WorldWideScience

Sample records for state laser materials

  1. Ultrafast laser spectroscopy in complex solid state materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianqi [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  2. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  3. Equation of state study of Laser Megajoule capsules ablator materials

    International Nuclear Information System (INIS)

    Colin-Lalu, Pierre

    2016-01-01

    This PhD thesis enters the field of inertial confinement fusion studies. In particular, it focuses on the equation of state tables of ablator materials synthesized on LMJ capsules. This work is indeed aims at improving the theoretical models introduced into the equation of state tables. We focused in the Mbar-eV pressure-temperature range because it can be access on kJ-scale laser facilities.In order to achieve this, we used the QEOS model, which is simple to use, configurable, and easily modifiable.First, quantum molecular dynamics (QMD) simulations were performed to generate cold compression curve as well as shock compression curves along the principal Hugoniot. Simulations were compared to QEOS model and showed that atomic bond dissociation has an effect on the compressibility. Results from these simulations are then used to parametrize the Grueneisen parameter in order to generate a tabulated equation of state that includes dissociation. It allowed us to show its influence on shock timing in a hydrodynamic simulation.Second, thermodynamic states along the Hugoniot were measured during three experimental campaigns upon the LULI2000 and GEKKO XII laser facilities. Experimental data confirm QMD simulations.This study was performed on two ablator materials which are an undoped polymer CHO, and a silicon-doped polymer CHOSi. Results showed universal shock compression properties. (author) [fr

  4. New infrared solid state laser materials for CALIOPE

    International Nuclear Information System (INIS)

    DeLoach, L.D.; Page, R.H.; Wilke, G.D.

    1994-01-01

    Tunable infrared laser light may serve as a useful means by which to detect the presence of the targeted effluents. Since optical parametric oscillators (OPOs) have proven to be a versatile method of generating coherent light from the ultraviolet to the mid-infrared, this technology is a promising choice by which to service the CALIOPE applications. In addition, since some uncertainty remains regarding the precise wavelengths and molecules that will be targeted, the deployment of OPOs retains the greatest amount of wavelength flexibility. Another approach that the authors are considering is that of generating tunable infrared radiation directly with a diode-pumped solid state laser (DPSSL). One important advantage of a DPSSL is that it offers flexible pulse format modes that can be tailored to meet the needs of a particular application and target molecule. On the other hand, direct generation by a tunable DPSSL will generally be able to cover a more limited wavelength range than is possible with OPO technology. In support of the CALIOPE objectives the authors are exploring the potential for laser action among a class of materials comprised of transition metal-doped zinc chalcogenide crystals (i.e., ZnS, ZnSe and ZnTe). The Cr 2+ , Co 2+ and Ni 2+ dopants were selected as the most favorable candidates, on the basis of their documented spectral properties in the scientific literature. Thus far, the authors have characterized the absorption and emission properties of these ions in the ZnS and ZnSe crystals. The absorption spectra are used to determine the preferred wavelength at which the crystal should be pumped, while the emission spectra reveal the extent of the tuning range potentially offered by the material. In addition, measurements of the emission lifetime as a function of temperature turn out to be quite useful, since this data is suggestive of the room temperature emission yield

  5. Laser Spectroscopy Characterization of Materials for Frequency Agile Solid State Laser Systems

    Science.gov (United States)

    1991-03-15

    Received 30 November 1987; revised manuscript received 29 January 1988) Single crystals of lanthanum lutetium gallium garnet (LaLuGaG) were grown by...group may be realized it gar- dleternte itf other materials can be found with spectral nets formed with lanthanum occupying tile dodecaliedrial ,1nl...array-pumped Nd: YAG and Nd: Lu: YAG lasers," Opt. inates and gallates with the malilite structure," in Tunable Lett. 14, 116-118 (1989). Solid State

  6. Measurement of product of solid state laser materials by an ...

    Indian Academy of Sciences (India)

    In this method a microchip laser is formed by keeping a small piece of the sample in plane–plane resonator and a diode laser (808 nm) is used for pumping. The pump power induced thermal lensing effect is used to make the cavity stable. The cavity mode area is estimated by measuring the thermal lens focal length at the ...

  7. Laser material processing

    CERN Document Server

    Steen, William

    2010-01-01

    This text moves from the basics of laser physics to detailed treatments of all major materials processing techniques for which lasers are now essential. New chapters cover laser physics, drilling, micro- and nanomanufacturing and biomedical laser processing.

  8. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid

    2014-01-01

    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  9. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  10. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  11. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  12. Laser materials development by means of a solid-state bonding method

    International Nuclear Information System (INIS)

    Sugiyama, Akira

    2011-01-01

    This paper reviews laser materials development via a bonding method without adhesives. Instead of conventional chemical etching, a dry etching technique using an argon beam has been newly developed for the bonding method. This method meets the requirement for the use of optical materials. We succeeded in the fabrication of a composite laser crystal with good heat conductivity by bonding two kinds of crystals; one is neodymium-doped YVO 4 crystal (Nd:YVO 4 ) and the other is its host crystal YVO 4 . In the comparison of the laser performance between the normal and composite crystal, the composite one shows the good lasing capability of increasing laser output without fracture of the crystal due to thermal stress which appeared in the normal one. (author)

  13. Lasers in materials processing

    International Nuclear Information System (INIS)

    Davis, J.I.; Rockower, E.B.

    1981-01-01

    A status report on the uranium Laser Isotope Separation (LIS) Program at the Lawrence Livermore National Laboratory is presented. Prior to this status report, process economic analysis is presented so as to understand how the unique properties of laser photons can be best utilized in the production of materials and components despite the high cost of laser energy. The characteristics of potential applications that are necessary for success are identified, and those factors that have up to now frustrated attempts to find commercially viable laser induced chemical and physical process for the production of new or existing materials are pointed out

  14. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1999-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, laser materials, and nonlinear crystals. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  15. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Synthesis of bulk SiO2 : MxOy materials in a steady-state laser plume

    Science.gov (United States)

    Lebedev, V. F.

    1997-01-01

    An analysis was made of the conditions of existence of a two-component steady-state laser plume in atmospheric air. Such a plume is used in single-stage synthesis of bulk molten materials belonging to the SiO2 : MxOy system. Targets of the SiO2 : M type (metal foil and a silica glass rod) and doping elements with boiling points below and above the boiling point of silica glass are discussed. The regimes and efficiency of steady-state transfer of the dopants are considered. The efficiency of transfer of metal oxides during growth of samples with the aid of a cw CO2 laser is reported to be ~0.05, 0.4, and 0.75g min-1 kW-1 when the mass dopant concentration is ~8%, 20%, and 60% for the oxides of Ti, Cu, and Ni, respectively.

  16. Solar-pumped solid state Nd lasers

    Science.gov (United States)

    Williams, M. D.; Zapata, L.

    1985-01-01

    Solid state neodymium lasers are considered candidates for space-based polar-pumped laser for continuous power transmission. Laser performance for three different slab laser configurations has been computed to show the excellent power capability of such systems if heat problems can be solved. Ideas involving geometries and materials are offered as potential solutions to the heat problem.

  17. Solid-state polymeric dye lasers

    CERN Document Server

    Singh, S; Sridhar, G; Muthuswamy, V; Raja, K

    2003-01-01

    This paper presents a review of the organic solid-state polymer materials, which have become established as a new laser media. The photostability of these materials is discussed. Different types of solid-state lasers built around these materials are also reviewed.

  18. Some applications on laser material processing

    International Nuclear Information System (INIS)

    Oros, C.

    2005-01-01

    An overview of the state-of-the-art in laser material processing for a large types of lasers from IR (CO 2 laser, NdYAG laser) to UV (excimer laser) and different kinds of materials (metals, dielectrics) is given. Laser radiation has found a wide range of applications as machining tool for various kinds of materials processing. The machining geometry, the work piece geometry, the material properties and economic productivity claim for customized systems with special design for beam guiding, shaping and delivery in order to fully utilize the laser radiation for surface processing with optimum efficiency, maximum processing speed and high processing quality. The laser-material interaction involves complex processes of heating, melting, vaporization, ejection of atoms, ions, and molecules, shock waves, plasma initiation and plasma expansion. The interaction is dependent on the laser beam parameters (pulse duration, energy and wavelength), the solid target properties and the surrounding environments condition. Experimental results for laser surface melting and laser ablation are given. Also, assuming the applicability of a one dimensional model for short pulses used, and restricting condition to single-pulse exposure, the temperature rise on the target was calculated taking account of the finite optical absorption depth and pulse duration of the laser

  19. Laser materials processing with diode lasers

    OpenAIRE

    Li, Lin; Lawrence, Jonathan; Spencer, Julian T.

    1996-01-01

    Laser materials processing is currently dominated by CO2, Nd-YAG and Excimer lasers. Continuous advances in semiconductor laser technology over the last decade have increased the average power output of the devices annualy by two fold, resulting in the commercial availability of the diode lasers today with delivery output powers in excess of 60W in CW mode and 5kW in qasi-CW mode. The advantages of compactness, high reliability, high efficiency and potential low cost, due to the mass producti...

  20. Solid-state Ceramic Laser Material for Remote Sensing of Ozone Using Nd:Yttria, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Tunable solid state lasers have played an important role in providing the technology necessary for active remote sensing of the atmosphere. Recently, polycrystalline...

  1. Solid state laser technology - A NASA perspective

    Science.gov (United States)

    Allario, F.

    1985-01-01

    NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.

  2. Materials for spaceborne laser systems

    International Nuclear Information System (INIS)

    Gusarov, A.

    2006-01-01

    Advanced laser systems are attracting a growing interest for space missions, in particular for LIDAR (LIght Detection And Ranging) applications. An important issue for the LIDARs is the very strict requirements on the optical performance and more specifically the need for a high optical output power combined with a nearly perfect output beam quality. These features are traditionally in conflict with each other. Thermally induced phase distortions indeed corrupt the beam quality of high-power solid-state lasers and it becomes increasingly difficult to maintain a good beam quality while increasing the output power. A possible solution of the problem is to use the optical phase conjugation, which provides a method to dynamically correct for those aberrations. A process by which phase-conjugated waves can be generated is the SBS (stimulated Brillouin scattering). SBS mirrors commonly used in terrestrial application are based on liquids or gases, which are not 'space-friendly' and often toxic. The solid-state alternative seems the most appropriate for space. Such PCMs (Phase-Conjugating Mirrors) have been the subject of many research efforts in recent years and a significant progress in improving their characteristics has been achieved. However, the issue of space qualification remains open. To address it, the European Space Agency initiated in 2004 the research project named Solid-State Phase Conjugation, Radiation Testing and Evaluation for Core Laser Technologies with the TRT (Thales Research and Technology), France, as the prime contractor, and the CSL (Centre Spatial de Liege) and SCKCEN as the subcontractors. The project is to be completed in 2006. To qualify a PCM for a spaceborne laser system, one has to address a number of specific issues. Such a component must be mechanically rugged to sustain vibrations during the launch phase, provide a low out-gassing to prevent optical surfaces contamination in vacuum, be highly reliable to operate properly without

  3. Laser processing of materials

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    The initial foundation of laser theory was laid by Einstein [11]. ..... general definition and scope of the processes as understood in conventional practice, but is ..... [54]. Laser welding of Ti-alloys. Welding. 2001 TiNi shape memory alloys. CW–CO2. Study corrosion, mechanical and shape memory properties of weldments.

  4. Organic solid-state lasers

    CERN Document Server

    Forget, Sébastien

    2013-01-01

    Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.

  5. Laser Materials Processing for NASA's Aerospace Structural Materials

    Science.gov (United States)

    Nagarathnam, Karthik; Hunyady, Thomas A.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, and surface treatment. Due to the multifunctional nature of a single tool and the variety of materials that can be processed, these attributes are attractive in order to support long-term missions in space. However, current laser technology also has drawbacks for space-based applications. Specifically, size, power efficiency, lack of robustness, and problems processing highly reflective materials are all concerns. With the advent of recent breakthroughs in solidstate laser (e.g., diode-pumped lasers) and fiber optic technologies, the potential to perform multiple processing techniques in space has increased significantly. A review of the historical development of lasers from their infancy to the present will be used to show how these issues may be addressed. The review will also indicate where further development is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. Both short- and long-term space missions will benefit from the development of a universal laser-based tool with low power consumption, improved process flexibility, compactness (e.g., miniaturization), robustness, and automation for maximum utility with a minimum of human interaction. The potential advantages of using lasers with suitable wavelength and beam properties for future space missions to the moon, Mars and beyond will be discussed. The laser processing experiments in the present report were performed using a diode pumped, pulsed/continuous wave Nd:YAG laser (50 W max average laser power), with a 1064 nm wavelength. The processed materials included Ti-6AI-4V, Al-2219 and Al-2090. For Phase I of this project, the laser process conditions were varied and optimized

  6. Light-material interactions in laser material processing

    International Nuclear Information System (INIS)

    Chiang, S.; Albright, C.E.

    1989-01-01

    The authors discusses how light interactions with materials in laser material processing operations occur by a variety of mechanisms depending on the material being processed, the wavelength of the laser light, the gaseous environment, and the physical state of the material surface. The high reflectivity of metals limits the fraction of the beam power absorbed by the solid metal surface. For metals in the solid state, reflectivity increases as the wavelength of the laser light and the electrical conductivity of the metal increase. The reflectivity of metals is reduced upon heating to the melting point, and further reduced upon melting. At high power densities the liquid metal surface is heated so quickly that very rapid vaporization occurs. The recoil force produced by the evaporation causes a depression in the liquid/vapor interface. The keyhole resulting from this depression allows for multiple reflections and thus increases beam absorption in the liquid

  7. Shearography in laser material processing

    International Nuclear Information System (INIS)

    Gualini, M.M.S.; Steinbichler, H.

    1999-01-01

    Several optical methods have been presented in recent years to monitor and assist laser material process (welding, cutting, transformation hardening), from laser triangulation and laser 3D scanning to speckle. We propose the alternative use of shearography for surface investigation. Shearography is, basically, the first derivative of the interference intensities of holograms. This enables to perform real time measurements with high accuracy but less constraint to control environmental vibrations. We propose an optical head that may operate as a shearographic system or as a Twymann-Green interferometer, accordingly to certain contour conditions. We discuss some theoretical aspects and possible practical applications of the device along with some preliminary experimental results. (author)

  8. Visible Solid State Lasers

    NARCIS (Netherlands)

    Hikmet, R.A.M.

    2007-01-01

    Diode lasers can be found in various applications most notably in optical communication and optical storage. Visible lasers were until recently were all based on IR diode lasers. Using GaN, directly blue and violet emitting lasers have also been introduced to the market mainly in the area of optical

  9. Femtosecond laser materials processing

    International Nuclear Information System (INIS)

    Stuart, B.C.

    1997-01-01

    The use femtosecond pulses for materials processing results in very precise cutting and drilling with high efficiency. Energy deposited in the electrons is not coupled into the bulk during the pulse, resulting in negligible shock or thermal loading to adjacent areas

  10. Solid-State Random Lasers

    CERN Document Server

    Noginov, Mikhail A

    2005-01-01

    Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 60’s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.

  11. IFE Power Plant design principles. Drivers. Solid state laser drivers

    International Nuclear Information System (INIS)

    Nakai, S.; Andre, M.; Krupke, W.F.; Mak, A.A.; Soures, J.M.; Yamanaka, M.

    1995-01-01

    The present status of solid state laser drivers for an inertial confinement thermonuclear fusion power plant is discussed. In particular, the feasibility of laser diode pumped solid state laser drivers from both the technical and economic points of view is briefly reviewed. Conceptual design studies showed that they can, in principle, satisfy the design requirements. However, development of new solid state materials with long fluorescence lifetimes and good thermal characteristics is a key issue for laser diode pumped solid state lasers. With the advent of laser diode pumping many materials which were abandoned in the past can presently be reconsidered as viable candidates. It is also concluded that it is important to examine the technical requirements for solid state lasers in relation to target performance criteria. The progress of laser diode pumped lasers in industrial applications should also be closely watched to provide additional information on the economic feasibility of this type of driver. 15 refs, 9 figs, 2 tabs

  12. Novel materials for laser refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Hehlen, Markus P [Los Alamos National Laboratory

    2009-01-01

    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which {Dirac_h}{omega}{sub max} < E{sub p}/8, where {Dirac_h}{omega}{sub max} is the maximum phonon energy of the host material and E{sub p} is the pump energy of the rare-earth dopant. Transition-metal and OH{sup -}impurities at levels >100 ppb are believed to be the main factors for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF{sub 3}-LiF are considered as alternatives to ZBLAN. The crystalline system KPb{sub 2}CI{sub 5} :Dy{sup 3+} is identified as a prime candidate for high-efficiency laser cooling.

  13. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1996-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, mode locking, ultrashort-pulse generation etc. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  14. Laser applications in materials processing

    International Nuclear Information System (INIS)

    Ready, J.F.

    1980-01-01

    The seminar focused on laser annealing of semiconductors, laser processing of semiconductor devices and formation of coatings and powders, surface modification with lasers, and specialized laser processing methods. Papers were presented on the theoretical analysis of thermal and mass transport during laser annealing, applications of scanning continuous-wave and pulsed lasers in silicon technology, laser techniques in photovoltaic applications, and the synthesis of ceramic powders from laser-heated gas-phase reactants. Other papers included: reflectance changes of metals during laser irradiation, surface-alloying using high-power continuous lasers, laser growth of silicon ribbon, and commercial laser-shock processes

  15. Laser-assisted fabrication of materials

    CERN Document Server

    Manna, Indranil

    2013-01-01

    Laser assisted fabrication involves shaping of materials using laser as a source of heat. It can be achieved by removal of materials (laser assisted cutting, drilling, etc.), deformation (bending, extrusion), joining (welding, soldering) and addition of materials (surface cladding or direct laser cladding). This book on ´Laser assisted Fabrication’ is aimed at developing in-depth engineering concepts on various laser assisted macro and micro-fabrication techniques with the focus on application and a review of the engineering background of different micro/macro-fabrication techniques, thermal history of the treated zone and microstructural development and evolution of properties of the treated zone.

  16. Laser-induced damage in optical materials

    CERN Document Server

    Ristau, Detlev

    2014-01-01

    Dedicated to users and developers of high-powered systems, Laser-Induced Damage in Optical Materials focuses on the research field of laser-induced damage and explores the significant and steady growth of applications for high-power lasers in the academic, industrial, and military arenas. Written by renowned experts in the field, this book concentrates on the major topics of laser-induced damage in optical materials and most specifically addresses research in laser damage that occurs in the bulk and on the surface or the coating of optical components. It considers key issues in the field of hi

  17. Advances in laser ablation of materials

    International Nuclear Information System (INIS)

    Singh, R.K.; Lowndes, D.H.; Chrisey, D.B.; Fogarassy, E.; Narayan, J.

    1998-01-01

    The symposium, Advances in Laser Ablation of Materials, was held at the 1998 MRS Spring Meeting in San Francisco, California. The papers in this symposium illustrate the advances in pulsed laser ablation for a wide variety of applications involving semiconductors, superconductors, metals, ceramics, and polymers. In particular, advances in the deposition of oxides and related materials are featured. Papers dealing with both fundamentals and the applications of laser ablation are presented. Topical areas include: fundamentals of ablation and growth; in situ diagnostics and nanoscale synthesis advances in laser ablation techniques; laser surface processing; pulsed laser deposition of ferroelectric, magnetic, superconducting and optoelectronic thin films; and pulsed laser deposition of carbon-based and polymeric materials. Sixty papers have been processed separately for inclusion on the data base

  18. Laser processing and analysis of materials

    CERN Document Server

    Duley, W W

    1983-01-01

    It has often been said that the laser is a solution searching for a problem. The rapid development of laser technology over the past dozen years has led to the availability of reliable, industrially rated laser sources with a wide variety of output characteristics. This, in turn, has resulted in new laser applications as the laser becomes a familiar processing and analytical tool. The field of materials science, in particular, has become a fertile one for new laser applications. Laser annealing, alloying, cladding, and heat treating were all but unknown 10 years ago. Today, each is a separate, dynamic field of research activity with many of the early laboratory experiments resulting in the development of new industrial processing techniques using laser technology. Ten years ago, chemical processing was in its infancy awaiting, primarily, the development of reliable tunable laser sources. Now, with tunability over the entire spectrum from the vacuum ultraviolet to the far infrared, photo­ chemistry is undergo...

  19. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1992-01-01

    This book is written from an industrial perspective and provides a detailed discussion of solid-state lasers, their characteristics, design and construction. Emphasis is placed on engineering and practical considerations. The book is aimed mainly at the practicing scientist or engineer who is interested in the design or use of solid-state lasers, but the comprehensive treatment of the subject will make the work useful also to students of laser physics who seek to supplement their theoretical knowledge with engineering information. In order to present the subject as clearly as possible, phenomenological descriptions using models have been used rather than abstract mathematical descriptions. This results in a simplified presentation. The descriptions are enhanced by the inclusion of numerical and technical data, tables and graphs. This new edition has been updated and revised to take account of important new developments, concepts, and technologies that have emerged since the publication of the first and second...

  20. Development of laser materials processing and laser metrology techniques

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Chung, Chin Man; Kim, Jeong Mook; Kim, Min Suk; Kim, Kwang Suk; Baik, Sung Hoon; Kim, Seong Ouk; Park, Seung Kyu

    1997-09-01

    The applications of remote laser materials processing and metrology have been investigated in nuclear industry from the beginning of laser invention because they can reduce the risks of workers in the hostile environment by remote operation. The objective of this project is the development of laser material processing and metrology techniques for repairing and inspection to improve the safety of nuclear power plants. As to repairing, we developed our own laser sleeve welding head and innovative optical laser weld monitoring techniques to control the sleeve welding process. Furthermore, we designed and fabricated a 800 W Nd:YAG and a 150 W Excimer laser systems for high power laser materials processing in nuclear industry such as cladding and decontamination. As to inspection, we developed an ESPI and a laser triangulation 3-D profile measurement system for defect detection which can complement ECT and UT inspections. We also developed a scanning laser vibrometer for remote vibration measurement of large structures and tested its performance. (author). 58 refs., 16 tabs., 137 figs

  1. Extending solid state laser performance

    Science.gov (United States)

    Miesak, Ed

    2017-02-01

    Coherent Diode-Pumped Solid-State Orlando (CDO), formerly known as Lee Laser, headquartered in Orlando Florida produces CW and pulsed solid state lasers. Primary wavelengths include 1064 nm, 532 nm, and 355 nm. Other wavelengths produced include 1320 nm, 15xx nm, and 16xx nm. Pulse widths are in the range of singles to hundreds of nanoseconds. Average powers are in the range of a few watts to 1000 watts. Pulse repetition rates are typically in the range of 100 Hz to 100 KHz. Laser performance parameters are often modified according to customer requests. Laser parameters that can be adjusted include average power, pulse repetition rate, pulse length, beam quality, and wavelength. Laser parameters are typically cross-coupled such that adjusting one may change some or all of the others. Customers often request one or more parameters be changed without changing any of the remaining parameters. CDO has learned how to accomplish this successfully with rapid turn-around times and minimal cost impact. The experience gained by accommodating customer requests has produced a textbook of cause and effect combinations of laser components to accomplish almost any parameter change request. Understanding the relationships between component combinations provides valuable insight into lasing effects allowing designers to extend laser performance beyond what is currently available. This has led to several break through products, i.e. >150W average power 355 nm, >60W average power 6 ps 1064 nm, pulse lengths longer than 400 ns at 532 nm with average power >100W, >400W 532 nm with pulse lengths in the 100 ns range.

  2. Laser Cutting of Different Materials

    Directory of Open Access Journals (Sweden)

    Kadir ÇAVDAR

    2013-08-01

    Full Text Available In this paper; in general potential developments and trends of a particular machining field by extensively evaluating present studies of laser beam machining have been discussed. As it is indicated below, technical literatures have been subsumed under five major headlines: Experimental studies, reviews, optimization researches of the cutting parameters, theoretical modelling studies of laser beam cutting and academic studies relating to laser cutting

  3. New laser materials: Final report

    International Nuclear Information System (INIS)

    1986-10-01

    In the Interim Report No. 1, it was reported that the fluorescence lifetime (≥ 750μs) in Nd doped Y(PO 3 ) 3 was longer by a factor of three as compared to YAG. This means potentially three times as much energy storage and consequently more efficient for flashlamp pumping. It also makes diode pumping easier. In addition, since the Y site is octahedrally coordinated, there is a possibility of energy transfer using Cr as the sensitizing element. As suggested by W. Krupke, we decided to explore the trivalent cation metaphosphates systematically. The compounds investigated can be represented by the general formula A(PO 3 ) 3 where A = Y, Lu, In, Sc, GA and Al. The object is to study the fluorescence characteristics of Nd and Cr as well as the effectiveness of energy transfer from Cr to Nd. In addition, we also investigated other possible laser host crystals, notably CaMgSi 2 O 6 (diopside), LaBO 3 and La(BO 2 ) 3 . Results on these materials will also be discussed

  4. High-average-power solid state lasers

    International Nuclear Information System (INIS)

    Summers, M.A.

    1989-01-01

    In 1987, a broad-based, aggressive R ampersand D program aimed at developing the technologies necessary to make possible the use of solid state lasers that are capable of delivering medium- to high-average power in new and demanding applications. Efforts were focused along the following major lines: development of laser and nonlinear optical materials, and of coatings for parasitic suppression and evanescent wave control; development of computational design tools; verification of computational models on thoroughly instrumented test beds; and applications of selected aspects of this technology to specific missions. In the laser materials areas, efforts were directed towards producing strong, low-loss laser glasses and large, high quality garnet crystals. The crystal program consisted of computational and experimental efforts aimed at understanding the physics, thermodynamics, and chemistry of large garnet crystal growth. The laser experimental efforts were directed at understanding thermally induced wave front aberrations in zig-zag slabs, understanding fluid mechanics, heat transfer, and optical interactions in gas-cooled slabs, and conducting critical test-bed experiments with various electro-optic switch geometries. 113 refs., 99 figs., 18 tabs

  5. Technology Assessment of Laser-Assisted Materials Processing in Space

    Science.gov (United States)

    Nagarathnam, Karthik; Taminger, Karen M. B.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, shock processing, and surface treatments. These attributes are attractive for the supportability of longer-term missions in space due to the multi-functionality of a single tool and the variety of materials that can be processed. However, current laser technology also has drawbacks for space-based applications, specifically size, power efficiency, lack of robustness, and problems processing highly reflective materials. A review of recent laser developments will be used to show how these issues may be reduced and indicate where further improvement is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. With the advent of recent breakthroughs in diode-pumped solid-state lasers and fiber optic technologies, the potential to perform multiple processing techniques is increasing significantly. Lasers with suitable wavelengths and beam properties have tremendous potential for supporting future space missions to the moon, Mars and beyond.

  6. Femtosecond laser excitation of dielectric materials

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Balling, Peter; Frislev, Martin Thomas

    2012-01-01

    We report an approach to modeling the interaction between ultrashort laser pulses and dielectric materials. The model includes the excitation of carriers by the laser through strongfield excitation, collisional excitation, and absorption in the plasma consisting of conduction-band electrons formed...

  7. Materials testing using laser energy deposition

    International Nuclear Information System (INIS)

    Wilcox, W.W.; Calder, C.A.

    1977-01-01

    A convenient method for determining the elastic constants of materials has been devised using the energy from a Q-switched neodymium-glass laser. Stress waves are induced in materials having circular rod or rectangular bar geometries by the absorption of energy from the laser. The wave transit times through the material are recorded with a piezoelectric transducer. Both dilatation and shear wave velocities are determined in a single test using an ultrasonic technique and these velocities are used to calculate the elastic constants of the material. A comparison of the constants determined for ten common engineering materials using this method is made with constants derived using the conventional ultrasonic pulse technique and agreement is shown to be about one percent in most cases. Effects of material geometry are discussed and surface damage to the material caused by laser energy absorption is shown

  8. Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Kaiman, Michael; Overman, Robert; Glenn, John D.; Tayebati, Parviz

    2012-03-01

    TeraDiode has produced kW-class ultra-high brightness fiber-coupled direct diode lasers. A fiber-coupled direct diode laser with a power level of 2,040 W from a 50 μm core diameter, 0.15 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. This was achieved with a novel beam combining and shaping technique using COTS diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.75 mm-mrad and is the lowest BPP kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 2-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers.

  9. Laser application in high temperature materials

    International Nuclear Information System (INIS)

    Ohse, R.W.

    1988-01-01

    The scope and priorities of laser application in materials science and technology are attracting widespread interest. After a brief discussion of the unique capabilities of laser application in the various fields of materials science, main emphasis is given on the three areas of materials processing, surface modification and alloying, and property measurements at high temperatures. In materials processing the operational regimes for surface hardening, drilling, welding and laser glazing are discussed. Surface modifications by laser melting, quenching and surface alloying, the formation of solid solutions, metastable phases and amorphous solids on the basis of rapid solidification, ion implantation and ion beam mixing are considered. The influence of solidification rates and interface velocities on the surface properties are given. The extension of property measurements up to and beyond the melting point of refractory materials into their critical region by a transient-type dynamic laser pulse heating technique is given for the three examples of vapour pressure measurement, density and heat capacity determination in the solid and liquid phases. A new approach, the laser autoclave technique, applying laser heating and x-ray shadow technique under autoclave conditions to acoustically levitated spheres will be presented. (author)

  10. Laser materials processing applications at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Hargrove, R.S.; Dragon, E.P.; Hackel, R.P.; Kautz, D.D.; Warner, B.E.

    1993-01-01

    High power and high radiance laser technologies developed at Lawrence Livermore National Laboratory (LLNL) such as copper-vapor lasers, solid-state slab lasers, dye lasers, harmonic wavelength conversion of these lasers, and fiber optic delivery systems show great promise for material processing tasks. Evaluation of models suggests significant potential for tenfold increases in welding, cutting, and drilling performance, as well as capability for applications in emerging technologies such as micromachining, surface treatment, and stereolithography. Copper and dye laser systems are currently being developed at LLNL for uranium enrichment production facilities. The goals of this program are to develop low-cost, reliable and maintainable industrial laser systems. Chains of copper lasers currently operate at more than 1.5 kW output and achieve mean time between failures of more than 1,000 hours. The beam quality of copper vapor lasers is approximately three times the diffraction limit. Dye lasers have near diffraction limited beam quality at greater than 1.0 kW. Diode laser pumped, Nd:YAG slab lasers are also being developed at LLNL. Current designs achieve powers of greater than 1.0 kW and projected beam quality is in the two to five times diffraction limited range. Results from cutting and drilling studies in titanium and stainless steel alloys show that cuts and holes with extremely fine features can be made with dye and copper-vapor lasers. High radiance beams produce low distortion and small heat-affected zones. The authors have accomplished very high aspect ratio holes in drilling tests (> 60: 1) and features with micron scale (5-50 μm) sizes. Other, traditionally more difficult, materials such as copper, aluminum and ceramics will soon be studied in detail

  11. High power all solid state VUV lasers

    International Nuclear Information System (INIS)

    Zhang, Shen-jin; Cui, Da-fu; Zhang, Feng-feng; Xu, Zhi; Wang, Zhi-min; Yang, Feng; Zong, Nan; Tu, Wei; Chen, Ying; Xu, Hong-yan; Xu, Feng-liang; Peng, Qin-jun; Wang, Xiao-yang; Chen, Chuang-tian; Xu, Zu-yan

    2014-01-01

    Highlights: • Polarization and pulse repetition rate adjustable ps 177.3 nm laser was developed. • Wavelength tunable ns, ps and fs VUV lasers were developed. • High power ns 177.3 nm laser with narrow linewidth was investigated. - Abstract: We report the investigation on the high power all solid state vacuum ultra-violet (VUV) lasers by means of nonlinear frequency conversion with KBe 2 BO 3 F 2 (KBBF) nonlinear crystal. Several all solid state VUV lasers have developed in our group, including polarization and pulse repetition rate adjustable picosecond 177.3 nm VUV laser, wavelength tunable nanosecond, picosecond and femtosecond VUV lasers, high power ns 177.3 nm laser with narrow linewidth. The VUV lasers have impact, accurate and precise advantage

  12. Solid state lasers II; Proceedings of the Meeting, Los Angeles, CA, Jan. 24, 25, 1991

    International Nuclear Information System (INIS)

    Dube, G.

    1991-01-01

    Topics presented include an upgrade of the LLNL Nova laser for inertial confinement fusion, the design and energy characteristics of a multisegment glass-disk amplifier, a wavemeter for tuning solid state lasers, and the fabrication of laser materials by laser-heated pedestal growth. Also presented are the suppression of relaxation oscillations in flash-pumped 2-micron lasers, diode pumping of tunable Cr-doped lasers, 2D periodic structures in a solid state laser resonator, and single-frequency solid state lasers and amplifiers

  13. Superdense states of materials

    Energy Technology Data Exchange (ETDEWEB)

    Askaryan, G

    1975-04-01

    A concentrated action of powerful laser and electron beams in which a considerable heating and evaporation of matter result induces pressures of the order of 10/sup 12/ of atmospheres. Methods are discussed of attaining such pressures and possible applications are indicated.

  14. Laser processing for manufacturing nanocarbon materials

    Science.gov (United States)

    Van, Hai Hoang

    CNTs have been considered as the excellent candidate to revolutionize a broad range of applications. There have been many method developed to manipulate the chemistry and the structure of CNTs. Laser with non-contact treatment capability exhibits many processing advantages, including solid-state treatment, extremely fast processing rate, and high processing resolution. In addition, the outstanding monochromatic, coherent, and directional beam generates the powerful energy absorption and the resultant extreme processing conditions. In my research, a unique laser scanning method was developed to process CNTs, controlling the oxidation and the graphitization. The achieved controllability of this method was applied to address the important issues of the current CNT processing methods for three applications. The controllable oxidation of CNTs by laser scanning method was applied to cut CNT films to produce high-performance cathodes for FE devices. The production method includes two important self-developed techniques to produce the cold cathodes: the production of highly oriented and uniformly distributed CNT sheets and the precise laser trimming process. Laser cutting is the unique method to produce the cathodes with remarkable features, including ultrathin freestanding structure (~200 nm), greatly high aspect ratio, hybrid CNT-GNR emitter arrays, even emitter separation, and directional emitter alignment. This unique cathode structure was unachievable by other methods. The developed FE devices successfully solved the screening effect issue encounter by current FE devices. The laser-control oxidation method was further developed to sequentially remove graphitic walls of CNTs. The laser oxidation process was directed to occur along the CNT axes by the laser scanning direction. Additionally, the oxidation was further assisted by the curvature stress and the thermal expansion of the graphitic nanotubes, ultimately opening (namely unzipping) the tubular structure to

  15. Laser-beam interactions with materials

    International Nuclear Information System (INIS)

    Allmen, M.V.

    1987-01-01

    Lasers are becoming popular tools and research instruments in materials research, metallurgy, semiconductor technology and engineering. This text treats, from a physicist's point of view, the processes that lasers can induce in materials. A broad view of the field and its perspectives is given: physical topics covered range from optics to shock waves, and applications range from semiconductor annealing to fusion-plasma production. Intuitive analytical models are used whenever possible, in order to foster creative thinking and facilitate access to newcomers and nonspecialists

  16. Laser induced forward transfer of soft materials

    International Nuclear Information System (INIS)

    Palla-Papavlu, A; Dinca, V; Luculescu, C; Dinescu, M; Shaw-Stewart, J; Lippert, T; Nagel, M

    2010-01-01

    A strong research effort is presently aimed at patterning methodologies for obtaining controlled defined micrometric polymeric structures for a wide range of applications, including electronics, optoelectronics, sensors, medicine etc. Lasers have been identified as appropriate tools for processing of different materials, such as ceramics and metals, but also for soft, easily damageable materials (biological compounds and polymers). In this work we study the dynamics of laser induced forward transfer (LIFT) with a gap between the donor and the receiver substrates, which is the basis for possible applications that require multilayer depositions with high spatial resolution

  17. Laser Diode Pumped Solid State Lasers

    Science.gov (United States)

    1987-01-01

    Report N66001-83-C-0071, 17 April 1986, prepared for NOSC. 4.6 W.T. Welford, R. Winston , "The Option of Nonimaging Concentrators ," Academic Press, 1978...by non-imac optics such as reflective or refractive flux concentrators . Simple considerations regarding the optimum pumping configuration, high marks...reduced if the arrays can stand-off from the Nd:YAG laser. As mentioned before, compound parabolic concentrators or refractive optics cat employed to

  18. Material Property Measurement in Hostile Environments using Laser Acoustics

    International Nuclear Information System (INIS)

    Ken L. Telschow

    2004-01-01

    Acoustic methods are well known and have been used to measure various intrinsic material properties, such as, elastic coefficients, density, crystal axis orientation, microstructural texture, and residual stress. Extrinsic properties, such as, dimensions, motion variables or temperature are also readily determined from acoustic methods. Laser acoustics, employing optical generation and detection of elastic waves, has a unique advantage over other acoustic methods-it is noncontacting, uses the sample surface itself for transduction, requires no couplant or invasive sample surface preparation and can be utilized in any hostile environment allowing optical access to the sample surface. In addition, optical generation and detection probe beams can be focused to the micron scale and/or shaped to alter the transduction process with a degree of control not possible using contact transduction methods. Laser methods are amenable to both continuous wave and pulse-echo measurements and have been used from Hz to 100's of GHz (time scales from sec to psec) and with amplitudes sufficient to fracture materials. This paper shall review recent applications of laser acoustic methods to determining material properties in hostile environments that preclude the use of contacting transduction techniques. Example environments include high temperature (>1000C) sintering and molten metal processing, thin film deposition by plasma techniques, materials moving at high velocity during the fabrication process and nuclear high radiation regions. Recent technological advances in solid-state lasers and telecommunications have greatly aided the development and implementation of laser acoustic methods, particularly at ultra high frequencies. Consequently, laser acoustic material property measurements exhibit high precision and reproducibility today. In addition, optical techniques provide methods of imaging acoustic motion that is both quantitative and rapid. Possible future directions for laser

  19. GPC Light Shaper for energy efficient laser materials processing.

    OpenAIRE

    Bañas, Andrew Rafael; Palima, Darwin; Villangca, Mark Jayson; Aabo, Thomas; Glückstad, Jesper

    2014-01-01

    The biggest use of lasers is in materials processing. In manufacturing, lasers are used for cutting, drilling, marking and other machining processes. Similarly, lasers are important in microfabrication processes such as photolithography, direct laser writing, or ablation. Lasers are advantageous because they do not wear out, have no physical contact with the processed material, avoid heating or warping effects, and are generally more precise. Since lasers are easier to adapt to different opti...

  20. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  1. Femtosecond laser interaction with protection materials

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S.; Krueger, J.; Hertwig, A.; Fiedler, A.; Kautek, W

    2003-03-15

    Textile, aluminium and polyethylene used as components in laser protection curtains were investigated with respect to their ablation behaviour. Employing 33-fs pulses (800 nm wavelength, 1 kHz repetition rate), ex situ geometrical measurements of the ablation cavities and in situ acoustic investigations with a microphone were performed to determine the ablation thresholds in the single- and multi-pulse cases. The acoustical method proved advantageous for complex surface morphologies and/or single laser pulse interactions. Incubation phenomena can be observed for all the materials studied. Technically relevant multi-pulse ablation thresholds are presented and are compared with the single-pulse (1-on-1) irradiation.

  2. Two-dimensional materials for ultrafast lasers

    International Nuclear Information System (INIS)

    Wang Fengqiu

    2017-01-01

    As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)

  3. Solar Pumped High Power Solid State Laser for Space Applications

    Science.gov (United States)

    Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.

    2004-01-01

    Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.

  4. Overview of solid state lasers with applications as LIDAR transmitters and optical image amplifiers

    International Nuclear Information System (INIS)

    Powell, R.C.; Basiev, T.T.; Zverev, P.G.

    2000-01-01

    Full text: This talk will review the current status of solid state lasers. Then a specific class of solid state lasers, Raman lasers, will be discussed as a specific example of new technology development. The spectroscopic properties of the materials are used in these lasers is presented and the use of these materials in shared-, coupled-, and external-resonator laser systems is described. System design parameters affecting efficiency, beam quality, and temporal pulse width are discussed. Examples will be presented of the use of these lasers for transmitters in atmospheric and marine imaging light detection and ranging (LIDAR) systems and in optical amplifiers

  5. Monolithic solid-state lasers for spaceflight

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  6. Determination of trace concentrations in indium in ultrapure materials by the method of stepped laser photoionization from the metastable 5p2P 3/2 state

    International Nuclear Information System (INIS)

    Beterov, I.M.; Kurochkin, V.L.; Yudelevich, I.G.

    1985-01-01

    Experiments have been carried out on the photoionization detection of impurity sodium and aluminum atoms by means of stepped photoionization of the atoms in a gaseous medium with laser evaporation of the sample or with an atomic beam with thermal evaporation of the material in a vacuum. Photoionization and detection of impurity atoms in a vacuum permit eliminating the background signal due to the presence of traces of impurities in the gas and quenching collisions and obtaining maximum selectivity. The use of the photoionization method for recording the intensity and elemental composition of atomic beams in molecular epitaxy processes will make it possible to perform more accurately than with other methods a continuous technological monitoring of the conditions of deposition of semiconducting devices. In this paper the authors examine the characteristic features of the photoionization detection of indium atoms in an atomic beam and they present the results of experiments of trace impurities in very pure germanium

  7. The search for solid state fusion lasers

    International Nuclear Information System (INIS)

    Weber, M.J.

    1989-04-01

    Inertial confinement fusion (ICF) research puts severe demands on the laser driver. In recent years large, multibeam Nd:glass lasers have provided a flexible experimental tool for exploring fusion target physics because of their high powers, variable pulse length and shape, wavelength flexibility using harmonic generation, and adjustable that Nd:glass lasers can be scaled up to provide a single-phase, multi-megajoule, high-gain laboratory microfusion facility, and gas-cooled slab amplifiers with laser diode pump sources are viable candidates for an efficient, high repetition rate, megawatt driver for an ICF reactor. In both applications requirements for energy storage and energy extraction drastically limit the choice of lasing media. Nonlinear optical effects and optical damage are additional design constraints. New laser architectures applicable to ICF drivers and possible laser materials, both crystals and glasses, are surveyed. 20 refs., 2 figs

  8. Depletion mode pumping of solid state lasers

    International Nuclear Information System (INIS)

    Mundinger, D.; Solarz, R.; Beach, R.; Albrecht, G.; Krupke, W.

    1990-01-01

    Depletion mode pumping of solid state lasers is a new concept which offers features that are of interest for many practical applications. In this paper the authors discuss the physical properties and mechanisms that set the design requirements, present model calculations for a practical laser design, and discuss the results of recent experiments

  9. Development of a solid state laser of Nd:YLF

    International Nuclear Information System (INIS)

    Amaral Neto, R. do.

    1984-01-01

    The CW laser action was obtained at room temperature of a Nd:YLF crystal in an astigmatically compensated cavity, pumped by an argon laser. This laser was completely projected, constructed and characterized in our laboratories, thus having a high degree of nationalization. It initiates a broader project on lasers development that will have several applications like nuclear fusion, industry, medicine, telemetry, etc.... Throught the study of the optical properties of the Nd:YLF crystal, laser operation was predicted using a small volume gain medium on the mentioned cavity, pumped by an Ar 514,5 nm laser line. To obtain the laser action at polarizations σ (1,053 μm) and π (1,047 μm) an active medium was prepared which was a cristalline plate with a convenient crystalographic orientation. The laser characterization is in reasonable agreement with the initial predictions. For a 3.5% output mirror transmission, the oscillation threshold is about 0.15 W incident on the crystal, depending upon the sample used. For 1 W of incident pump light, the output power is estimated to be 12 mW, which corresponds to almost 1.5% slope efficiency. The versatile arrangement is applicable to almost all optically pumped solid state laser materials. (Author) [pt

  10. Laser Materials and Laser Spectroscopy - A Satellite Meeting of IQEC '88

    Science.gov (United States)

    Wang, Zhijiang; Zhang, Zhiming

    1989-03-01

    The Table of Contents for the book is as follows: * Laser Materials * Laser Site Spectroscopy of Transition Metal Ions in Glass * Spectroscopy of Chromium Doped Tunable Laser Materials * Spectroscopic Properties of Nd3+ Ions in LaMgAl11O19 Crystal * Spectral Study and 2.938 μm Laser Emission of Er3+ in the Y3Al5O12 Crystal * Raman-infrared Spectra and Radiationless Relaxation of Laser Crystal NdAl3(BO3)4 * A Study on HB and FLN in BaFCl0.5Br0.5:Sm2+ at 77K * Pair-pumped Upconversion Solid State Lasers * CW Upconversion Laser Action in Neodymium and Erbium doped Solids * Ultra-high Sensitive Upconversion Fluorescence of YbF3 Doped with Trace Tm3+ and Er3+ * The Growth and Properties of NYAB and EYAB Multifunctional Crystal * Study on Fluorescence and Laser Light of Er3+ in Glass * Growth and Properties of Single Crystal Fibers for Laser Materials * A Study on the Quality of Sapphire, Ruby and Ti3+ Doped Sapphire Grown by Temperature Gradient Technique (TGT) and Czochralski Technique (CZ) * The Measurement of Output Property of Ti3+ Al2O3 Laser Crystal * An Xα Study of the Laser Crystal MgF2 : V2+ * Q-switched NAB Laser * Miniature YAG Lasers * Study of High Efficiency {LiF}:{F}^-_2 Color Center Crystals * Study on the Formation Conditions and Optical Properties of (F2+)H Color Center in NaCl:OH- Crystals * Novel Spectroscopic Properties of {LiF}:{F}^+_3 - {F}_2 Mixed Color Centers Laser Crystals * Terraced Substrate Visible GaAlAs Semiconductor Lasers with a Large Optical Cavity * The Temperature Dependence of Gain Spectra, Threshold Current and Auger Recombination in InGaAsP-InP Double Heterojunction Laser diode * Time-resolved Photoluminescence and Energy Transfer of Bound Excitons in GaP:N Crystals * Optical Limiting with Semiconductors * A Critical Review of High-efficiency Crystals for Tunable Lasers * Parametric Scattering in β - BaB2O4 Crystal Induced by Picosecond Pulses * Generation of Picosecond Pulses at 193 nm by Frequency Mixing in β - BaB2O4

  11. Microstructural and mechanical characterization of laser deposited advanced materials

    Science.gov (United States)

    Sistla, Harihar Rakshit

    Additive manufacturing in the form of laser deposition is a unique way to manufacture near net shape metallic components from advanced materials. Rapid solidification facilitates the extension of solid solubility, compositional flexibility and decrease in micro-segregation in the melt among other advantages. The current work investigates the employment of laser deposition to fabricate the following: 1. Functionally gradient materials: This allows grading dissimilar materials compositionally to tailor specific properties of both these materials into a single component. Specific compositions of the candidate materials (SS 316, Inconel 625 and Ti64) were blended and deposited to study the brittle intermetallics reported in these systems. 2. High entropy alloys: These are multi- component alloys with equiatomic compositions of 5 or more elements. The ratio of Al to Ni was decreased to observe the transition of solid solution from a BCC to an FCC crystal structure in the AlFeCoCrNi system. 3. Structurally amorphous alloys: Zr-based metallic glasses have been reported to have high glass forming ability. These alloys have been laser deposited so as to rapidly cool them from the melt into an amorphous state. Microstructural analysis and X-ray diffraction were used to study the phase formation, and hardness was measured to estimate the mechanical properties.

  12. High power diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Solarz, R.; Albrecht, G.; Beach, R.; Comaskey, B.

    1992-01-01

    Although operational for over twenty years, diode pumped solid state lasers have, for most of their existence, been limited to individual diodes pumping a tiny volume of active medium in an end pumped configuration. More recent years have witnessed the appearance of diode bars, packing around 100 diodes in a 1 cm bar which have enabled end and side pumped small solid state lasers at the few Watt level of output. This paper describes the subsequent development of how proper cooling and stacking of bars enables the fabrication of multi kill average power diode pump arrays with irradiances of 1 kw/cm peak and 250 W/cm 2 average pump power. Since typical conversion efficiencies from the diode light to the pumped laser output light are of order 30% or more, kW average power diode pumped solid state lasers now are possible

  13. Cross-relaxation solid state lasers

    International Nuclear Information System (INIS)

    Antipenko, B.M.

    1989-01-01

    Cross-relaxation functional diagrams provide a high quantum efficiency for pumping bands of solid state laser media and a low waste heat. A large number of the cross-relaxation mechanisms for decay rare earth excited states in crystals have been investigated. These investigations have been a starting-point for development of the cross-relaxation solid state lasers. For example, the cross-relaxation interactions, have been used for the laser action development of LiYF 4 :Gd-Tb. These interactions are important elements of the functional diagrams of the 2 μm Ho-doped media sensitized with Er and Tm and the 3 μm Er-doped media. Recently, new efficient 2 μm laser media with cross-relaxation pumping diagrams have been developed. Physical aspects of these media are the subject of this paper. A new concept of the Er-doped medium, sensitized with Yb, is illustrated

  14. Contribution to the beam plasma material interactions during material processing with TEA CO2 laser radiation

    Science.gov (United States)

    Jaschek, Rainer; Konrad, Peter E.; Mayerhofer, Roland; Bergmann, Hans W.; Bickel, Peter G.; Kowalewicz, Roland; Kuttenberger, Alfred; Christiansen, Jens

    1995-03-01

    The TEA-CO2-laser (transversely excited atmospheric pressure) is a tool for the pulsed processing of materials with peak power densities up to 1010 W/cm2 and a FWHM of 70 ns. The interaction between the laser beam, the surface of the work piece and the surrounding atmosphere as well as gas pressure and the formation of an induced plasma influences the response of the target. It was found that depending on the power density and the atmosphere the response can take two forms. (1) No target modification due to optical break through of the atmosphere and therefore shielding of the target (air pressure above 10 mbar, depending on the material). (2) Processing of materials (air pressure below 10 mbar, depending on the material) with melting of metallic surfaces (power density above 0.5 109 W/cm2), hole formation (power density of 5 109 W/cm2) and shock hardening (power density of 3.5 1010 W/cm2). All those phenomena are usually linked with the occurrence of laser supported combustion waves and laser supported detonation waves, respectively for which the mechanism is still not completely understood. The present paper shows how short time photography and spatial and temporal resolved spectroscopy can be used to better understand the various processes that occur during laser beam interaction. The spectra of titanium and aluminum are observed and correlated with the modification of the target. If the power density is high enough and the gas pressure above a material and gas composition specific threshold, the plasma radiation shows only spectral lines of the background atmosphere. If the gas pressure is below this threshold, a modification of the target surface (melting, evaporation and solid state transformation) with TEA-CO2- laser pulses is possible and the material specific spectra is observed. In some cases spatial and temporal resolved spectroscopy of a plasma allows the calculation of electron temperatures by comparison of two spectral lines.

  15. Laser Additive Manufacturing of Magnetic Materials

    Science.gov (United States)

    Mikler, C. V.; Chaudhary, V.; Borkar, T.; Soni, V.; Jaeger, D.; Chen, X.; Contieri, R.; Ramanujan, R. V.; Banerjee, R.

    2017-03-01

    While laser additive manufacturing is becoming increasingly important in the context of next-generation manufacturing technologies, most current research efforts focus on optimizing process parameters for the processing of mature alloys for structural applications (primarily stainless steels, titanium base, and nickel base alloys) from pre-alloyed powder feedstocks to achieve properties superior to conventionally processed counterparts. However, laser additive manufacturing or processing can also be applied to functional materials. This article focuses on the use of directed energy deposition-based additive manufacturing technologies, such as the laser engineered net shaping (LENS™) process, to deposit magnetic alloys. Three case studies are presented: Fe-30 at.%Ni, permalloys of the type Ni-Fe-V and Ni-Fe-Mo, and Fe-Si-B-Cu-Nb (derived from Finemet) alloys. All these alloys have been processed from a blend of elemental powders used as the feedstock, and their resultant microstructures, phase formation, and magnetic properties are discussed in this paper. Although these alloys were produced from a blend of elemental powders, they exhibited relatively uniform microstructures and comparable magnetic properties to those of their conventionally processed counterparts.

  16. Potential of high-average-power solid state lasers

    International Nuclear Information System (INIS)

    Emmett, J.L.; Krupke, W.F.; Sooy, W.R.

    1984-01-01

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels

  17. [INVITED] Computational intelligence for smart laser materials processing

    Science.gov (United States)

    Casalino, Giuseppe

    2018-03-01

    Computational intelligence (CI) involves using a computer algorithm to capture hidden knowledge from data and to use them for training ;intelligent machine; to make complex decisions without human intervention. As simulation is becoming more prevalent from design and planning to manufacturing and operations, laser material processing can also benefit from computer generating knowledge through soft computing. This work is a review of the state-of-the-art on the methodology and applications of CI in laser materials processing (LMP), which is nowadays receiving increasing interest from world class manufacturers and 4.0 industry. The focus is on the methods that have been proven effective and robust in solving several problems in welding, cutting, drilling, surface treating and additive manufacturing using the laser beam. After a basic description of the most common computational intelligences employed in manufacturing, four sections, namely, laser joining, machining, surface, and additive covered the most recent applications in the already extensive literature regarding the CI in LMP. Eventually, emerging trends and future challenges were identified and discussed.

  18. Pulsed Power for Solid-State Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  19. GPC Light Shaper for energy efficient laser materials processing

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Villangca, Mark Jayson

    The biggest use of lasers is in materials processing. In manufacturing, lasers are used for cutting, drilling, marking and other machining processes. Similarly, lasers are important in microfabrication processes such as photolithography, direct laser writing, or ablation. Lasers are advantageous...... with steep, well defined edges that would further increase laser cutting precision or allow “single shot” laser engraving of arbitrary 2D profiles, as opposed to point scanning [3,4]. Instead of lossy approaches, GPC beam shaping is achieved with simplified, binary phase-only optics [5] that redistributes...... because they do not wear out, have no physical contact with the processed material, avoid heating or warping effects, and are generally more precise. Since lasers are easier to adapt to different optimized shapes, they can be even more precise and energy efficient for materials processing. The cost...

  20. Laser materials processing of complex components. From reverse engineering via automated beam path generation to short process development cycles.

    Science.gov (United States)

    Görgl, R.; Brandstätter, E.

    2016-03-01

    The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser welding, laser cladding and additive laser manufacturing are given.

  1. Materials Delivered by Member States

    International Nuclear Information System (INIS)

    1962-01-01

    The information given in this document is divided into two parts. In part I the Director General is reporting to the Members of the Agency, under Article IX. G of the Statute, the quantities of materials delivered up to 30 September 1962 by Member States in compliance with requests the Agency has made under Article IX. D. Part II contains information about materials which have not yet been delivered but which have been allocated, in accordance with Article XI. F. 1 of the Statute, to approved Agency projects for which project agreements were in force on 30 September 1962. Reports on subsequent deliveries of materials and revised information about allocated but undelivered materials will be issued from time to time

  2. Energy enhancer for mask based laser materials processing

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1996-01-01

    A device capable of drastically improving the energy efficiency of present mask based laser materials processing systems is presented. Good accordance between experiments and simulations for a TEA-CO2 laser system designed for laser marking has been demonstrated. The energy efficiency may...... be improved with a factor of 2 - 4 for typical mask transmittances between 10 - 40%....

  3. Laser additive manufacturing of high-performance materials

    CERN Document Server

    Gu, Dongdong

    2015-01-01

    This book entitled “Laser Additive Manufacturing of High-Performance Materials” covers the specific aspects of laser additive manufacturing of high-performance new materials components based on an unconventional materials incremental manufacturing philosophy, in terms of materials design and preparation, process control and optimization, and theories of physical and chemical metallurgy. This book describes the capabilities and characteristics of the development of new metallic materials components by laser additive manufacturing process, including nanostructured materials, in situ composite materials, particle reinforced metal matrix composites, etc. The topics presented in this book, similar as laser additive manufacturing technology itself, show a significant interdisciplinary feature, integrating laser technology, materials science, metallurgical engineering, and mechanical engineering. This is a book for researchers, students, practicing engineers, and manufacturing industry professionals interested i...

  4. High Efficiency Mask Based Laser Materials Processing with TEA-CO2 - and Excimer Laser

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    In general, mask based laser materials processing techniques suffer from a very low energy efficiency. We have developed a simple device called an energy enhancer, which is capable of increasing the energy efficiency of typical mask based laser materials processing systems. A short review of the ...... line marking with TEA-CO2 laser of high speed canning lines. The second one is manufactured for marking or microdrilling with excimer laser....

  5. Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bolme, Cindy B [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Whitley, Von H [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, David S [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2010-01-01

    Shock waves create extreme states of matter with very high pressures, temperatures, and volumetric compressions, at an exceedingly rapid rate of change. We review how to use a beamsplitter and a note card to turn a typical chirp pulse amplified femtosecond laser system into an ultrafast shock dynamics machine. Open scientific questions that can be addressed with such an apparatus are described. We report on the development of several single shot time resolved diagnostics needed to answer these questions. These single shot diagnostics are expected to be broadly applicable to other types of laser ablation experiments. Experimental results measured from shocked material dynamics of several systems are detailed. Finally, we report on progress towards using transient absorption as a measure of electronic excitation and coherent Raman as a picosecond probe of temperature in shock compressed condensed matter.

  6. Progress in solid state dye laser development

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, R.E.

    1990-01-01

    A triaxial flashlamp (15 cm) was used to optically pump laser rods prepared from an acrylate based copolymer (0.95 cm O.D. {times} 10.0 cm L.). The performance of 13 laser dyes incorporated into this polymeric solid host is reported. The best lasing performance was obtained with sulforhodamine-B, with a calculated slope efficiency of 0.52% and a maximum single pulse output energy of 580 mJ. A commercially available fluorescent polymeric material was also evaluated. 12 refs., 2 figs.

  7. Diode laser pumped solid state laser. Part IV. ; Noise analysis. Handotai laser reiki kotai laser. 4. ; Noise kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, H.; Seno, T.; Tanabe, Y. (Asahi Glass Co. Ltd., Tokyo (Japan))

    1991-06-10

    Concerning the second harmonic generation(SHG) of diode laser pumped solid state laser using a nonlinear optical material, the researches are carried out to pracitically apply to the optical pickup. Therefore, the reduction of output optical noise has become the important researching subject. The theoretical and experimental analyses of noise generating mechanism were carried out for the system in which Nd;YAG as the laser diode and KTP (KTiOPO {sub 4}) as the nonlinear optical crystal were used. The following findings for the noise generating mechanism could be obtained: The competitive interaction between the polarization modes was dominant noise mechanism in the high frequency range from 1 to 20MHz and the noise could be removed sufficiently by using the QWP(quarter wave plate). On the other hand, the noise observed in the low frequency range from 100 to 200kHz depended on the resonance length, agreed qualitatively with the theoretical analysis of the noise to the competitive longitudinal modes and agreed quantitatively with the noise generating frequency range. 10 refs., 13 figs., 1 tab.

  8. Solid state and materials research

    International Nuclear Information System (INIS)

    1988-01-01

    Surface and sub-surface regions of solids are modified by rapid melting and quenching, using a high-powered, pulsed (30 ns) ruby laser. The main emphasis of this work is on laser annealing, epitaxy and doping of silicon. Computer programs have been developed to calculate the heat-flow which takes place during pulsed laser irradiation. From such calculations, information can be obtained about temperature profiles, melt depths, recrystallization velocities and quench rates. 13 figs., 9 refs., 1 tab

  9. Single longitudinal mode operation of a solid-state dye laser oscillator

    CERN Document Server

    Lim, G; Kim, H S; Cha, B H; Lee, J M

    2000-01-01

    We have operated a single longitudinal mode of a solid-state dye laser oscillator in a Littman configuration. The host material of the solid-state gain medium was rhodamine dye-doped poly (methyl methacrylate). The pumping source was the second harmonic of a Nd:YAG laser with a repetition rate of 10 Hz. The measured linewidth of the laser output was about 1.5 GHz.

  10. Parameters Influence of CO2 Laser on Cutting Quality of Polymer Materials

    OpenAIRE

    Robert Cep; Sarka Malotova; Marek Pagac; Marek Sadilek; Jiri Lichovnik

    2016-01-01

    The article deals with evaluating of the resulting surface state of the three plastic materials and identification of suitable conditions for laser cutting with CO2 tube. As representative were chosen polypropylene, polymethylmethacrylate and polyamide. When cutting these types of materials it could melt eventually their re-sintering. A suitable combination of parameters is possible to achieve of sufficient quality of the cut. The samples were cut at different feed speed and laser power. Then...

  11. Cutting of nonmetallic materials using Nd:YAG laser beam

    Institute of Scientific and Technical Information of China (English)

    Bashir Ahmed Tahir; Rashid Ahmed; M. G. B. Ashiq; Afaq Ahmed; M. A. Saeed

    2012-01-01

    This study deals with Nd:YAG laser cutting nonmetallic materials,which is one of the most important and popular industrial applications of laser.The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed.For approximate cutting depth,a theoretical study is conducted in terms of material property and cutting speed.Results show a nonlinear relation between the cutting depth and input energy.There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s.An extra energy is utilized in the deep cutting.It is inferred that as the laser power increases,cutting depth increases.The experimental outcomes are in good agreement with theoretical results.This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting,scribing,trimming,engraving,and marking nonmetallic materials.

  12. Cutting of nonmetallic materials using Nd:YAG laser beam

    International Nuclear Information System (INIS)

    Tahir, Bashir Ahmed; Ashiq, M.G. B.; Saeed, M.A.; Ahmed, Rashid; Ahmed, Afaq

    2012-01-01

    This study deals with Nd:YAG laser cutting nonmetallic materials, which is one of the most important and popular industrial applications of laser. The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed. For approximate cutting depth, a theoretical study is conducted in terms of material property and cutting speed. Results show a nonlinear relation between the cutting depth and input energy. There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s. An extra energy is utilized in the deep cutting. It is inferred that as the laser power increases, cutting depth increases. The experimental outcomes are in good agreement with theoretical results. This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting, scribing, trimming, engraving, and marking nonmetallic materials. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Transport of biologically active material in laser cutting.

    Science.gov (United States)

    Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P

    1988-01-01

    The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.

  14. Optical improvement for laser material processing

    Energy Technology Data Exchange (ETDEWEB)

    Bosman, J.; De Keijzer, M.A.; De Kok, C.J.G.M. [ECN Engineering and Services, Petten (Netherlands); Molenaar, R.; Kettelarij, H.

    2010-05-15

    The use of laser technology enables flexibility and new concepts for example solar cell production but also optical moulds. The reason why laser technology is used in these cases is not the laser system itself but the ability to tailor this type of energy to the demands of the production processes. To ensure the full potential of the laser technology it can be improved by adding optical elements like polarizer, cameras, lenses and sensors. Two of these extra optical elements are presented here. First laser pulse energy attenuation. This is used to increase the controllability of laser processes. And second a new camera optic that enables integrated alignment with respect to features on the product. This last option enables marking on existing features and automated compensation of scanner drift. These camera systems can be used for micro welding of polymers and repair of existing markings in moulds.

  15. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    Directory of Open Access Journals (Sweden)

    Marynowicz Andrzej

    2016-06-01

    Full Text Available The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples’ surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  16. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    Science.gov (United States)

    Marynowicz, Andrzej

    2016-06-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples' surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  17. Automotive perspective on laser material processing

    International Nuclear Information System (INIS)

    Roessler, D.M.

    1989-01-01

    In this paper a broad review is given of the development and use of laser processing in the automotive industry. a brief introduction to the major types of processing lasers and related systems is followed by a summary of the major processing regimes. Examples are given of the automotive industry's use of lasers in a variety of applications, from heat treating and welding, to cutting and marking

  18. Effect of Moisture Content of Paper Material on Laser Cutting

    Science.gov (United States)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi; Salminen, Antti

    Laser technology has been used in industrial processes for several decades. The most advanced development and implementation took place in laser welding and cutting of metals in automotive and ship building industries. However, there is high potential to apply laser processing to other materials in various industrial fields. One of these potential fields could be paper industry to fulfill the demand for high quality, fast and reliable cutting technology. Difficulties in industrial application of laser cutting for paper industry are associated to lack of basic information, awareness of technology and its application possibilities. Nowadays possibilities of using laser cutting for paper materials are widened and high automation level of equipment has made this technology more interesting for manufacturing processes. Promising area of laser cutting application at paper making machines is longitudinal cutting of paper web (edge trimming). There are few locations at a paper making machine where edge trimming is usually done: wet press section, calender or rewinder. Paper web is characterized with different moisture content at different points of the paper making machine. The objective of this study was to investigate the effect of moisture content of paper material on laser cutting parameters. Effect of moisture content on cellulose fibers, laser absorption and energy needed for cutting is described as well. Laser cutting tests were carried out using CO2 laser.

  19. Material Processing with High Power CO2-Lasers

    Science.gov (United States)

    Bakowsky, Lothar

    1986-10-01

    After a period of research and development lasertechnique now is regarded as an important instrument for flexible, economic and fully automatic manufacturing. Especially cutting of flat metal sheets with high power C02-lasers and CNC controlled two or three axes handling systems is a wide spread. application. Three dimensional laser cutting, laser-welding and -heat treatment are just at the be ginning of industrial use in production lines. The main. advantages of laser technology. are - high. accuracy - high, processing velocity - law thermal distortion. - no tool abrasion. The market for laser material processing systems had 1985 a volume of 300 Mio S with growth rates between, 20 % and 30 %. The topic of this lecture are hiTrh. power CO2-lasers. Besides this systems two others are used as machining tools, Nd-YAG- and Eximer lasers. All applications of high. power CO2-lasers to industrial material processing show that high processing velocity and quality are only guaranteed in case of a stable intensity. profile on the workpiece. This is only achieved by laser systems without any power and mode fluctuations and by handling systems of high accuracy. Two applications in the automotive industry are described, below as examples for laser cutting and laser welding of special cylindrical motor parts.

  20. Laser-limiting materials for medical use

    Science.gov (United States)

    Podgaetsky, Vitaly M.; Kopylova, Tat'yana N.; Tereshchenko, Sergey A.; Reznichenko, Alexander V.; Selishchev, Sergey V.

    2004-03-01

    The important problem of modern laser medicine is the decrease of an exposure of biological tissues outside of an operational field and can be solved by optical radiation limiting. Organic dyes with reversibly darkening can be placed onto surfaces of irradiated tissues or can be introduced in solder for laser welding of vessels. The limiting properties of a set of nontoxic organic compounds were investigated. Nonlinear optical properties of dyes having reverse saturable absorption (pyran styryl derivatives, cyanine and porphyrine compounds) were studied under XeCl and YAG:Nd (II harmonics) lasers excitation. The effect of attenuation of a visible laser radiation is obtained for ethanol solutions of cyanines: radiation attenuation coefficient ( AC) = 25-35 at N/S = 100-250 MW/cm2. In water solutions of such compounds in UV spectrum range AC ~ 10. The spectral characteristics of compounds appeared expedient enough to operational use in laser limiters (broad passband in visible range of a spectrum). Under the data of Z-scanning (the scheme F/10) value AC ~ 70 was reached. The limiting of power laser radiation in visible (λ = 532 nm) and UV- (λ = 308 nm) spectral region and nanosecond pulse duration (7 -13 ns) across porphyrine solutions and their complexes with some metals (13 compounds) was investigated too. The comparative study of optical limiting dependence on intensity of laser radiation, solvent type and concentration of solutions was carried out for selecte wavelength. There was shown a possible use of pyran styryl derivatives DCM as limiters of visual laser radiation. To understand a mechanism of laser radiation limitation the light induced processes were experimentally and theoretically studied in organic molecules. The quantum-chemical investigation of one cyanine compound was carried out. There were noted the perspectives of laser radiation limiting by application of inverted schemes of traditional laser shutters. Usage of phenomena of light -induced

  1. Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers

    Science.gov (United States)

    Hwang, In H.; Lee, Ja H.

    1991-01-01

    The authors consider the relation between the threshold pumping intensity, the material properties, the resonator parameters, and the ultimate slope efficiencies of various solid-state laser materials for solar pumping. They clarify the relation between the threshold pump intensity and the material parameters and the relation between the ultimate slope efficiency and the laser resonator parameters such that a design criterion for the solar-pumped solid-state laser can be established. Among the laser materials evaluated, alexandrite has the highest slope efficiency of about 12.6 percent; however, it does not seem to be practical for a solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AM0) solar constants and its slope efficiency is about 12 percent when thermal deformation is completely prevented.

  2. Laser Cutting of Materials of Various Thicknesses

    Directory of Open Access Journals (Sweden)

    Martin Grepl

    2012-01-01

    Full Text Available Thise paper deals with the application of laser technology and optimizing the parameters for cutting nickel alloy. The theoretical part of the paper describes various types of lasers, their principles and usage. The experimental part focuses on optimizing the section parameteres of Haynes 718 alloy using a CO2 gas laser. This alloy is employed in the production of components for the aircraft industry. The experiment was performed on the Wibro Delta laser system designed for sizable parts. The actual section is measured with respect to its quality and any accompanying side effects that occur during the process. In this case, laser output and cutting speed were the parameters with most influence on the final cut. The summary explains the results achieved in a metallographic laboratory.

  3. Advances in solid state laser technology for space and medical applications

    Science.gov (United States)

    Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Recent developments in laser technology and their potential for medical applications are discussed. Gas discharge lasers, dye lasers, excimer lasers, Nd:YAG lasers, HF and DF lasers, and other commonly used lasers are briefly addressed. Emerging laser technology is examined, including diode-pumped lasers and other solid state lasers.

  4. A review of low density porous materials used in laser plasma experiments

    Science.gov (United States)

    Nagai, Keiji; Musgrave, Christopher S. A.; Nazarov, Wigen

    2018-03-01

    This review describes and categorizes the synthesis and properties of low density porous materials, which are commonly referred to as foams and are utilized for laser plasma experiments. By focusing a high-power laser on a small target composed of these materials, high energy and density states can be produced. In the past decade or so, various new target fabrication techniques have been developed by many laboratories that use high energy lasers and consequently, many publications and reviews followed these developments. However, the emphasis so far has been on targets that did not utilize low density porous materials. This review therefore, attempts to redress this balance and endeavors to review low density materials used in laser plasma experiments in recent years. The emphasis of this review will be on aspects of low density materials that are of relevance to high energy laser plasma experiments. Aspects of low density materials such as densities, elemental compositions, macroscopic structures, nanostructures, and characterization of these materials will be covered. Also, there will be a brief mention of how these aspects affect the results in laser plasma experiments and the constrictions that these requirements put on the fabrication of low density materials relevant to this field. This review is written from the chemists' point of view to aid physicists and the new comers to this field.

  5. Laser materials processing of complex components: from reverse engineering via automated beam path generation to short process development cycles

    Science.gov (United States)

    Görgl, Richard; Brandstätter, Elmar

    2017-01-01

    The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser cladding and laser-based additive manufacturing are given.

  6. Tunable solid-state laser technology for applications to scientific and technological experiments from space

    Science.gov (United States)

    Allario, F.; Taylor, L. V.

    1986-01-01

    Current plans for the Earth Observing System (EOS) include development of a lidar facility to conduct scientific experiments from a polar orbiting platforms. A recommended set of experiments were scoped, which includes techniques of atmospheric backscatter (Lidar), Differential Absorption Lidar (DIAL), altimetry, and retroranging. Preliminary assessments of the resources (power, weight, volume) required by the Eos Lidar Facility were conducted. A research program in tunable solid state laser technology was developed, which includes laser materials development, modeling and experiments on the physics of solid state laser materials, and development of solid state laser transmitters with a strong focus on Eos scientific investigations. Some of the system studies that were conducted which highlight the payoff of solid state laser technology for the Eos scientific investigations will be discussed. Additionally, a summary of some promising research results which have recently emerged from the research program will be presented.

  7. Fundamentals of ultrafast laser-material interaction

    Czech Academy of Sciences Publication Activity Database

    Shugaev, M.V.; Wu, Ch.; Armbruster, O.; Naghilou, A.; Brouwer, N.; Ivanov, D.S.; Derrien, Thibault; Bulgakova, Nadezhda M.; Kautek, W.; Rethfeld, B.; Zhigilei, L.

    2016-01-01

    Roč. 41, č. 12 (2016), s. 960-968 ISSN 0883-7694 R&D Projects: GA MŠk LO1602; GA ČR GA16-12960S EU Projects: European Commission(XE) 657424 - QuantumLaP Institutional support: RVO:68378271 Keywords : femtosecond laser * Coulomb explosion * microscopic mechanisms * electron-diffraction * molecular- dynamics * metal targets * ablation * surface * dielectrics Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 5.199, year: 2016

  8. Functionally graded materials produced with high power lasers

    NARCIS (Netherlands)

    De Hosson, J. T. M.; Ocelik, V.; Chandra, T; Torralba, JM; Sakai, T

    2003-01-01

    In this keynote paper two examples will be present of functionally graded materials produced with high power Nd:YAG lasers. In particular the conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of A18Si and Ti6Al4V alloys are presented. The formation of

  9. Microstructural evolution and control in laser material processing

    International Nuclear Information System (INIS)

    Kaul, R.; Nath, A.K.

    2005-01-01

    Laser processing, because of its characteristic features, often gives rise to unique microstructure and properties not obtained with other conventional processes. We present various diverse laser processing case studies involving control of microstructure through judicious selection of processing parameters carried out with indigenously developed high power CO 2 lasers. The first study describes microstructural control during end plug laser welding of PFBR fuel pin, involving crack pone alloy D9 tube and type 316 M stainless steel (SS) plug, through preferential displacement of focused laser beam. Crater and associated cracks were eliminated by suitable laser power ramping. Another case study describes how low heat input characteristics of laser cladding process has been exploited for suppressing dilution in 'Colomony 6' deposits on austenitic SS. The results are in sharp contrast to extensive dilution noticed in Colmony 6 hard faced deposits made by GTAW. A novel laser surface melting (LSM) treatment for type 316 (N) SS weld metal has been developed to generate a sensitization-resistant microstructure which leads to enhanced resistance against intergranular corrosion (IGC). IGC resistance of laser treated surface has been found to be critically dependent on laser processing parameters. Experimental observations have been analyzed with thermal simulation. We have also studied the effect of laser beam spatial intensity profile on the microstructure in LSM. We have developed laser-assisted graded hard facing of austenitic SS substrate with Stellite 6 which, in contrast to direct deposition either by laser or GTAW, produced smooth transition in chemical composition and hardness used to control grain coarsening and martensite formation in type 430 SS weldment. Laser rapid manufacturing (LRM) is emerging as a new rapid and cost effective process for low volume fabrication, esp. of expensive materials. The talk will also present microstructural characteristics of laser

  10. Temperature analysis of laser ignited metalized material using spectroscopic technique

    Science.gov (United States)

    Bassi, Ishaan; Sharma, Pallavi; Daipuriya, Ritu; Singh, Manpreet

    2018-05-01

    The temperature measurement of the laser ignited aluminized Nano energetic mixture using spectroscopy has a great scope in in analysing the material characteristic and combustion analysis. The spectroscopic analysis helps to do in depth study of combustion of materials which is difficult to do using standard pyrometric methods. Laser ignition was used because it consumes less energy as compared to electric ignition but ignited material dissipate the same energy as dissipated by electric ignition and also with the same impact. Here, the presented research is primarily focused on the temperature analysis of energetic material which comprises of explosive material mixed with nano-material and is ignited with the help of laser. Spectroscopy technique is used here to estimate the temperature during the ignition process. The Nano energetic mixture used in the research does not comprise of any material that is sensitive to high impact.

  11. Charged particle and laser irradiation of selected materials

    International Nuclear Information System (INIS)

    Svendsen, W.E.

    1996-11-01

    The main topics of the present thesis are the processes governing electronic sputtering of insulators and laser ablation of metals and insulators. The sputtering yield for electron bombardment of solid deuterium was investigated using quartz crystal microbalances as the measuring technique. The sputtering yield was measured with varying electron energy and deuterium film thickness. Laser ablation measurements of silver and nickel were carried out using a Nd:YAG laser. The effect of various experimental parameters such as background gas pressure (Ar, N 2 ), position of quartz crystals with respect to target position and the optimal number of laser shots for carrying out the experiments were investigated. The deposition rate was measured with varying laser wavelength and laser fluence. The angular distribution of the ablated material was measured for silver as well. A theoretical model based on the thermal properties of laser interaction with metals was applied in the initial phase of ablation. For the non-thermal processes governing laser interaction with the ablated plasma plume, a model developed by Phipps and Dreyfus was used to interpret the results. Laser ablation measurements of water-ice were carried using a Nitrogen laser. Attempts were made to measure the deposition rate for various the laser wavelengths and energies. (au) 8 tabs., 49 ills., 77 refs

  12. Charged particle and laser irradiation of selected materials

    Energy Technology Data Exchange (ETDEWEB)

    Svendsen, W E

    1996-11-01

    The main topics of the present thesis are the processes governing electronic sputtering of insulators and laser ablation of metals and insulators. The sputtering yield for electron bombardment of solid deuterium was investigated using quartz crystal microbalances as the measuring technique. The sputtering yield was measured with varying electron energy and deuterium film thickness. Laser ablation measurements of silver and nickel were carried out using a Nd:YAG laser. The effect of various experimental parameters such as background gas pressure (Ar, N{sub 2}), position of quartz crystals with respect to target position and the optimal number of laser shots for carrying out the experiments were investigated. The deposition rate was measured with varying laser wavelength and laser fluence. The angular distribution of the ablated material was measured for silver as well. A theoretical model based on the thermal properties of laser interaction with metals was applied in the initial phase of ablation. For the non-thermal processes governing laser interaction with the ablated plasma plume, a model developed by Phipps and Dreyfus was used to interpret the results. Laser ablation measurements of water-ice were carried using a Nitrogen laser. Attempts were made to measure the deposition rate for various the laser wavelengths and energies. (au) 8 tabs., 49 ills., 77 refs.

  13. Laser irradiation of carbon–tungsten materials

    International Nuclear Information System (INIS)

    Marcu, A; Lungu, C P; Ursescu, D; Porosnicu, C; Grigoriu, C; Avotina, L; Kizane, G; Marin, A; Osiceanu, P; Grigorescu, C E A; Demitri, N

    2014-01-01

    Carbon–tungsten layers deposited on graphite by thermionic vacuum arc (TVA) were directly irradiated with a femtosecond terawatt laser. The morphological and structural changes produced in the irradiated area by different numbers of pulses were systematically explored, both along the spots and in their depths. Although micro-Raman and Synchrotron-x-ray diffraction investigations have shown no carbide formation, they have shown the unexpected presence of embedded nano-diamonds in the areas irradiated with high fluencies. Scanning electron microscopy images show a cumulative effect of the laser pulses on the morphology through the ablation process. The micro-Raman spatial mapping signalled an increased percentage of sp 3 carbon bonding in the areas irradiated with laser fluencies around the ablation threshold. In-depth x-ray photoelectron spectroscopy investigations suggested a weak cumulative effect on the percentage increase of the sp 2 -sp 3 transitions with the number of laser pulses just for nanometric layer thicknesses. (paper)

  14. Laser action benzimidazoles in various aggregate states

    Energy Technology Data Exchange (ETDEWEB)

    Gruzinskii, V V; Degtiarenko, K M; Shalaev, V K; Kopylova, T N; Verkhovskii, V S; Tarasenko, V F; Melchenko, S V

    1983-04-01

    Lasing has been obtained in solutions of benzimidazole (Bi) derivatives: 2-phenyl-Bi (with the band maximum lambda-r-max 341-347 nm), 2-n-tolyl-Bi (344 nm), and 2-(4'-biphenilyl) Bi (366-374 nm). It is found that compounds of this class provide a basis for laser radiation covering a wide region of the spectrum. Lasing has been obtained on the vapors of 2-(4'-biphenilyl) Bi (361.2 nm) and 2-(n-tolyl) Bi (336.5 nm) with a pentane stabilizer of the excited states. High volatility, photostability, and lasing in wide ranges of concentration determine the efficiency of using this new class of compounds (chain arylbenzimidazoles) in lasers using the vapors of complex molecules.

  15. Laser action benzimidazoles in various aggregate states

    Science.gov (United States)

    Gruzinskii, V. V.; Degtiarenko, K. M.; Shalaev, V. K.; Kopylova, T. N.; Verkhovskii, V. S.; Tarasenko, V. F.; Melchenko, S. V.

    1983-04-01

    Lasing has been obtained in solutions of benzimidazole (Bi) derivatives: 2-phenyl-Bi (with the band maximum lambda-r-max = 341-347 nm), 2-n-tolyl-Bi (344 nm), and 2-(4'-biphenilyl) Bi (366-374 nm). It is found that compounds of this class provide a basis for laser radiation covering a wide region of the spectrum. Lasing has been obtained on the vapors of 2-(4'-biphenilyl) Bi (361.2 nm) and 2-(n-tolyl) Bi (336.5 nm) with a pentane stabilizer of the excited states. High volatility, photostability, and lasing in wide ranges of concentration determine the efficiency of using this new class of compounds (chain arylbenzimidazoles) in lasers using the vapors of complex molecules.

  16. Diode-pumped two micron solid-state lasers

    International Nuclear Information System (INIS)

    Elder, I.F.

    1997-01-01

    This thesis presents an investigation of diode-pumped two micron solid-state lasers, concentrating on a comparison of the cw room temperature operation of Tm:YAP, Tm,Ho:YAP and Tm,Ho:YLF. Dopant concentrations in YAP were 4.2% thulium and 0.28% holmium; in YLF they were 6% thulium and 0.4% holmium. Thermal modelling was carried out in order to provide an insight into the thermal lensing and population distributions in these materials. Laser operation was achieved utilising an end-pumping geometry with a simple two mirror standing wave resonator. The pump source for these experiments was a 3 W laser diode. Maximum output power was achieved with Tm:YAP, generating 730 mW of laser output, representing 42% conversion efficiency in terms of absorbed pump power. Upper bounds on the conversion efficiency of Tm,Ho:YAP and Tm,Ho:YLF laser crystal of 14% and 30% were obtained, with corresponding output powers of 270 and 660 mW. In all three cases, the output beam was TEM 00 in nature. Visible upconversion fluorescence bands in the green and red were identified in Tm,Ho:YAP and Tm,Ho:YLF, with additional blue emission from the latter, all assigned to transitions on holmium. The principal upconversion mechanisms in these materials all involved the holmium first excited state. Upconversion in Tm:YAP was negligible. The spectral output of Tm:YAP consisted of a comb of lines in the range 1.965 to 2.020 μm. For both the double-doped crystals, the laser output was multilongitudinal mode on a single transition, wavelength 2.120 μm in YAP, 2.065 μm in YLF. In the time domain the output of Tm:YAP was dominated by large amplitude spiking, unlike both of the double-doped laser crystals. The long lifetime of the thulium upper laser level (4.4 ms) provided very weak damping of the spiking. Excitation sharing between thulium and holmium, with a measured characteristic lifetime in YAP of 11.9 μs and YLF of 14.8 μs, provided strong damping of any spiking behaviour. (author)

  17. Femtosecond laser induced phenomena in transparent solid materials

    DEFF Research Database (Denmark)

    Tan, D.Z.; Sharafudeen, K.N.; Yue, Yuanzheng

    2016-01-01

    solved, especially concerning the interaction of strong, ultra-short electromagnetic pulses with matter, and also because potential advanced technologies will emerge due to the impressive capability of the intense femtosecond laser to create new material structures and hence functionalities. When......The interaction of intense femtosecond laser pulses with transparent materials is a topic that has caused great interest of scientists over the past two decades. It will continue to be a fascinating field in the coming years. This is because many challenging fundamental problems have not been......–matter interaction, and fabricate various integrated micro-devices. In recent years we have witnessed exciting development in understanding and applying femtosecond laser induced phenomena in transparent materials. The interaction of femtosecond laser pulses with transparent materials relies on non...

  18. Short-pulse laser interactions with disordered materials and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L. [Univ. of California, Berkeley, CA (United States)

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  19. Study of underwater laser propulsion using different target materials.

    Science.gov (United States)

    Qiang, Hao; Chen, Jun; Han, Bing; Shen, Zhong-Hua; Lu, Jian; Ni, Xiao-Wu

    2014-07-14

    In order to investigate the influence of target materials, including aluminum (Al), titanium (Ti) and copper (Cu), on underwater laser propulsion, the analytical formula of the target momentum IT is deduced from the enhanced coupling theory of laser propulsion in atmosphere with transparent overlay metal target. The high-speed photography method and numerical simulation are employed to verify the IT model. It is shown that the enhanced coupling theory, which was developed originally for laser propulsion in atmosphere, is also applicable to underwater laser propulsion with metal targets.

  20. Laser cutting of laminated sheet material: a modeling exercise

    NARCIS (Netherlands)

    de Graaf, R.F.; Meijer, J.

    1997-01-01

    Laser cutting has been investigated for a number of aluminum-synthetic laminates, newly developed materials for the aeronautic and automotive industry. The materials consist of alternating aluminum and synthetic layers. It is shown that these materials can be cut at rates comparable to those of

  1. Lasers '90: Proceedings of the 13th International Conference on Lasers and Applications, San Diego, CA, Dec. 10-14, 1990

    International Nuclear Information System (INIS)

    Harris, D.G.; Herbelin, J.

    1991-01-01

    The general topics considered are: x-ray lasers; FELs; solid state lasers; techniques and phenomena of ultrafast lasers; optical filters and free space laser communications; discharge lasers; tunable lasers; applications of lasers in medicine and surgery; lasers in materials processing; high power lasers; dynamics gratings, wave mixing, and holography; up-conversion lasers; lidar and laser radar; laser resonators; excimer lasers; laser propagation; nonlinear and quantum optics; blue-green technology; imaging; laser spectroscopy; chemical lasers; dye lasers; and lasers in chemistry

  2. Laser assisted embedding of nanoparticles into metallic materials

    International Nuclear Information System (INIS)

    Lin Dong; Suslov, Sergey; Ye Chang; Liao Yiliang; Liu, C. Richard; Cheng, Gary J.

    2012-01-01

    This paper reports a methodology of half-embedding nanoparticles into metallic materials. Transparent and opaque nanoparticles are chosen to demonstrate the process of laser assisted nanoparticle embedding. Dip coating method is used to coat transparent or opaque nanoparticle on the surface of metallic material. Nanoparticles are embedded into substrate by laser irradiation. In this study, the mechanism and process of nanoparticle embedding are investigated. It is found both transparent and opaque nanoparticles embedding are with high densities and good uniformities.

  3. Laser spectroscopy of gas confined in nanoporous materials

    OpenAIRE

    Svensson, Tomas; Shen, Zhijian

    2010-01-01

    We show that high-resolution laser spectroscopy can probe surface interactions of gas confined in nanocavities of porous materials. We report on strong line broadening and unfamiliar line shapes due to tight confinement, as well as signal enhancement due to multiple photon scattering. This new domain of laser spectroscopy constitute a challenge for the theory of collisions and spectroscopic line shapes, and open for new ways of analyzing porous materials and processes taking place therein.

  4. Solid-state ring laser gyroscope

    Science.gov (United States)

    Schwartz, S.

    The ring laser gyroscope is a rotation sensor used in most kinds of inertial navigation units. It usually consists in a ring cavity filled with a mixture of helium and neon, together with high-voltage pumping electrodes. The use of a gaseous gain medium, while resulting naturally in a stable bidirectional regime enabling rotation sensing, is however the main industrially limiting factor for the ring laser gyroscopes in terms of cost, reliability and lifetime. We study in this book the possibility of substituting for the gaseous gain medium a solid-state medium (diode-pumped Nd-YAG). For this, a theoretical and experimental overview of the lasing regimes of the solid-state ring laser is reported. We show that the bidirectional emission can be obtained thanks to a feedback loop acting on the states of polarization and inducing differential losses proportional to the difference of intensity between the counterpropagating modes. This leads to the achievement of a solid-state ring laser gyroscope, whose frequency response is modified by mode coupling effects. Several configurations, either mechanically or optically based, are then successively studied, with a view to improving the quality of this frequency response. In particular, vibration of the gain crystal along the longitudinal axis appears to be a very promising technique for reaching high inertial performances with a solid-state ring laser gyroscope. Gyrolaser à état solide. Le gyrolaser est un capteur de rotation utilisé dans la plupart des centrales de navigation inertielle. Dans sa forme usuelle, il est constitué d'une cavité laser en anneau remplie d'un mélange d'hélium et de néon pompé par des électrodes à haute tension. L'utilisation d'un milieu amplificateur gazeux, si elle permet de garantir naturellement le fonctionnement bidirectionnel stable nécessaire à la mesure des rotations, constitue en revanche la principale limitation industrielle des gyrolasers actuels en termes de coût, fiabilit

  5. Computational dynamics of laser alloyed metallic materials for improved corrosion performance: computational dynamics of laser alloyed metallic materials

    CSIR Research Space (South Africa)

    Fatoba, OS

    2016-04-01

    Full Text Available Laser alloying is a material processing method which utilizes the high power density available from defocused laser beam to melt both metal coatings and a part of the underlying substrate. Since melting occur solitary at the surface, large...

  6. Solid material evaporation into an ECR source by laser ablation

    International Nuclear Information System (INIS)

    Harkewicz, R.; Stacy, J.; Greene, J.; Pardo, R.C.

    1993-01-01

    In an effort to explore new methods of producing ion beams from solid materials, we are attempting to develop a laser-ablation technique for evaporating materials directly into an ECR ion source plasma. A pulsed NdYaG laser with approximately 25 watts average power and peak power density on the order of 10 7 W/cm 2 has been used off-line to measure ablation rates of various materials as a function of peak laser power. The benefits anticipated from the successful demonstration of this technique include the ability to use very small quantities of materials efficiently, improved material efficiency of incorporation into the ECR plasma, and decoupling of the material evaporation process from the ECR source tuning operation. Here we report on the results of these tests and describe the design for incorporating such a system directly with the ATLAS PII-ECR ion source

  7. Generation of ultrasound in materials using continuous-wave lasers.

    Science.gov (United States)

    Caron, James N; DiComo, Gregory P; Nikitin, Sergei

    2012-03-01

    Generating and detecting ultrasound is a standard method of nondestructive evaluation of materials. Pulsed lasers are used to generate ultrasound remotely in situations that prohibit the use of contact transducers. The scanning rate is limited by the repetition rates of the pulsed lasers, ranging between 10 and 100 Hz for lasers with sufficient pulse widths and energies. Alternately, a high-power continuous-wave laser can be scanned across the surface, creating an ultrasonic wavefront. Since generation is continuous, the scanning rate can be as much as 4 orders of magnitude higher than with pulsed lasers. This paper introduces the concept, comparing the theoretical scanning speed with generation by pulsed laser. © 2012 Optical Society of America

  8. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  9. Laser-accelerated particle beams for stress testing of materials.

    Science.gov (United States)

    Barberio, M; Scisciò, M; Vallières, S; Cardelli, F; Chen, S N; Famulari, G; Gangolf, T; Revet, G; Schiavi, A; Senzacqua, M; Antici, P

    2018-01-25

    Laser-driven particle acceleration, obtained by irradiation of a solid target using an ultra-intense (I > 10 18  W/cm 2 ) short-pulse (duration testing materials and are particularly suited for identifying materials to be used in harsh conditions. We show that these laser-generated protons can produce, in a very short time scale, a strong mechanical and thermal damage, that, given the short irradiation time, does not allow for recovery of the material. We confirm this by analyzing changes in the mechanical, optical, electrical, and morphological properties of five materials of interest to be used in harsh conditions.

  10. Laser interaction with biological material mathematical modeling

    CERN Document Server

    Kulikov, Kirill

    2014-01-01

    This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.

  11. New materials for solid state electrochemistry

    International Nuclear Information System (INIS)

    Ferloni, P.; Consiglio Nazionale delle Ricerche, Pavia; Magistris, A.; Consiglio Nazionale delle Ricerche, Pavia

    1994-01-01

    Solid state electrochemistry is an interdisciplinary area, undergoing nowadays a fast development. It is related on the one hand to chemistry, and on the other hand to crystallography, solid state physics and materials science. In this paper structural and electrical properties of some families of new materials interesting for solid state electrochemistry are reviewed. Attention is focused essentially on ceramic and crystalline materials, glasses and polymers, displaying high ionic conductivity and potentially suitable for various applications in solid state electrochemical devices. (orig.)

  12. Development of high-power CO2 lasers and laser material processing

    Science.gov (United States)

    Nath, Ashish K.; Choudhary, Praveen; Kumar, Manoj; Kaul, R.

    2000-02-01

    Scaling laws to determine the physical dimensions of the active medium and optical resonator parameters for designing convective cooled CO2 lasers have been established. High power CW CO2 lasers upto 5 kW output power and a high repetition rate TEA CO2 laser of 500 Hz and 500 W average power incorporated with a novel scheme for uniform UV pre- ionization have been developed for material processing applications. Technical viability of laser processing of several engineering components, for example laser surface hardening of fine teeth of files, laser welding of martensitic steel shroud and titanium alloy under-strap of turbine, laser cladding of Ni super-alloy with stellite for refurbishing turbine blades were established using these lasers. Laser alloying of pre-placed SiC coating on different types of aluminum alloy, commercially pure titanium and Ti-6Al-4V alloy, and laser curing of thermosetting powder coating have been also studied. Development of these lasers and results of some of the processing studies are briefly presented here.

  13. Review of selective laser melting: Materials and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yap, C. Y., E-mail: cyap001@e.ntu.edu.sg [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Energy Research Institute @ NTU, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Block S2 - B3a - 01, Singapore 639798 (Singapore); Chua, C. K., E-mail: mckchua@ntu.edu.sg; Liu, Z. H., E-mail: azhliu@ntu.edu.sg; Zhang, D. Q., E-mail: zhangdq@ntu.edu.sg; Loh, L. E., E-mail: leloh1@e.ntu.edu.sg; Sing, S. L., E-mail: sing0011@e.ntu.edu.sg [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Dong, Z. L., E-mail: zldong@ntu.edu.sg [School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798 (Singapore)

    2015-12-15

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  14. Review of selective laser melting: Materials and applications

    Science.gov (United States)

    Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.

    2015-12-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  15. Review of selective laser melting: Materials and applications

    International Nuclear Information System (INIS)

    Yap, C. Y.; Chua, C. K.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.; Dong, Z. L.

    2015-01-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section

  16. Cutting and machining energetic materials with a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, Frank; Benterou, Jerry; Lee, Ronald; Roos, Edward [Energetic Materials Center, Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94550 (United States)

    2003-04-01

    A femtosecond (fs) laser has been used as a tool for solving many problems involving access, machining, disassembly, inspection and avoidance of undesirable hazardous waste streams in systems containing energetic materials. Because of the unique properties of the interaction of ultrashort laser pulses with matter, the femtosecond laser can be used to safely cut these energetic materials in a precise manner without creating an unacceptable waste stream. Many types of secondary high explosives (HE) and propellants have been cut with the laser for a variety of applications ranging from disassembly of aging conventional weapons (demilitarization), inspection of energetic components of aging systems to creating unique shapes of HE for purposes of initiation and detonation physics studies. Hundreds of samples of energetic materials have been cut with the fs laser without ignition and, in most cases, without changing the surface morphology of the cut surfaces. The laser has also been useful in cutting nonenergetic components in close proximity to energetic materials. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  17. UV laser micromachining of ceramic materials: formation of columnar topographies

    International Nuclear Information System (INIS)

    Oliveira, V.; Vilar, R.; Conde, O.

    2001-01-01

    Laser machining is increasingly appearing as an alternative for micromachining of ceramics. Using ceramic materials using excimer lasers can result in smooth surfaces or in the formation of cone-like or columnar topography. Potential applications of cone-shaped or columnar surface topography include, for example, light trapping in anti-reflection coatings and improvement of adhesion bonding between ceramic materials. In this communication results of a comparative study of surface topography change during micromachining of several ceramic materials with different ablation behaviors are reported. (orig.)

  18. Modeling of high energy laser ignition of energetic materials

    International Nuclear Information System (INIS)

    Lee, Kyung-cheol; Kim, Ki-hong; Yoh, Jack J.

    2008-01-01

    We present a model for simulating high energy laser heating and ignition of confined energetic materials. The model considers the effect of irradiating a steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultrashort (femto- and picosecond) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives. Numerically simulated pulsed-laser heating of solid target and thermal explosion of cyclotrimethylenetrinitramine, triaminotrinitrobenzene, and octahydrotetranitrotetrazine are compared to experimental results. The experimental and numerical results are in good agreement

  19. Laser Induced Damage in Optical Materials: 1980.

    Science.gov (United States)

    1981-10-01

    conference organization. As many of you have experienced, the printed proceedings of these Laser Damage Symposia in our personal libraries are...responsible person or agency. I look forward to our continued relationship. Finally, let me thank the organizers of this Symposium. They have done a...the professional operation of the Symposium and Ms. Susie Rivera and Ms. Sheila Aaker for their part in the preparation and publication of the

  20. Laser diagnostics of materials and chemistry

    International Nuclear Information System (INIS)

    Hartford, A. Jr.

    1984-01-01

    Several examples are given of the ability of laser-based diagnostic techniques to make noninvasive measurements in hostile environments. Using coherent anti-Stokes Raman scattering both majority and minority species concentrations, as well as temperature, have been measured in the hot, high-pressure, particle-laden stream of a coal gasifier. In addition, numerous toxic and corrosive elements in the gasifier stream have been identified, but not yet quantified. In addition to providing the capability for making analytical determinations, laser techniques have been extensively employed to measure the rates of elementary chemical reactions. Recently, the temperature regime over which such meaurements are possible has been expanded. Although much of the laser diagnostic activity to date has involved investigations of the gas phase, significant information concerning heterogeneous phenomena can still be inferred. For instance, gas-solid reactions can manifest themselves as changes in vapor phase composition. Furthermore, in the future we expect expanded studies involving reactions of refractory metals (both atoms and clusters) and additional investigations of processes occurring at interfaces and on surfaces

  1. NATO Advanced Study Institute on Laser Control & Monitoring in New Materials, Biomedicine, Environment, Security & Defense

    CERN Document Server

    Hall, Trevor J; Paredes, Sofia A; Extreme Photonics & Applications

    2010-01-01

    "Extreme Photonics & Applications" arises from the 2008 NATO Advanced Study Institute in Laser Control & Monitoring in New Materials, Biomedicine, Environment, Security and Defense. Leading experts in the manipulation of light offered by recent advances in laser physics and nanoscience were invited to give lectures in their fields of expertise and participate in discussions on current research, applications and new directions. The sum of their contributions to this book is a primer for the state of scientific knowledge and the issues within the subject of photonics taken to the extreme frontiers: molding light at the ultra-finest scales, which represents the beginning of the end to limitations in optical science for the benefit of 21st Century technological societies. Laser light is an exquisite tool for physical and chemical research. Physicists have recently developed pulsed lasers with such short durations that one laser shot takes the time of one molecular vibration or one electron rotation in an ...

  2. Requirements and new materials for fusion laser systems

    International Nuclear Information System (INIS)

    Stokowski, S.E.; Weber, M.J.; Saroyan, R.A.; Hagen, W.F.

    1977-10-01

    Higher focusable power in neodymium glass fusion lasers can be obtained through the use of new materials with lower nonlinear index (n 2 ) and better energy storage capabilities than the presently employed silicate glass. Silicate, phosphate, fluorophosphate, and beryllium fluoride glasses are discussed in terms of fusion laser requirements, particularly those for the proposed Nova laser. Examples of the variation in spectroscopic and optical properties obtainable with compositional changes are given. Results of a system evaluation of potential laser materials show that fluorophosphate glasses have many of the desired properties for use in Nova. These glasses are now being cast in large sizes (30-cm diameter) and will be tested in prototype amplifiers in 1978

  3. Requirements and new materials for fusion laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Stokowski, S.E.; Weber, M.J.; Saroyan, R.A.; Hagen, W.F.

    1977-10-01

    Higher focusable power in neodymium glass fusion lasers can be obtained through the use of new materials with lower nonlinear index (n/sub 2/) and better energy storage capabilities than the presently employed silicate glass. Silicate, phosphate, fluorophosphate, and beryllium fluoride glasses are discussed in terms of fusion laser requirements, particularly those for the proposed Nova laser. Examples of the variation in spectroscopic and optical properties obtainable with compositional changes are given. Results of a system evaluation of potential laser materials show that fluorophosphate glasses have many of the desired properties for use in Nova. These glasses are now being cast in large sizes (30-cm diameter) and will be tested in prototype amplifiers in 1978.

  4. Final Report: Laser-Material Interactions Relevant to Analytic Spectroscopy of Wide Band Gap Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, J. Thomas [Washington State Univ., Pullman, WA (United States)

    2014-04-05

    We summarize our studies aimed at developing an understanding of the underlying physics and chemistry in terms of laser materials interactions relevant to laser-based sampling and chemical analysis of wide bandgap materials. This work focused on the determination of mechanisms for the emission of electrons, ions, atoms, and molecules from laser irradiation of surfaces. We determined the important role of defects on these emissions, the thermal, chemical, and physical interactions responsible for matrix effects and mass-dependent transport/detection. This work supported development of new techniques and technology for the determination of trace elements contained such as nuclear waste materials.

  5. Direct diode lasers and their advantages for materials processing and other applications

    Science.gov (United States)

    Fritsche, Haro; Ferrario, Fabio; Koch, Ralf; Kruschke, Bastian; Pahl, Ulrich; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang; Eibl, Florian; Kohl, Stefanie; Dobler, Michael

    2015-03-01

    The brightness of diode lasers is improving continuously and has recently started to approach the level of some solid state lasers. The main technology drivers over the last decade were improvements of the diode laser output power and divergence, enhanced optical stacking techniques and system design, and most recently dense spectral combining. Power densities at the work piece exceed 1 MW/cm2 with commercially available industrial focus optics. These power densities are sufficient for cutting and welding as well as ablation. Single emitter based diode laser systems further offer the advantage of fast current modulation due their lower drive current compared to diode bars. Direct diode lasers may not be able to compete with other technologies as fiber or CO2-lasers in terms of maximum power or beam quality. But diode lasers offer a range of features that are not possible to implement in a classical laser. We present an overview of those features that will make the direct diode laser a very valuable addition in the near future, especially for the materials processing market. As the brightness of diode lasers is constantly improving, BPP of less than 5mm*mrad have been reported with multikW output power. Especially single emitter-based diode lasers further offer the advantage of very fast current modulation due to their low drive current and therefore low drive voltage. State of the art diode drivers are already demonstrated with pulse durations of direct current control allows pulses of several microseconds with hundreds of watts average power. Spot sizes of less than 100 μm are obtained at the work piece. Such a diode system allows materials processing with a pulse parameter range that is hardly addressed by any other laser system. High productivity material ablation with cost effective lasers is enabled. The wide variety of wavelengths, high brightness, fast power modulation and high efficiency of diode lasers results in a strong pull of existing markets, but

  6. A novel laser-based method for controlled crystallization in dental prosthesis materials

    Science.gov (United States)

    Cam, Peter; Neuenschwander, Beat; Schwaller, Patrick; Köhli, Benjamin; Lüscher, Beat; Senn, Florian; Kounga, Alain; Appert, Christoph

    2015-02-01

    Glass-ceramic materials are increasingly becoming the material of choice in the field of dental prosthetics, as they can feature both high strength and very good aesthetics. It is believed that their color, microstructure and mechanical properties can be tuned such as to achieve an optimal lifelike performance. In order to reach that ultimate perfection a controlled arrangement of amorphous and crystalline phases in the material is required. A phase transformation from amorphous to crystalline is achieved by a heat treatment at defined temperature levels. The traditional approach is to perform the heat treatment in a furnace. This, however, only allows a homogeneous degree of crystallization over the whole volume of the parent glass material. Here a novel approach using a local heat treatment by laser irradiation is presented. To investigate the potential of this approach the crystallization process of SiO2-Li2O-Al2O3-based glass has been studied with laser systems (pulsed and continuous wave) operating at different wavelengths. Our results show the feasibility of gradual and partial crystallization of the base material using continuous laser irradiation. A dental prosthesis machined from an amorphous glassy state can be effectively treated with laser irradiation and crystallized within a confined region of a few millimeters starting from the body surface. Very good aesthetics have been achieved. Preliminary investigation with pulsed nanosecond lasers of a few hundreds nanoseconds pulse width has enabled more refinement of crystallization and possibility to place start of phase change within the material bulk.

  7. Development of diode-pumped medical solid-state lasers

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively

  8. Development of diode-pumped medical solid-state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively.

  9. High energy bursts from a solid state laser operated in the heat capacity limited regime

    Science.gov (United States)

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  10. Materials Delivered by Member States

    International Nuclear Information System (INIS)

    1966-01-01

    The information given in this document is divided into two parts. In part I the Director General is reporting to the Members of the Agency, under Article IX. G of the Statute, the quantities of materials delivered by Members up to 31 December 1965 in compliance with requests the Agency had made under Article IX. D. Part III contains information about materials which had not been delivered by 31 December but which had been allocated, in accordance with Article XI. F. 1 of the Statute, to approved Agency projects for which project arrangements were in force on that date

  11. Materials Delivered by Member States

    International Nuclear Information System (INIS)

    1965-01-01

    The information given in this document is divided into two parts. In part I the Director General is reporting to the Members of the Agency, under Article IX. G of the Statute, the quantities of materials delivered by Members up to 31 December 1964 in compliance with requests the Agency had made under Article IX. D. Part II contains information about materials which had not been delivered by 31 December but which had been allocated, in accordance with Article XI. F. 1 of the Statute, to approved Agency projects for which project arrangements were in force on that date

  12. Materials Delivered by Member States

    International Nuclear Information System (INIS)

    1968-01-01

    The information given in this document is divided into two parts. In part I the Director General is reporting to the Members of the Agency, under Article IX. G of the Statute, the quantities of materials delivered by Members up to 30 June 1968 in compliance with requests the Agency had made under Article IX,D. Part II contains information about materials which had not been delivered by 30 June 1968 but which had been allocated, in accordance with Article XI.F.I of the Statute, to approved Agency projects for which project arrangements were in force on that date

  13. The Laser Damage Threshold for Materials and the Relation Between Solid-Melt and Melt-Vapor Interface Velocities

    International Nuclear Information System (INIS)

    Khalil, Osama Mostafa

    2010-01-01

    Numerous experiments have demonstrated and analytic theories have predicted that there is a threshold for pulsed laser ablation of a wide range of materials. Optical surface damage threshold is a very complex and important application of high-power lasers. Optical damage may also be considered to be the initial phase of laser ablation. In this work it was determined the time required and the threshold energy of a layer of thickness to heat up. We used the Finite Difference method to simulate the process of laser-target interaction in three cases. Namely, the case before melting begins using a continuous wave (c.w) laser source and a pulsed laser source, the case after the first change of state (from solid to melt), and the case after the second change of state (from melt to vapor). And also study the relation between the solid-melt and melt-vapor interface velocities to have a commonsense of the laser ablation process.

  14. The solid state detector technology for picosecond laser ranging

    Science.gov (United States)

    Prochazka, Ivan

    1993-01-01

    We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.

  15. Polarization methods for diode laser excitation of solid state lasers

    Science.gov (United States)

    Holtom, Gary R.

    2008-11-25

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.

  16. Materials Delivered by Member States

    International Nuclear Information System (INIS)

    1969-01-01

    In this document the Director General is reporting to the Members of the Agency, under Article IX. G of the Statute, the quantities of materials delivered by Members up to 30 June 1969 in compliance with requests the Agency had made under Article IX. D

  17. Materials Delivered by Member States

    International Nuclear Information System (INIS)

    1975-01-01

    In this document the Director General is reporting to the Members of the Agency, under Article IX. G of the Statute, the quantities of materials which Members had delivered up to 30 June 1975, in compliance with requests the Agency had made under Article IX. D

  18. Materials Delivered by Member States

    International Nuclear Information System (INIS)

    1974-01-01

    In this document the Director General is reporting to the Members of the Agency, under Article IX. G of the Statute, the quantities of materials which Members had delivered up to 31 March 1974, in compliance with requests the Agency had made under Article IX. D

  19. Materials Delivered by Member States

    International Nuclear Information System (INIS)

    1971-01-01

    In this document the Director General is reporting to the Members of the Agency, under Article IX. G of the Statute, the quantities of materials which Members had delivered up to the end of 1970, in compliance with requests the Agency had made under Article IX. D

  20. Materials Delivered by Member States

    International Nuclear Information System (INIS)

    1973-01-01

    In this document the Director General is reporting to the Members of the Agency, under Article IX. G of the Statute, the quantities of materials which Members had delivered up to the end of 1972, in compliance with requests the Agency had made under Article IX. D

  1. Materials Delivered by Member States

    International Nuclear Information System (INIS)

    1972-01-01

    In this document the Director General is reporting to the Members of the Agency, under Article IX. G of the Statute, the quantities of materials which Members had delivered up to the end of 1971, in compliance with requests the Agency had made under Article IX. D

  2. Laser Beam Melting of Multi-Material Components

    Science.gov (United States)

    Laumer, Tobias; Karg, Michael; Schmidt, Michael

    First results regarding the realisation of multi-material components manufactured by Laser Beam Melting of polymers and metals are published. For realising composite structures from polymer powders by additive manufacturing, at first relevant material properties regarding compatibility have to be analysed. The paper shows the main requirements for compatibility between different materials and offers first results in form of a compatibility matrix of possible combinations for composite structures. For achieving gradient properties of additively manufactured metal parts by using composite materials the composition of alloying components in the powder and adapted process strategies are varied. As an alternative to atomizing pre-alloyed materials, mixtures of different powders are investigated.

  3. Solid state microcavity dye lasers fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Nielsen, Theodor; Kristensen, Anders

    2004-01-01

    propagating TE–TM modes. The laser cavity has the lateral shape of a trapezoid, supporting lasing modes by reflection on the vertical cavity walls. The solid polymer dye lasers emit laterally through one of the vertical cavity walls, when pumped optically through the top surface by means of a frequency...... doubled, pulsed Nd:YAG laser. Lasing in the wavelength region from 560 to 570 nm is observed from a laser with a side-length of 50 µm. In this proof of concept, the lasers are multimode with a mode wavelength separation of approximately 1.6 nm, as determined by the waveguide propagation constant......We present a solid state polymer microcavity dye laser, fabricated by thermal nanoimprint lithography (NIL) in a dye-doped thermoplast. The thermoplast poly-methylmethacrylate (PMMA) is used due to its high transparency in the visible range and its robustness to laser radiation. The laser dye...

  4. Acoustic damage detection in laser-cut CFRP composite materials

    Science.gov (United States)

    Nishino, Michiteru; Harada, Yoshihisa; Suzuki, Takayuki; Niino, Hiroyuki

    2012-03-01

    Carbon fiber reinforced plastics (CFRP) composite material, which is expected to reduce the weight of automotive, airplane and etc., was cut by laser irradiation with a pulsed-CO2 laser (TRUMPF TFL5000; P=800W, 20kHz, τ=8μs, λ=10.6μm, V=1m/min) and single-mode fiber lasers (IPG YLR-300-SM; P=300W, λ=1.07μm, V=1m/min)(IPG YLR- 2000-SM; P=2kW, λ=1.07μm, V=7m/min). To detect thermal damage at the laser cutting of CFRP materials consisting of thermoset resin matrix and PAN or PITCH-based carbon fiber, the cut quality was observed by X-ray CT. The effect of laser cutting process on the mechanical strength for CFRP tested at the tensile test. Acoustic emission (AE) monitoring, high-speed camera and scanning electron microscopy were used for the failure process analysis. AE signals and fractographic features characteristic of each laser-cut CFRP were identified.

  5. Present and future trends of laser materials processing in Japan

    Science.gov (United States)

    Matsunawa, Akira

    1991-10-01

    Lasers quickly penetrated into Japanese industries in the mid-80s. The paper reviews the present situation of industrial lasers and their applications in Japanese industries for materials removal, joining, and some surface modification technologies as well as their economical evaluation compared with competitive technologies. Laser cutting of metallic and nonmetallic thin sheets is widely prevalent even in small scale industries as a flexible manufacturing tool. As for the laser welding is concerned, industrial applications are rather limited in mass production lines. This mainly comes from the fact that the present laser technologies have not employed the adaptive control because of the lack of sensors, monitoring, and control systems which can tolerate the high-precision and high-speed processing. In spite of this situation, laser welding is rapidly increasing in recent years in industries such as automotive, machinery, electric/electronic, steel, heavy industries, etc. Laser surface modification technologies have attracted significant interest from industrial people, but actual application is very limited today. However, the number of R&D papers is increasing year by year. The paper also reviews these new technology trends in Japan.

  6. Toward high brightness, multi-kilowatt solid state lasers

    International Nuclear Information System (INIS)

    Zapata, L.E.; Manes, K.R.

    1990-11-01

    High average power (HAP) solid state laser output with improved beam quality has introduced new capabilities in materials processing. At the 500 W level and with a beam quality of a ''few'' times the diffraction limit, the General Electric NY slab is able to drill 5 cm of stainless steel in a few seconds. We expect that 2--3 kW of near infrared laser output in a low order spatial mode would enable metal working now unknown to industry. The HAP output of slab lasers is limited by the size of the available laser crystals and the pump power. Core free, six cm diameter NY boules have been grown on an experimental basis. High optical quality NG can be obtained up to 10 cm in diameter. We present the results of our modeling based on these crystals pumped by advanced arc-lamps or laser diode arrays. We project HAP laser outputs of 1.6 kW from an existing Vortek pumped NG oscillator and about 2 kW from diode pumped NY device. Several kW of laser output can be expected from two such slabs in a MOPA configuration before optical damage limits are reached. The three dimensional stress-optic code which we used to optimize our designs, was normalized to available experimental data obtained with the above NG slab at the 500 W level and a 40 W diode pumped NY test bed. Our calculations indicate the essential parameters for attainment of high beam quality. Cooling uniformity across the pumped faces of the slab is critical and the location of the transition between pumped and un-pumped regions towards the slab tips is very important. A flat pumping profile was found to be desirable and predicted one wave of distortion which should be correctable over about 75% of the aperture however, an even better wavefront was predicted over 90% of the aperture when the regions near the edges of the slab were slightly over-pumped relative to the central regions and the regions near to the ends were tapered to compensate for transition effects

  7. Femtosecond laser processing of photovoltaic and transparent materials

    Science.gov (United States)

    Ahn, Sanghoon

    The photovoltaic semiconducting and transparent dielectric materials are of high interest in current industry. Femtosecond laser processing can be an effective technique to fabricate such materials since non-linear photochemical mechanisms predominantly occur. In this series of studies, femtosecond (fs) laser processing techniques that include laser drilling on Si wafer, laser scribing on CIGS thin film, laser ablation on Lithium Niobate (LN) crystal, and fabrication of 3D structures in fused silica were studied. The fs laser drilling on Si wafer was performed to fabricate via holes for wrap-through PV devices. For reduction of the number of shots in fs laser drilling process, self-action of laser light in the air was initiated. To understand physical phenomena during laser drilling, scanning electron microscopy (SEM), emission, and shadowgraph images were studied. The result indicated the presence of two mechanisms that include fabrication by self-guided beam and wall-guided beam. Based on our study, we could fabricate ~16 micrometer circular-shaped via holes with ~200 laser pulses on 160-170 micrometer thick c- and mc-Si wafer. For the fs laser scribing on ink jet printed CIGS thin film solar cell, the effect of various parameters that include pulse accumulation, wavelength, pulse energy, and overlapping were elucidated. In our processing regime, the effect of wavelength could be diminished due to compensation between beam size, pulse accumulation, energy fluence, and the absorption coefficient. On the other hand, for high PRF fs laser processing, pulse accumulation effect cannot be ignored, while it can be negligible in low PRF fs laser processing. The result indicated the presence of a critical energy fluence for initiating delamination of CIGS layer. To avoid delamination and fabricate fine isolation lines, the overlapping method can be applied. With this method, ~1 micrometer width isolation lines were fabricated. The fs laser ablation on LN wafer was studied

  8. Large aperture components for solid state laser fusion systems

    International Nuclear Information System (INIS)

    Simmons, W.W.

    1978-01-01

    Solid state lasers for fusion experiments must reliably deliver maximum power to small (approximately .5 mm) targets from stand-off focal distances of 1 m or more. This requirement places stringent limits upon the optical quality, resistance to damage, and overall performance of the several major components--amplifiers, Faraday isolators, spatial filters--in each amplifier train. Component development centers about achieving (1) highest functional material figure of merit, (2) best optical quality, and (3) maximum resistance to optical damage. Specific examples of the performance of large aperture components will be presented within the context of the Argus and Shiva laser systems, which are presently operational at Lawrence Livermore Laboratory. Shiva comprises twenty amplifiers, each of 20 cm output clear aperture. Terawatt beams from these amplifiers are focused through two opposed, nested clusters of f/6 lenses onto such targets. Design requirements upon the larger aperture Nova laser components, up to 35 cm in clear aperture, will also be discussed; these pose a significant challenge to the optical industry

  9. Laser-material interactions: A study of laser energy coupling with solids

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, Mark Alan [Univ. of California, Berkeley, CA (United States)

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding.

  10. Laser-material interactions: A study of laser energy coupling with solids

    International Nuclear Information System (INIS)

    Shannon, M.A.; California Univ., Berkeley, CA

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding

  11. Laser formation of Bragg gratings in polymer nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, M M; Khaydukov, K V; Sokolov, V I; Khaydukov, E V [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation)

    2016-01-31

    The method investigated in this work is based on the laser-induced, spatially inhomogeneous polymerisation of nanocomposite materials and allows control over the motion and structuring of nanoparticles. The mechanisms of nanoparticle concentration redistribution in the process of radical photopolymerisation are studied. It is shown that under the condition of spatially inhomogeneous illumination of a nanocomposite material, nanoparticles are diffused from the illuminated areas into the dark fields. Diffraction gratings with a thickness of 8 μm and a refractive index modulation of 1 × 10{sup -2} are written in an OCM-2 monomer impregnated by silicon nanoparticles. The gratings may be used in the development of narrowband filters, in holographic information recording and as dispersion elements in integrated optical devices. (interaction of laser radiation with matter. laser plasma)

  12. Optical characteristics of novel bulk and nanoengineered laser host materials

    Science.gov (United States)

    Prasad, Narasimha S.; Sova, Stacey; Kelly, Lisa; Bevan, Talon; Arnold, Bradley; Cooper, Christopher; Choa, Fow-Sen; Singh, N. B.

    2018-02-01

    The hexagonal apatite single crystals have been investigated for their applications as laser host materials. Czochralksi and flux growth methods have been utilized to obtain single crystals. For low temperature processing (useful properties as laser hosts and bone materials. Calcium lanthanum silicate (Nd-doped) and lanthanum aluminate material systems were studied in detail. Nanoengineered calcium and lanthanum based silicates were synthesized by a solution method and their optical and morphological characteristics were compared with Czochralski grown bulk hydroxyapatite single crystals. Materials were evaluated by absorbance, fluorescence and Raman characteristics. Neodymium, iron and chromium doped crystals grown by a solution method showed weak but similar optical properties to that of Czochralski grown single crystals.

  13. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    Pei, Y. T.; Ocelik, V.; De Hosson, J. T. M.

    2003-01-01

    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-situ microstructural observations during straining in a field-emission

  14. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    De Hosson, JTM; Pei, YT; Ocelik, [No Value; Sudarshan, TS; Stiglich, JJ; Jeandin, M

    2002-01-01

    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-sitit microstructural observations during straining in an FEG-ESEM

  15. Laser-matter structuration of optical and biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Hallo, L., E-mail: hallo@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Mezel, C., E-mail: candice.mezel@cea.fr [CELIA, Universite Bordeaux 1 (France); CEA Le Ripault, 37260 Monts (France); Guillemot, F., E-mail: fabien.guillemot@inserm.fr [UMR 577 INSERM, Universite Bordeaux 2 (France); Chimier, B., E-mail: chimier@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Bourgeade, A., E-mail: antoine.bourgeade@cea.fr [CEA-CESTA, Le Barp (France); Regan, C., E-mail: regan@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Duchateau, G., E-mail: duchateau@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Souquet, A., E-mail: agnes.souquet@inserm.fr [UMR 577 INSERM, Universite Bordeaux 2 (France); Hebert, D., E-mail: david.hebert@cea.fr [CEA-CESTA, Le Barp (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer In this study we model nanomaterial structuring. Black-Right-Pointing-Pointer The laser energy deposition is discussed first. Black-Right-Pointing-Pointer Full and approximate models are discussed. Black-Right-Pointing-Pointer Dynamic material response is addressed via hydrodynamics. Black-Right-Pointing-Pointer Sild effects are accounted for - Abstract: Interaction of ultrafast laser, i.e. from the femtosecond (fs) to the nanosecond (ns) regime, with initially transparent matter may produce very high energy density hot spots in the bulk as well as at the material surface, depending on focusing conditions. In the fs regime, absorption is due to ionisation of the dielectric, which enables absorption process to begin, and then hydrodynamic to take place. In the ns regime both absorption and hydrodynamic are coupled to each other, which complexifies considerably the comprehension but matter structuration looks similar. A numerical tool including solution of 3D Maxwell equations and a rate equation for free electrons is first compared to some available simple models of laser energy absorption. Then, subsequent material deformation, i.e. structuration, is determined by solving hydrodynamic equations, including or not solid behaviour. We show that nature of the final structures strongly depends on the amount of deposited energy and on the shape of the absorption zone. Then we address some problems related to laser-matter structuration of optical and biological materials in the fs, ps and ns regimes.

  16. Material Engineering for Monolithic Semiconductor Mode-Locked Lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina

    This thesis is devoted to the materials engineering for semiconductor monolithic passively mode-locked lasers (MLLs) as a compact energy-efficient source of ultrashort optical pulses. Up to the present day, the achievement of low-noise sub-picosecond pulse generation has remained a challenge...

  17. AIR EMISSIONS FROM LASER DRILLING OF PRINTED WIRING BOARD MATERIALS

    Science.gov (United States)

    The paper gives results of a study to characterize gases generated during laser drilling of printed wiring board (PWB) material and identifies the pollutants and generation rates found during the drilling process. Typically found in the missions stream were trace amounts of carbo...

  18. Ultrashort-pulse laser excitation and damage of dielectric materials

    DEFF Research Database (Denmark)

    Haahr-Lillevang, Lasse; Balling, Peter

    2015-01-01

    Ultrashort-pulse laser excitation of dielectrics is an intricate problem due to the strong coupling between the rapidly changing material properties and the light. In the present paper, details of a model based on a multiple-rate-equation description of the conduction band are provided. The model...

  19. Modeling short-pulse laser excitation of dielectric materials

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Sandkamm, Ditte Både; Haahr-Lillevang, Lasse

    2014-01-01

    A theoretical description of ultrashort-pulse laser excitation of dielectric materials based on strong-field excitation in the Keldysh picture combined with a multiple-rateequation model for the electronic excitation including collisional processes is presented. The model includes light attenuation...

  20. Mode-locked solid state lasers using diode laser excitation

    Science.gov (United States)

    Holtom, Gary R [Boston, MA

    2012-03-06

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. An asymmetric cavity provides relatively large beam spot sizes in gain medium to permit efficient coupling to a volume pumped by a laser diode bar. The cavity can include a collimation region with a controlled beam spot size for insertion of a saturable absorber and dispersion components. Beam spot size is selected to provide stable mode locking based on Kerr lensing. Pulse durations of less than 100 fs can be achieved in Yb:KGW.

  1. The present state of laser isotope separation of uranium

    International Nuclear Information System (INIS)

    Tashiro, Hideo; Nemoto, Koshichi.

    1994-01-01

    As the methods of uranium enrichment, gas diffusion method and centrifugal separation method in which power consumption is less and the cost is low have been carried out. On the other hand, as the future technology, the research and development of laser isotope separation technology have been carried out. There are the atomic laser separation process in which the laser beam of visible light is irradiated to atomic state uranium and the molecular laser separation process in which far infrared laser beam is irradiated to uranium hexafluoride molecules. The atomic process is divided into three steps, that is, the processes of uranium evaporation, the reaction of uranium with laser beam and the recovery of enriched uranium. The principle of the laser separation is explained. The state of development of laser equipment and separation equipment is reported. The principle and the present state of development of the molecular separation process which consists of the cooling of UF 6 gas, the generation of high power 16 μm laser pulses and the collection of the reaction product are explained. The present state of both processes in foreign countries is reported. (K.I.)

  2. High power laser and materials investigation. Final report, 31 July 1978-28 October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Chicklis, E.P.; Folweiler, R.C.; Pollak, T.M.; Baer, J.

    1980-06-01

    This is a combined study of resonant pumped solid state lasers as fusion drivers, and the development of crystalline optical materials suitable for propagation of the high peak powers associated with laser fusion research. During this period of study the concept of rare gas halide lasers was first demonstrated by the lasing of Tm:YLF at 453 nm pumped by the 353 nm energy of XeF. Excited stata densities of 5 x 10/sup 18/ cm/sup -3/ have been attained and spectroscopic measurements show that up to 60% of the pump energy can be converted into useful stored energy. Alternative lasers and pumping schemes are also discussed. In all cases the potential RGH/SS systems are evaluated in respect to internal efficiency and heat loading.

  3. New Mid-IR Lasers Based on Rare-Earth-Doped Sulfide and Chloride Materials

    International Nuclear Information System (INIS)

    Nostrand, M

    2000-01-01

    Applications in remote-sensing and military countermeasures have driven a need for compact, solid-state mid-IR lasers. Due to multi-phonon quenching, non-traditional hosts are needed to extend current solid-state, room-temperature lasing capabilities beyond ∼ 4 (micro)m. Traditional oxide and fluoride hosts have effective phonon energies in the neighborhood of 1000 cm -1 and 500 cm -1 , respectively. These phonons can effectively quench radiation above 2 and 4 (micro)m, respectively. Materials with lower effective phonon energies such as sulfides and chlorides are the logical candidates for mid-IR (4-10 (micro)m) operation. In this report, laser action is demonstrated in two such hosts, CaGa 2 S 4 and KPb 2 Cl 5 . The CaGa 2 S 4 :Dy 3+ laser operating at 4.3 (micro)m represents the first sulfide laser operating beyond 2 (micro)m. The KPb 2 Cl 5 :Dy 3+ laser operating at 2.4 (micro)m represents the first operation of a chloride-host laser in ambient conditions. Laser action is also reported for CaGa 2 S 4 :Dy 3+ at 2.4 (micro)m, CaGa 2 S 4 :Dy 3+ at 1.4 (micro)m, and KPb 2 Cl 5 :Nd 3+ at 1.06 (micro)m. Both host materials have been fully characterized, including lifetimes, absorption and emission cross sections, radiative branching ratios, and radiative quantum efficiencies. Radiative branching ratios and radiative quantum efficiencies have been determined both by the Judd-Ofelt method (which is based on absorption measurements), and by a novel method described herein which is based on emission measurements. Modeling has been performed to predict laser performance, and a new method to determine emission cross section from slope efficiency and threshold data is developed. With the introduction and laser demonstration of rare-earth-doped CaGa 2 S 4 and KPb 2 Cl 5 , direct generation of mid-IR laser radiation in a solid-state host has been demonstrated. In KPb 2 Cl 5 , predictions indicate that laser operation to 9 (micro)m may be possible, a wavelength previously

  4. High precision laser processing of sensitive materials by Microjet

    Science.gov (United States)

    Sibailly, Ochelio D.; Wagner, Frank R.; Mayor, Laetitia; Richerzhagen, Bernold

    2003-11-01

    Material laser cutting is well known and widely used in industrial processes, including micro fabrication. An increasing number of applications require nevertheless a superior machining quality than can be achieved using this method. A possibility to increase the cut quality is to opt for the water-jet guided laser technology. In this technique the laser is conducted to the work piece by total internal reflection in a thin stable water-jet, comparable to the core of an optical fiber. The water jet guided laser technique was developed originally in order to reduce the heat damaged zone near the cut, but in fact many other advantages were observed due to the usage of a water-jet instead of an assist gas stream applied in conventional laser cutting. In brief, the advantages are three-fold: the absence of divergence due to light guiding, the efficient melt expulsion, and optimum work piece cooling. In this presentation we will give an overview on several industrial applications of the water-jet guided laser technique. These applications range from the cutting of CBN or ferrite cores to the dicing of thin wafers and the manufacturing of stencils, each illustrates the important impact of the water-jet usage.

  5. Kinetic studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    Keto, J.W.

    1991-01-01

    During the past year, we have made measurements of state-to-state energy transfer cross sections and radiative lifetimes for Xe*(6p,6p',7p) and Kr*(5p) states in xenon and krypton buffer gases. These results are relevant to kinetic models of both excimer lasers and the infrared xenon laser; and they are a significant improvement in the precision of the known radiative lifetimes. 3 refs., 2 figs., 2 tabs

  6. Melt pool vorticity in deep penetration laser material welding

    Indian Academy of Sciences (India)

    weld pool has been evaluated in case of high power CO2 laser beam welding. The ... The experiments based on twin or triple spot interaction geometry have also ... while the other one is between the liquid and the solid states of the metal.

  7. Powder Flux Regulation in the Laser Material Deposition Process

    Science.gov (United States)

    Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel

    In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.

  8. Continued advances in high brightness fiber-coupled laser modules for efficient pumping of fiber and solid-state lasers

    Science.gov (United States)

    Hemenway, M.; Chen, Z.; Urbanek, W.; Dawson, D.; Bao, L.; Kanskar, M.; DeVito, M.; Martinsen, R.

    2018-02-01

    Both the fibber laser and diode-pumped solid-state laser market continue to drive advances in pump diode module brightness. We report on the continued progress by nLIGHT to develop and deliver the highest brightness diode-laser pumps using single-emitter technology. Continued advances in multimode laser diode technology [13] and fiber-coupling techniques have enabled higher emitter counts in the element packages, enabling us to demonstrate 305 W into 105 μm - 0.16 NA. This brightness improvement is achieved by leveraging our prior-reported package re-optimization, allowing an increase in the emitter count from two rows of nine emitters to two rows of twelve emitters. Leveraging the two rows off twelve emitter architecture,, product development has commenced on a 400 W into 200 μm - 00.16 NA package. Additionally, the advances in pump technology intended for CW Yb-doped fiber laser pumping has been leveraged to develop the highest brightness 793 nm pump modules for 2 μm Thulium fiber laser pumping, generating 150 W into 200 μm - 0.18 NA and 100 W into 105 μm - 0.15 NA. Lastly, renewed interest in direct diode materials processing led us to experiment with wavelength multiplexing our existing state of the art 200 W, 105 μm - 00.15 NA package into a combined output of 395 WW into 105 μm - 0.16 NA.

  9. Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials.

    Science.gov (United States)

    Matsubara, E; Okada, S; Ichitsubo, T; Kawaguchi, T; Hirata, A; Guan, P F; Tokuda, K; Tanimura, K; Matsunaga, T; Chen, M W; Yamada, N

    2016-09-23

    Despite the fact that phase-change materials are widely used for data storage, no consensus exists on the unique mechanism of their ultrafast phase change and its accompanied large and rapid optical change. By using the pump-probe observation method combining a femtosecond optical laser and an x-ray free-electron laser, we substantiate experimentally that, in both GeTe and Ge_{2}Sb_{2}Te_{5} crystals, rattling motion of mainly Ge atoms takes place with keeping the off-center position just after femtosecond-optical-laser irradiation, which eventually leads to a higher symmetry or disordered state. This very initial rattling motion in the undistorted lattice can be related to instantaneous optical change due to the loss of resonant bonding that characterizes GeTe-based phase change materials. Based on the amorphous structure derived by first-principles molecular dynamics simulation, we infer a plausible ultrafast amorphization mechanism via nonmelting.

  10. Influence of non-collisional laser heating on the electron dynamics in dielectric materials

    Science.gov (United States)

    Barilleau, L.; Duchateau, G.; Chimier, B.; Geoffroy, G.; Tikhonchuk, V.

    2016-12-01

    The electron dynamics in dielectric materials induced by intense femtosecond laser pulses is theoretically addressed. The laser driven temporal evolution of the energy distribution of electrons in the conduction band is described by a kinetic Boltzmann equation. In addition to the collisional processes for energy transfer such as electron-phonon-photon and electron-electron interactions, a non-collisional process for photon absorption in the conduction band is included. It relies on direct transitions between sub-bands of the conduction band through multiphoton absorption. This mechanism is shown to significantly contribute to the laser heating of conduction electrons for large enough laser intensities. It also increases the time required for the electron distribution to reach the equilibrium state as described by the Fermi-Dirac statistics. Quantitative results are provided for quartz irradiated by a femtosecond laser pulse with a wavelength of 800 nm and for intensities in the range of tens of TW cm-2, lower than the ablation threshold. The change in the energy deposition induced by this non-collisional heating process is expected to have a significant influence on the laser processing of dielectric materials.

  11. Kinetics studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    Keto, J.W.

    1994-04-01

    The objective of this contract was the study of state-to-state, electronic energy transfer reactions relevant to the excited state chemistry observed in discharges. We studied deactivation reactions and excitation transfer in collisions of excited states of xenon and krypton atoms with Ar, Kr, Xe and chlorine. The reactant states were excited selectively in two-photon transitions using tunable u.v. and v.u.v. lasers. Excited states produced by the collision were observed by their fluorescence. Reaction rates were measured by observing the time dependent decay of signals from reactant and product channels. In addition we measured interaction potentials of the reactants by laser spectroscopy where the laser induced fluorescence or ionization is measured as a function of laser wavelength (excitation spectra) or by measuring fluorescence spectra at fixed laser frequencies with monochromators. The spectra were obtained in the form of either lineshapes or individual lines from rovibrational transitions of bound states. Our research then required several categories of experiments in order to fully understand a reaction process: 1. High resolution laser spectroscopy of bound molecules or lineshapes of colliding pairs is used to determine potential curves for reactants. 2. Direct measurements of state-to-state reaction rates were measured by studying the time dependent loss of excited reactants and the time dependent formation of products. 3. The energy selectivity of a laser can be used to excite reactants on an excited surface with controlled internuclear configurations. For free states of reactants (as exist in a gas cell) this has been termed laser assisted reactions, while for initially bound states (as chemically bound reactants or dimers formed in supersonic beams) the experiments have been termed photo-fragmentation spectroscopy

  12. Nuclear material control in the United States

    International Nuclear Information System (INIS)

    Jaeger, C.; Waddoups, I.

    1995-01-01

    The Department of Energy has defined a safeguards system to be an integrated system of physical protection, material accounting and material control subsystems designed to deter, prevent, detect, and respond to unauthorized possession, use, or sabotage of SNM. In practice, safeguards involve the development and application of techniques and procedures dealing with the establishment and continued maintenance of a system of activities. The system must also include administrative controls and surveillance to assure that the procedures and techniques of the system are effective and are being carried out. The control of nuclear material is critical to the safeguarding of nuclear materials within the United States. The U.S. Department of Energy includes as part of material control four functional performance areas. They include access controls, material surveillance, material containment and detection/assessment. This paper will address not only these areas but also the relationship between material control and other safeguards and security functions

  13. Mathematical modelling of the laser processing of compose materials

    International Nuclear Information System (INIS)

    Gromyko, G.F.; Matsuka, N.P.

    2009-01-01

    Expansion of the protective coating scope led to the necessity to work out lower priced methods of treatment of machine elements. Making of an adequate, agreed with process features, mathematical model and development of effective methods of its solving are promising directions in this fields. In this paper the mathematical model of high-temperature laser treatment via moving source of pre-sprayed with composite powder padding is developed. Presented model describes accurately enough the heat processes taking place by laser processing of machine elements. Varying input parameters of model (laser power, temperature and composition of environment, characteristics and quantitative composition of using materials, etc.) one can get a cheap tool of preliminary estimates for wide range of similar problems. Difference method, based on process physical features and taking into account main process-dependent parameters had been developed for solving of the built system of nonlinear equations. (authors)

  14. Modern reflective optics for material processing with high power CO/sub 2/-laser beams

    International Nuclear Information System (INIS)

    Juptner, W.P.O.; Sepold, G.; Rothe, R.R.

    1986-01-01

    The state of the art in diamond turning of parabolic mirrors allows to manufacture high quality surfaces at a reasonable low price. In this paper a report is given on mirror optics and systems which were developed with the following aims: Small losses of laser power in the system with a high efficiency of the laser beam processing system; Long lifetime of the mirrors under material processing conditions; High Standard of the optical quality; Flexibility for different applications. The requested qualities are guaranteed by the whole construction of the optics and the system. The theoretical works, the state of the art of the development and the future aspects of these laser working head systems are reported

  15. Solid-state disk amplifiers for fusion-laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.E.; Trenholme, J.B.; Linford, G.J.; Yarema, S.M.; Hurley, C.A.

    1981-09-01

    We review the design, performance, and operation of large-aperture (10 to 46 cm) solid-state disk amplifiers for use in laser systems. We present design data, prototype tests, simulations, and projections for conventional cylindrical pump-geometry amplifiers and rectangular pump-geometry disk amplifiers. The design of amplifiers for the Nova laser system is discussed.

  16. Material model validation for laser shock peening process simulation

    International Nuclear Information System (INIS)

    Amarchinta, H K; Grandhi, R V; Langer, K; Stargel, D S

    2009-01-01

    Advanced mechanical surface enhancement techniques have been used successfully to increase the fatigue life of metallic components. These techniques impart deep compressive residual stresses into the component to counter potentially damage-inducing tensile stresses generated under service loading. Laser shock peening (LSP) is an advanced mechanical surface enhancement technique used predominantly in the aircraft industry. To reduce costs and make the technique available on a large-scale basis for industrial applications, simulation of the LSP process is required. Accurate simulation of the LSP process is a challenging task, because the process has many parameters such as laser spot size, pressure profile and material model that must be precisely determined. This work focuses on investigating the appropriate material model that could be used in simulation and design. In the LSP process material is subjected to strain rates of 10 6  s −1 , which is very high compared with conventional strain rates. The importance of an accurate material model increases because the material behaves significantly different at such high strain rates. This work investigates the effect of multiple nonlinear material models for representing the elastic–plastic behavior of materials. Elastic perfectly plastic, Johnson–Cook and Zerilli–Armstrong models are used, and the performance of each model is compared with available experimental results

  17. Adjustment of Part Properties for an Elastomeric Laser Sintering Material

    Science.gov (United States)

    Wegner, A.; Ünlü, T.

    2018-03-01

    Laser sintering of polymers is gaining more and more importance within the field of small series productions. Polyamide 12 is predominantly used, although a variety of other materials are also available for the laser sintering process. For example, elastomeric, rubberlike materials offer very different part property profiles. Those make the production of flexible parts like, e.g., sealings, flexible tubes or shoe soles possible because they offer high part ductility and low hardness. At the chair for manufacturing technology, a new elastomeric laser sintering material has been developed and then commercialized by a spin-off from university. The aim of the presented study was the analysis of the new material's properties. Proof was found that Shore hardness can be modified by varying the parameter settings. Therefore, the correlation between process parameters, energy input, Shore hardness and other part properties like mechanical properties were analyzed. Based on these results, suitable parameter settings were established which lead to the possibility of producing parts with different Shore hardnesses.

  18. UV laser engraving of high temperature polymeric materials

    International Nuclear Information System (INIS)

    Martinez, D.; Laude, L.D.; Kolev, K.; Hanus, F.

    1999-01-01

    Among emerging technologies, those associated with laser sources as surface processing tools are quite promising. In the present work, a UV pulsed (excimer) laser source is experimented for engraving (or ablating) polymeric materials based on three high temperature polymers: polyethylene terephtalate (PET), polyethersulfone (PES) and polyphenylene sulfide (PPS). The ablation phenomenon is demonstrated on all these polymers and evaluated by stylus profilometry upon varying the laser fluence at impact. For each polymer, results give evidence for three characteristic quantities: an ablation threshold E sub 0, a maximum ablation depth per pulse z sub 0 and an initial rate of ablation α, just above threshold. A simple ablation model is presented which describes correctly the observed behaviours and associates closely the above quantities to the polymer formulation, thus providing for the first time a rational basis to polymer ablation. The model may be extended to parent plastic materials whenever containing the same polymers. It may also be used to predict the behaviours of other polymers when subjected to excimer laser irradiation

  19. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  20. Laser materials processing as manufacturing technology; Seisan gijutsu to shite no laser kako

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, I. [Osaka University, Osaka (Japan)

    1998-11-01

    This paper describes the laser material processing. Laser is artificial light that uses the amplification based on the induced emission of light. It is very excellent in directivity and monochromaticity. The high power density and concentration characteristics of laser enable a variety of high-performance processing such as junction, removal, reforming, and addition. Excellent controllability (that facilitates the automated processing), transmission performance (the processing by energy transmission in long range space is most suitable for laser), and non-contact processing (that contains no wearing, noise, and contamination) are great advantages that the existing processing method does not have. In the wide wavelength area between ultraviolet and infrared areas, the laser that can be used for material processing is very wide over the range of the continuous oscillation to the ultra short pulse of a nanosecond order. The thermal processing accompanied by melting and evaporation as well as the non-thermal processing (quantum processing) by a photochemical reaction is also available as the type of processing. The processing used for manufacturing technology is almost thermal processing including removal, junction, reforming, and addition. The thermal processing covers the range of electronics to heavy industry. 29 refs., 12 figs., 2 tabs.

  1. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  2. Surface Thermometry of Energetic Materials by Laser-Induced Fluorescence

    Science.gov (United States)

    1989-09-01

    at 34 yttrium- aluminum -garnet (Dy:YAG). The simplified energy diagram of Dy:YAG is shown in Fig. 1. Absorbed laser light (at 355 nrm) can 5 excite the...the thermometric technique on a surface similar to that of an energetic material, a thermal-setting plastic supplied by Buehler, Ltd., was employed...temperature over the temperature range of interest. The rare-earth ion dysprosium (Dy) doped into a yttrium- aluminum -garnet (YAG) crystal was I determined

  3. Modeling and Implementing Nonlinear Equations in Solid-State Lasers for Studying their Performance

    Directory of Open Access Journals (Sweden)

    Ali Roudehghat Shotorbani

    2018-05-01

    Full Text Available In this paper, the effect of radius variation of beam light on output efficacy of SFD Yttrium aluminium borate laser doped with Neodymium ion, which is simultaneously a non-linear and active laser crystal, is investigated in a double-pass cavity. This is done with a concave lens that concentrates (Reduction of optical radius within nonlinear material as much optical laser as possible, resulting in increasing the laser efficiency, second harmonic and the population inversion difference. In this study, we first developed five discrete differential equations describing the interactions of 807 nm pump beam, 1060nm laser beam and 530nm second harmonic beam. Output efficiencies of laser and second harmonic beams at pumping power of Pp =20W and beam radius of 5μm have been presented. Meanwhile, in this paper, the first experiment for creating second harmonic in solid state lasers was fully described with a figure and its procedure was investigated and then the equations (second harmonic and laser and population inversion were studied. Radius variation of beam light aims at increasing laser output efficacy and improving second harmonic and population inversion. The analytic methods which have been solved the discrete differential equations via Matlab.

  4. Diode-pumped solid state laser for inertial fusion energy

    International Nuclear Information System (INIS)

    Payne, S.A.; Krupke, W.F.; Orth, C.D.

    1994-11-01

    The authors evaluate the prospect for development of a diode-pumped solid-state-laser driver in an inertial fusion energy power plant. Using a computer code, they predict that their 1 GWe design will offer electricity at 8.6 cents/kW · hr with the laser operating at 8.6% efficiency and the recycled power level at 31%. The results of their initial subscale experimental testbed of a diode-pumped solid state laser are encouraging, demonstrating good efficiencies and robustness

  5. Ultrafast Bessel beams: advanced tools for laser materials processing

    Science.gov (United States)

    Stoian, Razvan; Bhuyan, Manoj K.; Zhang, Guodong; Cheng, Guanghua; Meyer, Remy; Courvoisier, Francois

    2018-05-01

    Ultrafast Bessel beams demonstrate a significant capacity of structuring transparent materials with a high degree of accuracy and exceptional aspect ratio. The ability to localize energy on the nanometer scale (bypassing the 100-nm milestone) makes them ideal tools for advanced laser nanoscale processing on surfaces and in the bulk. This allows to generate and combine micron and nano-sized features into hybrid structures that show novel functionalities. Their high aspect ratio and the accurate location can equally drive an efficient material modification and processing strategy on large dimensions. We review, here, the main concepts of generating and using Bessel non-diffractive beams and their remarkable features, discuss general characteristics of their interaction with matter in ablation and material modification regimes, and advocate their use for obtaining hybrid micro and nanoscale structures in two and three dimensions (2D and 3D) performing complex functions. High-throughput applications are indicated. The example list ranges from surface nanostructuring and laser cutting to ultrafast laser welding and the fabrication of 3D photonic systems embedded in the volume.

  6. Investigation of residual stress in laser welding dissimilar materials

    International Nuclear Information System (INIS)

    Mirim, Denilson de Camargo; Oliveira, Rene Ramos de; Berretta, Jose Roberto; Rossi, Wagner de; Lima, Nelson Batista de; Delijaicov, Sergio; Gomes, Diego Oliva

    2010-01-01

    One of the most critical problems found in the different materials welding is the residual stress formation, that happens mainly for the fact of those materials they possess coefficients of thermal expansion and different thermal conductivities. Like this in this work the residual tension was evaluated in the technique of welding laser among the steel low carbon, AISI 1010 and AISI 304. The materials were united for it welds autogenous of top with a laser of continuous Nd:YAG in that they were varied the potency, speed and the focus of the laser stayed constant in relation to surface of the sample. The main objective of the study went identification and to analysis of the residual stress in HAZ on both sides of seem. Um planning factorial of two factors at two levels each it was executed for optimization the combination of the factors potency and speed. The obtained answers were the residual stress in different depths in HAZ. In the surface of the sample measures of residual stress were accomplished by the technique of X-ray diffraction. The hole drilling strain gage method it was applied to measure the residual stress on both sides of the union. The results were analyzed using the variance analysis and the statistical regression based on the different influences of the entrance and combination of the factors in the residual stress generated in that union. The results indicate that the development of models can foresee the answers satisfactorily. (author)

  7. Computational simulation of heat transfer in laser melted material flow

    International Nuclear Information System (INIS)

    Shankar, V.; Gnanamuthu, D.

    1986-01-01

    A computational procedure has been developed to study the heat transfer process in laser-melted material flow associated with surface heat treatment of metallic alloys to improve wear-and-tear and corrosion resistance. The time-dependent incompressible Navier-Stokes equations are solved, accounting for both convective and conductive heat transfer processes. The convection, induced by surface tension and high surface temperature gradients, sets up a counterrotating vortex flow within the molten pool. This recirculating material flow is responsible for determining the molten pool shape and the associated cooling rates which affect the solidifying material composition. The numerical method involves an implicit triple-approximate factorization scheme for the energy equation, and an explicit treatment for the momentum and the continuity equations. An experimental setup, using a continuous wave CO 2 laser beam as a heat source, has been carried out to generate data for validation of the computational model. Results in terms of the depth, width, and shape of the molten pool and the heat-affected zone for various power settings and shapes of the laser, and for various travel speeds of the workpiece, compare very well with experimental data. The presence of the surface tension-induced vortex flow is demonstrated

  8. High repetition ration solid state switched CO2 TEA laser employed in industrial ultrasonic testing of aircraft parts

    Science.gov (United States)

    von Bergmann, Hubertus; Morkel, Francois; Stehmann, Timo

    2015-02-01

    Laser Ultrasonic Testing (UT) is an important technique for the non-destructive inspection of composite parts in the aerospace industry. In laser UT a high power, short pulse probe laser is scanned across the material surface, generating ultrasound waves which can be detected by a second low power laser system and are used to draw a defect map of the part. We report on the design and testing of a transversely excited atmospheric pressure (TEA) CO2 laser system specifically optimised for laser UT. The laser is excited by a novel solid-state switched pulsing system and utilises either spark or corona preionisation. It provides short output pulses of less than 100 ns at repetition rates of up to 1 kHz, optimised for efficient ultrasonic wave generation. The system has been designed for highly reliable operation under industrial conditions and a long term test with total pulse counts in excess of 5 billion laser pulses is reported.

  9. Laser solid sampling for a solid-state-detector ICP emission spectrometer

    International Nuclear Information System (INIS)

    Noelte, J.; Moenke-Blankenburg, L.; Schumann, T.

    1994-01-01

    Solid sampling with laser vaporization has been coupled to an ICP emission spectrometer with an Echelle optical system and a solid-state-detector for the analysis of steel and soil samples. Pulsation of the vaporized material flow was compensated by real-time background correction and internal standardization, resulting in good accuracy and precision. (orig.)

  10. High average power diode pumped solid state lasers for CALIOPE

    International Nuclear Information System (INIS)

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory's water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW's 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL's first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers

  11. Nonlinear ultrasonics for material state awareness

    Science.gov (United States)

    Jacobs, L. J.

    2014-02-01

    Predictive health monitoring of structural components will require the development of advanced sensing techniques capable of providing quantitative information on the damage state of structural materials. By focusing on nonlinear acoustic techniques, it is possible to measure absolute, strength based material parameters that can then be coupled with uncertainty models to enable accurate and quantitative life prediction. Starting at the material level, this review will present current research that involves a combination of sensing techniques and physics-based models to characterize damage in metallic materials. In metals, these nonlinear ultrasonic measurements can sense material state, before the formation of micro- and macro-cracks. Typically, cracks of a measurable size appear quite late in a component's total life, while the material's integrity in terms of toughness and strength gradually decreases due to the microplasticity (dislocations) and associated change in the material's microstructure. This review focuses on second harmonic generation techniques. Since these nonlinear acoustic techniques are acoustic wave based, component interrogation can be performed with bulk, surface and guided waves using the same underlying material physics; these nonlinear ultrasonic techniques provide results which are independent of the wave type used. Recent physics-based models consider the evolution of damage due to dislocations, slip bands, interstitials, and precipitates in the lattice structure, which can lead to localized damage.

  12. Laser cutting of laminated sheet material: a modeling exercise

    Science.gov (United States)

    de Graaf, Roelof F.; Meijer, Johan

    1997-08-01

    Laser cutting has been investigated for a number of aluminum-synthetic laminates, newly developed materials for the aeronautic and automotive industry. The materials consist of alternating aluminum and synthetic layers. It is shown that these materials can be cut at rates comparable to those of homogeneous aluminum alloys. The cuts show little dross attachment. Also some damage on the synthetic layers has to be accepted. These results initiated a modeling exercise, which resulted in a numerical simulation code. The applied cutting model is based on describing the material in several horizontal layers, each with its own specific thermophysical and optical properties. The separate layers are coupled by known mass, energy and force balanced equations.

  13. Development of Advanced Wear and Corrosion Resistant Systems Through Laser Surface Alloying and Materials Simulations

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Martukanitz and S. Babu

    2007-05-03

    Laser surfacing in the form of cladding, alloying, and modifications are gaining widespread use because of its ability to provide high deposition rates, low thermal distortion, and refined microstructure due to high solidification rates. Because of these advantages, laser surface alloying is considered a prime candidate for producing ultra-hard coatings through the establishment or in situ formation of composite structures. Therefore, a program was conducted by the Applied Research Laboratory, Pennsylvania State University and Oak Ridge National Laboratory to develop the scientific and engineering basis for performing laser-based surface modifications involving the addition of hard particles, such as carbides, borides, and nitrides, within a metallic matrix for improved wear, fatigue, creep, and corrosion resistance. This has involved the development of advanced laser processing and simulation techniques, along with the refinement and application of these techniques for predicting and selecting materials and processing parameters for the creation of new surfaces having improved properties over current coating technologies. This program has also resulted in the formulation of process and material simulation tools capable of examining the potential for the formation and retention of composite coatings and deposits produced using laser processing techniques, as well as positive laboratory demonstrations in producing these coatings. In conjunction with the process simulation techniques, the application of computational thermodynamic and kinetic models to design laser surface alloying materials was demonstrated and resulted in a vast improvement in the formulation of materials used for producing composite coatings. The methodology was used to identify materials and to selectively modify microstructures for increasing hardness of deposits produced by the laser surface alloying process. Computational thermodynamic calculations indicated that it was possible to induce the

  14. Gravitational states of antihydrogen near material surface

    Energy Technology Data Exchange (ETDEWEB)

    Voronin, Alexei Yu., E-mail: dr.a.voronin@gmail.com [P.N. Lebedev Physical Institute (Russian Federation); Froelich, Piotr [Uppsala University, Department of Quantum Chemistry (Sweden); Nesvizhevsky, Valery V. [Institut Laue-Langevin (ILL) (France)

    2012-12-15

    We present a theoretical study of the motion of antihydrogen atoms in the Earth's gravitational field near a material surface. We predict the existence of long-living quasistationary states of antihydrogen in a superposition of the gravitational and Casimir-van der Waals potentials of the surface. We suggest an interferometric method of measuring the energy difference between such gravitational states, hence the gravitational mass of antihydrogen.

  15. Perovskite Materials for Light-Emitting Diodes and Lasers.

    Science.gov (United States)

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Laser-solid interaction and dynamics of the laser-ablated materials

    International Nuclear Information System (INIS)

    Chen, K.R.; Leboeuf, J.N.; Geohegan, D.B.; Wood, R.F.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-01-01

    Rapid transformations through the liquid and vapor phases induced by laser-solid interactions are described by the authors' thermal model with the Clausius-Clapeyron equation to determine the vaporization temperature under different surface pressure condition. Hydrodynamic behavior of the vapor during and after ablation is described by gas dynamic equations. These two models are coupled. Modeling results show that lower background pressure results lower laser energy density threshold for vaporization. The ablation rate and the amount of materials removed are proportional to the laser energy density above its threshold. The authors also demonstrate a dynamic source effect that accelerates the unsteady expansion of laser-ablated material in the direction perpendicular to the solid. A dynamic partial ionization effect is studied as well. A self-similar theory shows that the maximum expansion velocity is proportional to c s α, where 1 - α is the slope of the velocity profile. Numerical hydrodynamic modeling is in good agreement with the theory. With these effects, α is reduced. Therefore, the expansion front velocity is significantly higher than that from conventional models. The results are consistent with experiments. They further study how the plume propagates in high background gas condition. Under appropriate conditions, the plume is slowed down, separates with the background, is backward moving, and hits the solid surface. Then, it splits into two parts when it rebounds from the surface. The results from the modeling will be compared with experimental observations where possible

  17. Secondary emissions during fiber laser cutting of nuclear material

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, A., E-mail: beatriz.mendes.lopez@gmail.com [IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Assunção, E. [IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); European Federation for Welding, Joining and Cutting, Porto Salvo 2740-120 (Portugal); Pires, I. [IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Quintino, L. [IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); European Federation for Welding, Joining and Cutting, Porto Salvo 2740-120 (Portugal)

    2017-04-15

    The laser process has been studied for dismantling work for more than 10 years, however there is almost no data available concerning secondary emissions generated during the process. These emissions are inevitable during the laser cutting process and can have detrimental effects in human health and in the equipment. In terms of safety, for nuclear decommissioning, is crucial to point out ways of controlling the emissions of the process. This paper gives indications about the parameters to be used in order to reduce these secondary emissions and about the influence of these parameters on the particles size distribution. In general, for producing minimal dross and fume emissions the beam focus should be placed on the surface of the material. The higher percentage of secondary emissions which present higher diameter, increases approximately linearly with the stand-off distance and with the use of low air pressure.

  18. Creating stable Floquet-Weyl semimetals by laser-driving of 3D Dirac materials.

    Science.gov (United States)

    Hübener, Hannes; Sentef, Michael A; De Giovannini, Umberto; Kemper, Alexander F; Rubio, Angel

    2017-01-17

    Tuning and stabilizing topological states, such as Weyl semimetals, Dirac semimetals or topological insulators, is emerging as one of the major topics in materials science. Periodic driving of many-body systems offers a platform to design Floquet states of matter with tunable electronic properties on ultrafast timescales. Here we show by first principles calculations how femtosecond laser pulses with circularly polarized light can be used to switch between Weyl semimetal, Dirac semimetal and topological insulator states in a prototypical three-dimensional (3D) Dirac material, Na 3 Bi. Our findings are general and apply to any 3D Dirac semimetal. We discuss the concept of time-dependent bands and steering of Floquet-Weyl points and demonstrate how light can enhance topological protection against lattice perturbations. This work has potential practical implications for the ultrafast switching of materials properties, such as optical band gaps or anomalous magnetoresistance.

  19. Creating stable Floquet-Weyl semimetals by laser-driving of 3D Dirac materials

    Science.gov (United States)

    Hübener, Hannes; Sentef, Michael A.; de Giovannini, Umberto; Kemper, Alexander F.; Rubio, Angel

    2017-01-01

    Tuning and stabilizing topological states, such as Weyl semimetals, Dirac semimetals or topological insulators, is emerging as one of the major topics in materials science. Periodic driving of many-body systems offers a platform to design Floquet states of matter with tunable electronic properties on ultrafast timescales. Here we show by first principles calculations how femtosecond laser pulses with circularly polarized light can be used to switch between Weyl semimetal, Dirac semimetal and topological insulator states in a prototypical three-dimensional (3D) Dirac material, Na3Bi. Our findings are general and apply to any 3D Dirac semimetal. We discuss the concept of time-dependent bands and steering of Floquet-Weyl points and demonstrate how light can enhance topological protection against lattice perturbations. This work has potential practical implications for the ultrafast switching of materials properties, such as optical band gaps or anomalous magnetoresistance.

  20. Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials

    Science.gov (United States)

    Hübener, Hannes; Sentef, Michael A.; De Giovannini, Umberto; Kemper, Alexander F.; Rubio, Angel

    2017-01-01

    Tuning and stabilizing topological states, such as Weyl semimetals, Dirac semimetals or topological insulators, is emerging as one of the major topics in materials science. Periodic driving of many-body systems offers a platform to design Floquet states of matter with tunable electronic properties on ultrafast timescales. Here we show by first principles calculations how femtosecond laser pulses with circularly polarized light can be used to switch between Weyl semimetal, Dirac semimetal and topological insulator states in a prototypical three-dimensional (3D) Dirac material, Na3Bi. Our findings are general and apply to any 3D Dirac semimetal. We discuss the concept of time-dependent bands and steering of Floquet–Weyl points and demonstrate how light can enhance topological protection against lattice perturbations. This work has potential practical implications for the ultrafast switching of materials properties, such as optical band gaps or anomalous magnetoresistance. PMID:28094286

  1. Advances in nonlinear polymers and inorganic crystals, liquid crystals, and laser media

    International Nuclear Information System (INIS)

    Musikant, S.

    1987-01-01

    These proceedings collect papers on laser materials. Topics include: solid state lasers, fracture mechanics in laser materials, optical second harmonic generation, nonlinear optics, molecular crystals, crystal-phase transformation, and materials for laser fusion reactors

  2. Future Solid State Lighting using LEDs and Diode Lasers

    DEFF Research Database (Denmark)

    Petersen, Paul Michael

    2014-01-01

    applications. Within the coming years, it is expected that the efficiency of blue laser diodes will approach the efficiency of infrared diode lasers. This will enable high efficiency white light generation with very high lumen per watt values. SSL today is mainly based on phosphor converted blue light emitting......Lighting accounts for 20% of all electrical energy usage. Household lighting and commercial lighting such as public and street lighting are responsible for significant greenhouse gas emissions. Therefore, currently many research initiatives focus on the development of new light sources which shows...... significant savings. Solid state lighting (SSL) based on LEDs is today the most efficient light source for generation of high quality white light. Diode lasers, however, have the potential of being more efficient than LEDs for the generation of white light. A major advantage using diode lasers for solid state...

  3. High-Power, Solid-State, Deep Ultraviolet Laser Generation

    Directory of Open Access Journals (Sweden)

    Hongwen Xuan

    2018-02-01

    Full Text Available At present, deep ultraviolet (DUV lasers at the wavelength of fourth harmonics of 1 μm (266 nm/258 nm and at the wavelength of 193 nm are widely utilized in science and industry. We review the generation of these DUV lasers by nonlinear frequency conversion processes using solid-state/fiber lasers as the fundamental frequency. A DUV laser at 258 nm by fourth harmonics generation (FHG could achieve an average power of 10 W with a beam quality of M2 < 1.5. Moreover, 1 W of average power at 193 nm was obtained by sum-frequency generation (SFG. A new concept of 193-nm DUV laser generation by use of the diamond Raman laser is also introduced. A proof-of-principle experiment of the diamond Raman laser is reported with the conversion efficiency of 23% from the pump to the second Stokes wavelength, which implies the potential to generate a higher power 193 nm DUV laser in the future.

  4. Solid state lasers: a major direction in quantum electronics

    International Nuclear Information System (INIS)

    Shcherbakov, I.A.

    2004-01-01

    The aim of the report is to analyze development of solid-state lasers (SSL) as one of the most important avenues of the quantum electronics. The obtained intensity of a laser radiation at the focus equal to 5x10 1 0 W/cm 2 (the field intensity equal to about 5x10 1 0 V/cm 2 ) is noted to enable to observe nonlinear quantum- electrodynamic effects. Besides, one managed to increase the SSL efficiency conventionally equal to maximum 3% up to 48-50%. Paper describes new types of SSLs, namely, the crystalline fiber lasers with the lateral gradient of the index of refraction [ru

  5. Raman-laser spectroscopy of Wannier-Stark states

    International Nuclear Information System (INIS)

    Tackmann, G.; Pelle, B.; Hilico, A.; Beaufils, Q.; Pereira dos Santos, F.

    2011-01-01

    Raman lasers are used as a spectroscopic probe of the state of atoms confined in a shallow one-dimensional (1D) vertical lattice. For sufficiently long laser pulses, resolved transitions in the bottom band of the lattice between Wannier Stark states corresponding to neighboring wells are observed. Couplings between such states are measured as a function of the lattice laser intensity and compared to theoretical predictions, from which the lattice depth can be extracted. Limits to the linewidth of these transitions are investigated. Transitions to higher bands can also be induced, as well as between transverse states for tilted Raman beams. All these features allow for a precise characterization of the trapping potential and for an efficient control of the atomic external degrees of freedom.

  6. Steady state ion acceleration by a circularly polarized laser pulse

    International Nuclear Information System (INIS)

    Zhang Xiaomei; Shen Baifei; Cang Yu; Li Xuemei; Jin Zhangying; Wang Fengchao

    2007-01-01

    The steady state ion acceleration at the front of a cold solid target by a circularly polarized flat-top laser pulse is studied with one-dimensional particle-in-cell (PIC) simulation. A model that ions are reflected by a steady laser-driven piston is used by comparing with the electrostatic shock acceleration. A stable profile with a double-flat-top structure in phase space forms after ions enter the undisturbed region of the target with a constant velocity

  7. Cladding for transverse-pumped solid-state laser

    Science.gov (United States)

    Byer, Robert L. (Inventor); Fan, Tso Y. (Inventor)

    1989-01-01

    In a transverse pumped, solid state laser, a nonabsorptive cladding surrounds a gain medium. A single tranverse mode, namely the Transverse Electromagnetic (TEM) sub 00 mode, is provided. The TEM sub 00 model has a cross sectional diameter greater than a transverse dimension of the gain medium but less than a transverse dimension of the cladding. The required size of the gain medium is minimized while a threshold for laser output is lowered.

  8. Functionally Graded Materials by Laser Metal Deposition (PREPRINT)

    Science.gov (United States)

    2010-03-01

    composition of Fe-82 wt% V (powder-1) and Inconel - 625 (powder-2) powders are listed in Table 1. The substrate materials used for the experiment were cold...like laser power, travel speed and powder feed rate is yet to be determined to obtain a successful FGM. Inconel - 625 deposits showed macro-cracks...Composition (wt%) Powder-1: Fe-82 wt% V V (82), Al (0.68), Si (0.9), C (0.07), S (0.01), P (0.02), Fe (18) Powder-2: Inconel - 625 Ni (58), Cr (20-23

  9. Parameters Influence of CO2 Laser on Cutting Quality of Polymer Materials

    Directory of Open Access Journals (Sweden)

    Robert Cep

    2016-09-01

    Full Text Available The article deals with evaluating of the resulting surface state of the three plastic materials and identification of suitable conditions for laser cutting with CO2 tube. As representative were chosen polypropylene, polymethylmethacrylate and polyamide. When cutting these types of materials it could melt eventually their re-sintering. A suitable combination of parameters is possible to achieve of sufficient quality of the cut. The samples were cut at different feed speed and laser power. Then they was compared on the basis of the measured roughness parameters Ra a Rz by using a portable touch roughness Hommel-Etamic W5 and dates was processed according to ČSN EN ISO 4287. Cutting of samples was realized at the Department of Machining, Assembly and Engineering Metrology, VŠB-TUO.

  10. Fiber Laser Welding Properties of Copper Materials for Secondary Batteries

    Directory of Open Access Journals (Sweden)

    Young-Tae YOU

    2017-11-01

    Full Text Available Secondary battery is composed of four main elements: cathodes, anodes, membranes and electrolyte. The cathodes and the anodes are connected to the poles that allow input and output of the current generated while the battery is being charged or discharged. In this study laser welding is conducted for 40 sheets of pure copper material with thickness of 38μm, which are used in currently manufactured lithium-ion batteries, using pulse-wave fiber laser to compare welded joint to standard bolt joint and to determine optimum process parameters. The parameters, which has significant impact on penetration of the pulse waveform laser to the overlapped thin sheets, is the peak power while the size of the weld zone is mainly affected by the pulse irradiation time and the focal position. It is confirmed that overlapping rate is affected by the pulse repetition rate rather than by the pulse irradiation time. At the cross-section of the weld zone, even with the increased peak power, the width of the front bead weld size does not change significantly, but the cross-sectional area becomes larger. This is because the energy density per pulse increases as the peak power increases.DOI: http://dx.doi.org/10.5755/j01.ms.23.4.16316

  11. Abstracts of 12. Conference on Solid State Crystals Materials Science and Applications

    International Nuclear Information System (INIS)

    1996-01-01

    The solid state crystals are the modern materials being very interesting from the view point of actual and possible applications in microelectronics, optics, laser materials, detectors etc. 12. Conference on Solid State Crystals, Materials Science and Applications, Zakopane'99 created the review forum for broad range of investigations on topics related to; crystal growth and doping, new materials preparation, thin layer structure, physical properties and special methods for electrical, magnetic, optical and mechanical properties measurements of obtained materials. The insulating, semiconducting and superconducting monocrystals, polycrystals and also amorphous glasses have been investigated and their possible applications discussed. 52 oral lectures and 128 posters have been presented in the course of the conference

  12. Fundamentals of metasurface lasers based on resonant dark states

    International Nuclear Information System (INIS)

    Droulias, Sotiris; Technology - Hellas; Jain, Aditya; Koschny, Thomas; Soukoulis, Costas M.; Technology - Hellas; Ames Laboratory and Iowa State University, Ames, IA

    2017-01-01

    Recently, our group proposed a metamaterial laser design based on explicitly coupled dark resonant states in low-loss dielectrics, which conceptually separates the gain-coupled resonant photonic state responsible for macroscopic stimulated emission from the coupling to specific free-space propagating modes, allowing independent adjustment of the lasing state and its coherent radiation output. Due to this functionality, it is now possible to make lasers that can overcome the trade-off between system dimensions and Q factor, especially for surface emitting lasers with deeply subwavelength thickness. In this paper, we give a detailed discussion of the key functionality and benefits of this design, such as radiation damping tunability, directionality, subwavelength integration, and simple layer-by-layer fabrication. Finally, we examine in detail the fundamental design tradeoffs that establish the principle of operation and must be taken into account and give guidance for realistic implementations.

  13. Efficiency of crystalline laser materials based on lanthanides

    International Nuclear Information System (INIS)

    Synek, M.

    1990-01-01

    Lanthanide-based laser-crystal efficiency has been investigated, using the laser-active ions Dy 2+ and Nd 3+ as significant illustrations. Authors' calculations, and various approaches by other authors, are reviewed. In specific examples of treatment, the analytical self-consistent field(SCF) expansion method has been used to calculate accurate ab initio wave functions and energy levels for a number of excited states of Nd 3+ and Dy 2+ , which were investigated for the first time. General group-theoretical principles were considered and the formulae for crystal-field parameters were obtained. The Racah quantum numbers were included in these calculations, in fact showing sizeable energy effects. Oscillator strengths, calculated from the SCF wave functions, revealed which orbitals can be neglected without influencing the transition probability at the fourth significant figure. The relationship to the spectral character of the pumping device was considered. The efficiency parameters (mechanical, economic, and energetic) have to be considered as supplementing the related threshold energy parameter. It would be conceivable to predict the applicability of competing laser systems to a specific task, based on integrated energy pictures. (author). 32 refs., 2 tabs

  14. Modulating calcium phosphate formation using CO2 laser engineering of a polymeric material

    International Nuclear Information System (INIS)

    Waugh, D.G.; Lawrence, J.

    2012-01-01

    The use of simulated body fluid (SBF) is widely used as a screening technique to assess the ability of materials to promote calcium phosphate formation. This paper details the use of CO 2 laser surface treatment of nylon® 6,6 to modulate calcium phosphate formation following immersion in SBF for 14 days. Through white light interferometry (WLI) it was determined that the laser surface processing gave rise to maximum Ra and Sa parameters of 1.3 and 4.4 μm, respectively. The use of X-ray photoelectron spectroscopy (XPS) enabled a maximum increase in surface oxygen content of 5.6%at. to be identified. The laser-induced surface modifications gave rise to a modulation in the wettability characteristics such that the contact angle, θ, decreased for the whole area processed samples, as expected, and increased for the patterned samples. The increase in θ can be attributed to a transition in wetting nature to a mixed-state wetting regime. It was seen for all samples that calcium phosphate formed on each surface following 14 days. The largest increase in mass, Δg, owed to calcium phosphate formation, was brought about by the whole area processed sample irradiated with a fluence of 51 J cm −2 . No correlation between the calcium phosphate formation and the laser patterned surface properties was determined due to the likely affect of the mixed-state wetting regime. Strong correlations between θ, the surface energy parameters and the calcium phosphate formation for the whole area processed samples allow one to realize the potential for this surface treatment technique in predicting the bone forming ability of laser processed materials. - Highlights: ► Surface modifications brought about a modulation in the wetting of nylon 6,6. ► An increase in θ can be attributed to a mixed-state wetting regime. ► Laser surface treatment modulated the ability to promote apatite formation. ► Mixed-state wetting regime affected the promotion of uniform apatite formation.

  15. Modulating calcium phosphate formation using CO{sub 2} laser engineering of a polymeric material

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, D.G., E-mail: Dwaugh@lincoln.ac.uk; Lawrence, J.

    2012-02-01

    The use of simulated body fluid (SBF) is widely used as a screening technique to assess the ability of materials to promote calcium phosphate formation. This paper details the use of CO{sub 2} laser surface treatment of nylon Registered-Sign 6,6 to modulate calcium phosphate formation following immersion in SBF for 14 days. Through white light interferometry (WLI) it was determined that the laser surface processing gave rise to maximum Ra and Sa parameters of 1.3 and 4.4 {mu}m, respectively. The use of X-ray photoelectron spectroscopy (XPS) enabled a maximum increase in surface oxygen content of 5.6%at. to be identified. The laser-induced surface modifications gave rise to a modulation in the wettability characteristics such that the contact angle, {theta}, decreased for the whole area processed samples, as expected, and increased for the patterned samples. The increase in {theta} can be attributed to a transition in wetting nature to a mixed-state wetting regime. It was seen for all samples that calcium phosphate formed on each surface following 14 days. The largest increase in mass, {Delta}g, owed to calcium phosphate formation, was brought about by the whole area processed sample irradiated with a fluence of 51 J cm{sup -2}. No correlation between the calcium phosphate formation and the laser patterned surface properties was determined due to the likely affect of the mixed-state wetting regime. Strong correlations between {theta}, the surface energy parameters and the calcium phosphate formation for the whole area processed samples allow one to realize the potential for this surface treatment technique in predicting the bone forming ability of laser processed materials. - Highlights: Black-Right-Pointing-Pointer Surface modifications brought about a modulation in the wetting of nylon 6,6. Black-Right-Pointing-Pointer An increase in {theta} can be attributed to a mixed-state wetting regime. Black-Right-Pointing-Pointer Laser surface treatment modulated the

  16. An international interdisciplinary graduate school in laser and material science

    Science.gov (United States)

    Fargin, Evelyne; Sarger, Laurent; Kaluza, Malte; Nolte, Stefan; Richardson, Martin; Richardson, Kathleen

    2009-06-01

    The main objective is to establish the first transatlantic Graduate School, proposing a truly international education, training and research platform in the field of Photonics and Material sciences. The wide scope of Photonics encompasses many application fields that will be mostly covered by various curricula involving Laser Optics and Material Sciences and Interactions. This cooperation will build a very efficient scientific international community able to address the 21 century challenges in Photonics and applications. Indeed, the highest level of education, namely Master and PhD , will address the so called "Skill shortage" that impact on our economy. The truly interdisciplinary theme of this graduate school is also a guarantee for the insertion of the graduate into the workforce.

  17. Pulsed laser photoacoustic spectrometer for study of solid materials

    International Nuclear Information System (INIS)

    Patel, N.D.; Kartha, V.B.

    1991-01-01

    The technique of photoacoustic spectroscopy has wide applications bacause it is extremely sensitive, and can be used to obtain spectra in wide spectral range for solids, liquids, gases, solutions, crystals etc. which may be usually difficult by conventional methods. For studying a variety of materials, a pulsed laser photoacoustic spectrometer has been set up in the laboratory. The report discusses the design and performance of the instrument. Some of the spectra of materials like Nd 2 O 9 powder, Nd-YAG crystal, CoCl 2 6H 2 O etc. are shown. A detailed discussion on assignment of the spectra of Nd-YAG is also presented. (author). 4 refs., 5 figs., 1 tab

  18. High brightness diode-pumped organic solid-state laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhuang; Mhibik, Oussama; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien, E-mail: sebastien.forget@univ-paris13.fr [Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430, Villetaneuse (France); CNRS, UMR 7538, LPL, F-93430, Villetaneuse (France)

    2015-02-02

    High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

  19. Laser nano-manufacturing: state of the art and challenges

    NARCIS (Netherlands)

    Li, L.; Hong, M.; Schmidt, M.; Zhong, M.; Mashe, A.; Huis in 't veld, A.J.; Kovalenko, V.

    2011-01-01

    This paper provides an overview of advances in laser based nano-manufacturing technologies including surface nano-structure manufacturing, production of nano materials (nanoparticles, nanotubes and nanowires) and 3D nano-structures manufacture through multiple layer additive techniques and

  20. Design of laser-driven SiO2-YAG:Ce composite thick film: Facile synthesis, robust thermal performance, and application in solid-state laser lighting

    Science.gov (United States)

    Xu, Jian; Liu, Bingguo; Liu, Zhiwen; Gong, Yuxuan; Hu, Baofu; Wang, Jian; Li, Hui; Wang, Xinliang; Du, Baoli

    2018-01-01

    In recent times, there have been rapid advances in the solid-state laser lighting technology. Due to the large amounts of heat accumulated from the high flux laser radiation, color conversion materials used in solid-state laser lighting devices should possess high durability, high thermal conductivity, and low thermal quenching. The aim of this study is to develop a thermally robust SiO2-YAG:Ce composite thick film (CTF) for high-power solid-state laser lighting applications. Commercial colloidal silica which was used as the source of SiO2, played the roles of an adhesive, a filler, and a protecting agent. Compared to the YAG:Ce powder, the CTF exhibits remarkable thermal stability (11.3% intensity drop at 200 °C) and durability (4.5% intensity drop after 1000 h, at 85 °C and 85% humidity). Furthermore, the effects of the substrate material and the thickness of the CTF on the laser lighting performance were investigated in terms of their thermal quenching and luminescence saturation behaviors, respectively. The CTF with a thickness of 50 μm on a sapphire substrate does not show luminescence saturation, despite a high-power density of incident radiation i.e. 20 W/mm2. These results demonstrate the potential applicability of the CTF in solid-state laser lighting devices.

  1. Solid state laser applications in photovoltaics manufacturing

    Science.gov (United States)

    Dunsky, Corey; Colville, Finlay

    2008-02-01

    Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by increasing government and societal pressure to use renewable energy as part of an overall strategy to address global warming attributed to greenhouse gas emissions. Initially supported in several countries by generous tax subsidies, solar cell manufacturers are relentlessly pushing the performance/cost ratio of these devices in a quest to reach true cost parity with grid electricity. Clearly this eventual goal will result in further acceleration in the overall market growth. Silicon wafer based solar cells are currently the mainstay of solar end-user installations with a cost up to three times grid electricity. But next-generation technology in the form of thin-film devices promises streamlined, high-volume manufacturing and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. Notwithstanding the modest conversion efficiency of thin-film devices compared to wafered silicon products (around 6-10% versus 15-20%), this cost reduction is driving existing and start-up solar manufacturers to switch to thin-film production. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. Lasers are the technology of choice for these processes, delivering the desired combination of high throughput and narrow, clean scribes. This paper examines these processes and discusses the optimization of industrial lasers to meet their specific needs.

  2. Novel Aspects of Materials Processing by Ultrafast Lasers: From Electronic to Biological and Cultural Heritage Applications

    International Nuclear Information System (INIS)

    Fotakis, C; Zorba, V; Stratakis, E; Athanassiou, A; Tzanetakis, P; Zergioti, I; Papagoglou, D G; Sambani, K; Filippidis, G; Farsari, M; Pouli, V; Bounos, G; Georgiou, S

    2007-01-01

    Materials processing by ultrafast lasers offers several distinct possibilities for micro/nano scale applications. This is due to the unique characteristics of the laser-matter interactions involved, when sub-picosecond pulses are employed. Prospects arising will be discussed in the context of surface and in bulk laser induced modifications. In particular, examples of diverse applications including the development and functionalization of laser engineered surfaces, the laser transfer of biomolecules and the functionalization of 3D structures constructed by three-photon stereolithography will be presented. Furthermore, the removal of molecular substrates by ultrafast laser ablation will be discussed with emphasis placed on assessing the photochemical changes induced in the remaining bulk material. The results indicate that in femtosecond laser processing of organic materials, besides the well acknowledged morphological advantages, a second fundamental factor responsible for its success pertains to the selective chemical effects. This is crucial for the laser cleaning of sensitive painted artworks

  3. Development of laser material processing and laser metrology techniques. Development of the power supply of high power CO{sub 2} laser for material processing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heon Ju; Lee, Yong Hak; Jang, Do Hyun; Kim, Su Hun [Cheju National University, Cheju (Korea, Republic of)

    1994-08-01

    The 2 Kw solid state RF power supply has been designed and fabricated The power supply was composed of oscillator, driver amplifier and power amplifier. Each part of the power supply was developed and tested. The impedance matching circuit to apply this RF power supply for laser discharge excitation was fabricated also. The RF discharge experiment for the excitation of CO{sub 2} laser was performed. The radiofrequency power supply which has the output power of 2 Kw has been developed. The subsystems of the power supply have been fabricated and their performances were reliable. The RF discharge experiment to generate the laser plasma has been performed and input power density of 6 W/cm{sub 3} has been achieved. (author). 5 refs., 28 figs., 8 tabs.

  4. Material Processing Opportunites Utilizing a Free Electron Laser

    Science.gov (United States)

    Todd, Alan

    1996-11-01

    Many properties of photocathode-driven Free Electron Lasers (FEL) are extremely attractive for material processing applications. These include: 1) broad-band tunability across the IR and UV spectra which permits wavelength optimization, depth deposition control and utilization of resonance phenomena; 2) picosecond pulse structure with continuous nanosecond spacing for optimum deposition efficiency and minimal collateral damage; 3) high peak and average radiated power for economic processing in quantity; and 4) high brightness for spatially defined energy deposition and intense energy density in small spots. We discuss five areas: polymer, metal and electronic material processing, micromachining and defense applications; where IR or UV material processing will find application if the economics is favorable. Specific examples in the IR and UV, such as surface texturing of polymers for improved look and feel, and anti-microbial food packaging films, which have been demonstrated using UV excimer lamps and lasers, will be given. Unfortunately, although the process utility is readily proven, the power levels and costs of lamps and lasers do not scale to production margins. However, from these examples, application specific cost targets ranging from 0.1=A2/kJ to 10=A2/kJ of delivered radiation at power levels from 10 kW to 500 kW, have been developed and are used to define strawman FEL processing systems. Since =46EL radiation energy extraction from the generating electron beam is typically a few percent, at these high average power levels, economic considerations dictate the use of a superconducting RF accelerator with energy recovery to minimize cavity and beam dump power loss. Such a 1 kW IR FEL, funded by the US Navy, is presently under construction at the Thomas Jefferson National Accelerator Facility. This dual-use device, scheduled to generate first light in late 1997, will test both the viability of high-power FELs for shipboard self-defense against cruise

  5. Development of functional materials by using ultrafast laser pulses

    Science.gov (United States)

    Shimotsuma, Y.; Sakakura, M.; Miura, K.

    2018-01-01

    The polarization-dependent periodic nanostructures inside various materials are successfully induced by ultrafast laser pulses. The periodic nanostructures in various materials can be empirically classified into the following three types: (1) structural deficiency, (2) expanded structure, (3) partial phase separation. Such periodic nanostructures exhibited not only optical anisotropy but also intriguing electric, thermal, and magnetic properties. The formation mechanisms of the periodic nanostructure was interpreted in terms of the interaction between incident light field and the generated electron plasma. Furthermore, the fact that the periodic nanostructures in semiconductors could be formed empirically only if it is indirect bandgap semiconductor materials indicates the stress-dependence of bandgap structure and/or the recombination of the excited electrons are also involved to the nanostructure formation. More recently we have also confirmed that the periodic nanostructures in glass are related to whether a large amount of non-bridged oxygen is present. In the presentation, we demonstrate new possibilities for functionalization of common materials ranging from an eternal 5D optical storage, a polarization imaging, to a thermoelectric conversion, based on the indicated phenomena.

  6. Laser Program annual report 1987

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W. (eds.)

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies.

  7. Laser Program annual report 1987

    International Nuclear Information System (INIS)

    O'Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W.

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies

  8. Low charge state heavy ion production with sub-nanosecond laser.

    Science.gov (United States)

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  9. Low charge state heavy ion production with sub-nanosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Kanesue, T., E-mail: tkanesue@bnl.gov; Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Kumaki, M. [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Ikeda, S. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa 226-8503 (Japan)

    2016-02-15

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  10. Laser-excited photoluminescence of three-layer GaAs double-heterostructure laser material

    International Nuclear Information System (INIS)

    Nash, F.R.; Dixon, R.W.; Barnes, P.A.; Schumaker, N.E.

    1975-01-01

    The successful fabrication of high-quality DH GaAs lasers from a simplified three-layer structure is reported. A major asset of this structure is the transparency of its final layer to recombination radiation occurring in the active layer, thus permitting the use of nondestructive photoluminescent techniques for material evaluation prior to device fabrication. In the course of photoluminescence investigations on this material the additional important observation has been made that indirect excitation (in which photocarriers are generated in the top ternary layer) has significant advantages over direct excitation (in which photocarriers are generated directly in the active layer). These include (i) the direct measurement of Al concentrations in both upper layers, (ii) the measurements of the minority-carrier diffusion length in the upper layer, (iii) an easily obtained indication of taper in the thickness of the upper layer, and (iv) surprisingly effective excitation of the active layer. By combining direct and indirect excitation it is shown that a clearer understanding of the location and detrimental influences of defects in the GaAs laser structure may be obtained. For example, the width of the region of reduced luminescence associated with many defects is found to be very excitation dependent and is confirmed to arise fr []m reduced active region luminescence. The photoluminescent excitation techniques described should be useful in the study of other heterostructure devices and material systems

  11. Laser Based Phosphor Converted Solid State White Light Emitters

    Science.gov (United States)

    Cantore, Michael

    Artificial lighting and as a consequence the ability to be productive when the sun does not shine may be a profound achievement in society that is largely taken for granted. As concerns arise due to our dependence on energy sources with finite lifespan or environmentally negative effects, efforts to reduce energy consumption and create clean renewable alternatives has become highly valued. In the scope of artificial lighting, the use of incandescent lamps has shifted to more efficient light sources. Fluorescent lighting made the first big gains in efficiency over incandescent lamps with peak efficiency for mature designs reaching luminous efficacy of approximately 90 lm/W; more than three times as efficient as an incandescent lamp. Lamps based on light emitting diodes (LEDs) which can produce light at even greater efficiency, color quality and without the potential for hazardous chemical release from lamp failure. There is a significant challenge with LED based light sources. Their peak efficiency occurs at low current densities and then droops as the current density increases. Laser diodes (LDs) do not suffer from decreasing efficiency due to increased current. An alternative solid state light source using LDs has potential to make further gains in efficiency as well as allow novel illuminant designs which may be impractical or even impossible even with LED or other conventional sources. While similar to LEDS, the use of LDs does present new challenges largely due to the increased optical power density which must be accommodated in optics and phosphor materials. Single crystal YAG:Ce has been shown to be capable of enduring this more extreme operating environment while retaining the optical and fluorescing qualities desired for use as a wavelength converter in phosphor converted LD based white emitting systems. The incorporation of this single crystal phosphor in a system with a commercial laser diode with peak wall plug efficiency of 31% resulted in emission of

  12. Advanced Solid-state Lasers - to Ignition and Beyond

    International Nuclear Information System (INIS)

    Marshall, C.; Bibeau, C.; Orth, C; Meier, W.R.; Payne, S.; Sutton, S.

    1998-01-01

    This brochure concentrates on the diode-pumped solid-state laser. Surrounding it on the cover are some of the primary technological developments that make it a candidate for the means by which inertial confinement fusion will create inertial fusion energy as an inexhaustible source of electric power

  13. High-Tc thin films prepared by laser ablation: material distribution and droplet problem

    NARCIS (Netherlands)

    Blank, David H.A.; IJsselsteijn, R.P.J.; IJsselsteijn, R.P.J.; Out, P.G.; Kuiper, H.J.H.; Flokstra, Jakob; Rogalla, Horst

    1992-01-01

    The lateral material distribution of laser-deposited YBa2Cu3O7¿¿ films and the density of droplets coming from the target were studied by varying the laser pulse energy, the laser spot size and the target-to-substrate distance. Silicon wafers at ambient temperature were used as substrates to

  14. Gaussian-state entanglement in a quantum beat laser

    International Nuclear Information System (INIS)

    Tahira, Rabia; Ikram, Manzoor; Nha, Hyunchul; Zubairy, M. Suhail

    2011-01-01

    Recently quantum beat lasers have been considered as a source of entangled radiation [S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, Phys. Rev. A 77, 062308 (2008)]. We investigate and quantify the entanglement of this system when the initial cavity modes are prepared in a Gaussian two-mode state, one being a nonclassical state and the other a thermal state. It is investigated how the output entanglement varies with the nonclassicality of the input Gaussian state, thermal noise, and the strength of the driving field.

  15. Nd:YAG laser in endodontics: filling-material edge bordering on a root channel laser cavity

    Science.gov (United States)

    Belikov, Andrei V.; Sinelnik, Yuri A.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1997-12-01

    For the very first time it is represented a study of filling material edge bordering upon root channel cavity modified with a laser. As a filling material it is used a glass ionomer cement. It is demonstrated that Nd:YAG laser radiation effects on increase of grade of edge bordering on the average of 20 - 30% at temperature rise of no more than 2 - 3 degrees in periodontium area in a period of operation.

  16. Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials

    International Nuclear Information System (INIS)

    Yoo, Jae-Hyuck; Kim, Eunpa; Hwang, David J.

    2016-01-01

    This article summarizes recent research on laser-based processing of twodimensional (2D) atomic layered materials, including graphene and transition metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated where ultrafast laser radiation under ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook towards developing further advanced laser processing with scalability, in situ monitoring strategies and potential applications.

  17. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakova, Nadezhda M., E-mail: nadezhda.bulgakova@hilase.cz [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Zhukov, Vladimir P. [Institute of Computational Technologies SB RAS, 6 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Ave., 630073, Novosibirsk (Russian Federation); Sonina, Svetlana V. [Novosibirsk State University, 1 Koptuga Ave., 630090 Novosibirsk (Russian Federation); Meshcheryakov, Yuri P. [Design and Technology Branch of Lavrentyev Institute of Hydrodynamics SB RAS, Tereshkovoi street 29, 630090 Novosibirsk (Russian Federation)

    2015-12-21

    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when all motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.

  18. Numerical analysis of the effects of non-conventional laser beam geometries during laser melting of metallic materials

    International Nuclear Information System (INIS)

    Safdar, Shakeel; Li, Lin; Sheikh, M A

    2007-01-01

    Laser melting is an important industrial activity encountered in a variety of laser manufacturing processes, e.g. selective laser melting, welding, brazing, soldering, glazing, surface alloying, cladding etc. The majority of these processes are carried out by using either circular or rectangular beams. At present, the melt pool characteristics such as melt pool geometry, thermal gradients and cooling rate are controlled by the variation of laser power, spot size or scanning speed. However, the variations in these parameters are often limited by other processing conditions. Although different laser beam modes and intensity distributions have been studied to improve the process, no other laser beam geometries have been investigated. The effect of laser beam geometry on the laser melting process has received very little attention. This paper presents an investigation of the effects of different beam geometries including circular, rectangular and diamond shapes on laser melting of metallic materials. The finite volume method has been used to simulate the transient effects of a moving beam for laser melting of mild steel (EN-43A) taking into account Marangoni and buoyancy convection. The temperature distribution, melt pool geometry, fluid flow velocities and heating/cooling rates have been calculated. Some of the results have been compared with the experimental data

  19. Selective ablation of photovoltaic materials with UV laser sources for monolithic interconnection of devices based on a-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Molpeceres, C. [Centro Laser UPM, Univ. Politecnica de Madrid, Crta. de Valencia Km 7.3, 28031 Madrid (Spain)], E-mail: carlos.molpeceres@upm.es; Lauzurica, S.; Garcia-Ballesteros, J.J.; Morales, M.; Guadano, G.; Ocana, J.L. [Centro Laser UPM, Univ. Politecnica de Madrid, Crta. de Valencia Km 7.3, 28031 Madrid (Spain); Fernandez, S.; Gandia, J.J. [Dept. de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda, Complutense 22, 28040 Madrid (Spain); Villar, F.; Nos, O.; Bertomeu, J. [CeRMAE Dept. Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)

    2009-03-15

    Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.

  20. Selective ablation of photovoltaic materials with UV laser sources for monolithic interconnection of devices based on a-Si:H

    International Nuclear Information System (INIS)

    Molpeceres, C.; Lauzurica, S.; Garcia-Ballesteros, J.J.; Morales, M.; Guadano, G.; Ocana, J.L.; Fernandez, S.; Gandia, J.J.; Villar, F.; Nos, O.; Bertomeu, J.

    2009-01-01

    Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.

  1. United States Automotive Materials Partnership LLC (USAMP)

    Energy Technology Data Exchange (ETDEWEB)

    United States Automotive Materials Partnership

    2011-01-31

    The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly

  2. Effect of carrier dynamics and temperature on two-state lasing in semiconductor quantum dot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, V. V., E-mail: korenev@spbau.ru; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V. [Saint Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)

    2013-10-15

    It is analytically shown that the both the charge carrier dynamics in quantum dots and their capture into the quantum dots from the matrix material have a significant effect on two-state lasing phenomenon in quantum dot lasers. In particular, the consideration of desynchronization in electron and hole capture into quantum dots allows one to describe the quenching of ground-state lasing observed at high injection currents both qualitatevely and quantitatively. At the same time, an analysis of the charge carrier dynamics in a single quantum dot allowed us to describe the temperature dependences of the emission power via the ground- and excited-state optical transitions of quantum dots.

  3. Effect of carrier dynamics and temperature on two-state lasing in semiconductor quantum dot lasers

    International Nuclear Information System (INIS)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2013-01-01

    It is analytically shown that the both the charge carrier dynamics in quantum dots and their capture into the quantum dots from the matrix material have a significant effect on two-state lasing phenomenon in quantum dot lasers. In particular, the consideration of desynchronization in electron and hole capture into quantum dots allows one to describe the quenching of ground-state lasing observed at high injection currents both qualitatevely and quantitatively. At the same time, an analysis of the charge carrier dynamics in a single quantum dot allowed us to describe the temperature dependences of the emission power via the ground- and excited-state optical transitions of quantum dots

  4. Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Kaptan, Y., E-mail: yuecel.kaptan@physik.tu-berlin.de; Herzog, B.; Schöps, O.; Kolarczik, M.; Woggon, U.; Owschimikow, N. [Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin (Germany); Röhm, A.; Lingnau, B.; Lüdge, K. [Institut für Theoretische Physik, Technische Universität Berlin, Berlin (Germany); Schmeckebier, H.; Arsenijević, D.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin (Germany); Mikhelashvili, V.; Eisenstein, G. [Technion Institute of Technology, Faculty of Electrical Engineering, Haifa (Israel)

    2014-11-10

    The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observed response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.

  5. Lasers

    CERN Document Server

    Milonni, Peter W

    1988-01-01

    A comprehensive introduction to the operating principles and applications of lasers. Explains basic principles, including the necessary elements of classical and quantum physics. Provides concise discussions of various laser types including gas, solid state, semiconductor, and free electron lasers, as well as of laser resonators, diffraction, optical coherence, and many applications including holography, phase conjugation, wave mixing, and nonlinear optics. Incorporates many intuitive explanations and practical examples. Discussions are self-contained in a consistent notation and in a style that should appeal to physicists, chemists, optical scientists and engineers.

  6. LASERS: Stimulated emission in a solid-state ring laser with a stimulated Brillouin scattering mirror

    Science.gov (United States)

    Barashkov, M. S.; Bel'dyugin, Igor'M.; Zolotarev, M. V.; Krymskiĭ, M. I.; Oshkin, S. P.; Umnov, A. F.; Kharchenko, M. A.

    1990-06-01

    The results are presented of an experimental investigation of a solid-state ring laser with a stimulated Brillouin scattering mirror and lasing initiated by a series of ~ 200-300 ns pulses of 1.06 μm wavelength. It is shown that this laser may be useful for the development of a source with radiation parameters controlled by an external signal (energy, transverse and time structure) and also of a low-threshold mirror for phase self-conjugation of radiation.

  7. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    International Nuclear Information System (INIS)

    Favalli, Andrea; Aymond, F.; Bridgewater, Jon S.; Croft, Stephen; Deppert, O.; Devlin, Matthew James; Falk, Katerina; Fernandez, Juan Carlos; Gautier, Donald Cort; Gonzales, Manuel A.; Goodsell, Alison Victoria; Guler, Nevzat; Hamilton, Christopher Eric; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Johnson, Randall Philip; Jung, Daniel; Kleinschmidt, Annika; Koehler, Katrina Elizabeth; Pomerantz, Ishay; Roth, Markus; Santi, Peter Angelo; Shimada, Tsutomu; Swinhoe, Martyn Thomas; Taddeucci, Terry Nicholas; Wurden, Glen Anthony; Palaniyappan, Sasikumar; McCary, E.

    2015-01-01

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  8. Laser damage study of material of the first wall of target chamber of the future laser Megajoule

    International Nuclear Information System (INIS)

    Dubern, Christelle

    1999-01-01

    Study on damage of carbon-like, boron carbide, and stainless steel materials by ultraviolet laser light, has been carried out at CEA/CESTA in France. This work was performed to help designing and dimensioning the target chamber of the future Laser MegaJoule (LMJ) facility to be used for Inertial Confinement Fusion research. The study revealed that depending the laser fluence, the considered materials were ablated in different manners. lt was demonstrated that at low fluence, damage of carbon-like and boron carbide occurs through a thermal-mechanical mechanism resulting in sputtering of material. At higher fluence, damage was driven by a thermal mechanism, dissipating heat inside material until phase change developed. For stainless steel material, failures were the result of heat absorption associated to physical changes only. To explain and validate the proposed mechanisms, theoretical and experimental works were performed and satisfactory results came out. (author) [fr

  9. Computational modelling of Er(3+): Garnet laser materials

    Science.gov (United States)

    Spangler, Lee H.

    1994-01-01

    The Er(3+) ion has attracted a lot of interest for four reasons: (1) Its (4)I(sub 13/2) yields (4)I(sub 15/2) transition lases in the eyesafe region near 1.5 micron; (2) the (4)I(sub 13/2) transition lases near 2.8 micron, an important wavelength for surgical purposes; (3) it displays surprisingly efficient upconversion with lasing observed at 1.7, 1.2, 0.85, 0.56, 0.55, and 0.47 micron following 1.5 micron pumping; and (4) it has absorption bands at 0.96 and 0.81 micron and thus can be diode pumped. However, properties desirable for upconversion reduce the efficiency of 1.5 and 3 micron laser operation and vice versa. Since all of the processes are influenced by the host via the crystal field induced stark splittings in the Er levels, this project undertook modelling of the host influence on the Er lasinng behavior. While growth and measurement of all ten Er(3+) doped garnets is the surest way of identifying hosts which maximize upconversion (or conversly, 1.5 and 3 micron performance), it is also expensive - costing approximately $10,000/material or approximately $100,000 for the materials computationally investigated here. The calculations were performed using a quantum mechanical point charge model developed by Clyde Morrison at Harry Diamond Laboratories. The programs were used to fit the Er:YAG experimental energy levels so that the crystal field parameters, B(sub nm) could be extracted. From these radial factors, rho (sub n) were determined for Er(3+) in garnets. These, in combination with crystal field components, Anm, available from X-ray data, were used to predict energy levels for Er in the other nine garnet hosts. The levels in Er:YAG were fit with an rms error of 12.2/cm over a 22,000/cm range. Predicted levels for two other garnets for which literature values were available had rms errors of less than 17/cm , showing the calculations to be reliable. Based on resonances between pairs of calculated stark levels, the model predicts GSGG as the best host

  10. Damage resistant optics for a mega-joule solid-state laser

    International Nuclear Information System (INIS)

    Campbell, J.H.; Rainer, F.; Kozlowski, M.; Wolfe, C.R.; Thomas, I.; Milanovich, F.

    1990-01-01

    Research on Inertial Confinement Fusion (ICF) has progressed rapidly in the past several years. As a consequence, LLNL is developing plans to upgrade the current 120 kJ solid state (Nd +3 -phosphate glass) Nova laser to a 1.5 to 2 megajoule system with the goal of achieving fusion ignition. The design of the planned Nova Upgrade is briefly discussed. Because of recent improvements in the damage resistance of optical materials it is now technically and economically feasible to build a megajoule-class solid state laser. Specifically, the damage threshold of Nd +3 -doped phosphate laser glass, multilayer dielectric coatings, and non-linear optical crystals (e.g., KDP) have been dramatically improved. These materials now meet the fluence requirements for a 1.5--2 MJ Nd 3+ -glass laser operating at 1054 and 351 nm and at a pulse length of 3 ns. The recent improvements in damage thresholds are reviewed; threshold data at both 1064 and 355 nm and the measured pulse length scaling are presented. 20 refs., 9 figs., 2 tabs

  11. Chemically modified carbon nanotubes as material enhanced laser desorption ionisation (MELDI) material in protein profiling

    International Nuclear Information System (INIS)

    Najam-ul-Haq, M.; Rainer, M.; Schwarzenauer, T.; Huck, C.W.; Bonn, G.K.

    2006-01-01

    Biomarkers play a potential role in the early detection and diagnosis of a disease. Our aim is to derivatize carbon nanotubes for exploration of the differences in human body fluids e.g. serum, through matrix assisted laser desorption ionisation/time of flight mass spectrometry (MALDI/TOF-MS) that can be related to disease and subsequently to be employed in the biomarker discovery process. This application we termed as the material enhanced laser desorption ionisation (MELDI). The versatility of this technology is meant to increase the amount of information from biological samples on the protein level, which will have a major impact to serve the cause of diagnostic markers. Serum peptides and proteins are immobilized on derivatized carbon nanotubes, which function as binding material. Protein-loaded suspension is placed on a stainless steel target or buckypaper on aluminum target for direct analysis with MALDI-MS. The elution method to wash the bound proteins from carbon nanotubes was employed to compare with the direct analysis procedure. Elution is carried out by MALDI matrix solution to get them out of the entangled nanotubes, which are difficult to desorb by laser due to the complex nanotube structures. The advantage of these optimized methods compared to the conventional screening methods is the improved sensitivity, selectivity and the short analysis time without prior albumin and immunoglobulin depletion. The comparison of similarly modified diamond and carbon nanotubes exhibit differences in their nature to bind the proteins out of serum due to the differences in their physical characteristics. Infrared (IR) spectroscopy provided hint for the presence of tertiary amine peak at the crucial chemical step of iminodiacetic acid addition to acid chloride functionality on carbon nanotubes. Atomic absorption spectroscopy (AAS) was utilized to quantitatively measure the copper capacity of these derivatized carbon nanotubes which is a direct measure of capacity of

  12. Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation

    NARCIS (Netherlands)

    Brugmans, M. J.; Kemper, J.; Gijsbers, G. H.; van der Meulen, F. W.; van Gemert, M. J.

    1991-01-01

    This paper presents surface temperature responses of various tissue phantoms and in vitro and in vivo biological materials in air to non-ablative pulsed CO2 laser irradiation, measured with a thermocamera. We studied cooling off behavior of the materials after a laser pulse, to come to an

  13. High laser-fluence deposition of organic materials in water ice matrices by ''MAPLE''

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Rodrigo, K.; Schou, Jørgen

    2005-01-01

    Matrix assisted pulsed laser evaporation (MAPLE) is a deposition technique for organic material. Water ice was used as a matrix for the biotechnologically important guest material, polyethylene glycol (PEG), for concentrations from 0.5 to 4 wt.%. The target was irradiated with 6 ns laser pulses...

  14. Aberrations and focusability in large solid-state-laser systems

    International Nuclear Information System (INIS)

    Simmons, W.W.

    1981-01-01

    Solid state lasers for fusion experiments must reliably deliver maximum power to small (approximately .5 mm) targets from stand-off focal distances of 1 m or more. This requirement places stringent limits upon the optical quality of the several major components - amplifiers, Faraday isolators, spatial filters - in each amplifier train. Residual static aberrations in optical components are transferred to the beam as it traverses the optical amplifier chain. Although individual components are typically less than lambda/20 for components less than 10 cm clear aperture; and less than lambda/10 for components less than 20 cm clear aperture; the large number of such components in optical series results in a wavefront error that may exceed one wave for modern solid state lasers. For pulse operation, the focal spot is additionally broadened by intensity dependent nonlinearities. Specific examples of the performance of large aperture components will be presented within the context of the Argus and Shiva laser systems, which are presently operational at Lawrence Livermore National Laboratory. Design requirements upon the larger aperture Nova laser components, up to 74 cm in clear aperture, will also be discussed; these pose a significant challenge to the optical industry

  15. Physics of Laser Materials Processing Theory and Experiment

    CERN Document Server

    Gladush, Gennady G

    2011-01-01

    This book describes the basic mechanisms, theory, simulations and technological aspects of Laser processing techniques. It covers the principles of laser quenching, welding, cutting, alloying, selective sintering, ablation, etc. The main attention is paid to the quantitative description. The diversity and complexity of technological and physical processes is discussed using a unitary approach. The book aims on understanding the cause-and-effect relations in physical processes in Laser technologies. It will help researchers and engineers to improve the existing and develop new Laser machining techniques. The book addresses readers with a certain background in general physics and mathematical analysis: graduate students, researchers and engineers practicing laser applications.

  16. Improve the material absorption of light and enhance the laser tube bending process utilizing laser softening heat treatment

    Science.gov (United States)

    Imhan, Khalil Ibraheem; Baharudin, B. T. H. T.; Zakaria, Azmi; Ismail, Mohd Idris Shah B.; Alsabti, Naseer Mahdi Hadi; Ahmad, Ahmad Kamal

    2018-02-01

    Laser forming is a flexible control process that has a wide spectrum of applications; particularly, laser tube bending. It offers the perfect solution for many industrial fields, such as aerospace, engines, heat exchangers, and air conditioners. A high power pulsed Nd-YAG laser with a maximum average power of 300 W emitting at 1064 nm and fiber-coupled is used to irradiate stainless steel 304 (SS304) tubes of 12.7 mm diameter, 0.6 mm thickness and 70 mm length. Moreover, a motorized rotation stage with a computer controller is employed to hold and rotate the tube. In this paper, an experimental investigation is carried out to improve the laser tube bending process by enhancing the absorption coefficient of the material and the mechanical formability using laser softening heat treatment. The material surface is coated with an oxidization layer; hence, the material absorption of laser light is increased and the temperature rapidly rises. The processing speed is enhanced and the output bending angle is increased to 1.9° with an increment of 70% after the laser softening heat treatment.

  17. Atom lasers, coherent states, and coherence II. Maximally robust ensembles of pure states

    International Nuclear Information System (INIS)

    Wiseman, H.M.; Vaccaro, John A.

    2002-01-01

    As discussed in the preceding paper [Wiseman and Vaccaro, preceding paper, Phys. Rev. A 65, 043605 (2002)], the stationary state of an optical or atom laser far above threshold is a mixture of coherent field states with random phase, or, equivalently, a Poissonian mixture of number states. We are interested in which, if either, of these descriptions of ρ ss as a stationary ensemble of pure states, is more natural. In the preceding paper we concentrated upon the question of whether descriptions such as these are physically realizable (PR). In this paper we investigate another relevant aspect of these ensembles, their robustness. A robust ensemble is one for which the pure states that comprise it survive relatively unchanged for a long time under the system evolution. We determine numerically the most robust ensembles as a function of the parameters in the laser model: the self-energy χ of the bosons in the laser mode, and the excess phase noise ν. We find that these most robust ensembles are PR ensembles, or similar to PR ensembles, for all values of these parameters. In the ideal laser limit (ν=χ=0), the most robust states are coherent states. As the phase noise or phase dispersion is increased through ν or the self-interaction of the bosons χ, respectively, the most robust states become more and more amplitude squeezed. We find scaling laws for these states, and give analytical derivations for them. As the phase diffusion or dispersion becomes so large that the laser output is no longer quantum coherent, the most robust states become so squeezed that they cease to have a well-defined coherent amplitude. That is, the quantum coherence of the laser output is manifest in the most robust PR ensemble being an ensemble of states with a well-defined coherent amplitude. This lends support to our approach of regarding robust PR ensembles as the most natural description of the state of the laser mode. It also has interesting implications for atom lasers in particular

  18. Collisions in the presence of a laser field and the laser as a tool for state selective preparation of molecular states in collisions

    International Nuclear Information System (INIS)

    Hertel, I.V.

    1985-01-01

    In the study of individual collision events laser light can be used to influence or probe the process prior to, during, or after the binary particle interaction. We discuss some problems and particularly challenging possibilities for modifying the collision process in a high, but not too high, laser field. We discuss the possibilities of state selective preparation of quasimolecular Σ and π states in ion-atom collisions, with asymptotically laser optical pumped atomic p-states

  19. High power CO II lasers and their material processing applications at Centre for Advanced Technology, India

    Science.gov (United States)

    Nath, A. K.; Paul, C. P.; Rao, B. T.; Kau, R.; Raghu, T.; Mazumdar, J. Dutta; Dayal, R. K.; Mudali, U. Kamachi; Sastikumar, D.; Gandhi, B. K.

    2006-01-01

    We have developed high power transverse flow (TF) CW CO II lasers up to 15kW, a high repetition rate TEA CO II laser of 500Hz, 500W average power and a RF excited fast axial flow CO II laser at the Centre for Advanced Technology and have carried out various material processing applications with these lasers. We observed very little variation of discharge voltage with electrode gap in TF CO II lasers. With optimally modulated laser beam we obtained better results in laser piercing and cutting of titanium and resolidification of 3 16L stainless steel weld-metal for improving intergranular corrosion resistance. We carried out microstructure and phase analysis of laser bent 304 stainless steel sheet and optimum process zones were obtained. We carried out laser cladding of 316L stainless steel and Al-alloy substrates with Mo, WC, and Cr IIC 3 powder to improve their wear characteristics. We developed a laser rapid manufacturing facility and fabricated components of various geometries with minimum surface roughness of 5-7 microns Ra and surface waviness of 45 microns between overlapped layers using Colmonoy-6, 3 16L stainless steel and Inconel powders. Cutting of thick concrete blocks by repeated laser glazing followed by mechanical scrubbing process and drilling holes on a vertical concrete with laser beam incident at an optimum angle allowing molten material to flow out under gravity were also done. Some of these studies are briefly presented here.

  20. Progress towards materials science above 1000 GPa (10 Mbar) on the NIF laser

    International Nuclear Information System (INIS)

    Remington, B.A.; Park, H.; Prisbrey, S.T.; Pollaine, S.M.; Cavallo, R.M.; Rudd, R.E.; Lorenz, K.T.; Becker, R.; Bernier, J.; Barton, N.; Arsenlis, T.; Glendinning, S.G.; Hamza, A.; Swift, D.; Jankowski, A.; Meyers, M.A.

    2009-01-01

    Solid state dynamics experiments at extreme pressures, P > 1000 GPa (10 Mbar), and ultrahigh strain rates (1.e6-1.e8 1/s) are being developed for the National Ignition Facility (NIF) laser. These experiments will open up exploration of new regimes of materials science at an order of magnitude higher pressures than have been possible to date. Such extreme, solid state conditions can be accessed with a ramped pressure drive. The experimental, computational, and theoretical techniques are being developed and tested on the Omega laser. Velocity interferometer measurements (VISAR) establish the high pressure conditions generated by the ramped drive. Constitutive models for solid state strength under these conditions are tested by comparing simulations with experiments measuring perturbation growth from the Rayleigh-Taylor instability in solid state samples of vanadium. Radiography techniques using synchronized bursts of x-rays have been developed to diagnose this perturbation growth. Experiments on Omega demonstrating these techniques at peak pressures of ∼1 Mbar will be discussed. The time resolved observation of foil cracking and void formation show the need for tamped samples and a planar drive

  1. Effect analysis of material properties of picosecond laser ablation for ABS/PVC

    Science.gov (United States)

    Tsai, Y. H.; Ho, C. Y.; Chiou, Y. J.

    2017-06-01

    This paper analytically investigates the picosecond laser ablation of ABS/PVC. Laser-pulsed ablation is a wellestablished tool for polymer. However the ablation mechanism of laser processing for polymer has not been thoroughly understood yet. This study utilized a thermal transport model to analyze the relationship between the ablation rate and laser fluences. This model considered the energy balance at the decomposition interface and Arrhenius law as the ablation mechanisms. The calculated variation of the ablation rate with the logarithm of the laser fluence agrees with the measured data. It is also validated in this work that the variation of the ablation rate with the logarithm of the laser fluence obeys Beer's law for low laser fluences. The effects of material properties and processing parameters on the ablation depth per pulse are also discussed for picosecond laser processing of ABS/PVC.

  2. Laser Beam Machining (LBM), State of the Art and New Opportunities

    NARCIS (Netherlands)

    Meijer, J.

    2004-01-01

    An overview is given of the state of the art of laser beam machining in general with special emphasis on applications of short and ultrashort lasers. In laser welding the trend is to apply optical sensors for process control. Laser surface treatment is mostly used to apply corrosion and wear

  3. Selective laser sintering of calcium phosphate materials for orthopedic implants

    Science.gov (United States)

    Lee, Goonhee

    Two technologies, Solid Freeform Fabrication (SFF) and bioceramics are combined in this work to prepare bone replacement implants with complex geometry. SFF has emerged as a crucial technique for rapid prototyping in the last decade. Selective Laser Sintering (SLS) is one of the established SFF manufacturing processes that can build three-dimensional objects directly from computer models without part-specific tooling or human intervention. Meanwhile, there have been great efforts to develop implantable materials that can assist in regeneration of bone defects and injuries. However, little attention has been focused in shaping bones from these materials. The main thrust of this research was to develop a process that can combine those two separate efforts. The specific objective of this research is to develop a process that can construct bone replacement material of complex geometry from synthetic calcium phosphate materials by using the SLS process. The achievement of this goal can have a significant impact on the quality of health care in the sense that complete custom-fit bone and tooth structures suitable for implantation can be prepared within 24--48 hours of receipt of geometric information obtained either from patient Computed Tomographic (CT) data, from Computer Aided Design (CAD) software or from other imaging systems such as Magnetic Resonance Imaging (MRI) and Holographic Laser Range Imaging (HLRI). In this research, two different processes have been developed. First is the SLS fabrication of porous bone implants. In this effort, systematic procedures have been established and calcium phosphate implants were successfully fabricated from various sources of geometric information. These efforts include material selection and preparation, SLS process parameter optimization, and development of post-processing techniques within the 48-hour time frame. Post-processing allows accurate control of geometry and of the chemistry of calcium phosphate, as well as

  4. New pulsed YAG laser performances in cutting thick metallic materials for nuclear applications

    International Nuclear Information System (INIS)

    Alfille, J.P.; Prunele, D. de; Pilot, G.

    1996-01-01

    The purpose of this study was to evaluate the capacities of the pulsed YAG laser thick cutting on metallic material and to compare with the CO 2 laser capacities. Stainless steel (304L) cutting tests were made in air and underwater using CO 2 and YAG lasers. A performance assessment was made for each laser and the wastes produced in the cutting operation were measured and the gases and the aerosols analyzed. The results show that the pulsed YAG laser is high performance tool for thick cutting and particularly attractive for nuclear applications

  5. Target life time of laser ion source for low charge state ion production

    Energy Technology Data Exchange (ETDEWEB)

    Kanesue,T.; Tamura, J.; Okamura, M.

    2008-06-23

    Laser ion source (LIS) produces ions by irradiating pulsed high power laser shots onto the solid state target. For the low charge state ion production, laser spot diameter on the target can be over several millimeters using a high power laser such as Nd:YAG laser. In this case, a damage to the target surface is small while there is a visible crater in case of the best focused laser shot for high charge state ion production (laser spot diameter can be several tens of micrometers). So the need of target displacement after each laser shot to use fresh surface to stabilize plasma is not required for low charge state ion production. We tested target lifetime using Nd:YAG laser with 5 Hz repetition rate. Also target temperature and vacuum condition were recorded during experiment. The feasibility of a long time operation was verified.

  6. Technological laser application

    International Nuclear Information System (INIS)

    Shia, D.O.; Kollen, R.; Rods, U.

    1980-01-01

    Problems of the technological applications of lasers are stated in the popular form. Main requirements to a technological laser as well as problems arising in designing any system using lasers have been considered. Areas of the laser applications are described generally: laser treatment of materials, thermal treatment, welding, broach and drilling of holes, scribing, microtreatment and adjustment of resistors, material cutting, investigations into controlled thermonuclear fussion

  7. Influence of intensity fluctuations on laser damage in optical materials

    International Nuclear Information System (INIS)

    Koldunov, M.F.; Manenkov, A.A.; Pocotilo, I.L.

    1995-01-01

    A study is reported of the influence of temporal fluctuations of laser radiation on the development of thermal explosion of absorbing inclusions and on the statistical properties of the laser induced damage in transparent dielectrics. A fluctuation time scale in which the fluctuations affect the thermal explosion of inclusions is established. An analysis is made of the conditions ensuring control of temporal fluctuations of laser radiation so as to eliminate their influence on the experimental statistical relationships governing laser damage associated with the distribution of absorbing inclusions in the bulk and on the surface of a sample

  8. Mechanical and Thermal Properties of Dental Composites Cured with CAD/CAM Assisted Solid-State Laser

    Directory of Open Access Journals (Sweden)

    Roberto De Santis

    2018-03-01

    Full Text Available Over the last three decades, it has been frequently reported that the properties of dental restorative composites cured with argon laser are similar or superior to those achieved with conventional halogen and light emitting diode (LED curing units. Whereas laser curing is not dependent on the distance between the curing unit and the material, such distance represents a drawback for conventional curing units. However, a widespread clinical application of this kind of laser remains difficult due to cost, heavy weight, and bulky size. Recently, with regard to the radiation in the blue region of the spectrum, powerful solid-state lasers have been commercialized. In the current research, CAD (computer-aided design/CAM (computer-aided manufacturing assisted solid-state lasers were employed for curing of different dental restorative composites consisting of micro- and nanoparticle-reinforced materials based on acrylic resins. Commercial LED curing units were used as a control. Temperature rise during the photopolymerisation process and bending properties were measured. By providing similar light energy dose, no significant difference in temperature rise was observed when the two light sources provided similar intensity. In addition, after 7 days since curing, bending properties of composites cured with laser and LED were similar. The results suggested that this kind of laser would be suitable for curing dental composites, and the curing process does not suffer from the tip-to-tooth distance.

  9. Mechanical and Thermal Properties of Dental Composites Cured with CAD/CAM Assisted Solid-State Laser

    Science.gov (United States)

    De Santis, Roberto; Gloria, Antonio; Maietta, Saverio; Martorelli, Massimo; De Luca, Alessandro; Spagnuolo, Gianrico; Riccitiello, Francesco; Rengo, Sandro

    2018-01-01

    Over the last three decades, it has been frequently reported that the properties of dental restorative composites cured with argon laser are similar or superior to those achieved with conventional halogen and light emitting diode (LED) curing units. Whereas laser curing is not dependent on the distance between the curing unit and the material, such distance represents a drawback for conventional curing units. However, a widespread clinical application of this kind of laser remains difficult due to cost, heavy weight, and bulky size. Recently, with regard to the radiation in the blue region of the spectrum, powerful solid-state lasers have been commercialized. In the current research, CAD (computer-aided design)/CAM (computer-aided manufacturing) assisted solid-state lasers were employed for curing of different dental restorative composites consisting of micro- and nanoparticle-reinforced materials based on acrylic resins. Commercial LED curing units were used as a control. Temperature rise during the photopolymerisation process and bending properties were measured. By providing similar light energy dose, no significant difference in temperature rise was observed when the two light sources provided similar intensity. In addition, after 7 days since curing, bending properties of composites cured with laser and LED were similar. The results suggested that this kind of laser would be suitable for curing dental composites, and the curing process does not suffer from the tip-to-tooth distance. PMID:29584683

  10. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Jung, E. C.; Kim, Hyun Su; Lim, Gwon

    2001-01-01

    we have fabricated solid-state dyes with PMMA and sol-gel materials. We developed single longitudianl mode solid-state dye laser with the linewidth of less than 500MHz. We have constructed a self-seeded laser and observed the increase of the output power because of self-seeding effect. We investigated the operating characteristics of the dualwave laser oscillator and DFDL with solid-state dyes. And we have constructed the 3-color solid-state dye laser oscillator and amplifier system and observed 3-color operation. We also improved the laser oscliiator with disk-type solid-state dye cell which can be translated and rotated with the help of the two stepping motors. With the help of computer control, we could constantly changed the illuminated area of the dye cell and, therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell.

  11. Increasing Protein Charge State When Using Laser Electrospray Mass Spectrometry

    Science.gov (United States)

    Karki, Santosh; Flanigan, Paul M.; Perez, Johnny J.; Archer, Jieutonne J.; Levis, Robert J.

    2015-05-01

    Femtosecond (fs) laser vaporization is used to transfer cytochrome c, myoglobin, lysozyme, and ubiquitin from the condensed phase into an electrospray (ES) plume consisting of a mixture of a supercharging reagent, m-nitrobenzyl alcohol ( m-NBA), and trifluoroacetic acid (TFA), acetic acid (AA), or formic acid (FA). Interaction of acid-sensitive proteins like cytochrome c and myoglobin with the highly charged ES droplets resulted in a shift to higher charge states in comparison with acid-stable proteins like lysozyme and ubiquitin. Laser electrospray mass spectrometry (LEMS) measurements showed an increase in both the average charge states (Zavg) and the charge state with maximum intensity (Zmode) for acid-sensitive proteins compared with conventional electrospray ionization mass spectrometry (ESI-MS) under equivalent solvent conditions. A marked increase in ion abundance of higher charge states was observed for LEMS in comparison with conventional electrospray for cytochrome c (ranging from 19+ to 21+ versus 13+ to 16+) and myoglobin (ranging from 19+ to 26+ versus 18+ to 21+) using an ES solution containing m-NBA and TFA. LEMS measurements as a function of electrospray flow rate yielded increasing charge states with decreasing flow rates for cytochrome c and myoglobin.

  12. Kinetic studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    Keto, J.W.

    1992-01-01

    We have made measurements of state-to-state deactivation cross sections and radiative lifetimes for Xe*(6p,6p',7p) and Kr*(5p) states in xenon and krypton buffer gases. These results are relevant to kinetic models and both excimer lasers and the infrared xenon laser; and they are a significant improvement in the precision of the known radiative lifetimes. This type of experiment can now be compared with recent calculations of state-to-state collisional relaxation in rare-gases by Hickman, Huestis, and Saxon. We have also made significant progress in the study of the electronic spectra of small molecules of the rare gases. Spectra have been obtained for Xe 2 , Xe 3 , Xe 4 , and larger clusters. As guidance for the larger clusters of the rare gases we have obtained the first multiphoton spectra for excitons in condensed xenon. In collaboration with research on the multiphoton spectra of the rare gases, we have continued experiments using synchrotron radiation in collaboration with the University of Hamburg. In experiments there we have observed excitation and fluorescence spectra for single xenon atoms at the surface, within the second layer, and within the bulk of large argon clusters

  13. Double pulse laser induced breakdown spectroscopy applied to natural and artificial materials from cultural heritages

    International Nuclear Information System (INIS)

    Brai, Maria; Gennaro, Gaetano; Schillaci, Tiziano; Tranchina, Luigi

    2009-01-01

    The laser-induced breakdown spectroscopy (LIBS) is an applied physical technique that has shown in recent years its great potential for rapid qualitative analysis of materials. Thanks to the possibility to implement a portable instrument that perform LIBS analysis, this technique is revealed to be particularly useful for in situ analysis in the field of cultural heritages. The purpose of this work is to evaluate the potentiality of LIBS technique in the field of cultural heritages, with respect to the chemical characterization of complex matrix as calcareous and refractory materials for further quantitative analyses on cultural heritages. X-Ray Fluorescence (XRF) analyses were used as reference. Calibration curves of certified materials used as standards were obtained by XRF analyses. The LIBS measurements were performed with a new mobile instrument called Modi (Mobile Double pulse Instrument for LIBS Analysis). The XRF analyses were performed with a portable instrument ArtTAX. LIBS and XRF measurement were performed on both reference materials and samples (bricks and mortars) sampled in the ancient Greek-Roman Theatre of Taormina. Although LIBS measurements performed on reference materials have shown non linear response to concentrations, and so we were not able to obtain quantitative results, an integrated study of XRF and LIBS signals permitted us to distinguish among chemical features and degradation state of measured building materials.

  14. Double pulse laser induced breakdown spectroscopy applied to natural and artificial materials from cultural heritages

    Energy Technology Data Exchange (ETDEWEB)

    Brai, Maria; Gennaro, Gaetano [Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze Ed.18, 90128 Palermo (Italy); Schillaci, Tiziano, E-mail: tschillaci@unipa.i [Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze Ed.18, 90128 Palermo (Italy); Tranchina, Luigi [Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze Ed.18, 90128 Palermo (Italy)

    2009-10-15

    The laser-induced breakdown spectroscopy (LIBS) is an applied physical technique that has shown in recent years its great potential for rapid qualitative analysis of materials. Thanks to the possibility to implement a portable instrument that perform LIBS analysis, this technique is revealed to be particularly useful for in situ analysis in the field of cultural heritages. The purpose of this work is to evaluate the potentiality of LIBS technique in the field of cultural heritages, with respect to the chemical characterization of complex matrix as calcareous and refractory materials for further quantitative analyses on cultural heritages. X-Ray Fluorescence (XRF) analyses were used as reference. Calibration curves of certified materials used as standards were obtained by XRF analyses. The LIBS measurements were performed with a new mobile instrument called Modi (Mobile Double pulse Instrument for LIBS Analysis). The XRF analyses were performed with a portable instrument ArtTAX. LIBS and XRF measurement were performed on both reference materials and samples (bricks and mortars) sampled in the ancient Greek-Roman Theatre of Taormina. Although LIBS measurements performed on reference materials have shown non linear response to concentrations, and so we were not able to obtain quantitative results, an integrated study of XRF and LIBS signals permitted us to distinguish among chemical features and degradation state of measured building materials.

  15. Diode-pumped solid state laser. (Part V). ; Short pulse laser oscillation. Handotai laser reiki kotai laser. 5. ; Tan pulse hasshin

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, M.; Bando, N. (Asahi Glass Co. Ltd., Tokyo (Japan))

    1991-12-25

    A semiconductor laser (LD) excited solid state laser using an LD as an excited light source is under discussion for its practical applications to measurements, processing, communications, office automation, and medical areas. This paper describes the discussions given on the short pulse transmission using AOQ switching elements in the LD excited solid state laser with a long wave length band (1.3{mu}m), which is expected of its application in the communications and measurements area. Based on a possibility of raising a measurements resolution by making the pluses in the LD excited solid state laser, and experiments were performed using Nd:YLF as a laser host. as a results, it was found that the smaller the effective mode volume V {sub eff},the smaller the pulse width, and that the ratio of number of initial inversion distribution (N{sub i}/N{sub t}), an important parameter to determine pulse widths, can be obtained from the ratio of the LD exciting light to the input power (P{sub in}/P{sub t}). 7 refs., 14 figs., 2 tabs.

  16. Research progress of VO2 thin film as laser protecting material

    Science.gov (United States)

    Liu, Zhiwei; Lu, Yuan; Hou, Dianxin

    2018-03-01

    With the development of laser technology, the battlefield threat of directional laser weapons is becoming more and more serious. The blinding and destruction caused by laser weapons on the photoelectric equipment is an important part of the current photo-electronic warfare. The research on the defense technology of directional laser weapons based on the phase transition characteristics of VO2 thin films is an important subject. The researches of VO2 thin films are summarized based on review these points: the preparation methods of VO2 thin films, phase transition mechanism, phase transition temperature regulating, interaction between VO2 thin films and laser, and the application prospect of vo2 thin film as laser protecting material. This paper has some guiding significance for further research on the VO2 thin films in the field of defense directional laser weapons.

  17. Laser Deposition of Polymer Nanocomposite Thin Films and Hard Materials and Their Optical Characterization

    Science.gov (United States)

    2013-12-05

    visible light on instruments such as microscope tips and micro- surgical tools. Hard carbon known as diamond-like carbon films produced by pulsed laser ...visible (610 nm) LED source and a supplemental infra-red 980-nm laser diode (for the studies of the upconversion fluorescence). The basic package...5/2013 Final Performance Report 15 Sep 2012- 14 Sep 2013 LASER DEPOSITION OF POLYMER NANOCOMPOSITE THIN FILMS AND HARD MATERIALS AND THEIR OPTICAL

  18. A compact plasma pre-ionized TEA-CO2 laser pulse clipper for material processing

    Science.gov (United States)

    Gasmi, Taieb

    2017-08-01

    An extra-laser cavity CO2-TEA laser pulse clipper using gas breakdown techniques for high spatial resolution material processing and shallow material engraving and drilling processes is presented. Complete extinction of the nitrogen tail, that extends the pulse width, is obtained at pressures from 375 up to 1500 torr for nitrogen and argon gases. Excellent energy stability and pulse repeatability were further enhanced using high voltage assisted preionized plasma gas technique. Experimental data illustrates the direct correlation between laser pulse width and depth of engraving in aluminum and alumina materials.

  19. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    Science.gov (United States)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  20. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering

    DEFF Research Database (Denmark)

    Chan, Chi-Wai; Carson, Louise; Smith, Graham C.

    2017-01-01

    to the effort on enhancing osseointegration, wear and corrosion resistance of implant materials. In this study, the effects of laser surface treatment on enhancing the antibacterial properties of commercially pure (CP) Ti (Grade 2), Ti6Al4V (Grade 5) and CoCrMo alloy implant materials were studied and compared...... for the first time. Laser surface treatment was performed by a continuous wave (CW) fibre laser with a near-infrared wavelength of 1064 nm in a nitrogen-containing environment. Staphylococcus aureus, commonly implicated in infection associated with orthopaedic implants, was used to investigate the antibacterial...... properties of the laser-treated surfaces. The surface roughness and topography of the laser-treated materials were analysed by a 2D roughness testing and by AFM. The surface morphologies before and after 24 h of bacterial cell culture were captured by SEM, and bacterial viability was determined using live...

  1. Computational simulation of laser heat processing of materials

    Science.gov (United States)

    Shankar, Vijaya; Gnanamuthu, Daniel

    1987-04-01

    A computational model simulating the laser heat treatment of AISI 4140 steel plates with a CW CO2 laser beam has been developed on the basis of the three-dimensional, time-dependent heat equation (subject to the appropriate boundary conditions). The solution method is based on Newton iteration applied to a triple-approximate factorized form of the equation. The method is implicit and time-accurate; the maintenance of time-accuracy in the numerical formulation is noted to be critical for the simulation of finite length workpieces with a finite laser beam dwell time.

  2. Behaviour of alkali halides as materials for optical components of high power lasers

    International Nuclear Information System (INIS)

    Apostol, D.I.; Mihailescu, N.I.; Ghiordanescu, V.; Nistor, C.L.; Nistor, V.S.; Teodorescu, V.; Voda, M.

    1978-01-01

    The physical phenomena taking place in alkali halides when a CO 2 laser radiation is passing through have been reviewed. A special emphasis has been put on the specific qualities which such materials should have for being used as components for high power lasers. (author)

  3. Use of pre-pulse in laser spot welding of materials with high optical reflection

    Science.gov (United States)

    Mys, Ihor; Geiger, Manfred

    2003-11-01

    Laser micro welding has become a standard manufacturing technique, particularly in industry sectors, such as automotive and aerospace electronics or medical devices, where the requirements for strength, miniaturization and temperature resistance are constantly rising. So far the use of laser micro welding is limited due to the fluctuation of the quality of the welded joints, because the welding results for material with high optical reflection and thermal conductivity, such as copper and copper alloys, depend very strongly on the condition of the material surface. This paper presents investigations on the use of a laser pre-pulse in spot welding of electronic materials with Nd:YAG laser. In order to achieve reproducible joining results two strategies are followed-up. The first one utilizes a reflection-based process control for measuring the reflection during the short pre-pulse. The intensity of the reflected light is used to calculate an appropriated welding pulse power, which corresponds to the measured relative absorption. Adjustment of laser parameters according to the condition of the surface is done in real time before laser main pulse. A second possibility for the stabilization of copper welding is the employment of a short and powerful laser pre-pulse before laser main pulse. This pre-pulse affects the workpiece surface and creates more reproducible absorption conditions for the main pulse, independent from the initial situation on material surface.

  4. Monitoring of laser material processing using machine integrated low-coherence interferometry

    Science.gov (United States)

    Kunze, Rouwen; König, Niels; Schmitt, Robert

    2017-06-01

    Laser material processing has become an indispensable tool in modern production. With the availability of high power pico- and femtosecond laser sources, laser material processing is advancing into applications, which demand for highest accuracies such as laser micro milling or laser drilling. In order to enable narrow tolerance windows, a closedloop monitoring of the geometrical properties of the processed work piece is essential for achieving a robust manufacturing process. Low coherence interferometry (LCI) is a high-precision measuring principle well-known from surface metrology. In recent years, we demonstrated successful integrations of LCI into several different laser material processing methods. Within this paper, we give an overview about the different machine integration strategies, that always aim at a complete and ideally telecentric integration of the measurement device into the existing beam path of the processing laser. Thus, highly accurate depth measurements within machine coordinates and a subsequent process control and quality assurance are possible. First products using this principle have already found its way to the market, which underlines the potential of this technology for the monitoring of laser material processing.

  5. Army Solid State Laser Program: Design, Operation, and Mission Analysis for a Heat-Capacity Laser

    International Nuclear Information System (INIS)

    Dane, C B; Flath, L; Rotter, M; Fochs, S; Brase, J; Bretney, K

    2001-01-01

    Solid-state lasers have held great promise for the generation of high-average-power, high-quality output beams for a number of decades. However, the inherent difficulty of scaling the active solid-state gain media while continuing to provide efficient cooling has limited demonstrated powers to 10X the diffraction limit. Challenges posed by optical distortions and depolarization arising from internal temperature gradients in the gain medium of a continuously cooled system are only increased for laser designs that would attempt to deliver the high average power in the form of high energy pulses (>25J) from a single coherent optical aperture. Although demonstrated phase-locking of multiple laser apertures may hold significant promise for the future scaling of solid-state laser systems,1 the continuing need for additional technical development and innovation coupled with the anticipated complexity of these systems effectively limits this approach for near-term multi-kW laser operation outside of a laboratory setting. We have developed and demonstrated a new operational mode for solid-state laser systems in which the cooling of the gain medium is separated in time from the lasing cycle. In ''heat-capacity'' operation, no cooling takes place during lasing. The gain medium is pumped very uniformly and the waste heat from the excitation process is stored in the solid-state gain medium. By depositing the heat on time scales that are short compared to thermal diffusion across the optical aperture, very high average power operation is possible while maintaining low optical distortions. After a lasing cycle, aggressive cooling can then take place in the absence of lasing, limited only by the fracture limit of the solid-state medium. This mode of operation is ideally suited for applications that require 1-30s engagements at very high average power. If necessary, multiple laser apertures can provide continuous operation. Land Combat mission analysis of a stressing air defense

  6. Theoretical observation of two state lasing from InAs/InP quantum-dash lasers

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2011-09-01

    The effect of cavity length on the lasing wavelength of InAs/InP quantum dash (Qdash) laser is examined using the carrier-photon rate equation model including the carrier relaxation process from the Qdash ground state and excited state. Both, homogeneous and inhomogeneous broadening has been incorporated in the model. We show that ground state lasing occurs with longer cavity lasers and excited state lasing occurs from relatively short cavity lasers. © 2011 IEEE.

  7. Lasers '89

    International Nuclear Information System (INIS)

    Harris, D.G.; Shay, T.M.

    1990-01-01

    This book covers the following topics: XUV, X-Ray and Gamma-Ray Lasers, excimer lasers, chemical lasers, nuclear pumped lasers, high power gas lasers, solid state lasers, laser spectroscopy. The paper presented include: Development of KrF lasers for fusion and Nuclear driven solid-state lasers

  8. Dynamics of plasma expansion in the pulsed laser material interaction

    Indian Academy of Sciences (India)

    at different ambient gas pressures using an adiabatic expansion model. ... Pulsed laser; plasma expansion; plasma ionization; plume dimension. 1. ...... De A, Shakhatov V A, Pascale De O 2001 Optical emission spectroscopy and modeling of.

  9. Analysis of material modifications caused by nanosecond pulsed UV laser processing of SiC and GaN

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Olaf; Wernicke, Tim; Wuerfl, Joachim; Traenkle, Guenther [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Hergenroeder, Roland [ISAS-Institute for Analytical Sciences, Dortmund (Germany)

    2008-10-15

    The effects of direct UV laser processing on single crystal SiC in ambient air were investigated by cross-sectional transmission electron microscopy, Auger electron spectroscopy, and measurements of the electrical resistance using the transfer length method (TLM). Scanning electron microscopy was applied to study the morphology and dimensions of the laser-treated regions. After laser processing using a nanosecond pulsed solid-state laser the debris consisting of silicon oxide was removed by etching in buffered hydrofluoric acid. A layer of resolidified material remains at the surface indicating the thermal impact of the laser process. The Si/C ratio is significantly disturbed at the surface of the resolidified layer and approaches unity in a depth of several tens of nanometers. A privileged oxidation of carbon leaves elementary resolidified silicon at the surface, where nanocrystalline silicon was detected. Oxygen and nitrogen were detected near the surface down to a depth of some tens of nanometers. A conductive surface film is formed, which is attributed to the thermal impact causing the formation of the silicon-rich surface layer and the incorporation of nitrogen as dopant. No indications for microcrack or defect formation were found beneath the layer of resolidified material. (orig.)

  10. State statutes and regulations on radioactive materials transportation

    International Nuclear Information System (INIS)

    Foster, B.

    1981-11-01

    The transport of radioactive material is controlled by numerous legislative and regulatory actions at the federal, state, and local levels. This document is a compilation of the state level laws and regulations. The collected material is abstracted and indexed by states. Each state section contains three divisions: (1) abstracts of major statutes, (2) legislative rules, and (3) photocopies of relevant paragraphs from the law or regulation. This document was prepared for use by individuals who are involved in the radioactive material transportation process. This document will not be updated. The legislative rules section contains the name of the state agency primarily responsible for monitoring the transport of radioactive materials

  11. Experimental analysis of Nd-YAG laser cutting of sheet materials - A review

    Science.gov (United States)

    Sharma, Amit; Yadava, Vinod

    2018-01-01

    Cutting of sheet material is considered as an important process due to its relevance among products of everyday life such as aircrafts, ships, cars, furniture etc. Among various sheet cutting processes (ASCPs), laser beam cutting is one of the most capable ASCP to create complex geometries with stringent design requirements in difficult-to-cut sheet materials. Based on the recent research work in the area of sheet cutting, it is found that the Nd-YAG laser is used for cutting of sheet material in general and reflective sheet material in particular. This paper reviews the experimental analysis of Nd-YAG laser cutting process, carried out to study the influence of laser cutting parameters on the process performance index. The significance of experimental modeling and different optimization approaches employed by various researchers has also been discussed in this study.

  12. 193nm high power lasers for the wide bandgap material processing

    Science.gov (United States)

    Fujimoto, Junichi; Kobayashi, Masakazu; Kakizaki, Koji; Oizumi, Hiroaki; Mimura, Toshio; Matsunaga, Takashi; Mizoguchi, Hakaru

    2017-02-01

    Recently infrared laser has faced resolution limit of finer micromachining requirement on especially semiconductor packaging like Fan-Out Wafer Level Package (FO-WLP) and Through Glass Via hole (TGV) which are hard to process with less defect. In this study, we investigated ablation rate with deep ultra violet excimer laser to explore its possibilities of micromachining on organic and glass interposers. These results were observed with a laser microscopy and Scanning Electron Microscope (SEM). As the ablation rates of both materials were quite affordable value, excimer laser is expected to be put in practical use for mass production.

  13. International laser safety standardization. From the European perspective with an emphasis on materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Schulmeister, K [Div. of Life Sciences, Dept. of Radiation Protection, Oesterreichisches Forschungszentrum Seibersdorf, 2444 Seibersdorf (Austria)

    1997-08-01

    This report reviews international standards relevant to the safety of laser products and laser installations, with an emphasis on the safety of laser materials processing from the European perspective. In the first paragraphs an overview of the international standards organisations, their relative roles and ways of developing new standards is given. In the second part of the report, work currently underway in the respective standards committees is summarised and specific standards dealing with different aspects of laser safety are discussed. An appendix contains a list of standards organised in standards organisations (IEC, ISO and EN). (author)

  14. International laser safety standardization. From the European perspective with an emphasis on materials processing

    International Nuclear Information System (INIS)

    Schulmeister, K.

    1997-08-01

    This report reviews international standards relevant to the safety of laser products and laser installations, with an emphasis on the safety of laser materials processing from the European perspective. In the first paragraphs an overview of the international standards organisations, their relative roles and ways of developing new standards is given. In the second part of the report, work currently underway in the respective standards committees is summarised and specific standards dealing with different aspects of laser safety are discussed. An appendix contains a list of standards organised in standards organisations IEC, ISO and EN). (author)

  15. Multi-wavelength copper vapour lasers for novel materials processing application

    International Nuclear Information System (INIS)

    Knowles, M.; Foster-Turner, R.; Kearsley, A.; Evans, J.

    1995-01-01

    The copper vapour laser (CVL) is a high average power, short pulse laser with a multi-kilohertz pulse repetition rate. The CVL laser lines (511 nm and 578 nm) combined with the good beam quality and high peak power available from these lasers allow it to operate in a unique parameter space. Consequently, it has demonstrated many unique and advantageous machining characteristics. We have also demonstrated efficient conversion of CVL radiation to other wavelengths using non-linear frequency conversion, dye lasers and Ti:AL 2 O 3 . Output powers of up to 4 W at 255 nm have been achieved by frequency doubling. The frequency doubled CVL is inherently narrow linewidth and frequency locked making it a suitable source for UV photolithography. Slope efficiencies in excess of 25 % have been achieved with CVL pumped Ti:Al 2 O 3 and dye lasers. These laser extend the wavelengths options into the red and infrared regions of the spectrum. The near diffraction limited beams from these tunable lasers can be efficiently frequency doubled into the blue and near UV. The wide range of wavelength options from the CVL enable a wide variety of materials processing and material interactions to be explored. A European consortium for Copper Laser Applications in Manufacture and Production (CLAMP) has been set up under the EUREKA scheme to coordinate the commercial and technical expertise currently available in Europe. (author)

  16. Laser cutting of various materials: Kerf width size analysis and life cycle assessment of cutting process

    Science.gov (United States)

    Yilbas, Bekir Sami; Shaukat, Mian Mobeen; Ashraf, Farhan

    2017-08-01

    Laser cutting of various materials including Ti-6Al-4V alloy, steel 304, Inconel 625, and alumina is carried out to assess the kerf width size variation along the cut section. The life cycle assessment is carried out to determine the environmental impact of the laser cutting in terms of the material waste during the cutting process. The kerf width size is formulated and predicted using the lump parameter analysis and it is measured from the experiments. The influence of laser output power and laser cutting speed on the kerf width size variation is analyzed using the analytical tools including scanning electron and optical microscopes. In the experiments, high pressure nitrogen assisting gas is used to prevent oxidation reactions in the cutting section. It is found that the kerf width size predicted from the lump parameter analysis agrees well with the experimental data. The kerf width size variation increases with increasing laser output power. However, this behavior reverses with increasing laser cutting speed. The life cycle assessment reveals that material selection for laser cutting is critical for the environmental protection point of view. Inconel 625 contributes the most to the environmental damages; however, recycling of the waste of the laser cutting reduces this contribution.

  17. Toxicological characterization of chemicals produced from laser irradiation of graphite composite materials

    International Nuclear Information System (INIS)

    Kwan, J.

    1990-11-01

    One of the major potential hazards associated with laser machining of graphite composite materials is the toxic fumes and gases that are generated. When exposed to the intense energy of the laser beam, the organic polymer matrix of the composite material may decompose into various toxic by-products. To advance the understanding of the laser machining process from a health and safety viewpoint, this particular study consisted of the following steps: collect and analyze gaseous by-products generated during laser machining; collect particulates generated during laser machining and chemically extract them to determine the chemical species that may have absorbed or recondensed onto these particles; and review and evaluate the toxicity of the identified chemical species

  18. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon [Manufacturing Processes Department, Fundacion TEKNIKER, Av. Otaola 20, 20600, Eibar, Guipuzcoa (Spain); Lejardi, Ainhoa; Sarasua, Jose-Ramon [Department of Mining and Metallurgy Engineering and Materials Science, School of Engineering, University of the Basque Country (EHU-UPV), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2011-11-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  19. A model for self-defocusing in laser drilling of polymeric materials

    International Nuclear Information System (INIS)

    Zhang Chong; Quick, Nathaniel R.; Kar, Aravinda

    2008-01-01

    A numerical thermal model is presented for laser microvias drilling in multilayer electronic substrates with Nd:YAG (YAG denotes yttrium aluminum garnet) and CO 2 lasers. Such substrates have different optical properties such as the refractive index and absorption coefficient at these two laser wavelengths, resulting in different drilling mechanisms. Since the skin depth of the polymer is large for both the lasers, volumetric heating is considered in the model. As soon as a small cavity is formed during the drilling process, the concave curvature of the drilling front acts as a concave lens that diverges the incident laser beam. This self-defocusing effect can greatly reduce the drilling speed as predicted by the model. This effect makes the refractive index of the substrate at different wavelengths an important parameter for laser drilling. The model was used to calculate the laser ablation thresholds which were found to be 8 and 56 J/cm 2 for the CO 2 and Nd:YAG lasers respectively. Due to the expulsion of materials because of high internal pressures in the case of Nd:YAG laser microvia drilling, the ablation threshold may be far below the calculated value. A particular laser beam shape, such as pitch fork, was found to drill better holes than the Gaussian beam

  20. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    International Nuclear Information System (INIS)

    Ortiz, Rocio; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon

    2011-01-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  1. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    Energy Technology Data Exchange (ETDEWEB)

    King, W. E., E-mail: weking@llnl.gov [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Khairallah, S. A. [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kamath, C. [Computation Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Rubenchik, A. M. [NIF and Photon Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-12-15

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  2. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    International Nuclear Information System (INIS)

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Khairallah, S. A.; Kamath, C.; Rubenchik, A. M.

    2015-01-01

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process

  3. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    Science.gov (United States)

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubenchik, A. M.

    2015-12-01

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  4. Laser Shock Processing of Metallic Materials: Coupling of Laser-Plasma Interaction and Material Behaviour Models for the Assessment of Key Process Issues

    International Nuclear Information System (INIS)

    Ocana, J. L.; Morales, M.; Molpeceres, C.; Porro, J. A.

    2010-01-01

    Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm 2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals. The main advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Although significant work from the experimental side has been contributed to explore the optimum conditions of application of the treatments and to assess their ultimate capability to provide enhanced mechanical behaviour to work-pieces of typical materials, only limited attempts have been developed in the way of full comprehension and predictive assessment of the characteristic physical processes and material transformations with a specific consideration of real material properties. In the present paper, a review on the physical issues dominating the development of LSP processes from a high intensity laser-matter interaction point of view is presented along with the theoretical and computational methods developed by the authors for their predictive assessment and practical results at laboratory scale on the application of the technique to different materials.

  5. Rugged and compact mid-infrared solid-state laser for avionics applications

    CSIR Research Space (South Africa)

    Esser, MJD

    2009-11-01

    Full Text Available In order to demonstrate the feasibility of a helicopter-based application using advanced laser technology, the authors have developed a rugged and compact mid-infrared solid-state laser. The requirement for the laser was to simultaneously emit at 2...

  6. Kilowatt average power 100 J-level diode pumped solid state laser

    Czech Academy of Sciences Publication Activity Database

    Mason, P.; Divoký, Martin; Ertel, K.; Pilař, Jan; Butcher, T.; Hanuš, Martin; Banerjee, S.; Phillips, J.; Smith, J.; De Vido, M.; Lucianetti, Antonio; Hernandez-Gomez, C.; Edwards, C.; Mocek, Tomáš; Collier, J.

    2017-01-01

    Roč. 4, č. 4 (2017), s. 438-439 ISSN 2334-2536 R&D Projects: GA MŠk LO1602; GA MŠk LM2015086 Institutional support: RVO:68378271 Keywords : diode-pumped * solid state * laser Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 7.727, year: 2016

  7. Short-pulse generation in a diode-end-pumped solid-state laser

    CSIR Research Space (South Africa)

    Ngcobo, S

    2010-09-01

    Full Text Available , Development of High Average Power Picosecond Laser Systems, Opto- Electronic Devices, (2002). INTRODUCTION A Nd:YVO4 modelocked laser has been constructed using a resonator designed according to the theoretical parameters. The laser produced pulses... theoretical PQSML,th of 2.08W. Short-Pulse Generation in a Diode-End-Pumped Solid-State Laser S. Ngcobo1,2, C. Bollig1 and H. Von Bergmann2 1CSIR National Laser Centre, PO Box 395, Pretoria, 0001, South Africa 2Laser Research Center, University...

  8. Design of all solid state tunable single-mode Ti: sapphire laser for nuclear industry

    International Nuclear Information System (INIS)

    Lee, J.H.; Nam, S.M.; Lee, Y.J.; Lee, J.M.; Horn, Roland E.; Wendt, Klaus

    1999-01-01

    We designed a Ti:Sapphire laser pumped by a diode laser pumped solid state laser (DPSSL). The DPSSL was intra-cavity frequency doubled and it had 20 W output power. The Ti:Sapphire laser was designed for single longitudinal mode lasing. For single mode lasing, the laser used several solid etalons. We simulated temporal evolution of the laser pulse and single pass amplification rate of the photons in each modes from rate equations. From the result, we found that single mode lasing is viable in this cavity

  9. Solid-state laser pumping with a planar compound parabolic concentrator.

    Science.gov (United States)

    Panteli, D V; Pani, B M; Beli, L Z

    1997-10-20

    A novel solid-state laser-pumping scheme is proposed that combines a reflective lamp chamber and a compound parabolic concentrator (CPC) as a light guide. The CPC is made of a transparent material of high refractive index, and light is guided by the total internal reflection, with drastically reduced reflection losses. Material is chosen so that the absorption losses are minimized in the pumping wavelength range. The lamp chamber is designed with the principles of nonimaging optics, which ensures that the radiation is efficiently transferred from the lamp to the input aperture of the CPC. The pumping efficiency was first estimated theoretically, which gave us enough justification for the more accurate calculations with ray tracing. Single as well as multiple pumping cavities are discussed. New pumping geometry results in significantly increased pumping efficiency compared with conventional geometries. Also the lamp and the laser rod are separated, leading to reduced thermal load. We found that the proposed pumping method is also applicable to diode-pumped lasers.

  10. Experimental and Modeling Study of Liquid-Assisted—Laser Beam Micromachining of Smart Ceramic Materials

    Directory of Open Access Journals (Sweden)

    Mayur Parmar

    2018-05-01

    Full Text Available Smart ceramic materials are next generation materials with the inherent intelligence to adapt to change in the external environment. These materials are destined to play an essential role in several critical engineering applications. Machining these materials using traditional machining processes is a challenge. The laser beam micromachining (LBMM process has the potential to machine such smart materials. However, laser machining when performed in air induces high thermal stress on the surface, often leading to crack formation, recast and re-deposition of ablated material, and large heat-affected zones (HAZ. Performing laser beam machining in the presence of a liquid medium could potentially resolve these issues. This research investigates the possibility of using a Liquid Assisted—Laser Beam Micromachining (LA-LBMM process for micromachining smart ceramic materials. Experimental studies are performed to compare the machining quality of laser beam machining process in air and in a liquid medium. The study reveals that the presence of liquid medium helps in controlling the heat-affected zone and the taper angle of the cavity drilled, thereby enhancing the machining quality. Analytical modeling is developed for the prediction of HAZ and cavity diameter both in air and underwater conditions, and the model is capable of predicting the experimental results to within 10% error.

  11. Material Properties of Laser-Welded Thin Silicon Foils

    Directory of Open Access Journals (Sweden)

    M. T. Hessmann

    2013-01-01

    Full Text Available An extended monocrystalline silicon base foil offers a great opportunity to combine low-cost production with high efficiency silicon solar cells on a large scale. By overcoming the area restriction of ingot-based monocrystalline silicon wafer production, costs could be decreased to thin film solar cell range. The extended monocrystalline silicon base foil consists of several individual thin silicon wafers which are welded together. A comparison of three different approaches to weld 50 μm thin silicon foils is investigated here: (1 laser spot welding with low constant feed speed, (2 laser line welding, and (3 keyhole welding. Cross-sections are prepared and analyzed by electron backscatter diffraction (EBSD to reveal changes in the crystal structure at the welding side after laser irradiation. The treatment leads to the appearance of new grains and boundaries. The induced internal stress, using the three different laser welding processes, was investigated by micro-Raman analysis. We conclude that the keyhole welding process is the most favorable to produce thin silicon foils.

  12. Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser.

    Science.gov (United States)

    Yoshioka, Hiroaki; Yang, Yu; Watanabe, Hirofumi; Oki, Yuji

    2012-02-13

    A novel solid-state dye laser with degradation recovery was proposed and demonstrated. Polydimethylsiloxane was used as a nanoporous solid matrix to enable the internal circulation of dye molecules in the solid state. An internal circulation model for the dye molecules was also proposed and verified numerically by assuming molecular mobility and using a proposed diffusion equation. The durability of the laser was increased 20.5-fold compared with that of a conventional polymethylmethacrylate laser. This novel laser solves the low-durability problem of dye-doped polymer lasers.

  13. Molecular beam epitaxy growth and characterization of two-six materials for visible semiconductor lasers

    Science.gov (United States)

    Zeng, Linfei

    This thesis proposes the molecular beam epitaxy (MBE) growth and characterization of a new Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se based semiconductor materials system on InP substrates for visible light emitting diodes (LED) and lasers. The growth conditions for lattice-matched Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se layers with the desired bandgap have been established and optimized. A chemical etching technique to measure the defect density of Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se materials has been established. The accuracy of this method for revealing stacking faults and dislocations was verified by plan-view TEM. Using the techniques such as III-V buffer layer, Zn-irradiation, low-temperature growth, ZnCdSe interfacial layer and growth interruption to improve the quality of the interface of III-V and II-VI, the material quality of Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se has been improved dramatically. Defect density has been reduced from 10sp{10}\\ cmsp{-2} to {˜}5×10sp4\\ cmsp{-2}. The properties of this material system such as the quality and strain state in the epilayer, the dependence of bandgap on temperature, and the band offset have been studied by using double crystal x-ray diffraction, photoluminescence and capacitance voltage measurements. The ZnCdSe/ZnCdMgSe based quantum well (QW) structures have been grown and studied. Optically pumped lasing with emission range from red to blue has been obtained from ZnCdSe/ZnCdMgSe based separate-confinement single QW laser structures. The results demonstrate the potential for these materials as integrated full color display devices. Preliminary studies of the degradation behavior of ZnCdSe/ZnCdMgSe QW were performed. No dark line defects (DLDs) were observed during the degradation. A very strong room temperature differential negative resistance behavior was observed from Al/Znsb{0.61}Cdsb{0.39}Se/nsp+-InP devices, which is useful in millimeter-wave applications. We also found that these devices can be set to either in highly conductive or

  14. Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials

    Science.gov (United States)

    Hermens, U.; Kirner, S. V.; Emonts, C.; Comanns, P.; Skoulas, E.; Mimidis, A.; Mescheder, H.; Winands, K.; Krüger, J.; Stratakis, E.; Bonse, J.

    2017-10-01

    Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface's wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties.

  15. Magnetic Cluster States in Nanostructured Materials

    International Nuclear Information System (INIS)

    Leslie-Pelecky, Diandra

    2008-01-01

    The goal of this work is to fabricate model nanomaterials with different types of disorder and use atomic-scale characterization and macroscopic magnetization measurements to understand better how specific types of disorder affects macroscopic magnetic behavior. This information can be used to produce magnetic nanomaterials with specific properties for applications such as permanent magnets, soft magnetic material for motors and biomedical applications.

  16. Equation of state of laser-shocked compressed iron; Equation d'etat du fer comprime par choc laser

    Energy Technology Data Exchange (ETDEWEB)

    Huser, G

    2004-01-01

    This thesis enters the field of highly compressed materials equation of state studies. In particular, it focuses on the case of laser shock compressed iron. This work indeed aims at getting to the conditions of the earth's core, comprising a solid inner core and a liquid outer core. The understanding of phenomena governing the core's thermodynamics and the geodynamic process requires the knowledge of iron melting line locus around the solid-liquid interface at 3.3 Mbar. Several experiments were performed to that extent. First, an absolute measurement of iron Hugoniot was obtained. Following is a study of partially released states of iron into a window material: lithium fluoride (LiF). This configuration enables direct access to compressed iron optical properties such as reflectivity and self-emission. Interface velocity measurement is dominated by compressed LiF optical properties and is used as a pressure gauge. Using a dual wavelength reflectivity diagnostic, compressed iron electrical conductivity was estimated and found to be in good agreement with previous results found in geophysics literature. Self-emission diagnostic was used to measure temperature of partially released iron and revealed a solid-liquid phase transition at Mbar pressures. (author)

  17. Does laser-driven heat front propagation depend on material microstructure?

    Science.gov (United States)

    Colvin, J. D.; Matsukuma, H.; Fournier, K. B.; Yoga, A.; Kemp, G. E.; Tanaka, N.; Zhang, Z.; Kota, K.; Tosaki, S.; Ikenouchi, T.; Nishimura, H.

    2016-10-01

    We showed earlier that the laser-driven heat front propagation velocity in low-density Ti-silica aerogel and TiO2 foam targets was slower than that simulated with a 2D radiation-hydrodynamics code incorporating an atomic kinetics model in non-LTE and assuming initially homogeneous material. Some theoretical models suggest that the heat front is slowed over what it would be in a homogeneous medium by the microstructure of the foam. In order to test this hypothesis we designed and conducted a comparison experiment on the GEKKO laser to measure heat front propagation velocity in two targets, one an Ar/CO2 gas mixture and the other a TiO2 foam, that had identical initial densities and average ionization states. We found that the heat front traveled about ten times faster in the gas than in the foam. We present the details of the experiment design and a comparison of the data with the simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344, and the joint research project of ILE Osaka U. (contract Nos. 2014A1-04 and 2015A1-02).

  18. New advantages and challenges for laser-induced nanostructured cluster materials: functional capability for experimental verification of macroscopic quantum phenomena

    International Nuclear Information System (INIS)

    Abramov, D V; Antipov, A A; Arakelian, S M; Khor’kov, K S; Kucherik, A O; Kutrovskaya, S V; Prokoshev, V G

    2014-01-01

    The main goal of our work is the laser fabrication of nanostructured materials including the nano- and microclusters for control of electrical, optical and other properties of obtained structures. First, we took an opportunity to select nanoparticles in various sizes and weights and also in topology distribution for some materials (carbon, Ni, PbTe, etc). Second, for a deposited extended array of nanoparticles we used a method of laser-induced nanoparticle fabrication in colloid and deposition metal (and/or oxide) nanoparticles from colloidal systems (LDPCS) to obtain the multilayered nanostructures with controlled topology, including the fractal cluster structures (for Ni, Pb Te et al). Electrophysical properties are analyzed for such nanocluster systems as well. A brief analogy of the obtained nanocluster structures with a quantum correlated state evidence is carried out. (paper)

  19. Dynamics expansion of laser produced plasma with different materials in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rabia Qindeel; Noriah Bte Bidin; Yaacob Mat daud [Laser Technology Laboratory, Physics Department, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia)], E-mail: plasmaqindeel@yahoo.com

    2008-12-01

    The dynamics expansion of the plasma generated by laser ablation of different materials has been investigated. The dynamics and confinement of laser generated plasma plumes are expanding across variable magnetic fields. A Q-switched neodymium-doped yttrium aluminum garnet laser with 1064 nm, 8 ns pulse width and 0.125 J laser energy was used to generate plasma that was allowed to expand across variable magnetic within 0.1 - 0.8 T. The expansions of laser-produced plasma of different materials are characterized by using constant laser power. CCD video camera was used to visualize and record the activities in the focal region. The plasma plume length, width and area were measured by using Matrox Inpector 2.1 and video Test 0.5 software. Spectrums of plasma beam from different materials are studied via spectrometer. The results show that the plasma generated by aluminum target is the largest than Brass and copper. The optical radiation from laser generated plasma beam spectrums are obtained in the range of UV to visible light.

  20. In situ TEM Raman spectroscopy and laser-based materials modification

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.I., E-mail: fiallen@lbl.gov [Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 (United States); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kim, E. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Andresen, N.C. [Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Grigoropoulos, C.P. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Minor, A.M., E-mail: aminor@lbl.gov [Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 (United States); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2017-07-15

    We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS{sub 2} combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. - Highlights: • Raman spectroscopy and laser-based materials processing in a TEM are demonstrated. • A lensed Raman probe is mounted in the sample chamber for close approach. • Localized laser processing is achieved using a tapered optical fiber. • Raman spectroscopy and pulsed laser ablation of MoS{sub 2} are performed in situ.

  1. In situ TEM Raman spectroscopy and laser-based materials modification

    International Nuclear Information System (INIS)

    Allen, F.I.; Kim, E.; Andresen, N.C.; Grigoropoulos, C.P.; Minor, A.M.

    2017-01-01

    We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS_2 combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. - Highlights: • Raman spectroscopy and laser-based materials processing in a TEM are demonstrated. • A lensed Raman probe is mounted in the sample chamber for close approach. • Localized laser processing is achieved using a tapered optical fiber. • Raman spectroscopy and pulsed laser ablation of MoS_2 are performed in situ.

  2. Vacuum isostatic micro/macro molding of PTFE materials for laser beam shaping in environmental applications: large scale UV laser water purification

    Science.gov (United States)

    Lizotte, Todd; Ohar, Orest

    2009-08-01

    into fused and semi-fused PTFE materials and compounds for use in UV Reactors. The materials unique attributes provide an unusual but effective hybrid element, by combining Lambertian diffusion and spectral reflective attributes. This paper will provide examples of the applications where this technology could be applied and typical constructions. An overview of UV sources commonly used in water treatment, including high power UV lasers and solid state UV light sources will be discussed. The paper will summarize how beam shaping elements produced in PTFE materials would provide further benefits to the emerging water disinfection or treatment market.

  3. Innovation Study for Laser Cutting of Complex Geometries with Paper Materials

    Science.gov (United States)

    Happonen, A.; Stepanov, A.; Piili, H.; Salminen, A.

    Even though technology for laser cutting of paper materials has existed for over 30 years, it seems that results of applications of this technology and possibilities of laser cutting systems are not easily available. The aim of this study was to analyze the feasibility of the complex geometry laser cutting of paper materials and to analyze the innovation challenges and potential of current laser cutting technologies offer. This research studied the potential and possible challenges in applying CO2 laser cutting technology for cutting of paper materials in current supply chains trying to fulfil the changing needs of customer in respect of shape, fast response during rapid delivery cycle. The study is focused on examining and analyzing the different possibilities of laser cutting of paper material in application area of complex low volume geometry cutting. The goal of this case was to analyze the feasibility of the laser cutting from technical, quality and implementation points of view and to discuss availability of new business opportunities. It was noticed that there are new business models still available within laser technology applications in complex geometry cutting. Application of laser technology, in business-to-consume markets, in synergy with Internet service platforms can widen the customer base and offer new value streams for technology and service companies. Because of this, existing markets and competition has to be identified, and appropriate new and innovative business model needs to be developed. And to be competitive in the markets, models like these need to include the earning logic and the stages from production to delivery as discussed in the paper.

  4. The LIFE Laser Design in Context: A Comparison to the State-of-the-Art

    International Nuclear Information System (INIS)

    Deri, R.J.; Bayramian, A.J.; Erlandson, A.C.

    2011-01-01

    The current point design for the LIFE laser leverages decades of solid-state laser development in order to achieve the performance and attributes required for inertial fusion energy. This document provides a brief comparison of the LIFE laser point design to other state-of-the-art solid-state lasers. Table I compares the attributes of the current LIFE laser point design to other systems. the state-of-the-art for single-shot performance at fusion-relevant beamline energies is exemplified by performance observed on the National Ignition Facility. The state-of-the-art for high average power is exemplified by the Northrup Grumman JHPSSL laser. Several items in Table I deal with the laser efficiency; a more detailed discussion of efficiency can be found in reference 5. The electrical-to-optical efficiency of the LIFE design exceeds that of reference 4 due to the availability of higher efficiency laser diode pumps (70% vs. ∼50% used in reference 4). LIFE diode pumps are discussed in greater detail in reference 6. The 'beam steering' state of the art is represented by the deflection device that will be used in the LIFE laser, not a laser system. Inspection of Table I shows that most LIFE laser attributes have already been experimentally demonstrated. The two cases where the LIFE design is somewhat better than prior experimental work do not involve the development of new concepts: beamline power is increased simply by increasing aperture (as demonstrated by the power/aperture comparison in Table I), and efficiency increases are achieved by employing state-of-the-art diode pumps. In conclusion, the attributes anticipated for the LIFE laser are consistent with the demonstrated performance of existing solid-state lasers.

  5. Material efficiency of laser metal deposited Ti6Al4V: Effect of laser power

    CSIR Research Space (South Africa)

    Mahamood, RM

    2013-02-01

    Full Text Available The economy of using Laser Metal Deposition (LMD) process in the manufacturing of aerospace parts depends on the right processing parameters. LMD is an additive manufacturing technology capable of producing complex parts directly from the CAD model...

  6. Design of high power solid-state pulsed laser resonators

    International Nuclear Information System (INIS)

    Narro, R.; Ponce, L.; Arronte, M.

    2009-01-01

    Methods and configurations for the design of high power solid-state pulsed laser resonators, operating in free running, are presented. For fundamental mode high power resonators, a method is proposed for the design of a resonator with joined stability zones. In the case of multimode resonators, two configurations are introduced for maximizing the laser overall efficiency due to the compensation of the astigmatism induced by the excitation. The first configuration consists in a triangular ring resonator. The results for this configuration are discussed theoretically, showing that it is possible to compensate the astigmatism of the thermal lens virtually in a 100%; however this is only possible for a specific pumping power. The second configuration proposes a dual-active medium resonator, rotated 90 degree one from the other around the optical axis, where each active medium acts as an astigmatic lens of the same dioptric power. The reliability of this configuration is corroborated experimentally using a Nd:YAG dual-active medium resonator. It is found that in the pumping power range where the astigmatism compensation is possible, the overall efficiency is constant, even when increasing the excitation power with the consequent increase of the thermal lens dioptric power. (Author)

  7. Nano-material size dependent laser-plasma thresholds

    Science.gov (United States)

    EL Sherbini, Ashraf M.; Parigger, Christian G.

    2016-10-01

    The reduction of laser fluence for initiation of plasma was measured for zinc monoxide nanoparticles of diameters in the range of 100 to 20 nm. In a previous work by EL Sherbini and Parigger [Wavelength Dependency and Threshold Measurements for Nanoparticle-enhanced Laser-induced Breakdown Spectroscopy, Spectrochim. Acta Part B 116 (2016) 8-15], the hypothesis of threshold dependence on particle size leads to the interpretation of the experiments for varying excitation wavelengths with fixed, 30 nm nanomaterial. The experimental results presented in this work were obtained with 1064 nm Nd:YAG radiation and confirm and validate the suspected reduction due to quenching of the thermal conduction length to the respective sizes of the nanoparticles.

  8. Solid state laser driver for an ICF reactor

    International Nuclear Information System (INIS)

    Krupke, W.F.

    1988-01-01

    A conceptual design is presented of the main power amplifier of a multi-beamline, multi-megawatt solid state ICF reactor driver. Simultaneous achievement of useful beam quality and high average power is achieved by a proper choice of amplifier geometry. An amplifier beamline consists of a sequence of face-pumped rectangular slab gain elements, oriented at the Brewster angle relative to the beamline axis, and cooled on their large faces by helium gas that is flowing subsonically. The infrared amplifier output radiation is shifted to an appropriately short wavelength ( 10% (including all flow cooling input power) when the amplifiers are pumped by efficient high-power AlGaAs semiconductor laser diode arrays. 11 refs., 3 figs., 7 tabs

  9. Solid State Laser Technology Development for Atmospheric Sensing Applications

    Science.gov (United States)

    Barnes, James C.

    1998-01-01

    NASA atmospheric scientists are currently planning active remote sensing missions that will enable global monitoring of atmospheric ozone, water vapor, aerosols and clouds as well as global wind velocity. The measurements of these elements and parameters are important because of the effects they have on climate change, atmospheric chemistry and dynamics, atmospheric transport and, in general, the health of the planet. NASA will make use of Differential Absorption Lidar (DIAL) and backscatter lidar techniques for active remote sensing of molecular constituents and atmospheric phenomena from advanced high-altitude aircraft and space platforms. This paper provides an overview of NASA Langley Research Center's (LaRC's) development of advanced solid state lasers, harmonic generators, and wave mixing techniques aimed at providing the broad range of wavelengths necessary to meet measurement goals of NASA's Earth Science Enterprise.

  10. Effects of chemical kinetics and starting material regeneration on the efficiency of an iodine laser amplifier

    International Nuclear Information System (INIS)

    Fisk, G.A.

    1977-05-01

    A model of the chemical kinetics occurring in an iodine laser amplifier is presented and used to calculate the degree to which the starting material is consumed as a result of laser operation. The cost of purchasing new starting material is estimated and shown to be prohibitive. A scheme for regenerating the starting material from the species present in the amplifier after lasing is proposed. It is shown that the estimated efficiency of this chemical regeneration process is appreciably higher than the projected optimum efficiency of the pumping process

  11. Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials

    International Nuclear Information System (INIS)

    Kattamis, Nicholas T.; Purnick, Priscilla E.; Weiss, Ron; Arnold, Craig B.

    2007-01-01

    Laser forward transfer processes incorporating thin absorbing films can be used to deposit robust organic and inorganic materials but the deposition of more delicate materials has remained elusive due to contamination and stress induced during the transfer process. Here, we present the approach to high resolution patterning of sensitive materials by incorporating a thick film polymer absorbing layer that is able to dissipate shock energy through mechanical deformation. Multiple mechanisms for transfer as a function of incident laser energy are observed and we show viable and contamination-free deposition of living mammalian embryonic stem cells

  12. Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection

    Energy Technology Data Exchange (ETDEWEB)

    Gottfried, Jennifer L. [U.S. Army Research Laboratory, AMSRD-ARL-WM-BD, Aberdeen Proving Ground, MD, 21005-5069 (United States)], E-mail: jennifer.gottfried@arl.army.mil; De Lucia, Frank C.; Munson, Chase A.; Miziolek, Andrzej W. [U.S. Army Research Laboratory, AMSRD-ARL-WM-BD, Aberdeen Proving Ground, MD, 21005-5069 (United States)

    2007-12-15

    We have developed a double-pulse standoff laser-induced breakdown spectroscopy (ST-LIBS) system capable of detecting a variety of hazardous materials at tens of meters. The use of a double-pulse laser improves the sensitivity and selectivity of ST-LIBS, especially for the detection of energetic materials. In addition to various metallic and plastic materials, the system has been used to detect bulk explosives RDX and Composition-B, explosive residues, biological species such as the anthrax surrogate Bacillus subtilis, and chemical warfare simulants at 20 m. We have also demonstrated the discrimination of explosive residues from various interferents on an aluminum substrate.

  13. Modification induced by laser irradiation on physical features of plastics materials filled with nanoparticles

    Directory of Open Access Journals (Sweden)

    Scolaro Cristina

    2018-01-01

    Full Text Available The Thermal Laser Welding (TLW process involves localized heating at the interface of two pieces of plastic that will be joined. Polymeric materials of Ultra High Molecular Weight Polyethylene (UHMWPE, both pure and containing nanostructures at different concentrations (titanium and silver nanoparticles, were prepared as thin foils in order to produce an interface between a substrate transparent to the infrared laser wavelength and an highly absorbent substrate, in order to be welded by the laser irradiation. The used diode laser operates at 970 nm wavelength, in continuum, with a maximum energy of 100 mJ, for times of the order of 1 -60 s, with a spot of 300 μm of diameter. The properties of the polymers and of nanocomposite sheets, before and after the laser welding process, were measured in terms of optical characteristics, wetting ability, surface roughness and surface morphology.

  14. Optimisation Of Cutting Parameters Of Composite Material Laser Cutting Process By Taguchi Method

    Science.gov (United States)

    Lokesh, S.; Niresh, J.; Neelakrishnan, S.; Rahul, S. P. Deepak

    2018-03-01

    The aim of this work is to develop a laser cutting process model that can predict the relationship between the process input parameters and resultant surface roughness, kerf width characteristics. The research conduct is based on the Design of Experiment (DOE) analysis. Response Surface Methodology (RSM) is used in this work. It is one of the most practical and most effective techniques to develop a process model. Even though RSM has been used for the optimization of the laser process, this research investigates laser cutting of materials like Composite wood (veneer)to be best circumstances of laser cutting using RSM process. The input parameters evaluated are focal length, power supply and cutting speed, the output responses being kerf width, surface roughness, temperature. To efficiently optimize and customize the kerf width and surface roughness characteristics, a machine laser cutting process model using Taguchi L9 orthogonal methodology was proposed.

  15. X-ray emission as a potential hazard during ultrashort pulse laser material processing

    Science.gov (United States)

    Legall, Herbert; Schwanke, Christoph; Pentzien, Simone; Dittmar, Günter; Bonse, Jörn; Krüger, Jörg

    2018-06-01

    In laser machining with ultrashort laser pulses unwanted X-ray radiation in the keV range can be generated when a critical laser intensity is exceeded. Even if the emitted X-ray dose per pulse is low, high laser repetition rates can lead to an accumulation of X-ray doses beyond exposure safety limits. For 925 fs pulse duration at a center wavelength of 1030 nm, the X-ray emission was investigated up to an intensity of 2.6 × 1014 W/cm2. The experiments were performed in air with a thin disk laser at a repetition rate of 400 kHz. X-ray spectra and doses were measured for various planar target materials covering a wide range of the periodic table from aluminum to tungsten. Without radiation shielding, the measured radiation doses at this high repetition rate clearly exceed the regulatory limits. Estimations for an adequate radiation shielding are provided.

  16. Laser Materials Processing Final Report CRADA No. TC-1526-98

    Energy Technology Data Exchange (ETDEWEB)

    Crane, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lehane, C. J. [United Technologies Corp., East Hartford, CT (United States)

    2017-09-08

    This CRADA project was a joint effort between Lawrence Livermore National Laboratory (LLNL) and United Technologies Corporation (UTC)/Pratt & Whitney (P&W) to demonstrate process capability for drilling holes in turbine airfoils using LLNL-developed femtosecond laser machining technology. The basis for this development was the ability of femtosecond lasers to drill precision holes in variety of materials with little or no collateral damage. The ultimate objective was to develop a laser machine tool consisting of an extremely advanced femtosecond laser subsystem to be developed by LLNL on a best-effort basis and a drilling station for turbine blades and vanes to be developed by P&W. In addition, P&W was responsible for commercializing the system. The goal of the so called Advanced Laser Drilling (ALD) system was to drill specified complex hole-shapes in turbine blades and vanes with a high degree precision and repeatability and simultaneously capable of very high speed processing.

  17. ToF-SIMS characterization of robust window material for use in diode pumped alkali lasers

    Science.gov (United States)

    Fletcher, Aaron; Turner, David; Fairchild, Steven; Rice, Christopher; Pitz, Gregory

    2018-03-01

    Developments in diode pumped alkali laser (DPAL) systems have been impeded because of the catastrophic failure of laser windows. The window's failure is caused by localized laser-induced heating of window material. This heating is believed to occur due to increases in absorption on or near the surface of the window. This increase is believed to be caused by either adsorption of carbon-based soot from the collisional gas or by the diffusion of rubidium into the bulk material. The work presented here will focus on the diffusion of Rb into the bulk window materials and will strive to identify a superior material to use as windows. The results of this research indicate that aluminum oxynitride (ALON), sapphire, MgAl2O4 (spinel), and ZrO2 are resistant to alkali-induced changes in optical properties.

  18. Beta dosimetry using pulsed laser heating of TLD materials

    International Nuclear Information System (INIS)

    Quam, W.

    1983-01-01

    Use of a pulsed CO 2 laser to heat the surface of hot-pressed LiF chips has been investigated. The thermoluminescent traps in the first 10 to 20 μm of depth may be read out with good efficiency, which will allow entrance dose and exit dose to be determined using a standard chip. These dose data can be used to calculate beta dose and gamma dose separately. Readout speed is estimated to be a few milliseconds per chip

  19. Stability of optically injected two-state quantum-dot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Meinecke, Stefan; Lingnau, Benjamin; Roehm, Andre; Luedge, Kathy [Institut fuer Theoretische Physik, Technische Universitaet Berlin (Germany)

    2017-12-15

    Simultaneous two-state lasing is a unique property of semiconductor quantum-dot (QD) lasers. This not only changes steady-state characteristics of the laser device but also its dynamic response to perturbations. In this paper we investigate the dynamic stability of QD lasers in an external optical injection setup. Compared to conventional single-state laser devices, we find a strong suppression of dynamical instabilities in two-state lasers. Furthermore, depending on the frequency and intensity of the injected light, pronounced areas of bistability between both lasing frequencies appear, which can be employed for fast optical switching in all-optical photonic computing applications. These results emphasize the suitability of QD semiconductor lasers in future integrated optoelectronic systems where a high level of stability is required. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Stability of optically injected two-state quantum-dot lasers

    International Nuclear Information System (INIS)

    Meinecke, Stefan; Lingnau, Benjamin; Roehm, Andre; Luedge, Kathy

    2017-01-01

    Simultaneous two-state lasing is a unique property of semiconductor quantum-dot (QD) lasers. This not only changes steady-state characteristics of the laser device but also its dynamic response to perturbations. In this paper we investigate the dynamic stability of QD lasers in an external optical injection setup. Compared to conventional single-state laser devices, we find a strong suppression of dynamical instabilities in two-state lasers. Furthermore, depending on the frequency and intensity of the injected light, pronounced areas of bistability between both lasing frequencies appear, which can be employed for fast optical switching in all-optical photonic computing applications. These results emphasize the suitability of QD semiconductor lasers in future integrated optoelectronic systems where a high level of stability is required. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Pyrolysis responses of kevlar/epoxy composite materials on laser irradiating

    Science.gov (United States)

    Liu, Wei-ping; Wei, Cheng-hua; Zhou, Meng-lian; Ma, Zhi-liang; Song, Ming-ying; Wu, Li-xiong

    2017-05-01

    The pyrolysis responses of kevlar/epoxy composite materials are valuable to study in a case of high temperature rising rate for its widely application. Distinguishing from the Thermal Gravimetric Analysis method, an apparatus is built to research the pyrolysis responses of kevlar/epoxy composite materials irradiated by laser in order to offer a high temperature rising rate of the sample. By deploying the apparatus, a near real-time gas pressure response can be obtained. The sample mass is weighted before laser irradiating and after an experiment finished. Then, the gas products molecular weight and the sample mass loss evolution are derived. It is found that the pressure and mass of the gas products increase with the laser power if it is less than 240W, while the molecular weight varies inversely. The variation tendency is confusing while the laser power is bigger than 240W. It needs more deeper investigations to bring it to light.

  2. Maskless Lithography Using Negative Photoresist Material: Impact of UV Laser Intensity on the Cured Line Width

    Science.gov (United States)

    Mohammed, Mohammed Ziauddin; Mourad, Abdel-Hamid I.; Khashan, Saud A.

    2018-06-01

    The application of maskless lithography technique on negative photoresist material is investigated in this study. The equipment used in this work is designed and built especially for maskless lithography applications. The UV laser of 405 nm wavelength with 0.85 Numerical Aperture is selected for direct laser writing. All the samples are prepared on a glass substrate. Samples are tested at different UV laser intensities and different stage velocities in order to study the impact on patterned line width. Three cases of spin coated layers of thickness 90 μm, 40 μm, and 28 μm on the substrate are studied. The experimental results show that line width has a generally increasing trend with intensity. However, a decreasing trend was observed for increasing velocity. The overall performance shows that the mr-DWL material is suitable for direct laser writing systems.

  3. Maskless Lithography Using Negative Photoresist Material: Impact of UV Laser Intensity on the Cured Line Width

    Science.gov (United States)

    Mohammed, Mohammed Ziauddin; Mourad, Abdel-Hamid I.; Khashan, Saud A.

    2018-04-01

    The application of maskless lithography technique on negative photoresist material is investigated in this study. The equipment used in this work is designed and built especially for maskless lithography applications. The UV laser of 405 nm wavelength with 0.85 Numerical Aperture is selected for direct laser writing. All the samples are prepared on a glass substrate. Samples are tested at different UV laser intensities and different stage velocities in order to study the impact on patterned line width. Three cases of spin coated layers of thickness 90 μm, 40 μm, and 28 μm on the substrate are studied. The experimental results show that line width has a generally increasing trend with intensity. However, a decreasing trend was observed for increasing velocity. The overall performance shows that the mr-DWL material is suitable for direct laser writing systems.

  4. Interaction of a high-power laser pulse with supercritical-density porous materials

    International Nuclear Information System (INIS)

    Gus'kov, Sergei Yu; Rozanov, Vladislav B; Caruso, A; Strangio, C

    2000-01-01

    The properties of a nonequilibrium plasma produced by high-power laser pulses with intensities I L ∼ 10 14 -10 15 W cm -2 irradiating plane targets made of a porous material are investigated. The mean density of matter in targets was substantially higher than the critical plasma density corresponding to a plasma resonance. The density of porous material was ρ a ∼ 1 - 20 mg cm -3 , whereas the critical density at the wavelength of incident radiation was ρ cr ∼ 3 mg cm -3 . An anomalously high absorption (no less than 80%) of laser radiation inside a target was observed. Within the first 3 - 4 ns of interaction, the plasma flow through the irradiated target surface in the direction opposite of the direction of the laser beam was noticeably suppressed. Only about 5% of absorbed laser energy was transformed into the energy of particles in this flow during the laser pulse. Absorbed energy was stored as the internal plasma energy at this stage (the greenhouse effect). Then, this energy was transformed, similar to a strong explosion, into the energy of a powerful hydrodynamic flow of matter surrounding the absorption region. The specific features of the formation and evolution of a nonequilibrium laser-produced plasma in porous media are theoretically analysed. This study allows the results of experiments to be explained. In particular, we investigated absorption of laser radiation in the bulk of a target, volume evaporation of porous material, the expansion of a laser-produced plasma inside the pores, stochastic collisions of plasma flows, and hydrothermal energy dissipation. These processes give rise to long-lived oscillations of plasma density and lead to the formation of an internal region where laser radiation is absorbed. (invited paper)

  5. All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility

    International Nuclear Information System (INIS)

    Okishev, A.V.; Skeldon, M.D.; Keck, R.L.; Seka, W.

    2000-01-01

    OAK-B135 All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility. The authors have developed an all-solid-state, compact, computer-controlled, flexible optical pulse shaper for the OMEGA laser facility. This pulse shaper produces high bandwidth, temporally shaped laser pulses that meet OMEGA requirements. The design is a significant simplification over existing technology with improved performance capabilities

  6. Investigation of the dynamic behavior in materials submitted to sub-picosecond laser driven shock

    International Nuclear Information System (INIS)

    Cuq-Lelandais, Jean-Paul

    2010-01-01

    Laser driven shocks allow to investigate materials behavior at high strain rate and present a great interest for research and industrial applications. The latest laser technologies evolutions provide an access to shorter regimes in duration, below the picosecond. This work, which results from a collaboration between the P' institute, the PIMM laboratory and the CEA-DAM, is dedicated to the characterization of the metallic material behavior in this ultra-short mode (aluminium, tantalum), leading to extreme dynamic solicitation in the target (>10 7 s -1 ). The study includes the validation of experimental results obtained on the LULI 100 TW facility by comparison with numerical model. First, the study is orientated to the femtosecond (fs) laser-matter interaction, which is different from what happens in nanosecond regime. Indeed, the characteristic duration scale is comparable to several molecular phenomena like non-equilibrium electrons-ions states. The aim is to determine the equivalent pressure loading induced by the laser pulse on the target. Then, the shock wave propagation within the target has been studied and particularly its pressure decay, notably strong in this regime. In this configuration, the spalls observed are thin, a few μm order, and show a planar rupture morphology. The results obtained by post-mortem observation show that the spall thickness is thinner if the target thickness is reduced. The spalls are characterized by the VISAR measurement. Within the framework of dynamic damage modeling and rupture criteria dimensioning, particularly those which have been validated in the ns regime as Kanel, shots with different thicknesses have been carried out to determine the damage properties in function of strain rate and validate the parameters by prolongation to the ultra-shorts modes. Then, the study has been generalized to the 2D propagation waves, which can explain the spall diameter evolutions. Meanwhile, microscopic simulations of ultra-short laser

  7. Laser-shocked energetic materials with metal additives: evaluation of detonation performance

    Science.gov (United States)

    Gottfried, Jennifer; Bukowski, Eric

    A focused, nanosecond-pulsed laser with sufficient energy to exceed the breakdown threshold of a material generates a laser-induced plasma with high peak temperatures, pressures, and shock velocities. Depending on the laser parameters and material properties, nanograms to micrograms of material is ablated, atomized, ionized and excited in the laser-induced plasma. The subsequent shock wave expansion into the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The estimated detonation velocities using LASEM agree well with published experimental values. A comparison of the measured shock velocities for various energetic materials including RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time participation of metal additives in detonation events. The LASEM results show that reducing the amount of hydrogen present in B formulations increases the resulting detonation velocities

  8. Solar Pumped Solid State Lasers for Space Solar Power: Experimental Path

    Science.gov (United States)

    Fork, Richard L.; Carrington, Connie K.; Walker, Wesley W.; Cole, Spencer T.; Green, Jason J. A.; Laycock, Rustin L.

    2003-01-01

    We outline an experimentally based strategy designed to lead to solar pumped solid state laser oscillators useful for space solar power. Our method involves solar pumping a novel solid state gain element specifically designed to provide efficient conversion of sunlight in space to coherent laser light. Kilowatt and higher average power is sought from each gain element. Multiple such modular gain elements can be used to accumulate total average power of interest for power beaming in space, e.g., 100 kilowatts and more. Where desirable the high average power can also be produced as a train of pulses having high peak power (e.g., greater than 10(exp 10 watts). The modular nature of the basic gain element supports an experimental strategy in which the core technology can be validated by experiments on a single gain element. We propose to do this experimental validation both in terrestrial locations and also on a smaller scale in space. We describe a terrestrial experiment that includes diagnostics and the option of locating the laser beam path in vacuum environment. We describe a space based experiment designed to be compatible with the Japanese Experimental Module (JEM) on the International Space Station (ISS). We anticipate the gain elements will be based on low temperature (approx. 100 degrees Kelvin) operation of high thermal conductivity (k approx. 100 W/cm-K) diamond and sapphire (k approx. 4 W/cm-K). The basic gain element will be formed by sequences of thin alternating layers of diamond and Ti:sapphire with special attention given to the material interfaces. We anticipate this strategy will lead to a particularly simple, robust, and easily maintained low mass modelocked multi-element laser oscillator useful for space solar power.

  9. Effect of complex alloying of powder materials on properties of laser melted surface layers

    International Nuclear Information System (INIS)

    Tesker, E.I.; Gur'ev, V.A.; Elistratov, V.S.; Savchenko, A.N.

    2001-01-01

    Quality and properties of laser melted surface layers produced using self-fluxing powder mixture of Ni-Cr-B-Si system and the same powders with enhanced Fe content alloyed with Co, Ti, Nb, Mo have been investigated. Composition of powder material is determined which does not cause of defect formation under laser melting and makes possible to produce a good mechanical and tribological properties of treated surface [ru

  10. Fabrication of a reinforced polymer microstructure using femtosecond laser material processing

    International Nuclear Information System (INIS)

    Alubaidy, M; Venkatakrishnan, K; Tan, B

    2010-01-01

    This paper presents a new method for the formation of microfeatures with reinforced polymer using femtosecond laser material processing. The femtosecond laser was used for the generation of a three-dimensional interweaved nanofiber and the construction of microfeatures, such as microchannels and voxels, through two-photon polymerization of a nanofiber-dispersed polymer resin. This new method has the potential of direct fabrication of reinforced micro/nanostructures.

  11. Deformation measurements of materials at low temperatures using laser speckle photography method

    International Nuclear Information System (INIS)

    Sumio Nakahara; Yukihide Maeda; Kazunori Matsumura; Shigeyoshi Hisada; Takeyoshi Fujita; Kiyoshi Sugihara

    1992-01-01

    The authors observed deformations of several materials during cooling down process from room temperature to liquid nitrogen temperature using the laser speckle photography method. The in-plane displacements were measured by the image plane speckle photography and the out-of-plane displacement gradients by the defocused speckle photography. The results of measurements of in-plane displacement are compared with those of FEM analysis. The applicability of laser speckle photography method to cryogenic engineering are also discussed

  12. Reassembling Solid Materials by Femtosecond Laser Ablation: Case of Aluminum Nitride

    Science.gov (United States)

    Kobayashi, Tohru; Matsuo, Yukari

    2013-06-01

    Through atomization and ionization, we could completely alter the composition of a nonconductive material, aluminum nitride, by femtosecond laser ablation. Preferential production of pure aluminum cluster cations Aln+ (n≤32) reflects not only their higher energetic stability compared with mixed clusters AlnNm+ but also completion of thermal relaxation in ablation plasma. Observation of metastable dissociation of Aln+ indicates that cluster cations have still enough internal energy for dissociation to occur, although the process is much slower than the cluster formation. Almost no cluster formation has been observed after nanosecond laser ablation of aluminum nitride, which highlights the distinct nature of ablation plasma produced by femtosecond laser ablation.

  13. Particularities of interaction of CO sub 2 -laser radiation with oxide materials

    CERN Document Server

    Salikhov, T P

    2002-01-01

    The results of experimental investigation of vapor phase influence on the interaction parameters of the infrared laser radiation with oxide materials (Al sub 2 O sub 3 , ZrO sub 2 , CeO sub 2) have been presented. A phenomenon of laser radiation by the samples investigated under laser heating has been experimentally discovered for the first time. This phenomenon connected with forming of the stable vapor shell above the irradiated samples was expressed as a sharp drop in temperature on the heating curve and called as an absorption flash. (author)

  14. Solid state pump lasers with high power and high repetition rate

    International Nuclear Information System (INIS)

    Oba, Masaki; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    We built a laser diode pumped solid state green laser (LDPSSGL) rated at high repetition rate. Two laser heads are placed in one cavity with a rotator in between to design to avoid thermal lensing and thermal birefringence effect. Although average green laser power higher than 10 W was obtained at 1 kHz repetition rate with pulse width of 20-30 nsec, the beam quality was so much deteriorated that energy efficiency was as low as 2 %. Learning from this experience that high power oscillator causes a lot of thermal distortion not only in the laser rod but also in the Q-switch device, we proceeded to built a oscillator/amplifier system. A low power oscillator has a slab type crystal in the cavity. As a result spatial distribution of laser power was extremely improved. As we expect that the high repetition rate solid state laser should be CW operated Q-switch type laser from the view point of lifetime of diode lasers, a conventional arc lamp pumped CW Q-switch green YAG laser of which the repetition rate is changeable from 1 kHz to 5 kHz and the pulse width is 250-570 nsec was also tested to obtain pumping characteristics of a dye laser as a function of power, pulse width etc., and dye laser pulse width of 100-130 nsec were obtained. (author)

  15. Laser tissue welding in genitourinary reconstructive surgery: assessment of optimal suture materials.

    Science.gov (United States)

    Poppas, D P; Klioze, S D; Uzzo, R G; Schlossberg, S M

    1995-02-01

    Laser tissue welding in genitourinary reconstructive surgery has been shown in animal models to decrease operative time, improve healing, and decrease postoperative fistula formation when compared with conventional suture controls. Although the absence of suture material is the ultimate goal, this has not been shown to be practical with current technology for larger repairs. Therefore, suture-assisted laser tissue welding will likely be performed. This study sought to determine the optimal suture to be used during laser welding. The integrity of various organic and synthetic sutures exposed to laser irradiation were analyzed. Sutures studied included gut, clear Vicryl, clear polydioxanone suture (PDS), and violet PDS. Sutures were irradiated with a potassium titanyl phosphate (KTP)-532 laser or an 808-nm diode laser with and without the addition of a light-absorbing chromophore (fluorescein or indocyanine green, respectively). A remote temperature-sensing device obtained real-time surface temperatures during lasing. The average temperature, time, and total energy at break point were recorded. Overall, gut suture achieved significantly higher temperatures and withstood higher average energy delivery at break point with both the KTP-532 and the 808-nm diode lasers compared with all other groups (P welding appears to be between 60 degrees and 80 degrees C. Gut suture offers the greatest margin of error for KTP and 808-nm diode laser welding with or without the use of a chromophore.

  16. Laser material purification of neodymium. Hikari reiki seiseiho ni yoru neodymium no kojundoka

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Y.; Ozaki, T.; Yoshimatsu, S. (National Research Institute for Metals, Tokyo (Japan)); Chiba, K.; Umeda, H.; Saeki, M. (Nippon Steel Corp., Tokyo (Japan))

    1991-05-20

    Selective photoexcitation and photoionization of neodymium atoms were studied basically by using laser. Also, using their properties, feasibility of laser material purification (LPM) technology in gaseous phase was presented. In the selective 3-step ionization, laser beam with two kinds of proper wave length causes resonance exitation of the target element, which goes up to the excitation level of the first step, and the element is ionized by the second laser beam and the third laser beam. The 3-step ionization scheme by a single wave length laser beam of 577.612nm was used for the ionization of Nd. Nd ionized selectively by laser beam was recovered as thin layer at the negative potential side of plane electrodes placed at both sides of the laser irradiation area. In the layer formed by the TPD technology with this scheme, it is possible to decrease impuritis such as Pr by 1/16 and to form highly purified thin layer. 13 refs., 12 figs., 1 tab.

  17. Ultra-short laser processing of transparent material at the interface to liquid

    International Nuclear Information System (INIS)

    Boehme, R; Pissadakis, S; Ehrhardt, M; Ruthe, D; Zimmer, K

    2006-01-01

    Similarly to laser-induced backside wet etching (LIBWE) with nanosecond ultraviolet (ns UV) laser pulses, the irradiation of the solid/liquid interface of fused silica with sub-picosecond (sub-ps) UV and femtosecond near infrared (fs NIR) laser pulses results in etching of the fused silica surface and deposition of decomposition products from liquid. Furthermore, the etch threshold is reduced compared with both direct ablation with an fs laser in air and backside etching with UV ns pulses. Using 0.5 M pyrene/toluene as absorbing liquid, the thresholds were determined to be 70 mJ cm -2 (sub-ps UV) and 330 mJ cm -2 (fs NIR). Furthermore, an almost linear increase in the etch rate with increasing laser fluence was found. The roughness of surfaces backside etched with ultra-short pulses is higher in comparison with ns pulses but lower than that obtained using direct fs laser ablation. Hence a combination of processes involved in fs laser ablation and ns backside etching can be expected. The processes at the ultra-short pulse laser irradiated solid/liquid interface are discussed, considering the effects of ultra-fast heating, multi-photon absorption processes, as well as defect generation in the materials

  18. Theoretical analysis of material removal mechanisms in pulsed laser fusion cutting of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Quintero, F [Dpto FIsica Aplicada, Universidad de Vigo, ETS Ingenieros Industriales, Lagoas-Marcosende 9, 36310 Vigo (Spain); Varas, F [Dpto Matematica Aplicada II, Universidad de Vigo, ETS Ingenieros Industriales, Lagoas-Marcosende 9, 36310 Vigo (Spain); Pou, J [Dpto FIsica Aplicada, Universidad de Vigo, ETS Ingenieros Industriales, Lagoas-Marcosende 9, 36310 Vigo (Spain); Lusquinos, F [Dpto FIsica Aplicada, Universidad de Vigo, ETS Ingenieros Industriales, Lagoas-Marcosende 9, 36310 Vigo (Spain); Boutinguiza, M [Dpto FIsica Aplicada, Universidad de Vigo, ETS Ingenieros Industriales, Lagoas-Marcosende 9, 36310 Vigo (Spain); Soto, R [Dpto FIsica Aplicada, Universidad de Vigo, ETS Ingenieros Industriales, Lagoas-Marcosende 9, 36310 Vigo (Spain); Perez-Amor, M [Dpto FIsica Aplicada, Universidad de Vigo, ETS Ingenieros Industriales, Lagoas-Marcosende 9, 36310 Vigo (Spain)

    2005-02-21

    It is well known that the efficiency of material removal mechanisms has a crucial influence on the performance and quality of the laser cutting process. However, they are very difficult to study since the physical processes and parameters which govern them are quite complicated to observe and measure experimentally. For this reason, the development of theoretical models to analyse the material removal mechanisms is very important for understanding the characteristics and influence of these processes. In this paper, a theoretical model of the pulsed laser fusion cutting of ceramics is presented. The material removal mechanisms from the cutting front are modelled under the assumption that the ceramic material may be, simultaneously, melted and evaporated by the laser radiation. Therefore, three ejection mechanisms are investigated together: ejection of molten material by the assist gas, evaporation of the liquid and ejection of molten material due to the recoil pressure generated by the evaporation from the cutting front. The temporal evolution of the material removal mechanisms and the thickness of the molten layer are solved for several laser pulse modes. Theoretical results are compared with experimental observations to validate the conclusions regarding the influence of frequency and pulse length on the cutting process.

  19. Novel laterally pumped by prism laser configuration for compact solid-state lasers

    International Nuclear Information System (INIS)

    Dascalu, T; Salamu, G; Sandu, O; Voicu, F; Pavel, N

    2013-01-01

    We propose a new laser configuration in which the pump radiation is coupled into the laser crystal through a prism. The laser medium is square shaped and the prism is attached on one of its lateral sides, near one of the crystal extremities. The diode-laser fiber end is placed close to the prism hypotenuse, the pump radiation is coupled into the laser crystal through the opposite surface of the prism and propagates into the crystal through total internal reflections. This laser geometry is simple to align and permits the realization of compact diode-pumped laser systems, as well as power scaling. A diode-pumped Nd:YAG laser yielding pulses of 2.1 mJ energy under a pump with pulses of 9.9 mJ is demonstrated. The laser slope efficiency is 0.22. Furthermore, this geometry enables one to obtain passively Q-switched lasers with the saturable absorber crystal placed between the resonator high-reflectivity mirror and the laser crystal. A Nd:YAG laser, passively Q-switched by a Cr 4+ :YAG crystal with initial transmission T 0 = 0.90, delivering laser output with a pulsed energy of 93 μJ, a duration of 26 ns and a pump threshold of 1.9 mJ, is realized in order to prove the concept. (letter)

  20. Laser cutting, State of the art and technological trends

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    1999-01-01

    In this paper a short review of the development trends in laser cutting will be given. The technoloty which is the fastest expanding industrial production technology will develop in both its core market segment: Flat bed cutting of sheet metal as it will expand in heavy industry and in cutting of 3......-dimensional shapes. The CO2 laser will also in the near futre be the domination laser source in the market, although the new developments in ND-YAG-lasers opens for new possibilities for this laser type....

  1. A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms

    Energy Technology Data Exchange (ETDEWEB)

    Miake, Yudai; Mukaiyama, Takashi, E-mail: muka@ils.uec.ac.jp [Institute for Laser Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); O’Hara, Kenneth M. [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802-6300 (United States); Gensemer, Stephen [CSIRO Manufacturing Flagship, Lindfield, NSW 2070 (Australia)

    2015-04-15

    We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:Y V O{sub 4} ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser were achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two piezoelectric transducers (PZTs) in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime.

  2. Laser ablation characteristics of metallic materials: Role of Debye-Waller thermal parameter

    International Nuclear Information System (INIS)

    Butt, M Z

    2014-01-01

    The interaction of a high intensity laser pulse with a solid target results in the formation of a crater and a plasma plume. The characteristics of both depend on physical properties of target material, environmental conditions, and laser parameters (e.g. wavelength, pulse duration, energy, beam diameter) etc. It has been shown for numerous metals and their alloys that plasma threshold fluence, plasma threshold energy, ablation efficiency, ablation yield, angular distribution of laser produced plasma (LPP) ions, etc. are a unique function of the Debye-Waller thermal parameter B or the mean-square amplitude of atomic vibration of the target material for given experimental conditions. The FWHM of the angular distribution of LPP ions, ablation yield, and ablation efficiency increase whereas plasma threshold fluence and plasma threshold energy decrease as B-factor of the target material increases

  3. Dimensional and material characteristics of direct deposited tool steel by CO II laser

    Science.gov (United States)

    Choi, J.

    2006-01-01

    Laser aided direct metalimaterial deposition (DMD) process builds metallic parts layer-by-layer directly from the CAD representation. In general, the process uses powdered metaUmaterials fed into a melt pool, creating fully dense parts. Success of this technology in the die and tool industry depends on the parts quality to be achieved. To obtain designed geometric dimensions and material properties, delicate control of the parameters such as laser power, spot diameter, traverse speed and powder mass flow rate is critical. In this paper, the dimensional and material characteristics of directed deposited H13 tool steel by CO II laser are investigated for the DMD process with a feedback height control system. The relationships between DMD process variables and the product characteristics are analyzed using statistical techniques. The performance of the DMD process is examined with the material characteristics of hardness, porosity, microstructure, and composition.

  4. Comparative researches concerning cleaning chosen construction materials surface layer using UV and IR laser radiation

    International Nuclear Information System (INIS)

    Napadlek, W.; Marczak, J.; Kubicki, J.; Szudrowicz, M.

    2002-01-01

    The paper presents comparative research studies of cleaning out of deposits and pollution disposals on different constructional materials like; steel, cast iron, aluminium, copper by using UV and IR laser radiation of wavelength λ =1.064 μm; λ = 0.532 μm; λ = 0.355 μm and λ = 0.266 μm and also impulse laser TEA CO 2 at radiation λ = 10.6 μm were used for the experiments. Achieved experimental results gave us basic information on parameters and conditions and application of each used radiation wavelength. Each kind of pollution and base material should be individually treated, selecting the length of wave and radiation energy density. Laser microtreatment allows for broad cleaning application of the surface of constructional materials as well as may be used in future during manufacturing processes as: preparation of surface for PVD technology, galvanotechnics, cleaning of the surface of machine parts etc. (author)

  5. The Newest Laser Processing

    International Nuclear Information System (INIS)

    Lee, Baek Yeon

    2007-01-01

    This book mentions laser processing with laser principle, laser history, laser beam property, laser kinds, foundation of laser processing such as laser oscillation, characteristic of laser processing, laser for processing and its characteristic, processing of laser hole including conception of processing of laser hole and each material, and hole processing of metal material, cut of laser, reality of cut, laser welding, laser surface hardening, application case of special processing and safety measurement of laser.

  6. Efficiency of laser beam utilization in gas laser cutting of materials

    Science.gov (United States)

    Galushkin, M. G.; Grishaev, R. V.

    2018-02-01

    Relying on the condition of dynamic matching of the process parameters in gas laser cutting, the dependence of the beam utilization factor on the cutting speed and the beam power has been determined. An energy balance equation has been derived for a wide range of cutting speed values.

  7. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering

    Science.gov (United States)

    Chan, Chi-Wai; Carson, Louise; Smith, Graham C.; Morelli, Alessio; Lee, Seunghwan

    2017-05-01

    Implant failure caused by bacterial infection is extremely difficult to treat and usually requires the removal of the infected components. Despite the severe consequence of bacterial infection, research into bacterial infection of orthopaedic implants is still at an early stage compared to the effort on enhancing osseointegration, wear and corrosion resistance of implant materials. In this study, the effects of laser surface treatment on enhancing the antibacterial properties of commercially pure (CP) Ti (Grade 2), Ti6Al4V (Grade 5) and CoCrMo alloy implant materials were studied and compared for the first time. Laser surface treatment was performed by a continuous wave (CW) fibre laser with a near-infrared wavelength of 1064 nm in a nitrogen-containing environment. Staphylococcus aureus, commonly implicated in infection associated with orthopaedic implants, was used to investigate the antibacterial properties of the laser-treated surfaces. The surface roughness and topography of the laser-treated materials were analysed by a 2D roughness testing and by AFM. The surface morphologies before and after 24 h of bacterial cell culture were captured by SEM, and bacterial viability was determined using live/dead staining. Surface chemistry was analysed by XPS and surface wettability was measured using the sessile drop method. The findings of this study indicated that the laser-treated CP Ti and Ti6Al4V surfaces exhibited a noticeable reduction in bacterial adhesion and possessed a bactericidal effect. Such properties were attributable to the combined effects of reduced hydrophobicity, thicker and stable oxide films and presence of laser-induced nano-features. No similar antibacterial effect was observed in the laser-treated CoCrMo.

  8. Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials

    Science.gov (United States)

    Hendricks, F.; Matylitsky, V. V.; Domke, M.; Huber, Heinz P.

    2016-03-01

    Laser processing of optically transparent or semi-transparent, brittle materials is finding wide use in various manufacturing sectors. For example, in consumer electronic devices such as smartphones or tablets, cover glass needs to be cut precisely in various shapes. The unique advantage of material processing with femtosecond lasers is efficient, fast and localized energy deposition in nearly all types of solid materials. When an ultra-short laser pulse is focused inside glass, only the localized region in the neighborhood of the focal volume absorbs laser energy by nonlinear optical absorption. Therefore, the processing volume is strongly defined, while the rest of the target stays unaffected. Thus ultra-short pulse lasers allow cutting of the chemically strengthened glasses such as Corning Gorilla glass without cracking. Non-ablative cutting of transparent, brittle materials, using the newly developed femtosecond process ClearShapeTM from Spectra-Physics, is based on producing a micron-sized material modification track with well-defined geometry inside. The key point for development of the process is to understand the induced modification by a single femtosecond laser shot. In this paper, pump-probe microscopy techniques have been applied to study the defect formation inside of transparent materials, namely soda-lime glass samples, on a time scale between one nanosecond to several tens of microseconds. The observed effects include acoustic wave propagation as well as mechanical stress formation in the bulk of the glass. Besides better understanding of underlying physical mechanisms, our experimental observations have enabled us to find optimal process parameters for the glass cutting application and lead to better quality and speed for the ClearShapeTM process.

  9. Pico-second laser materials interactions: mechanisms, material lifetime and performance optimization Ted Laurence(14-ERD-014)

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Ted A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-14

    Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multiphoton ionization- and avalanche ionization-based ablation with fs pulses to defectdominated, thermal-based damage with ns pulses. We investigated the morphology and scaling of damage for commonly used silica and hafnia coatings as well as fused silica. Using carefully calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we showed that defects play an important role in laser-induced damage for pulse durations as short as 1 ps. Three damage morphologies were observed: standard material ablation, ultra-high density pits, and isolated absorbers. For 10 ps and longer, the isolated absorbers limited the damage performance of the coating materials. We showed that damage resulting from the isolated absorbers grows dramatically with subsequent pulses for sufficient fluences. For hafnia coatings, we used electric field modeling and experiments to show that isolated absorbers near the surface were affected by the chemical environment (vacuum vs. air) for pulses as short as 10 ps. Coupled with the silica results, these results suggested that improvements in the performance in the 10 -60 ps range have not reached fundamental limits. These findings motivate new efforts, including a new SI LDRD in improving the laser-damage performance of multi-layer dielectric coatings. A damage test facility for ps pulses was developed and automated, and was used for testing production optics for ARC. The resulting software was transferred to other laser test facilities for fs pulses and multiple wavelengths with 30 ps pulses. Additionally, the LDRD supported the retention and promotion of an important staff scientist in high-resolution dynamic microscopy and laser-damage testing.

  10. Utilizing pulsed laser deposition lateral inhomogeneity as a tool in combinatorial material science.

    Science.gov (United States)

    Keller, David A; Ginsburg, Adam; Barad, Hannah-Noa; Shimanovich, Klimentiy; Bouhadana, Yaniv; Rosh-Hodesh, Eli; Takeuchi, Ichiro; Aviv, Hagit; Tischler, Yaakov R; Anderson, Assaf Y; Zaban, Arie

    2015-04-13

    Pulsed laser deposition (PLD) is widely used in combinatorial material science, as it enables rapid fabrication of different composite materials. Nevertheless, this method was usually limited to small substrates, since PLD deposition on large substrate areas results in severe lateral inhomogeneity. A few technical solutions for this problem have been suggested, including the use of different designs of masks, which were meant to prevent inhomogeneity in the thickness, density, and oxidation state of a layer, while only the composition is allowed to be changed. In this study, a possible way to take advantage of the large scale deposition inhomogeneity is demonstrated, choosing an iron oxide PLD-deposited library with continuous compositional spread (CCS) as a model system. An Fe₂O₃-Nb₂O₅ library was fabricated using PLD, without any mask between the targets and the substrate. The library was measured using high-throughput scanners for electrical, structural, and optical properties. A decrease in electrical resistivity that is several orders of magnitude lower than pure α-Fe₂O₃ was achieved at ∼20% Nb-O (measured at 47 and 267 °C) but only at points that are distanced from the center of the PLD plasma plume. Using hierarchical clustering analysis, we show that the PLD inhomogeneity can be used as an additional degree of freedom, helping, in this case, to achieve iron oxide with much lower resistivity.

  11. Numerical estimation of temperature field in a laser welded butt joint made of dissimilar materials

    Directory of Open Access Journals (Sweden)

    Saternus Zbigniew

    2018-01-01

    Full Text Available The paper concerns numerical analysis of thermal phenomena occurring in the butt welding of two different materials by a laser beam welding. The temperature distribution for the welded butt-joint is obtained on the basis of numerical simulations performed in the ABAQUS program. Numerical analysis takes into account the thermophysical properties of welded plate made of two different materials. Temperature distribution in analysed joints is obtained on the basis of numerical simulation in Abaqus/Standard solver, which allowed the determination of the geometry of laser welded butt-joint.

  12. The future of diode pumped solid state lasers and their applicability to the automotive industry

    Science.gov (United States)

    Solarz, R.; Beach, R.; Hackel, L.

    1994-03-01

    The largest commercial application of high power lasers is for cutting and welding. Their ability to increase productivity by introducing processing flexibility and integrated automation into the fabrication process is well demonstrated. This paper addresses the potential importance of recent developments in laser technology to further impact their use within the automotive industry. The laser technology we will concentrate upon is diode laser technology and diode-pumped solid-state laser technology. We will review present device performance and cost and make projections for the future in these areas. Semiconductor laser arrays have matured dramatically over the last several years. They are lasers of unparalleled efficiency (greater than 50%), reliability (greater than 10,000 hours of continuous operation), and offer the potential of dramatic cost reductions (less than a dollar per watt). They can be used directly in many applications or can be used to pump solid-state lasers. When used as solid-state laser pump arrays, they simultaneously improve overall laser efficiency, reduce size, and improve reliability.

  13. Ultrafast dynamic ellipsometry and spectroscopies of laser shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn David [Los Alamos National Laboratory; Bolme, Cindy B [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2010-01-01

    Ultrafast ellipsometry and transient absorption spectroscopies are used to measure material dynamics under extreme conditions of temperature, pressure, and volumetric compression induced by shock wave loading with a chirped, spectrally clipped shock drive pulse.

  14. Evaluation of thermal shock strengths for graphite materials using a laser irradiation method

    International Nuclear Information System (INIS)

    Kim, Jae Hoon; Lee, Young Shin; Kim, Duck Hoi; Park, No Seok; Suh, Jeong; Kim, Jeng O.; Il Moon, Soon

    2004-01-01

    Thermal shock is a physical phenomenon that occurs during the exposure to rapidly high temperature and pressure changes or during quenching of a material. The rocket nozzle throat is exposed to combustion gas of high temperature. Therefore, it is important to select suitable materials having the appropriate thermal shock resistance and to evaluate these materials for rocket nozzle design. The material of this study is ATJ graphite, which is the candidate material for rocket nozzle throat. This study presents an experimental method to evaluate the thermal shock resistance and thermal shock fracture toughness of ATJ graphite using laser irradiation. In particular, thermal shock resistance tests are conducted with changes of specimen thickness, with laser source irradiated at the center of the specimen. Temperature distributions on the specimen surface are detected using type K and C thermocouples. Scanning electron microscope (SEM) is used to observe the thermal cracks on specimen surface

  15. State of the art of CO laser angioplasty system

    Science.gov (United States)

    Arai, Tsunenori; Mizuno, Kyoichi; Miyamoto, Akira; Sakurada, Masami; Kikuchi, Makoto; Kurita, Akira; Nakamura, Haruo; Takaoka, Hidetsugu; Utsumi, Atsushi; Takeuchi, Kiyoshi

    1994-07-01

    A unique percutaneous transluminal coronary angioplasty system new IR therapy laser with IR glass fiber delivery under novel angioscope guidance was described. Carbon monoxide (CO) laser emission of 5 mm in wavelength was employed as therapy laser to achieve precise ablation of atheromatous plaque with a flexible As-S IR glass fiber for laser delivery. We developed the first medical CO laser as well as As-S IR glass fiber cable. We also developed 5.5 Fr. thin angioscope catheter with complete directional manipulatability at its tip. The system control unit could manage to prevent failure irradiations and fiber damages. This novel angioplasty system was evaluated by a stenosis model of mongrel dogs. We demonstrated the usefulness of our system to overcome current issues on laser angioplasty using multifiber catheter with over-the-guidewire system.

  16. Measurement of the equation of state of porous materials through the use of shock waves generated by laser radiation; Mesure de l'equation d'etat de materiaux poreux a l'aide d'ondes de choc generees par laser

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, F

    2001-12-15

    This work aims at measuring the equation of state of porous plastic materials in the view of their use in inertial confinement fusion. We have experimentally determined the shock polar curve of TMPTA (C{sub 15}H{sub 20}O{sub 6}) by the use of the impedance matching technique. This technique is based on the simultaneous measurement of the shock velocities in the 2 materials composing the target. The shock polar curve has been drawn for pressures ranging from 10 kbar to 3 Mbar and densities from 20 mg/cm{sup 3} to 1.1 g/cm{sup 3}. The use of a slit sweep camera to assess the propagation of the shock wave through the target has limited the accuracy of the technique to 10%. Experimental results match well data provided by the Sesame tables that are broadly used by hydrodynamic codes. Nevertheless the statistical distribution of experimental points seems to show a lower compressibility of the foam that might be attributed to a slight pre-heating process or to the effect of the foam micro-structure on the shock wave propagation. In order to improve the accuracy of the method, an attempt was made to use an active doppler interferometric diagnostic to measure shock wave velocities. It has been showed that the shock wave front in the foam is reflecting enough to make this method relevant if we can overcome the difficulty of a high luminous background. Despite that, we have succeeded in measuring with high accuracy, a point of the shock polar curve for 800 mg/cm{sup 3} dense TMPTA. (A.C.)

  17. Measurement of the equation of state of porous materials through the use of shock waves generated by laser radiation; Mesure de l'equation d'etat de materiaux poreux a l'aide d'ondes de choc generees par laser

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, F

    2001-12-15

    This work aims at measuring the equation of state of porous plastic materials in the view of their use in inertial confinement fusion. We have experimentally determined the shock polar curve of TMPTA (C{sub 15}H{sub 20}O{sub 6}) by the use of the impedance matching technique. This technique is based on the simultaneous measurement of the shock velocities in the 2 materials composing the target. The shock polar curve has been drawn for pressures ranging from 10 kbar to 3 Mbar and densities from 20 mg/cm{sup 3} to 1.1 g/cm{sup 3}. The use of a slit sweep camera to assess the propagation of the shock wave through the target has limited the accuracy of the technique to 10%. Experimental results match well data provided by the Sesame tables that are broadly used by hydrodynamic codes. Nevertheless the statistical distribution of experimental points seems to show a lower compressibility of the foam that might be attributed to a slight pre-heating process or to the effect of the foam micro-structure on the shock wave propagation. In order to improve the accuracy of the method, an attempt was made to use an active doppler interferometric diagnostic to measure shock wave velocities. It has been showed that the shock wave front in the foam is reflecting enough to make this method relevant if we can overcome the difficulty of a high luminous background. Despite that, we have succeeded in measuring with high accuracy, a point of the shock polar curve for 800 mg/cm{sup 3} dense TMPTA. (A.C.)

  18. Film Music: The Material, Literature and Present State of Research.

    Science.gov (United States)

    Marks, Martin

    1982-01-01

    A comprehensive look at the neglected art of film music. Examines the nature of the medium, the literature (how others have wrestled with film music's recalcitrant materials), and the present state of research into film music. Includes a bibliography. (PD)

  19. Ablation, surface activation, and electroless metallization of insulating materials by pulsed excimer laser irradiation

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Godbole, M.J.; Pedraza, A.J.

    1993-01-01

    Pulsed-laser irradiation of wide bandgap ceramic substrates, using photons with sub-bandgap energies, activates the ceramic surface for subsequent electroless copper deposition. The copper deposit is confined within the irradiated region when the substrate is subsequently immersed in an electroless copper bath. However, a high laser fluence (typically several j/cm 2 ) and repeated laser shots are needed to obtain uniform copper coverage by this direct-irradiation process. In contrast, by first applying an evaporated SiO x thin film (with x ∼1), laser ablation at quite low energy density (∼0.5 J/cm 2 ) results in re-deposition on the ceramic substrate of material that is catalytic for subsequent electroless copper deposition. Experiments indicate that the re-deposited material is on silicon, on which copper nucleates. Using an SiO x film on a laser-transparent substrate, quite fine (∼12 μm) copper lines can be formed at the boundary of the region that is laser-etched in SiO x . Using SiO x with an absorbing (polycrystalline) ceramic substrate, more-or-less uniform activation and subsequent copper deposition are obtained. In the later case, interactions with the ceramic substrate also may be important for uniform deposition

  20. Diode pumped solid state laser by two diodes

    International Nuclear Information System (INIS)

    Li Mingzhong; Zhang Xiaomin; Liang Yue; Man Yongzai; Zhou Pizhang

    1995-01-01

    A Nd: YLF laser is pumped by home-made quantum well diode lasers. Datum of laser output energy 60 μJ and peak power 120 mw are observed at wavelength 1.047 μm. On the same pumping condition, the output power synchronously pumped by two diodes is higher than the total output power pumped by two diodes separately. The fluctuation is <3%. The results agree with theoretical analysis

  1. Tunable Solid State Lasers and Synthetic Nonlinear Materials

    Science.gov (United States)

    1987-09-23

    marketed devices. Several auxilliary pieces of equipment were purchased for use with the FTIR spectrometer. i) The MMR refrigerator was bought in order... Kotler , and H. J. Shaw, Electron. Lett. observed with the offset-locked oscillators. Careful 16,280 (1980). thermal design will permit offset locking of

  2. Short-pulse-width micromachining of hard materials using DPSS Nd:YAG lasers

    Science.gov (United States)

    Heglin, Michael; Govorkov, Sergei V.; Scaggs, Michael J.; Theoharidis, Haris; Schoelzel, T.

    2002-06-01

    The material processing of an industrial, short-pulse duration DPPS YAG laser producing peak powers greater than 0.2MW is discussed in this paper. This peak power provides sufficient materials processing capability to meet the micro machining needs in the automotive, semiconductor, micro- electronic, medical and telecommunication industries. All hard and soft materials including: plastics, metals, ceramics, diamond and other crystalline materials are suitable candidates for the processing capability of this laser. Micro level features can be machined in these materials to a depth in excess of 1mm with high quality results. In most applications feature sizes can be achieved that are not possible or economical with existing technologies. The optical beam delivery system requirements, and overall micro-machining set-up are also described. The drilling and cutting versatility down to feature sizes of less than 7 micrometers , as well as, complex shapes are shown. The wavelength, pulse length, and peakpower are described and relate to their effect on recast, micro-cracking and material removal rates. Material removal effects related to progressive penetration into the material will be reviewed. The requirements of this DPSS laser technology to meet the operational requirements for high duty cycle operation in industrial environments is covered along with processing flexibility and lower operating cost.

  3. Physics of laser fusion. Volume IV. The future development of high-power solid-state laser systems

    International Nuclear Information System (INIS)

    Emmett, J.L.; Krupke, W.F.; Trenholme, J.B.

    1982-11-01

    Solid state lasers, particularly neodymium glass systems, have undergone intensive development during the last decade. In this paper, we review solid state laser technology in the context of high-peak-power systems for inertial confinement fusion. Specifically addressed are five major factors: efficiency, wavelength flexibility, average power, system complexity, and cost; these factors today limit broader application of the technology. We conclude that each of these factors can be greatly improved within current fundamental physical limits. We further conclude that the systematic development of new solid state laser madia, both vitreous and crystalline, should ultimately permit the development of wavelength-flexible, very high average power systems with overall efficiencies in the range of 10 to 20%

  4. 2000W high beam quality diode laser for direct materials processing

    Science.gov (United States)

    Qin, Wen-bin; Liu, You-qiang; Cao, Yin-hua; Gao, Jing; Pan, Fei; Wang, Zhi-yong

    2011-11-01

    This article describes high beam quality and kilowatt-class diode laser system for direct materials processing, using optical design software ZEMAX® to simulate the diode laser optical path, including the beam shaping, collimation, coupling, focus, etc.. In the experiment, the diode laser stack of 808nm and the diode laser stack of 915nm were used for the wavelength coupling, which were built vertical stacks up to 16 bars. The threshold current of the stack is 6.4A, the operating current is 85A and the output power is 1280W. Through experiments, after collimating the diode laser beam with micro-lenses, the fast axis BPP of the stack is less than 60mm.mrad, and the slow-axis BPP of the stack is less than 75mm.mrad. After shaping the laser beam and improving the beam quality, the fast axis BPP of the stack is still 60mm.mrad, and the slow-axis BPP of the stack is less than 19mm.mrad. After wavelength coupling and focusing, ultimately the power of 2150W was obtained, focal spot size of 1.5mm * 1.2mm with focal length 300mm. The laser power density is 1.2×105W/cm2, and that can be used for metal remelting, alloying, cladding and welding. The total optical coupling conversion efficiency is 84%, and the total electrical - optical conversion efficiency is 50%.

  5. Modification of semiconductor materials using laser-produced ion streams additionally accelerated in the electric fields

    International Nuclear Information System (INIS)

    Rosinski, M.; Badziak, B.; Parys, P.; Wolowski, J.; Pisarek, M.

    2009-01-01

    The laser-produced ion stream may be attractive for direct ultra-low-energy ion implantation in thin layer of semiconductor for modification of electrical and optical properties of semiconductor devices. Application of electrostatic fields for acceleration and formation of laser-generated ion stream enables to control the ion stream parameters in broad energy and current density ranges. It also permits to remove the useless laser-produced ions from the ion stream designed for implantation. For acceleration of ions produced with the use of a low fluence repetitive laser system (Nd:glass: 2 Hz, pulse duration: 3.5 ns, pulse energy:∼0.5 J, power density: 10 10 W/cm 2 ) in IPPLM the special electrostatic system has been prepared. The laser-produced ions passing through the diaphragm (a ring-shaped slit in the HV box) have been accelerated in the system of electrodes. The accelerating voltage up to 40 kV, the distance of the diaphragm from the target, the diaphragm diameter and the gap width were changed for choosing the desired parameters (namely the energy band of the implanted ions) of the ion stream. The characteristics of laser-produced Ge ion streams were determined with the use of precise ion diagnostic methods, namely: electrostatic ion energy analyser and various ion collectors. The laser-produced and post-accelerated Ge ions have been used for implantation into semiconductor materials for nanocrystal fabrication. The characteristics of implanted samples were measured using AES

  6. Further investigation of surface velocity measurements for material characterization in laser shockwave experiments

    Science.gov (United States)

    Smith, James A.; Lacy, Jeffrey M.; Scott, Clark L.; Benefiel, Bradley C.; Lévesque, Daniel; Monchalin, Jean-Pierre; Lord, Martin

    2018-04-01

    As part of the U.S. High Performance Research Reactor program, a laser shock test system is being developed by the Idaho National Laboratory (INL) to characterize interface strength in innovative plate fuel for research reactors around the world. The INL has been working with National Research Council Canada (NRC) on this project for the last five years. One of the concerns is the difficulty of calibrating and standardizing the laser shock technique. A recent analytical study and testing support the use of the Hugoniot Elastic Limit (HEL) in materials as a robust and simple benchmark to compare stresses generated by different laser shock systems. Using a non-contact laser velocimeter based on a solid Fabry-Perot etalon, the systems at NRC and INL show that the back-surface velocity reached at the HEL is consistent, and independent of the laser power used. In this work, the laser velocimeter of the NRC system is tested against a fast rotating wheel to verify accuracy and determine best operating conditions. A round robin test between the two laser shock systems on plates of different aluminum alloys is presented that shows the consistent characterization of the aluminum alloys based on the HEL velocities as well as determines the bias between the systems. The effects of setup parameters on other characteristics of the back-surface velocity trace and corresponding stress wave are also discussed.

  7. An all-solid state laser system for the laser ion source RILIS and in-source laser spectroscopy of astatine at ISOLDE, CERN

    CERN Document Server

    Rothe, Sebastian; Nörtershäuser, W

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at ISOLDE, CERN, by the addition of an all-solid state tuneable titanium: sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE, CERN, and at ISAC, TRIUMF, radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  8. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    International Nuclear Information System (INIS)

    Rothe, Sebastian

    2012-01-01

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  9. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Sebastian

    2012-09-24

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  10. Research on Microstructure and Property of TiC-Co Composite Material Made by Laser Cladding

    Science.gov (United States)

    Zhang, Wei

    The experiment of laser cladding on the surface of 2Cr13 steel was made. Titanium carbide (TiC) powder and Co-base alloy powder were used as cladding material. The microstructure and property of laser cladding layer were tested. The research showed that laser cladding layer had better properties such as minute crystals, deeper layer, higher hardness and good metallurgical bonding with base metal. The structure of cladding was supersaturated solid solution with dispersed titanium carbide. The average hardness of cladding zone was 660HV0.2. 2Cr13 steel was widely used in the field of turbine blades. Using laser cladding, the good wear layer would greatly increase the useful life of turbine blades.

  11. The theory of laser materials processing heat and mass transfer in modern technology

    CERN Document Server

    Schulz, Wolfgang

    2017-01-01

    The revised edition of this important reference volume presents an expanded overview of the analytical and numerical approaches employed when exploring and developing modern laser materials processing techniques. The book shows how general principles can be used to obtain insight into laser processes, whether derived from fundamental physical theory or from direct observation of experimental results. The book gives readers an understanding of the strengths and limitations of simple numerical and analytical models that can then be used as the starting-point for more elaborate models of specific practical, theoretical or commercial value. Following an introduction to the mathematical formulation of some relevant classes of physical ideas, the core of the book consists of chapters addressing key applications in detail: cutting, keyhole welding, drilling, arc and hybrid laser-arc welding, hardening, cladding and forming. The second edition includes a new a chapter on glass cutting with lasers, as employed in the ...

  12. On the angular dependence of focused laser ablation by nanosecond pulses in solgel and polymer materials

    Science.gov (United States)

    George, D. S.; Onischenko, A.; Holmes, A. S.

    2004-03-01

    Focused laser ablation by single laser pulses at varying angles of incidence is studied in two materials of interest: a solgel (Ormocer 4) and a polymer (SU8). For a range of angles (up to 70° from normal), and for low-energy (<20 μJ), 40 ns pulses at 266 nm wavelength, the ablation depth along the direction of the incident laser beam is found to be independent of the angle of incidence. This allows the crater profiles at oblique incidence to be generated directly from the crater profiles at normal incidence by a simple coordinate transformation. This result is of use in the development of simulation tools for direct-write laser ablation. A simple model based on the moving ablation front approach is shown to be consistent with the observed behavior.

  13. Development of advanced coatings for laser modifications through process and materials simulation

    International Nuclear Information System (INIS)

    Martukanitz, R.P.; Babu, S.S.

    2004-01-01

    A simulation-based system is currently being constructed to aid in the development of advanced coating systems for laser cladding and surface alloying. The system employs loosely coupled material and process models that allow rapid determination of material compatibility over a wide range of processing conditions. The primary emphasis is on the development and identification of composite coatings for improved wear and corrosion resistance. The material model utilizes computational thermodynamics and kinetic analysis to establish phase stability and extent of diffusional reactions that may result from the thermal response of the material during virtual processing. The process model is used to develop accurate thermal histories associated with the laser surface modification process and provides critical input for the non-isothermal materials simulations. These techniques were utilized to design a laser surface modification experiment that utilized the addition of stainless steel alloy 431 and TiC produced using argon and argon and nitrogen shielding. The deposits representing alloy 431 and TiC powder produced in argon resulted in microstructures retaining some TiC particles and an increase in hardness when compared to deposits produced using only the 431 powder. Laser deposits representing alloy 431 and TiC powder produced with a mixture of argon and nitrogen shielding gas resulted in microstructures retaining some TiC particles, as well as fine precipitates of Ti(CN) formed during cooling and a further increase in hardness of the deposit

  14. Laser-based microstructuring of materials surfaces using low-cost microlens arrays

    Science.gov (United States)

    Nieto, Daniel; Vara, G.; Diez, J. A.; O`Connor, Gerard M.; Arines, Justo; Gómez-Reino, C.; Flores-Arias, M.

    2012-03-01

    Since frictional interactions in microscopically small components are becoming increasingly important for the development of new products for all modern technology, we present a laser-based technique for micro-patterning surfaces of materials using low-cost microlens arrays. The microlens used were fabricated on soda-lime glass using a laser direct-write technique, followed by a thermal treatment into an oven. By combining laser direct-write and the thermal treatment it was possible to obtain high quality elements using a low cost infrared laser widely implemented in industry which makes this technique attractive in comparison with other more expensive methods. The main advantage of using microlens arrays for micropatterning surfaces is the possibility of fabricating a large number of identical structures simultaneously, leading to a highly efficient process. In order to study the capabilities of the microlens fabricated for microstructuring materials, identical structures and arrays of holes were fabricated over a variety of materials, such us, stainless steel, polymer and ceramic. The minimum diameter of the individual microstructure generated at surface is 5 μm. Different nanosecond lasers operating at Infrared, Green and UV were used. The topography and morphology of the elements obtained were determined using a confocal microscope SENSOFAR 2300 Plμ.

  15. Nano-pulsed laser irradiation scanning system for phase-change materials

    International Nuclear Information System (INIS)

    Kim, Sookyung; Li Xuezhe; Lee, Sangbin; Kim, Kyung-Ho; Lee, Seung-Yop

    2008-01-01

    Recently, the demand of a laser irradiation tester is increasing for phase change random access memory (PRAM) as well as conventional optical storage media. In this study, a nano-pulsed laser irradiation system is developed to characterize the optical property and writing performance of phase-change materials, based on a commercially available digital versatile disk (DVD) optical pick-up. The precisely controlled focusing and scanning on the material's surface are implemented using the auto-focusing mechanism and a voice coil motor (VCM) of the commercial DVD pick-up. The laser irradiation system provides various writing and reading functions such as adjustable laser power, pulse duration, recording pattern (spot, line and area), and writing/reading repetition, phase transition, and in situ reflectivity measurement before/after irradiation. Measurements of power time effect (PTE) diagram and reflectivity map of Ge 2 Sb 2 Te 5 samples show that the proposed laser irradiation system provides the powerful scanning tool to quantify the optical characteristics of phase-change materials

  16. Residual stress improvement mechanism on metal material by underwater laser irradiation

    International Nuclear Information System (INIS)

    Sano, Yuji; Yoda, Masaki; Mukai, Naruhiko; Obata, Minoru; Kanno, Masanori

    2000-01-01

    Residual stress improvement technology for component surface by underwater pulsed laser irradiation has been developed as a method of preventing stress corrosion cracking (SCC) of core components in nuclear reactors. In order to optimize the laser irradiation conditions based on a complete understanding of the mechanism, the propagation of a shock wave induced by the impulse of laser irradiation and the dynamic response of the irradiated material were analyzed through time-dependent elasto-plastic calculations with a finite element program. The calculated results are compared with the measured results obtained by experiments in which laser pulses with an energy of 200 mJ are focused to a diameter of 0.8 mm on a water-immersed test piece of 20% cold-worked Type 304 austenitic stainless steel to simulate neutron irradiation hardening. A residual compressive stress, which is nearly equivalent to the yield stress of the processed material, remains on the material surface after passage of the shock wave with enough amplitude to induce a permanent strain. Multiple irradiation of laser pulses extends the stress-improved depth to about 1 mm, which would be the limit corresponding to the three-dimensional dispersion effect of the shock wave. (author)

  17. Tunable ultraviolet solid-state dye laser based on MPMMA doped with pyrromethene 597

    International Nuclear Information System (INIS)

    Jiang, Y G; Fan, R W; Xia, Y Q; Chen, D Y

    2011-01-01

    Solid-state dye sample based on modified polymethyl methacrylate (MPMMA) co-doped with pyrromethene 597 (PM597), and coumarin 460 (C460) were prepared. A frequency-doubled pulsed Nd:YAG laser is used to pump solid-state dye sample, and the narrow linewidth dye laser of 94.4 mJ was obtained at 582 nm in an oscillator-amplifier configuration. Using a beta-BaB 2 O 4 (BBO) crystal to frequency double the dye laser into ultraviolet (UV), a tuning range from 279 to 305 nm was demonstrated from a single doped PM597 dye. To the best of our knowledge, the UV tuning range is the best under the same condition so far. The conversion slope efficiency from solid dye laser to UV laser was 8.9% and the highest UV laser output energy reached 6.94 mJ at 291 nm

  18. Design of high-brightness TEM00-mode solar-pumped laser for renewable material processing

    Science.gov (United States)

    Liang, D.; Almeida, J.

    2014-08-01

    The conversion of sunlight into laser light by direct solar pumping is of ever-increasing importance because broadband, temporally constant, sunlight is converted into laser light, which can be a source of narrowband, collimated, rapidly pulsed, radiation with the possibility of obtaining extremely high brightness and intensity. Nonlinear processes, such as harmonic generation, might be used to obtain broad wavelength coverage, including the ultraviolet wavelengths, where the solar flux is very weak. The direct excitation of large lasers by sunlight offers the prospect of a drastic reduction in the cost of coherent optical radiation for high average power materials processing. This renewable laser has a large potential for many applications such as high-temperature materials processing, renewable magnesium-hydrogen energy cycle and so on. We propose here a scalable TEM00 mode solar laser pumping scheme, which is composed of four firststage 1.13 m diameter Fresnel lenses with its respective folding mirrors mounted on a two-axis automatic solar tracker. Concentrated solar power at the four focal spots of these Fresnel lenses are focused individually along a common 3.5 mm diameter, 70 mm length Nd:YAG rod via four pairs of second-stage fused-silica spherical lenses and third-stage 2D-CPCs (Compound Parabolic Concentrator), sitting just above the laser rod which is also double-pass pumped by four V-shaped pumping cavities. Distilled water cools both the rod and the concentrators. 15.4 W TEM00 solar laser power is numerically calculated, corresponding to 6.7 times enhancement in laser beam brightness.

  19. Fluoride materials for high peak power lasers, 17 May 1976--31 January 1977

    International Nuclear Information System (INIS)

    Folweiler, R.C.

    1977-02-01

    Single crystal fluoride optical materials were grown for potential application to laser fusion. Fluoride materials are of interest for this application, in general, because their low non-linear indices of refraction permit their use in optical components which can sustain very high peak powers without causing beam distortion. Emphasis was placed on Nd:YLF because its emission wave-lengths match the gain curve of promising amplifier materials. In addition to material growth, new feed preparation techniques were investigated and developed and certain material properties measured. The laser material, Nd:YLF, (Nd 3+ in LiYF 4 ) was grown and fabricated into laser rods. This material has laser emission at 1.047 μm and 1.053 μm, depending on the polarization selected. The former wavelength matches the peak emission wavelength of developmental Nd fluoroberyllate glasses, the latter matches Nd phosphate and fluorophosphate glasses that have low values of n 2 . The non-linear index of pure LiYF 4 was measured by Milam and Weber as 0.59 x 10 -13 esu. The concentration of Nd 3+ was varied from 1% to 4%. At higher concentrations and larger diameters a radial strain was found, sufficient to cause spiral cracking. This strain was apparently generated by a radial gradient of Nd 3+ ions. The distribution coefficient observed in one sample was 0.38. The stimulation emission coefficients were determined. Boules of KY 3 F 10 and KTb 3 F 10 were grown, with the latter suitable as a Faraday rotator material with projected low n 2 and larger Verdet constant. Experiments were performed on the systemKF-CeF 3 as a potential Faraday rotator material, and a cubic phase observed. The Ce 3+ ion has slightly lower rotary power/ion, but significantly lower cost

  20. Studies of diode-pumped solid-state lasers based on Nd:KGW and Nd:YAG

    International Nuclear Information System (INIS)

    Ibrahim, Akram Yousif

    1996-01-01

    The experimental part of the thesis was dedicated to the studies of diode-pumped solid- state lasers. it includes experiments with end-pumped continuous wave (CW) Nd-doped crystals. In particular, we have concentrated to Nd:KGW, a relatively new and not studied in the literature about the laser materials. We have performed some basics measurements of this material. A fibre bundle coupled laser diode array was used as a pump source. We have investigated two main optical arrangements for the pump, allowing operation in two regimes: 1- Low pump power operation using selected output power from a single of the fibre bundle. 2- high pump power operation using the total output power from the bundle. The main parameters of the cavities we use (e.g. the cavity mode and the pumping spot size), were determined using the matrix approach and the equations for the propagation of the Gaussian beams. The highest output power obtained in this work for Nd:KGW with a transverse electromagnetic (TEM 0 0) single-mode, continuous (CW) operation, was 400 mW for 1700 mW pumping power from the diode laser. We present also data about the performance of a diode pumped Nd:YAG crystal. Our experiment shows that Nd:KGW is a promising material of low and medium pumping power levels. (Author)

  1. Development of high repetition rate ultra-short pulse solid state lasers pumped by laser diodes

    International Nuclear Information System (INIS)

    Ueda, Ken-ichi; Lu, Jianren; Takaichi, Kazunori; Yagi, Hideki; Yanagitani, Takakimi; Kaminskii, Alexander; Kawanaka, Junji

    2004-01-01

    A novel technique for ceramic lasers has been developed recently. Self-energy-driven sintering of nano-and micro particles created the fully transparent Nd:YAG ceramics. The ceramic YAG demonstrated high efficiency operation (optical-to-optical conversion of 60% in end pumping) and solid-phase crystals growth and the possible scaling were investigated principally. Typical performance of ceramic YAG laser has been reviewed. The present status and future prospect of the ceramic lasers technologies were discussed. (author)

  2. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. [Texas Univ., Houston, TX (United States). Cancer Center; Welch, A.J. [Texas Univ., Austin, TX (United States); Motamedi, M. [Texas Univ., Galveston, TX (United States). Medical Branch; Rastegar, S. [Texas A and M Univ., College Station, TX (United States); Tittel, F. [Rice Univ., Houston, TX (United States); Esterowitz, L. [Naval Research Lab., Washington, DC (United States)

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A&M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  3. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. (Texas Univ., Houston, TX (United States). Cancer Center); Welch, A.J. (Texas Univ., Austin, TX (United States)); Motamedi, M. (Texas Univ., Galveston, TX (United States). Medical Branch); Rastegar, S. (Texas A and M Univ., College Station, TX (United States)); Tittel, F. (Rice Univ., Houston, TX (United States)); Esterowitz, L. (Naval Research Lab., Washington, DC (United States))

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  4. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. [Texas Univ., Houston, TX (United States). Cancer Center; Welch, A.J. [Texas Univ., Austin, TX (United States); Motamedi, M. [Texas Univ., Galveston, TX (United States). Medical Branch; Rastegar, S. [Texas A and M Univ., College Station, TX (United States); Tittel, F. [Rice Univ., Houston, TX (United States); Esterowitz, L. [Naval Research Lab., Washington, DC (United States)

    1993-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the collaborating engineering enters at Rice University, UT-Austin, Texas A&M Univ. In addition, this collective is collaborating with the naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  5. K-α emission form medium and high-Z materials irradiated by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Limpouch, J.; Klimo, O.; Zhavoronkov, N.; Andreev, A.A.

    2006-01-01

    Complete test of publication follows. Fast electrons are created at the target surface during the interaction of high intensity ultra short laser pulses with solids. Fast electrons penetrate deep into the target where they generate K-α and Bremsstrahlung radiation. Generated high brightness K-α pulses offer the prospect of creating a cheap and compact X-ray source, posing a promising alternative to synchrotron radiation, e.g. in medical application and in material science. With an increase in laser intensity, efficient X-ray emission in the multi-keV range with pulse duration shorter than few picoseconds is expected. This short incoherent but monochromatic X-ray emission synchronized with laser pulses may be used for time-resolved measurements. Acceleration of fast electrons, their transport and K-α photon generation and emission from the target surface in both forward and backward directions are studied here numerically. The results are compared to recent experiments studying K-α emission from the front and rear surface of copper foil targets of various thicknesses and for various parameters of the laser plasma interaction. One-dimensional PIC simulations coupled with 3D time-resolved Monte Carlo simulations show that account of ionization processes and of density profile formed by laser ASE emission is essential for reliable explanation of experimental data. While sub-relativistic intensities are optimum for laser energy transformation into K-α emission for medium-Z targets, relativistic laser intensities have to be used for hard X-ray generation in high-Z materials. The cross-section for K-α shell ionization of high-Z elements by electrons increases or remains approximately constant within a factor of two at relativistic electron energies up to electron energies in the 100-MeV range. Moreover, the splitting ratio of K-α photon emission to Auger electron emission is favorable for high-Z materials, and thus efficient K-α emission is possible. In our

  6. Evaluation of laser induced breakdown spectroscopy for the determination of macronutrients in plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Trevizan, Lilian Cristina [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000, Piracicaba-SP (Brazil)], E-mail: lilian@conectcor.com.br; Santos, Dario [Universidade Federal de Sao Paulo - UNIFESP, Rua Prof. Artur Riedel 275, 09972-270, Diadema-SP (Brazil); Elgul Samad, Ricardo; Dias Vieira, Nilson [Centro de Lasers e Aplicacoes, IPEN/CNEN-SP, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo-SP (Brazil); Seimi Nomura, Cassiana [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia 166, 09210-170, Santo Andre-SP (Brazil); Nunes, Lidiane Cristina [Departamento de Quimica, Universidade Federal de Sao Carlos, Rod. Washington Luis, km 235, 13565-905, Sao Carlos-SP (Brazil); Rufini, Iolanda Aparecida; Krug, Francisco Jose [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000, Piracicaba-SP (Brazil)

    2008-10-15

    Laser induced breakdown spectroscopy (LIBS) has become an analytical tool for the direct analysis of a large variety of materials in order to provide qualitative and/or quantitative information. However, there is a lack of information for LIBS analysis of agricultural and environmental samples. In this work a LIBS system has been evaluated for the determination of macronutrients (P, K, Ca, Mg) in pellets of vegetal reference materials. An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with ICCD detector. The plasma temperature was estimated by Boltzmann plots and instrumental parameters such as delay time, lens-to-sample distance and pulse energy were evaluated. Certified reference materials as well as reference materials were used for analytical calibrations of P, K, Ca, and Mg. Most results of the direct analysis of plant samples by LIBS were in reasonable agreement with those obtained by ICP OES after wet acid decomposition.

  7. Evaluation of laser induced breakdown spectroscopy for the determination of macronutrients in plant materials

    International Nuclear Information System (INIS)

    Trevizan, Lilian Cristina; Santos, Dario; Elgul Samad, Ricardo; Dias Vieira, Nilson; Seimi Nomura, Cassiana; Nunes, Lidiane Cristina; Rufini, Iolanda Aparecida; Krug, Francisco Jose

    2008-01-01

    Laser induced breakdown spectroscopy (LIBS) has become an analytical tool for the direct analysis of a large variety of materials in order to provide qualitative and/or quantitative information. However, there is a lack of information for LIBS analysis of agricultural and environmental samples. In this work a LIBS system has been evaluated for the determination of macronutrients (P, K, Ca, Mg) in pellets of vegetal reference materials. An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with ICCD detector. The plasma temperature was estimated by Boltzmann plots and instrumental parameters such as delay time, lens-to-sample distance and pulse energy were evaluated. Certified reference materials as well as reference materials were used for analytical calibrations of P, K, Ca, and Mg. Most results of the direct analysis of plant samples by LIBS were in reasonable agreement with those obtained by ICP OES after wet acid decomposition

  8. Kinetic studies following state-selective laser excitation: Progress report, March 15, 1988--March 14, 1989

    International Nuclear Information System (INIS)

    Keto, J.W.

    1988-11-01

    The objective of this contract is the study of state-to-state, electronic energy transfer reactions following two-photon laser excitation. We have chosen to study reactions of Xe 5p 5 np because of their relevance to the XeCl excimer laser. We are studying deactivation reactions in collisions with heavy atoms such as Ar, Kr, and Xe and reactive collisions with chlorides. The reactants are excited by multiphoton laser absorption. Product channels are observed by their fluorescence, or by laser induced fluorescence using a second color laser. Reaction rates are measured by observing the time dependent decay of signals from reactant and product channels. In addition we measure interaction potentials of the reactants by laser spectroscopy where the laser induced fluorescence or ionization is measured as a function of laser wavelength (excitation spectra) or by measuring fluorescence spectra at fixed laser frequencies with monochromators. The spectra are obtained in the form of either lineshapes or individual lines from rovibrational transitions of bound states. 11 refs. 4 figs., 3 tabs

  9. Lessons learned by southern states in transportation of radioactive materials

    International Nuclear Information System (INIS)

    1992-03-01

    This report has been prepared under a cooperative agreement with DOE's Office of Civilian Radioactive Waste Management (OCRWM) and is a summary of the lessons learned by southern states regarding the transportation of radioactive materials including High-Level Radioactive Wastes (HLRW) and Spent Nuclear Fuel (SNF). Sources used in this publication include interviews of state radiological health and public safety officials that are members of the Southern States Energy Board (SSEB) Advisory Committee on Radioactive Materials Transportation, as well as the Board's Transuranic (TRU) Waste Transportation Working Group. Other sources include letters written by the above mentioned committees concerning various aspects of DOE shipment campaigns

  10. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  11. Highly Sensitive TGA Diagnosis of Thermal Behaviour of Laser-Deposited Materials

    Czech Academy of Sciences Publication Activity Database

    Galíková, Anna; Pola, Josef

    2008-01-01

    Roč. 473, 1-2 (2008), s. 54-60 ISSN 0040-6031 R&D Projects: GA AV ČR IAA400720619 Institutional research plan: CEZ:AV0Z40720504 Keywords : thermogravimetry * laser-deposited materials * mass spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.659, year: 2008

  12. Surface engineering with lasers : an application to Co-base materials

    NARCIS (Netherlands)

    de Hosson, J.T.M.; de Mol van Otterloo, J.L.; Boerstoel, B.M.; Huis in 't Veld, A.J.; Sarton, LAJ; Zeedijk, HB

    1997-01-01

    The present paper concentrates on the applications of CO2 laser treatments to enhance fretting wear properties of stainless steel. Stainless steel 316 is used as substrate material. Powder particles of the various stellites with sizes ranging between 45 and 125 mu m are fed onto the surface. It was

  13. Customer Overview of Pulsed Laser Heating for Evaluation of Gun Bore Materials

    Science.gov (United States)

    2015-05-01

    properties of the gun bore materials. Ideally, well validated interior ballistics modeling has been carried out (typically with NOVA) to provide time...03002, February 2003. 5. J. Warrender, C. Mulligan, and J. Underwood , “Analysis of thermo-mechanical cracking in refractory coatings using variable pulse duration laser pulse heating,” Wear 263 1540 (2007).

  14. Computational Magnetohydrodynamics of General Materials in Generalized Coordinates and Applications to Laser-Target Interactions

    Science.gov (United States)

    MacGillivray, Jeff T.; Peterkin, Robert E., Jr.

    2003-10-01

    We have developed a multiblock arbitrary coordinate Hydromagnetics (MACH) code for computing the time-evolution of materials of arbitrary phase (solid, liquid, gas, and plasma) in response to forces that arise from material and magnetic pressures. MACH is a single-fluid, time-dependent, arbitrary Lagrangian-Eulerian (ALE) magnetohydrodynamic (MHD) simulation environment. The 2 1/2 -dimensional MACH2 and the parallel 3-D MACH3 are widely used in the MHD community to perform accurate simulation of the time evolution of electrically conducting materials in a wide variety of laboratory situations. In this presentation, we discuss simulations of the interaction of an intense laser beam with a solid target in an ambient gas. Of particular interest to us is a laser-supported detonation wave (blast wave) that originates near the surface of the target when the laser intensity is sufficiently large to vaporize target material within the focal spot of the beam. Because the MACH3 simulations are fully three-dimensional, we are able to simulate non-normal laser incidence. A magnetic field is also produced from plasma energy near the edge of the focal spot.

  15. Production of nanodispersed materials and thin films by laser ablation techniques in liquid and in vacuum

    International Nuclear Information System (INIS)

    Tveryanovich, Yu S; Manshina, A A; Tverjanovich, A S

    2012-01-01

    The methods of laser ablation of chemical compounds in a liquid medium and in vacuum used for the production of highly dispersed materials and films, respectively, are considered. Features and advantages of these methods are noted and the potential of their application for the design of novel materials is discussed. Examples of application of these methods in scientific research are given. The bibliography includes 177 references.

  16. Effect of Cr4+ impurities in Nd:Cr:GSGG and Nd:Cr:YAG laser materials on parameters of lasers at solar pumping

    International Nuclear Information System (INIS)

    Payziyev, Sh.D.; Bakhramov, S.A.; Shayimov, F.F.; Fayziev, A.Sh.

    2015-01-01

    The analysis of an effect of Cr 4+ impurity ions, existent in Nd 3+ :Cr 3+ :GSGG and Nd 3+ :Cr 3+ :YAG laser materials on output parameters of solar pumped lasers is carried out by modeling of lasing process at solar pumping. (authors)

  17. Discrete excitation of mode pulses using a diode-pumped solid-state digital laser

    CSIR Research Space (South Africa)

    Ngcobo, Sandile

    2016-02-01

    Full Text Available In this paper, we experimentally demonstrate novel method of generating discrete excitation of on-demand Lagaurre-Gaussian (LG) mode pulses, in a diode pumped solid-state digital laser. The digital laser comprises of an intra-cavity spatial light...

  18. Generation of Laguerre-Gaussian Beams Using a Diode Pumped Solid-State Digital Laser

    CSIR Research Space (South Africa)

    Bell, Teboho

    2015-10-01

    Full Text Available The solid state digital laser was used in generation of Laguerre-Gaussian modes, LGpl, of different orders. This work demonstrates that we can generate high-order Laguerre-Gaussian modes with high purity using a digital laser....

  19. Ponderomotive dressing of doubly-excited states with intensity-controlled laser light

    Directory of Open Access Journals (Sweden)

    Ding Thomas

    2013-03-01

    Full Text Available We laser-dress several doubly-excited states in helium. Tuning the coupling-laser intensity from perturbative to the strong-coupling regime, we are able to measure phases imprinted on the two-electron wavefunctions, and observe a new continuum coupling mechanism.

  20. Femtosecond Laser Irradiation of Plasmonic Nanoparticles in Polymer Matrix: Implications for Photothermal and Photochemical Material Alteration

    Directory of Open Access Journals (Sweden)

    Anton A. Smirnov

    2014-11-01

    Full Text Available We analyze the opportunities provided by the plasmonic nanoparticles inserted into the bulk of a transparent medium to modify the material by laser light irradiation. This study is provoked by the advent of photo-induced nano-composites consisting of a typical polymer matrix and metal nanoparticles located in the light-irradiated domains of the initially homogeneous material. The subsequent irradiation of these domains by femtosecond laser pulses promotes a further alteration of the material properties. We separately consider two different mechanisms of material alteration. First, we analyze a photochemical reaction initiated by the two-photon absorption of light near the plasmonic nanoparticle within the matrix. We show that the spatial distribution of the products of such a reaction changes the symmetry of the material, resulting in the appearance of anisotropy in the initially isotropic material or even in the loss of the center of symmetry. Second, we analyze the efficiency of a thermally-activated chemical reaction at the surface of a plasmonic particle and the distribution of the product of such a reaction just near the metal nanoparticle irradiated by an ultrashort laser pulse.

  1. Present state of applying diode laser in Toyota Motor Corp.

    Science.gov (United States)

    Terada, Masaki; Nakamura, Hideo

    2003-03-01

    Since the mid-1980s, Toyota Motor Corporation has applied CO2 lasers and YAG lasers to machine (welding, piercing, cutting, surface modifying etc.) automobile parts. In recent years diode lasers, which are excellent in terms of cost performance, are now available on the market as a new type of oscillator and are expected to bring about a new age in laser technology. Two current problems with these lasers, however, are the lack of sufficient output and the difficulty in improving the focusing the beam, which is why it has not been easy to apply them to the machining of metal parts in the past. On the other hand, plastics can be joined with low energy because they have a lower melting point than metal and the rate of absorption of the laser is easy to control. Moreover, because the high degree of freedom in molding plastic parts results in many complex shapes that need to be welded, Toyota is looking into the use of diode lasers to weld plastic parts. This article will introduce the problems of plastics welding and the methods to solve them referring to actual examples.

  2. Computational science simulation of laser materials processing and provision of their irradiation conditions

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu

    2016-01-01

    In laser processing, it is necessary for achieving the intended performance and product, to understand the complex physical courses including melting and solidification phenomena occurring in laser processing, and thus to set proper laser irradiation conditions. This condition optimization work requires an enormous amount of overhead due to repeated efforts, and has become a cause for inhibiting the introduction of laser processing technology into the industrial field that points to the small lot production of many products. JAEA tried to make it possible to quantitatively handle the complex physical course from the laser light irradiation to the fabricating material until the completion of processing, and is under development of the computational science simulation code SPLICE that connects micro behavior and macro behavior through a multi-level scale model. This SPLICE is able to visualize the design space and to reduce the overhead associated with the setting of laser irradiation conditions and the like, which gives the prospect of being effective as a tool for front-loading. This approach has been confirmed to be effective for the welding and fusing process. (A.O.)

  3. Design of a high pulse repitition frequency carbon dioxide laser for processing high damage threshold materials

    Science.gov (United States)

    Chatwin, Christopher R.; McDonald, Donald W.; Scott, Brian F.

    1989-07-01

    The absence of an applications led design philosophy has compromised both the development of laser source technology and its effective implementation into manufacturing technology in particular. For example, CO2 lasers are still incapable of processing classes of refractory and non-ferrous metals. Whilst the scope of this paper is restricted to high power CO2 lasers; the design methodology reported herein is applicable to source technology in general, which when exploited, will effect an expansion of applications. The CO2 laser operational envelope should not only be expanded to incorporate high damage threshold materials but also offer a greater degree of controllability. By a combination of modelling and experimentation the requisite beam characteristics, at the workpiece, were determined then utilised to design the Laser Manufacturing System. The design of sub-system elements was achieved by a combination of experimentation and simulation which benefited from a comprehensive set of software tools. By linking these tools the physical processes in the laser - electron processes in the plasma, the history of photons in the resonator, etc. - can be related, in a detailed model, to the heating mechanisms in the workpiece.

  4. Thermal coupling and damage mechanisms of laser radiation on selected materials

    International Nuclear Information System (INIS)

    Schwirzke, F.; Jenkins, W.F.; Schmidt, W.R.

    1983-01-01

    High power laser beams interact with targets by a variety of thermal, impulse, and electrical effects. Energy coupling is considerably enhanced once surface electrical breakdown occurs. The laser heated plasma then causes surface damage via thermal evaporation, ion sputtering, and unipolar arcing. While the first two are purely thermal and mechanical effects, the last one, unipolar arcing, is an electrical plasma-surface interaction process which leads to crater formation, usually called laser-pitting, a process which was often observed but not well understood. Unipolar arcing occurs when a plasma of sufficiently high electron temperature interacts with a surface. Without an external voltage applied, many electrical micro-arcs burn between the surface and the plasma, driven by local variations of the sheath potential with the surface acting as both the cathode and anode. Laser induced unipolar arcing represents the most damaging and non-uniform plasma-surface interaction process since the energy available in the plasma concentrates towards the cathode spots. This causes cratering of the materials surface. The ejection of material in the form of small jets from the craters leads to ripples in the critical plasma density contour. This in turn contributes to the onset of plasma instabilities, small scale magnetic field generation and laser beam filamentation. The ejection of a plasma jet from the unipolar arc crater also causes highly localized shock waves to propagate into the target, softening it in the process. Thus, local surface erosion by unipolar arcing is much more severe than for uniform energy deposition

  5. Effect of Laser Power on Material Efficiency, Layer Height and Width of Laser Metal Deposited Ti6Al4V

    CSIR Research Space (South Africa)

    Mahamood, RM

    2012-10-01

    Full Text Available /sec) during deposition is   600  DFRP TPm ----------------------------------- (3) PFR is the powder flow rate in g/min and the 60 in equation 3 is a conversion factor for the powder flow rate to g/sec. The powder efficiency (μ) is given by:   100/ 0... Alloys for Aerospace Applications, in: Titanium and Titanium Alloys, Advanced Engineering Materials, 5, 2003, pp.419-427. [3] Y. Lu, H.B. Tang, Y.L. Fang, D. Liu, H.M. Wang, Microstructure evolution of sub-critical annealed laser deposited Ti–6Al–4V...

  6. Examination of material manufactured by direct metal laser sintering (DMLS

    Directory of Open Access Journals (Sweden)

    J. Dobránsky

    2015-07-01

    Full Text Available This article is concerned with assessing microstructural properties of metal component manufactured by additive DMLS technology. Two series of samples were assessed. The first one was manufactured without heat treatment. Samples in the second series were treated with heat in order to assess increase in hardness and influence on modification of microstructure. Subsequently, values of hardness were measured by Vickers Hardness Test and modification of microstructure was observed by optical microscope. Evaluations were carried out in three planes in order to assess the differences in layering of material during its processing. Differences in values of hardness and microstructural components were discovered by examination of changes in three planes.

  7. Nonlinear optics and solid-state lasers advanced concepts, tuning-fundamentals and applications

    CERN Document Server

    Yao, Jianquan

    2012-01-01

    This book covers the complete spectrum of nonlinear optics and all solid state lasers.The book integrates theory, calculations and practical design, technology, experimental schemes and applications. With the expansion and further development of Laser technology, the wavelength spectrum of Lasers had to be enlarged, even to be tunable which requires the use of nonlinear optical and Laser tunable technology. It systematically summarizes and integrates the analysis of international achievements within the last 20 years in this field. It will be helpful for university teachers, graduate students as well as engineers.

  8. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology.

    Science.gov (United States)

    Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi

    2016-01-01

    Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.

  9. Sustainable Entangled State of Two Qutrits Under Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Biryukov A.А.

    2015-01-01

    Full Text Available We study the evolution of quantum entanglement in the model of two identical qubits interacting with a single-mode laser field. The density matrix and Peres-Horodecki parameter are calculated within the frameworks of path-integral formalism. The quantum entanglement measure is shown to be strongly dependent upon the phase difference between the laser radiation acting on each cubit. This observation may offer the possibility of quantum entanglement stationary control by varying the distance between the qubits.

  10. A Simple Approach for Enhancing the Output Performance of Solar-Pumped Solid-State Lasers

    Directory of Open Access Journals (Sweden)

    Dawei Liang

    2009-01-01

    Full Text Available A simple truncated fused silica elliptical cavity is proposed to enhance the output performance of solar-pumped solid-state lasers. The imaging property of the truncated elliptical cavity ensures an enhanced absorption distribution within an Nd:YAG rod. Optimum pumping parameters are found through ZEMAX nonsequential ray-tracing and LASCAD laser cavity analyses. Compared with the output laser performance of a 3D-compound parabolic concentrator-2D-compound parabolic concentrator (3D-CPC-2D-CPC cavity, the truncated cavity provides 11% more multimode and 72.7% more TEM00 laser powers. A laser beam of high beam quality can be produced efficiently. The standard tracking error for multimode laser power is also reduced to only 4.0% by the truncated cavity.

  11. Electron-hydrogen collisions with dressed target and Volkov projectile states in a laser field

    International Nuclear Information System (INIS)

    Smith, P.H.G.; Flannery, M.R.

    1992-01-01

    Cross sections for the 1S-2S and 1S-2P O transitions in laser-assisted e - -H(1S) collisions are calculated in both the multi-channel eikonal treatment and the Born wave approximation, as a function of impact energy and laser field intensity. The laser considered is a monotonic, plane-polarized CO 2 laser (photon energy = 0.117 eV) with the polarization direction parallel to the initial projectile velocity. The first part of this paper confines the laser perturbation to the bound electrons of the atom. The second part extends the laser perturbation to the projectile electron, and the familiar Volkov dressed states are used. (author)

  12. Femtosecond laser ablation of single-wall carbon nanotube-based material

    International Nuclear Information System (INIS)

    Danilov, Pavel A; Ionin, Andrey A; Kudryashov, Sergey I; Makarov, Sergey V; Mel’nik, Nikolay N; Rudenko, Andrey A; Yurovskikh, Vladislav I; Zayarny, Dmitry V; Lednev, Vasily N; Obraztsova, Elena D; Pershin, Sergey M; Bunkin, Alexey F

    2014-01-01

    Single- and multi-shot femtosecond laser surface ablation of a single-wall carbon nanotube-based substrate at 515- and 1030 nm wavelengths was studied by scanning electron microscopy and micro-Raman spectroscopy. The laser ablation proceeds in two ways: as the low-fluence mesoscopic shallow disintegration of the surface nanotube packing, preserving the individual integrity and the semiconducting character of the nanotubes or as the high-fluence deep material removal apparently triggered by the strong intrinsic or impurity-mediated ablation of the individual carbon nanotubes on the substrate surface. (letter)

  13. A history of semi-active laser dome and window materials

    Science.gov (United States)

    Sullivan, Roger M.

    2014-05-01

    Semi-Active Laser (SAL) guidance systems were developed starting in the mid-1960's and today form an important class of precision guided weapons. The laser wavelengths generally fall in the short wave infrared region of the spectrum. Relative to passive, image based, infrared seekers the optical demands placed on the domes or windows of SAL seekers is very modest, allowing the use of low cost, easily manufactured materials, such as polycarbonate. This paper will examine the transition of SAL window and dome science and technology from the laboratory to battlefield, with special emphasis on the story of polycarbonate domes.

  14. Q-switched all-solid-state lasers and application in processing of thin-film solar cell

    Science.gov (United States)

    Liu, Liangqing; Wang, Feng

    2009-08-01

    Societal pressure to renewable clean energy is increasing which is expected to be used as part of an overall strategy to address global warming and oil crisis. Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by government, of which the costs and prices lower continuously. The next generation thin-film devices are considered to be more efficiency and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. All-solid-state Q-switched lasers are the technology of choice for these processes, due to their advantages of compact configuration, high peak-value power, high repeat rate, excellent beam quality and stability, delivering the desired combination of high throughput and narrow, clean scribes. The end pumped all-solid-state lasers could achieve 1064nm IR resources with pulse width of nanoseconds adopting acoustic-optics Q-switch, shorter than 20ns. The repeat rate is up to 100kHz and the beam quality is close to diffraction limit. Based on this, 532nm green lasers, 355nm UV lasers and 266nm DUV lasers could be carried out through nonlinear frequency conversion. Different wave length lasers are chose to process selective materials. For example, 8-15 W IR lasers are used to scribe the TCO film (P1); 1-5 W green lasers are suitable for scribing the active semiconductor layers (P2) and the back contact layers (P3). Our company, Wuhan Lingyun Photo-electronic System Co. Ltd, has developed 20W IR and 5W green end-pumped Q-switched all-solid-state lasers for thin-film solar industry. Operating in high repeat rates, the speed of processing is up to 2.0 m/s.

  15. Theoretical study of laser feedback interferometry for dynamical material's behaviour studies

    International Nuclear Information System (INIS)

    Le-Barbier, Laura

    2017-01-01

    The purpose of this thesis is to study the feasibility of optical feedback interferometry (OFI) for measuring velocities for dynamical material's behaviour studies. Dynamical material's behaviour studies permit to analyse the shocked material when subjects to shocks (laser shocks, isentropic compression, projectiles, etc.). In these conditions, we seek to measure velocities up to 10 km/s. The OFI technique is regularly used as an embedded system to measure slow velocities in various fields. However, very few studies have been performed for determining velocities measurement limits for this system. As a matter of fact, the optical feedback induces nonlinear effects into the laser's cavity: it disrupts the laser's emitted optical power. Depending on the optical feedback strength, the laser can show chaotic behaviour, then it is no longer possible to get the information for the target's velocity or displacement regarding the signal. In this study, we have been developing mathematical models and performing a wide range of numerical simulations to study the performances and the limits of the OFI technique. We have been also studying the influence of the targets reflectivity, the length and the modulation frequency of the external cavity. (author) [fr

  16. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency

    Science.gov (United States)

    Zeegers, Guido P.; Günthardt, Barbara F.; Zenobi, Renato

    2016-04-01

    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm-2) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements.

  17. Pulsed Laser-Induced Effects in the Material Properties of Tungsten Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, BC, 22860 (Mexico); Camacho-Lopez, S [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, BC, 22860 (Mexico); Camacho-Lopez, M A [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Paseo Colon y Tollocan, Toluca Edo. de Mexico, 50110 (Mexico); Sanchez-Perez, C [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, UNAM, Apdo. Postal 70-186, Mexico DF 04510 (Mexico); Esparza-GarcIa, A [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, UNAM, Apdo. Postal 70-186, Mexico DF 04510 (Mexico)

    2007-04-15

    In this work we present evidence of photo-induced effects on crystalline Tungsten (W) films. A frequency doubled Nd:YAG (5ns) laser was used in our experiments. The W thin films were deposited on silicon substrates by the DC-sputtering technique using W (Lesker, 99.95% purity) targets in an argon atmosphere. The crystalline phase of the deposited W films was determined by X-ray diffraction. Our experimental results show clear evidence that several events take place as a consequence of exposure of the W films to the laser nanosecond pulses. One of those events has a chemical effect that results in a significant degree of oxidation of the film; a second event affects the structural nature of the initial W material, resulting into a material phase change; and a third event changes the initially homogeneous morphology of the film into an unexpected porous material film. As it has been confirmed by the experiments, all of these effects are laser fluence dependent. A full post exposure analysis of the W thin films included Energy Dispersive Spectrometry to determine the degree of oxidation of the W film; a micro-Raman system was used to explore and to study the transition of the crystalline W to the amorphous-crystalline WO{sub 3} phase; further analysis with Scanning Electron Microscopy showed a definite laser-induced porosity which changes the initial homogeneous film into a highly porous film with small features in the range from 100 to 300 nm.

  18. Pulsed Laser-Induced Effects in the Material Properties of Tungsten Thin Films

    International Nuclear Information System (INIS)

    Evans, R; Camacho-Lopez, S; Camacho-Lopez, M A; Sanchez-Perez, C; Esparza-GarcIa, A

    2007-01-01

    In this work we present evidence of photo-induced effects on crystalline Tungsten (W) films. A frequency doubled Nd:YAG (5ns) laser was used in our experiments. The W thin films were deposited on silicon substrates by the DC-sputtering technique using W (Lesker, 99.95% purity) targets in an argon atmosphere. The crystalline phase of the deposited W films was determined by X-ray diffraction. Our experimental results show clear evidence that several events take place as a consequence of exposure of the W films to the laser nanosecond pulses. One of those events has a chemical effect that results in a significant degree of oxidation of the film; a second event affects the structural nature of the initial W material, resulting into a material phase change; and a third event changes the initially homogeneous morphology of the film into an unexpected porous material film. As it has been confirmed by the experiments, all of these effects are laser fluence dependent. A full post exposure analysis of the W thin films included Energy Dispersive Spectrometry to determine the degree of oxidation of the W film; a micro-Raman system was used to explore and to study the transition of the crystalline W to the amorphous-crystalline WO 3 phase; further analysis with Scanning Electron Microscopy showed a definite laser-induced porosity which changes the initial homogeneous film into a highly porous film with small features in the range from 100 to 300 nm

  19. Laser material processing with tightly focused cylindrical vector beams

    Energy Technology Data Exchange (ETDEWEB)

    Drevinskas, Rokas, E-mail: rd1c12@soton.ac.uk; Zhang, Jingyu; Beresna, Martynas; Gecevičius, Mindaugas; Kazansky, Peter G. [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Kazanskii, Andrey G. [Physics Department, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Svirko, Yuri P. [Physics Department, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Institute of Photonics, University of Eastern Finland, P.O.BOX 111, FI-80101 Joensuu (Finland)

    2016-05-30

    We demonstrate a comprehensive modification study of silica glass, crystalline silicon, and amorphous silicon film, irradiated by tightly focused cylindrical vector beams with azimuthal and radial polarizations. The evidence of the longitudinal field associated with radial polarization is revealed by second harmonic generation in z-cut lithium niobate crystal. Despite the lower threshold of ring-shaped modification of silicon materials, the modification in the center of single pulse radially polarized beam is not observed. The phenomenon is interpreted in terms of the enhanced reflection of longitudinal component at the interface with high-index contrast, demonstrating that the longitudinal component is inefficient for the flat surface modification. Enhanced interaction of the longitudinal light field with silicon nanopillar structures produced by the first pulse of double-pulse irradiation is also demonstrated.

  20. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    Science.gov (United States)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  1. Dynamics of injection locking in a solid-state laser with intracavity second-harmonic generation

    International Nuclear Information System (INIS)

    Zolotoverkh, I I; Lariontsev, E G

    2000-01-01

    The dynamics of oscillation in a solid-state laser with intracavity second-harmonic generation under the influence of an external signal at the second-harmonic frequency injected into its cavity in the presence of feedback at the double frequency is theoretically studied. Boundaries of the regions of injection locking for three stationary laser states differing in the nonlinear phase incursion caused by radiation conversion into the second harmonic are found. Relaxation oscillations in the stationary state of injection locking are studied. It is shown that the second relaxation frequency, which is related to phase perturbations of the second harmonic and perturbations of the phase difference of waves in a nonlinear crystal, is excited in a single-mode solid-state laser in addition to the fundamental frequency of relaxation oscillations. Conditions are found under which relaxation oscillations at the second relaxation frequency are excited. (lasers)

  2. Emerging solid-state laser technology by lidar/DIAL remote sensing

    Science.gov (United States)

    Killinger, Dennis

    1992-01-01

    Significant progress has been made in recent years in the development of new, solid-state laser sources. This talk will present an overview of some of the new developments in solid-state lasers, and their application toward lidar/DIAL measurements of the atmosphere. Newly emerging lasers such as Ho:YAG, Tm:YAG, OPO, and Ti:Sapphire will be covered, along with the spectroscopic parameters required for differential operational modes of atmospheric remote sensing including Doppler-Windshear lidar, Tunable laser detection of water/CO2, and broad linewidth OPO's for open path detection of pollutant hydrocarbon gases. Additional considerations of emerging laser technology for lidar/DIAL will also be covered.

  3. Development of a state radioactive materials storage facility

    International Nuclear Information System (INIS)

    Schmidt, P.S.

    1995-01-01

    The paper outlines the site selection and facility development processes of the state of Wisconsin for a radioactive materials facility. The facility was developed for the temporary storage of wastes from abandoned sites. Due to negative public reaction, the military site selected for the facility was removed from consideration. The primary lesson learned during the 3-year campaign was that any project involving radioactive materials is a potential political issue

  4. Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  5. Quantum state population transfer of lithium atoms induced by frequency-chirped laser pulses

    International Nuclear Information System (INIS)

    Ma Huanqiang; Zhang Xianzhou; Jia Guangrui; Zhang Yonghui; Jiang Lijuan

    2011-01-01

    Using the time-dependent multilevel approach (TDMA) and B-splines function, we have calculated the five quantum state population transfer of rydberg lithium atoms. We also analyse the influence of the four major parameters of the frequency-chirped laser pulses field on transition. The result shows that the population can be completely transferred to the target state by changing the parameters of the laser pulse and achieve manual controls to a certain degree. (authors)

  6. Nuclear material control and accounting safeguards in the United States

    International Nuclear Information System (INIS)

    Woltermann, H.A.; Rudy, C.R.; Rakel, D.A.; DeVer, E.A.

    1982-01-01

    Material control and accounting (MC and A) of special nuclear material (SNM) must supplement physical security to protect SNM from unlawful use such as terrorist activities. This article reviews MC and A safeguards of SNM in the United States. The following topics are covered: a brief perspective and history of MC and A safeguards, current MC and A practices, measurement methods for SNM, historical MC and A performance, a description of near-real-time MC and A systems, and conclusions on the status of MC and A in the United States

  7. Solid State Ionics Advanced Materials for Emerging Technologies

    Science.gov (United States)

    Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.

    2006-06-01

    . Invited papers. Cathodic properties of Al-doped LiCoO[symbol] prepared by molten salt method Li-Ion batteries / M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari. Layered ion-electron conducting materials / M. A. Santa Ana, E. Benavente, G. González. LiNi[symbol]Co[symbol]O[symbol] cathode thin-film prepared by RF sputtering for all-solid-state rechargeable microbatteries / X. J. Zhu ... [et al.] -- Contributed papers. Contributed papers. Nanocomposite cathode for SOFCs prepared by electrostatic spray deposition / A. Princivalle, E. Djurado. Effect of the addition of nanoporous carbon black on the cycling characteristics of Li[symbol]Co[symbol](MoO[symbol])[symbol] for lithium batteries / K. M. Begam, S. R. S. Prabaharan. Protonic conduction in TiP[symbol]O[symbol] / V. Nalini, T. Norby, A. M. Anuradha. Preparation and electrochemical LiMn[symbol]O[symbol] thin film by a solution deposition method / X. Y. Gan ... [et al.]. Synthesis and characterization LiMPO[symbol] (M = Ni, Co) / T. Savitha, S. Selvasekarapandian, C. S. Ramya. Synthesis and electrical characterization of LiCoO[symbol] LiFeO[symbol] and NiO compositions / A. Wijayasinghe, B. Bergman. Natural Sri Lanka graphite as conducting enhancer in manganese dioxide (Emd type) cathode of alkaline batteries / N. W. B. Balasooriya ... [et al.]. Electrochemical properties of LiNi[symbol]Al[symbol]Zn[symbol]O[symbol] cathode material synthesized by emulsion method / B.-H. Kim ... [et al.]. LiNi[symbol]Co[symbol]O[symbol] cathode materials synthesized by particulate sol-gel method for lithium ion batteries / X. J. Zhu ... [et al.]. Pulsed laser deposition of highly oriented LiCoO[symbol] and LiMn[symbol]O[symbol] thin films for microbattery applications / O. M. Hussain ... [et al.]. Preparation of LiNi[symbol]Co[symbol]O[symbol] thin films by a sol-gel method / X. J. Zhu ... [et al.]. Electrochemical lithium insertion into a manganese dioxide electrode in aqueous solutions / M. Minakshi ... [et al.]. AC impedance

  8. PERFORMANCE OPTIMIZATION OF THE DIODE-PUMPED SOLID-STATE LASER FOR SPACE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    D. A. Arkhipov

    2015-11-01

    Full Text Available Subject of Research. Thermophysical and optical techniques of parameter regulation for diode pumped solid-state laser are studied as applied to space laser communication and laser ranging lines. Methods. The investigations are carried out on the base of the original design of diode pumped solid-state laser module that includes the following: Nd:YAG slab element, diode pumped by 400W QCW produced by NORTHROP GRUMMAN; two-pass unstable resonator with rotation of the laser beam aperture about its axis through 1800; the output mirror of the resonator with a variable reflection coefficient; hyperthermal conductive plates for thermal stabilization of the laser diode generation modes. The presence of thermal conductive plates excludes conventional running water systems applied as cooling systems for solid-state laser components. The diodes temperature stabilization is achieved by applying the algorithm of pulse-width modulation of power of auxiliary electric heaters. To compensate for non-stationary thermal distortions of the slab refractive index, the laser resonator scheme comprises a prism reflector with an apex angle of 1200. Narrow sides of the prism are covered with reflective coating, and its wide side is sprayed with antireflection coating. The beam aperture is turned around its axis through 1800 because of triple reflection of the beam inside the prism. The turning procedure leads to compensating for the output beam phase distortions in view of symmetric character of the aberrations of slab refractive index. To suppress parasitic oscillations inside the slab, dielectric coatings of wide sides of the slab are used. Main Results. We have demonstrated theoretically and experimentally that the usage of hyperthermal conductive plates together with the algorithm of pulse-width modulation provides stabilizing of the diode substrate temperature accurate within ± 0.1 °С and smoothing the temperature distribution along the plate surface accurate

  9. Reproducible and Verifiable Equations of State Using Microfabricated Materials

    Science.gov (United States)

    Martin, J. F.; Pigott, J. S.; Panero, W. R.

    2017-12-01

    Accurate interpretation of observable geophysical data, relevant to the structure, composition, and evolution of planetary interiors, requires precise determination of appropriate equations of state. We present the synthesis of controlled-geometry nanofabricated samples and insulation layers for the laser-heated diamond anvil cell. We present electron-gun evaporation, sputter deposition, and photolithography methods to mass-produce Pt/SiO2/Fe/SiO2 stacks and MgO insulating disks to be used in LHDAC experiments to reduce uncertainties in equation of state measurements due to large temperature gradients. We present a reanalysis of published iron PVT data to establish a statistically-valid extrapolation of the equation of state to inner core conditions with quantified uncertainties, addressing the complication of covariance in equation of state parameters. We use this reanalysis, together with the synthesized samples, to propose a scheme for measurement and validation of high-precision equations of state relevant to the Earth and super-Earth exoplanets.

  10. Prototype of an energy enhancer for mask based laser materials processing

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    In general mask based laser material processing (MBLMP) is a process which suffers from a low energy efficiency, because the majority of the laser light is absorbed in or reflected by the mask. We have developed a device called an energy enhancer which is capable of improving the energy efficienc...... component reflectivity and alignment sensitivity are investigated in order to evaluate the possibility of making commercial use of the device. The obtainable image quality and how this is influenced by the focusing and imaging system is discussed in some detail....... by a factor of 2 - 4 for a typical TEA-CO2 system for mask based laser marking. A simple ray-tracing model has been built in order to design and optimise the energy enhancer. Thus we present experimental results as well as simulations and show fine accordance between the two. Important system parameters like...

  11. Laser Photolysis and Thermolysis of Organic Selenides and Tellurides for Chemical Gas-phase Deposition of Nanostructured Materials

    Directory of Open Access Journals (Sweden)

    Josef Pola

    2009-03-01

    Full Text Available Laser radiation-induced decomposition of gaseous organic selenides and tellurides resulting in chemical deposition of nanostructured materials on cold surfaces is reviewed with regard to the mechanism of the gas-phase decomposition and properties of the deposited materials. The laser photolysis and laser thermolysis of the Se and Te precursors leading to chalcogen deposition can also serve as a useful approach to nanostructured chalcogen composites and IVA group (Si, Ge, Sn element chalcogenides provided that it is carried out simultaneously with laser photolysis or thermolysis of polymer and IVA group element precursor.

  12. Material specification for ductile cast iron in the United States

    International Nuclear Information System (INIS)

    Sorenson, K.B.

    1987-01-01

    The United States currently does not have formal design criteria for qualifying ductile cast iron (DCI) transportation casks. There is also no dedicated material standard for DCI for this particular application. A draft ASTM material specification has been written and is currently in the ASTM approval process. This paper reviews the brief history of the development of the specification, the technical basis for the material properties, the ASTM approval process and the current status of the draft specification. The expected implications of having an adopted ASTM specification on the licensing process are also discussed. (orig./DG)

  13. Laser Welding Characterization of Kovar and Stainless Steel Alloys as Suitable Materials for Components of Photonic Devices Packaging

    International Nuclear Information System (INIS)

    Fadhali, M. M. A.; Zainal, Saktioto J.; Munajat, Y.; Jalil, A.; Rahman, R.

    2010-01-01

    The weldability of Kovar and stainless steel alloys by Nd:YAG laser beam is studied through changing of some laser beam parameters. It has been found that there is a suitable interaction of the pulsed laser beam of low power laser pulse with both the two alloys. The change of thermophysical properties with absorbed energy from the laser pulse is discussed in this paper which reports the suitability of both Kovar and stainless steel 304 as the base materials for photonic devices packaging. We used laser weld system (LW4000S from Newport) which employs Nd:YAG laser system with two simultaneous beams output for packaging 980 nm high power laser module. Results of changing both laser spot weld width and penetration depth with changing both the pulse peak power density, pulse energy and pulse duration show that there are good linear relationships between laser pulse energy or peak power density and pulse duration with laser spot weld dimensions( both laser spot weld width and penetration depth). Therefore we concluded that there should be an optimization for both the pulse peak power and pulse duration to give a suitable aspect ratio (laser spot width to penetration depth) for achieving the desired welds with suitable penetration depth and small spot width. This is to reduce the heat affected zone (HAZ) which affects the sensitive optical components. An optimum value of the power density in the order of 10 5 w/cm 2 found to be suitable to induce melting in the welded joints without vaporization. The desired ratio can also be optimized by changing the focus position on the target material as illustrated from our measurements. A theoretical model is developed to simulate the temperature distribution during the laser pulse heating and predict the penetration depth inside the material. Samples have been investigated using SEM with EDS. The metallographic measurements on the weld spot show a suitable weld yield with reasonable weld width to depth ratio.

  14. Hybrid laser arc welding: State-of-art review

    Science.gov (United States)

    Acherjee, Bappa

    2018-02-01

    Hybrid laser arc welding simultaneously utilizes the arc welding and the laser welding, in a common interaction zone. The synergic effects of laser beam and eclectic arc in the same weld pool results in an increase of welding speed and penetration depth along with the enhancement of gap bridging capability and process stability. This paper presents the current status of this hybrid technique in terms of research, developments and applications. Effort is made to present a comprehensive technical know-how about this process through a systematic review of research articles, industrial catalogues, technical notes, etc. In the introductory part of the review, an overview of the hybrid laser arc welding is presented, including operation principle, process requirements, historical developments, benefits and drawbacks of the process. This is followed by a detailed discussion on control parameters those govern the performance of hybrid laser arc welding process. Thereafter, a report of improvements of performance and weld qualities achieved by using hybrid welding process is presented based on review of several research papers. The succeeding sections furnish the examples of industrial applications and the concluding remarks.

  15. Pulsed laser deposition of II-VI and III-V semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Mele, A.; Di Palma, T.M.; Flamini, C.; Giardini Guidoni, A. [Rome, Univ. `La Sapienza` (Italy). Dep. di Chimica

    1998-12-01

    Pulsed laser irradiation of a solid target involves electronic excitation and heating, followed by expansion from the target of the elliptical gas cloud (plume) which can be eventually condensed on a suitable substrate. Pulsed laser ablation has been found to be a valuable technique to prepare II-VI and III-V thin films of semiconductor materials. Pulsed laser ablation deposition is discussed in the light of the results of an investigation on CdS, CdSe, CdTe and CdSe/CdTe multilayers and AIN, GaN and InN together with Al-Ga-In-N heterostructures. [Italiano] L`irradiazione di un target solido, mediante un fascio laser impulsato, genera una serie di processi che possono essere schematizzati come segue: riscaldamento ed eccitazione elettronica del target, da cui consegue l`espulsione di materiale sotto forma di una nube gassosa di forma ellissoidale (plume), che espande e puo` essere fatta depositare su un opportuno substrato. L`ablazione lasersi e` rivelata una tecnica valida per preparare film sottili di composti di elementi del II-VI e del III-V gruppo della tavola periodica. La deposizione via ablazione laser viene discussa alla luce dei risultati ottenuti nella preparazione di film di CdS, CdSe, CdTe e di film multistrato di CdSe/CdTe, di film di AIN, GaN, InN e di eterostrutture di Al-Ga-In-N.

  16. Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis

    International Nuclear Information System (INIS)

    Hussain, T; Gondal, M A

    2013-01-01

    Laser induced breakdown spectroscopy (LIBS) is a novel technique for elemental analysis based on laser-generated plasma. In this technique, laser pulses are applied for ablation of the sample, resulting in the vaporization and ionization of sample in hot plasma which is finally analyzed by the spectrometer. The elements are identified by their unique spectral signatures. LIBS system was developed for elemental analysis of solid and liquid samples. The developed system was applied for qualitative as well as quantitative measurement of elemental concentration present in iron slag and open pit ore samples. The plasma was generated by focusing a pulsed Nd:YAG laser at 1064 nm on test samples to study the capabilities of LIBS as a rapid tool for material analysis. The concentrations of various elements of environmental significance such as cadmium, calcium, magnesium, chromium, manganese, titanium, barium, phosphorus, copper, iron, zinc etc., in these samples were determined. Optimal experimental conditions were evaluated for improving the sensitivity of developed LIBS system through parametric dependence study. The laser-induced breakdown spectroscopy (LIBS) results were compared with the results obtained using standard analytical technique such as inductively couple plasma emission spectroscopy (ICP). Limit of detection (LOD) of our LIBS system were also estimated for the above mentioned elements. This study demonstrates that LIBS could be highly appropriate for rapid online analysis of iron slag and open pit waste.

  17. Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis

    Science.gov (United States)

    Hussain, T.; Gondal, M. A.

    2013-06-01

    Laser induced breakdown spectroscopy (LIBS) is a novel technique for elemental analysis based on laser-generated plasma. In this technique, laser pulses are applied for ablation of the sample, resulting in the vaporization and ionization of sample in hot plasma which is finally analyzed by the spectrometer. The elements are identified by their unique spectral signatures. LIBS system was developed for elemental analysis of solid and liquid samples. The developed system was applied for qualitative as well as quantitative measurement of elemental concentration present in iron slag and open pit ore samples. The plasma was generated by focusing a pulsed Nd:YAG laser at 1064 nm on test samples to study the capabilities of LIBS as a rapid tool for material analysis. The concentrations of various elements of environmental significance such as cadmium, calcium, magnesium, chromium, manganese, titanium, barium, phosphorus, copper, iron, zinc etc., in these samples were determined. Optimal experimental conditions were evaluated for improving the sensitivity of developed LIBS system through parametric dependence study. The laser-induced breakdown spectroscopy (LIBS) results were compared with the results obtained using standard analytical technique such as inductively couple plasma emission spectroscopy (ICP). Limit of detection (LOD) of our LIBS system were also estimated for the above mentioned elements. This study demonstrates that LIBS could be highly appropriate for rapid online analysis of iron slag and open pit waste.

  18. Indirect Versus Direct Heating of Sheet Materials: Superplastic Forming and Diffusion Bonding Using Lasers

    Science.gov (United States)

    Jocelyn, Alan; Kar, Aravinda; Fanourakis, Alexander; Flower, Terence; Ackerman, Mike; Keevil, Allen; Way, Jerome

    2010-06-01

    Many from within manufacturing industry consider superplastic forming (SPF) to be ‘high tech’, but it is often criticized as too complicated, expensive, slow and, in general, an unstable process when compared to other methods of manipulating sheet materials. Perhaps, the fundamental cause of this negative perception of SPF, and also of diffusion bonding (DB), is the fact that the current process of SPF/DB relies on indirect sources of heating to produce the conditions necessary for the material to be formed. Thus, heat is usually derived from the electrically heated platens of hydraulic presses, to a lesser extent from within furnaces and, sometimes, from heaters imbedded in ceramic moulds. Recent evaluations of these isothermal methods suggest they are slow, thermally inefficient and inappropriate for the process. In contrast, direct heating of only the material to be formed by modern, electrically efficient, lasers could transform SPF/DB into the first choice of designers in aerospace, automotive, marine, medical, architecture and leisure industries. Furthermore, ‘variable temperature’ direct heating which, in theory, is possible with a laser beam(s) may provide a means to control material thickness distribution, a goal of enormous importance as fuel efficient, lightweight structures for transportation systems are universally sought. This paper compares, and contrasts, the two systems and suggests how a change to laser heating might be achieved.

  19. Evaluation of laser induced breakdown spectroscopy for the determination of micronutrients in plant materials

    International Nuclear Information System (INIS)

    Trevizan, Lilian Cristina; Santos, Dario; Elgul Samad, Ricardo; Dias Vieira, Nilson; Nunes, Lidiane Cristina; Aparecida Rufini, Iolanda; Krug, Francisco Jose

    2009-01-01

    Laser induced breakdown spectroscopy (LIBS) has been evaluated for the determination of micronutrients (B, Cu, Fe, Mn and Zn) in pellets of plant materials, using NIST, BCR and GBW biological certified reference materials for analytical calibration. Pellets of approximately 2 mm thick and 15 mm diameter were prepared by transferring 0.5 g of powdered material to a 15 mm die set and applying 8.0 tons cm -2 . An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm (200 mJ per pulse, 10 Hz) and an Echelle spectrometer with ICCD detector. Repeatability precision varied from 4 to 30% from measurements obtained in 10 different positions (8 laser shots per test portion) in the same sample pellet. Limits of detection were appropriate for routine analysis of plant materials and were 2.2 mg kg -1 B, 3.0 mg kg -1 Cu, 3.6 mg kg -1 Fe, 1.8 mg kg -1 Mn and 1.2 mg kg -1 Zn. Analysis of different plant samples were carried out by LIBS and results were compared with those obtained by ICP OES after wet acid decomposition.

  20. Wavelength dependence of femtosecond laser-induced damage threshold of optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Gallais, L., E-mail: laurent.gallais@fresnel.fr; Douti, D.-B.; Commandré, M. [Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, 13013 Marseille (France); Batavičiūtė, G.; Pupka, E.; Ščiuka, M.; Smalakys, L.; Sirutkaitis, V.; Melninkaitis, A. [Laser Research Center, Vilnius University, Saulétekio aléja 10, LT-10223 Vilnius (Lithuania)

    2015-06-14

    An experimental and numerical study of the laser-induced damage of the surface of optical material in the femtosecond regime is presented. The objective of this work is to investigate the different processes involved as a function of the ratio of photon to bandgap energies and compare the results to models based on nonlinear ionization processes. Experimentally, the laser-induced damage threshold of optical materials has been studied in a range of wavelengths from 1030 nm (1.2 eV) to 310 nm (4 eV) with pulse durations of 100 fs with the use of an optical parametric amplifier system. Semi-conductors and dielectrics materials, in bulk or thin film forms, in a range of bandgap from 1 to 10 eV have been tested in order to investigate the scaling of the femtosecond laser damage threshold with the bandgap and photon energy. A model based on the Keldysh photo-ionization theory and the description of impact ionization by a multiple-rate-equation system is used to explain the dependence of laser-breakdown with the photon energy. The calculated damage fluence threshold is found to be consistent with experimental results. From these results, the relative importance of the ionization processes can be derived depending on material properties and irradiation conditions. Moreover, the observed damage morphologies can be described within the framework of the model by taking into account the dynamics of energy deposition with one dimensional propagation simulations in the excited material and thermodynamical considerations.

  1. Factors affecting the laser processing of wood, 2: Effects of material parameters on machinability

    International Nuclear Information System (INIS)

    Arai, T.; Hayashi, D.

    1994-01-01

    Material parameters of wood were investigated. Factors relating to the workpiece include cutting direction, specific gravity, and components of the wood such as resin-like materials. Also studies of the effects of irregular tissue on machinability were made. The interactions between laser beam and materials are often greatly complex. They depend on the characteristics of the laser beam, the thermal constants of the woods, and the optical surface properties of the woods. Therefore, high quality beam mode and carefully selected materials were used. The following laser cutting properties became clear after studying the experimental results. Slow speed cutting and softwoods make slight differences, regarding cutting section and fiber direction. However, it can beconsidered that there is not very much change except in cross-section. Because of the high power density of laser, cutting speed makes no big difference. The irregular tissue of wood cannot maintain normal cutting speed and accuracy. The factor of genuine density eta, which is thought to be entirely independent of each specific gravity, is definedas the concept of density in general. It can be obtained by applying a simple rule, that is, the eta is the ratio of r(u)/rho(s) where rho(s) is the wood substance as the characteristic value of wood, and r(u)is specific gravity. An experimental formula shows that the depth of cut decreases in proportion to the value of eta. However, in the strict sense of the word, data of wood material as a natural resources mustbe treated qualitatively, because there are deviations from regularity due to various reasons. (author)

  2. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts

    International Nuclear Information System (INIS)

    Gaume, R.

    2002-11-01

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb 3+ -doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb 3+ :GdVO 4 , Yb 3+ :GdAlO 3 , Yb 3+ :Gd 2 O 3 , Yb 3+ :Sc 2 SiO 5 , Yb 3+ :CaSc 2 O 4 and Yb 3+ :SrSc 2 O 4 are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb 3+ :BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  3. A Tunable Mid-Infrared Solid-State Laser with a Compact Thermal Control System

    Directory of Open Access Journals (Sweden)

    Deyang Yu

    2018-05-01

    Full Text Available Tunable mid-infrared lasers are widely used in laser spectroscopy, gas sensing and many other related areas. In order to solve heat dissipation problems and improve the environmental temperature adaptability of solid-state laser sources, a tunable all-fiber laser pumped optical parametric oscillator (OPO was established, and a compact thermal control system based on thermoelectric coolers, an automatic temperature control circuit, cooling fins, fans and heat pipes was integrated and designed for the laser. This system is compact, light and air-cooling which satisfies the demand for miniaturization of lasers. A mathematical model and method was established to estimate the cooling capacity of this thermal control system under different ambient environments. A finite-element model was built and simulated to analyze the thermal transfer process. Experiments in room and high temperature environments were carried out and showed that the substrate temperature of a pump module could be maintained at a stable value with controlled precision to 0.2 degrees, while the output power stability of the laser was within ±1%. The experimental results indicate that this compact air-cooling thermal control system could effectively solve the heat dissipation problem of mid-infrared solid-state lasers with a one hundred watts level pump module in room and high temperature environments.

  4. Nanosecond laser pulses for mimicking thermal effects on nanostructured tungsten-based materials

    Science.gov (United States)

    Besozzi, E.; Maffini, A.; Dellasega, D.; Russo, V.; Facibeni, A.; Pazzaglia, A.; Beghi, M. G.; Passoni, M.

    2018-03-01

    In this work, we exploit nanosecond laser irradiation as a compact solution for investigating the thermomechanical behavior of tungsten materials under extreme thermal loads at the laboratory scale. Heat flux factor thresholds for various thermal effects, such as melting, cracking and recrystallization, are determined under both single and multishot experiments. The use of nanosecond lasers for mimicking thermal effects induced on W by fusion-relevant thermal loads is thus validated by direct comparison of the thresholds obtained in this work and the ones reported in the literature for electron beams and millisecond laser irradiation. Numerical simulations of temperature and thermal stress performed on a 2D thermomechanical code are used to predict the heat flux factor thresholds of the different thermal effects. We also investigate the thermal effect thresholds of various nanostructured W coatings. These coatings are produced by pulsed laser deposition, mimicking W coatings in tokamaks and W redeposited layers. All the coatings show lower damage thresholds with respect to bulk W. In general, thresholds decrease as the porosity degree of the materials increases. We thus propose a model to predict these thresholds for coatings with various morphologies, simply based on their porosity degree, which can be directly estimated by measuring the variation of the coating mass density with respect to that of the bulk.

  5. Femtosecond Laser Processing of Membranes for Sensor Devices on different Bulk Materials

    Directory of Open Access Journals (Sweden)

    Johann Zehetner

    2017-01-01

    Full Text Available We demonstrate that diaphragms for sensor applications can be fabricated by laser ablation in a~variety of substrates such as ceramics, glass, sapphire or SiC. However, ablation can cause pinholes in membranes made of SiC, Si and metals. Our experiments indicate that pinhole defects in the ablated membranes are affected by ripple structures related to the polarization of the laser. From our simulation results on light propagation in Laser-Induced Periodic Surface Structures (LIPSS we find out that they are acting as a slot waveguide in SiC material. The results further show that field intensity is enhanced inside LIPSS and spreads out at surface distortions promoting the formation of pinholes. The membrane corner area is most vulnerable for pinhole formation. Pinholes funnel laser radiation into the bulk material causing structural damage and stress in the membrane. We show that a~polarization flipping technique inhibits the formation of pin holes caused by LIPSS.

  6. Momentum and velocity of the ablated material in laser machining of carbon fiber preforms

    Science.gov (United States)

    Mucha, P.; Speker, N.; Weber, R.; Graf, T.

    2013-11-01

    The automation in fabrication of CFRP (carbon-fiber-reinforced plastics) parts demands efficient and low-cost machining technologies. In conventional cutting technologies, tool-wear and low process speeds are some of the reasons for high costs. Thus, the use of lasers is an attractive option for cutting CF-preforms. A typical effect degrading the quality in laser cutting CF-preform is a bulged cutting edge. This effect is assumed to be caused by interaction of the fibers with the ablated material, which leaves the kerf at high velocity. Hence, a method for measuring the momentum and the velocity of the vapor is presented in this article. To measure the momentum of the ablated material, the CF-preform is mounted on a precision scale while cutting it with a laser. The direction of the momentum was determined by measuring the momentum parallel and orthogonal to the CF-preform surface. A change of the direction of the momentum with different cutting-speeds is assessed at constant laser-power. Averaged velocities of the ablation products of up to 300 m/s were determined by measuring the ablated mass and the momentum.

  7. XPS, AES and laser raman spectroscopy: A fingerprint for a materials surface characterisation

    International Nuclear Information System (INIS)

    Zaidi Embong

    2011-01-01

    This review briefly describes some of the techniques available for analysing surfaces and illustrates their usefulness with a few examples such as a metal and alloy. In particular, Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and laser Raman spectroscopy are all described as advanced surface analytical techniques. In analysing a surface, AES and XPS would normally be considered first, with AES being applied where high spatial resolution is required and XPS where chemical state information is needed. Laser Raman spectroscopy is useful for determining molecular bonding. A combination of XPS, AES and Laser Raman spectroscopy can give quantitative analysis from the top few atomic layers with a lateral spatial resolution of < 10 nm. (author)

  8. Thin film removal mechanisms in ns-laser processing of photovoltaic materials

    International Nuclear Information System (INIS)

    Bovatsek, J.; Tamhankar, A.; Patel, R.S.; Bulgakova, N.M.; Bonse, J.

    2010-01-01

    The removal of thin films widely used in photovoltaics (amorphous silicon, tin oxide, zinc oxide, aluminum, and molybdenum) is studied experimentally using multi-kHz Q-switched solid-state lasers at 532 nm and 1064 nm wavelengths. The processing ('scribing') is performed through the film-supporting glass plate at scribing speeds of the order of m/s. The dependence of the film removal threshold on the laser pulse duration (8 ns to 40 ns) is investigated and the results are complemented by a multi-layer thermal model used for numerical simulations of the laser-induced spatio-temporal temperature field within the samples. Possible film removal mechanisms are discussed upon consideration of optical, geometrical, thermal and mechanical properties of the layers.

  9. Optical techniques for solid-state materials characterization

    CERN Document Server

    Prasankumar, Rohit P

    2016-01-01

    This book has comprehensively covered the essential optical approaches needed for solid-state materials characterization. Written by experts in the field, this will be a great reference for students, engineers, and scientists.-Professor Yoke Khin Yap, Michigan Technical University.

  10. Material specification for ductile cast iron in the United States

    International Nuclear Information System (INIS)

    Sorenson, K.B.

    1987-01-01

    The United States currently does not have formal design criteria for qualifying ductile cast iron (DCI) transportation casks. There is also no dedicated material standard for DCI for this particular application. Recognizing the importance of a material standard for this application, Lawrence Livermore Laboratories, in a report to the NRC, recommended that steps be taken to develop an ASTM material specification suitable for spent fuel shipping containers. A draft ASTM material specification has been written and is currently in the ASTM approval process. This paper reviews the brief history of the development of the specification, the technical basis for the material properties, the ASTM approval process and the current status of the draft specification. The expected implications of having an adopted ASTM specification on the licensing process are also discussed. The relationship of fracture toughness to composition, microstructure and tensile properties has been evaluated at Sandia National Laboratories. The first main conclusion reached is that static fracture toughness is essentially decoupled from tensile properties such as yield strength, tensile strength and ductility. The significance of this finding is that tensile properties provided for in existing DCI specifications should not be used as an indicator of a material's ability to resist crack initiation. A material specification which includes fracture toughness requirements is needed to address the brittle fracture concerns. Second, static fracture toughness was found to correlate well with material microstructure; specifically, graphite nodule count or nodule spacing

  11. Low dimensional magnetism and nanograined materials - magnetometry, magnetooptics and laser-ultrasound

    International Nuclear Information System (INIS)

    Krenn, H.; Paltauf, G.; Rumpf, K.; Granitzer, P.; Kozhushko, V.; Nadeem, K.; Hofmayer, M.

    2008-01-01

    of the magnetism of porous FePd and FePt is investigated in collaboration with the TU Graz (Institute of Materials' Science). The electric charging of the compacted powder is performed by loading with an electrolyte and measuring the magnetic response by SQUID-magnetometry. Simulations of magneto-optic Kerr spectra are performed by M. Hofmayer (PhD) for InMnAs-, InMnSb- ferromagnetic semiconductors in quantizing magnetic fields in close cooperation with Univ. Bayreuth (H. Pascher) and Univ. of Notre Dame, USA (J. Furdyna). This modelling project is supported by the NAWI Graz cooperation with TU Graz. The available equipment at the location of the group consists of cryogenic facilities (cryostats, temperature controller), fiber optic sample holder, Nd:Yag solid state laser, time-resolving ultrasound prober, electrochemical cells for deposition using pulsed charging, potentiostat, SQUID-magnetometry, FTIR-spectrometry, time-resolved luminescence in VIS, MOKE-, Faraday-rotation, ESR-spectroscopy, detection and analysis of Barkhausen noise, versatile semiconductor probing device for magnetoresistance and Hall-effect, and Rapid Thermal Annealing (RTA) facility for 6'' silicon wafers. Furthermore structural characterizations are carried out in close collaboration with the TUG (Institute for Electron Microscopy, FELMI). The personnel consists of 2 permanent staff members (incl. the head), 3 Postdocs, 7 PhD's and 1 diploma student. Current projects are: FWF P18593: Ir/Regular magnetic nanowires in porous silicon; NFN-network S10407-N16: bulk-nanostructured materials: nondestructuve testing of nancrystalline materials by Barkhausen noise, ultrasound and magneto-optic Kerr effect; NAWI Graz cooperation project: magnetic and optic properties of nanocrystalline materials applied projects: Doktorats-Kolleg C53 nanostructured systems: self-assembly, hierarchical ordering and materials foundations, Sub-Projekt: C53.3 (H. Krenn): fabrication of self assembled ferromagnet

  12. Tunable states of interlayer cations in two-dimensional materials

    International Nuclear Information System (INIS)

    Sato, K.; Numata, K.; Dai, W.; Hunger, M.

    2014-01-01

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of 23 Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and 23 Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed

  13. Tunable states of interlayer cations in two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Numata, K. [Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Dai, W. [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Hunger, M. [Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart (Germany)

    2014-03-31

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.

  14. Rare-Earth Tantalates and Niobates Single Crystals: Promising Scintillators and Laser Materials

    Directory of Open Access Journals (Sweden)

    Renqin Dou

    2018-01-01

    Full Text Available Rare-earth tantalates, with high density and monoclinic structure, and niobates with monoclinic structure have been paid great attention as potential optical materials. In the last decade, we focused on the crystal growth technology of rare-earth tantalates and niobates and studied their luminescence and physical properties. A series of rare-earth tantalates and niobates crystals have been grown by the Czochralski method successfully. In this work, we summarize the research results on the crystal growth, scintillation, and laser properties of them, including the absorption and emission spectra, spectral parameters, energy levels structure, and so on. Most of the tantalates and niobates exhibit excellent luminescent properties, rich physical properties, and good chemical stability, indicating that they are potential outstanding scintillators and laser materials.

  15. Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire)

    Science.gov (United States)

    Mathieu, Alexandre; Shabadi, Rajashekar; Deschamps, Alexis; Suery, Michel; Matteï, Simone; Grevey, Dominique; Cicala, Eugen

    2007-04-01

    Joining steel with aluminum involving the fusion of one or both materials is possible by laser beam welding technique. This paper describes a method, called laser braze welding, which is a suitable process to realize this structure. The main problem with thermal joining of steel/aluminum assembly with processes such as TIG or MIG is the formation of fragile intermetallic phases, which are detrimental to the mechanical performances of such joints. Braze welding permits a localized fusion of the materials resulting in a limitation on the growth of fragile phases. This article presents the results of a statistical approach for an overlap assembly configuration using a filler wire composed of 85% Zn and 15% Al. Tensile tests carried on these assemblies demonstrate a good performance of the joints. The fracture mechanisms of the joints are analyzed by a detailed characterization of the seams.

  16. Laser-induced breakdown spectroscopy for analysis of plant materials: A review

    International Nuclear Information System (INIS)

    Santos, Dário; Nunes, Lidiane Cristina; Gustinelli Arantes de Carvalho, Gabriel; Gomes, Marcos da Silva; Souza, Paulino Florêncio de; Leme, Flavio de Oliveira; Gustavo Cofani dos Santos, Luis; Krug, Francisco José

    2012-01-01

    Developments and contributions of laser-induced breakdown spectroscopy (LIBS) for the determination of elements in plant materials are reviewed. Several applications where the solid samples are interrogated by simply focusing the laser pulses directly onto a fresh or dried surface of leaves, roots, fruits, vegetables, wood and pollen are presented. For quantitative purposes aiming at plant nutrition diagnosis, the test sample presentation in the form of pressed pellets, prepared from clean, dried and properly ground/homogenized leaves, and the use of univariate or multivariate calibration strategies are revisited. - Highlights: ► Qualitative and quantitative LIBS analysis of plant materials are reviewed. ► Fresh or dried leaves, fruits, roots and pellets can be easily interrogated by LIBS. ► LIBS is a powerful tool for plant nutrition diagnosis and elemental mapping. ► Intended LIBS users will find a survey of applications in a comprehensive table.

  17. Study of Low Work Function Materials for Hot Cavity Resonance Ionization Laser Ion Sources

    CERN Document Server

    Catherall, R; Fedosseev, V; Marsh, B; Mattolat, C; Menna, Mariano; Österdahl, F; Raeder, S; Schwellnus, F; Stora, T; Wendt, K; CERN. Geneva. AB Department

    2008-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization on the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high-temperature, low-work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE / CERN, Geneva and RISIKO / University of Mainz.

  18. Study of low work function materials for hot cavity resonance ionization laser ion sources

    CERN Document Server

    Schwellnus, F; Crepieux, B; Fedosseev, V N; Marsh, B A; Mattolat, Ch; Menna, M; Österdahl, F K; Raeder, S; Stora, T; Wendta, K

    2009-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization of the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high temperature, low work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE/CERN, Geneva and RISIKO/University of Mainz.

  19. An all-silicon laser by coupling between electronic localized states and defect states of photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Huang Weiqi, E-mail: WQHuang2001@yahoo.com [Institute of Nanophotonic Physics, Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025 (China); Huang Zhongmei; Miao Xinjiang; Cai Chenlan; Liu Jiaxin; Lue Quan [Institute of Nanophotonic Physics, Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025 (China); Liu Shirong, E-mail: Shirong@yahoo.com [State Key Laboratory of Ore Deposit Geochemistry Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003 (China); Qin Chaojian [State Key Laboratory of Ore Deposit Geochemistry Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003 (China)

    2012-01-15

    In a nano-laser of Si quantum dots (QD), the smaller QD fabricated by nanosecond pulse laser can form the pumping level tuned by the quantum confinement (QC) effect. Coupling between the active centers formed by localized states of surface bonds and the two-dimensional (2D) photonic crystal is used to select model in the nano-laser. The experimental demonstration is reported in which the peaks of stimulated emission at about 600 nm and 700 nm were observed on the Si QD prepared in oxygen after annealing which improves the stimulated emission. It is interesting to make a comparison between the localized electronic states in gap due to defect formed by surface bonds and the localized photonic states in gap of photonic band due to defect of 2D photonic crystal.

  20. Direct methods for limit states in structures and materials

    CERN Document Server

    Weichert, Dieter

    2014-01-01

    Knowing the safety factor for limit states such as plastic collapse, low cycle fatigue or ratcheting is always a major design consideration for civil and mechanical engineering structures that are subjected to loads. Direct methods of limit or shakedown analysis that proceed to directly find the limit states offer a better alternative than exact time-stepping calculations as, on one hand, an exact loading history is scarcely known, and on the other they are much less time-consuming. This book presents the state of the art on various topics concerning these methods, such as theoretical advances in limit and shakedown analysis, the development of relevant algorithms and computational procedures, sophisticated modeling of inelastic material behavior like hardening, non-associated flow rules, material damage and fatigue, contact and friction, homogenization and composites.