnetic phase in which the ground-state magnetization varies continuously with the uniaxial single-ion anisotropy constants for the S=1 and S =2 spins. The appearance of these three phases is attributed to the competition between the uniaxial single-ion anisotropies of both spins.

  19. Solubility of methane and carbon dioxide in ethylene glycol at pressures up to 14 MPa and temperatures ranging from (303 to 423) K

    International Nuclear Information System (INIS)

    Galvao, A.C.; Francesconi, A.Z.

    2010-01-01

    This work reports solubility data of methane and carbon dioxide in ethylene glycol and the Henry's law constant of each solute in the studied solvent at saturation pressure. The measurements were performed at (303, 323, 373, 398, and 423.15) K and pressures up to 6.3 MPa for mixtures containing carbon dioxide and pressures up to 13.7 MPa for mixtures containing methane. The experiments were performed in an autoclave type phase equilibrium apparatus using the total pressure method (synthetic method). All investigated systems show an increase of gas solubility with the increase of pressure. A decrease of carbon dioxide solubility with the increase of temperature and an increase of methane solubility with the increase of temperature was observed. From the variation of solubility with temperature, the partial molar enthalpy, and entropy change are calculated.

  20. Urea-temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding

    Science.gov (United States)

    Tischer, Alexander; Auton, Matthew

    2013-01-01

    We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea–temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea–temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of and that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. PMID:23813497

  1. Hydrothermal interactions of cesium and strontium phases from spent unreprocessed fuel with basalt phases and basalts

    International Nuclear Information System (INIS)

    Komarneni, S.; Scheetz, B.E.; McCarthy, G.J.; Coons, W.E.

    1980-03-01

    This investigation is a segment of an extensive research program aimed at investigating the feasibility of long-term, subsurface storage of commercial nuclear waste. Specifically, it is anticipated that the waste will be housed in a repository mined from the basalt formations which lie beneath the Hanford Site. The elements monitored during the present experiments were Cs and Sr. These two elements represent significant biohazards if released from a repository and are the major heat producing radionuclides present in commercial radioactive waste. Several Cs phases and/or solutions were reacted with either isolated basalt phases or bulk-rock basalt, and the resulting solids and solutions were analyzed. The hydrothermal reactivity of SrZrO 3 , which is believed to be a probable host for Sr in SFE was investigated. While so far no evidence exists which indicates that Sr is present in a water soluble phase in spent fuel elements (SFE), detailed investigation of a potential hazard is warranted. This investigation has determined that some Cs compounds likely to be stable components of spent fuel (i.e., CsOH, Cs 2 MoO 4 , Cs 2 U 2 O 7 ) have significant hydrothermal solubilities. These solubilities are greatly decreased in the presence of basalt and/or basalt minerals. The decrease in the amount of Cs in solution results from reactions which form pollucite and/or CsAlSiO 4 , with the production of pollucite exceeding that of CsAlSiO 4 . Dissolution of β-Cs 2 U 2 O 7 implies solubilizing a uranium species to an undetermined extent. The production of schoepite (UO 3 .3H 2 O) during some experiments containing basalt phases, indicates a tendency to oxidize U 4+ to U 6+ . When diopside (nominally CaMgSi 2 O 6 ) and β-Cs 2 U 2 O 7 were hydrothermally reacted, at 300 0 C both UO 2 and UO 3 .3H 2 O were produced. Experiments on SrZrO 3 show it to be an unreactive phase

  2. Determination of soluble protein contents from RVNRL

    International Nuclear Information System (INIS)

    Wan Manshol Wan Zin; Nurulhuda Othman

    1996-01-01

    This project was carried out to determine the soluble protein contents on RVNRL film vulcanisates, with respect to the RVNRL storage time, gamma irradiation dose absorbed by the latex and the effect of different leaching time and leaching conditions. These three factors are important in the hope to determine the best possible mean of minimizing the soluble protein contents in products made from RVNRL. Within the nine months storage period employed in the study, the results show that, the longer the storage period the less the soluble protein extracted from the film samples. Gamma irradiation dose absorbed by the samples, between 5.3 kGy to 25.2 kGy seems to influence the soluble protein contents of the RVNRL films vulcanisates. The higher the dose the more was the soluble protein extracted from the film samples. At an absorbed dose of 5.3 kGy and 25.2 kGy, the soluble contents were 0. 198 mg/ml and 0.247 mg/ml respectively. At a fixed leaching temperature, the soluble proteins increases with leaching time and at a fixed leaching time, the soluble proteins increases with leaching temperature. ne highest extractable protein contents was determined at a leaching time of 10 minutes and leaching temperature of 90'C The protein analysis were done by using Modified Lowry Method

  3. Overcoming the solubility limit with solubility-enhancement tags: successful applications in biomolecular NMR studies

    International Nuclear Information System (INIS)

    Zhou Pei; Wagner, Gerhard

    2010-01-01

    Although the rapid progress of NMR technology has significantly expanded the range of NMR-trackable systems, preparation of NMR-suitable samples that are highly soluble and stable remains a bottleneck for studies of many biological systems. The application of solubility-enhancement tags (SETs) has been highly effective in overcoming solubility and sample stability issues and has enabled structural studies of important biological systems previously deemed unapproachable by solution NMR techniques. In this review, we provide a brief survey of the development and successful applications of the SET strategy in biomolecular NMR. We also comment on the criteria for choosing optimal SETs, such as for differently charged target proteins, and recent new developments on NMR-invisible SETs.

  4. Solubility of Tc(IV) oxides

    International Nuclear Information System (INIS)

    Liu, D.J.; Fan, X.H.

    2005-01-01

    Full text of publication follows: The deep geological disposal of the high level radioactive wastes is expected to be a safer disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 .nH 2 O. The solubility of Tc(IV) is used as a source term in performance assessment of radioactive waste repository. Technetium oxide was prepared by reduction of a technetate solution with Sn 2+ . The solubility of Tc(IV) oxide has been determined in simulated groundwater and re-distilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(IV) oxide were studied. The concentration of total technetium and Tc(IV) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(IV) in simulated groundwater and re-distilled water is about (1.49∼1.86) x 10 -9 mol/(L.d) under aerobic conditions, but Tc(IV) in simulated groundwater and re-distilled water is not oxidized under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(IV) oxide in simulated groundwater and re-distilled water is equal on the whole after centrifugation or ultrafiltration. The solubility of Tc(IV) oxide decreases with the increase of pH at pH 10 and is pH independent in the range 2 -8 to 10 -9 mol/L at 2 3 2- concentration. These data could be used to estimate the Tc(IV) solubility for cases where solubility limits transport of technetium in reducing environments of high-level waste repositories. (authors)

  5. Ternary system of dihydroartemisinin with hydroxypropyl-β-cyclodextrin and lecithin: simultaneous enhancement of drug solubility and stability in aqueous solutions.

    Science.gov (United States)

    Wang, Dan; Li, Haiyan; Gu, Jingkai; Guo, Tao; Yang, Shuo; Guo, Zhen; Zhang, Xueju; Zhu, Weifeng; Zhang, Jiwen

    2013-09-01

    The purpose of this study was to simultaneously improve the solubility and stability of dihydroartemisinin (DHA) in aqueous solutions by a ternary cyclodextrin system comprised of DHA, hydroxypropyl-β-cyclodextrin (HP-β-CD) and a third auxiliary substance. Solubility and phase solubility studies were carried out to evaluate the solubilizing efficiency of HP-β-CD in association with various auxiliary substances. Then, the solid binary (DHA-HP-β-CD or DHA-lecithin) and ternary systems were prepared and characterized by Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and power X-ray diffraction (PXRD). The effect of the ternary system on the solubility, dissolution and stability of DHA in aqueous solutions was also investigated. As a result, the soybean lecithin was found to be the most promising third component in terms of solubility enhancement. For the solid characterization, the disappearance of the drug crystallinity indicated the formation of new solid phases, implicating the formation of the ternary system. The dissolution rate of the solid ternary system was much faster than that of the drug alone and binary systems. Importantly, compared with binary systems, the ternary system showed a significant improvement in the stability of DHA in Hank's balanced salt solutions (pH 7.4). The solubility and stability of DHA in aqueous solutions were simultaneously enhanced by the ternary system, which might be attributed to the possible formation of a ternary complex. For the ternary interactions, results of molecular docking studies further indicated that the lecithin covered the top of the wide rim of HP-β-CD and surrounded around the peroxide bridging of DHA, providing the possibility for the ternary complex formation. In summary, the ternary system prepared in our study, with simultaneous enhancement of DHA solubility and stability in aqueous solutions, might have an important pharmaceutical potential in the development of a better

  6. Comparison of lead removal behaviors and generation of water-soluble sodium compounds in molten lead glass under a reductive atmosphere

    Science.gov (United States)

    Okada, Takashi; Nishimura, Fumihiro; Xu, Zhanglian; Yonezawa, Susumu

    2018-06-01

    We propose a method of reduction-melting at 1000 °C, using a sodium-based flux, to recover lead from cathode-ray tube funnel glass. To recover the added sodium from the treated glass, we combined a reduction-melting process with a subsequent annealing step at 700 °C, generating water-soluble sodium compounds in the molten glass. Using this combined process, this study compares lead removal behavior and the generation of water-soluble sodium compounds (sodium silicates and carbonates) in order to gain fundamental information to enhance the recovery of both lead and sodium. We find that lead removal increases with increasing melting time, whereas the generation efficiency of water-soluble sodium increases and decreases periodically. In particular, near 90% lead removal, the generation of water-soluble sodium compounds decreased sharply, increasing again with the prolongation of melting time. This is due to the different crystallization and phase separation efficiencies of water-soluble sodium in molten glass, whose structure continuously changes with lead removal. Previous studies used a melting time of 60 min in the processes. However, in this study, we observe that a melting time of 180 min enhances the water-soluble sodium generation efficiency.

  7. Numerical method for three dimensional steady-state two-phase flow calculations

    International Nuclear Information System (INIS)

    Raymond, P.; Toumi, I.

    1992-01-01

    This paper presents the numerical scheme which was developed for the FLICA-4 computer code to calculate three dimensional steady state two phase flows. This computer code is devoted to steady state and transient thermal hydraulics analysis of nuclear reactor cores 1,3 . The first section briefly describes the FLICA-4 flow modelling. Then in order to introduce the numerical method for steady state computations, some details are given about the implicit numerical scheme based upon an approximate Riemann solver which was developed for calculation of flow transients. The third section deals with the numerical method for steady state computations, which is derived from this previous general scheme and its optimization. We give some numerical results for steady state calculations and comparisons on required CPU time and memory for various meshing and linear system solvers

  8. Effect of composition of simulated intestinal media on the solubility of poorly soluble compounds investigated by design of experiments

    DEFF Research Database (Denmark)

    Madsen, Cecilie Maria; Feng, Kung-I; Leithead, Andrew

    2018-01-01

    The composition of the human intestinal fluids varies both intra- and inter-individually. This will influence the solubility of orally administered drug compounds, and hence, the absorption and efficacy of compounds displaying solubility limited absorption. The purpose of this study was to assess...... studies feasible compared to single SIF solubility studies. Applying this DoE approach will lead to a better understanding of the impact of intestinal fluid composition on the solubility of a given drug compound....

  9. Spectroscopy, modeling and computation of metal chelate solubility in supercritical CO2. 1998 annual progress report

    International Nuclear Information System (INIS)

    Brennecke, J.F.; Chateauneuf, J.E.; Stadtherr, M.A.

    1998-01-01

    'This report summarizes work after 1 year and 8 months (9/15/96-5/14/98) of a 3 year project. Thus far, progress has been made in: (1) the measurement of the solubility of metal chelates in SC CO 2 with and without added cosolvents, (2) the spectroscopic determination of preferential solvation of metal chelates by cosolvents in SC CO 2 solutions, and (3) the development of a totally reliable computational technique for phase equilibrium computations. An important factor in the removal of metals from solid matrices with CO 2 /chelate mixtures is the equilibrium solubility of the metal chelate complex in the CO 2 .'

  10. Phase relationships in the Er-Mn-Ti ternary system at 773 K

    International Nuclear Information System (INIS)

    Liu Jingqi; Wang Xina; Tang Mengqi; Su Kunpeng; Yang Xiaomao; Li Chunhui; Li Xueqiang

    2009-01-01

    The Phase relationship in the Er-Mn-Ti ternary system at 773 K has been investigated by X-ray powder diffraction analysis with the aid of differential thermal analysis and optical microanalysis techniques in this work. The existence of eight binary compounds Mn 15 Ti 85, αMnTi, βMnTi, Mn 2 Ti, Mn 5 Ti, ErMn 12, Er 6 Mn 23 and ErMn 2 has been confirmed at 773 K in this system. The maximum solid solubility of Ti in Mn is about 8 at%Ti. The homogeneity range of Mn 2 Ti extends from about 31 at% to 39 at% Ti. The maximum solid solubility of Er in Mn 2 Ti phase is about less than 1 at% Er. No ternary compounds were found in this ternary system at 773K. At 773 K, the isothermal section of phase diagram of Er-Mn-Ti ternary system consists of 11 single-phase regions, 19 two-phase regions and 9 three-phase regions.

  11. pH-metric solubility. 3. Dissolution titration template method for solubility determination.

    Science.gov (United States)

    Avdeef, A; Berger, C M

    2001-12-01

    The main objective of this study was to develop an effective potentiometric saturation titration protocol for determining the aqueous intrinsic solubility and the solubility-pH profile of ionizable molecules, with the specific aim of overcoming incomplete