WorldWideScience

Sample records for state electrical utilities

  1. Deregulation of ESI and privatization of state electric utilities in Thailand

    International Nuclear Information System (INIS)

    Surapong Chirarattananon; Supattana Nirukkanaporn

    2006-01-01

    In Thailand, electric supply services have all been taken over by the state and operated under state enterprises since 1968. Under a law empowering its monopoly, state utilities accumulated assets and built up their manpower to expand and operate the power system to serve the whole country. During the time of high growth in power demand in the early 1990s, the government initiated a move to privatize state electric utilities, the pace of which was firmed up after 1997, the year of the financial crash. Engagement of independent power producers (IPPs) through the use of long-term power purchase agreements (PPAs) for supply of electric power into the system operated by state electric utilities was also initiated from the mid 1990s. Total capacity of IPPs and Small Power Producers (SPPs) that sell excess power from cogeneration on to the system, rose and by the late 1990s started to create a constraint on system economic dispatch. In 1999 the National Energy Policy Council (NEPC) approved a recommendation of international consultants to transform the electric supply industry into a structure similar to the system in the United Kingdom. The transformation was proposed to precede corporatization and privatization of state electric utilities. The objectives of deregulation were to revoke the monopoly in ESI, to improve transparency in electricity pricing, to reduce debts of state enterprises, and to improve economic efficiency. Industry participants have voiced strong objection to the industry model proposed. With the change of market structure in UK to the New Electricity Trading Arrangement (NETA), the secretariat of NEPC also proposed a new structure similar to NETA. More acceptance from industry participants have been received for the new structure. However, it has been assumed that the proposed structure would bring improvement in system reliability, drawing investment into power generation in a manner that would be efficient. Tariff has also been expected to become

  2. Deregulation of ESI and privatization of state electric utilities in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Surapong Chirarattananon; Supattana Nirukkanaporn [Asian Institute of Technology, Pathum Thani (Thailand). Energy Program

    2006-11-15

    In Thailand, electric supply services have all been taken over by the state and operated under state enterprises since 1968. Under a law empowering its monopoly, state utilities accumulated assets and built up their manpower to expand and operate the power system to serve the whole country. During the time of high growth in power demand in the early 1990s, the government initiated a move to privatize state electric utilities, the pace of which was firmed up after 1997, the year of the financial crash. Engagement of independent power producers (IPPs) through the use of long-term power purchase agreements (PPAs) for supply of electric power into the system operated by state electric utilities was also initiated from the mid 1990s. Total capacity of IPPs and Small Power Producers (SPPs) that sell excess power from cogeneration on to the system, rose and by the late 1990s started to create a constraint on system economic dispatch. In 1999 the National Energy Policy Council (NEPC) approved a recommendation of international consultants to transform the electric supply industry into a structure similar to the system in the United Kingdom. The transformation was proposed to precede corporatization and privatization of state electric utilities. The objectives of deregulation were to revoke the monopoly in ESI, to improve transparency in electricity pricing, to reduce debts of state enterprises, and to improve economic efficiency. Industry participants have voiced strong objection to the industry model proposed. With the change of market structure in UK to the New Electricity Trading Arrangement (NETA), the secretariat of NEPC also proposed a new structure similar to NETA. More acceptance from industry participants have been received for the new structure. However, it has been assumed that the proposed structure would bring improvement in system reliability, drawing investment into power generation in a manner that would be efficient. Tariff has also been expected to become

  3. Deregulation of ESI and privatization of state electric utilities in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Chirarattananon, Surapong [Energy Program, Asian Institute of Technology, PO Box 4, Klong Luang, Pathum Thani 12120 (Thailand)]. E-mail: surapong@ait.ac.th; Nirukkanaporn, Supattana [Energy Program, Asian Institute of Technology, PO Box 4, Klong Luang, Pathum Thani 12120 (Thailand)

    2006-11-15

    In Thailand, electric supply services have all been taken over by the state and operated under state enterprises since 1968. Under a law empowering its monopoly, state utilities accumulated assets and built up their manpower to expand and operate the power system to serve the whole country. During the time of high growth in power demand in early the1990 s, the government initiated a move to privatize state electric utilities, the pace of which was firmed up after 1997, the year of the financial crash. Engagement of independent power producers (IPPs) through the use of long-term power purchase agreements (PPAs) for supply of electric power into the system operated by state electric utilities was also initiated from the mid 1990s. Total capacity of IPPs and Small Power Producers (SPPs) that sell excess power from cogeneration on to the system) rose and by the late 1990s started to create a constraint on system economic dispatch. In 1999 the National Energy Policy Council (NEPC) approved a recommendation of international consultants to transform the electric supply industry into a structure similar to the system in the United Kingdom. The transformation was proposed to precede corporatization and privatization of state electric utilities. The objectives of deregulation were to revoke the monopoly in ESI, to improve transparency in electricity pricing, to reduce debts of state enterprises, and to improve economic efficiency. Industry participants have voiced strong objection to the industry model proposed. With the change of market structure in UK to the New Electricity Trading Arrangement (NETA), the secretariat of NEPC also proposed a new structure similar to NETA. More acceptance from industry participants have been received for the new structure. However, it has been assumed that the proposed structure would bring improvement in system reliability, drawing investment into power generation in a manner that would be efficient. Tariff has also been expected to become

  4. Deregulation of ESI and privatization of state electric utilities in Thailand

    International Nuclear Information System (INIS)

    Chirarattananon, Surapong; Nirukkanaporn, Supattana

    2006-01-01

    In Thailand, electric supply services have all been taken over by the state and operated under state enterprises since 1968. Under a law empowering its monopoly, state utilities accumulated assets and built up their manpower to expand and operate the power system to serve the whole country. During the time of high growth in power demand in early the1990 s, the government initiated a move to privatize state electric utilities, the pace of which was firmed up after 1997, the year of the financial crash. Engagement of independent power producers (IPPs) through the use of long-term power purchase agreements (PPAs) for supply of electric power into the system operated by state electric utilities was also initiated from the mid 1990s. Total capacity of IPPs and Small Power Producers (SPPs) that sell excess power from cogeneration on to the system) rose and by the late 1990s started to create a constraint on system economic dispatch. In 1999 the National Energy Policy Council (NEPC) approved a recommendation of international consultants to transform the electric supply industry into a structure similar to the system in the United Kingdom. The transformation was proposed to precede corporatization and privatization of state electric utilities. The objectives of deregulation were to revoke the monopoly in ESI, to improve transparency in electricity pricing, to reduce debts of state enterprises, and to improve economic efficiency. Industry participants have voiced strong objection to the industry model proposed. With the change of market structure in UK to the New Electricity Trading Arrangement (NETA), the secretariat of NEPC also proposed a new structure similar to NETA. More acceptance from industry participants have been received for the new structure. However, it has been assumed that the proposed structure would bring improvement in system reliability, drawing investment into power generation in a manner that would be efficient. Tariff has also been expected to become

  5. Efficiency evaluation of the state owned electric utilities in India

    International Nuclear Information System (INIS)

    Thakur, Tripta; Deshmukh, S.G.; Kaushik, S.C.

    2006-01-01

    This paper presents a framework for accessing comparative efficiencies of Indian State Owned Electric Utilities (SOEU), which have been mainly responsible for the generation, distribution and transmission of electricity in India. Performance of 26 utilities was evaluated using the non-parametric technique of Data Envelopment Analysis (DEA), and the impact of scale on the efficiency scores was also evaluated. The results indicate that the performance of several SOEUs is sub-optimal, suggesting the potential for significant cost reductions. Separate benchmarks were derived for possible reductions in employees' number, and the results indicate that several utilities deploy a much larger number of employees than that required by a best practice utility, and significant savings are possible on this account. It was also found that the bigger utilities display greater inefficiencies and have distinct scale inefficiencies. Exploiting scale efficiencies by suitable restructuring and unbundling of SOEUs are therefore crucial measures that may foster efficiencies in the SOEUs. The paper discusses these results in the context of related policy issues

  6. From franchise to state commission: Regulation of the electric utility industry, 1907 to 1932

    Science.gov (United States)

    Reutter, Keith Alan

    1997-09-01

    Empirical research into the effects of regulation on industry has been around since the early 1960s. Over the last thirty plus years a number of interesting results have been brought to the fore. For instance, it has been found that regulation of the trucking industry limits entry and increases prices. A similar result has been pointed to in other industries such as commercial airlines and banking. The effect of the state commission form of regulation on the electric utility industry has been less conclusive. State commissions became dominant during the period 1910-1930, replacing local franchising as a method of regulating the electric utility industry. Two competing theories suggest why this transformation took place, the "capture" and "public interest" theories of regulation. The capture theory of regulation suggests that the electric utility industry demanded state regulation as a way to earn above normal profits and reduce competition. The public interest theory suggests the purpose of regulation by state commissions was to benefit the general public by forcing the industry to be competitive. Few studies have tried to determine which theory more aptly describes the actual events that took place. The empirical model developed in Chapter V, is an extension of the current literature. A set of simultaneous equations describing the natural gas and electricity markets is estimated using cross-sectional time-series data from 1907 to 1932. The effect of regulation on the electric utility industry is modeled with a dummy variable taking on a value of one to designate that a state commission had been established. The results suggest the capture theory of regulation best describes the period under study. The empirical estimates indicate that state commissions (1) reduced the rate at which the real price of electricity was falling, (2) had a negative impact on firms entering the industry, (3) had a positive influence on the cost of producing a kwh of electricity, and (4

  7. State Performance-Based Regulation Using Multiyear Rate Plans for U.S. Electric Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Mark Newton [Pacific Economics Group Research LLC (United States); Makos, Matt [Pacific Economics Group Research LLC (United States); Deason, Jeff [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-07-31

    Electric utilities today must contain costs at a time when many need to modernize aging systems and all face major changes in technologies, customer preferences and competitive pressures.Most U.S. electric utility facilities are investor-owned, subject to rate and service regulation by state public utility commissions. Regulatory systems under which these utilities operate affect their performance and ability to meet these challenges. In this business environment, multiyear rate plans have some advantages over traditional rate regulation.The report focuses on key design issues and provides case studies of the multiyear rate plan approach, applicable to both vertically integrated and restructured states. Mark Newton Lowry and Matt Makos of Pacific Energy Group Research and Jeff Deason of Berkeley Lab authored the report; Lisa Schwartz, Berkeley Lab, was project manager and technical editor.The report is aimed primarily at state utility regulators and stakeholders in the state regulatory process. The multiyear rate approach also provides ideas on how to streamline oversight of public power utilities and rural electric cooperatives for their governing boards.Two key provisions of multiyear rate plans strengthen cost containment incentives and streamline regulation: 1. Reducing frequency of rate cases, typically to every four or five years 2. Using an attrition relief mechanism to escalate rates or revenue between rate cases to address cost pressures such as inflation and growth in number of customers, independently of the utility’s own cost Better utility performance can be achieved under well-designed multiyear rate plans while achieving lower regulatory costs. Benefits can be shared between utilities and their customers. But plans can be complex and involve significant changes in the regulatory system. Designing plans that stimulate utility performance without undue risk and share benefits fairly can be challenging.This report discusses the rationale for multiyear

  8. State Regulatory responses to acid rain: Implications for electric utility operations

    International Nuclear Information System (INIS)

    Nagelhout, M.

    1990-01-01

    This article discusses the state regulatory responses to acid rain legislation and how this will affect electric utility operations. Topics discusses include planning and fuel procurement practices, least-cost planning, long-term supply contracts, fuel mix, cogeneration and small power production, qualifying facility contracts, avoided costs, environmental impact, lobbying expense, bill inserts, and forecasting models

  9. State-of-the-art assessment of requirements for attachments of WiFi equipments to electric utility facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Electric utilities are receiving a growing number of requests to attach WiFi equipment to their systems. However, many utilities are not prepared to meet these requests because they have not had enough time to formally review and comment on the particular issues associated with Wi-Fi attachments. Although electric utilities are required to allow the attachments, there is no uniform standard to govern those attachments. This paper discussed the state-of-the-art philosophies and requirements of electric utilities who have allowed WiFi equipment on their systems. The advantages and limitations of each philosophy or practice were also discussed. The requirements for codes and standards in the United States and Canada for high voltage construction were also evaluated.

  10. Financial statistics of major U.S. investor-owned electric utilities 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for making policy and decisions relating to investor-owned electric utility issues. The US electric power industry is a combination of electric utilities (investor-owned, publicly owned, Federal, and cooperatives) and nonutility power producers. Investor-owned electric utilities account for over three-fourths of electric sales and revenue. Historically, the investor-owned electric utilities have served the large consolidated markets. There is substantial diversity among the investor-owned electric utilities in terms of services, size, fuel usage, and prices charged. Most investor-owned electric utilities generate, transmit, and distribute electric power. Investor-owned electric utilities operate in all States except Nebraska; Hawaii is the only State in which all electricity is supplied by investor-owned electric utilities. 5 figs., 57 tabs.

  11. Electric utilities in 2007

    Energy Technology Data Exchange (ETDEWEB)

    Hyman, L.S. [Smith Barney Inc., New York, NY (United States)

    1998-10-01

    A century ago--in the year J.J. Thomson discovered the electron--electricity, gas and traction companies battled for markets, and corrupt city councils demanded their fair share of the take. One tycoon became so disgusted with the confusion and dishonesty that he decided to bribe the legislature to set up an honest, state-run regulatory agency that would bring order to chaos. But he was found out. The scandal set back the cause of regulation until 1907, the year in which the electric washing machine and the vacuum cleaner were invented. By then, electricity sales had septupled from 1897 levels, and three states had established utility regulation. In the coming decade, 1997 to 2007, the utility business could undergo similar dramatic change, but it will move toward less regulation and more competition during a period of slow growth. Management will have to work harder to achieve success, however, because much of the profits will have to come not from a growing market but from the pockets of competitors. By 2007, electricity will constitute a component of a larger energy and utility services industry that sells electricity, natural gas and possibly water, propane and telecommunications. Customized service will meet the needs of consumers of all sizes. The dominant firm in the industry, the virtual utility, may look more like a financial organization or a mass marketer than the traditional converter of raw material to energy. Emphasis on market-based pricing should lead to more efficient use of resources. If the process works right, the consumer wins.

  12. The rural utility response to Colorado's electricity mandates

    International Nuclear Information System (INIS)

    Tierney, Sean

    2011-01-01

    When Colorado voters passed Amendment 37 in 2004, it became the first state to pass a renewable portfolio standard at the ballet box, suggesting broad appeal to harness and pay for renewable energy. While large urban utilities are prepared to make this transition, smaller cities and rural areas, for various financial and scale issues are severely disadvantaged in trying to incorporate more renewable energy sources into their electricity mix. This was evident by the state's support for Amendment 37, which was passed due to strong support in the Denver metro area-representing nearly half of the state's population. Support for the bill was poor in the rest of the state. Nevertheless, in 2007, the state expanded up Amendment 37 by forcing the utilities in rural communities to diversify their electricity mix. This study surveyed the managers at the state's various rural electric cooperatives and municipal utilities in an effort to gage their attitudes concerning: carbon legislation, conservation and efficiency programs, and their plans for making the transition away from fossil fuel generation. - Highlights: → Communities served by rural utilities opposed Colorado's state-wide RPS, but were forced to adhere anyway. → Most rural utilities are very concerned about the economic impacts of trying to diversify their energy portfolios. → Many of these unregulated utilities were already pushing DSM programs to promote conservation and improve efficiency.

  13. Financial statistics of major publicly owned electric utilities, 1991

    International Nuclear Information System (INIS)

    1993-01-01

    The Financial Statistics of Major Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with data that can be used for policymaking and decisionmaking purposes relating to publicly owned electric utility issues

  14. Financial statistics of major publicly owned electric utilities, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-31

    The Financial Statistics of Major Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with data that can be used for policymaking and decisionmaking purposes relating to publicly owned electric utility issues.

  15. Financial statistics of major US investor-owned electric utilities 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-28

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues. The Financial Statistics of Major US Investor-Owned Electric Utilities publication provides information about the financial results of operations of investor-owned electric utilities for use by government, industry, electric utilities, financial organizations and educational institutions in energy planning. In the private sector, the readers of this publication are researchers and analysts associated with the financial markets, the policymaking and decisionmaking members of electric utility companies, and economic development organizations. Other organizations that may be interested in the data presented in this publication include manufacturers of electric power equipment and marketing organizations. In the public sector, the readers of this publication include analysts, researchers, statisticians, and other professionals engaged in regulatory, policy, and program areas. These individuals are generally associated with the Congress, other legislative bodies, State public utility commissions, universities, and national strategic planning organizations.

  16. Financial statistics of major investor-owned electric utilities, 1991

    International Nuclear Information System (INIS)

    1993-01-01

    The Financial Statistics of major Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues

  17. Financial statistics of selected investor-owned electric utilities, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The Financial Statistics of Selected Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

  18. Electric vehicle utilization for ancillary grid services

    Science.gov (United States)

    Aziz, Muhammad

    2018-02-01

    Electric vehicle has been developed through several decades as transportation mean, without paying sufficient attention of its utilization for other purposes. Recently, the utilization of electric vehicle to support the grid electricity has been proposed and studied intensively. This utilization covers several possible services including electricity storage, spinning reserve, frequency and voltage regulation, and emergency energy supply. This study focuses on theoretical and experimental analysis of utilization of electric vehicles and their used batteries to support a small-scale energy management system. Charging rate of electric vehicle under different ambient temperature (seasonal condition) is initially analyzed to measure the correlation of charging rate, charging time, and state-of-charge. It is confirmed that charging under warmer condition (such as in summer or warmer region) shows higher charging rate than one in colder condition, therefore, shorter charging time can be achieved. In addition, in the demonstration test, each five electric vehicles and used batteries from the same electric vehicles are employed and controlled to support the electricity of the office building. The performance of the system is evaluated throughout a year to measure the load leveling effect during peak-load time. The results show that the targeted peak-load can be shaved well under certain calculated peak-shaving threshold. The finding confirms that the utilization of electric vehicle for supporting the electricity of grid or certain energy management system is feasible and deployable in the future.

  19. Outlook for California's electric utility industry

    International Nuclear Information System (INIS)

    Frank, S.E.

    1996-01-01

    This article describes how the Southern California Edison Company deals with revolutionary change as the state's electricity industry reinvents itself. The topics of the article include how competition has make things better for SCEC's employees, customers, and shareholders, and an outline of the principal features of the electric utility industry in California

  20. Power Sales to Electric Utilities

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-02-01

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of

  1. Financial statistics of major US investor-owned electric utilities 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The Financial Statistics of Major U.S. Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State Governments, industry, and the general public with current and historical data that can be used for making policy and decisions relating to investor-owned electric utility issues.

  2. Financial statistics of selected publicly owned electric utilities 1989. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-06

    The Financial Statistics of Selected Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with data that can be used for policymaking and decision making purposes relating to publicly owned electric utility issues. 21 tabs.

  3. Financial statistics of major U.S. investor-owned electric utilities 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

  4. Privatization of municipal electrical utilities

    International Nuclear Information System (INIS)

    Carr, J.

    1998-01-01

    The challenges and special issues which arise through the sale of a municipal electric utility were discussed. The recent sales of two utilities, the Kentville Electric Commission in Nova Scotia and Cornwall Electric in Ontario, were used as examples to show how the sale of an electric utility differs from the sale of most business enterprises. Municipal utilities are integral parts of the communities they serve which introduces several complexities into the sale. Factors that require special attention in the sale of the utilities, including electricity rates, local accountability, treatment of employees and local economic development, and the need for a comprehensive communication program to deal with the substantial public interest that sale of a municipal utility will engender, were reviewed

  5. Techniques for analyzing the impacts of certain electric-utility ratemaking and regulatory-policy concepts. Regulatory laws and policies. [State by state

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    This report is a legal study prepared to provide a review of the substantive and procedural laws of each regulatory jurisdiction that may affect implementation of the PURPA standards, and to summarize the current state of consideration and implementation of policies and rate designs similar or identical to the PURPA standards by state regulatory agencies and nonregulated utilities. This report is divided into three sections. The first section, the Introduction, summarizes the standards promulgated by PURPA and the results of the legal study. The second section, State Regulatory Law and Procedure, summarizes for each state or other ratemaking jurisdiction: (1) general constitutional and statutory provisions affecting utility rates and conditions of service; (2) specific laws or decisions affecting policy or rate design issues covered by PURPA standards; and (3) statutes and decisions governing administrative procedures, including judicial review. A chart showing actions taken on the policy and rate design issues addressed by PURPA is also included for each jurisdiction, and citations to relevant authorities are presented for each standard. State statutes or decisions that specifically define a state standard similar or identical to a PURPA standard, or that refer to one of the three PURPA objectives, are noted. The third section, Nonregulated Electric Utilities, summarizes information available on nonregulated utilities, i.e., publicly or cooperatively owned utilities which are specifically exempted from state regulation by state law.

  6. Consumer's Guide to the economics of electric-utility ratemaking

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    This guide deals primarily with the economics of electric utilities, although certain legal and organizational aspects of utilities are discussed. Each of the seven chapters addresses a particular facet of public-utility ratemaking. Chapter One contains a discussion of the evolution of the public-utility concept, as well as the legal and economic justification for public utilities. The second chapter sets forth an analytical economic model which provides the basis for the next four chapters. These chapters contain a detailed examination of total operating costs, the rate base, the rate of return, and the rate structure. The final chapter discusses a number of current issues regarding electric utilities, mainly factors related to fuel-adjustment costs, advertising, taxes, construction work in progress, and lifeline rates. Some of the examples used in the Guide are from particular states, such as Illinois and California. These examples are used to illustrate specific points. Consumers in other states can generalize them to their states and not change the meaning or significance of the points. 27 references, 8 tables.

  7. States of Cybersecurity: Electricity Distribution System Discussions

    Energy Technology Data Exchange (ETDEWEB)

    Pena, Ivonne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ingram, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Martin, Maurice [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-16

    State and local entities that oversee the reliable, affordable provision of electricity are faced with growing and evolving threats from cybersecurity risks to our nation's electricity distribution system. All-hazards system resilience is a shared responsibility among electric utilities and their regulators or policy-setting boards of directors. Cybersecurity presents new challenges and should be a focus for states, local governments, and Native American tribes that are developing energy-assurance plans to protect critical infrastructure. This research sought to investigate the implementation of governance and policy at the distribution utility level that facilitates cybersecurity preparedness to inform the U.S. Department of Energy (DOE), Office of Energy Policy and Systems Analysis; states; local governments; and other stakeholders on the challenges, gaps, and opportunities that may exist for future analysis. The need is urgent to identify the challenges and inconsistencies in how cybersecurity practices are being applied across the United States to inform the development of best practices, mitigations, and future research and development investments in securing the electricity infrastructure. By examining the current practices and applications of cybersecurity preparedness, this report seeks to identify the challenges and persistent gaps between policy and execution and reflect the underlying motivations of distinct utility structures as they play out at the local level. This study aims to create an initial baseline of cybersecurity preparedness within the distribution electricity sector. The focus of this study is on distribution utilities not bound by the cybersecurity guidelines of the North American Electric Reliability Corporation (NERC) to examine the range of mechanisms taken by state regulators, city councils that own municipal utilities, and boards of directors of rural cooperatives.

  8. Financial statistics major US publicly owned electric utilities 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The 1996 edition of The Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 5 years (1992 through 1996) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Five years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 2 figs., 32 tabs.

  9. Financial statistics of major US publicly owned electric utilities 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The 1993 edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents five years (1989 to 1993) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. The primary source of publicly owned financial data is the Form EIA-412, the Annual Report of Public Electric Utilities, filed on a fiscal basis.

  10. Electric-utility DSM programs in a competitive market

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, E.

    1994-04-01

    During the past few years, the costs and effects of utility demand-side management (DSM) programs have grown sharply. In 1989, US electric utilities spent 0.5% of revenues on such programs and cut total electricity consumption by 0.6%. By 1992, these numbers had increased to 1.3% and 1.2%, respectively. Utility projections, as of early 1993, of DSM expenditures and energy savings for 1997 were 1.7% and 2.5%, respectively. Whether this projected growth comes to pass may depend on current debates about deregulation of, and increased competition in, the electric-utility industry. This report examines the factors likely to affect utility DSM programs in a more competitive environment. The electric-utility industry faces two forces that may conflict with each other. One is the pressure to open up both wholesale and retail markets for competition. The net effect of such competition, especially at the retail level, would have much greater emphasis on electricity prices and less emphasis on energy services. Such an outcome would force a sharp reduction in the scale of DSM programs that are funded by customers in general. The second force is increased concern about environmental quality and global warming. Because utilities are major contributors to US carbon dioxide emissions, the Administration`s Climate Change Action Plan calls on utilities to reduce such emissions. DSM programs are one key way to do that and, in the process, to cut customer electric bills and improve economic productivity. This report discusses the forms of competition and how they might affect DSM programs. It examines the important roles that state regulatory commissions could play to affect retail competition and utility DSM programs. The report also considers the effects of DSM programs on retail electricity prices.

  11. Shaping the future of electric utilities

    International Nuclear Information System (INIS)

    Byus, L.C.

    1993-01-01

    On December 14, 1992, Cincinnati Gas ampersand Electric Company (CG ampersand E) and PSI Resources, Inc. announced an agreement to merge the two companies into a newly formed company, CINergy Corp. In announcing the proposed merger, James E. Rogers Jr., chairman, president, and chief executive officer of PSI said, Our companies have chosen to shape our future and our industry. This is an ideal partnership, since our strengths complement each other and our vision of the future is the same. Will this merger be the first of many that will shape the future of the electric utility in the United States? What is the vision of the future for the industry? About five years ago, a well-known Wall Street utility analyst traveled around the country talking about the anticipated consolidation of electric utility companies in the US His motto was Fifty in Five, meaning widespread consolidation that would reduce the number of independent investor-owned utilities from more than 100 to 50 within a five-year period. He even developed a map showing the mergers/consolidations he looked for and actually named names. More than five years have passed, and only a handful of utility mergers have taken place. But, looking forward from 1992, restructuring of the utility industry is very much a vision of the future. What is the driving force? The National Energy Policy Act of 1992 provides the legislative framework for the electric utility industry in the US in future years. While the specific rules that will govern the industry are yet to be promulgated, the intent to allow (even promote) competition is evident in the Act itself. But it appears the vision of the future is market driven

  12. Deregulating electricity in the American states

    Science.gov (United States)

    Terbush, Thomas Lee

    This dissertation develops nine stylized facts that summarize the major consequences of deregulation and tests these against recent experience in the electric utility industry. The experience of the electric utility industry matches the predictions of the stylized facts, except in one instance: although real electricity prices fell between 1982 and 1999, real prices fell less in states that deregulated. This dissertation presents three possible explanations for this discrepancy. First, through dynamic efficiency, consumers may benefit in the long run through lower rates and better service in the electricity market, or deregulation may be a public good that benefits electricity consumers through economy-wide improvements in efficiency. Second, higher prices may be a long-run outcome as predicted by the theory of the second best. Or third, both regulators and utilities may use deregulation to generate new rents. Because the original rents from regulation had dissipated, new rents could be generated under deregulation by making consumers pay off the utilities and then creating more new rents through re-regulation of the industry. Close examination tends to support the first and third explanations, although the second-best explanation cannot yet be ruled out completely. Higher prices appear to be a transitional phenomenon, resulting from a short-term payoff from consumers to incumbent utilities that was required to move deregulation forward. This payoff occurs as residential and commercial consumers bear relatively higher rates over three to five years to compensate utilities for stranded costs, investments thought to be unrecoverable under full competition. All states are benefiting from deregulation, but states that are deregulating are benefiting less while stranded costs are being recovered. This dissertation also examines California electricity deregulation and finds that the experience in California conforms with to the stylized facts, and that certain structural

  13. Impact of the legislation on electric utilities

    International Nuclear Information System (INIS)

    De Long, M.

    1982-01-01

    The possible impact of Federal nuclear waste legislation on electric utilities is discussed. The proposed legislation will set forth a well defined program enabling utilities with nuclear plants to make long term plans under a statutory mandate committed to an available technology and implementation timetable. The legislation includes the necessary specificity for the utility companies to fulfill their responsibilities in describing their waste disposal plans to their customers, the concerned public, and state and local legislators

  14. Perspectives on the future of the electric utility industry

    International Nuclear Information System (INIS)

    Tonn, B.; Schaffhauser, A.

    1994-04-01

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ''business as usual,'' ''technotopia future,'' and ''fortress state'' -and three electric utility scenarios- ''frozen in headlights,'' ''megaelectric,'' and ''discomania.'' The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest

  15. Perspectives on the future of the electric utility industry

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, B. [Oak Ridge National Lab., TN (United States); Schaffhauser, A. [Tennessee Univ., Knoxville, TN (United States)

    1994-04-01

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

  16. Financial statistics of major US publicly owned electric utilities 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The 1992 edition of the Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 4 years (1989 through 1992) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Four years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, {open_quotes}Annual Report of Public Electric Utilities.{close_quotes} Public electric utilities file this survey on a fiscal year, rather than a calendar year basis, in conformance with their recordkeeping practices. In previous editions of this publication, data were aggregated by the two most commonly reported fiscal years, June 30 and December 31. This omitted approximately 20 percent of the respondents who operate on fiscal years ending in other months. Accordingly, the EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents.

  17. Impact of Federal tax policy and electric utility rate schedules upon the solar building/electric utility interface. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, S.L.; Wirtshafter, R.M.; Abrash, M.; Anderson, B.; Sullivan, P.; Kohler, J.

    1978-10-01

    An analysis is performed to show that a utility solar-passive strategy can be used rather effectively in aiding the utility to obtain more efficient load factors and lower costs. The objectives are to determine the impact of active and passive solar energy designs for space conditioning and hot water heating for the residential sector upon the diurnal and annual load curves for several utilities, to assess the effect of present utility pricing policies, and to examine alternative pricing schemes, as well as Federal and state tax credits, as they may affect the optimal sizing and configuration of active solar and passive solar building components. The methodology, the systems model, an overall building design, building cost determination, and a description of TRNSYS are presented. The major parameters discussed that distinguish variation in the cost-effectiveness of particular building design fall into 5 categories: the weather, building configurations, building costs, utility costs and rates, and financial parameters (inclusive of tax credits for solar and energy conservation investment). Five utilities are studied: Colorado Springs Department of Public Utilities; Public Service Co. of New Mexico; New England Electric System; Pacific Gas and Electric; and Georgia Power Co.

  18. Electric trade in the United States 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1994, the wholesale trade market totaled 1.9 trillion kilowatthours, about 66% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1994 (ELECTRA), is the fifth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1994.

  19. Electric trade in the United States 1994

    International Nuclear Information System (INIS)

    1998-08-01

    Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1994, the wholesale trade market totaled 1.9 trillion kilowatthours, about 66% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1994 (ELECTRA), is the fifth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1994

  20. Market research for electric utilities

    International Nuclear Information System (INIS)

    Shippee, G.

    1999-01-01

    Marketing research is increasing in importance as utilities become more marketing oriented. Marketing research managers need to maintain autonomy from the marketing director or ad agency and make sure their work is relevant to the utility's operation. This article will outline a model marketing research program for an electric utility. While a utility may not conduct each and every type of research described, the programs presented offer a smorgasbord of activities which successful electric utility marketers often use or have access to

  1. Cost and quality of fuels for electric utility plants, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  2. Market research for electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Shippee, G.

    1999-12-01

    Marketing research is increasing in importance as utilities become more marketing oriented. Marketing research managers need to maintain autonomy from the marketing director or ad agency and make sure their work is relevant to the utility's operation. This article will outline a model marketing research program for an electric utility. While a utility may not conduct each and every type of research described, the programs presented offer a smorgasbord of activities which successful electric utility marketers often use or have access to.

  3. Electric and gas utility marketing of residential energy conservation case studies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    The objective of this research was to obtain information about utility conservation marketing techniques from companies actively engaged in performing residential conservation services. Many utilities currently are offering comprehensive services (audits, listing of contractors and lenders, post-installation inspection, advertising, and performing consumer research). Activities are reported for the following utilities: Niagara Mohawk Power Corporation; Tampa Electric Company; Memphis Light, Gas, and Water Division; Northern States Power-Wisconsin; Public Service Company of Colorado; Arizona Public Service Company; Pacific Gas and Electric Company; Sacramento Municipal Utility District; and Pacific Power and Light Company.

  4. Inter-utility trade in electricity

    International Nuclear Information System (INIS)

    Penman, A.

    1992-01-01

    Enhanced inter-utility cooperation could have a profound effect on the future of the electricity supply industry. Coordinated planning, development, and operations of electric power systems have the potential to reduce the cost of electricity to consumers and to lessen the impact of electricity supply on the environment. These effects could be achieved by being able to supply electricity from lower cost and more environmentally benign sources located over wider geographic areas, and having to install less new generating capacity. Access to transmission and wheeling services would be an important factor in allowing increased inter-utility cooperation to occur. Canada's National Energy Board conducted a review to identify measures that can be taken to enhance interprovincial trade in electricity, to encourage greater cooperation between electric utilities in the areas of systems planning and development, and to enable buyers and sellers of electricity to obtain access to available transmission capacity through intervening provinces for wheeling purposes. The work undertaken by the Board during that review is described. A total estimated economic benefit of $23-32.5 billion was identified, mainly from long-term firm sales and from seasonal diversity exchanges. Four options were developed that appear to be available to encourage and achieve enhanced inter-utility cooperation. These are continuation of voluntary cooperation, voluntary cooperation with federal monitoring, establishing voluntary regional planning entities, and establishing regional planning entities with mandated federal power

  5. Electric utility fuel choice behavior in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Joskow, P.L.; Mishkin, F.S.

    1977-10-01

    Electric utility fuel choice behavior is analyzed by a conditional logit model to determine the effects of changing oil prices of five plants. Three of the plants faced favorable expected coal prices and, like many areas of the country, were insensitive to changing oil prices. This was not the case at the New England plant, however, where relatively small price increases would decrease the likelihood of choosing oil as an alternative fuel for new plants. The modeling of utility behavior in fuel decisions is felt to be applicable to other industries where a continuum of decision possibilities does not reasonably characterize choice alternatives. New behavior models are urged in order to obtain better predictions of the effects of a changing economic environment. 10 references.

  6. Electric utility report '80

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    A collection of brief atricles describes the trends and developments in Canada's electric utilities for the 1980's. Generating stations planned or under construction are listed. The trends in technology discused at a recent Canadian Electrical Association meeting are summarized in such areas as turbine stability control, power line vibration control, system reliability, substations and transformer specifications. Developments in nuclear generation are discussed and compared on the world scale where Japan, for example, has the world's largest nuclear program. Progress on fusion is discussed. In Canada the electric utilities are receiving the support of the comprehensive nuclear R and D program of Atomic Energy of Canada Ltd. New innovations in utility technology such as street lighting contactors, superconductive fault limiters and demand profile analyzers are discussed. (T.I.)

  7. Quality electric motor repair: A guidebook for electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, V.; Douglass, J.

    1995-08-01

    This guidebook provides utilities with a resource for better understanding and developing their roles in relation to electric motor repair shops and the industrial and commercial utility customers that use them. The guidebook includes information and tools that utilities can use to raise the quality of electric motor repair practices in their service territories.

  8. Financial statistics of major U.S. publicly owned electric utilities 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The 1997 edition of the ``Financial Statistics of Major U.S. Publicly Owned Electric Utilities`` publication presents 5 years (1993 through 1997) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, ``Annual Report of Public Electric Utilities.`` Public electric utilities file this survey on a fiscal year basis, in conformance with their recordkeeping practices. The EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents. The review indicated that financial indicators differ most according to whether or not a publicly owned electric utility generates electricity. Therefore, the main body of the report provides summary information in generator/nongenerator classifications. 2 figs., 101 tabs.

  9. Financial statistics of major U.S. publicly owned electric utilities 1997

    International Nuclear Information System (INIS)

    1998-12-01

    The 1997 edition of the ''Financial Statistics of Major U.S. Publicly Owned Electric Utilities'' publication presents 5 years (1993 through 1997) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, ''Annual Report of Public Electric Utilities.'' Public electric utilities file this survey on a fiscal year basis, in conformance with their recordkeeping practices. The EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents. The review indicated that financial indicators differ most according to whether or not a publicly owned electric utility generates electricity. Therefore, the main body of the report provides summary information in generator/nongenerator classifications. 2 figs., 101 tabs

  10. Value-Added Electricity Services: New Roles for Utilities and Third-Party Providers

    Energy Technology Data Exchange (ETDEWEB)

    Blansfield, J. [Inst. for Electric Innovations, Washington, DC (United States); Wood, L. [Inst. for Electric Innovations, Washington, DC (United States); Katofsky, R. [Advanced Energy Economy, Washington, DC (United States); Stafford, B. [Advanced Energy Economy, Washington, DC (United States); Waggoner, D. [Advanced Energy Economy, Washington, DC (United States); Schwartz, L. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-10-30

    New energy generation, storage, delivery, and end-use technologies support a broad range of value-added electricity services for retail electricity customers. Sophisticated energy management services, distributed generation coupled with storage, and electric vehicle charging are just a few examples of emerging offerings. Who should provide value-added services — utilities or third parties, or both, and under what conditions? What policy and regulatory changes may be needed to promote competition and innovation, to account for utility costs to enable these services, and to protect consumers? The report approaches the issues from three perspectives: utilities, third-party service providers, and consumers: -Jonathan Blansfield and Lisa Wood, Institute for Electric Innovation -Ryan Katofsky, Benjamin Stafford and Danny Waggoner, Advanced Energy Economy -National Association of State Utility Consumer Advocates

  11. Electric utility deregulation - A nuclear opportunity

    International Nuclear Information System (INIS)

    DeMella, J.R.

    2002-01-01

    The implications of electric deregulation are and will continue to be pervasive and significant. Not only will the fundamental monopoly regulatory concepts of managing electric utilities change but deregulation will have a profound and dramatic impact on the way electric generating plants are managed and operated. In the past, under the various approaches to financial regulation, the economic benefits normally attributed to competition or that would have otherwise been derived from competitive or open market forces, were assumed to be embodied in and inherent to the various processes, methods and principles of financial oversight of utility companies by regional, state and municipal regulatory authorities. Traditionally, under the various forms of regulated monopolies, a utility company, in exchange for an exclusive franchise to produce and sell electricity in a particular region, was obligated to provide an adequate supply to all consumers wanting it, at a price that was 'just and reasonable'. The determination of adequate supply and reasonable price was a matter of interpretation by utility companies and their regulators. In essence, the ultimate economic benefits, normally attributed to price equilibrium, in balance with supply, demand and other market forces, were expected to be achieved through a complex, political process of financial regulatory oversight, in which utility companies were usually reimbursed for all annual expenses or their 'cost of service' and additionally allowed to earn a 'reasonable' rate of return on plant investments. The result was often escalating electric prices, over supplies of electric capacity, by justifying unnecessarily high reserve margins based on long planning horizons (typically 20 years or greater) with extrapolated demand requirements that were generally in excess of what actually occurred over time. Although the regulatory process varied from country or country and region-to-region, the fundamental principles, which

  12. State policy change: Revenue decoupling in the electricity market

    Science.gov (United States)

    McNeil, Kytson L.

    The study seeks to answer the question, why are states adopting revenue decoupling in the electricity market, by investigating the relationship between policy adoption and attributes of the electricity market, the structure of the state utility commissions, and the political climate of the state. The study examines the period 1978-2008. Two econometric models, the marginal risk set model and the conditional risk set model, are estimated to predict the influence of covariates on the probability of the state adopting revenue decoupling in the electricity market. The models are both variants of the Cox proportional hazard model and use different underlying assumptions about the nature of adoption of revenue decoupling and when the states are considered to be at risk of adoption. Results suggest that market attributes, such as the source of electricity generation in the state, state energy intensity, and the distribution of non-public and public utilities, significantly influence the adoption of the policy. Also, the method of selecting commissioners and the party affiliation of elected officials in the state are important factors. The study concludes by suggestions to improve the implementation and evaluation of revenue decoupling in the electricity markets.

  13. Financial statistics of major U.S. publicly owned electric utilities 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The 1995 Edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents 5 years (1991 through 1995) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 9 figs., 87 tabs.

  14. Financial statistics of major U.S. publicly owned electric utilities 1995

    International Nuclear Information System (INIS)

    1997-07-01

    The 1995 Edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents 5 years (1991 through 1995) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 9 figs., 87 tabs

  15. Regulatory environment and its impact on the market value of investor-owned electric utilities

    Science.gov (United States)

    Vishwanathan, Raman

    While other regulated industries have one by one been exposed to competitive reform, electric power, for over eighty years, has remained a great monopoly. For all those years, the vertically integrated suppliers of electricity in the United States have been assigned exclusive territorial (consumer) franchises and have been closely regulated. This environment is in the process change because the electric power industry is currently undergoing some dramatic adjustments. Since 1992, a number of states have initiated regulatory reform and are moving to allow retail customers to choose their energy supplier. There has also been a considerable federal government role in encouraging competition in the generation and transmission of electricity. The objective of this research is to investigate the reaction of investors to the prevailing regulatory environment in the electric utility industry by analyzing the market-to-book value for investor-owned electric utilities in the United States as a gauge of investor concern or support for change. In this study, the variable of interest is the market valuation of utilities, as it captures investor confidence to changes in the regulatory environment. Initially a classic regression model is analyzed on the full sample (of the 96 investor-owned utilities for the years 1992 through 1996), providing a total number of 480 (96 firms over 5 years) observations. Later fixed- and random-effects models are analyzed for the same full-sample model specified in the previous analysis. Also, the analysis is carried forward to examine the impact of the size of the utility and its degree of reliability on nuclear power generation on market values. In the period of this study, 1992--1996, the financial security markets downgraded utilities that were still operating in a regulated environment or had a substantial percentage of their power generation from nuclear power plants. It was also found that the financial market was sensitive to the size of

  16. Electric energy utilization and conservation

    International Nuclear Information System (INIS)

    Tripathy, S.C.

    1991-01-01

    Various aspects of electric energy utilization and conservation are discussed. First chapter reviews thermodynamic aspects of energy conservation. Subsequent chapters describe possibilities and methods of energy conservation in thermal power plants, airconditioning and ventilation systems, electric lighting systems, electric heating systems in industries, and railway electrification. Chapter 8 describes various modes of energy storage and compares their economies. The next chapter discusses various facets of energy economics and the last chapter discusses the practical aspects of energy conservation in different industries and power utilities. (M.G.B.). 100 refs

  17. Estimating potential stranded commitments for U.S. investor-owned electric utilities

    International Nuclear Information System (INIS)

    Baxter, L.; Hirst, E.

    1995-01-01

    New technologies, low natural gas prices, and federal and state utility regions are restructuring the electricity industry. Yesterday's vertically integrated utility with a retail monopoly franchise may be a very different organization in a few years. Conferences, regulatory-commission hearings, and other industry fora are dominated by debates over the extent and form of utility deintegration, wholesale competition, and retail wheeling. A key obstacle to restructuring the electricity industry is stranded commitments. Past investments, power-purchase contracts, and public-policy-driven programs that made sense in an era of cost-of-service regulation may not be cost-effective in a competitive power market. Regulators, utilities, and other parties face tough decisions concerning the mitigation and allocation of these stranded commitments. The authors developed and applied a simple method to calculate the amount of stranded commitments facing US investor-owned electric utilities. The results obtained with this method depend strongly on a few key assumptions: (1) the fraction of utility sales that is at risk with respect to competition, (2) the market price of electric generation, and (3) the number of years during which the utility would lose money because of differences between its embedded cost of production and the market price

  18. Growth strategies of electric utilities in context of deregulation and liberalization of electricity market

    Directory of Open Access Journals (Sweden)

    Maria Đogić

    2017-01-01

    Full Text Available This paper identifies the growth strategies adopted by the electric utilities sector in the context of changes resulting from the deregulation and liberalization of the electricity market. Strategies pursued by the electric utilities sector were rarely the subject of research in the field of strategic management despite the fact that electricity is an indispensable element of everyday life and the economy as a whole. Therefore, a case study of the largest incumbent electric utilities in the Republic of Croatia, Slovenia, Bosnia and Herzegovina, Serbia, Montenegro, and Macedonia has been conducted, and differences in the degree of market liberalization and core features of these companies have been noted. Research findings have shown that the degree of deregulation can affect the growth strategies of electric utilities. In those countries where the degree of deregulation is lower, electric utilities focus on the domestic market. On the other hand, a higher level of deregulation enables electric utilities to achieve their growth through diversification or innovation. Given the fact that the analyzed electric utilities are operating within relatively small economies, they cannot compete with electric utilities in developed countries, and, apart from international electricity trading, are mostly focused on their domestic markets.

  19. A Framework for Organizing Current and Future Electric Utility Regulatory and Business Models

    Energy Technology Data Exchange (ETDEWEB)

    Satchwell, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cappers, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fadrhonc, Emily Martin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-01

    Many regulators, utilities, customer groups, and other stakeholders are reevaluating existing regulatory models and the roles and financial implications for electric utilities in the context of today’s environment of increasing distributed energy resource (DER) penetrations, forecasts of significant T&D investment, and relatively flat or negative utility sales growth. When this is coupled with predictions about fewer grid-connected customers (i.e., customer defection), there is growing concern about the potential for serious negative impacts on the regulated utility business model. Among states engaged in these issues, the range of topics under consideration is broad. Most of these states are considering whether approaches that have been applied historically to mitigate the impacts of previous “disruptions” to the regulated utility business model (e.g., energy efficiency) as well as to align utility financial interests with increased adoption of such “disruptive technologies” (e.g., shareholder incentive mechanisms, lost revenue mechanisms) are appropriate and effective in the present context. A handful of states are presently considering more fundamental changes to regulatory models and the role of regulated utilities in the ownership, management, and operation of electric delivery systems (e.g., New York “Reforming the Energy Vision” proceeding).

  20. The case for indexed price caps for U.S. electric utilities

    International Nuclear Information System (INIS)

    Lowry, M.N.

    1991-01-01

    Indexed price caps are a promising alternative to traditional, cost-of-service utility rate regulation. In just a decade, they have sprung from the drawing boards of economists to use by major utilities in a number of industries. Several authors have discussed the merits of indexed price caps for U.S. electric utilities. Despite their efforts, many parties to electric utility policy making are unfamiliar with the subject. This is unsurprising given the policy controversies that already embroil the industry. It is also unfortunate, since indexed price caps may help solve some of the problems that prompt these controversies. Indexed price caps can improve electric utility rate regulation in two ways. Utilities would have strong incentives to improve performance without the micromanagement that increasingly characterizes state-level regulation. Utilities could also be granted more extensive marketing freedoms, since indexes can protect customers from cross-subsidization. Two areas of concern about indexed price cap plans have emerged in recent discussions that the author has held with officials of electric utilities, intervenor groups, and regulatory agencies. Officials are often unclear on plan details, and therefore may not appreciate the degree of flexibility that is possible in plan design. Confusion over the available options in price cap adjustment indexes and the logic behind them is especially widespread. Officials also desire a clearer expression of how indexed price caps can coexist with current regulatory initiatives. This article details the major attributes of index plans, provides a brief history of indexing, discusses index design options in depth, and concludes with a vision of how indexed price caps can be made operational in today's electric utility industry

  1. Deregulation of the electric utility industry - implications for nuclear power

    International Nuclear Information System (INIS)

    Fern, A.R.

    2001-01-01

    The deregulation movement sweeping the international electric utility community represents a dramatic shift from the traditional utility business model. This paper will focus on deregulation in the United States and the new challenges for nuclear power plant operators. An overview of the new operating models being implemented in the US will lead into a discussion on new economic and operating concerns for nuclear power plant operators. (author)

  2. Electric utilities look back on 1998

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    A review of activities in the electric power industry in Canada during 1998 is presented. In general, the principal preoccupation of Canadian electric utilities in 1998 was preparation for competition in a deregulated energy market. Utilities worked with provincial and national legislatures to redraw the rules of power supply. US FERC order 888 was central to many debates. FERC order 888 stipulates the unbundling of the retail aspects of operations from those that will remain regulated. Electric utilities also continued to prepare for the Y2K phenomenon and to work towards achieving ISO 14001 environmental management accreditation. They also explored alternative means of power generation. The year began with utilities across Canada sharing expertise and manpower to mitigate the impact of the ice storm which devastated parts of Quebec, Ontario and New Brunswick. It is believed that as a result of the ice storm of 1998, the Canadian utility industry is much better prepared to deal with weather-related emergencies than ever before. 1 fig

  3. IT use in electric utilities - today and tomorrow

    International Nuclear Information System (INIS)

    Persson, Maria

    1998-01-01

    A survey of the present and future use of IT-systems in British electric utilities is presented. Systems for Asset Management, Reliability Centered Maintenance, Customer Databases etc are discussed. A few utilities are studied more closely (Eastern Electricity, London Electricity, Scottish Power and Yorkshire Electricity)

  4. How integrated resource planning for US electric utilities affects shareholder interests

    International Nuclear Information System (INIS)

    Hadley, S.; Hirst, E.

    1995-01-01

    Integrated resource planning (IRP) seeks to identify the mix of resources that can best meet the future energy-service needs of customers. These resources include new sources, types, and owners of power plants plus demand-side management (DSM) programs. However, little explicit attention is given to utility shareholders in the typical resource-planning proceeding. Because of the complexity of state regulatory practices and tax policies, it seems unlikely that different resources that provide comparable services to customers will yield comparable returns to shareholders. This study examines a typical US investor-owned utility's financial operations and performance using a spreadsheet model we developed for this project. The model simulates an electric utility's financial operations, and produces an annual income statement, balance sheet, and cash-flow statement. We calculated the net present value of realized (cash) return on equity as the primary factor used to represent shareholder interests. We examined shareholder returns for these resources as functions of public utility commission regulation, taxes, and the utility's operating environment. Given the increasingly competitive nature of electricity markets, we examined shareholder returns for these resources in an environment where the utility competes with other suppliers solely on the basis of electricity price. (author)

  5. Energy and Environment Guide to Action - Chapter 7: Electric Utility Policies

    Science.gov (United States)

    Focuses on the authorites that state legislatures have granted to PUCs to regulate electricity and reliability, as these authorities directly affect utilities' and customers' investments in energy efficiency, renewable energy, and CHP.

  6. Electric utility companies and geothermal power

    Science.gov (United States)

    Pivirotto, D. S.

    1976-01-01

    The requirements of the electric utility industry as the primary potential market for geothermal energy are analyzed, based on a series of structured interviews with utility companies and financial institution executives. The interviews were designed to determine what information and technologies would be required before utilities would make investment decisions in favor of geothermal energy, the time frame in which the information and technologies would have to be available, and the influence of the governmental politics. The paper describes the geothermal resources, electric utility industry, its structure, the forces influencing utility companies, and their relationship to geothermal energy. A strategy for federal stimulation of utility investment in geothermal energy is suggested. Possibilities are discussed for stimulating utility investment through financial incentives, amelioration of institutional barriers, and technological improvements.

  7. The Ursern electricity utility - Positive and negative aspects

    International Nuclear Information System (INIS)

    Niederhaeusern, A.

    2008-01-01

    In this interview with Markus Russi, head of an electricity utility in the Swiss Alps, recent Swiss legislation such as the Energy law and the cost-covering remuneration of power from renewable energy sources is discussed. The production of the power generation facilities belonging to the utility - hydropower and wind energy - is discussed and future refurbishment and expansion work noted. The situation in the electricity market and co-operation with other local electricity utilities are also discussed and various disadvantages of the new Swiss electricity market legislation are noted. Future partnerships with other utilities with similar business strategies are discussed.

  8. Implementing energy efficiency: Challenges and opportunities for rural electric co-operatives and small municipal utilities

    International Nuclear Information System (INIS)

    Wilson, Elizabeth J.; Plummer, Joseph; Fischlein, Miriam; Smith, Timothy M.

    2008-01-01

    Challenges in implementing demand side management (DSM) programs in rural electric co-operatives and small municipal utilities are not well understood, yet these organizations sell roughly 15% of electricity in the US, many are more coal-intensive than investor-owned utilities (IOUs), and they are politically important-rural electric co-operatives cover about 75% of the US land area and municipal utilities are found in every state except Hawaii. We provide a background on rural co-operatives and municipal utilities in the context of the US electric sector and highlight the challenges and opportunities of implementing DSM programs in these institutions. Where past studies of utility DSM have mostly focused on IOUs or consisted of qualitative case studies of municipal utilities with exemplary DSM performance, this study makes a unique contribution to the DSM literature by systematically analyzing an entire co-operative and municipal utility population in Minnesota through the use of a survey. In doing so, we provide policy recommendations relevant to energy planners and policy makers to support DSM in rural electric co-operatives and municipal utilities

  9. Electric utility load management: rational use of energy program pilot study

    Energy Technology Data Exchange (ETDEWEB)

    1977-08-01

    In recognition of the role that load management can play in ensuring that the growing demand for electricity is met in a cost- and energy-efficient manner, in mid-1974, the NATO Committee on the Challenges of Modern Society sponsored all three meetings to provide a forum for representatives of U.S. and European utilities to exchange views and experiences on the various aspects of load management. It was the consensus of representatives at the meetings that three overall approaches offer significant opportunities for achieving improved load management: development of marginal-cost rate structures; power pooling and energy storage by utilities; and efforts by consumers. Industrial consumers can assist electric utilities in their efforts to level system loads through three important methods: interruptible power and deferred load control; peak self-generation; and shifts in operating schedules. Residential/commercial consumers also have an important role to play by managing both their electric heating load (through the interruption of direct-resistance heating and the storage of heat) and their air conditioning load. In response to the interest expressed by the participants in the CCMS conferences, the U.S. and several European governments, national electric utility industry organizations, state public utility commissions, and many individual utilities have undertaken R and D projects to investigate and test various aspects of these three approaches to load management. This report describes the projects that were presented by the utility representatives.

  10. Deregulation of the electric utility industry - implications for nuclear power

    International Nuclear Information System (INIS)

    Fern, A.Rose

    2000-01-01

    The deregulation movement sweeping the international electric utility community represents a dramatic shift om the traditional business model of utilities. This paper will focus on deregulation in thc United States and the new challenges for nuclear power plant operators. An overview of the new operating models being implemented in the US will lead into a discussion on new economic and operating concerns for nuclear power plant operators. (author)

  11. Collaborative jurisdiction in the regulation of electric utilities: A new look at jurisdictional boundaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    This conference is one of several activities initiated by FERC, DOE and NARUC to improve the dialogue between Federal and State regulators and policymakers. I am pleased to be here to participate in this conference and to address, with you, electricity issues of truly national significance. I would like to commend Ashley Brown and the NARUC Electricity Committee for its foresight in devising a conference on these issues at this critical juncture in the regulation of the electric utility industry. I also would like to commend Chairman Allday and the FERC for their efforts to improve communication between Federal and State electricity regulators; both through FERC`s Public Conference on Electricity Issues that was held last June, and through the FERC/NARUC workshops that are scheduled to follow this conference. These collaborative efforts are important and necessary steps in addressing successfully the many issues facing the electric utility industry those who regulate it, and those who depend upon it - in other words, about everyone.

  12. An analysis of electric utility embedded power supply costs

    International Nuclear Information System (INIS)

    Kahal, M.; Brown, D.

    1998-01-01

    There is little doubt that for the vast majority of electric utilities the embedded costs of power supply exceed market prices, giving rise to the stranded cost problem. Beyond that simple generalization, there are a number of crucial questions, which this study attempts to answer. What are the regional patterns of embedded cost differences? To what extent is the cost problem attributable to nuclear power? How does the cost of purchased power compare to the cost of utility self-generation? What is the breakdown of utility embedded generation costs between operating costs - which are potentially avoidable--and ownership costs, which by definition are ''sunk'' and therefore not avoidable? How will embedded generation costs and market prices compare over time? These are the crucial questions for states as they address retail-restructuring proposal. This study presents an analysis of generation costs, which addresses these key questions. A computerized costing model was developed and applied using FERC Form 1 data for 1995. The model analyzed embedded power supply costs (i.e.; self-generation plus purchased power) for two groups of investor-owned utilities, 49 non-nuclear vs. 63 nuclear. These two subsamples represent substantially the entire US investor-owned electric utility industry. For each utility, embedded cost is estimated both at busbar and at meter

  13. Electric trade in the United States, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1996, the wholesale trade market totaled 2.3 trillion kilowatthours, over 73% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1996 (ELECTRA), is the sixth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1996. The electric trade data collected and presented in this report furnish important information on the wholesale structure found within the US electric power industry. The patterns of interutility trade in the report support analyses of wholesale power transactions and provide input for a broader understanding of bulk power market issues that define the emerging national electric energy policies. The report includes information on the quantity of power purchased, sold, exchanged, and wheeled; the geographical locations of transactions and ownership classes involved; and the revenues and costs. 1 fig., 43 tabs.

  14. Electric utilities and clean air

    International Nuclear Information System (INIS)

    Evans, J.E.

    1991-01-01

    This paper reports that electricity has become essential to American life. Approximately 70 percent of the nation's electricity is produced by burning fossil fuels, with coal, the most abundant, domestically-available, extracted natural resource, providing over 55 percent of the total electricity consumed. Emissions resulting from the burning of fossil fuels are regulated by both the federal and state governments. In 1970, Congress passed the comprehensive Clean Air Act which established a national program to protect the nation's air quality. In 1977, additional strict regulations were passed, which mandated even more stringent emission controls for factories, power plants and auto emissions. Prior to passage of the Clean Air Act of 1990, utilities were required to adhere to three major types of clean air regulations: National Ambient Air Quality Standards (NAAQS), New Source Performance Standards (NSPS), and Prevention of Significant Deterioration (PSD) review. NAAQS established limits for the maximum concentration levels of specific air pollutants in the ambient atmosphere. For example, for an area to be in compliance with the NAAQS for sulfur dioxide (SO 2 ), its annual average SO 2 concentration must not exceed 0.03 ppm of SO 2 and a peak 24 hour level of 0.14 ppm of SO 2 must not be exceeded more than once per year

  15. Review of inter-utility trade in electricity

    International Nuclear Information System (INIS)

    1994-01-01

    In 1992, Canada's National Energy Board released two discussion papers on inter-utility trade. Responses to the papers were received from utilities, government agencies, and other interested parties with regard to questions concerning measures that could be taken to enhance interprovincial trade in electricity and to enable buyers and sellers of electricity to obtain commercial access to available transmission capacity through intermediate provinces for wheeling purposes. The Board's review had estimated long-term net benefits from enhanced inter-utility cooperation at $23-32.5 billion by the year 2000 from such types of transactions as seasonal diversity exchanges and long-term firm sales. Seven types of options to achieve enhanced inter-utility trade were identified. Most of the respondent utilities and provinces that have direct access to external markets tended to prefer the status quo, opposing mandated solutions but supporting (or at least not opposing) federal monitoring of progress on enhanced inter-utility cooperation. Provinces and utilities without direct access to external markets tended to support (as a last resort) mandated solutions to disputes concerning electricity trade. Since the Board review, important events in the North American electricity supply industry have occurred; these are described, focusing on the US Energy Policy Act that gives powers to order transmission access. The formation by US utilities of regional transmission groups (RTGs) with federal encouragement is discussed, along with the implications for Canadian utilities that may want to become members of particular RTGs. The advantages and drawbacks of selecting the various options for enhancing inter-utility trade are then summarized. 1 tab

  16. Mergers and acquisitions: Guidelines for consideration by state public utility commissions

    Energy Technology Data Exchange (ETDEWEB)

    Graniere, R.J.; Burns, R.E.

    1996-11-01

    This is the first of a series of reports on utility mergers and acquisitions published by NRRI; because it was completed Nov. 1996, it does not cover FERC Order 592 (policy statement on merger policy under Federal Power Act). Since cost-benefit analyses are expensive, state regulators need guidelines that efficiently streamline the review process for mergers and acquisitions. Purpose of this paper is to suggest such guidelines; they are applicable only to mergers and acquisitions of vertically integrated electric utilities or combination electric/gas utilities.

  17. Power Struggle: Changing Momentum in the Restructured American Electric Utility System

    International Nuclear Information System (INIS)

    Hirsh, Richard F.

    2004-01-01

    Since the 1970's, producing and distributing electricity were considered as a natural monopoly. They were subjected to state regulation meant to defend the consumers' interest but which in reality enhanced the power of utility managers. The changes that happened since questioned the managers' control over the system. Following the technological stasis that occurred in the production of electricity, the oil crisis, and the awakening of the environmental movement, the Government adopted the Public Utility Regulatory Policies Act in 1978, favoring the coming of cogeneration technologies benefiting the small producers. Market economy tended to replace natural monopoly. Deregulation became a valuable option and was stimulated by the 1992 Energy Policy Act. However, the electrical crisis in California and the recent blackout over part of the continent slowed down the pace of the change

  18. Potential for increased wind-generated electricity utilization using heat pumps in urban areas

    International Nuclear Information System (INIS)

    Waite, Michael; Modi, Vijay

    2014-01-01

    Highlights: • Large-scale wind power and increased electric heat pumps were evaluated. • A deterministic model of wind power and electricity demand was developed. • Sub-models for space heating and domestic hot water demand were developed. • Increased use of heat pumps can improve the viability of large-scale wind power. • Larger wind power capacity can meet a target utilization rate with more heat pumps. - Abstract: The U.S. has substantial wind power potential, but given wind’s intermittent availability and misalignment with electricity demand profiles, large-scale deployment of wind turbines could result in high electricity costs due to energy storage requirements or low utilization rates. While fuel switching and heat pumps have been proposed as greenhouse gas (GHG) emissions and energy reduction strategies at the building scale, this paper shows that heat pump adoption could have additional system-wide benefits by increasing the utilization of wind-generated electricity. A model was developed to evaluate the effects of coupling large-scale wind power installations in New York State with increased use of electric heat pumps to meet a portion of space heating and domestic hot water (DHW) demands in New York City. The analysis showed significant increases in wind-generated electricity utilization with increased use of heat pumps, allowing for higher installed capacity of wind power. One scenario indicates that 78.5% annual wind-generated electricity utilization can be achieved with 3 GW of installed wind power capacity generated electricity equal to 20% of existing NYC annual electricity demand; if 20% of space heating and DHW demands are provided by heat pumps, the 78.5% utilization rate can be achieved with an increase of total wind power capacity to 5 GW. Therefore, this integrated supply–demand approach could provide additional system-wide emissions reductions

  19. Energy and Environment Guide to Action - Chapter 7.0: Electric Utility Policies

    Science.gov (United States)

    Focuses on the authorites that state legislatures have granted to PUCs to regulate electricity and reliability, as these authorities directly affect utilities' and customers' investments in energy efficiency, renewable energy, and CHP.

  20. Do acquisitions by electric utility companies create value? Evidence from deregulated markets

    International Nuclear Information System (INIS)

    Kishimoto, Jo; Goto, Mika; Inoue, Kotaro

    2017-01-01

    In the early 1990s, the United Kingdom (the UK) initiated widespread reforms in the electricity industry through a series of market liberalization policies. Several other countries have subsequently followed the lead and restructured their electricity industry. A major outcome of the deregulation effort is the spate of takeovers, both domestic and global, by electric utility companies. With the entry of new players and increasing competition, the business environment of the electricity industry has changed dramatically. This study analyzes the economic impact of mergers and acquisitions (M&As) in the electric utility industry after deregulation. We have examined acquisitions that took place between 1998 and 2013 in the United States, Canada, the UK, Germany, and France. Although previous studies showed no evidence of a positive effect on acquiring firms through M&As, we find that acquisitions by electric utility companies increased the acquiring firms’ share value and improved their operating performance, primarily through efficiency gains after the deregulation. These results are consistent with the empirical evidence and implications presented by Andrade et al. (2001) that M&A created value for the shareholders of the acquiring and target combined firms. - Highlights: • This study examined mergers and acquisitions (M&A) in electric utility industry. • The sample covered M&A between 1998 and 2013 in North America and Europe. • We found M&A significantly increased acquiring firms’ share value and operating performance. • Deregulation policy realized gains for shareholders without incurring costs for consumers.

  1. 10 CFR 490.307 - Option for Electric Utilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Option for Electric Utilities. 490.307 Section 490.307... Provider Vehicle Acquisition Mandate § 490.307 Option for Electric Utilities. (a) A covered person or its... selling, at wholesale or retail, electricity has the option of delaying the vehicle acquisition mandate...

  2. Electrolysis: Information and Opportunities for Electric Power Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

    2006-09-01

    Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

  3. Leadership skills for the California electric utility industry: A qualitative study

    Science.gov (United States)

    Hubbell, Michael

    The purpose of this qualitative study was to determine the skills and knowledge necessary for leaders in the California electric utility industry in 2020. With rapid industry changes, skills to effectively lead and stay competitive are undetermined. Leaders must manage an increasingly hostile social and political environment, incorporate new technology, and deal with an aging workforce and infrastructure. Methodology. This study utilized a qualitative case study design to determine the factors that influence the skills leaders will require in 2020. It incorporated the perspectives of current electric utility leaders while looking with a future lens. Findings. Interviews were conducted with transmission and distribution (T&D) directors at 3 investor-owned public electric utilities headquartered in California. The questions followed an open-ended format to gather responses as perceived by electric utility leaders for each research question category: overall skills, aging workforce, regulation, technology, and leading younger generations. The research resulted in 18 major themes: 5 for overall skills, 3 for aging workforce, 4 for regulation, 3 for technology, and 3 for leading younger generations. Conclusions. The study identified leadership skills including the ability to embrace, leverage, and stay current with technology; understand and provide a clear vision for the future; increase creativity; manage the next set of workers; motivate during a time of great change; prepare for knowledge transfer and change in workforce culture; manage regulatory expectations; expand potential utility opportunities; leverage "big data"; allow worker collaboration; and understand what drives younger generations. Recommendations. California-based electric utility leaders can remain effective by implementing key strategies identified herein. Further research could examine perspectives of additional utility leaders who lead in organizational units outside of T&D, expand the research to

  4. The EU's major electricity and gas utilities since market liberalization

    International Nuclear Information System (INIS)

    Schuelke, Christian

    2011-06-01

    A major change has taken place in the company structure of the European electricity and gas markets. Twenty years ago, national or regional monopolies dominated the markets and there was strictly no competition between utilities. But since the liberalization of EU energy markets began in the 1990's, companies like E.ON, GDF Suez, EDF, Enel, and RWE have become European giants with activities in a large number of Member States. The advocates of market liberalization did not expect, or even intend, the emergence of a small number of large utilities that control an increasing part of the EU market. Some observers already claim that liberalization has led to an oligopoly with detrimental consequences for competition. Based on extensive background research, this book presents a fact-based analysis of the changes in the European utility sector since the 1990's. Case studies of the seven largest utilities illustrate how companies adapted their strategies to the changing market environment. The author underlines diverging choices and common trends like geographic expansion into new markets via mergers and acquisitions or diversification of business activities with the aim of using synergies between electricity and gas. Contents: Executive Summary. Introduction. Seven Case Studies of Changing Strategies of Major European Energy Utilities since Market Liberalization (E.ON, GDF Suez, EDF, Enel, RWE, Iberdrola, Vattenfall, Other European Utilities). Overview of Major National and Regional Electricity and Gas Market in the EU (Germany, France, United Kingdom, Italy, Spain, Nordic, Belgium and the Netherlands, Central and Eastern Europe). Conclusions. Annex. Bibliography

  5. U.S. electric utility demand-side management 1995

    International Nuclear Information System (INIS)

    1997-01-01

    The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ''Profile: US Electric Utility Demand-Side Management'', presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs

  6. Turmoil and transition: Electric utility industry trends

    International Nuclear Information System (INIS)

    1994-06-01

    In a review of electric utility industry trends, focusing on North America, it is noted that four critical influences are dominant: competition in the electricity supply business; technological advances; the recognized need for environmental protection; and a favoring of market economics and customer choice. As energy costs rose in the 1970s and 1980s, electricity usage growth rates decreased and demand side management became an accepted alternative to building new power plants. In large areas of Canada and the USA, substantial surplus generation capacity arose, transmission linkages improved, and regional electricity markets developed. Privatization measures in the British electric sector were closely studied in North America and electric markets in the USA were pushed toward more competition with the 1992 Energy Policy Act. Non-utility generators have entered the market, including industrial companies, pipeline companies, independent renewable-energy providers, and power companies set up by the utilities themselves. Power pools may evolve into regional transmission grids in which the transmission owning utilities would exchange their lines for an interest in the grid. California is likely to lead in opening access to transmission on a regional scale. Distribution systems are likely to remain a regulated monopoly as before. Substantial change is expected in customer services as functions such as power purchase and conservation are being performed by independent companies. Other possible developments in the industry include emissions trading and spot markets for power. The implications of these trends for British Columbia Hydro are discussed

  7. VT Electric Utility Franchise Areas

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) ELCFRANCHISE includes Vermont's Electric Utility Franchise boundaries. It is a compilation of many data sources. The boundaries are approximate...

  8. Evaluation of actual costs of power sources and effects on balance sheets of electric utilities

    International Nuclear Information System (INIS)

    Matsuo, Yuji; Yamaguchi, Yuji; Murakami, Tomoko

    2013-01-01

    After the Fukushima nuclear accident, almost all nuclear power stations continued to stop operation and sharp increase of purchase costs of fossil fuels forced some electric utilities to suffer a deficit. This article presented quantitative analysis of effects of present state on power costs and balance sheets of electric utilities. Levelized costs of electricity increased from 8.6 ¥/kWh (2010) to 11.6 ¥/kWh (2011) and 12.6 ¥/kWh (2012). Total power costs increased from 7.5 Trillion¥(2010) to 9.5 Trillion¥(2011). Due to increase of cost of fossil fuel compensated for nuclear power, electric utilities suffered a net loss of 0.8 Trillion¥ and decreased surplus to 2.5 Trillion¥ in 2011. Net loss of 1.3 Trillion¥ and surplus of 1.2 Trillion¥ was estimated for 2012. This state was beyond the limit of utilities' efforts to reduce costs and uncertain share of power sources became a great risk. Future share of power sources should be judged appropriately from various standpoints (costs, stable supply, energy security and national economic growth) and early public dissemination of new philosophy on share of power sources was highly required. (T. Tanaka)

  9. The EU's Major Electricity and Gas Utilities since Market Liberalization

    International Nuclear Information System (INIS)

    Schulke, Ch.

    2010-01-01

    A major change has taken place in the company structure of the European electricity and gas markets. Twenty years ago, national or regional monopolies dominated the markets and there was strictly no competition between utilities. But since the liberalization of EU energy markets began in the 1990's, companies like E.ON, GDF Suez, EDF, Enel, and RWE have become European giants with activities in a large number of Member States. The advocates of market liberalization did not expect, or even intend, the emergence of a small number of large utilities that control an increasing part of the EU market. Some observers already claim that liberalization has led to an oligopoly with detrimental consequences for competition. Based on extensive background research, this book presents a fact-based analysis of the changes in the European utility sector since the 1990's. Case studies of the seven largest utilities illustrate how companies adapted their strategies to the changing market environment. The author underlines diverging choices and common trends like geographic expansion into new markets via mergers and acquisitions or diversification of business activities with the aim of using synergies between electricity and gas. (author)

  10. The role of utilities in developing low carbon, electric megacities

    International Nuclear Information System (INIS)

    Kennedy, Chris; Stewart, Iain D.; Facchini, Angelo; Mele, Renata

    2017-01-01

    Development of electric cities, with low carbon power supply, is a key strategy for reducing global CO2 emissions. We analyze the role of electric utilities as important actors to catalyze the transition to electric cites, drawing upon data for the world's 27 megacities. Progress towards the ideal electric city is most advanced for Paris, Rio de Janeiro, Sao Paulo and Buenos Aires for low carbon electricity, while Indian megacities have relatively high use of carbon-intensive electricity as a percentage of total energy use. There is wide variety in the structure of markets for electricity provision in megacities, with a dominant, public utility being the most common model. We review literature on electricity sector business models and broadly propose future models dependent on the predominance of locally dispersed generation and the nature of the ownership of the electric grid within the city. Where a high proportion of electricity can be provided by locally distributed supply within a city, the role of utilities could predominantly become that of enabler of exchange with the grid, but new pricing structures are required. A further challenge for utilities in enabling the electric city is to provide a higher level of resilience to events that disrupt power supply. - Highlights: • Amongst 27 megacities, Paris, Rio, Sao Paulo and Buenos Aires are most progressed low carbon electric cities. • Indian megacities have relatively high use of electricity as a percentage of total energy use. • Wide variety in electricity market structure in megacities; dominant, public utility the most common model. • Utilities could become enablers of exchange with the grid, but new pricing models required.

  11. A technology-assessment methodology for electric utility planning: With application to nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Lough, W.T.

    1987-01-01

    Electric utilities and public service commissions have not taken full advantage of the many proven methodologies and techniques available for evaluating complex technological issues. In addition, evaluations performed are deficient in their use of (1) methods for evaluating public attitudes and (2) formal methods of analysis for decision making. These oversight are substantiated through an examination of the literature relevant to electric utility planning. The assessment process known as technology assessment or TA is proposed, and a TA model is developed for route in use in utility planning by electric utilities and state regulatory commissions. Techniques to facilitate public participation and techniques to aid decision making are integral to the proposed model and are described in detail. Criteria are provided for selecting an appropriate technique on a case-by-case basis. The TA model proved to be an effective methodology for evaluating technological issues associated with electric utility planning such as decommissioning nuclear power plants. Through the use of the nominal group technique, the attitudes of a group of residential ratepayers were successfully identified and included in the decision-making process

  12. Financial impacts of nonutility power purchases on investor-owned electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    To assist in its these responsibilities in the area of electric power, EIA has prepared this report, Financial Impacts of Nonutility Power Purchases on Investor-Owned Electric Utilities. The primary purpose of this report is to provide an overview of the issues surrounding the financial impacts of nonutility generation contracts (since the passage of the Public Utility Regulatory Policies Act of 1978) on investor-owned utilities. The existing concern in this area is manifest in the provisions of Section 712 of the Energy Policy Act of 1992, which required State regulatory commissions to evaluate various aspects of long-term power purchase contracts, including their impact on investor-owned utilities` cost of capital and rates charged to customers. The EIA does not take positions on policy questions. The EIA`s responsibility is to provide timely, high quality information and to perform objective, credible analyses in support of the deliberations by both public and private decision-makers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration.

  13. Financial impacts of nonutility power purchases on investor-owned electric utilities

    International Nuclear Information System (INIS)

    1994-01-01

    To assist in its these responsibilities in the area of electric power, EIA has prepared this report, Financial Impacts of Nonutility Power Purchases on Investor-Owned Electric Utilities. The primary purpose of this report is to provide an overview of the issues surrounding the financial impacts of nonutility generation contracts (since the passage of the Public Utility Regulatory Policies Act of 1978) on investor-owned utilities. The existing concern in this area is manifest in the provisions of Section 712 of the Energy Policy Act of 1992, which required State regulatory commissions to evaluate various aspects of long-term power purchase contracts, including their impact on investor-owned utilities' cost of capital and rates charged to customers. The EIA does not take positions on policy questions. The EIA's responsibility is to provide timely, high quality information and to perform objective, credible analyses in support of the deliberations by both public and private decision-makers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration

  14. Overview of U.S. electric utilities: Transmission and distribution systems

    International Nuclear Information System (INIS)

    Brown, R.D.

    1994-01-01

    I hope this brief description of the US electric utility industry has been interesting and informative. No doubt many characteristics, concerns, and research efforts mirror those of the electric utility industry in South Korea. It is hoped that through workshops such as this that electric utilities, manufacturers and consultants may learn from each other for the mutual benefit of all

  15. Electrical equipment distributors assuming greater role as suppliers to electric utilities

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    A survey was conducted of Canada's largest distributors of electrical equipment to the utility market. Summaries are presented of the views of the major respondents concerning market trends and future challenges. Distributors have emerged as a supply source to utilities over the past two decades. Before then, electric utilities did virtually all their business directly with the manufacturers and rarely with distributors. One reason for this situation was that direct dealing with manufacturers was perceived by the utilites as providing better access to technical advice. Distributors have grown significantly since then and many have their own expert technical staff and provide full support for their products. Various advantages for utilities in dealing with distributors are noted: ability to supply most needs relatively rapidly from stock, simplification of ordering, improved inventory management, and savings in brokerage and other costs associated with imported equipment

  16. An assessment of the cyber security legislation and its impact on the United States electrical sector

    Science.gov (United States)

    Born, Joshua

    The purpose of this research was to examine the cyber-security posture for the United States' electrical grid, which comprises a major component of critical infrastructure for the country. The United States electrical sector is so vast, that the Department of Homeland Security (DHS) estimates, it contains more than 6,413 power plants (this includes 3,273 traditional electric utilities and 1,738 nonutility power producers) with approximately 1,075 gigawatts of energy produced on a daily basis. A targeted cyber-security attack against the electric grid would likely have catastrophic results and could even serve as a precursor to a physical attack against the United States. A recent report by the consulting firm Black and Veatch found that one of the top five greatest concerns for United States electric utilities is the risk that cybersecurity poses to their industry and yet, only one-third state they are currently prepared to meet the increasingly likely threat. The report goes on to state, "only 32% of electric utilities surveyed had integrated security systems with the proper segmentation, monitoring and redundancies needed for cyber threat protection. Another 48 % said they did not" Recent estimates indicate that a large-scale cyber-attack against this sector could cost the United States economy as much as a trillion dollars within a weeks' time. Legislative efforts in the past have primarily been focused on creating mandates that encourage public and private partnership, which have been not been adopted as quickly as desired. With 85 % of all electric utilities being privately owned, it is key that the public and private sector partner in order to mitigate risks and respond as a cohesive unit in the event of a major attack. Keywords: Cybersecurity, Professor Riddell, cyber security, energy, intelligence, outlook, electrical, compliance, legislation, partnerships, critical infrastructure.

  17. State Electricity Regulatory Policy and Distributed Resources: Distributed Resources and Electric System Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Cowart, R.; Harrington, C.; Moskovitz, D.; Shirley, W.; Weston, F.; Sedano, R.

    2002-10-01

    Designing and implementing credit-based pilot programs for distributed resources distribution is a low-cost, low-risk opportunity to find out how these resources can help defer or avoid costly electric power system (utility grid) distribution upgrades. This report describes implementation options for deaveraged distribution credits and distributed resource development zones. Developing workable programs implementing these policies can dramatically increase the deployment of distributed resources in ways that benefit distributed resource vendors, users, and distribution utilities. This report is one in the State Electricity Regulatory Policy and Distributed Resources series developed under contract to NREL (see Annual Technical Status Report of the Regulatory Assistance Project: September 2000-September 2001, NREL/SR-560-32733). Other titles in this series are: (1) Accommodating Distributed Resources in Wholesale Markets, NREL/SR-560-32497; (2) Distributed Resources and Electric System Re liability, NREL/SR-560-32498; (3) Distribution System Cost Methodologies for Distributed Generation, NREL/SR-560-32500; (4) Distribution System Cost Methodologies for Distributed Generation Appendices, NREL/SR-560-32501.

  18. Financial statistics of major US publicly owned electric utilities 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-15

    This publication presents 5 years (1990--94) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. Generator and nongenerator summaries are presented. Composite tables present: Aggregates of income statement and balance sheet data, financial indicators, electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data.

  19. Financial statistics of major US publicly owned electric utilities 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This publication presents 5 years (1990--94) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. Generator and nongenerator summaries are presented. Composite tables present: Aggregates of income statement and balance sheet data, financial indicators, electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data

  20. Electric utilities in Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Although the conference dealt specifically with concerns of the electric utilities in Illinois, the issues were dealt with in the national context as well. A separate abstract was prepared for each of the 5 sections of this proceeding. A total of 25 papers were presented. Section titles are: Forecasting, Planning and Siting, Reliability, Rates and Financing, and Future Developments.

  1. Electric utilities and the demand for natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Uri, N D; Atkinson, S

    1976-03-01

    The scarcity of natural gas has given rise to a series of priorities of deliveries based on end use and drafted by the Federal Power Commission. The U.S. Supreme Court, on June 7, 1972, held that the Commission has jurisdiction over curtailments in the service of gas in interstate commerce to both resale and direct industrial customers. This decision reversed a Fifth Circuit Court ruling that protected direct industrial customers from curtailments. The FPC priority curtailments are classed from 1 to 9, for which electric utilities are concentrated in classes 4 to 9. As weather conditions become more severe, not only do the residential and commercial consumers demand more electrical energy, they also demand more natural gas. The result is that there is less natural gas available for electric utilities to use for generation so they change to an alternative fuel. A demand model for the short term for natural gas for electric utilities is given; primary factors involve the price of natural gas, the prices of substitute fuels, and the demand for electrical energy by the various consumer classes. (MCW)

  2. Positioning the electric utility to build information infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    In two particular respects (briefly investigated in this study from a lawyer`s perspective), electric utilities appear uniquely well-positioned to contribute to the National Information Infrastructure (NII). First of all, utilities have legal powers derived from their charters and operating authorities, confirmed in their rights-of-way, to carry out activities and functions necessary for delivering electric service. These activities and functions include building telecommunications facilities and undertaking information services that have become essential to managing electricity demand and supply. The economic value of the efficiencies made possible by telecommunications and information could be substantial. How great remains to be established, but by many estimates electric utility applications could fund a significant share of the capital costs of building the NII. Though utilities` legal powers to pursue such efficiencies through telecommunications and information appear beyond dispute, it is likely that the effort to do so will produce substantial excess capacity. Who will benefit from this excess capacity is a potentially contentious political question that demands early resolution. Will this windfall go to the utility, the customer, or no one (because of political paralysis), or will there be some equitable and practical split? A second aspect of inquiry here points to another contemporary issue of very great societal importance that could very well become the platform on which the first question can be resolved fortuitously-how to achieve universal telecommunications service. In the effort to fashion the NII that will now continue, ways and means to maximize the unique potential contribution of electric utilities to meeting important social and economic needs--in particular, universal service--merit priority attention.

  3. Geothermal Energy Utilization in the United States - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L (Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR); Sifford, Alex (Sifford Energy Services, Neskowin, OR); Bloomquist, R. Gordon (Washington State University Energy Program, Olympia, WA)

    2000-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity for electric power generation is 3,064 MWe with only 2,212 MWe in operation due to reduction at The Geysers geothermal field in California; producing approximately16,000 GWh per year. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 4,000 MWt and the annual energy use is 20,600 billion Btu (21,700 TJ - 6040 GWh). The largest applications is groundsource (geothermal) heat pumps (59% of the energy use), and the largest direct-use is in aquaculture. Direct utilization is increasing at about six percent per year; whereas, electric power plant development is almost static. Geothermal energy is a relatively benign energy source, displaying fossil fuels and thus, reducing greenhouse gas emissions. A recent initiative by the U.S. Department of Energy, “Geo-Powering the West,” should stimulate future geothermal development. The proposal is especially oriented to small-scale power plants with cascaded uses of the geothermal fluid for direct applications.

  4. Geothermal energy utilization in the United States - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L.; Sifford, Alex; Bloomquist, R. Gordon

    2000-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity for electric power generation is 3,064 MWe with only 2,212 MWe in operation due to reduction at The Geysers geothermal field in California; producing approximately16,000 GWh per year. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 4,000 MWt and the annual energy use is 20,600 billion Btu (21,700 TJ - 6040 GWh). The largest applications is groundsource (geothermal) heat pumps (59% of the energy use), and the largest direct-use is in aquaculture. Direct utilization is increasing at about six percent per year; whereas, electric power plant development is almost static. Geothermal energy is a relatively benign energy source, displaying fossil fuels and thus, reducing greenhouse gas emissions. A recent initiative by the U.S. Department of Energy, “Geo-Powering the West,” should stimulate future geothermal development. The proposal is especially oriented to small-scale power plants with cascaded uses of the geothermal fluid for direct applications.

  5. The determinants of electricity theft: An empirical analysis of Indian states

    International Nuclear Information System (INIS)

    Gaur, Vasundhara; Gupta, Eshita

    2016-01-01

    More than 20% of the electricity generated in India is lost to rampant thefts. Drawing data from 28 states of India over a time span of five years (2005–2009), this paper examines the role played by socio-economic and governance factors in determining the extent of electricity thefts in Indian states. Results from the Feasible Generalised Least Squares (FGLS) model demonstrate that lesser corruption, higher state tax to GDP ratio, greater collection efficiency of electricity bills by state utilities, higher share of private installed capacity, lesser poverty, greater literacy and greater income are closely associated with lesser power thefts. A better understanding of the key determinants of thefts in electricity distribution is vital for policy makers for designing policies. - Highlights: •Over 20% of total electricity generated in India is lost to thefts. •The study attempts to identify the determinants of electricity theft in India. •Use of panel data from 2005 to 2009 for 28 Indian states. •FGLS and OLS regression results are compared. •The determinants of power theft are both governmental and socio-economic in nature.

  6. Network governance in electricity distribution: Public utility or commodity

    International Nuclear Information System (INIS)

    Kuenneke, Rolf; Fens, Theo

    2005-01-01

    This paper addresses the question whether the operation and management of electricity distribution networks in a liberalized market environment evolves into a market driven commodity business or might be perceived as a genuine public utility task. A framework is developed to classify and compare different institutional arrangements according to the public utility model and the commodity model. These models are exemplified for the case of the Dutch electricity sector. It appears that the institutional organization of electricity distribution networks is at the crossroads of two very different institutional development paths. They develop towards commercial business if the system characteristics of the electricity sector remain basically unchanged to the traditional situation. If however innovative technological developments allow for a decentralization and decomposition of the electricity system, distribution networks might be operated as public utilities while other energy services are exploited commercially. (Author)

  7. Electric utility resource expansion planning using environmental externalities

    International Nuclear Information System (INIS)

    Mitchell, D.

    1992-01-01

    This paper describes the recent experience of San Diego Gas ampersand Electric Company using environmental externalities in the expansion planning of its electrical system. This is the first time that this method of planning has been used in the electric utility industry in California. The paper reviews the conceptual development of the monetary values for environmental externalities and shows how the application of these values modifies the resource selection process. This paper should be of interest to professionals involved in policy issues relating to the use of environmental externalities as a means to improve the environment. The experience gained through this analyses should also benefit electric utility personnel involved in planning, and regulators interested in planning

  8. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Inc., Livermore, CA)

    2009-06-01

    The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

  9. An examination of electricity generation by utility organizations in the Southeast United States

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Feng, Song

    2016-01-01

    This study examined the impact of climatic variability on electricity generation in the Southeast United States. The relationship cooling degree days (CDD) and heating degree days (HDD) shared with electricity generation by fuel source was explored. Using seasonal autoregressive integrated weighted average (ARIMA) and seasonal simple exponentially smoothed models, retrospective time series analysis was run. The hypothesized relationship between climatic variability and total electricity generation was supported, where an ARIMA model including CDDs as a predictor explained 57.6% of the variability. The hypothesis that climatic variability would be more predictive of fossil fuel electricity generation than electricity produced by clean energy sources was partially supported. The ARIMA model for natural gas indicated that CDDS were the only predictor for the fossil fuel source, and that 79.4% of the variability was explained. Climatic variability was not predictive of electricity generation from coal or petroleum, where simple seasonal exponentially smoothed models emerged. However, HDDs were a positive predictor of hydroelectric electricity production, where 48.9% of the variability in the clean energy source was explained by an ARIMA model. Implications related to base load electricity from fossil fuels, and future electricity generation projections relative to extremes and climate change are discussed. - Highlights: • Models run to examine impact of climatic variability on electricity generation. • Cooling degree days explained 57.6% of variability in total electricity generation. • Climatic variability was not predictive of coal or petroleum generation. • Cooling degree days explained 79.4% of natural gas generation. • Heating degree days were predictive of nuclear and hydroelectric generation.

  10. Utility regulation-The scope and structure of electrical safety regulation

    International Nuclear Information System (INIS)

    Abbott, Malcolm; Cohen, Bruce

    2011-01-01

    As a consequence of policies in Australia and New Zealand to increase competition in the utilities sector, regulatory agencies have been created in each state to provide independent and authorative advice on matters such as electricity pricing, access to infrastructure, service quality and security of supply. In addition arrangements have been established to maintain safety standards in the industry. The purpose of this paper is to discuss the major issues that have arisen in the creation of regulatory agencies responsible for electrical safety standards in Australia and New Zealand, and how they have impacted on liberalised electricity markets. - Highlights: → Policies in Australia and New Zealand to increase competition have led to the creation of electrical safety agencies. → These agencies have been created in response to perceived market failures. → There is a variance in agencies in terms of their independence and industry coverage. → These agencies have been created at a time of falling fatalities.

  11. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  12. Consideration of environmental externality costs in electric utility resource selections and regulation

    International Nuclear Information System (INIS)

    Ottinger, R.L.

    1990-01-01

    A surprising number of state electric utility regulatory commissions (half) have started to require consideration of environmental externality costs in utility planning and resource selection. The principal rationale for doing so is that electric utility operations impose very real and large damages to human health and the environment which are not taken into account by traditional utility least cost planning, resource selection procedures, or by government pollution regulation. These failures effectively value the residual environmental costs to society of utility operations at zero. The likely future prospect for more stringent governmental pollution regulation renders imprudent the selection of resources without taking environmental externality costs into consideration. Most regulatory commissions requiring environmental externality consideration have left it to the utilities to compute the societal costs, although a few have either set those costs themselves or used a proxy adder to polluting resource costs (or bonus for non-polluting resources). These commissions have used control or pollution mitigation costs, rather than societal damage costs, in their regulatory computations. This paper recommends that damage costs be used where adequate studies exist to permit quantification, discusses the methodologies for their measurement, and describes the means that have been and might be used for their incorporation

  13. Distributional impacts of state-level energy efficiency policies in regional electricity markets

    International Nuclear Information System (INIS)

    Sahraei-Ardakani, Mostafa; Blumsack, Seth; Kleit, Andrew

    2012-01-01

    A number of U.S. states have passed legislation targeting energy efficiency and peak demand reduction. We study one such state, Pennsylvania, within the context of PJM, a regional electricity market covering numerous different states. Our focus is on the distributive impacts of this policy—specifically how the policy is likely to impact electricity prices in different areas of Pennsylvania and in the PJM market more generally. Such spatial differences in policy impacts are difficult to model and the transmission system is often ignored in policy studies. Our model estimates supply curves on a “zonal” basis within regional electricity markets and yields information on price and fuel utilization within each zone. We use the zonal supply curves estimated by our model to study regional impacts of energy-efficiency legislation on utilities both inside and outside of Pennsylvania. For most utilities in Pennsylvania, it would reduce the influence of natural gas on electricity price formation and increase the influence of coal. It would also save 2.1 to 2.8 percent of total energy cost in Pennsylvania in a year similar to 2009. The savings are lower than 0.5 percent in other PJM states and the prices may slightly increase in Washington, DC area. - Highlights: ► We model distributional impacts of energy efficiency and conservation policies. ► We use our model to study the impacts of Pennsylvania act 129. ► We estimate $235 million in annual savings for PA and $275 million for PJM. ► The prices decrease in most of the zones but the impacts are not uniform. ► The influence of coal on electricity prices increases relative to natural gas.

  14. The effects of utility DSM programs on electricity costs and prices

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, E.

    1991-11-01

    More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity? This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a ``base`` that is typical of US utilities; a ``surplus`` utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a ``deficit`` utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

  15. Review of inter-utility trade in electricity: Analyses of submissions

    International Nuclear Information System (INIS)

    1994-04-01

    In November 1992, Canada's National Energy Board released two discussion papers describing its review of inter-utility trade in electricity. The review was undertaken to report on measures that could be taken to enhance interprovincial trade in electricity by encouraging greater cooperation among utilities in systems planning and development, and by enabling buyers and sellers of electricity to obtain commercial access to available transmission capacity through intermediate provinces for wheeling purposes. Interested parties were invited to comment on the papers and 42 responses were received from Canadian utilities, provincial governments, regulatory agencies, and others. These responses are summarized and analyzed, providing an indication of how future policy initiatives on electricity trade might be received. Most submitters agreed that there is a need to enable commercial access to available transmission capacity through intermediate provinces for wheeling purposes. Of the seven options described in the discussion papers that would enable buyers and sellers of electricity to gain commercial access to transmission grids, the status quo was preferred by those utilities and provinces that have direct access to export markets by virtue of their geographic location. Those utilities and provinces that do not have such direct access tend to support, as a last resort, mandated solutions to disputes concerning electricity trade. 78 figs

  16. Practical uses of galvanized steel in electric utility applications

    International Nuclear Information System (INIS)

    Bueche, D.G.

    1995-01-01

    Steel corrosion has been shown to be a major problem for the electric utility industry. Galvanizing has been shown to prevent or substantially slow steel corrosion. This paper describes the galvanizing process, discusses the properties associated with the galvanized coating, and demonstrates galvanizing's durability in specific, real world applications in the electric utility industry

  17. Estimated Value of Service Reliability for Electric Utility Customers in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, M.J.; Mercurio, Matthew; Schellenberg, Josh

    2009-06-01

    Information on the value of reliable electricity service can be used to assess the economic efficiency of investments in generation, transmission and distribution systems, to strategically target investments to customer segments that receive the most benefit from system improvements, and to numerically quantify the risk associated with different operating, planning and investment strategies. This paper summarizes research designed to provide estimates of the value of service reliability for electricity customers in the US. These estimates were obtained by analyzing the results from 28 customer value of service reliability studies conducted by 10 major US electric utilities over the 16 year period from 1989 to 2005. Because these studies used nearly identical interruption cost estimation or willingness-to-pay/accept methods it was possible to integrate their results into a single meta-database describing the value of electric service reliability observed in all of them. Once the datasets from the various studies were combined, a two-part regression model was used to estimate customer damage functions that can be generally applied to calculate customer interruption costs per event by season, time of day, day of week, and geographical regions within the US for industrial, commercial, and residential customers. Estimated interruption costs for different types of customers and of different duration are provided. Finally, additional research and development designed to expand the usefulness of this powerful database and analysis are suggested.

  18. Electric utility preferred stock financing - twilight or new dawn?

    International Nuclear Information System (INIS)

    Klein, R.

    1991-01-01

    The tax laws have greatly diminished the importance of utility preferred stock. But with utility construction programs expected to rise, it is an opportune time to see if preferreds can be an attractive option again. As recently as 1980, preferred stock financing by electric utilities comprised 55% of all U.S. corporate preferred stock issued. By 1989, this percentage had declined to under 12%. In dollar amounts, electric utility preferred stock financing had decreased by two-thirds over the same time period. The author analyzes just why this decline occurred and what it portends for the future

  19. Economical electricity supply and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, K

    1980-05-01

    During the first oil crisis in 1973, hundreds of millions of D-marks have been wasted by medium-sized businesses in the FRG due to avoidable losses and increased electricity costs. Serious attempts towards excluding such losses have to be initiated by an analysis of the individual technical conditions of an enterprise and by consultations 'on site'. Problems relating to an economical electricity supply and utilization in medium-sized industrial enterprises are discussed in this article from the point of view of an industrial consultant being an expert in this field. Practical examples are also given.

  20. The effects of utility DSM programs on electricity costs and prices

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, E.

    1991-11-01

    More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a base'' that is typical of US utilities; a surplus'' utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a deficit'' utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

  1. State aid in the Austrian electricity industry law

    International Nuclear Information System (INIS)

    Rehulka, J.

    2009-01-01

    The present work deals with the existence of State aid in the Austrian electricity industry and focuses on three selected areas of the Austrian legal system, which are examined for their compatibility with Community law. Subject of the first part of this work is a representation of the article 87 ff Treaty of Rome and its impact on Austrian provisions on the promotion of electricity from renewable energies or on the promotion of cogeneration energy. In this context, the first principles of the European state aid law and in particular the European Court are presented regarding the existence of State aid. Here, the Rsp of the Court in connection with the use of State resources in the Rs PreussenElektra Stardust Marine and Pearle is paid in connection with para-fiscal levies special attention. The evaluation of the Austrian support model is based on PreussenElektra, Stardust Marine and Pearle. Then the system of green electricity production in Austria represented. In addition to the Community law principles (green power directive, frameworks and guidelines for environmental aid) is here in particular the 'Oekostromgesetz' and treated it's novellas. It is an intensive discussion with the Commission's decisions on the compatibility of the green power and CHP funding and the funding of the countries with state aid rules. As part of this analysis is to attempt a classification of the Commission's practice in the Community legal system. The second part of the work deals with the determination of absorbed. System utilization rates and their distribution to the network operator. After a presentation of the Community legislation (EC regulations, the internal electricity market directives) and Rsp of the European Court of Justice (Case ADBHu, Ferring, Altmark Trans) to services of general economic interest is first attempted to determine the presence of these services in the 216 Austrian legislation. Here, the question will be, entrusted with services of general economic

  2. X - FACTOR EVALUATION UNDER RPI-X REGULATION FOR INDIAN ELECTRICITY DISTRIBUTION UTILITIES

    Directory of Open Access Journals (Sweden)

    PAVAN KHETRAPAL

    2017-07-01

    Full Text Available With regulators’ growing interest in improving operational efficiency and quality supply, the time is nearing when performance based regulation will become norm for regulating the distribution tariff in Indian electricity distribution sector. In this context, the State Electricity Regulatory Commissions proposed replacing rate-of-return regulation with most commonly used performance based regulatory regime, i.e., Price Cap regulation also known as RPI-X (Retail Price Index - Productivity Offset regulatory framework. However, the potential problem associated with applying price cap regulation scheme in practice is the determination of productivity offset or X factor used in price caps setting. This paper proposed an approach to calculate the X-factor for 58 government-owned and privately-owned electricity distribution utilities in India during a five year period from 2007/08 to 2011/12. A Stochastic Frontier model through an input distance function is first applied to compute the Malmquist Total Factor Productivity (TFP and the estimated TFP is then used to calculate the utility-specific X-factor. With rely on calculated X-factor, the distribution utilities would be able to cap either on prices or revenues thus accounting the inflation in the tariff determination. This will be more realistic approach as compared to cost plus approach.

  3. Electric trade in the United States 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This publication, Electric Trade in the US 1992 (ELECTRA), is the fourth in a series of reports on wholesale power transactions prepared by the Electric Data Systems Branch, Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1992. The electric trade data collected and presented in this report furnish important information on the wholesale structure found within the US electric power industry. The patterns of interutility trade in the report support analyses of wholesale power transactions and provide input for a broader understanding of bulk power market issues that define the emerging national electric energy policies. The report includes information on the quantity of power purchased, sold, exchanged, and wheeled; the geographical locations of transactions and ownership classes involved; and the revenues and costs. Information on the physical transmission system are being included for the first time in this publication. Transmission data covering investor-owned electric utilities were shifted from the Financial Statistics of Selected Investor-Owned Electric Utilities to the ELECTRA publication. Some of the prominent features of this year`s report include information and data not published before on transmission lines for publicly owned utilities and transmission lines added during 1992 by investor-owned electric utilities.

  4. Electric trade in the United States 1992

    International Nuclear Information System (INIS)

    1994-09-01

    This publication, Electric Trade in the US 1992 (ELECTRA), is the fourth in a series of reports on wholesale power transactions prepared by the Electric Data Systems Branch, Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1992. The electric trade data collected and presented in this report furnish important information on the wholesale structure found within the US electric power industry. The patterns of interutility trade in the report support analyses of wholesale power transactions and provide input for a broader understanding of bulk power market issues that define the emerging national electric energy policies. The report includes information on the quantity of power purchased, sold, exchanged, and wheeled; the geographical locations of transactions and ownership classes involved; and the revenues and costs. Information on the physical transmission system are being included for the first time in this publication. Transmission data covering investor-owned electric utilities were shifted from the Financial Statistics of Selected Investor-Owned Electric Utilities to the ELECTRA publication. Some of the prominent features of this year's report include information and data not published before on transmission lines for publicly owned utilities and transmission lines added during 1992 by investor-owned electric utilities

  5. Communications architecture for an electric company, European utility communications architecture, EURUCA

    Energy Technology Data Exchange (ETDEWEB)

    Uuspaeae, P [VTT Energy, Espoo (Finland)

    1998-08-01

    The scope of this research is integration and interoperability of various information systems and data communications for electric utilities. Utility Communication Architecture refers to an overall view of the communications needs and communication systems in an electric utility. The objective is to define and specify suitable and compatible communications procedures within the Utility and also to outside parties

  6. The EU's Major Electricity and Gas Utilities since Market Liberalization

    Energy Technology Data Exchange (ETDEWEB)

    Schulke, Ch.

    2010-07-01

    A major change has taken place in the company structure of the European electricity and gas markets. Twenty years ago, national or regional monopolies dominated the markets and there was strictly no competition between utilities. But since the liberalization of EU energy markets began in the 1990's, companies like E.ON, GDF Suez, EDF, Enel, and RWE have become European giants with activities in a large number of Member States. The advocates of market liberalization did not expect, or even intend, the emergence of a small number of large utilities that control an increasing part of the EU market. Some observers already claim that liberalization has led to an oligopoly with detrimental consequences for competition. Based on extensive background research, this book presents a fact-based analysis of the changes in the European utility sector since the 1990's. Case studies of the seven largest utilities illustrate how companies adapted their strategies to the changing market environment. The author underlines diverging choices and common trends like geographic expansion into new markets via mergers and acquisitions or diversification of business activities with the aim of using synergies between electricity and gas. (author)

  7. All Electric Passenger Vehicle Sales in India by 2030: Value proposition to Electric Utilities, Government, and Vehicle Owners

    Energy Technology Data Exchange (ETDEWEB)

    Abhyankar, Nikit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gopal, Anand R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sheppard, Colin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-20

    In India, there is growing interest among policymakers, planners, and regulators for aggressive electrification of passenger vehicles. For example, Piyush Goyal, the Minister of State for India’s Ministry of Coal, Power, New and Renewable Energy, announced an aspirational goal of converting all vehicle sales in India to battery electric vehicles (BEVs) by 2030 (Economic Times, 2016). In 2012, India has already announced the National Mission on Electric Mobility (NMEM) sets a countrywide goal of deploying 6 to 7 million hybrid and electric vehicles (EVs) by 2020 (DHI, 2012). A major policy motivation for transport electrification is to reduce India’s oil import dependency. The objective of this paper is to assess the effect of full electrification of vehicle sales in India by 2030 on the key stakeholders such as BEV owners, electric utilities, and the government. Specifically, we attempt to answer the following questions: (a) How does the total vehicle ownership cost of BEVs compare with the conventional vehicles? (b) What is the additional load due BEV charging? (c) What is the impact on the power sector investments, costs, and utility revenue? (d) How can smart BEV charging help renewable energy grid integration? (e) What is the impact on the crude oil imports? (f) What is the impact on the greenhouse gas (GHG) emissions?

  8. Favourability towards electric utilities jumps 10 per cent in 1997

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    A recent survey of public opinion has shown that 85 per cent of the public view their electric utility company favourably. This represents a 10 per cent increase over last year. A survey of 4,090 Canadians was conducted which looked at the perceptions of the value of electricity services compared to telephone, natural gas, banking, and home insurance services. The study showed that Canadian electric utility companies are viewed as positively as the telephone companies and almost as favourably as the banks. Some 71 per cent of respondents reported that the value they receive from their electric utility is excellent or good. Lower prices, better customer services and increased research into alternative power sources were among the benefits that Canadians perceive would result from a more competitive electricity sector. Some misgivings about deregulation included a belief that there would be less attention to environmental concerns and more outages. Four per cent of the respondents said they would 'definitely' switch to an alternative supplier of electricity, while 25 per cent said they would 'probably' switch to an alternative supplier of electricity. 2 tabs

  9. DSM and electric utility competitiveness: An Illinois perspective

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, P.W.

    1994-12-31

    A predominant theme in the current electric utility industry literature is that competitive forces have emerged and may become more prominent. The wholesale bulk power market is alreadly competitive, as non-utility energy service providers already have had a significant impact on that market; this trend was accelerated by the Energy Policy Act of 1992. Although competition at the retail level is much less pervasive, electric utility customers increasingly have greater choice in selecting energy services. These choices may include, depending on the customer, the ability to self-generate, switch fuels, move to a new location, or rely more heavily on demand-side management as a means of controlling electric energy use. This paper explores the subject of how demand-side management (DSM) programs, which are often developed by a utility to satisfy resource requirements as a part of its least-cost planning process, can affect the utility`s ability to compete in the energy services marketplace. In this context, the term `DSM` is used in this paper to refer to those demand-side services and programs which provide resources to the utility`s system. Depending on one`s perspective, DSM programs (so defined) can be viewed either as an enhancement to the competitive position of a utility by enabling it to provide its customers with a broader menu of energy services, simultaneously satisfying the objectives of the utility as well as those of the customers, or as a detractor to a utility`s ability to compete. In the latter case, the concern is with respect to the potential for adverse rate impacts on customers who are not participants in DSM programs. The paper consists of an identification of the pros and cons of DSM as a competitive strategy, the tradeoff which can occur between the cost impacts and rate impacts of DSM, and an examination of alternative strategies for maximizing the utilization of DSM both as a resource and as a competitive strategy.

  10. Electric utilities strategies in final energy markets

    International Nuclear Information System (INIS)

    Bianchi, A.

    2000-01-01

    In rapidly changing markets, electric utilities pay growing attention to customers and service. They are aware that competition needs strategies capable of transforming and strengthening the privileged position resulting from the knowledge of the market. Moreover, this aspect is the link between different value chains to describe new multi utility approaches [it

  11. Long-term consequences of selected competitive strategies during deregulation of the United States electric utility industry: System dynamics modeling and simulation

    Science.gov (United States)

    Khalil, Yehia Fahim

    Currently, U.S. investor-owned utilities (IOUs) are facing major reforms in their business environment similar to the airlines, telecommunications, banking, and insurance industries. As a result, IOUs are gearing up for fierce price competition in the power generation sector, and are vying for electricity customers outside their franchised service territories. Energy experts predict that some IOUs may suffer fatal financial setbacks (especially those with nuclear plants), while others may thrive under competition. Both federal and state energy regulators anticipate that it may take from five to ten years to complete the transition of America's electric utility industry from a regulated monopoly to a market-driven business. During this transition, utility executives are pursuing aggressive business strategies to confront the upcoming price wars. The most compelling strategies focus on cutting operation and maintenance (O&M) costs of power production, downsizing the work force, and signing bilateral energy agreements with large price-sensitive customers to retain their business. This research assesses the impact of the three pivotal strategies on financial performance of utilities during transition to open market competition. A system-dynamics-based management flight simulator has been developed to predict the dynamic performance of a hypothetical IOU organization preparing for market competition. The simulation results show that while the three business strategies lead to short-lived gains, they also produce unanticipated long-term consequences that adversely impact the organization's operating revenues. Generally, the designed flight simulator serves as a learning laboratory which allows management to test new strategies before implementation.

  12. Exploring utility organization electricity generation, residential electricity consumption, and energy efficiency: A climatic approach

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Feng, Song

    2017-01-01

    Highlights: • Study examined impact of electricity fuel sources and consumption on emissions. • 97.2% of variability in emissions explained by coal and residential electricity use. • Increasing cooling degree days significantly related to increased electricity use. • Effectiveness of state-level energy efficiency programs showed mixed results. - Abstract: This study examined the impact of electricity generation by fuel source type and electricity consumption on carbon emissions to assess the role of climatic variability and energy efficiency (EE) in the United States. Despite high levels of greenhouse gas emissions, residential electricity consumption continues to increase in the United States and fossil fuels are the primary fuel source of electricity generation. 97.2% of the variability in carbon emissions in the electricity industry was explained by electricity generation from coal and residential electricity consumption. The relationships between residential electricity consumption, short-term climatic variability, long-term climatic trends, short-term reduction in electricity from EE programs, and long-term trends in EE programs was examined. This is the first study of its nature to examine these relationships across the 48 contiguous United States. Inter-year and long-term trends in cooling degree days, or days above a baseline temperature, were the primary climatic drivers of residential electricity consumption. Cooling degree days increased across the majority of the United States during the study period, and shared a positive relationship with residential electricity consumption when findings were significant. The majority of electricity reduction from EE programs was negatively related to residential electricity consumption where findings were significant. However, the trend across the majority of states was a decrease in electricity reduction from EE while residential electricity consumption increased. States that successfully reduced consumption

  13. The future of the electric utility industry in Canada

    International Nuclear Information System (INIS)

    Threlkeld, R.

    1995-01-01

    A discussion of future changes in the electric power utility industry in Canada was presented. The impacts of deregulation were considered, including increased competition, and reduced profits resulting from it. Restructuring measures taken by BC Hydro to prepare for industry changes were described. Competition was not only expected to result from new electric utilities, but also gas utilities that are establishing themselves in the home heating business. Emphasis was placed on making the utilities' priorities, the same as their customers'. Flexibility of rate scheduling and increased dependence on customer-owned generation were needed to remain competitive. Exportation of surplus electricity and development of power utilities in developing nations was considered as a potentially lucrative development strategy. It was suggested that making use of strategic alliances within Canada and worldwide, will help to keep utilities ahead of the competition. A warning was issued to the effect that environmental concerns must always be considered well in advance of regulations since they are continually becoming more stringent. Making common cause with customers, and continuous improvement were considered to be the most important keys to future success for the industry

  14. Outsourcing decision factors in publicly owned electric utilities

    Science.gov (United States)

    Gonzales, James Edward

    Purpose. The outsourcing of services in publicly owned electric utilities has generated some controversy. The purpose of this study was to explore this controversy by investigating the relationships between eight key independent variables and a dependent variable, "manager perceptions of overall value of outsourced services." The intent was to provide data so that utilities could make better decisions regarding outsourcing efforts. Theoretical framework. Decision theory was used as the framework for analyzing variables and alternatives used to support the outsourcing decision-making process. By reviewing these eight variables and the projected outputs and outcomes, a more predictive and potentially successful outsourcing effort can be realized. Methodology. A survey was distributed to a sample of 323 publicly owned electric utilities randomly selected from a population of 2,020 in the United States. Analysis of the data was made using statistical techniques including the Chi-Square, Lambda, Spearman's coefficient of rank correlation, as well as the Hypothesis Test, Rank Correlation, to test for relationships among the variables. Findings. Relationships among the eight key variables and perceptions of the overall value of outsourced services were generally weak. The notable exception was with the driving force (reason) for outsourcing decisions where the relationship was strongly positive. Conclusions and recommendations. The data in support of the research questions suggest that seven of the eight key variables may be weakly predictive of perceptions of the overall value of outsourced services. However, the primary driving force for outsourcing was strongly predictive. The data also suggest that many of the sampled utilities did not formally address these variables and alternatives, and therefore may not be achieving maximal results. Further studies utilizing customer perceptions rather than those of outsourcing service managers are recommended. In addition, it is

  15. Hydro and After: The Canadian Experience with the Organization, Nationalization and Deregulation of Electrical Utilities

    International Nuclear Information System (INIS)

    Nelles, Henry Vivian

    2003-01-01

    This paper surveys the process of nationalization and some recent steps towards denationalization in a distinctive Canadian institutional setting, the provincial hydro-electric power utilities. The richest, most industrialized central province, Ontario, established a dynamic publicly owned electric generation and distribution system before World War I. Most other provinces developed variations of the regulatory model to govern private monopolies until the post World War II period when widespread nationalization at the provincial level created a near universal pattern of state owned electric companies. Recently, the process of dismantling state monopolies in this sector has begun in two provinces, one where public ownership was weakest, and the other where the concept of 'provincial hydro' was born

  16. Overview of the electricity and gas markets in the United States

    International Nuclear Information System (INIS)

    Speyer, J.M.

    1998-01-01

    The driving forces behind electricity and gas restructuring in the United States are primarily economic. Restructuring legislation regarding the electric power industry has been enacted in fourteen states, and similar legislation is under consideration in most other states. Currently, only three states do not have a significant restructuring plan. With regard to natural gas, market restructuring of the entire gas market is underway in five states, and studies or limited utility retail unbundling pilot programs are underway in seventeen others. It was predicted that restructuring will spread nationwide because once competition begins, it is hard to draw boundaries around it. Mergers are part of the restructuring process, providing firms with a scale that would allow them to undertake strategic initiatives. Convergence, on the other hand, is a response to the 'commoditization' of electricity and gas. As a development in the opposite direction, suppliers of electricity and gas are now attempting to 'decommoditize' their products by brand differentiation and other 'value added' services as a means of developing and retaining customer loyalty. 3 tabs., 2 figs

  17. Overview of the electricity and gas markets in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Speyer, J.M. [Putnam, Hayes and Bartlett Inc., Washington, DC (United States)

    1998-09-01

    The driving forces behind electricity and gas restructuring in the United States are primarily economic. Restructuring legislation regarding the electric power industry has been enacted in fourteen states, and similar legislation is under consideration in most other states. Currently, only three states do not have a significant restructuring plan. With regard to natural gas, market restructuring of the entire gas market is underway in five states, and studies or limited utility retail unbundling pilot programs are underway in seventeen others. It was predicted that restructuring will spread nationwide because once competition begins, it is hard to draw boundaries around it. Mergers are part of the restructuring process, providing firms with a scale that would allow them to undertake strategic initiatives. Convergence, on the other hand, is a response to the `commoditization` of electricity and gas. As a development in the opposite direction, suppliers of electricity and gas are now attempting to `decommoditize` their products by brand differentiation and other `value added` services as a means of developing and retaining customer loyalty. 3 tabs., 2 figs.

  18. Competition in the electric utility sector?

    International Nuclear Information System (INIS)

    Olsen, O.J.; Fristrup, P.; Munksgaard, J.; Skytte, K.

    2000-01-01

    The book analyses some important problems for the liberaliaction of the electricity market in Denmark and its neighbouring countries. Will the competition and its potential for a more cost-effective electric supply be prevented by the electric companies' many possibilities to utilize market power? Can competition be combined with ambitious energy policy aims about reducing the environmental impacts of the electric supply? Does the Danish tradition for consumer ownership constitute an important supplement to the protection of the smaller consumers in a world of international competition? The intention with the book is not to take concrete position to the many topical problems in the Danish political discussion of restructurns of the electric sector, but to give a theoretical analysis to understand and analyse the development. On this basis the conclusion is, that the competition will work even in combination with ambitious environmental aims. (EHS)

  19. Cost and quality of fuels for electric utility plants 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, ''Monthly Power Plant Report.'' These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990

  20. Puget Sound Area Electric Reliability Plan : Draft Environmental Impact State.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1991-09-01

    The Puget Sound Area Electric Reliability Plan Draft Environmental Impact Statement (DEIS) identifies the alternatives for solving a power system problem in the Puget Sound area. This Plan is undertaken by Bonneville Power Administration (BPA), Puget Sound Power Light, Seattle City Light, Snohomish Public Utility District No. 1 (PUD), and Tacoma Public Utilities. The Plan consists of potential actions in Puget Sound and other areas in the State of Washington. A specific need exists in the Puget Sound area for balance between east-west transmission capacity and the increasing demand to import power generated east of the Cascades. At certain times of the year, there is more demand for power than the electric system can supply in the Puget Sound area. This high demand, called peak demand, occurs during the winter months when unusually cold weather increases electricity use for heating. The existing power system can supply enough power if no emergencies occur. However, during emergencies, the system will not operate properly. As demand grows, the system becomes more strained. To meet demand, the rate of growth of demand must be reduced or the ability to serve the demand must be increased, or both. The plan to balance Puget Sound's power demand and supply has these purposes: The plan should define a set of actions that would accommodate ten years of load growth (1994--2003). Federal and State environmental quality requirements should be met. The plan should be consistent with the plans of the Northwest Power Planning Council. The plan should serve as a consensus guideline for coordinated utility action. The plan should be flexible to accommodate uncertainties and differing utility needs. The plan should balance environmental impacts and economic costs. The plan should provide electric system reliability consistent with customer expectations. 29 figs., 24 tabs.

  1. Updated Value of Service Reliability Estimates for Electric Utility Customers in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Michael [Nexant Inc., Burlington, MA (United States); Schellenberg, Josh [Nexant Inc., Burlington, MA (United States); Blundell, Marshall [Nexant Inc., Burlington, MA (United States)

    2015-01-01

    This report updates the 2009 meta-analysis that provides estimates of the value of service reliability for electricity customers in the United States (U.S.). The meta-dataset now includes 34 different datasets from surveys fielded by 10 different utility companies between 1989 and 2012. Because these studies used nearly identical interruption cost estimation or willingness-to-pay/accept methods, it was possible to integrate their results into a single meta-dataset describing the value of electric service reliability observed in all of them. Once the datasets from the various studies were combined, a two-part regression model was used to estimate customer damage functions that can be generally applied to calculate customer interruption costs per event by season, time of day, day of week, and geographical regions within the U.S. for industrial, commercial, and residential customers. This report focuses on the backwards stepwise selection process that was used to develop the final revised model for all customer classes. Across customer classes, the revised customer interruption cost model has improved significantly because it incorporates more data and does not include the many extraneous variables that were in the original specification from the 2009 meta-analysis. The backwards stepwise selection process led to a more parsimonious model that only included key variables, while still achieving comparable out-of-sample predictive performance. In turn, users of interruption cost estimation tools such as the Interruption Cost Estimate (ICE) Calculator will have less customer characteristics information to provide and the associated inputs page will be far less cumbersome. The upcoming new version of the ICE Calculator is anticipated to be released in 2015.

  2. The impact of cost recovery on electric utilities' Clean Air Act compliance strategies

    International Nuclear Information System (INIS)

    Bensinger, D.L.

    1993-01-01

    By 1995, over 200 electric power plant units in twenty one states must comply with Phase I of the acid rain requirements in Title IV of the 1990 Clean Air Act Amendments (CAAA). By the year 2000, an additional 2200 units must comply with the Title IV. Compliance costs are expected to necessitate significant electricity rate increases. In order to recover their compliance costs, utilities must file rate increase requests with state public utility commissions (PUC's), and undergo a rate proceeding involving public heatings. Because of the magnitude of cost and the complexity of compliance options, including interaction with Titles I and III of the CAAA, extensive PUC reviews of compliance strategies are likely. These reviews could become as adversarial as the nuclear prudence reviews of the 1980's. A lack of understanding of air pollution and the CAA by much of the general public and the flexibility of compliance options creates an environment conducive to adverse public reaction to the cost of complying with the Clean Air Act. Public attitudes toward pollution control technologies will be greatly affected by these hearings, and the early plant hearings will shape the utility rate making process under the Clean Air Act. Inadequate cost recovery due to constrained compliance strategies or adverse hearings could significantly inhibit industry willingness to invest in certain control technologies or advanced combustion technologies. There are already signs that Clean Air Act compliance will be the prudence issue of the 1990's for utilities, even where state statutes mandate particular compliance approaches. Specific actions should be undertaken now by the utility industry to improve the probability of sound cost recovery decisions, preserve compliance options, including multimedia strategies, and avoid the social- and cost-acceptance problems of nuclear power

  3. Financing the electric power utilities, especially the nuclear power in Japan

    International Nuclear Information System (INIS)

    Tajima, T.

    1975-04-01

    Electric power demands in Japan have shown a remarkable growth at an annual rate of 12% since 1965. Nine electric power companies have invested large amounts of money so far, amounting to over 1 trillion yen every year since 1972. A survey of the electric power supply system and an estimation of the electric power demands in 1980 and in 1985 are given. It is expected that the main portion of electric power in the future will gradually be generated by nuclear plants. Financial features of the electrical power utilities, the credit risk of the electric power utilities, and the raising of funds by electric power utilities are discussed. It is concluded that it will be necessary (1) to expand the capital market, (2) to enable the electric power companies to issue a sufficient amount of bonds, (3) to make the Government financing institutions, such as the Japan Development Bank, provide the electric power companies with larger funds on a long-term and low-interest rate basis, and (4) even to take such drastic steps as subsidizing interest on private loans to the electric power companies. (B.P.)

  4. Techniques of analyzing the impacts of certain electric-utility ratemaking and regulatory-policy concepts. Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    This bibliography provides documentation for use by state public utility commissions and major nonregulated utilities in evaluating the applicability of a wide range of electric utility rate design and regulatory concepts in light of certain regulatory objectives. Part I, Utility Regulatory Objectives, contains 2084 citations on conservation of energy and capital; efficient use of facilities and resources; and equitable rates to electricity consumers. Part II, Rate Design Concepts, contains 1238 citations on time-of-day rates; seasonally-varying rates; cost-of-service rates; interruptible rates (including the accompanying use of load management techniques); declining block rates; and lifeline rates. Part III, Regulatory Concepts, contains 1282 references on restrictions on master metering; procedures for review of automatic adjustment clauses; prohibitions of rate or regulatory discrimination against solar, wind, or other small energy systems; treatment of advertising expenses; and procedures to protect ratepayers from abrupt termination of service.

  5. Waste utilization in electric energy industry

    International Nuclear Information System (INIS)

    Parate, N.S.; Harris, E.

    1991-01-01

    This paper reports that electric energy is an integral element of today's economy and the standard quality of life. The availability of energy at an affordable cost has always been of basic concern because of the intimate relationship of energy to our societal development and progress. Coal and Uranium are the primary alternative energy sources for large electric power plants. Coal remains the dominant fuel for electric generation. The pressurized fluidized bed combustion technology has the potential of utilizing all types of coal, including coal with high ash, high sulphur, and high moisture content. Fluidized bed combustion is a firing technique which fulfills today's pollution control requirements without downstream flue gas cleaning plants like scrubbers, baghouses, and precipitators

  6. DSM and electric utility competitiveness: An Illinois perspective

    International Nuclear Information System (INIS)

    Jackson, P.W.

    1994-01-01

    A predominant theme in the current electric utility industry literature is that competitive forces have emerged and may become more prominent. The wholesale bulk power market is alreadly competitive, as non-utility energy service providers already have had a significant impact on that market; this trend was accelerated by the Energy Policy Act of 1992. Although competition at the retail level is much less pervasive, electric utility customers increasingly have greater choice in selecting energy services. These choices may include, depending on the customer, the ability to self-generate, switch fuels, move to a new location, or rely more heavily on demand-side management as a means of controlling electric energy use. This paper explores the subject of how demand-side management (DSM) programs, which are often developed by a utility to satisfy resource requirements as a part of its least-cost planning process, can affect the utility's ability to compete in the energy services marketplace. In this context, the term 'DSM' is used in this paper to refer to those demand-side services and programs which provide resources to the utility's system. Depending on one's perspective, DSM programs (so defined) can be viewed either as an enhancement to the competitive position of a utility by enabling it to provide its customers with a broader menu of energy services, simultaneously satisfying the objectives of the utility as well as those of the customers, or as a detractor to a utility's ability to compete. In the latter case, the concern is with respect to the potential for adverse rate impacts on customers who are not participants in DSM programs. The paper consists of an identification of the pros and cons of DSM as a competitive strategy, the tradeoff which can occur between the cost impacts and rate impacts of DSM, and an examination of alternative strategies for maximizing the utilization of DSM both as a resource and as a competitive strategy

  7. Tacit Knowledge Capture and the Brain-Drain at Electrical Utilities

    Science.gov (United States)

    Perjanik, Nicholas Steven

    As a consequence of an aging workforce, electric utilities are at risk of losing their most experienced and knowledgeable electrical engineers. In this research, the problem was a lack of understanding of what electric utilities were doing to capture the tacit knowledge or know-how of these engineers. The purpose of this qualitative research study was to explore the tacit knowledge capture strategies currently used in the industry by conducting a case study of 7 U.S. electrical utilities that have demonstrated an industry commitment to improving operational standards. The research question addressed the implemented strategies to capture the tacit knowledge of retiring electrical engineers and technical personnel. The research methodology involved a qualitative embedded case study. The theories used in this study included knowledge creation theory, resource-based theory, and organizational learning theory. Data were collected through one time interviews of a senior electrical engineer or technician within each utility and a workforce planning or training professional within 2 of the 7 utilities. The analysis included the use of triangulation and content analysis strategies. Ten tacit knowledge capture strategies were identified: (a) formal and informal on-boarding mentorship and apprenticeship programs, (b) formal and informal off-boarding mentorship programs, (c) formal and informal training programs, (d) using lessons learned during training sessions, (e) communities of practice, (f) technology enabled tools, (g) storytelling, (h) exit interviews, (i) rehiring of retirees as consultants, and (j) knowledge risk assessments. This research contributes to social change by offering strategies to capture the know-how needed to ensure operational continuity in the delivery of safe, reliable, and sustainable power.

  8. Region-specific study of the electric utility industry: problem identification, analysis, and recommendations

    International Nuclear Information System (INIS)

    Pochan, M.J.

    1985-07-01

    A number of problems were identified that could stand in the way of maintaining an adequate, reliable and economic supply of electric power for the United States in the future. The problems were analyzed by studying a specific region, VACAR (Virginia-Carolinas), in some detail. It was concluded that the future power supply is in jeopardy, but that drastic changes in the present system of investor-owned utilities, specifically, deregulation or government ownership, were not justified. It was recommended that the present electric system be modified and strengthened to meet future needs. 2 refs., 8 figs., 15 tabs

  9. Region-specific study of the electric utility industry: problem identification, analysis, and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Pochan, M.J.

    1985-07-01

    A number of problems were identified that could stand in the way of maintaining an adequate, reliable and economic supply of electric power for the United States in the future. The problems were analyzed by studying a specific region, VACAR (Virginia-Carolinas), in some detail. It was concluded that the future power supply is in jeopardy, but that drastic changes in the present system of investor-owned utilities, specifically, deregulation or government ownership, were not justified. It was recommended that the present electric system be modified and strengthened to meet future needs. 2 refs., 8 figs., 15 tabs.

  10. Managing carbon regulatory risk in utility resource planning: Current practices in the Western United States

    International Nuclear Information System (INIS)

    Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

    2008-01-01

    Concerns about global climate change have substantially increased the likelihood that future policy will seek to minimize carbon dioxide emissions. As such, even today, electric utilities are making resource planning and investment decisions that consider the possible implications of these future carbon regulations. In this article, we examine the manner in which utilities assess the financial risks associated with future carbon regulations within their long-term resource plans. We base our analysis on a review of the most recent resource plans filed by 15 electric utilities in the Western United States. Virtually all of these utilities made some effort to quantitatively evaluate the potential cost of future carbon regulations when analyzing alternate supply- and demand-side resource options for meeting customer load. Even without federal climate regulation in the US, the prospect of that regulation is already having an impact on utility decision-making and resource choices. That said, the methods and assumptions used by utilities to analyze carbon regulatory risk, and the impact of that analysis on their choice of a particular resource strategy, vary considerably, revealing a number of opportunities for analytic improvement. Though our review focuses on a subset of US electric utilities, this work holds implications for all electric utilities and energy policymakers who are seeking to minimize the compliance costs associated with future carbon regulations

  11. 76 FR 3517 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Science.gov (United States)

    2011-01-20

    ... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... following: Category NAICS \\1\\ Examples of regulated entities Industry 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired electric utility steam...

  12. The electric utilities during the 1970s and 1980s

    International Nuclear Information System (INIS)

    Studness, C.M.

    1990-01-01

    This article reviews the financial performance of electric utilities during the 1970s and 1980s and the factors which have affected their performance. Topics include the effects of the energy crisis in 1973, the nuclear accident at Three Mile Island in 1979, the widespread use of imprudence disallowances by regulators after 1984, and the gradual extension of the nation's deregulation movement to the electric utilities

  13. Willingness to Pay for Renewable Electricity: A Review of Utility Market Research

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B. C.

    1999-09-09

    As competition in the electric utility industry has become more widespread and federal legislation deregulating the utility industry more likely, utilities have become more concerned about actions they can take to help ensure the loyalty of their customers. National polls have, for 20 years, found majority preferences for renewable energy over other energy sources. This issue brief compiles and analyzes recent market research conducted by utility companies on customer interest in and willingness to pay for renewable electricity. Findings in the areas examined in this review are: Customers are favorable toward renewable sources of electricity, although they know little about them; Solar and wind are the most favored sources of electricity generation; Majorities of 52% to nearly 100% of residential customers said they were willing to pay at least a modest amount more per month on their electric bills for green power; their responses follow a predictable curve showing that percentages willing to pay more decline as cost increases. The residential market for green pricing is approximately 2% near program rollout at a $5/month price increment, and should increase slowly but steadily over time; Customers may view with favor, and be more willing to purchase electricity from, utilities that provide green power.

  14. Electricity utilities: Nuclear sector

    International Nuclear Information System (INIS)

    Brosche, D.

    1992-01-01

    The safe and economic operation of nuclear power plants requires an appropriate infrastructure on the part of the operator as well as a high level of technical quality of the plants and of qualification of the personnel. Added to this are a variety of services rendered by specialist firms. The Bayernwerk utility, with plants of its own, has played a major role in the development of nuclear power in the Federal Republic of Germany. The importance of nuclear power to this firm is reflected in the pattern of its electricity sources and in the composition of its power plants. (orig.) [de

  15. Survey of current electric utility research in Canada

    International Nuclear Information System (INIS)

    1979-11-01

    Information on the research programs of eight Canadian electrical utilities and the Canadian Electrical Association has been compiled. Work done by the National Research Council of Canada is included, but the research done by Atomic Energy of Canada Ltd. is excluded. Projects in the area of nuclear power include work on heat transfer and fluid flow, waste management, materials, and corrosion. (L.L.)

  16. Identifying future electricity-water tradeoffs in the United States

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.; Sovacool, Kelly E.

    2009-01-01

    Researchers for the electricity industry, national laboratories, and state and federal agencies have begun to argue that the country could face water shortages resulting from the addition of thermoelectric power plants, but have not attempted to depict more precisely where or how severe those shortages will be. Using county-level data on rates of population growth collected from the US Census Bureau, utility estimates of future planned capacity additions in the contiguous United States reported to the US Energy Information Administration, and scientific estimates of anticipated water shortages provided from the US Geologic Survey and National Oceanic and Atmospheric Administration, this paper highlights the most likely locations of severe shortages in 22 counties brought about by thermoelectric capacity additions. Within these areas are some 20 major metropolitan regions where millions of people live. After exploring the electricity-water nexus and explaining the study's methodology, the article then focuses on four of these metropolitan areas - Houston, Texas; Atlanta, Georgia; Las Vegas, Nevada; New York, New York - to deepen an understanding of the water and electricity challenges they may soon be facing. It concludes by identifying an assortment of technologies and policies that could respond to these electricity-water tradeoffs.

  17. R and D options for demand side management in Japanese electric utilities

    International Nuclear Information System (INIS)

    Yamamoto, Takahiko

    1996-01-01

    Japanese electric demand has been steadily increasing in accordance with the economic growth. However, Japanese electric utilities are facing several problems; increasing construction cost of power facilities, siting constraints and the environmental issue of greenhouse gas emissions. To overcome these problems, electric utilities have been promoting demand-side-management (DSM) activities as well as supplier-side measures, with some presently being carried out through promoting energy conservation technologies and introducing electric tariff options of specific contracts for residential/commercial and industrial consumers. Japanese electric utilities have been carrying out R and D for the future, in particular, energy storage and heat storage which contribute to the improvement of load factor. In this paper, I would like to outline the R and D options for DSM in Japan. (author)

  18. Rejecting renewables: The socio-technical impediments to renewable electricity in the United States

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2009-01-01

    If renewable power systems deliver such impressive benefits, why do they still provide only 3 percent of national electricity generation in the United States? As an answer, this article demonstrates that the impediments to renewable power are socio-technical, a term that encompasses the technological, social, political, regulatory, and cultural aspects of electricity supply and use. Extensive interviews of public utility commissioners, utility managers, system operators, manufacturers, researchers, business owners, and ordinary consumers reveal that it is these socio-technical barriers that often explain why wind, solar, biomass, geothermal, and hydroelectric power sources are not embraced. Utility operators reject renewable resources because they are trained to think only in terms of big, conventional power plants. Consumers practically ignore renewable power systems because they are not given accurate price signals about electricity consumption. Intentional market distortions (such as subsidies), and unintentional market distortions (such as split incentives) prevent consumers from becoming fully invested in their electricity choices. As a result, newer and cleaner technologies that may offer social and environmental benefits but are not consistent with the dominant paradigm of the electricity industry continue to face comparative rejection.

  19. Rejecting renewables. The socio-technical impediments to renewable electricity in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore)

    2009-11-15

    If renewable power systems deliver such impressive benefits, why do they still provide only 3 percent of national electricity generation in the United States? As an answer, this article demonstrates that the impediments to renewable power are socio-technical, a term that encompasses the technological, social, political, regulatory, and cultural aspects of electricity supply and use. Extensive interviews of public utility commissioners, utility managers, system operators, manufacturers, researchers, business owners, and ordinary consumers reveal that it is these socio-technical barriers that often explain why wind, solar, biomass, geothermal, and hydroelectric power sources are not embraced. Utility operators reject renewable resources because they are trained to think only in terms of big, conventional power plants. Consumers practically ignore renewable power systems because they are not given accurate price signals about electricity consumption. Intentional market distortions (such as subsidies), and unintentional market distortions (such as split incentives) prevent consumers from becoming fully invested in their electricity choices. As a result, newer and cleaner technologies that may offer social and environmental benefits but are not consistent with the dominant paradigm of the electricity industry continue to face comparative rejection. (author)

  20. Rejecting renewables: The socio-technical impediments to renewable electricity in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K., E-mail: bsovacool@nus.edu.s [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore)

    2009-11-15

    If renewable power systems deliver such impressive benefits, why do they still provide only 3 percent of national electricity generation in the United States? As an answer, this article demonstrates that the impediments to renewable power are socio-technical, a term that encompasses the technological, social, political, regulatory, and cultural aspects of electricity supply and use. Extensive interviews of public utility commissioners, utility managers, system operators, manufacturers, researchers, business owners, and ordinary consumers reveal that it is these socio-technical barriers that often explain why wind, solar, biomass, geothermal, and hydroelectric power sources are not embraced. Utility operators reject renewable resources because they are trained to think only in terms of big, conventional power plants. Consumers practically ignore renewable power systems because they are not given accurate price signals about electricity consumption. Intentional market distortions (such as subsidies), and unintentional market distortions (such as split incentives) prevent consumers from becoming fully invested in their electricity choices. As a result, newer and cleaner technologies that may offer social and environmental benefits but are not consistent with the dominant paradigm of the electricity industry continue to face comparative rejection.

  1. Why do electricity utilities cooperate with coal suppliers? A theoretical and empirical analysis from China

    International Nuclear Information System (INIS)

    Zhao Xiaoli; Lyon, Thomas P.; Wang Feng; Song Cui

    2012-01-01

    The asymmetry of Chinese coal and electricity pricing reforms leads to serious conflict between coal suppliers and electricity utilities. Electricity utilities experience significant losses as a result of conflict: severe coal price fluctuations, and uncertainty in the quantity and quality of coal supplies. This paper explores whether establishing cooperative relationships between coal suppliers and electricity utilities can resolve conflicts. We begin with a discussion of the history of coal and electricity pricing reforms, and then conduct a theoretical analysis of relational contracting to provide a new perspective on the drivers behind the establishment of cooperative relationships between the two parties. Finally, we empirically investigate the role of cooperative relationships and the establishment of mine-mouth power plants on the performance of electricity utilities. The results show that relational contracting between electricity utilities and coal suppliers improves the market performance of electricity utilities; meanwhile, the transportation cost savings derived from mine-mouth power plants are of importance in improving the performance of electricity utilities. - Highlights: ► We discuss the history of coal and electricity pricing reforms. ► The roots of conflicts between electricity and coal firms are presented. ► We conduct a theoretical analysis of relational contracting. ► The role of mine-mouth power plants on the performance of power firms is examined.

  2. Vehicle electrical system state controller

    Science.gov (United States)

    Bissontz, Jay E.

    2017-10-17

    A motor vehicle electrical power distribution system includes a plurality of distribution sub-systems, an electrical power storage sub-system and a plurality of switching devices for selective connection of elements of and loads on the power distribution system to the electrical power storage sub-system. A state transition initiator provides inputs to control system operation of switching devices to change the states of the power distribution system. The state transition initiator has a plurality of positions selection of which can initiate a state transition. The state transition initiator can emulate a four position rotary ignition switch. Fail safe power cutoff switches provide high voltage switching device protection.

  3. Activities of electric utilities in alternative energy projects

    International Nuclear Information System (INIS)

    Silva, D.B. da; Reis Neto, J.L. dos

    1990-01-01

    Since oil crisis, in 1973 and 1979, some electrical utilities in Brazil begun investments in alternative projects for example production of electrolytic hydrogen, peats with energetics goals, steam from electric boiler, and methanol from wood gasification. With oil substitution goals, these projects have not success actually, after attenuated the crisis. However, the results acquired is experience for the development of the brazilian energy patterns. (author)

  4. Development of the electric utility dispersed use PAFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Hiroshi; Kotani, Ikuo [Mitsubishi Electric Co., Kobe (Japan); Morotomi, Isamu [Kansai Electric Power Co., Hyogo (Japan)] [and others

    1996-12-31

    Kansai Electric Power Co. and Mitsubishi Electric Co. have been developing the electric utility dispersed use PAFC stack operated under the ambient pressure. The new cell design have been developed, so that the large scale cell (1 m{sup 2} size) was adopted for the stack. To confirm the performance and the stability of the 1 m{sup 2} scale cell design, the short stack study had been performed.

  5. The Philippine electricity sector reform and the urban question: How metro Manila's utility is tackling urban poverty

    International Nuclear Information System (INIS)

    Mouton, Morgan

    2015-01-01

    In the early 2000s, the Philippine government reformed its electricity sector following neoliberal principles: unbundling of the power industry, privatisation of assets and commodification of electricity. This paper shows that the reform was primarily driven by the need to secure electricity supply and cut down tariffs. These national objectives ousted other issues, and notably those that find their expression at the urban level, among which the question of access to electricity in Metro Manila's urban poor communities. The central state withdrew its attention from the issue of electrification, and local actors had to react as they were confronted to social tensions and practices of pilferage. As a consequence, city governments and local administrations are getting involved in this issue, which opens the way to participation of civil society. This paper shows how the “rolling back” of the central state led to new partnerships and arrangements between the distribution utility, local governments and community organisations. This movement points to an urbanisation of energy issues, which could bring positive results for end-users provided that it is accompanied by a clearer regulatory framework. - Highlights: • The electricity reform did not take the urban poor into consideration. • The state retreated from issues of electrification. • Decentralisation favoured the emergence of new, local actors for this aspect of energy policy. • The distribution utility is left with an increased power over issues of access to electricity. • Territorially and qualitatively, electrification programs are more diverse

  6. Performance-based ratemaking for electric utilities: Review of plans and analysis of economic and resource-planning issues. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Comnes, G.A.; Stoft, S.; Greene, N. [Lawrence Berkeley Lab., CA (United States); Hill, L.J. [Oak Ridge National Lab., TN (United States)

    1995-11-01

    This document contains summaries of the electric utilities performance-based rate plans for the following companies: Alabama Power Company; Central Maine Power Company; Consolidated Edison of New York; Mississippi Power Company; New York State Electric and Gas Corporation; Niagara Mohawk Power Corporation; PacifiCorp; Pacific Gas and Electric; Southern California Edison; San Diego Gas & Electric; and Tucson Electric Power. In addition, this document also contains information about LBNL`s Power Index and Incentive Properties of a Hybrid Cap and Long-Run Demand Elasticity.

  7. Thermal burn and electrical injuries among electric utility workers, 1995-2004.

    Science.gov (United States)

    Fordyce, Tiffani A; Kelsh, Michael; Lu, Elizabeth T; Sahl, Jack D; Yager, Janice W

    2007-03-01

    This study describes the occurrence of work-related injuries from thermal-, electrical- and chemical-burns among electric utility workers. We describe injury trends by occupation, body part injured, age, sex, and circumstances surrounding the injury. This analysis includes all thermal, electric, and chemical injuries included in the Electric Power Research Institute (EPRI) Occupational Health and Safety Database (OHSD). There were a total of 872 thermal burn and electric shock injuries representing 3.7% of all injuries, but accounting for nearly 13% of all medical claim costs, second only to the medical costs associated with sprain- and strain-related injuries (38% of all injuries). The majority of burns involved less than 1 day off of work. The head, hands, and other upper extremities were the body parts most frequently injured by burns or electric shocks. For this industry, electric-related burns accounted for the largest percentage of burn injuries, 399 injuries (45.8%), followed by thermal/heat burns, 345 injuries (39.6%), and chemical burns, 51 injuries (5.8%). These injuries also represented a disproportionate number of fatalities; of the 24 deaths recorded in the database, contact with electric current or with temperature extremes was the source of seven of the fatalities. High-risk occupations included welders, line workers, electricians, meter readers, mechanics, maintenance workers, and plant and equipment operators.

  8. Evaluation of the electric utility missions

    International Nuclear Information System (INIS)

    Syrota, J.

    2000-01-01

    The French law from February 10, 2000, about the modernization and development of the electric utility, has created new missions of public utility and foresees some compensation mechanisms for not handicapping the power operators in charge of these missions and for not creating competition distortions to their detriment on the European market. The author explains, first, the financial and economical stakes linked with these new missions. Then, he evokes the evolution of the energy context that has taken place between the 2. World war and the enforcement of the February 10, 2000 law, and he analyzes the systems foreseen for the power generation and distribution. For each public utility charge, the existing dispositions and those introduced by the law are analyzed and compared to the equivalent systems existing in other countries. Then, charge evaluation criteria and sharing rules and proposed. (J.S.)

  9. Challenges in sensor development for the electric utility industry

    Science.gov (United States)

    Ward, Barry H.

    1999-01-01

    The electric utility industry is reducing operating costs in order to prepare for deregulation. The reduction in operating cost has meant a reduction in manpower. The ability to utilize remaining maintenance staff more effectively and to stay competitive in a deregulated environment has therefore become critical. In recent years, the industry has moved away from routine or periodic maintenance to predictive or condition based maintenance. This requires the assessment of equipment condition by frequent testing and inspection; a requirement that is incompatible with cost reduction. To overcome this dilemma, industry trends are toward condition monitoring, whereby the health of apparatus is monitored continuously. This requires the installation of sensors hr transducers on power equipment and the data taken forwarded to an intelligent device for further processing. These devices then analyze the data and make evaluations based on parameter levels or trends, in an attempt to predict possible deterioration. This continuous monitoring allows the electric utility to schedule maintenance on an as needed basis. The industry has been faced with many challenges in sensor design. The measurement of physical, chemical and electrical parameters under extreme conditions of electric fields, magnetic fields, temperature, corrosion, etc. is extensive. This paper will give an overview of these challenges and the solutions adopted for apparatus such as power transformers, circuit breakers, boilers, cables, batteries, and rotating machinery.

  10. State electricity profiles, March 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Due to the role electricity plays in the Nation`s economic and social well-being, interested parties have been following the electric power industry`s transition by keeping abreast of the restructuring and deregulation events that are taking place almost daily. Much of the attention centers around the States and how they are restructuring the business of electricity supply within their respective jurisdictions. This report is designed to profile each State and the District of Columbia regarding not only their current restructuring activities, but also their electricity generation and concomitant statistics from 1986 through 1996. Included are data on a number of subject areas including generating capability, generation, revenues, fuel use, capacity factor for nuclear plants, retail sales, and pollutant emissions. Although the Energy Information Administration (EIA) publishes this type of information, there is a lack of a uniform overview for each individual State. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. In addition to basic statistics in tables and graphs, a textual section is provided for each State, discussing some of the points relative to electricity production that are noteworthy in, or unique to, that particular State. Also, each State is ranked according to the place it holds, as compared to the rest of the states, in various relevant areas, such as its average price of electricity per kilowatthour, its population, and its emissions of certain atmospheric pollutants. The final chapter covers the Nation as a whole. 451 figs., 520 tabs.

  11. Present state of electric power business in United States and Europe

    International Nuclear Information System (INIS)

    Onishi, Kenichi

    2011-01-01

    This article reported present state of nuclear power and electric power business in United States and Europe after Fukushima Daiichi Accident. As for the trend of demand and supply of electric power and policy, the accident forced Germany possibly to proceed with phase-out of nuclear power, but France and United States to sustain nuclear power with no great change of energy policy at this moment. As for the trend of electric power market, there was not state in United States with liberalized retail market of electric power after rolling blackouts occurred in California State in the early 2000s. In Germany proceeding with renewable energy introduction, renewable electricity fed into the grid was paid for by the network operators at fixed tariffs and the costs passed on to electricity consumers were increasing. Renewable Portfolio Standards (RPS) in United States forced the state to introduction of renewable energy to some ratio, and Feed-in Tariff (FIT) introduced in EU in 1990s lead to introduction of a large amount of renewable electricity targeted in 2020. Huge amount of wind power introduction brought about several problems to solve such that excess electric power above domestic demand had bad effects on grids in neighboring region. Enforcement of power transmission lines was also needed with increase of maximum electric power as well as introduction of a large amount of renewable electricity. (T. Tanaka)

  12. Liberalisation and green patent registrations of electric utilities in Europe

    International Nuclear Information System (INIS)

    Salies, Evens; Nesta, Lionel

    2010-10-01

    The authors report a study of the influence of reforms which introduce a liberalisation of energy markets on the innovation behaviour of electric utilities in some countries. Within a context of concentration of this sector, the hypothesis of a negative impact on patent registration by electric utilities is tested by the authors. They first define the notion of environmental innovation and its evolution in the electric energy sector as the climate and environment issues are nowadays extremely important for the energy sector. R and D here addresses micro-generation, fuel cells, tidal turbine systems, energy production by using solar energy, and biomass gasification. They discuss numbers of pattern registrations by European utilities before and after laws on energy market reform. They present an econometric model and data used to test the hypothesis and comment the obtained results. The model comprises a knowledge production function, and various explicative variables (firm size and R and D, reforms, technological opportunities, energy mix, and influence of demand)

  13. Repeated regulatory failures: British electric utilities, 1919--1937

    Science.gov (United States)

    van der Werf, Ysbrand John

    This dissertation uses previously unexamined firm-level data to look at British electric utilities during the 1919--1937 period. The persistent influence of the 1882 and 1888 Electric Lighting Acts had a significant role in perpetuating the inefficient market structure and high costs of the industry. First, I examine factors that influence costs in 1919 and compare the relative cost efficiency of municipally-owned and investor-owned utilities (munis and IOUs). Scale and load factor are found to be more important than ownership in influencing costs, although IOUs enjoy a scale advantage. Given costs, there is no difference in prices between IOUs and munis, and on average prices were 20 percent below monopoly prices. Looking at the 1919--1928 period and examining changes in the industry as measured by the firms' choices in frequency, current, and interconnections with other utilities shows evidence for a great deal of change, which occurred in statistically predictable ways. Utilities are standardizing the type of current produced, and the eventual localized standard frequencies were selected by 1907. There is little in the way of market rivalry between mum's and IOUs but large munis are less likely to build networks and sell in the wholesale market. Finally, I compare the changes that occurred during the 1919--1928 period, under the weak intervention of the Electricity Commissioners, with those of the 1928--1937 period, under the strong intervention of the Central Electricity Board. Without the CEB localized frequency standards would likely have remained in place. The CEB intervened directly in the wholesale market, but contrary to common perceptions, this strong intervention had relatively little impact on trends observed in the industry under the weak intervention of the 1919--1928 period: the CEB reduced prices and costs by no more than about 15 percent and was responsible for at most a quarter of their decline during the 1928--37 period.

  14. Reducing operating costs: A collaborative approach between industry and electric utilities

    International Nuclear Information System (INIS)

    Tyers, B.; Sibbald, L.

    1993-01-01

    The unit cost of electricity to industrial consumers is expected to increase at a rate of 5% annually in the 1990s. The partnership that has been created between Amoco Canada Petroleum Company and TransAlta Utilities to control the cost of electricity is described. To allow the company to receive lower rates for interruptible power, a number of measures have been taken. The Amoco Whitecourt plant has standby generators in reserve that can be used when utility power is not available. A Pembina compressor can be turned off for up to 12 hours, at 30 minutes notice, without affecting field pressure. At the East Crossfield plant sales gas can be compressed using electricity or a gas-driven engine. Spot market energy is used in a number of plants allowing electric drive alternatives to plant operators and offering short term energy markets. TransAlta invests in electrical equipment such as switchgear as well as transmission lines and transformers. New rate alternatives offered by TransAlta Utilities include review of the need for a demand ratchet, additional time of use rates, unbundling of rates allowing power purchase from alternative sources, rates that follow product costs, reduced rates for conversion of gas to electric drives certain circumstances, energy audits, and power factor credits. 5 figs

  15. Identifying future electricity-water tradeoffs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore); Sovacool, Kelly E. [Department of Geography, Virginia Polytechnic Institute and State University, Blacksburg, VA (United States)

    2009-07-15

    Researchers for the electricity industry, national laboratories, and state and federal agencies have begun to argue that the country could face water shortages resulting from the addition of thermoelectric power plants, but have not attempted to depict more precisely where or how severe those shortages will be. Using county-level data on rates of population growth collected from the US Census Bureau, utility estimates of future planned capacity additions in the contiguous United States reported to the US Energy Information Administration, and scientific estimates of anticipated water shortages provided from the US Geologic Survey and National Oceanic and Atmospheric Administration, this paper highlights the most likely locations of severe shortages in 22 counties brought about by thermoelectric capacity additions. Within these areas are some 20 major metropolitan regions where millions of people live. After exploring the electricity-water nexus and explaining the study's methodology, the article then focuses on four of these metropolitan areas - Houston, Texas; Atlanta, Georgia; Las Vegas, Nevada; New York, New York - to deepen an understanding of the water and electricity challenges they may soon be facing. It concludes by identifying an assortment of technologies and policies that could respond to these electricity-water tradeoffs. (author)

  16. Electric sales and revenue 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The Electric Sales and Revenue is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the United States. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1994.

  17. The electric utilities in 1989 - A perspective

    International Nuclear Information System (INIS)

    Studness, C.M.

    1990-01-01

    This article presents the performance of electric utilities financially and in the stock market. The performance of the utility stocks compared with industrial stocks and long term government bonds is addressed as well as an analysis of the reasons for the differences. The effect of rate increases granted versus the rate of inflation on per share earnings is examined. A concern was expressed that increases in demand substantially larger than those projected by the industry for 1989 may result in excess capacity disappearing much sooner than predicted by industry managements

  18. How to develop a world class electrical utility for the free markets of electrical energy?

    International Nuclear Information System (INIS)

    Aaltonen, J.E.; Takala, J.A.

    1995-01-01

    The electricity distribution in Finland is going to the new stage where the electrical energy market will be gradually free from competition. The purpose of this study is to analyze the concept of the world class utility. A feasibility study was made to research the condition in logistics and suitable methods for the implementation. Some ideas have been piloted to verify and find acceptable approaches of the implementation to practice. Utilities improved the cost efficiency and strategical business logistics in a customer oriented and flexible way. The methods and findings can be used on other public and industrial areas, too

  19. Region-specific study of the electric utility industry: financial history and future power requirements for the VACAR region

    International Nuclear Information System (INIS)

    Pochan, M.J.

    1985-07-01

    Financial data for the period 1966 to 1981 are presented for the four investor-owned electric utilities in the VACAR (Virginia-Carolinas) region. This region was selected as representative for the purpose of assessing the availability, reliability, and cost of electric power for the future in the United States. The estimated demand for power and planned additions to generating capacity for the region through the year 2000 are also given

  20. Utility Sector Impacts of Reduced Electricity Demand

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  1. Electric Power Monthly, June 1988

    International Nuclear Information System (INIS)

    1988-06-01

    The data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The Energy Information Administration (EIA) collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The Electric Power Monthly contains information from three data sources: the Form EIA-759, 'Monthly Power Plant Report'; the Federal Energy Regulatory Commission (FERC) Form 423, 'Monthly Report of Cost and Quality of Fuels for Electric Plants ; and the Form EIA-826, M onthly Electric Sales and Revenue Report with State Distributions'. The Form EIA-759 collects data from all operators of electric utility generating plants (except those having plants solely on standby), approximately 800 of the more than 3,200 electric utilities in the United States. To reduce the reporting burden for utilities, the FERC Form 423 and Form EIA-826 data are based on samples, which cover less than 100 percent of all central station generating utilities. The FERC Form 423 collects data from steam-electric power generating plants with a combined installed nameplate capacity of 50 megawatts or larger (approximately 230 electric utilities). The 50-megawatt threshold was established by FERC. The Form EIA-826 collects sales and revenue data in the residential, commercial, industrial, and other sectors of the economy. Other sales data collected include public street and highway lighting, other sales to public authorities, sales to railroads and railways, and interdepartmental sales. Respondents to the Form EIA-826 were statistically chosen and include approximately 225 privately and publicly owned electric utilities from a universe of more than 3,200 utilities. The sample selection for the Form EIA-826 is evaluated annually. Currently, the Form EIA-826 data account for approximately 83 percent

  2. High slot utilization systems for electric machines

    Science.gov (United States)

    Hsu, John S

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  3. Transforming your Municipal Electric Utility

    International Nuclear Information System (INIS)

    Harper, P.

    1999-01-01

    A series of overhead viewgraphs accompanied this presentation which focused on what municipalities should and can do to prepare for a competitive energy market in Ontario. Particular attention was given to business strategies, restructuring and transformation of the Municipal Electric Utilities (MEU). Issues and questions regarding ownership were also discussed. Each municipality will have to decide what is the most appropriate governance and organizational structure for their MEU. It was noted that one of the most contentious areas is refinancing and rate structures. Issues regarding merger or partnering options were also discussed. 1 tab

  4. NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS

    Science.gov (United States)

    The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...

  5. Deregulation and restructuring of the electric utility industry

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, Hal [Utility Workers Union of America (UWUA), AFL-CIO, (United States)

    1997-12-31

    Federal and state policy makers are currently faced with the rapidly evolving issue of the restructuring and potential deregulation of the electric utility industry, a sector of the economy of huge importance through its sheer size and its impact on the daily life and livelihood of everyone. This paper describes eleven principles that must be adhered to in any restructuring of the electric industry. Adherence to the principle and positions outlined can help assure that the transition in this industry benefits all, not just a few, and that the general health and welfare of the people is protected and enhanced [Espanol] Los legisladores estatales y federales se estan enfrentando con el rapido y envolvente aspecto de la reestructuracion y desregulacion potencial de la industria electrica, un sector de la economia de enorme importancia por su tamano y su impacto en la vida diaria y los medios de vida. En esta ponencia se describen once principios y posiciones que deben ser considerados en cualquier reestructuracion de la industria electrica. El apego a los principios y posiciones comentados puede ayudar a asegurar que la transicion en esta industria deneficie a todos, no solo a unos cuantos, y que la salud general y bienestar de la gente sea protegida y mejorada

  6. Brain state-dependence of electrically evoked potentials monitored with head-mounted electronics.

    Science.gov (United States)

    Richardson, Andrew G; Fetz, Eberhard E

    2012-11-01

    Inferring changes in brain connectivity is critical to studies of learning-related plasticity and stimulus-induced conditioning of neural circuits. In addition, monitoring spontaneous fluctuations in connectivity can provide insight into information processing during different brain states. Here, we quantified state-dependent connectivity changes throughout the 24-h sleep-wake cycle in freely behaving monkeys. A novel, head-mounted electronic device was used to electrically stimulate at one site and record evoked potentials at other sites. Electrically evoked potentials (EEPs) revealed the connectivity pattern between several cortical sites and the basal forebrain. We quantified state-dependent changes in the EEPs. Cortico-cortical EEP amplitude increased during slow-wave sleep, compared to wakefulness, while basal-cortical EEP amplitude decreased. The results demonstrate the utility of using portable electronics to document state-dependent connectivity changes in freely behaving primates.

  7. Electricity supply

    International Nuclear Information System (INIS)

    Rezendes, V.S.

    1991-10-01

    This report focuses on the Securities and Exchange Commission's (SEC) administration of the Public Utility Holding Company Act of 1935, intended to protect the public, investors, and consumers from abuses associated with the control of electric and gas utility companies through the holding company structure. These abuses include subjecting subsidiary utilities to excessive charges for services, construction work, and materials; frustrating effective state regulation through the holding company structure; and overloading subsidiary utilities with debt to prevent voluntary rate reductions. GAO discusses industry changes during the past decade involving electric utility holding companies; SEC's regulatory response to such changes; and the relationship between SEC, the Federal Energy Regulatory Commission, and states in protecting consumer and investor interests in light of these changes

  8. A methodology to identify stranded generation facilities and estimate stranded costs for Louisiana's electric utility industry

    Science.gov (United States)

    Cope, Robert Frank, III

    1998-12-01

    The electric utility industry in the United States is currently experiencing a new and different type of growing pain. It is the pain of having to restructure itself into a competitive business. Many industry experts are trying to explain how the nation as a whole, as well as individual states, will implement restructuring and handle its numerous "transition problems." One significant transition problem for federal and state regulators rests with determining a utility's stranded costs. Stranded generation facilities are assets which would be uneconomic in a competitive environment or costs for assets whose regulated book value is greater than market value. At issue is the methodology which will be used to estimate stranded costs. The two primary methods are known as "Top-Down" and "Bottom-Up." The "Top-Down" approach simply determines the present value of the losses in revenue as the market price for electricity changes over a period of time into the future. The problem with this approach is that it does not take into account technical issues associated with the generation and wheeling of electricity. The "Bottom-Up" approach computes the present value of specific strandable generation facilities and compares the resulting valuations with their historical costs. It is regarded as a detailed and difficult, but more precise, approach to identifying stranded assets and their associated costs. This dissertation develops a "Bottom-Up" quantitative, optimization-based approach to electric power wheeling within the state of Louisiana. It optimally evaluates all production capabilities and coordinates the movement of bulk power through transmission interconnections of competing companies in and around the state. Sensitivity analysis to this approach is performed by varying seasonal consumer demand, electric power imports, and transmission inter-connection cost parameters. Generation facility economic dispatch and transmission interconnection bulk power transfers, specific

  9. Data warehousing for electric utilities; Data Warehousing fuer Stromerzeuger im Strommarkt

    Energy Technology Data Exchange (ETDEWEB)

    Rappenecker, G.; Wolff, G.; Gross, P.

    2000-07-01

    Deregulation of the electricity market has changed the business processes of electric utilities profoundly. The paradigm of availability was replaced by economic efficiency. Four requirements are decisive: Implementation of unbundling as required by law - cost reduction to enhance competitive strength - marketing of the utilities' own products - positioning in the new electricity market. [German] Die Deregulierung des Strommarktes hat die Geschaeftsprozesse der Stromerzeuger grundlegend gewandelt. Das Paradigma der Versorgungssicherheit wurde ersetzt durch das der Wirtschaftlichkeit. Die Veraenderung der Geschaeftsprozesse der Stromerzeuger sind massiv gepraegt von vier Anforderungen: - Umsetzung des gesetzlich vorgeschriebenen 'Unbundling' - Erhalt der Konkurrenzfaehigkeit durch Kostensenkung - Vermarktung der eigenen Produkte - Positionierung im neu entstehenden Strommarkt. (orig.)

  10. Can environmental investment and expenditure enhance financial performance of US electric utility firms under the clean air act amendment of 1990?

    International Nuclear Information System (INIS)

    Sueyoshi, Toshiyuki; Goto, Mika

    2009-01-01

    This study investigates the causality from environmental investment (as a long-term effort) and expenditure (as a short-term effort) to financial performance in the US electric utility industry. The industry is one of the large air polluters in the United States. This empirical study finds that the environmental expenditure under the US Clean Air Act has had a negative impact from 1989 to 2001. The negative impact has become much effective after the implementation of the Title IV Program (1995) of the US Clean Air Act. This study cannot find the influence of environmental investment on financial performance by a statistical test although it indicates a positive impact. In the United States, fossil-fueled power plants such as coal-fired ones still produce a large portion of electricity. The generation structure is inconsistent with the betterment in the US environmental protection and imposes a financial burden to electric utility firms.

  11. National Utility Rate Database: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  12. Electric Utility Transmission and Distribution Line Engineering Program

    Energy Technology Data Exchange (ETDEWEB)

    Peter McKenny

    2010-08-31

    Economic development in the United States depends on a reliable and affordable power supply. The nation will need well educated engineers to design a modern, safe, secure, and reliable power grid for our future needs. An anticipated shortage of qualified engineers has caused considerable concern in many professional circles, and various steps are being taken nationwide to alleviate the potential shortage and ensure the North American power system's reliability, and our world-wide economic competitiveness. To help provide a well-educated and trained workforce which can sustain and modernize the nation's power grid, Gonzaga University's School of Engineering and Applied Science has established a five-course (15-credit hour) Certificate Program in Transmission and Distribution (T&D) Engineering. The program has been specifically designed to provide working utility engineering professionals with on-line access to advanced engineering courses which cover modern design practice with an industry-focused theoretical foundation. A total of twelve courses have been developed to-date and students may select any five in their area of interest for the T&D Certificate. As each course is developed and taught by a team of experienced engineers (from public and private utilities, consultants, and industry suppliers), students are provided a unique opportunity to interact directly with different industry experts over the eight weeks of each course. Course material incorporates advanced aspects of civil, electrical, and mechanical engineering disciplines that apply to power system design and are appropriate for graduate engineers. As such, target students for the certificate program include: (1) recent graduates with a Bachelor of Science Degree in an engineering field (civil, mechanical, electrical, etc.); (2) senior engineers moving from other fields to the utility industry (i.e. paper industry to utility engineering or project management positions); and (3) regular

  13. Strategic rigidity and foresight for technology adoption among electric utilities

    International Nuclear Information System (INIS)

    Shah, Arsalan Nisar; Palacios, Miguel; Ruiz, Felipe

    2013-01-01

    The variation in the adoption of a technology as a major source of competitive advantage has been attributed to the wide-ranging strategic foresight and the integrative capability of a firm. These possible areas of competitive advantage can exist in the periphery of the firm's strategic vision and can get easily blurred as a result of rigidness and can permeate in the decision-making process of the firm. This article explores how electric utility firms with a renewable energy portfolio can become strategically rigid in terms of adoption of newer technologies. The reluctance or delay in the adoption of new technology can be characterized as strategic rigidness, brought upon as a result of a firm's core competence or core capability in the other, more conventional technology arrangement. This paper explores the implications of such rigidness on the performance of a firm and consequently on the energy eco-system. The paper substantiates the results by emphasizing the case of Iberdrola S.A., an incumbent firm as a wind energy developer and its adoption decision behavior. We illustrate that the very routines that create competitive advantage for firms in the electric utility industry are vulnerable as they might also develop as sources of competitive disadvantage, when firms confront environmental change and uncertainty. - Highlights: • Present a firm-level perspective on technology adoption behavior among electric utilities. • Firms with mature technology can become rigid towards newer technologies. • Case study analysis of a major electric utility firm. • Implications of ‘technology rigidness’ on the energy eco-system

  14. Dealing with the paradox of energy efficiency promotion by electric utilities

    International Nuclear Information System (INIS)

    Sousa, José Luís; Martins, António Gomes; Jorge, Humberto

    2013-01-01

    Utility-based Demand-Side Management (DSM) programmes started after the oil crises of the 70's and were adopted by utilities as a standard practice. However, deregulation of the electricity industry threatened DSM. More recent concerns regarding energy dependence and environmental impact of energy use caused renewed attention on the utilities role in energy efficiency fostering. EE is presently a cross-cutting issue, influencing energy policy definition and regulatory activity worldwide. Some instruments for influencing the behaviour of electric utilities in the market are used by regulators, corresponding to both impositions and stimuli, such as defining savings targets or decoupling profits from energy sales. The paper addresses categories of regulatory instruments and refers to examples of countries and regions using these identified categories of instruments. Although some cases show voluntary involvement of utilities in EE promotion on the grounds of customer retention strategies, there is a clear prevalence of regulatory constrained markets where utilities rationally engage in energy efficiency promotion

  15. Security Vulnerability and Patch Management in Electric Utilities: A Data-Driven Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qinghua [Univ. of Arkansas, Fayetteville, AR (United States); Zhang, Fengli [Univ. of Arkansas, Fayetteville, AR (United States)

    2018-01-18

    This paper explores a real security vulnerability and patch management dataset from an electric utility in order to shed light on characteristics of the vulnerabilities that electric utility assets have and how they are remediated in practice. Specifically, it first analyzes the distribution of vulnerabilities over software, assets, and other metric. Then it analyzes how vulnerability features affect remediate actions.

  16. Comparisons of recent growth in actual demand, planned demand, and planned generating capacity at U. S. electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Bopp, A.E. (James Madison Univ., Harrisonburg, VA (United States))

    1994-12-01

    During the winter of 1993, a number of U.S. electric utilities and some regional power pools discovered that current load exceeded generating capacity. Load restrictions followed, as entire regions-not just isolated utilities or even states-cut back. Was 1993 a typical, or simply a preview of the future If a preview, how did this shortage occur For a number of years, utilities, regulatory agencies, and power pools have been planning to add capacity at a much lower rate than the rate at which load has been growing. The National Electricity Reliability Council (NERC) has projected that eight of it's nine regions will have demand growth exceed capacity growth. The only region where capacity is growing faster is in the Texas Region. There are four reasons behind this shortage: excess capacity in the 1980's, disbelief in current forecasts, passage of the Clean Air act bringing stricter regulation on power plants, and the herd mentality where utilities have all delayed new plant construction.

  17. A Comparative Case Study of Electric Utility Companies’ Use of Energy Democracy in Strategic Communication

    Directory of Open Access Journals (Sweden)

    Meaghan McKasy

    2018-02-01

    Full Text Available A substantial increase in distributed renewable energy resources is changing the face of the energy environment, leading to strategic communication efforts by key stakeholders. The energy democracy movement supports this transformation from fossil fuels to distributed renewable energy and aims for equitable involvement of publics in energy decision making. These tenets challenge utility company earnings as they are directly related to energy sales and infrastructure returns on investment. Proposals by electric utility companies to restructure net-metering policies as a solution to financial issues have been criticized as prohibitive to the success of renewable energy advancement. To address these disagreements, the Edison Electric Institute and a communication firm, Maslansky & Partners, created The Future of Energy: A Working Communication Guide for Discussion. This handbook provides utility companies with strategic communication guidelines to portray themselves as supportive of renewables within a dynamic energy industry. We posit that aspects of the energy democracy movement have been employed by electric utility companies, as shown through the use of the handbook, as a strategy for communicating with customers in discussions around net metering. We examine two case studies in states with recent controversial net-metering policy changes by analyzing utility company websites and press releases for the use of the communication handbook terminology. We found that, in both cases, the suggested language was used to position their companies as pro-renewable energy and their utility-scale projects as more equitable for their customers. In addition, we found differences between each company’s use of key terms from the handbook. We posit that this is due to the temporal context of each net-metering debate at the time of the handbook release. Conclusions and future directions for research in the growing area of energy democracy are discussed.

  18. RESTRUCTURED ELECTRICITY MARKETS: Three States' Experiences in Adding Generating Capacity

    National Research Council Canada - National Science Library

    2002-01-01

    ...., restructured electricity markets by shifting from service provided through a regulated monopoly-the local electric utility-to service provided through open competition among the local utility and its competitors...

  19. Improving the performance of a hybrid electric vehicle by utilization regenerative braking energy of vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Mohamed [Automotive and Tractors Department, Faculty of Engineering, Minia University (Egypt)

    2011-07-01

    Environmentally friendly vehicles with range and performance capabilities surpassing those of conventional ones require a careful balance among competing goals for fuel efficiency, performance and emissions. It can be recuperated the energy of deceleration case of the vehicle to reuse it to recharge the storage energy of hybrid electric vehicle and increase the state of charge of batteries under the new conditions of vehicle operating in braking phase. Hybrid electric vehicle has energy storage which allows decreasing required peak value of power from prime mover, which is the internal combustion engine. The paper investigates the relationships between the driving cycle phases and the recuperation energy to the batteries system of hybrid electric vehicle. This work describes also a methodology for integrating this type of hybrid electric vehicle in a simulation program. A design optimization framework is then used to find the best position that we can utilize the recuperation energy to recharge the storage batteries of hybrid electric vehicle.

  20. Gross domestic product estimation based on electricity utilization by artificial neural network

    Science.gov (United States)

    Stevanović, Mirjana; Vujičić, Slađana; Gajić, Aleksandar M.

    2018-01-01

    The main goal of the paper was to estimate gross domestic product (GDP) based on electricity estimation by artificial neural network (ANN). The electricity utilization was analyzed based on different sources like renewable, coal and nuclear sources. The ANN network was trained with two training algorithms namely extreme learning method and back-propagation algorithm in order to produce the best prediction results of the GDP. According to the results it can be concluded that the ANN model with extreme learning method could produce the acceptable prediction of the GDP based on the electricity utilization.

  1. Electric-utility returns and risk in the light of Three Mile Island

    International Nuclear Information System (INIS)

    Brooks, L.D.; D'Souza, R.E.

    1982-01-01

    The impact of the Three Mile Island nuclear-generating-unit failure on the performance of nuclear-dependent electric utilities is examined in this article. A comparative examination of the time series of abnormal returns and risk measures on nuclear-dependent utilities and nondependent utilities prior to the TMI incident, at the time of the incident, and subsequent to it was performed by the authors. The results are consistent with a hypothesis that investors associate a decline in future profitability or increased risk with nuclear-associated utilities. However, the more-objective measures indicate a clear reduction in risk for nuclear-associated utilities since the TMI incident, both in relation to the market as a whole and in relation to electric utilities which are not nuclear-associated. 4 references, 1 figure, 3 tables

  2. The state of energy storage in electric utility systems and its effect on renewable energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Rau, N S

    1994-08-01

    This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed the cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.

  3. State Electricity Commission of Victoria annual report 1983-1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The State Electricity Commission of Victoria (SECV) generates, transmits and distributes electricity throughout Victoria's 228,000 square kilometres and supplies directly to 1.390 million customers. In addition, 278,500 customers are supplied by eleven municipal authorities which purchase electricity in bulk from the Commission. The Commission also has a responsibility to ensure the safe use of electricity. The Commission's mission statement is 'to provide cost effective energy and services and to act at all times in the best interests of the people of Victoria by being a responsible, adaptive, financially sound and efficient public utility'. The mission statement is the foundation for all activities and should provide the Commission with a sense of direction and unity of purpose. Corporate objectives have been developed in the following seven broad areas: customer, employee, finance, natural resources, environment, conservation and community. Each objective has been translated into a series of specific goals, the achievement of which will be monitored. Details relating to these areas of activity are detailed in this report.

  4. Service to the Electric Utility Industry by the Ford Nuclear Reactor, University of Michigan

    International Nuclear Information System (INIS)

    Burn, R.R.; Simpson, P.A.; Cook, G.M.

    1993-01-01

    Since 1977, the staff of the University of Michigan's Ford Nuclear Reactor has been providing irradiation, testing, analytical, and training services to electric utilities and to suppliers of the nuclear electric utility industry. This paper discusses the reactor's irradiation facilities; reactor programs and utilization; materials testing programs; neutron activation analysis activities; and training programs conducted

  5. Utilizing GIS to Examine the Relationship Between State Renewable Portfolio Standards and the Adoption of Renewable Energy Technologies

    Directory of Open Access Journals (Sweden)

    Chelsea Schelly

    2013-12-01

    Full Text Available In the United States, there is no comprehensive energy policy at the federal level. To address issues as diverse as climate change, energy security, and economic development, individual states have increasingly implemented Renewable Portfolio Standards (RPSs, which mandate that utility providers include a specified amount of electricity from renewable energy sources in their total energy portfolios. Some states have included incentives for individual energy technologies in their RPS, such as solar electric (also called photovoltaic or PV technology. Here, we use GIS to visualize adoption of RPSs and electricity generation from renewable energy sources in the US and examine changes in renewable electricity and solar electric generation over time with the goal of informing future policies aimed at promoting the adoption of renewable energy technologies.

  6. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies

    International Nuclear Information System (INIS)

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs

  7. Can environmental investment and expenditure enhance financial performance of US electric utility firms under the clean air act amendment of 1990?

    Energy Technology Data Exchange (ETDEWEB)

    Sueyoshi, Toshiyuki [New Mexico Institute of Mining and Technology, Department of Management, 801 Leroy Place, Socorro, NM 87801 (United States); National Cheng Kung University, College of Business, Department of Industrial and Information Management, Tainan (China); Goto, Mika [Central Research Institute of Electric Power Industry, 2-11-1, Iwado Kita, Komae-shi, Tokyo, 201-8511 (Japan)

    2009-11-15

    This study investigates the causality from environmental investment (as a long-term effort) and expenditure (as a short-term effort) to financial performance in the US electric utility industry. The industry is one of the large air polluters in the United States. This empirical study finds that the environmental expenditure under the US Clean Air Act has had a negative impact from 1989 to 2001. The negative impact has become much effective after the implementation of the Title IV Program (1995) of the US Clean Air Act. This study cannot find the influence of environmental investment on financial performance by a statistical test although it indicates a positive impact. In the United States, fossil-fueled power plants such as coal-fired ones still produce a large portion of electricity. The generation structure is inconsistent with the betterment in the US environmental protection and imposes a financial burden to electric utility firms. (author)

  8. How reliably can climate change and mitigation policy impacts on electric utilities be assessed?

    International Nuclear Information System (INIS)

    Dowlatabadi, H.; Kopp, R.J.; Palmer, K.; De Witt, D.

    1993-01-01

    Numerous mechanisms link climate change and electric utilities. Electricity generation releases radiatively active trace substances (RATS). Significant changes in atmospheric concentration of RATS can lead to a change in regional and global climate regimes. Mitigation action designed to prevent or limit climate change is possible through curbing emissions. Climate change and related mitigation actions impact on electric utilities. Foresight in electric utility planning requires reliable predictions of how the utilities may be affected in the decades ahead. In this paper the impacts of climate change and mitigation policies are noted, and our ability to assess these is reviewed. To this end a suite of models exploring supply and demand questions have been developed. The overall conclusion of the study is that the demand-side uncertainties dominate other unknowns and need to be better characterized and understood. (author)

  9. The effects of electric power industry restructuring on the safety of nuclear power plants in the United States

    Science.gov (United States)

    Butler, Thomas S.

    Throughout the United States the electric utility industry is restructuring in response to federal legislation mandating deregulation. The electric utility industry has embarked upon an extraordinary experiment by restructuring in response to deregulation that has been advocated on the premise of improving economic efficiency by encouraging competition in as many sectors of the industry as possible. However, unlike the telephone, trucking, and airline industries, the potential effects of electric deregulation reach far beyond simple energy economics. This dissertation presents the potential safety risks involved with the deregulation of the electric power industry in the United States and abroad. The pressures of a competitive environment on utilities with nuclear power plants in their portfolio to lower operation and maintenance costs could squeeze them to resort to some risky cost-cutting measures. These include deferring maintenance, reducing training, downsizing staff, excessive reductions in refueling down time, and increasing the use of on-line maintenance. The results of this study indicate statistically significant differences at the .01 level between the safety of pressurized water reactor nuclear power plants and boiling water reactor nuclear power plants. Boiling water reactors exhibited significantly more problems than did pressurized water reactors.

  10. Electric sales and revenue, 1990

    International Nuclear Information System (INIS)

    1992-01-01

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. Previous publications presented data on typical electric bills at specified consumption levels as well as sales, revenues, and average revenue. The sales, revenue, and average revenue per kilowatthour provided in the Electric Sales and Revenue are based on annual data reported by electric utilities for the calendar year ending December 31, 1990. The electric revenue reported by each electric utility includes the revenue billed for the amount of kilowatthours sold, revenue from income, unemployment and other State and local taxes, energy or demand charges, consumer services charges, environmental surcharges, franchise fees, fuel adjustments, and other miscellaneous charges. Average revenue per kilowatthour is defined as the cost per unit of electricity sold and is calculated by dividing retail sales into the associated electric revenue. The sales of electricity, associated revenue, and average revenue per kilowatthour provided in this report are presented at the national, Census division, State, and electric utility levels

  11. Determining the Cost of Capital for Turkish Electricity Distribution Utilities: Analysis and Recommendations

    OpenAIRE

    Gözen, Mustafa

    2012-01-01

    Turkey has been transforming her electricity market to a competitive one since the electricity market law was approved by the parliament in 2001. As part of the new regime, electricity distribution activities are subject to incentive-based regulation by the energy regulator - EMRA. At the beginning of each implementation period, initial revenue is allowed by EMRA for a distribution utility in which a rate of return for investments in the utility is added. Setting a fair rate is relatively eas...

  12. State of the art of the virtual utility: the smart distributed generation network

    International Nuclear Information System (INIS)

    Coll-Mayor, D.; Picos, R.; Garcia-Moreno, E.

    2004-01-01

    and heat storage tanks. Each of these clusters is controlled by a local management station (LMS). Every LMS has information about the requirements (heat, cold and electricity) of the users connected to its cluster and the state of the utilities and water level of the storage tanks in its cluster. The EMS receives the information from the LMSs and sets the electricity input or output of every cluster in the network. With the information ordered by the EMS, the LMS set the run or stand-by of the utilities of its cluster. The benefits of the VU are the optimization of the utilization yield of the whole network, the high reliability of the electricity production, the complete control of the network for achieving the main aim of the EMS, the high velocity for assuming quick changes in the demand of the system and high integration of renewable energy sources, plus the advantages of the DG. This paper indicates the state of the art of the VU concept, analyses the projects that are being developed in this field and considers the future of the VU concept. (author)

  13. Preparing Canada's power systems for transition to the year 2000 : Y2K readiness assessment results for Canadian electric utility companies : first quarter 1999

    International Nuclear Information System (INIS)

    1999-01-01

    The effort made by Canadian electric utilities to minimize any power disruptions during the year 2000 (Y2K) transition is discussed and the state of readiness of the electric power industry with respect to the Y2K computer challenge is outlined. Canadian utilities started addressing Y2K issues several years ago, and today, reports show that every major electric utility in Canada is either on, or ahead of schedule to meet the industry established milestones for Y2K readiness. This report includes the assessment of all of Canada's large electric utilities, plus about 95 per cent of Canada's small distribution utilities. On average, the bulk electric utilities in Canada expect to be Y2K ready by mid-June 1999. This means that equipment and systems will operate properly for all dates including Y2K, or that there will be an operating strategy in place to mitigate the effects of any improper operations of equipment or systems. In terms of overall preparations for Y2K, Canada is ahead of the North American averages. Bulk electric utilities for non-nuclear generation are now 100 per cent complete in the inventory phase, 99 per cent complete in the assessment phase, and 91 per cent complete in the remediation/testing phase. For nuclear generation, completion rates are the same except for the remediation/testing phase which is 97 per cent complete. 1 tab., 21 figs

  14. Managing an evolution: Deregulation of the electric utility industry

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, S.K.

    1994-12-31

    The author discusses the emerging competitive situation in the electric power industry as deregulation of electric utilities looms on the horizon. The paper supports this change, and the competition it will bring, but urges caution as changes are instituted, and the regulatory bodies decide how and how much to free, and at what rates. The reason for his urge for caution comes from historical experience of other industries, which were smaller and had less direct impact on every American.

  15. The regulatory treatment of adverse outcomes: Empirical evidence from the electric utility industry

    International Nuclear Information System (INIS)

    Ryan, N.E.

    1991-01-01

    This dissertation consists of two essays, both of them empirical studies using data from the US electric utility industry. Part I focuses on utilities' investment behavior, while Part II examines regulatory policy toward the industry. The first paper presents an analysis of utilities' decisions about whether to continue or cancel nuclear construction projects. During the seventies and eighties, changes in economic conditions and regulatory policy radically altered the costs and benefits of nuclear power. This study seeks to determine whether regulators pursued policies which induced utilities to employ socially efficient criteria in re-evaluating ongoing projects. The analysis also yields insights into regulators' distributional goals. Results based on data for 1978-84 are consistent with the capture theory hypothesis, which holds that regulators weigh industry interests more heavily than consumer interests. A test for structural change provides no support for the contention that the relative importance of consumer interests increased over this period. These empirical findings are inconsistent with a standard (and essential) assumption of theoretical principal-agent models of rate-of-return regulation, that regulators value consumers' payoffs more than utility profits. The second paper examines regulatory policy toward generating facilities that entered commercial service during the years 1983-88. In a significant departure from past practice, state public utility commissions often denied utilities full recovery of their investments in new plants. Although such ex post disallowances have an important efficiency rationale, they also provide a means for opportunistic regulators to effect transfers between utilities' ratepayers and shareholders. A probit model was used to assess the impact on the probability of a disallowance of firm and project characteristics as well as attributes of a state's political and institutional environment

  16. Electric power bidding model for practical utility system

    Directory of Open Access Journals (Sweden)

    M. Prabavathi

    2018-03-01

    Full Text Available A competitive open market environment has been created due to the restructuring in the electricity market. In the new competitive market, mostly a centrally operated pool with a power exchange has been introduced to meet the offers from the competing suppliers with the bids of the customers. In such an open access environment, the formation of bidding strategy is one of the most challenging and important tasks for electricity participants to maximize their profit. To build bidding strategies for power suppliers and consumers in the restructured electricity market, a new mathematical framework is proposed in this paper. It is assumed that each participant submits several blocks of real power quantities along with their bidding prices. The effectiveness of the proposed method is tested on Indian Utility-62 bus system and IEEE-118 bus system. Keywords: Bidding strategy, Day ahead electricity market, Market clearing price, Market clearing volume, Block bid, Intermediate value theorem

  17. Electricity diversification, decentralization, and decarbonization: The role of U.S. state energy policy

    Science.gov (United States)

    Carley, Sanya

    In response to mounting concerns about climate change and an over-dependence on fossil fuels, U.S. state governments have assumed leadership roles in energy policy. State leaders across the country have constructed policies that target electricity sector operations, and aim to increase the percentage of renewable electricity generation, increase the use of distributed generation, and decrease carbon footprints. The policy literature, however, lacks compelling empirical evidence that state initiatives toward these ends are effective. This research seeks to contribute empirical insights that can help fill this void in the literature, and advance policy knowledge about the efficacy of these instruments. This three-essay dissertation focuses on the assessment of state energy policy instruments aimed at the diversification, decentralization, and decarbonization of the U.S. electricity sector. The first essay considers the effects of state efforts to diversify electricity portfolios via increases in renewable energy. This essay asks: are state-level renewable portfolio standards (RPS) effective at increasing renewable energy deployment, as well as the share of renewable energy out of the total generation mix? Empirical results demonstrate that RPS policies so far are effectively encouraging total renewable energy deployment, but not the percentage of renewable energy generation. The second essay considers state policy efforts to decentralize the U.S. electricity sector via instruments that remove barriers to distributed generation (DG) deployment. The primary question this essay addresses is whether the removal of legal barriers acts as a primary motivating factor for DG deployment. Empirical results reveal that net metering policies are positively associated with DG deployment; interconnection standards significantly increase the likelihood that end-users will adopt DG capacity; and utility DG adoption is related to standard market forces. The third essay asks: what are

  18. State Policies Influence Medicare Telemedicine Utilization.

    Science.gov (United States)

    Neufeld, Jonathan D; Doarn, Charles R; Aly, Reem

    2016-01-01

    Medicare policy regarding telemedicine reimbursement has changed little since 2000. Many individual states, however, have added telemedicine reimbursement for either Medicaid and/or commercial payers over the same period. Because telemedicine programs must serve patients from all or most payers, it is likely that these state-level policy changes have significant impacts on telemedicine program viability and utilization of services from all payers, not just those services and payers affected directly by state policy. This report explores the impact of two significant state-level policy changes-one expanding Medicaid telemedicine coverage and the other introducing telemedicine parity for commercial payers-on Medicare utilization in the affected states. Medicare claims data from 2011-2013 were examined for states in the Great Lakes region. All valid claims for live interactive telemedicine professional fees were extracted and linked to their states of origin. Allowed encounters and expenditures were calculated in total and on a per 1,000 members per year basis to standardize against changes in the Medicare population by state and year. Medicare telemedicine encounters and professional fee expenditures grew sharply following changes in state Medicaid and commercial payer policy in the examined states. Medicare utilization in Illinois grew by 173% in 2012 (over 2011) following Medicaid coverage expansion, and Medicare utilization in Michigan grew by 118% in 2013 (over 2012) following adoption of telemedicine parity for commercial payers. By contrast, annual Medicare telemedicine utilization growth in surrounding states (in which there were no significant policy changes during these years) varied somewhat but showed no discernible pattern. Although Medicare telemedicine policy has changed little since its inception, changes in state policies with regard to telemedicine reimbursement appear to have significant impacts on the practical viability of telemedicine programs

  19. Maximizing your ability to compete as a municipal electrical utility

    International Nuclear Information System (INIS)

    MacOdrum, B.

    1996-01-01

    The implications of the MacDonald Committee's recommendations on introducing competition to Ontario's electricity industry were reviewed from the point of view of Toronto Hydro, the largest municipal utility and Ontario Hydro's largest customer. Issues examined included (1) the consequences of unbundling Ontario Hydro's generating, transmission and distribution functions, (2) the structural change option of phasing-in competition among Ontario Hydro and municipal and other private generators, (3) enhancing the efficiency of the distribution sector, and (4) the relative benefits and consequences of private equity as a means of enhancing competition through the sale of Ontario Hydro's generating assets, or the sale of non-essential business operations. Recommendations to the Committee included the need for the transmission grid to remain under public control, for electricity pricing to take into account the variable environmental impact of different generating types, and the need for transferring regulatory authority over municipal electric utilities from Ontario Hydro to the Ontario Energy Board

  20. Electric sales and revenue 1992, April 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-20

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. The sales, revenue, and average revenue per kilowatthour provided in the Electric Sales and Revenue are based on annual data reported by electric utilities for the calendar year ending December 31, 1992. The electric revenue reported by each electric utility includes the applicable revenue from kilowatthours sold; revenue from income; unemployment and other State and local taxes; energy, demand, and consumer service charges; environmental surcharges; franchise fees; fuel adjustments; and other miscellaneous charges. The revenue does not include taxes, such as sales and excise taxes, that are assessed on the consumer and collected through the utility. Average revenue per kilowatthour is defined as the cost per unit of electricity sold and is calculated by dividing retail sales into the associated electric revenue. The sales of electricity, associated revenue, and average revenue per kilowatthour provided in this report are presented at the national, Census division, State, and electric utility levels.

  1. Electric sales and revenue 1992, April 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. The sales, revenue, and average revenue per kilowatthour provided in the Electric Sales and Revenue are based on annual data reported by electric utilities for the calendar year ending December 31, 1992. The electric revenue reported by each electric utility includes the applicable revenue from kilowatthours sold; revenue from income; unemployment and other State and local taxes; energy, demand, and consumer service charges; environmental surcharges; franchise fees; fuel adjustments; and other miscellaneous charges. The revenue does not include taxes, such as sales and excise taxes, that are assessed on the consumer and collected through the utility. Average revenue per kilowatthour is defined as the cost per unit of electricity sold and is calculated by dividing retail sales into the associated electric revenue. The sales of electricity, associated revenue, and average revenue per kilowatthour provided in this report are presented at the national, Census division, State, and electric utility levels

  2. Analysis of electric vehicle impacts in New Mexico urban utility distribution infrastructure.

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, B. [Public Utility Service Company of New Mexico, Albuquerque, NM (United States); Sena, Santiago [Univ. of New Mexico, Albuquerque, NM (United States); Lavrova, Olga [Univ. of New Mexico, Albuquerque, NM (United States); Stratton, S. [Public Utility Service Company of New Mexico, Albuquerque, NM (United States); Abdollahy, S. [Univ. of New Mexico, Albuquerque, NM (United States); Hawkins, J. [Public Utility Service Company of New Mexico, Albuquerque, NM (United States)

    2013-06-16

    Modeling is going to play a crucial role for utilities as Electric Vehicle (EV) ownership percentage increases. Utilities anticipate new demand peaks due to EV charging loads, particularly at high penetration levels.

  3. Financial impact of energy efficiency under a federal combined efficiency and renewable electricity standard: Case study of a Kansas 'super-utility'

    International Nuclear Information System (INIS)

    Cappers, Peter; Goldman, Charles

    2010-01-01

    Historically, local, state and federal policies have separately promoted the generation of electricity from renewable technologies and the pursuit of energy efficiency to help mitigate the detrimental effects of global climate change and foster energy independence. Federal policymakers are currently considering and several states have enacted a combined efficiency and renewable electricity standard which proponents argue provides a comprehensive approach with greater flexibility and at lower cost. We examine the financial impacts on various stakeholders from alternative compliance strategies with a Combined Efficiency and Renewable Electricity Standard (CERES) using a case study approach for utilities in Kansas. Our results suggest that an investor-owned utility is likely to pursue the most lucrative compliance strategy for its shareholders-one that under-invests in energy efficiency resources. If a business model for energy efficiency inclusive of both a lost fixed cost recovery mechanism and a shareholder incentive mechanism is implemented, our analysis indicates that an investor-owned utility would be more willing to pursue energy efficiency as a lower-cost CERES compliance strategy. Absent implementing such a regulatory mechanism, separate energy efficiency and renewable portfolio standards would improve the likelihood of reducing reliance on fossil fuels at least-cost through the increased pursuit of energy efficiency.

  4. Electric states and magnetic states in a Majorana field. (Part 1: electric states)

    International Nuclear Information System (INIS)

    Lochak, G.

    1987-01-01

    It is shown that the Mojarana condition, by which the Dirac equation is reduced to the so-called ''abbreviated'' equation, may be equivalently replaced in a gauge invariant way by the condition that the chiral invariant equals zero. This allows up to give a Lagrangian derivation of the Majorana field. Symmetry laws of this field, interacting with an electromagnetic field, are then investigated. The system is shown to be split (contrary to the Dirac field, but just as the monopole one) into two chiral components. The solution of the equation of such a chiral component is given in the case of a central electric field. It is shown that there are no bounds states but only ionized states which are a special superposition of positive and negative energy states. Finally the geometrical optics approximation is investigated and the Jacobi equation is solved for a chiral component in a central electric field. All the trajectories are hyperbolic but are not of the classical keplerian type. They are divided into two groups respectively corresponding to attractive and repulsive motions, whatever the particle charge may be [fr

  5. Utilization of hydrogen gas production for electricity generation in ...

    African Journals Online (AJOL)

    Utilization of hydrogen gas production for electricity generation in fuel cell by Enterobacter aerogenes ADH 43 with many kinds of carbon sources in batch stirred tank reactor. MA Rachman, LD Eniya, Y Liasari, MM Nasef, A Ahmad, H Saidi ...

  6. Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment

    Energy Technology Data Exchange (ETDEWEB)

    Brockway, N.

    2001-05-21

    As the electric industry goes through a transformation to a more market-driven model, traditional grounds for utility energy efficiency have come under fire, undermining the existing mechanisms to fund and deliver such services. The challenge, then, is to understand why the electric industry should sustain investments in helping low-income Americans use electricity efficiently, how such investments should be made, and how these policies can become part of the new electric industry structure. This report analyzes the opportunities and barriers to leveraging electric utility energy efficiency assistance to low-income customers during the transition of the electric industry to greater competition.

  7. Electric sales and revenue 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the US. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1996. 16 figs., 20 tabs.

  8. Environmental assessment for the electric utility system distribution, replacements and upgrades at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-04-01

    This Environmental Assessment evaluates the environmental effects resulting from the distribution of new electrical service, replacement of inadequate or aging equipment, and upgrade of the existing electrical utility system at Lawrence Livermore National Laboratory. The projects assessed herein do not impact cultural or historic resources, sensitive habitats or wetlands and are not a source of air emissions. The potential environmental effects that do result from the action are fugitive dust and noise from construction and the disposal of potentially contaminated soil removed from certain limited areas of the LLNL site as a result of trenching for underground transmission lines. The actions described in this assessment represent an improved safety and reliability to the existing utility system. Inherent in the increased reliability and upgrades is a net increase in electrical capacity, with future expansion reserve. As with any electrical device, the electrical utility system has associated electric and magnetic fields that present a potential source of personnel exposure. The potential is not increased, however, beyond that which already exists for the present electrical utility system

  9. Rent dissipation through electricity prices of publicly owned utilities

    International Nuclear Information System (INIS)

    Bernard, J-T.; Roland, M.

    1997-01-01

    Pricing policies of Canadian public utilities were examined. It was shown that under the existing set of rules the prices established are frequently below the marginal cost. This appears to be particularly true in the case of provinces that rely principally on hydroelectric resources. Study recommendations to bring electricity prices in line with marginal costs have had little success to date despite overwhelming evidence of large economic losses associated with the current institutional arrangements. This situation remains at the same time that governments apply high tax rates on incomes. By putting together two strands of economic literature, public choice and the theory of public utility pricing, this paper develops a simple model that explains why the median consumer prefers a low electricity price and a high tax rate. Hydro-Quebec survey data is used to confirm that these conditions are satisfied in Quebec. 17 refs., 1 tab

  10. Who cares about a financially healthy electric utility industry. Finding future answers

    International Nuclear Information System (INIS)

    O'Connor, R.J.

    1982-01-01

    Forecasts on the rate of growth of electricity supply and demand were given. Emphasis was placed on the economic stability of electric utilities and their ability to raise necessary capital. The role of nuclear power in America's future was also discussed

  11. Low-Income Community Solar: Utility Return Considerations for Electric Cooperatives

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, Alexandra Y [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagne, Douglas A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-05

    The objective of this short report is to identify project structures that make low-income community solar projects more cost-effective, replicable, and scalable, for electric cooperative and municipal utilities. This report explores the tradeoffs between providing energy bill savings for low-income subscribers and utility project returns, as well as some of the key lessons learned from existing successful low-income community solar pilot projects.

  12. Core business concentration vs. corporate diversification in the US electric utility industry: Synergy and deregulation effects

    International Nuclear Information System (INIS)

    Sueyoshi, Toshiyuki; Goto, Mika; Shang, Jennifer

    2009-01-01

    Many economists such as Wilson (2002) [Wilson, R., 2002. Architecture of power market, Econometrica, 70, 1299-1340] have considered that there are similarities between electricity and gas services in the US electric utility industry. Hence, they expect a synergy effect between them. However, the two businesses do not have technology similarities at the level that the gas service produces a synergy effect with electricity. To examine whether there is a synergy effect of corporate diversification in the industry, we compare electricity-specialized firms with diversified utility firms in terms of their financial performance and corporate value. The comparison indicates that core business concentration is more effective for electric utility firms than corporate diversification under the current US deregulation policy.

  13. U.S. utilities' experiences with the implementation of energy efficiency programs

    Science.gov (United States)

    Goss, Courtney

    In the U.S., many electric utility companies are offering demand-side management (DSM) programs to their customers as ways to save money and energy. However, it is challenging to compare these programs between utility companies throughout the U.S. because of the variability of state energy policies. For example, some states in the U.S. have deregulated electricity markets and others do not. In addition, utility companies within a state differ depending on ownership and size. This study examines 12 utilities' experiences with DSM programs and compares the programs' annual energy savings results that the selected utilities reported to the Energy Information Administration (EIA). The 2009 EIA data suggests that DSM program effectiveness is not significantly affected by electricity market deregulation or utility ownership. However, DSM programs seem to generally be more effective when administered by utilities located in states with energy savings requirements and DSM program mandates.

  14. Expanding opportunities. Strategic buying of utilities in new EU member states

    International Nuclear Information System (INIS)

    LaBelle, Michael

    2009-01-01

    During the 1990s, limited investment opportunities in Western Europe, the opening of the energy markets in Eastern Europe, and the future expansion of the European Union (EU) prompted an expansionist strategy by energy companies from the original EU member states. In this paper, the acquisition and divestiture activities and strategies of utilities from France and Germany are analyzed in the context of the 2004 and 2007 EU enlargements. Through quantitative and qualitative data analysis, including the development of two case studies, the strategy for expansion and evolution in new member states is examined. The results demonstrate a concerted effort to establish economies of scale through ownership of distribution companies. A change in strategy occurs as these privatization opportunities disappear. Generation and trading activity become the growth area for these companies as electricity supply becomes another factor that can contribute to the economies of scale. Recent EU-supported efforts towards regionalization of electricity markets, positions these companies well due to their strong regional presence. This paper will explore these issues in the context of ownership and geographic distribution. (author)

  15. Electric sales and revenue 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Electric Sales and Revenue is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the US. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1997. 16 figs., 17 tabs.

  16. Deregulation and competition in the electric utility marketplace

    International Nuclear Information System (INIS)

    Allen, J.E.

    1995-01-01

    This paper addresses the impact of deregulation and competition in the electric utility marketplace as an extension of the deregulation of the airlines, and natural gas, telephone and trucking industries. The topics of the paper include the events and circumstances leading to deregulation, those involved in the competition, and a scenario for how the industry will develop over the next 20 years

  17. Sizing Analysis for Aircraft Utilizing Hybrid-Electric Propulsion Systems

    Science.gov (United States)

    2011-03-18

    world, the paragon of animals -William Shakespeare I would not have made it this far without the love and support of my parents. Their work-ethic...xiii  I.  Introduction ...Condition 1 SIZING ANALYSIS FOR AIRCRAFT UTILIZING HYBRID- ELECTRIC PROPULSION SYSTEMS I. Introduction 1. Background Physically

  18. Investigation into the risk perceptions of investors in the securities of nuclear-dependent electric utilities

    International Nuclear Information System (INIS)

    Spudeck, R.E.

    1983-01-01

    Two weeks prior to the Three Mile Island accident, March 15, 1979, the Nuclear Regulatory Commission ordered five operating nuclear plants shut down in order to reexamine safety standards in these plants. Reports in the popular and trade press during this time suggested that these events, particularly the accident at Three Mile Island, caused investors in the securities of electric utilities that had nuclear-generation facilities to revise their risk perceptions. This study was designed to examine the impact of both the Nuclear Regulatory Commission order and the accident at Three Mile Island on investor risk perceptions. Selected categories of electric utilities were chosen to examine any differential risk effects resulting from these events. An asset pricing model devoid of many of the restrictive assumptions of more familiar models was used to model investor behavior. The findings suggest that the events described did cause investors to revise upward their perceptions of systematic risk regarding different categories of electric utilities. More specifically, those electric utilities that were operating nuclear plants in 1979 experienced the largest and most sustained increase in systematic risk. However, electric utilities that in 1979 had no operating nuclear plants, but had planned and committed funds for nuclear plants in the future, also experienced increases in systematic risk

  19. R and D options for demand side management in Japanese electric utilities

    International Nuclear Information System (INIS)

    Yamamoto, T.

    1995-01-01

    Japanese electric utilities are facing several problems: increasing construction cost of power facilities, siting constraints and the environmental issue of greenhouse gas emissions. To overcome these problems, electric utilities have been promoting demand-side-management (DSM) activities as well as supplier-side measures, with some presently being carried out through promoting energy conservation technologies and introducing tariff options for residential/commercial and industrial consumers. R and D works have been carried out on various fields such as energy storage and heat storage which contribute to the improvement of the load factor. 5 figs., 2 tabs

  20. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  1. Design fractures and commercial potential of superconducting magnetic energy storage for electric utility application

    International Nuclear Information System (INIS)

    Lloyd, R.J.; Schoenung, S.

    1986-01-01

    Historically, energy storage in the United States has been provided by a few pumped hydroelectric plants, but siting constraints and high cost severely limit the use of this option. Two other options which will soon be in use are batteries and compressed air energy storage. A fourth option, currently being developed for load leveling is Superconducting Magnetic Energy Storage (SMES). This paper reports the design features and estimated costs of utility scale SMES plants. For moderate discharge duration, SMES is projected to have substantially lower revenue requirements and better availability than other load leveling options. The Electric Power Research Institute has prepared a plan for commercialization which could, if aggressively pursued, lead to a demonstrated SMES technology that is available for utility commitment by the late 1990's

  2. The Future of Utility Customer-Funded Energy Efficiency Programs in the United States: Projected Spending and Savings to 2025

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoffman, Ian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Billingsley, Megan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-09-11

    We develop projections of future spending on, and savings from, energy efficiency programs funded by electric and gas utility customers in the United States, under three scenarios through 2025. Our analysis, which updates a previous LBNL study, relies on detailed bottom-up modeling of current state energy efficiency policies, regulatory decisions, and demand-side management and utility resource plans. The three scenarios are intended to represent a range of potential outcomes under the current policy environment (i.e., without considering possible major new policy developments). By 2025, spending on electric and gas efficiency programs (excluding load management programs) is projected to double from 2010 levels to $9.5 billion in the medium case, compared to $15.6 billion in the high case and $6.5 billion in the low case. Compliance with statewide legislative or regulatory savings or spending targets is the primary driver for the increase in electric program spending through 2025, though a significant share of the increase is also driven by utility DSM planning activity and integrated resource planning. Our analysis suggests that electric efficiency program spending may approach a more even geographic distribution over time in terms of absolute dollars spent, with the Northeastern and Western states declining from over 70% of total U.S. spending in 2010 to slightly more than 50% in 2025, with the South and Midwest splitting the remainder roughly evenly. Under our medium case scenario, annual incremental savings from customer-funded electric energy efficiency programs increase from 18.4 TWh in 2010 in the U.S. (which is about 0.5% of electric utility retail sales) to 28.8 TWh in 2025 (0.8% of retail sales). These savings would offset the majority of load growth in the Energy Information Administration’s most recent reference case forecast, given specific assumptions about the extent to which future energy efficiency program savings are captured in that forecast

  3. State Drug Utilization Data 2017

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  4. State Drug Utilization Data 2016

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  5. State Drug Utilization Data 2011

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  6. State Drug Utilization Data 2003

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  7. State Drug Utilization Data 2008

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  8. State Drug Utilization Data 1992

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  9. State Drug Utilization Data 1995

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  10. State Drug Utilization Data 1998

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  11. State Drug Utilization Data 2014

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  12. State Drug Utilization Data 2005

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  13. State Drug Utilization Data 2002

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  14. State Drug Utilization Data 2004

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  15. State Drug Utilization Data 1993

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  16. State Drug Utilization Data 2006

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  17. State Drug Utilization Data 2012

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  18. State Drug Utilization Data 1999

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  19. State Drug Utilization Data 2015

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  20. State Drug Utilization Data 1997

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  1. State Drug Utilization Data 1991

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  2. State Drug Utilization Data 2001

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  3. State Drug Utilization Data 2007

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  4. State Drug Utilization Data 2013

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  5. State Drug Utilization Data 2009

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  6. State Drug Utilization Data 1996

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  7. State Drug Utilization Data 1994

    Data.gov (United States)

    U.S. Department of Health & Human Services — Drug utilization data are reported by states for covered outpatient drugs that are paid for by state Medicaid agencies since the start of the Medicaid Drug Rebate...

  8. Blending of electricity pricing with time flavour - an analysis of net system benefit to an electric utility in India

    International Nuclear Information System (INIS)

    Bhardwaj, J.L.

    1992-01-01

    Demand-side Management is a powerful strategy for modifying electric energy consumption patterns for the mutual benefit of consumers, the supplier and the economy as a whole Time-of-use pricing of electricity suggest a policy where the price is time-differentiated so as to reduce contribution to the system-peak which determines the capacity and investments of a power-system. This paper describes a case-study of net system benefit to an electric utility in India by offering time-of-use tariff to high voltage (HV) industrial consumers. The study shows that there is a potential of shifting about 19% H.V. Industrial loads from peak to off-peak hours thereby benefitting both, the consumers and the utility. 1 fig., 2 tabs

  9. Preparing Canada`s power systems for transition to the Year 2000: Y2K readiness assessment results for Canadian electric utility companies: second quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-25

    The report describes the state of readiness of Canadian electric utility companies with respect to the Year 2000 computer challenge. It complements the North American Electric Reliability Council Report entitled `Preparing the Electric Power Systems of North America for Transition to the Year 2000: A Status and Work Plan.` Two surveys were employed to gather information for this report. The first, a detailed survey prepared by NERC, was forwarded to all major electric utilities that comprise the Bulk Electricity System in North America. CEA has removed the Canadian findings from the overall North American results, and has presented those findings in this report. The second was a shorter, more simplified study, conducted by CEA and Natural Resources Canada. Whereas small companies involved only in the distribution aspect of the electricity business were not asked to complete the NERC assessment, all Canadian electric utility companies were part of the shorter survey. Chapter 2 covers specifically the readiness status and project management for non-nuclear generation, nuclear generation, energy management systems, telecommunications systems, substation controls, system protection and distribution systems, business information systems, and small distribution companies.

  10. Aiming for market leadership - from electricity utility to pellets manufacturer; Die Marktfuehrerschaft im Visier

    Energy Technology Data Exchange (ETDEWEB)

    Aeberli, O. E.

    2003-07-01

    This short article describes the plans of a small Swiss electricity utility to break out of its traditional role in power generation and the distribution of electricity and go into the production of wood pellets. The pellets, which are to be made from waste wood available from a wood processing facility in the utility's own region, are to be produced on a scale which can be described as being quite large for Switzerland. The article discusses this unusual approach for a Swiss power utility, which also operates a wood-fired power station and has diversified into other areas such as electrical house installations and overland power lines. The markets being aimed for are described, including modern low-energy-consumption housing projects.

  11. Assessing the economic and environmental feasibility of utility scaled PV electricity production in the state of Georgia.

    Science.gov (United States)

    Taylor, Ruthie; Critttenden, John

    2012-01-01

    Photovoltaic (PV) technology, an increasingly popular source for renewable energy, is being deployed in places with solar insolation that is comparable to that in state of Georgia. This study assesses the feasibility and environmental impact of utility scale photovoltaic (PV) electricity production in Georgia by assessing the economic costs, avoided costs, health benefits, and environmental benefits. The cost of PV used in this study is 3.52 $/kW. The RETScreen model was employed to analyze the impact of incentives on the economic viability of the plants that produce 93 GWh, 371 GWh, and 1,484 GWh, respectively. 57% of the capital cost is required in the form of incentives or subsidies to make the projects economically feasible. The high estimated cost of cleaning the equivalent amount of emissions from a coal-fired power plant is $14.5 million, $58 million, and $232 million for a 50 MW, 200 MW, and 800 MW plant, respectively Avoided costs in health damages are estimated to be $28 million, $112 million, and $449 million and the numbers of jobs to be created are 2,500, 10,000, and 40,000 for 50 MW, 200 MW, and 800 MW plants, respectively. And, the cumulative value of renewable energy credits from a 50 MW, 200 MW, and a 800 MW plant are $59 million, $237 million, and $789 million, respectively.

  12. State-scale evaluation of renewable electricity policy: The role of renewable electricity credits and carbon taxes

    International Nuclear Information System (INIS)

    Levin, Todd; Thomas, Valerie M.; Lee, Audrey J.

    2011-01-01

    We have developed a state-scale version of the MARKAL energy optimization model, commonly used to model energy policy at the US national scale and internationally. We apply the model to address state-scale impacts of a renewable electricity standard (RES) and a carbon tax in one southeastern state, Georgia. Biomass is the lowest cost option for large-scale renewable generation in Georgia; we find that electricity can be generated from biomass co-firing at existing coal plants for a marginal cost above baseline of 0.2-2.2 cents/kWh and from dedicated biomass facilities for 3.0-5.5 cents/kWh above baseline. We evaluate the cost and amount of renewable electricity that would be produced in-state and the amount of out-of-state renewable electricity credits (RECs) that would be purchased as a function of the REC price. We find that in Georgia, a constant carbon tax to 2030 primarily promotes a shift from coal to natural gas and does not result in substantial renewable electricity generation. We also find that the option to offset a RES with renewable electricity credits would push renewable investment out-of-state. The tradeoff for keeping renewable investment in-state by not offering RECs is an approximately 1% additional increase in the levelized cost of electricity. - Research Highlights: →We examine state-scale impacts of a renewable electricity standard and a carbon tax. →Georgia has low electricity prices and bioenergy is the main renewable option. →A carbon tax of $50/tCO 2 does not significantly increase renewable generation. →Renewable electricity credits divert renewable investment to other states. →Keeping renewable electricity generation in-state increases electricity costs by 1%.

  13. Parametric utility comparison of coal and nuclear electricity generation

    International Nuclear Information System (INIS)

    Maurer, K.M.

    1977-02-01

    The advantages and limitations of an explicit quantitative model for decision making are discussed. Several different quantitative models are presented, noting that the use of an expected utility maximization decision rule allows both the direct incorporation of multidimensional descriptions of the possible outcomes, and considerations of risk averse behavior. A broad class of utility functions, characterized by linear risk tolerance, was considered and extended to a multidimensional form. Choosing a multivariate risk neutral extension, using constant absolute risk aversion utility functions for monetary effects and for increased mortality, the author indicated how the parameters of this utility function can be selected to represent the decision maker's preferences, and suggest a reasonable range of values for the parameters. After describing an illustrative set of data on the risks inherent in coal burning and nuclear electricity generation facilities, the author used the chosen utility model to compare the overall risks associated with each technology, observing the effect of variations in the utility parameters and in the risk distributions on the implied preferences

  14. Electric vehicles from the point of view of an energy utility; Elektrofahrzeuge aus Sicht eines Energieversorgers

    Energy Technology Data Exchange (ETDEWEB)

    Corpataux, M.

    2008-07-01

    This presentation made at the Swiss 2008 research conference on traffic by Marcel Corpataux from the Elektra Baselland utility (EBL) takes a look at the utility's activities in the renewable energies sector and the need for balancing energy supply and demand. Various methods on the demand side are briefly looked at and the use of 'vehicle-to-grid' concepts that use hybrid vehicles as storage facilities for electrical power are commented on. The chances offered to electricity utilities by using hybrid vehicles as buffer storage for electrical power are discussed.

  15. Energy economics: impacts on electric utilities' future decisions

    International Nuclear Information System (INIS)

    Smith, S.H.

    1983-01-01

    Despite financial and regulatory pressures that have led electric utilities to slow construction and minimize capital expenditures, Carolina Power and Light Company is proceeding with two new nuclear and two new coal facilities because it believes the commitment to expand must be made in the 1980s. The economic slowdown has given utilities a breathing period, but not enough to allow a complete stop in expansion if the utilities are to be ready for the expected economic growth of the 1990s. Financing this expansion is a slower process for regulated industries and leads to strained relations between customers and suppliers. The two can work together to promote conservation and load management, but higher rates must finance new construction to avoid a shortfall later. The costs of environmentally sound coal combustion and nuclear plant construction must both be reduced to help keep the recovery from being inflationary

  16. Markets: green utilities

    International Nuclear Information System (INIS)

    Wood, Elisa

    2006-01-01

    Publicly owned utilities have consistently led the United States in the rate of customer participation in green power programmes. The US has about 2000 community and state-owned utilities, which serve 43 million customers and account for about 16.6% of kilowatt-hour sales to consumers. In all, public power is responsible for about 10% of the nation's installed electric capacity. Investor owned utilities account for 39%, with the remainder of the nation's power mostly from independent power generators. Although IOUs have almost four times as much electric capacity as public power, they edge out public power by only a small margin when it comes to renewable capacity. IOUs are responsible for 24,577.5 MW of renewable capacity, compared to the 21,338 MW installed by public power. The reasons discussed by the author range from small town advantage to clean and cheap power. (Author)

  17. Recovery of Utility Fixed Costs: Utility, Consumer, Environmental and Economist Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Lisa [Inst. for Electric Innovation and The Edison Foundation, Washington DC (United States); Hemphill, Ross [RCHemphill Solutions, Columbus, OH (United States); Howat, John [National Consumer Law Center, Boston, MA (United States); Cavanagh, Ralph [Natural Resources Defense Council, New York, NY (United States); Borenstein, Severin [Univ. of California, Berkeley, CA (United States); Deason, Jeff [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-06-14

    Utilities recover costs for providing electric service to retail customers through a combination of rate components that together comprise customers’ monthly electric bills. Rates and rate designs are set by state regulators and vary by jurisdiction, utility and customer class. In addition to the fundamental tenet of setting fair and reasonable rates, rate design balances economic efficiency, equity and fairness, customer satisfaction, utility revenue stability, and customer price and bill stability.1 At the most basic level, retail electricity bills in the United States typically include a fixed monthly customer charge — a set dollar amount regardless of energy usage — and a volumetric energy charge for each kilowatt-hour consumed.2 The energy charge may be flat across all hours, vary by usage level (for example, higher rates at higher levels of usage), or vary based on time of consumption.3 While some utility costs, such as fuel costs, clearly vary according to electricity usage, other costs are “fixed” over the short run — generally, those that do not vary over the course of a year. Depending on your point of view, and whether the state’s electricity industry has been restructured or remains vertically integrated, the set of costs that are “fixed” may be quite limited. Or the set may extend to all capacity costs for generation, transmission and distribution. In the long run, all costs are variable. In the context of flat or declining loads in some regions, utilities are proposing a variety of changes to retail rate designs, particularly for residential customers, to recover fixed costs. In this report, authors representing utility (Chapter 1), consumer (Chapter 2), environmentalist (Chapter 3) and economist (Chapter 4) perspectives discuss fixed costs for electric utilities and set out their principles for recovering those costs. The table on the next page summarizes each author’s relative preferences for various options for fixed cost

  18. Electricity utility deregulation in Great Britain: economic and industrial consequences

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    In this paper we analyze in the first part how was made the deregulation of the public electric utilities in Great Britain and in the second the logic and the contradictions of this deregulation in an industrial point of view

  19. Electric sales and revenue: 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. The sales, revenue, and average revenue per kilowatthour data provided in the Electric Sales and Revenue are based on annual data reported by electric utilities for the calendar year ending December 31, 1993. Operating revenue includes energy charges, demand charges, consumer service charges, environmental surcharges, fuel adjustments, and other miscellaneous charges. The revenue does not include taxes, such as sales and excise taxes, that are assessed on the consumer and collected through the utility. Average revenue per kilowatthour is defined as the cost per unit of electricity sold and is calculated by dividing retail sales into the associated electric revenue. Because electric rates vary based on energy usage, average revenue per kilowatthour are affected by changes in the volume of sales. The sales of electricity, associated revenue, and average revenue per kilowatthour data provided in this report are presented at the national, Census division, State, and electric utility levels.

  20. New England electric utility takes the lead

    Energy Technology Data Exchange (ETDEWEB)

    New England Electric System has taken several steps to reduce dependence on foreign oil, save its customers money, and encourage the development of energy resources tailored to meet the region's energy needs. The heart of the plan is a stated objective of reducing annual peaking demand for electrical growth from a projected 3.1% to 1.9%. Other activities initiated are: a solar hot water demonstration project; the NEPCO's burning of a mixture of pulverized coal and residual fuel oil in one of its boilers at Salem Harbor Station in Salem, Massachusetts; purchasing and trading electricity with industrial and private small power producers; and participating in an effort to develop a plan to convert the Brayton Point power plant in Somerset, Massachusetts from oil to coal.

  1. Renewable Electricity Benefits Quantification Methodology: A Request for Technical Assistance from the California Public Utilities Commission

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, G.; Vimmerstedt, L.

    2009-07-01

    The California Public Utilities Commission (CPUC) requested assistance in identifying methodological alternatives for quantifying the benefits of renewable electricity. The context is the CPUC's analysis of a 33% renewable portfolio standard (RPS) in California--one element of California's Climate Change Scoping Plan. The information would be used to support development of an analytic plan to augment the cost analysis of this RPS (which recently was completed). NREL has responded to this request by developing a high-level survey of renewable electricity effects, quantification alternatives, and considerations for selection of analytic methods. This report addresses economic effects and health and environmental effects, and provides an overview of related analytic tools. Economic effects include jobs, earnings, gross state product, and electricity rate and fuel price hedging. Health and environmental effects include air quality and related public-health effects, solid and hazardous wastes, and effects on water resources.

  2. Subjective Probabilities for State-Dependent Continuous Utility

    NARCIS (Netherlands)

    P.P. Wakker (Peter)

    1987-01-01

    textabstractFor the expected utility model with state dependent utilities, Karni, Schmeidler and Vind (1983) have shown how to recover uniquely the involved subjective probabilities if the preferences, contingent on a hypothetical probability distribution over the state space, are known. This they

  3. Electric industry restructuring review

    International Nuclear Information System (INIS)

    Slocum Hollis, S.

    2004-01-01

    Restructuring of the electric power industry began in the early 1990's in many jurisdictions in the United States. Restructuring was an attempt to offer large industrial customers lower rates and freedom from regulation for generators and traditional public utilities. The move has gained most attention in the past two years as some utilities report high profits while others, such as Pacific Gas and Electric Co., the largest investor-owned utility in the United States, is in bankruptcy. The August 2003 blackout in the Midwest and Northeast United States and Canada also raised questions regarding electric reliability. The question now remains whether markets should be allowed to determine the need for services and the prices to be charged, and who is in charge in the imperfect market. The Federal Energy Regulatory Commission's (FERC) Order 2000 led to the formation of a Regional Transmission Organizations which is still in the implementation stage. Its influence on precursor Order numbers 888 and 889 were discussed in this paper with reference to independent system operators; regional transmission organizations; standard market design; rates and pricing devices; congestion management; market monitoring; market investigations; reliability measures; OASIS and other information access; interconnection policy; jurisdiction; mergers and merger policy; standards of conduct; policing affiliates; municipal utilities; stranded costs; and, state restructuring scorecards. refs

  4. Carbon emissions and management scenarios for consumer-owned utilities

    International Nuclear Information System (INIS)

    Fischlein, Miriam; Smith, Timothy M.; Wilson, Elizabeth J.

    2009-01-01

    An important subset of the utility sector has been scarcely explored for its ability to reduce carbon dioxide emissions: consumer-owned electric utilities significantly contribute to U.S. greenhouse gas emissions, but are often excluded from energy efficiency and renewable energy policies. They sell a quarter of the nation's electricity, yet the carbon impact of these sales is not well understood, due to their small size, unique ownership models, and high percentage of purchased power for distribution. This paper situates consumer-owned utilities in the context of emerging U.S. climate policy, quantifying for the first time the state-by-state carbon impact of electricity sales by consumer-owned utilities. We estimate that total retail sales by consumer-owned utilities account for roughly 568 million metric tons of CO 2 annually, making this sector the 7th largest CO 2 emitter globally, and examine state-level carbon intensities of the sector in light of the current policy environment and the share of COU distribution in the states. Based on efficiency and fuel mix pathways under conceivable regulations, carbon scenarios for 2030 are developed.

  5. Composition Related Electrical Active Defect States of InGaAs and GaAsN

    Directory of Open Access Journals (Sweden)

    Arpad Kosa

    2017-01-01

    Full Text Available This paper discusses results of electrically active defect states - deep energy level analysis in InGaAs and GaAsN undoped semiconductor structures grown for solar cell applications. Main attention is focused on composition and growth condition dependent impurities and the investigation of their possible origins. For this purpose a widely utilized spectroscopy method, Deep Level Transient Fourier Spectroscopy, was utilized. The most significant responses of each sample labelled as InG2, InG3 and NG1, NG2 were discussed in detail and confirmed by simulations and literature data. The presence of a possible dual conduction type and dual state defect complex, dependent on the In/N composition, is reported. Beneficial characteristics of specific indium and nitrogen concentrations capable of eliminating or reducing certain point defects and dislocations are stated.

  6. United States/Mexico electricity exchanges. [History, incentives, and constraints

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1980-05-01

    As a result of the agreement between the respective presidents, a joint study was undertaken to analyze the possibilities of increasing the international electricity exchange between the two countries. Responsibility for this undertaking was assigned to the United States Department of Energy (DOE) and to the Direccion de Energia de Mexico (DEM) through the Comision Federal de Electricidad (CFE). Representatives from Mexico and the US were chosen from the regional utilities along the border between the two countries and made up working groups that particiated in the study. With the support of both governments, and a high degree of cooperation between the two countries, work on the study was completed within fourteen months The completion of the study has been a major step in broadening the base of bilateral energy relations. the study highlights the opportunities for increased electricity exchanges, which could increase cooperation along the common border. Expansion of electricity interchange could offer substantial economic benefit to both countries, both directly and indirectly. Direct benefits include increased reliability of electric power and cost savings through economies of scale and diversity of peak demand patterns. Indirect benefits include improved economic and employment opportunities, especially in the border areas of both countries. This report provides background on the history of past exchanges and the characteristics of the US and Mexico electric systems, a summary of opportunities and incentives, and suggestions for procedures to remove obstacles and constraints.

  7. The Effects of Rising Interest Rates on Electric Utility Stock Prices: Regulatory Considerations and Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Kihm, Steve [Seventhwave, Madison, WI (United States); Satchwell, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cappers, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-07-26

    This technical brief identifies conditions under which utility regulators should consider implementing policy approaches that seek to mitigate negative outcomes due to an increase in interest rates. Interest rates are a key factor in determining a utility’s cost of equity and investors find value when returns exceed the cost of equity. Through historical observations of periods of rising and falling interest rates and application of a pro forma financial tool, we identify the key drivers of utility stock valuations and estimate the degree to which those valuations might be affected by increasing interest rates.3 We also analyze the efficacy of responses by utility regulators to mitigate potential negative financial impacts. We find that regulators have several possible approaches to mitigate a decline in value in an environment of increasing interest rates, though regulators must weigh the tradeoffs of improving investor value with potential increases in customer costs. Furthermore, the range of approaches reflects today’s many different electric utility regulatory models and regulatory responses to a decline in investor value will fit within state-specific models.

  8. Electricity supply in India

    International Nuclear Information System (INIS)

    Abbott, H.J.

    1993-09-01

    This briefing deals with the electricity supply industry in India in two parts. In the first, the structure and organization of the industry is described under sections dealing with national government involvement, energy policy, state electricity boards, regional electricity boards, state corporations, the private sector and private investment in the power sector including foreign investment. Secondly, the power supply system is described covering generation, plant load factor, non-utility generation, nuclear power, transmission and distribution, system losses and electricity consumption. (8 tables) (UK)

  9. Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States

    Science.gov (United States)

    Bartos, Matthew; Chester, Mikhail; Johnson, Nathan; Gorman, Brandon; Eisenberg, Daniel; Linkov, Igor; Bates, Matthew

    2016-11-01

    Climate change may constrain future electricity supply adequacy by reducing electric transmission capacity and increasing electricity demand. The carrying capacity of electric power cables decreases as ambient air temperatures rise; similarly, during the summer peak period, electricity loads typically increase with hotter air temperatures due to increased air conditioning usage. As atmospheric carbon concentrations increase, higher ambient air temperatures may strain power infrastructure by simultaneously reducing transmission capacity and increasing peak electricity load. We estimate the impacts of rising ambient air temperatures on electric transmission ampacity and peak per-capita electricity load for 121 planning areas in the United States using downscaled global climate model projections. Together, these planning areas account for roughly 80% of current peak summertime load. We estimate climate-attributable capacity reductions to transmission lines by constructing thermal models of representative conductors, then forcing these models with future temperature projections to determine the percent change in rated ampacity. Next, we assess the impact of climate change on electricity load by using historical relationships between ambient temperature and utility-scale summertime peak load to estimate the extent to which climate change will incur additional peak load increases. We find that by mid-century (2040-2060), increases in ambient air temperature may reduce average summertime transmission capacity by 1.9%-5.8% relative to the 1990-2010 reference period. At the same time, peak per-capita summertime loads may rise by 4.2%-15% on average due to increases in ambient air temperature. In the absence of energy efficiency gains, demand-side management programs and transmission infrastructure upgrades, these load increases have the potential to upset current assumptions about future electricity supply adequacy.

  10. How the largest electric and gas utility companies administer public relations

    Energy Technology Data Exchange (ETDEWEB)

    Bogart, J.D.

    1979-04-12

    This article describes the findings of a survey conducted by the author in the second half of 1978 to determine the sizes of the public relations staffs of the nation's largest operating electric and gas utilities, their budgets, organizational differences, and specific functions. Common public relations issues and major public relations problems of the utilities are identified, as well as recent trends or changes in budgeting and organization. Some functional variations of public relations departments among utility companies were detected and described.

  11. State environmental law and carbon emissions: Do public utility commissions use environmental statutes to fight global warming?

    Energy Technology Data Exchange (ETDEWEB)

    Sautter, John A.

    2010-10-15

    In many states environmental statutes provide the authority for public utility commissioners to make decisions to reduce greenhouse gases from electricity generation. This article looks at six such laws and how the presence of these laws affected CO{sub 2} emissions during a nine-year period from 1997 to 2005. (author)

  12. Utilization of excess wind power in electric vehicles

    International Nuclear Information System (INIS)

    Hennings, Wilfried; Mischinger, Stefan; Linssen, Jochen

    2013-01-01

    This article describes the assessment of future wind power utilization for charging electric vehicles (EVs) in Germany. The potential wind power production in the model years 2020 and 2030 is derived by extrapolating onshore wind power generation and offshore wind speeds measured in 2007 and 2010 to the installed onshore and offshore wind turbine capacities assumed for 2020 and 2030. The energy consumption of an assumed fleet of 1 million EVs in 2020 and 6 million in 2030 is assessed using detailed models of electric vehicles, real world driving cycles and car usage. It is shown that a substantial part of the charging demand of EVs can be met by otherwise unused wind power, depending on the amount of conventional power required for stabilizing the grid. The utilization of wind power is limited by the charging demand of the cars and the bottlenecks in the transmission grid. -- Highlights: •Wind power available for charging depends on minimum required conventional power (must-run). •With 20 GW must-run power, 50% of charging can be met by excess wind power. •Grid bottlenecks decrease charging met by wind power from 50 % to 30 %. •With zero must-run power, only very little wind power is available for charging

  13. Green electricity policies in the United States: case study

    International Nuclear Information System (INIS)

    Menz, Fredric C.

    2005-01-01

    While there has been interest in promoting the use of renewable energy in electricity production for a number of years in the United States, the market share of non-hydro renewable energy sources in electricity production has remained at about 2 percent over the past decade. The paper reviews the principal energy resources used for electricity production, considers the changing regulatory environment for the electricity industry, and describes government policies that have been used to promote green electricity in the United States, with an emphasis on measures adopted by state governments. Factors influencing the development of green power markets are also discussed, including underlying economic issues, public policy measures, the regulatory environment, external costs, and subsidies. Without significant increases in fossil fuel prices, much more stringent environmental regulations, or significant changes in electricity customer preferences, green electricity markets are likely to develop slowly in the United States

  14. Public utility regulation and national energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.

    1980-09-01

    The linkage between Public Utility Commission (PUC) regulation, the deteriorating financial health of the electric utility industry, and implementation of national energy policy, particularly the reduction of foreign petroleum consumption in the utility sector is examined. The role of the Nation's utilities in the pursuit of national energy policy goals and postulates a linkage between PUC regulation, the poor financial health of the utility industry, and the current and prospective failure to displace foreign petroleum in the utility sector is discussed. A brief history of PUC regulation is provided. The concept of regulatory climate and how the financial community has developed a system of ranking regulatory climate in the various State jurisdictions are explained. The existing evidence on the hypothesis that the cost of capital to a utility increases and its availability is reduced as regulatory climate grows more unfavorable from an investor's point of view is analyzed. The implications of this cost of capital effect on the electric utilities and collaterally on national energy policy and electric ratepayers are explained. Finally various State, regional and Federal regulatory responses to problems associated with PUC regulation are examined.

  15. Assessing Residential Customer Satisfaction for Large Electric Utilities

    OpenAIRE

    Lea Kosnik; L. Douglas Smith; Satish Nayak; Maureen Karig; Mark Konya; Kristy Lovett; Zhennan Liu; Harrison Luvai

    2015-01-01

    Electric utilities, like other service organizations, rely on customer surveys to assess the quality of their services and customer relations. With responses to an in-depth survey of 2,216 residential customers, complementary data from geo-coded public sources, aggregate assessments of performance by J.D. Power & Associates from their independent surveys, historical records of individual customer usage and bill payments, streams of published media content and records of actual service deliver...

  16. Electric power annual 1997. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1 -- with a focus on US electric utilities -- contains final 1997 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1997 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold (based on a monthly sample: Form EIA-826, ``Monthly Electric Utility Sales and Revenue Report with State Distributions``). Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA.

  17. Robustness of edge states in topological quantum dots against global electric field

    Science.gov (United States)

    Qu, Jin-Xian; Zhang, Shu-Hui; Liu, Ding-Yang; Wang, Ping; Yang, Wen

    2017-07-01

    The topological insulator has attracted increasing attention as a new state of quantum matter featured by the symmetry-protected edge states. Although the qualitative robustness of the edge states against local perturbations has been well established, it is not clear how these topological edge states respond quantitatively to a global perturbation. Here, we study the response of topological edge states in a HgTe quantum dot to an external in-plane electric field—a paradigmatic global perturbation in solid-state environments. We find that the stability of the topological edge state could be larger than that of the ground bulk state by several orders of magnitudes. This robustness may be verified by standard transport measurements in the Coulomb blockage regime. Our work may pave the way towards utilizing these topological edge states as stable memory devices for charge and/or spin information and stable emitter of single terahertz photons or entangled terahertz photon pairs for quantum communication.

  18. Utility emissions associated with electric and hybrid vehicle (EHV) charging

    International Nuclear Information System (INIS)

    1993-04-01

    This project is a joint effort between the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI) to conduct a comprehensive, in-depth assessment of the emission impacts of electric and hybrid vehicles (EHVs). The study determines local and regional emission impacts under a variety of scenarios, covering both conservative and optimistic assumptions about vehicle efficiency, power plant efficiency, and other factors. In all scenarios, EHV use significantly reduces urban emissions of CO, VOC, and TSP. Changes in NO x and CO 2 emissions are very sensitive to average or marginal power plant emissions and vehicle efficiency assumptions. NO x and CO 2 emissions changes vary dramatically by region. Certain combinations of EHV and CV scenarios and regions result in significant reductions, while other combinations result in significant increases. Careful use of these results is advised. In all scenarios, SO 2 increases with EHV use although the amount is small-less than 1% of total utility emissions even vath the deployment of 12 million EHVS. But because of emission cap provisions of the Clean Air Act Amendments of 1990, national SO 2 totals will not be allowed to increase. Thus, utilities will have to apply more stringent measures to combat increased SO 2 emissions due to the increased use of electric vehicles

  19. US utility partnerships

    International Nuclear Information System (INIS)

    Worthington, B.

    1995-01-01

    Activities of the United States Energy Association were reviewed, as well as the manner in which its members are benefitting from the Association's programs. The principal cooperative program set up is the Utility Partnership Program, which was described. Through this program the Association is matching US companies, both electric utilities and gas utilities, with counterparts in Eastern Europe or the former Soviet Union. So far, about 25 partnerships were signed, e.g. in the Czech Republic, in Kazakhstan, in Poland, and in Slovakia. It was estimated that the return to the United States from the investments made by the American government in these Utility Partnership Programs has been well over 100-fold

  20. User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates

    Energy Technology Data Exchange (ETDEWEB)

    Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

    1982-05-01

    SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

  1. Estimating the cost of saving electricity through U.S. utility customer-funded energy efficiency programs

    International Nuclear Information System (INIS)

    Hoffman, Ian M.; Goldman, Charles A.; Rybka, Gregory; Leventis, Greg; Schwartz, Lisa; Sanstad, Alan H.; Schiller, Steven

    2017-01-01

    The program administrator and total cost of saved energy allow comparison of the cost of efficiency across utilities, states, and program types, and can identify potential performance improvements. Comparing program administrator cost with the total cost of saved energy can indicate the degree to which programs leverage investment by participants. Based on reported total costs and savings information for U.S. utility efficiency programs from 2009 to 2013, we estimate the savings-weighted average total cost of saved electricity across 20 states at $0.046 per kilowatt-hour (kW h), comparing favorably with energy supply costs and retail rates. Programs targeted on the residential market averaged $0.030 per kW h compared to $0.053 per kW h for non-residential programs. Lighting programs, with an average total cost of $0.018 per kW h, drove lower savings costs in the residential market. We provide estimates for the most common program types and find that program administrators and participants on average are splitting the costs of efficiency in half. More consistent, standardized and complete reporting on efficiency programs is needed. Differing definitions and quantification of costs, savings and savings lifetimes pose challenges for comparing program results. Reducing these uncertainties could increase confidence in efficiency as a resource among planners and policymakers. - Highlights: • The cost of saved energy allows comparisons among energy resource investments. • Findings from the most expansive collection yet of total energy efficiency program costs. • The weighted average total cost of saved electricity was $0.046 for 20 states in 2009–2013. • Averages in the residential and non-residential sectors were $0.030 and $0.053 per kW h, respectively. • Results strongly indicate need for more consistent, reliable and complete reporting on efficiency programs.

  2. Economic evaluations of fusion-based energy storage systems in an electric utility

    International Nuclear Information System (INIS)

    Hwang, W.G.

    1977-01-01

    The feasibility of introducing a fusion energy storage system, which consists of a fusion-fission reactor and a water-splitting process, in an electric utility was investigated. The fusion energy storage system was assumed to be run during off-peak periods in order to make use of unused, low fuel cost capacity of an electric utility. The fusion energy storage system produces both fissile fuel and hydrogen. The produced hydrogen was assumed to be transmitted through and stored in existing natural gas trunklines for later use during peak-load hours. The peaking units in the utility were assumed to burn the hydrogen. Reserve power is usually cheap on systems with heavy nuclear fission reactor installation. The system studied utilizes this cheap energy for producing expensive fuel. The thermochemical water-splitting process was employed to recover thermal energy from the fusion-fission reactor system. The cost of fusion energy storage systems as well as the value of produced fuel were calculated. In order to simulate the operations of the fusion energy storage system for a multi-year planning period, a computer program, FESUT (Fusion Energy Simulation at the University of Texas), was developed for the present study. Two year utility simulations with the fusion energy storage system were performed

  3. Tariffs and subsidies in Zimbabwe's reforming electricity industry: steering a utility through turbulent times

    International Nuclear Information System (INIS)

    Mangwengwende, S.E.

    2002-01-01

    In 1991, the Government of Zimbabwe adopted a public enterprise reform strategy as part of a World Bank driven Economic Structural Adjustment Programme (ESAP). For the electricity sector, the Government adopted a two-pronged programme of reform - a performance improvement programme (PIP) for the national utility, the Zimbabwe Electricity Supply Authority (ZESA), and a legal and regulatory reform programme for the electricity sector in general. Ten years later, significant success has been achieved in improving the utility's performance in technical operations and customer service. However, there has been very little progress on the legal and regulatory front. This has adversely affected the utility's financial performance, as well as frustrating the Government's efforts in attracting private sector investment. The centrality of the tariff question reflects the importance of the customer or end-user to the power sector reform process. This article outlines the power sector reform experiences in Zimbabwe with special focus on the tariff question. The paper suggests, from the perspective of a utility executive, reasons for the mixed results at ZESA, and lessons for other countries in the region undertaking similar reforms. (Author)

  4. Electric trade in the United States 1990

    International Nuclear Information System (INIS)

    1992-01-01

    Electric Trade in the United States 1990 (ELECTRA) is the third in a series of reports on wholesale power transactions prepared by the Electric Data Systems Branch, Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data. The second report contained data for 1988. This report provides information on the industry during 1990

  5. Economies of scale and vertical integration in the investor-owed electric utility industry

    International Nuclear Information System (INIS)

    Thompson, H.G.; Islam, M.; Rose, K.

    1996-01-01

    This report analyzes the nature of costs in a vertically integrated electric utility. Findings provide new insights into the operations of the vertically integrated electric utility and supports earlier research on economics of scale and density; results also provide insights for policy makers dealing with electric industry restructuring issues such as competitive structure and mergers. Overall, results indicate that for most firms in the industry, average costs would not be reduced through expansion of generation, numbers of customers, or the delivery system. Evidently, the combination of benefits from large-scale technologies, managerial experience, coordination, or load diversity have been exhausted by the larger firms in the industry; however many firms would benefit from reducing their generation-to-sales ratio and by increasing sales to their existing customer base. Three cost models were used in the analysis

  6. The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, John [Solar Electric Power Association (SEPA), Washington, DC (United States); Davidovich, Ted [Solar Electric Power Association (SEPA), Washington, DC (United States); Cory, Karlynn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aznar, Alexandra [National Renewable Energy Lab. (NREL), Golden, CO (United States); McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    This paper seeks to provide a flexible utility roadmap for identifying the steps that need to be taken to place the utility in the best position for addressing solar in the future. Solar growth and the emergence of new technologies will change the electric utility of tomorrow. Although not every utility, region, or market will change in the same way or magnitude, developing a path forward will be needed to reach the Electric System of the Future in the coming decades. In this report, a series of potential future states are identified that could result in drastically different energy mixes and profiles: 1) Business as Usual, 2) Low Carbon, Centralized Generation, 3) Rapid Distributed Energy Resource Growth, 4) Interactivity of Both the Grid and Demand, and 5) Grid or Load Defection. Complicating this process are a series of emerging disruptions; decisions or events that will cause the electric sector to change. Understanding and preparing for these items is critical for the transformation to any of the future states to be successful. Predicting which future state will predominate 15 years from now is not possible; however, utilities still will need to look ahead and try to anticipate how factors will impact their planning, operations, and business models. In order to dig into the potential transformations facing the utility industry, the authors conducted a series of utility interviews, held a working session at a major industry solar conference, and conducted a quantitative survey. To focus conversations, the authors leveraged the Rapid Distributed Energy Resource (DER) Growth future to draw out how utilities would have to adapt from current processes and procedures in order to manage and thrive in that new environment. Distributed solar was investigated specifically, and could serve as a proxy resource for all distributed generation (DG). It can also provide the foundation for all DERs.

  7. Operational synergy in the US electric utility industry under an influence of deregulation policy: A linkage to financial performance and corporate value

    International Nuclear Information System (INIS)

    Sueyoshi, Toshiyuki; Goto, Mika

    2011-01-01

    have examined a synergy effect between electricity and gas services in the US electric utility industry. They have compared electricity-specialized firms with diversified utility firms in their financial performance and corporate value. A problem of their study is that it has not empirically measured the operational performance of the electric utility firms. As an extension of the preceding study, this research investigates the operational performance of 104 US electric utility firms (1990-2004) by fully utilizing DEA (Data Envelopment Analysis). This study finds the three new policy implications. First, the synergy effect has not existed in the operational performance of diversified utility firms before and after the deregulation on the US electricity markets. Thus, core business concentration is more effective for electric utility firms than corporate diversification to enhance their operational performance under the current US deregulation policy. Second, the operational performance has had an increasing trend until 1996 and a decreasing trend after 1996. Thus, the US deregulation policy has been influential on their operational performance. Third, the enhancement in operational performance of electric utility firms has improved their financial performance. The improvement in financial performance has increased their corporate value. Thus, this study finds the business causality among operational performance, financial performance and corporate value in the US electric utility industry. - Research Highlights: →The synergy effect has not existed in the operational performance of diversified utility firms before and after the deregulation on the US electricity markets. →Core business concentration is more effective for electric utility firms than corporate diversification to enhance their operational performance under the current US deregulation policy. →The operational performance has had an increasing trend until 1996 and a decreasing trend after 1996.

  8. Competitive Electricity Market Regulation in the United States: A Primer

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chernyakhovskiy, Ilya [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chernyakhovskiy, Ilya [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, Mackay [National Grid, Warwick (United Kingdom)

    2016-12-01

    The electricity system in the United States is a complex mechanism where different technologies, jurisdictions and regulatory designs interact. Today, two major models for electricity commercialization operate in the United States. One is the regulated monopoly model, in which vertically integrated electricity providers are regulated by state commissions. The other is the competitive model, in which power producers can openly access transmission infrastructure and participate in wholesale electricity markets. This paper describes the origins, evolution, and current status of the regulations that enable competitive markets in the United States.

  9. Trends in Utility Green Pricing Programs (2004)

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L.; Brown, E.

    2005-10-01

    In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, nearly 600 utilities in regulated electricity markets--or almost 20% of all utilities nationally--provide their customers a "green power" option. Because some utilities offer programs in conjunction with cooperative associations or other publicly owned power entities, the number of distinct programs totals about 125. Through these programs, more than 40 million customers spanning 34 states have the ability to purchase renewable energy to meet some portion or all of their electricity needs--or make contributions to support the development of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2004 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities as benchmarks by which to gauge the success of their green power programs.

  10. Trends in Utility Green Pricing Programs (2003)

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L.; Cardinal, K.

    2004-09-01

    Utilities first began offering consumers a choice of purchasing electricity generated from renewable energy sources in the early 1990s. Since then, the number of U.S. utilities offering green pricing programs has steadily grown. Today, more than 500 utilities in regulated electricity markets--or about 16% of all utilities nationally--offer their customers green power options. Because some of these utilities offer programs in conjunction with cooperative associations or other public power entities, the number of distinct programs is slightly more than 100. Through these programs, more than 33 million customers spanning 34 states have the ability to purchase renewable energy to meet some portion or all of their electricity needs, or make contributions to support the development of renewable energy resources. Typically, customers must pay a premium above standard electricity rates for this service. This report presents year-end 2003 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data provided in this report can be used by utilities as benchmarks by which to gauge the success of their green power programs.

  11. An evaluation of the impact of state Renewable Portfolio Standards (RPS) on retail, commercial, and industrial electricity prices

    Science.gov (United States)

    Puram, Rakesh

    The Renewable Portfolio Standard (RPS) has become a popular mechanism for states to promote renewable energy and its popularity has spurred a potential bill within Congress for a nationwide Federal RPS. While RPS benefits have been touted by several groups, it also has detractors. Among the concerns is that RPS standards could raise electricity rates, given that renewable energy is costlier than traditional fossil fuels. The evidence on the impact of RPS on electricity prices is murky at best: Complex models by NREL and USEIA utilize computer programs with several assumptions which make empirical studies difficult and only predict slight increases in electricity rates associated with RPS standards. Recent theoretical models and empirical studies have found price increases, but often fail to comprehensively include several sets of variables, which in fact could confound results. Utilizing a combination of past papers and studies to triangulate variables this study aims to develop both a rigorous fixed effects regression model as well as a theoretical framework to explain the results. This study analyzes state level panel data from 2002 to 2008 to analyze the effect of RPS on residential, commercial, and industrial electricity prices, controlling for several factors including amount of electricity generation from renewable and non-renewable sources, customer incentives for renewable energy, macroeconomic and demographic indicators, and fuel price mix. The study contrasts several regressions to illustrate important relationships and how inclusions as well as exclusion of various variables have an effect on electricity rates. Regression results indicate that the presence of RPS within a state increases the commercial and residential electricity rates, but have no discernable effect on the industrial electricity rate. Although RPS tends to increase electricity prices, the effect has a small impact on higher electricity prices. The models also indicate that jointly all

  12. Laminated wood as an alternative to wood poles : Engineered wood structures for electric utility and telecommunications industries

    Energy Technology Data Exchange (ETDEWEB)

    Reisdorff, R. [Laminated Wood Systems Inc., Seward, NE (United States)

    2002-07-01

    In this PowerPoint presentation, the author discusses the major advantages of laminated structures, for both the electric and telecommunication industries. The advantages include economy, quick delivery, climbing and field modifications, dimensional uniformity and stability. A series of pictures was displayed which showed the manufacturing process. Laminated structures have a proven history. They were developed in Europe in 1890, and introduced to the United States in 1934. Framing members were introduced in the late 1940s, while poles were introduced in 1963, two years ahead of steel poles. Some of the electrical utility applications include: (1) distribution structures, (2) transmission structures such as single-pole, phase over phase switch structures, tangent structures, and H-Frame construction. The applications for the telecommunication industry consist of joint use structures, such as electric and telecommunication, lighting and telecommunication, overhead telephone and wireless; mono-pole applications; three-pole Bell Towers; and tree poles. Examples of each type were shown. figs.

  13. Incorporating energy efficiency into electric power transmission planning: A western United States case study

    International Nuclear Information System (INIS)

    Barbose, Galen L.; Sanstad, Alan H.; Goldman, Charles A.

    2014-01-01

    Driven by system reliability goals and the need to integrate significantly increased renewable power generation, long-range, bulk-power transmission planning processes in the United States are undergoing major changes. At the same time, energy efficiency is an increasing share of the electricity resource mix in many regions, and has become a centerpiece of many utility resource plans and state policies as a means of meeting electricity demand, complementing supply-side sources, and reducing carbon dioxide emissions from the electric power system. The paper describes an innovative project in the western United States to explicitly incorporate end-use efficiency into load forecasts – projections of electricity consumption and demand – that are a critical input into transmission planning and transmission planning studies. Institutional and regulatory background and context are reviewed, along with a detailed discussion of data sources and analytical procedures used to integrate efficiency into load forecasts. The analysis is intended as a practical example to illustrate the kinds of technical and institutional issues that must be addressed in order to incorporate energy efficiency into regional transmission planning activities. - Highlights: • Incorporating energy efficiency into electric power transmission planning is an emergent analytical and policy priority. • A new methodology for this purpose was developed and applied in the western U.S. transmission system. • Efficiency scenarios were created and incorporated into multiple load forecasts. • Aggressive deployment of efficiency policies and programs can significantly reduce projected load. • The approach is broadly applicable in long-range transmission planning

  14. Electric rate shock and the future of utility construction

    International Nuclear Information System (INIS)

    Nogee, A.J.

    1985-01-01

    How state regulators spread the costs of overbudget and, in some cases, unneeded new power plants looms as a major political and economic issue directly affecting more than a third of the nation's households and businesses. Today's local battles over rate shock have an even greater national significance because they will shape investment incentives for decades to come. In addition to mismanaged nuclear projects, most nuclear and coal plants being finished today represent excess generating capacity. Utility reserve margins averaged 34% last year instead of the 15-20% above peak demand that analysts agree is desirable. State regulators are increasingly refusing to allow utilities to include new plants in the rate base, and utilities are responding with warnings about future shortages. They may also try to reform or repeal the Holding Company Act. Utility critics point to alternatives to central plant construction with cogeneration and small power generation. 2 figures

  15. 77 FR 47060 - Missouri Joint Municipal Electric Utility Commission; Notice of Filing

    Science.gov (United States)

    2012-08-07

    ... Municipal Electric Utility Commission filed a Proposed Revenue Requirement for reactive supply service under... Room in Washington, DC. There is an ``eSubscription'' link on the web site that enables subscribers to...

  16. Commercial statistical bulletin of the Brazilian electric utility Centrais Eletricas de Santa Catarina S.A

    International Nuclear Information System (INIS)

    1996-04-01

    Statistical data concerning the Brazilian Centrais Eletricas de Santa Catarina S.A. utility relative to April 1996 are presented. They include, among other things, electricity consumption, number and class of consumers and electricity rates

  17. A comparison of electric vehicle integration projects

    DEFF Research Database (Denmark)

    Andersen, Peter Bach; Garcia-Valle, Rodrigo; Kempton, Willett

    2012-01-01

    .g. utilization of electric vehicles for ancillary services. To arrive at standardized solutions, it is helpful to analyze the market integration and utilization concepts, architectures and technologies used in a set of state-of-the art electric vehicle demonstration projects. The goal of this paper......It is widely agreed that an intelligent integration of electric vehicles can yield benefits for electric vehicle owner, power grid, and the society as a whole. Numerous electric vehicle utilization concepts have been investigated ranging from the simple e.g. delayed charging to the more advanced e...... is to highlight different approaches to electric vehicle integration in three such projects and describe the underlying technical components which should be harmonized to support interoperability and a broad set of utilization concepts. The projects investigated are the American University of Delaware's V2G...

  18. The Municipal Electrical Utilities' role in buying and selling power

    International Nuclear Information System (INIS)

    Crocker, D.I.

    1999-01-01

    Ontario's Municipal Electrical Utilities (MEUs) are the front-line providers of electricity services for most of the consumers in Ontario. MEUs serve 2.8 million customers (about 70 per cent of all power sold in Ontario). The new regulatory regime resulting from Ontario's Energy Competition Act (1998) will significantly impact MEUs. The changes aim to consolidate and rationalize the point of sale provision of power to Ontario customers and increase the efficiency of the sector. The Energy Competition Act (1998) creates a competitive electricity marketplace and provides mechanisms for its operation, but it is the MEUs which will bear the risk of market failures. Some of the changes which will be most important to MEUs are: (1) incorporation, (2) default supplier, and (3) oversight by the OEB. It is the author's view that the move towards open markets in electricity is unlikely to enlarge the decision making power of MEUs. On the contrary, the legislative scheme creates a complex regulatory environment wherein the distribution corporation must strictly comply with the OEB's requirements and public policy concerns in exercising its functions. As the MEUs essentially serve as a buffer in the newly opened retail markets, they must find ways to minimize their risk of market failures or spread the cost so as to remain viable commercial entities. They must also devise new information systems prior to the opening of the new market to deal with customer and default consumer pricing, billing and transfer of customers to and from retailers. Municipal utilities will also have to consider restructuring of their own operations, including determining which businesses should be pursued through competitive affiliates

  19. Decarbonization of the U.S. electricity sector: Are state energy policy portfolios the solution?

    International Nuclear Information System (INIS)

    Carley, Sanya

    2011-01-01

    State governments have taken the lead on U.S. energy and climate policy. It is not yet clear, however, whether state energy policy portfolios can generate results in a similar magnitude or manner to their presumed carbon mitigation potential. This article seeks to address this lack of policy evidence and contribute empirical insights on the carbon mitigation effects of state energy portfolios within the U.S. electricity sector. Using a dynamic, long-term electricity dispatch model with U.S. power plant, utility, and transmission and distribution data between 2010 and 2030, this analysis builds a series of state-level policy portfolio scenarios and performs a comparative scenario analysis. Results reveal that state policy portfolios have modest to minimal carbon mitigation effects in the long run if surrounding states do not adopt similar portfolios as well. The difference in decarbonization potential between isolated state policies and larger, more coordinated policy efforts is due in large part to carbon leakage, which is the export of carbon intensive fossil fuel-based electricity across state lines. Results also confirm that a carbon price of $50/metric ton CO 2 e can generate substantial carbon savings. Although both policy options - an energy policy portfolio or a carbon price - are effective at reducing carbon emissions in the present analysis, neither is as effective alone as when the two strategies are combined. - Research highlights: → Scenario modeling exercise to assess effectiveness of state energy policy portfolios. → Regional coordination has greater decarbonization potential than state policies. → Some states benefit more from regional policy coordination than others. → Emissions leakage attenuates the effect of isolated state policy portfolios. → Carbon price with coordinated energy portfolio has greatest decarbonization potential.

  20. Trends in transmission, distribution, and administration costs for U.S. investor-owned electric utilities

    International Nuclear Information System (INIS)

    Fares, Robert L.; King, Carey W.

    2017-01-01

    This paper analyzes the cost of transmission, distribution, and administration for U.S. investor-owned electric utilities. We analyze data reported to the Federal Energy Regulatory Commission (FERC) from 1994 to 2014 using linear regression to understand how the number of customers in a utility's territory, annual peak demand, and annual energy sales affect annual TD&A spending. Then, we use Edison Electric Institute data for 1960 to 1992 to show trends in TD&A spending between 1960 and 2014. We find that the number of customers in a utility's territory is the single best predictor for annual TD&A costs. Between 1994 and 2014, the average cost per customer was $119/Customer-Year for transmission, $291/Customer-Year for distribution, and $333/Customer-Year for utility administration. Total TD&A costs per customer have been approximately $700–$800/Customer-Year since 1960, but the cost per kWh of energy sold was significantly higher in the 1960s because the average customer used less than half as much energy annually versus 2014. Thus, TD&A costs per kWh are likely to increase if kWh energy sales decline in the future unless cost recovery is transitioned to a mechanism not based solely on kWh sales. - Highlights: • U.S. investor-owned electric utility delivery costs from 1960? 2014 are investigated. • Transmission, distribution, and utility administrative costs are analyzed separately. • The number of utility customers is the best predictor for annual delivery costs. • Delivery costs per kWh are likely to increase if kWh sales decrease in the future.

  1. Electric portfolio modeling with stochastic water - climate interactions: Implications for co-management of water and electric utilities

    Science.gov (United States)

    Woldeyesus, Tibebe Argaw

    Water supply constraints can significantly restrict electric power generation, and such constraints are expected to worsen with future climate change. The overarching goal of this thesis is to incorporate stochastic water-climate interactions into electricity portfolio models and evaluate various pathways for water savings in co-managed water-electric utilities. Colorado Springs Utilities (CSU) is used as a case study to explore the above issues. The thesis consists of three objectives: Characterize seasonality of water withdrawal intensity factors (WWIF) for electric power generation and develop a risk assessment framework due to water shortages; Incorporate water constraints into electricity portfolio models and evaluate the impact of varying capital investments (both power generation and cooling technologies) on water use and greenhouse gas emissions; Compare the unit cost and overall water savings from both water and electric sectors in co-managed utilities to facilitate overall water management. This thesis provided the first discovery and characterization of seasonality of WWIF with distinct summertime and wintertime variations of +/-17% compared to the power plant average (0.64gal/kwh) which itself is found to be significantly higher than the literature average (0.53gal/kwh). Both the streamflow and WWIF are found to be highly correlated with monthly average temperature (r-sq = 89%) and monthly precipitation (r-sq of 38%) enabling stochastic simulation of future WWIF under moderate climate change scenario. Future risk to electric power generation also showed the risk to be underestimated significantly when using either the literature average or the power plant average WWIF. Seasonal variation in WWIF along with seasonality in streamflow, electricity demand and other municipal water demands along with storage are shown to be important factors for more realistic risk estimation. The unlimited investment in power generation and/or cooling technologies is also

  2. Electric sales and revenue 1991

    International Nuclear Information System (INIS)

    1993-04-01

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. Previous publications presented data on typical electric bills at specified consumption levels as well as sales, revenue, and average revenue. The sales of electricity, associated revenue, and average revenue per kilowatthour provided in this report are presented at the national, Census division, State, and electric utility levels

  3. Electric power annual 1997. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Electric Power Annual 1997, Volume 2 contains annual summary statistics at national, regional, and state levels for the electric power industry, including information on both electric utilities and nonutility power producers. Included are data for electric utility retail sales of electricity, associated revenue, and average revenue per kilowatthour of electricity sold; financial statistics; environmental statistics; power transactions; and demand-side management. Also included are data for US nonutility power producers on installed capacity; gross generation; emissions; and supply and disposition of energy. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts, and the general public with historical data that may be used in understanding US electricity markets. 15 figs., 62 tabs.

  4. Business case for implementing two ergonomic interventions at an electric power utility.

    Science.gov (United States)

    Seeley, Patricia A; Marklin, Richard W

    2003-09-01

    Ergonomics analysis of line workers in the electric power industry who work overhead on utility poles revealed some tasks for which less than 1% of the general population had sufficient strength to perform. During a 2-year study, a large Midwestern US electric utility provided a university with a team of represented workers and management. They evaluated, recommended, and monitored interventions for 32 common line worker tasks that were rated at medium to high magnitude of risk factors for musculoskeletal disorders (MSDs). Two of the recommended ergonomic interventions-the battery-operated press and cutter-were selected by the team as having the greatest potential for reducing risk factors of MSDs. Only overhead distribution line worker tasks were evaluated. A business case was formulated that took into account medical injury and illness statistics, workers' compensation, replacement worker and retraining costs. An outline of a business case formulation and a sample intervention payback calculation is shown. Based on the business case, the utility committed over US dollars 300000 to purchase battery-operated presses and cutters for their overhead distribution line crews.

  5. Photovoltaic rural electrification and the electric power utility. Workshop. [Selected Papers

    Energy Technology Data Exchange (ETDEWEB)

    Huacuz, J. M.; Villasenor, F.; Urrutia, M. [eds.] [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1995-12-31

    This document contains the national and international programs about photovoltaic systems for rural electrification and the electric power utility experiences about PV programs. The IERE Workshop was hold from May 8 to 12, 1995 in Cocoyoc, Mexico. It was organized by the Electrical Research Institute of Mexico (Instituto de Investigaciones Electricas (IIE)) and the U.S. Electric Power Research Institute (EPRI). The Workshop was attended by 38 delegates from 13 countries [Espanol] Este documento contiene los programas nacionales e internacionales sobre electrificacion fotovoltaica rural y las experiencias en programas fotovoltaicos de empresas electricas. El taller de trabajo IERE fue realizado los dias del 8 al 12 de mayo de 1995 en Cocoyoc, Mexico. Fue organizado por el Instituto de Investigaciones Electricas (IIE) y el U.S. Electric Power Research Institute (EPRI) (Instituto de Investigaciones de Energia Electrica de Estados Unidos). A este taller de trabajo asistieron 38 delegados de 13 paises

  6. Photovoltaic rural electrification and the electric power utility. Workshop. [Selected Papers

    Energy Technology Data Exchange (ETDEWEB)

    Huacuz, J M; Villasenor, F; Urrutia, M [eds.; Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    This document contains the national and international programs about photovoltaic systems for rural electrification and the electric power utility experiences about PV programs. The IERE Workshop was hold from May 8 to 12, 1995 in Cocoyoc, Mexico. It was organized by the Electrical Research Institute of Mexico (Instituto de Investigaciones Electricas (IIE)) and the U.S. Electric Power Research Institute (EPRI). The Workshop was attended by 38 delegates from 13 countries [Espanol] Este documento contiene los programas nacionales e internacionales sobre electrificacion fotovoltaica rural y las experiencias en programas fotovoltaicos de empresas electricas. El taller de trabajo IERE fue realizado los dias del 8 al 12 de mayo de 1995 en Cocoyoc, Mexico. Fue organizado por el Instituto de Investigaciones Electricas (IIE) y el U.S. Electric Power Research Institute (EPRI) (Instituto de Investigaciones de Energia Electrica de Estados Unidos). A este taller de trabajo asistieron 38 delegados de 13 paises

  7. Electric utility engineer`s FGD manual -- Volume 1: FGD process design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-04

    Part 1 of the Electric Utility Engineer`s Flue Gas Desulfurization (FGD) Manual emphasizes the chemical and physical processes that form the basis for design and operation of lime- and limestone-based FGD systems applied to coal- or oil-fired steam electric generating stations. The objectives of Part 1 are: to provide a description of the chemical and physical design basis for lime- and limestone-based wet FGD systems; to identify and discuss the various process design parameters and process options that must be considered in developing a specification for a new FGD system; and to provide utility engineers with process knowledge useful for operating and optimizing a lime- or limestone-based wet FGD system.

  8. Implications of U.S. electricity deregulation

    International Nuclear Information System (INIS)

    Gottfried, D.A.

    1997-01-01

    This article is a concise summary of the potential impacts of electric utility deregulation, including the resolution of stranded costs, impact on electricity rates, reformation of utilities, and reshuffling of the nation's fuel portfolio. The national and state implications of the deregulation of the electricity industry are monumental and overwhelming. The implications occur on many fronts, including monetary, quality, reliability, and environmental issues. Many significant changes will occur as a result--some will be positive and others may be more disturbing

  9. Electric power monthly. June 1966 with data for March 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This publication presents monthly electricity statistics for a wide audience including Congress, Federal and state agencies, the electric utility industry, and the general public, with the purpose of providing energy decisionmakers with accurate, timely information that may be used in forming various perspectives on electric issues that lie ahead. EIA collected the information in this report to fulfill its data collection and dissemination responsibilities (Public Law 93-275). A section on upgrading transmission capacity for wholesale electric power trade is included. The tables include US electric power at a glance, utility net generation, utility consumption of fossil fuels, fossil-fuel stocks/receipts/cost at utilities, utility sales/revenue/revenue per kWh, and monthly plant aggregates.

  10. Efficiency Analysis of German Electricity Distribution Utilities : Non-Parametric and Parametric Tests

    OpenAIRE

    von Hirschhausen, Christian R.; Cullmann, Astrid

    2005-01-01

    Abstract This paper applies parametric and non-parametric and parametric tests to assess the efficiency of electricity distribution companies in Germany. We address traditional issues in electricity sector benchmarking, such as the role of scale effects and optimal utility size, as well as new evidence specific to the situation in Germany. We use labour, capital, and peak load capacity as inputs, and units sold and the number of customers as output. The data cover 307 (out of 553) ...

  11. Variables contributing to an excellent customer service management profile within the regulated electric utility industry: A comparison of self-concept with customer satisfaction for customer service management

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.E.

    1991-01-01

    This research sought to address the relationship between self-concept and customer satisfaction: can customer satisfaction with a major electric utility be explained in terms of the self-reported, self-concept of the utility's managers The population to which the results of this study were generalized consisted of customer service managers in public electric utilities across the United States. In order to represent this population, a sample was selected consisting of customer service managers at a midwestern electric utility based in a large metropolitan area. Participants in this study were managers of four direct customer contact service organizations within six geographic division organizations. The methodology included comparisons of these four customer contact service organizations on twelve independent, self-concept variables and six customer satisfaction dependent variables using Analysis of Variance (ANOVA), Scheffe' tests, Chi-Square, and Stepwise multiple regression. The groups were found not to be significantly different and knowledge of the self-concept scores for managers will not increase the ability to predict customer satisfaction over no knowledge of self-concept scores.

  12. An analysis of the factors influencing demand-side management activity in the electric utility industry

    Science.gov (United States)

    Bock, Mark Joseph

    Demand-side management (DSM), defined as the "planning, implementation, and monitoring of utility activities designed to encourage consumers to modify their pattern of electricity usage, including the timing and level of electricity demand," is a relatively new concept in the U.S. electric power industry. Nevertheless, in twenty years since it was first introduced, utility expenditures on DSM programs, as well as the number of such programs, have grown rapidly. At first glance, it may seem peculiar that a firm would actively attempt to reduce demand for its primary product. There are two primary explanations as to why a utility might pursue DSM: regulatory mandate, and self-interest. The purpose of this dissertation is to determine the impact these influences have on the amount of DSM undertaken by utilities. This research is important for two reasons. First, it provides insight into whether DSM will continue to exist as competition becomes more prevalent in the industry. Secondly, it is important because no one has taken a comprehensive look at firm-level DSM activity on an industry-wide basis. The primary data set used in this dissertation is the U.S. Department of Energy's Annual Electric Utility Report, Form EIA-861, which represents the most comprehensive data set available for analyzing DSM activity in the U.S. There are four measures of DSM activity in this data set: (1) utility expenditures on DSM programs; (2) energy savings by DSM program participants; and (3) the actual and (4) the potential reductions in peak load resulting from utility DSM measures. Each is used as the dependent variable in an econometric analysis where independent variables include various utility characteristics, regulatory characteristics, and service territory and customer characteristics. In general, the results from the econometric analysis suggest that in 1993, DSM activity was primarily the result of regulatory pressure. All of the evidence suggests that if DSM continues to

  13. Electric power monthly, March 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-20

    This report for March 1995, presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  14. Comparative financial analysis of electricity utilities in West Africa

    International Nuclear Information System (INIS)

    Fritsch, Remi

    2011-01-01

    Access to electricity is a major issue in West Africa. Governments have a difficult equation to solve. They naturally seek to offer their people a cheap kWh. But they are constrained by a production based largely on oil and therefore highly volatile production costs. How to fix an acceptable tariff, taking into account the investment needs required to expand the network and increase production? This analysis should provide some answers. The study presented in this paper provides a financial analysis of electricity utilities in West Africa. It allows a comparison of performances on a number of key financial ratios related to operations (Earning Before Interest Taxes Debt and Amortization/sales, working capital requirement/sales, days of receivables or payables), investment (net fixed assets/gross fixed assets), bank financing (financial structure, debt/EBITDA, interest expense/EBITDA) and economic and financial returns (Return On Capital Employed, Return On Equity). The conclusion focuses on the growth opportunity that the electricity sector could represent for each country. But this opportunity may only materialize if the EBITDA margins are restored. The available options appear limited and must be assessed taking into account the context of each country: tariff increase, improvement of technical losses or diversification into means of production no longer based primarily on oil or gas. - Highlights: → The study provides a financial analysis of electricity distribution companies in West Africa. → The study highlights generally insufficient EBITDA margins. → The study raises the question of tariffs and contribution to Gross Domestic Product of the electricity sector. → The conclusion focuses on the growth opportunity that the electricity sector could represent for each country.

  15. Major electric utilities, licensees, and others. Annual report (Form 1), 1990 (field definition of record layout). Data tape documentation

    International Nuclear Information System (INIS)

    1990-01-01

    Data are tabulated from annual reports filed with the Federal Energy Regulatory Commission by 182 major electric utilities. Major electric utilities are defined as those utilities which have had, in the last three consecutive calendar years, sales or transmission services that exceeded one of the following: one million megawatthours of total annual sales, 100 megawatthours of annual sales for resales, 600 megawatthours of gross interchange out, or 500 megawatthours of wheeling for others. Data included: financial and operational balance sheets; income and retained earnings statements; statements of changes in financial position; capital stock and long-term debt; electric operating revenues, customers, and sales by classes of service; electric operation and maintenance expenses; data per type of utility rate base and rates of return on common equity; research, development, and demonstration; and environmental protection facilities and expenses

  16. A new international role for large electric utilities

    International Nuclear Information System (INIS)

    Johnson, P. M.

    1993-01-01

    Population pressures leading to changes in India, China, and South America during the next twenty-five years and the resulting revolutionary shifts in the world's major economic axes, such as growth in populations, in demand for consumer goods, in production capacities, and in energy demand, will demand greater international cooperation according to a former premier of the province of Quebec. He stressed in particular, the contributions that large electrical utilities can play in this world-wide transformation. He predicted the possibility of privatization and an extended role in international energy activities for Hydro-Quebec as a result of these major demographic and economic changes in Asia and South America, and the consequent decline in the economies of the G7 countries. Major capital investments abroad, and the formation of networks of domestic and foreign partnerships in the developing world were predicted to be the key to the survival and continuing success not only of Hydro-Quebec, but all major utility companies

  17. Utilization of surplus electricity from wind power for dynamic biogas upgrading

    DEFF Research Database (Denmark)

    Jurgensen, Lars; Ehimen, Ehiazesebhor Augustine; Born, Jens

    2014-01-01

    The methanation of CO2 has been increasingly discussed for the potential long term storage of electricity and for facilitating grid load management. Using the regions of northern Germany as a case study, the feasibility of CO2 conversion from biogas plants and its integration in existing natural...... gas grid was examined in this study. Furthermore the material and energy flows of in the methanation process, were evaluated to provide expression for the quantities of excess electrical energy which could be potentially stored using the biogas integrated systems. The study results showed...... that with 480 biogas plants in the region would be able to utilize up to 0.7 TWh surplus electricity could be used to produce 100 106 m3 at standard temperature and pressure of upgraded methane per year....

  18. CONTROL OF MERCURY EMISSIONS FROM COAL-FIRED ELECTRIC UTILITY BOILERS: INTERIM REPORT

    Science.gov (United States)

    The report provides additional information on mercury (Hg) emissions control following the release of "Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units--Final Report to Congress" in February 1998. Chapters 1-3 describe EPA's December 2000 de...

  19. Ground-source heat pump case studies and utility programs

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Boyd, T.L.; Rogers, R.L.

    1995-04-01

    Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The case studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.

  20. Impacts of Western Area Power Administration's power marketing alternatives on electric utility systems

    International Nuclear Information System (INIS)

    Veselka, T.D.; Portante, E.C.; Koritarov, V.

    1995-03-01

    This technical memorandum estimates the effects of alternative contractual commitments that may be initiated by the Western Area Power Administration's Salt Lake City Area Office. It also studies hydropower operational restrictions at the Salt Lake City Area Integrated Projects in combination with these alternatives. Power marketing and hydropower operational effects are estimated in support of Western's Electric Power Marketing Environmental Impact Statement (EIS). Electricity production and capacity expansion for utility systems that will be directly affected by alternatives specified in the EIS are simulated. Cost estimates are presented by utility type and for various activities such as capacity expansion, generation, long-term firm purchases and sales, fixed operation and maintenance expenses, and spot market activities. Operational changes at hydropower facilities are also investigated

  1. Environmental exposures in the US electric utility industry

    International Nuclear Information System (INIS)

    Repetto, R.; Henderson, J.

    2003-01-01

    Quantitative analysis of 47 US investor-owned electric utilities' environmental exposures to impending air quality and climate policies shows potentially material and highly differentiated financial impacts. For many companies the minimized compliance costs of a four-pollutant cap-and-trade regulatory regime would be less than those of a three-pollutant regime that omitted controls on carbon dioxide emissions. Fragmented regulatory requirements would have the highest compliance costs. The companies studied vary considerably in the adequacy of their financial reporting of these potential impacts. Greater transparency would benefit investors and the most favorably positioned companies. (author)

  2. Utilization and Predictors of Electrical Cardioversion in Patients Hospitalized for Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Yogita M. Rochlani

    2016-01-01

    Full Text Available Atrial fibrillation (AF is a common arrhythmia in adults associated with thromboembolic complications. External electrical cardioversion (DCCV is a safe procedure used to convert AF to normal sinus rhythm. We sought to study factors that affect utilization of DCCV in hospitalized patients with AF. The study sample was drawn from the Nationwide Inpatient Sample (NIS of the Healthcare Cost and Utilization Project in the United States. Patients with a primary discharge diagnosis of AF that received DCCV during hospitalization in the years 2000–2010 were included. An estimated 2,810,530 patients with a primary diagnosis of AF were hospitalized between 2001 and 2010, of which 1,19,840 (4.26% received DCCV. The likelihood of receiving DCCV was higher in patients who were males, whites, privately insured, and aged < 40 years and those with fewer comorbid conditions. Higher CHADS2 score was found to have an inverse association with DCCV use. In-hospital stroke, in-hospital mortality, length of stay, and cost for hospitalization were significantly lower for patients undergoing DCCV during AF related hospitalization. Further research is required to study the contribution of other disease and patient related factors affecting the use of this procedure as well as postprocedure outcomes.

  3. Affairs of power: Restructuring California's electric utility industry, 1968-1998

    Science.gov (United States)

    Myers, William Allan

    This dissertation studies the process of change in the political economy of electric utilities. Following two decades of continual growth during the nation's post-World War Two economic and population boom, the electric power industry confronted increasing challenges to its traditional operating practices and cultural values, nowhere with greater intensity than in California. Pressure for change came from outside forces who opposed utilities' business practices, assailed their traditional vertically-integrated structure, questioned the political assumptions that sustained their monopoly status, and ultimately wrested away access to the once tightly controlled technology of electric generation and transmission. Because managers of both investor-owned and publicly-owned utilities continued to rely upon long-standing economic and technical assumptions derived from deeply held cultural values sustained by decades of business success, they were rendered unable to comprehend and unwilling to accommodate change. Persistent mistrust between the publicly-owned and privately-owned sectors further weakened the industry's ability to work cooperatively in the face of crucial challenges. Thus encumbered by endemic structural jealousy, technological path dependency, and organizational stasis, the industry did not respond with sufficient innovation to new social values and altering economic conditions, ultimately resulting in the discarding of the old political economy of regulated monopolism. Five precepts of economic history are identified as crucial elements of the process of change. First, the tension between protection and entry, and the related issue of access to technology, contributes to creation and modification of the political economy in which economic institutions function. Second, submission to governmental regulatory powers allows certain industries to control entry, restrict access, and protect themselves from the dynamics of competitive change. Third, an

  4. Influence of electric field, hydrostatic pressure and temperature on the electric state in a Poschl-Teller quantum well

    International Nuclear Information System (INIS)

    Hakimyfard, A.; Barseghyan, M.G.; Kirakosyan, A.A.; Duque, C.A.

    2010-01-01

    Influence of the electric field and hydrostatic pressure on the electronic states in a Poschl-Teller quantum well is studied. In the framework of variational method the dependences of the ground state energy on the electric field and hydrostatic pressure are calculated for different values of the potential parameters and the temperature. It is shown that the increase in the electric field leads to the increase in the ground state energy, while the increase in the well width leads to the strengthening of the electric field effect. The ground state energy decreases with increasing pressure and increases with increasing temperature

  5. Electric and magnetic field reduction and research: A report to the Washington State Legislature

    International Nuclear Information System (INIS)

    Geissinger, L.G.; Waller, P.; Chartier, V.L.; Olsen, R.G.

    1993-01-01

    Increasingly, citizens of Washington State are expressing their concerns about possible adverse health effects of electric and magnetic fields (EMF) from electric utility power systems. A number of legislative proposals over the past several years have prompted governmental officials to evaluate available options for reducing electric and magnetic field strengths surrounding these systems (with a concentration on magnetic fields) or otherwise manage public exposure to power lines by increasing land use controls and setbacks for new development. Unsuccessful proposals brought before the Washington Legislature include 2 mG magnetic field limits for new transmission lines at the right-of-way edge; a temporary moratorium on transmission construction; requirements for providing public information on EMF; and expansion of the role of state governmental agencies in transmission siting and design. A successful Whatcom County initiative limits the voltage of new transmission to 115 kV in all but industrial land use zones, an action likely to have an unintended outcome of increasing magnetic fields in some areas. It is clear that better communication is needed about possible options for EMF management, costs and consequences, despite the fact scientific evidence on the existence of human health effects is inconclusive. This paper describes the work that Washington State undertook in 1990-92 in response to Engrossed Substitute Senate Bill 6771 establishing the Electric Transmission Research Needs Task Force. The Task Force was directed to report to the Legislature on possible exposure reduction methods; recommending engineering research that could lead to more effective approaches in the future

  6. Utilization of oil wells for electricity generation: Performance and economics

    International Nuclear Information System (INIS)

    Kharseh, Mohamad; Al-Khawaja, Mohammed; Hassani, Ferri

    2015-01-01

    There is a general agreement that the climate change, which is the most important challenge facing humanity, is anthropogenic and attributed to fossil fuel consumption. Therefore, deploying more renewable energy resources is an urgent issue to be addressed. Geothermal refers to existing heat energy in deep rock and sedimentary basins. Traditionally, geothermal energy has been exploited in places with plentiful hot water at relatively shallow depth. Unfortunately, the high exploration and drilling costs of boreholes is the main barrier to the commerciality of geothermal worldwide. In oil producing countries, such problems can be overcome by utilizing oil or gas wells. The current study presents thermodynamic and economic analyses of a binary geothermal power generation system for commercial electricity generation. Two different source temperatures (100 and 120 °C) and constant sink temperature (29 °C) were considered. The optimal working fluid and optimal design that improve the performance of the plant are determined. For the current costs in Qatar, the economical analysis of 5 MW geothermal plant shows that the levelized cost of electricity for the plant varies from 5.6 to 5.2 ¢/kW. Whereas, the payback period of such plants lies between 5.8 and 4.8 years. - Highlights: • Utilizing oil well makes geothermal plant competitive with other resources. • R32 seems to be the best working fluid. • The levelized cost of electricity for geothermal plant is less than 5.6 ¢/kWh. • The payback time of geothermal plant is less than 6 years.

  7. Biomass utilization at Northern States Power Company

    International Nuclear Information System (INIS)

    Ellis, R.P.

    1994-01-01

    Northern States Power Company (open-quotes NSPclose quotes) generates, transmits and distributes electricity and distributes natural gas to customers in Minnesota, Wisconsin, North Dakota, South Dakota and Michigan. An important and growing component of the fuel needed to generate steam for electrical production is biomass. This paper describes NSP's historical use of biomass, current biomass resources and an overview of how NSP plans to expand its use of biomass in the future

  8. CONTROL OF NOX EMISSIONS FROM U.S. COAL-FIRED ELECTRIC UTILITY BOILERS

    Science.gov (United States)

    The paper discusses the control of nitrogen oxide (NOx) emissions from U.S. coal-fired electric utility boilers. (NOTE: In general, NOx control technologies are categorized as being either primary or secondary control technologies. Primary technologies reduce the amount of NOx pr...

  9. Performance-based ratemaking for electric utilities: Review of plans and analysis of economic and resource-planning issues. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Comnes, G.A.; Stoft, S.; Greene, N. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.; Hill, L.J. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.]|[Oak Ridge National Lab., TN (United States). Energy Div.

    1995-11-01

    Performance-Based Ratemaking (PBR) is a form of utility regulation that strengthens the financial incentives to lower rates, lower costs, or improve nonprice performance relative traditional regulation, which the authors call cost-of-service, rate-of-return (COS/ROR) regulation. Although the electric utility industry has considerable experience with incentive mechanisms that target specific areas of performance, implementation of mechanisms that cover a comprehensive set of utility costs or services is relatively rare. In recent years, interest in PBR has increased as a result of growing dissatisfaction with COS/ROR and as a result of economic and technological trends that are leading to more competition in certain segments of the electricity industry. In addition, incentive regulation has been used with some success in other public utility industries, most notably telecommunications in the US and telecommunications, energy, and water in the United Kingdom. In this report, the authors analyze comprehensive PBR mechanisms for electric utilities in four ways: (1) they describe different types of PBR mechanisms, (2) they review a sample of actual PBR plans, (3) they consider the interaction of PBR and utility-funded energy efficiency programs, and (4) they examine how PBR interacts with electric utility resource planning and industry restructuring. The report should be of interest to technical staff of utilities and regulatory commissions that are actively considering or designing PBR mechanisms. 16 figs., 17 tabs.

  10. Development of new technologies in electric power conservation

    International Nuclear Information System (INIS)

    Geller, H.S.

    1989-01-01

    This presentation reviews overall progress in electricity conservation in the United States and describes major policies that have contributed to the development and implementation of new electricity conserving technologies. A variety of government and utility conservation programs are covered including: research and development programs, equipment and building efficiency standards, and utility incentive programs. (author)

  11. 18 CFR 141.400 - FERC Form No. 3-Q, Quarterly financial report of electric utilities, licensees, and natural gas...

    Science.gov (United States)

    2010-04-01

    ..., Quarterly financial report of electric utilities, licensees, and natural gas companies. 141.400 Section 141..., licensees, and natural gas companies. (a) Prescription. The quarterly report of electric utilities, licensees, and natural gas companies, designated as FERC Form No. 3-Q, is prescribed for the reporting...

  12. Development and validation of safety climate scales for mobile remote workers using utility/electrical workers as exemplar.

    Science.gov (United States)

    Huang, Yueng-Hsiang; Zohar, Dov; Robertson, Michelle M; Garabet, Angela; Murphy, Lauren A; Lee, Jin

    2013-10-01

    The objective of this study was to develop and test the reliability and validity of a new scale designed for measuring safety climate among mobile remote workers, using utility/electrical workers as exemplar. The new scale employs perceived safety priority as the metric of safety climate and a multi-level framework, separating the measurement of organization- and group-level safety climate items into two sub-scales. The question of the emergence of shared perceptions among remote workers was also examined. For the initial survey development, several items were adopted from a generic safety climate scale and new industry-specific items were generated based on an extensive literature review, expert judgment, 15-day field observations, and 38 in-depth individual interviews with subject matter experts (i.e., utility industry electrical workers, trainers and supervisors of electrical workers). The items were revised after 45 cognitive interviews and a pre-test with 139 additional utility/electrical workers. The revised scale was subsequently implemented with a total of 2421 workers at two large US electric utility companies (1560 participants for the pilot company and 861 for the second company). Both exploratory (EFA) and confirmatory factor analyses (CFA) were adopted to finalize the items and to ensure construct validity. Reliability of the scale was tested based on Cronbach's α. Homogeneity tests examined whether utility/electrical workers' safety climate perceptions were shared within the same supervisor group. This was followed by an analysis of the criterion-related validity, which linked the safety climate scores to self-reports of safety behavior and injury outcomes (i.e., recordable incidents, missing days due to work-related injuries, vehicle accidents, and near misses). Six dimensions (Safety pro-activity, General training, Trucks and equipment, Field orientation, Financial Investment, and Schedule flexibility) with 29 items were extracted from the EFA to

  13. State Electricity Regulatory Policy and Distributed Resources: Accommodating Distributed Resources in Wholesale Markets

    Energy Technology Data Exchange (ETDEWEB)

    Weston, F.; Harrington, C.; Moskovitz, D.; Shirley, W.; Cowart, R.; Sedano, R.

    2002-10-01

    Distributed resources can provide cost-effective reliability and energy services - in many cases, obviating the need for more expensive investments in wires and central station electricity generating facilities. Given the unique features of distributed resources, the challenge facing policymakers today is how to restructure wholesale markets for electricity and related services so as to reveal the full value that distributed resources can provide to the electric power system (utility grid). This report looks at the functions that distributed resources can perform and examines the barriers to them. It then identifies a series of policy and operational approaches to promoting DR in wholesale markets. This report is one in the State Electricity Regulatory Policy and Distributed Resources series developed under contract to NREL (see Annual Technical Status Report of the Regulatory Assistance Project: September 2000-September 2001, NREL/SR-560-32733). Other titles in this series are: (1) Distributed Resource Distribution Credit Pilot Programs - Revealing the Value to Consumers and Vendors, NREL/SR-560-32499; (2) Distributed Resources and Electric System Reliability, NREL/SR-560-32498; (3) Distribution System Cost Methodologies for Distributed Generation, NREL/SR-560-32500; (4) Distribution System Cost Methodologies for Distributed Generation Appendices, NREL/SR-560-32501

  14. A technical analysis for cogeneration systems with potential applications in twelve California industrial plants. [energy saving heat-electricity utility systems

    Science.gov (United States)

    Moretti, V. C.; Davis, H. S.; Slonski, M. L.

    1978-01-01

    In a study sponsored by the State of California Energy Resources Conservation and Development Commission, 12 industrial plants in five utility districts were surveyed to assess the potential applications of the cogeneration of heat and electricity in California industry. Thermodynamic calculations were made for each plant in determining the energy required to meet the existing electrical and steam demands. The present systems were then compared to conceptual cogeneration systems specified for each plant. Overall energy savings were determined for the cogeneration applications. Steam and gas turbine topping cycle systems were considered as well as bottoming cycle systems. Types of industries studied were: pulp and paper, timber, cement, petroleum refining, enhanced oil recovery, foods processing, steel and glass

  15. Electric-field-induced flow-aligning state in a nematic liquid crystal.

    Science.gov (United States)

    Fatriansyah, Jaka Fajar; Orihara, Hiroshi

    2015-04-01

    The response of shear stress to a weak ac electric field as a probe is measured in a nematic liquid crystal under shear flow and dc electric fields. Two states with different responses are clearly observed when the dc electric field is changed at a constant shear rate: the flow aligning and non-flow aligning states. The director lies in the shear plane in the flow aligning state and out of the plane in the non-flow aligning state. Through application of dc electric field, the non-flow aligning state can be changed to the flow aligning state. In the transition from the flow aligning state to the non-flow aligning state, it is found that the response increases and the relaxation time becomes longer. Here, the experimental results in the flow aligning state are discussed on the basis of the Ericksen-Leslie theory.

  16. Legal aspects of electric power supply. Grid operator obligations between entrepreneurial responsibility and state control; Das Recht der Elektrizitaetsversorgungsnetze. Netzbetreiberpflichten zwischen unternehmerischer Eigenverantwortung und staatlicher Steuerung

    Energy Technology Data Exchange (ETDEWEB)

    Maetzig, Karoline

    2012-07-01

    The publication provides a systematic outline of the legal boundary conditions governing the operation of electric power supply grids. It goes beyond mere regulatory aspects, covering also the projecting and construction of grids, the acquisition or leasing of land for power transmission line construction, operating licenses and utility certification, the organisational structure and purpose of electric utilities, as well as the operating, servicing and enhancement of electricity grids including calculation of electricity rates. In addition to this systematic outline of legal aspects, it is investigated how the balance between entrepreneurial responsibility and state control was defined in the EnWG 2011, and it is discussed if the law provides sufficient room for entrepreneurial decisions.

  17. An Introduction to Retail Electricity Choice in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengru [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    Retail electricity choice in the United States allows end-use customers (including industrial, commercial, and residential customers) to buy electricity from competitive retail suppliers. This brochure offers an overview of retail electricity choice in the United States, and its impact on prices and renewable energy procurement. It concludes with three lessons learned from the U.S. retail market experience that may serve as a reference for other countries and regions taking steps towards retail electricity market liberalization.

  18. 18 CFR 260.300 - FERC Form No. 3-Q, Quarterly financial report of electric utilities, licensees, and natural gas...

    Science.gov (United States)

    2010-04-01

    ..., Quarterly financial report of electric utilities, licensees, and natural gas companies. 260.300 Section 260... ENERGY APPROVED FORMS, NATURAL GAS ACT STATEMENTS AND REPORTS (SCHEDULES) § 260.300 FERC Form No. 3-Q, Quarterly financial report of electric utilities, licensees, and natural gas companies. (a) Prescription...

  19. Why electric utilities and affiliates are handicapped in a partly regulated and partly competitive environment

    Energy Technology Data Exchange (ETDEWEB)

    St.Marie, S.M.

    1999-11-01

    As the electric utility industry continues to go through the process of restructuring, utilities are finding themselves operating not only as regulated entities but also as firms that compete for customers and sales. Some services, including services associated with distribution, are being unbundled or peeled off from the core of operations and, where possible, are being opened to competition. But these partly regulated and partly competitive areas are treacherous for utilities and their affiliates, who will be handicapped in their competitive efforts and subject to constraints not placed on their competitors. There are good reasons why such difficulties should be expected. And there are guidelines for pricing and competitive positioning that can assist in avoiding the worst problems. The first step is to recognize the archetypes of the regulated electric distribution utility and the competitive firm. In plotting their deregulation strategies, utilities and their affiliates must recognize that they will continue to be disadvantaged by regulators who are more concerned with keeping them in check than freeing them to compete.

  20. Why electric utilities and affiliates are handicapped in a partly regulated and partly competitive environment

    International Nuclear Information System (INIS)

    St Marie, S.M.

    1999-01-01

    As the electric utility industry continues to go through the process of restructuring, utilities are finding themselves operating not only as regulated entities but also as firms that compete for customers and sales. Some services, including services associated with distribution, are being unbundled or peeled off from the core of operations and, where possible, are being opened to competition. But these partly regulated and partly competitive areas are treacherous for utilities and their affiliates, who will be handicapped in their competitive efforts and subject to constraints not placed on their competitors. There are good reasons why such difficulties should be expected. And there are guidelines for pricing and competitive positioning that can assist in avoiding the worst problems. The first step is to recognize the archetypes of the regulated electric distribution utility and the competitive firm. In plotting their deregulation strategies, utilities and their affiliates must recognize that they will continue to be disadvantaged by regulators who are more concerned with keeping them in check than freeing them to compete

  1. State-level electricity demand forecasting model. [For 1980, 1985, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, H. D.

    1978-01-01

    This note briefly describes the Oak Ridge National Laboratory (ORNL) state-level electricity demand (SLED) forecasting model developed for the Nuclear Regulatory Commission. Specifically, the note presents (1) the special features of the model, (2) the methodology used to forecast electricity demand, and (3) forecasts of electricity demand and average price by sector for 15 states for 1980, 1985, 1990.

  2. Nuclear Electric looks to the private sector

    International Nuclear Information System (INIS)

    Varley, James.

    1995-01-01

    The state-owned utility Nuclear Electric, which is responsible for nuclear power generation in England and Wales, was created in 1990 following withdrawal of nuclear from electricity privatisation. Having successfully made itself much more commercial, Nuclear Electric would like the freedom of operating in the private sector. (author)

  3. The Characteristic of Molten Heat Salt Storage System Utilizing Solar Energy Combined with Valley Electric

    Directory of Open Access Journals (Sweden)

    LI .Jiu-ru

    2017-02-01

    Full Text Available With the environmental pollution and energy consumption clue to the large difference between peak and valley of power grid,the molten salt heat storage system(MSHSS utilizing solar Energy combined with valley electric is presented for good energy saving and low emissions. The costs of MSHSS utilizing solar Energy combined with valley electric are greatly reduced. The law of heat transfer in molten salt heat storage technology is studied with the method of grey correlation analysis. The results show the effect of elbow sizes on surface convective heat transfer coefficient with different flow velocities.

  4. An analysis of the Spanish electrical utility industry. Economies of scale, technological progress and efficiency

    International Nuclear Information System (INIS)

    Arcos, Angel; De Toledo, Pablo Alvarez

    2009-01-01

    In this paper we propose a model to explain the behaviour of the Spanish electrical utility industry during the period 1987-1997, under the then existing regulatory system (Marco Legal Estable). The paper will study the presence of economies of scale, the effect of technological progress and the differences in the efficiency of the different companies within the market. The paper concludes that the Spanish electrical utility industry was not, in fact, characterized by economies of scale during this period, but witnessed a great improvement in efficiency within that period. All the critical market factors remind stable. (author)

  5. Treatment of Solar Generation in Electric Utility Resource Planning

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  6. The effect of the Fukushima nuclear accident on stock prices of electric power utilities in Japan

    International Nuclear Information System (INIS)

    Kawashima, Shingo; Takeda, Fumiko

    2012-01-01

    The purpose of this study is to investigate the effect of the accident at the Fukushima Daiichi nuclear power station, which is owned by Tokyo Electric Power Co. (TEPCO), on the stock prices of the other electric power utilities in Japan. Because the other utilities were not directly damaged by the Fukushima nuclear accident, their stock price responses should reflect the change in investor perceptions on risk and return associated with nuclear power generation. Our first finding is that the stock prices of utilities that own nuclear power plants declined more sharply after the accident than did the stock prices of other electric power utilities. In contrast, investors did not seem to care about the risk that may arise from the use of the same type of nuclear power reactors as those at the Fukushima Daiichi station. We also observe an increase of both systematic and total risks in the post-Fukushima period, indicating that negative market reactions are not merely caused by one-time losses but by structural changes in society and regulation that could increase the costs of operating a nuclear power plant.

  7. Digest of current research in the electric-utility industry. Volume 1. Categories 1-5

    International Nuclear Information System (INIS)

    Andrews, K.; Bates, P.; Berkey, R.; Gray, K.; Kindt, C.; O'Gara, M.; Pakulski, R.

    1980-01-01

    The major objective of the Electric Power Research Institute (EPRI) is to be a prime source of information of R and D activities in the field of electric energy. Therefore, EPRI developed the Research and Development Information System (RDIS) which is a computerized data base of research projects sponsored by EPRI and by individual electric utilities throughout the US. The heart of RDIS is a computerized on-line data base containing approximately 7200 records of R and D projects. The data base is organized into 13 major categories: General R and D support, hydroelectric power, nuclear power, fossil fuels, advanced power systems, transmission, distribution, stations and substations, consumer utilization, economics, personnel, area development, and environmental assessment. This issue of the Digest of Current Research, issued annually and published in two volumes, represents the data base as of August 1980. This volume covers categories 1 through 5. Subject and corporate indexes are included

  8. Digest of current research in the electric-utility industry. Volume 2. Categories 6-13

    International Nuclear Information System (INIS)

    Andrews, K.; Bates, P.; Berkey, R.; Gray, K.; Kindt, C.; O'Gara, M.; Pakulski, R.

    1980-01-01

    The major objective of the Electric Power Research Institute (EPRI) is to be a prime source of information of R and D activities in the field of electric energy. Therefore, EPRI developed the Research and Development Information System (RDIS) which is a computerized data base of research projects sponsored by EPRI and by individual electric utilities throughout the US. The heart of RDIS is a computerized on-line data base containing approximately 7200 records of R and D projects. The data base is organized into 13 major categories: General R and D Support, hydroelectric power, nuclear power, fossil fuels, advanced power systems, transmission, distribution, stations and substations, consumer utilization, economics, personnel, area development, and environmental assessment. This issue of the Digest of Current Research, issued annually and published in two volumes represents the data base as of August 1980. This volume covers categories 6 through 13. Subject and corporate indexes are included

  9. IRP methods for Environmental Impact Statements of utility expansion plans

    International Nuclear Information System (INIS)

    Cavallo, J.D.; Hemphill, R.C.; Veselka, T.D.

    1992-01-01

    Most large electric utilities and a growing number of gas utilities in the United States are using a planning method -- Integrated Resource Planning (IRP) - which incorporates demand-side management (DSM) programs whenever the marginal cost of the DSM programs are lower than the marginal cost of supply-side expansion options. Argonne National Laboratory has applied the IRP method in its socio-economic analysis of an Environmental Impact Statement (EIS) of power marketing for a system of electric utilities in the mountain and western regions of the United States. Applying the IRP methods provides valuable information to the participants in an EIS process involving capacity expansion of an electric or gas utility. The major challenges of applying the IRP method within an EIS are the time consuming and costly task of developing a least cost expansion path for each altemative, the detailed quantification of environmental damages associated with capacity expansion, and the explicit inclusion of societal-impacts to the region

  10. Comprehensive Smart Grid Planning in a Regulated Utility Environment

    Science.gov (United States)

    Turner, Matthew; Liao, Yuan; Du, Yan

    2015-06-01

    This paper presents the tools and exercises used during the Kentucky Smart Grid Roadmap Initiative in a collaborative electric grid planning process involving state regulators, public utilities, academic institutions, and private interest groups. The mandate of the initiative was to assess the existing condition of smart grid deployments in Kentucky, to enhance understanding of smart grid concepts by stakeholders, and to develop a roadmap for the deployment of smart grid technologies by the jurisdictional utilities of Kentucky. Through involvement of many important stakeholder groups, the resultant Smart Grid Deployment Roadmap proposes an aggressive yet achievable strategy and timetable designed to promote enhanced availability, security, efficiency, reliability, affordability, sustainability and safety of the electricity supply throughout the state while maintaining Kentucky's nationally competitive electricity rates. The models and methods developed for this exercise can be utilized as a systematic process for the planning of coordinated smart grid deployments.

  11. Survey and analysis of selected jointly owned large-scale electric utility storage projects

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

  12. How EPRI [Electric Power Research Institute] helps utilities save money

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    A number of case studies are presented which illustrate how the work of the Electric Power Research Institute in the USA has enabled nuclear utilities to save money. The areas covered by the examples are: steam generator tube repair; streamlining of reliability centred maintenance; cost effective instrumentation and control maintenance; reducing the frequency of instrument calibration; optimising the engineering change process; detecting and reducing fuel failure; extending the qualified life of equipment. (U.K.)

  13. Citizen Advisory Council use in the electric utility industry

    International Nuclear Information System (INIS)

    McElfresh, R.W.

    1991-01-01

    Many electric utility companies have come to realize the Importance of seeking public input before launching corporate resources into major construction projects. One way to organize this input is to establish a Citizen Advisory Council (CAC). This paper describes the purpose of such a group, its advantages and limitations, and how it might be organized. This paper also describes the results of a survey of CAC use for facility siting purposes. Fifty large utility companies were contacted, eleven of which use CACs for siting purposes. Six of these were questioned in greater detail as to their success in using CACs on specific projects. All companies were positive about the use of CACs for public participation because the groups were able to bring valuable information to light and company credibility was enhanced. Most importantly, the responding companies believed they were able to save time in the siting and licensing process

  14. Confidential data in a competitive utility environment: A regulatory perspective

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E.

    1996-08-01

    Historically, the electric utility industry has been regarded as one of the most open industries in the United States in sharing information but their reputation is being challenged by competitive energy providers, the general public, regulators, and other stakeholders. As the prospect of competition among electricity power providers has increased in recent years, many utilities have been requesting that the data they submit to their utility regulatory commissions remain confidential. Withholding utility information from the public is likely to have serious and significant policy implications with respect to: (1) consumer education, the pursuit of truth, mutual respect among parties, and social cooperation; (2) the creation of a fair market for competitive energy services; (3) the regulatory balance; (4) regional and national assessments of energy-savings opportunities; (5) research and development; and (6) evaluations of utility programs, plans, and policies. In a telephone survey of all public utility commissions (PUCs) that regulate electric and gas utilities in the U.S., we found that almost all PUCs have received requests from utility companies for data to be filed as confidential, and confidential data filings appear to have increased (both in scope and in frequency) in those states where utility restructuring is being actively discussed. The most common types of data submitted as confidential by utilities dealt with specific customer data, market data, avoided costs, and utility costs.

  15. State Electricity Commission of Victoria. Annual report 1984-1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The State Electricity Commission of Victoria is a body corporate first constituted under the Electricity Commissioner's Act 1918. It now operates under the State Electricity Commission Act 1958. It generates, transmits and distributes electricity throughout Victoria's 228,000 square kilometres and supplies directly to 1.424 million customers. In addition 277,800 customers are supplied by eleven municipal authorities which purchase electricity in bulk from the Commission. The Commission also has a regulatory responsibility to ensure the safe use of electricity. It employs 22,518 people. The installed capacity of generators in the Commission's system, plus Victoria's share of Snowy and Hume generation, totalled 6603 MW at 30 June 1985 and the main transmission system comprises 500 kV, 300 kV and 220 kV lines. Corporate objectives have been developed in seven broad areas: customers,employee, finance, ntural resources, environment, conservationand community. These areas of activity are detailed in this report.

  16. Custom power - the utility solution to distribution power quality

    Energy Technology Data Exchange (ETDEWEB)

    Woodley, N H [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1997-04-01

    The design of custom power products for electric power distribution system was discussed. Problems with power quality that result in loss of production to critical processes are costly and create a problem for the customer as well as the electric utility. Westinghouse has developed power quality improvement equipment for customers and utilities, using new technologies based on power electronics concepts. The Distribution Static Compensator (DSTATCOM) is a fast response, solid-state power controller that provides flexible voltage control for improving power quality at the point of connection to the utility`s 4.16 to 69 kV distribution feeder. STATCOM is a larger version of the DSTATCOM that can be used to solve voltage flicker problems caused by electric arc furnaces. Westinghouse has also developed a Dynamic Voltage Restorer (DVR) which protects a critical customer plant load from power system voltage disturbances. Solid-State Breakers (SSB) have also been developed which offer a solution to many of the distribution system problems that result in voltage sags, swells, and power outages. 6 refs., 8 figs.

  17. An analysis of the impact of Renewable Portfolio Standards on residential electricity prices

    Science.gov (United States)

    Larson, Andrew James

    A Renewable Portfolio Standard (RPS) has become a popular policy for states seeking to increase the amount of renewable energy generated for consumers of electricity. The success of these state programs has prompted debate about the viability of a national RPS. The impact that these state level policies have had on the price consumers pay for electricity is the subject of some debate. Several federal organizations have conducted studies of the impact that a national RPS would have on electricity prices paid by consumers. NREL and US EIA utilize models that analyze the inputs in electricity generation to examine the future price impact of changes to electricity generation and show marginal increases in prices paid by end users. Other empirical research has produced similar results, showing that the existence of an RPS increases the price of electricity. These studies miss important aspects of RPS policies that may change how we view these price increases from RPS policies. By examining the previous empirical research on RPS policies, this study seeks to identify the controls necessary to build an effective model. These controls are utilized in a fixed effects model that seeks to show how the controls and variables of interest impact electricity prices paid by residential consumers of electricity. This study utilizes a panel data set from 1990 to 2014 to analyze the impact of these policies controlling for generating capacity, the regulatory status of utilities in each state, demographic characteristics of the states, and fuel prices. The results of the regressions indicate that prices are likely to be higher in states that have an RPS compared to states that do not have such a policy. Several of the characteristics mentioned above have price impacts, and so discussing RPS policies in the context of other factors that contribute to electricity prices is essential. In particular, the regulatory status of utilities in each state is an important determinate of price as

  18. Utility requirements for HTGRs

    International Nuclear Information System (INIS)

    Nicholls, D.R.

    1997-01-01

    Eskom, the state utility of South Africa, is currently evaluating the technical and economic feasibility of the helium cooled Pebble Bed Modular Reactor with a closed cycle gas turbine power conversion system for future power generating additions to its electric system. This paper provides an overview of the Eskom system including the needs of the utility for future generation capacity and the key performance requirements necessary for incorporation of this gas cooled reactor plant. (author)

  19. Electric power supply and demand 1979 to 1988 for the contiguous United States as projected by the Regional Electric Reliability Councils in their April 1, 1979 long-range coordinated planning reports to the Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Savage, N.; Graban, W.

    1979-12-01

    Information concerning bulk electric power supply and demand is summarized and reviewed. Electric-utility power-supply systems are composed of power sources, transmission and distribution facilities, and users of electricity. In the United States there are three such systems of large geographic extent that together cover the entire country. Subjects covered are: energy forecasts, peak demand forecasts, generating-capacity forecasts, purchases and sales of capacity, and transmission. Extensive data are compiled in 17 tables. Information in two appendices includes a general description of the Regional Electric Reliability Councils and US generating capacity as of June 30, 1979. 3 figures, 17 tables.

  20. Contracts on electric power supply set up between communities (communal associations, countries) and public electricity utilities

    Energy Technology Data Exchange (ETDEWEB)

    Hedrich, B

    1976-01-01

    There is not any original communal right to energy supply for the population. The affiliation of local power supply to the local administration cannot be justified either by the public purpose of service or by the term provision of existence. The utilities do not get a communal license when getting the so-called licensing contract. According to its legal nature, the licensing contract is a mixture of legal positions composed of elements of the civil law and the public law. (Administrative lawsuit). The so-called power supply contract is a mutual legal relationship under civil law on the utilization of electric power, made to last. (Permanent obligation for utilization). When concluding both contracts, it is a matter of economic activities undertaken by the communities. Fiscal considerations are in the foreground. Legal regulations concerning roads and distances and serving as starting points for concluding a licensing contract are alien to the system and are to be abolished. Communities should only be responsible for local energy supply on a basis under public law. In lieu of it a stronger obligation to be met by large utilities ought to be ensured by ties under public law.

  1. Region-specific study of the electric utility industry. Phase I, final report

    International Nuclear Information System (INIS)

    Wacaster, A.J.

    1985-07-01

    This report describes the financial background of the electric utility industry in VACAR, reports on the present condition of the industry and then assesses the future of this industry. The Virginia-Carolinas subregion (VACAR) of the Southeastern Electric Reliability Council (SERC) was selected for this regional study because of its cooperativeness and its representative mix of powerplants, for example coal, hydro, nuclear, oil. It was found that the supply of future economic electricity is in jeopardy because of the regulatory process, the increasing risk associated with large scale generating stations and the weakening of the nuclear option. A number of options for the future were considered, including deregulation, government ownership and retaining the present system with modifications. The option selected to improve the present condition of the electricity industry was to make the present system work. The present system is sound, and with modifications, problems could be solved within the existing framework. 8 figs., 4 tabs

  2. Cost of energy from utility-owned solar electric systems. A required revenue method for ERDA/EPRI evaluations

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-01

    This methodology calculates the electric energy busbar cost from a utility-owned solar electric system. This approach is applicable to both publicly- and privately-owned utilities. Busbar cost represents the minimum price per unit of energy consistent with producing system-resultant revenues equal to the sum of system-resultant costs. This equality is expressed in present value terms, where the discount rate used reflects the rate of return required on invested capital. Major input variables describe the output capabilities and capital cost of the energy system, the cash flows required for system operation and maintenance, and the financial structure and tax environment of the utility.

  3. Cogeneration feasibility study in the Gulf States Utilities service area

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Sites in the Gulf States Utilities service are considered for cogeneration feasibility studies. The sources of steam considered for the Orange, Texas and Geismar, Lake Charles, and North Baton Rouge, Louisiana sites include oil, coal, HTGR steamers, consolidated nuclear steam system, atmospheric fluidized-bed coal combustion, and coal gasification. Concepts concerning cogeneration fuel systems were categorized by technical applicability as: current technology (pulverized coal-fired boilers and fuel oil-fired boilers), advanced technology under development (HTGR steamers and the CNSS), and advanced technology for future development (atmospheric fluidized-bed boilers and coal gasification). In addition to providing data on cogeneration plant generally useful in the US, the study determined the technical and economic feasibility of steam and electric power cogeneration using coal and nuclear fuels for localized industrial complexes. Details on site selection, plant descriptions, cost estimates, economic analysis, and plant schedule and implementation. (MCW)

  4. Eddy current analysis by BEM utilizing loop electric and surface magnetic currents as unknowns

    International Nuclear Information System (INIS)

    Ishibashi, Kazuhisa

    2002-01-01

    The surface integral equations whose unknowns are the surface electric and magnetic currents are widely used in eddy current analysis. However, when the skin depth is thick, computational error is increased especially in obtaining electromagnetic fields near the edge of the conductor. In order to obtain the electromagnetic field accurately, we propose an approach to solve surface integral equations utilizing loop electric and surface magnetic currents as unknowns. (Author)

  5. State Electricity Regulatory Policy and Distributed Resources: Distributed Resource Distribution Credit Pilot Programs--Revealing the Value to Consumers and Vendors

    Energy Technology Data Exchange (ETDEWEB)

    Moskovitz, D.; Harrington, C.; Shirley, W.; Cowart, R.; Sedano, R.; Weston, F.

    2002-10-01

    Designing and implementing credit-based pilot programs for distributed resources distribution is a low-cost, low-risk opportunity to find out how these resources can help defer or avoid costly electric power system (utility grid) distribution upgrades. This report describes implementation options for deaveraged distribution credits and distributed resource development zones. Developing workable programs implementing these policies can dramatically increase the deployment of distributed resources in ways that benefit distributed resource vendors, users, and distribution utilities. This report is one in the State Electricity Regulatory Policy and Distributed Resources series developed under contract to NREL (see Annual Technical Status Report of the Regulatory Assistance Project: September 2000-September 2001, NREL/SR-560-32733). Other titles in this series are: (1) Accommodating Distributed Resources in Wholesale Markets, NREL/SR-560-32497; (2) Distributed Resources and Electric System Re liability, NREL/SR-560-32498; (3) Distribution System Cost Methodologies for Distributed Generation, NREL/SR-560-32500; (4) Distribution System Cost Methodologies for Distributed Generation Appendices, NREL/SR-560-32501.

  6. La regulación de los servicios de electricidad en Argentina y Brasil (1890-1962 Electric utility regulation in Argentina and Brazil (1890-1962

    Directory of Open Access Journals (Sweden)

    Alexandre Macchione Saes

    2012-08-01

    Full Text Available El artículo analiza la evolución de la regulación del sector eléctrico en Argentina y Brasil entre 1890 y 1960. Desde la instalación de las primeras usinas eléctricas a fines del siglo diecinueve hasta los años treinta, el control de las empresas concesionarias estuvo a cargo de las autoridades municipales en ambos países. No obstante, la similar estructura de los sistemas eléctricos en Argentina y en Brasil, la participación del estado en la regulación de este sector estratégico para el desarrollo económico, se produjo en diferentes coyunturas. Como resultado de la crisis de 1930, el gobierno brasileño transformó los principios jurídicos que reglamentaban la gestión de la electricidad aplicando un criterio de regulación discrecional; mientras que el estado argentino intervino una década más tarde, nacionalizando las empresas. Mediante la comparación de las trayectorias regulatorias en ambos países, se identifican las divergencias en las políticas eléctricas y su impacto en los sistemas eléctricos en los años de la segunda posguerra.This article compares the evolution of electric utility regulation in Argentina and Brazil between 1890 and 1960. From the installation of electrical systems in the 19th century until the 1930s, electrical utility companies were controlled by the local authorities in both countries. The structure of electrical systems was similar in Argentina and Brazil, however the state regulation of electric utilities took place at different times. As a result of the 1930's crisis, the Brazilian government introduced a new legal approach by applying a discretionary regulation. On the other hand, the Argentinean government intervened one decade later, nationalizing the companies. By comparing both regulatory trajectories, the divergences as well as the effects of each policy on the electrical utility systems in the second postward period, are identified.

  7. Renewable Energy Price-Stability Benefits in Utility Green Power Programs

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L. A.; Cory, K. S.; Swezey, B. G.

    2008-08-01

    This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states that have not undergone electric industry restructuring.

  8. On state estimation in electric drives

    International Nuclear Information System (INIS)

    Leon, A.E.; Solsona, J.A.

    2010-01-01

    This paper deals with state estimation in electric drives. On one hand a nonlinear observer is designed, whereas on the other hand the speed state is estimated by using the dirty derivative from the position measured. The dirty derivative is an approximate version of the perfect derivative which introduces an estimation error few times analyzed in drive applications. For this reason, our proposal in this work consists in illustrating several aspects on the performance of the dirty derivator in presence of both model uncertainties and noisy measurements. To this end, a case study is introduced. The case study considers rotor speed estimation in a permanent magnet stepper motor, by assuming that rotor position and electrical variables are measured. In addition, this paper presents comments about the connection between dirty derivators and observers, and advantages and disadvantages of both techniques are also remarked.

  9. Another year of change for Canadian electric utilities as they continue to meet new challenges

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The activities of Canadian electric utilities in the past year were highlighted. The companies reviewed were: B.C. Hydro, Edmonton Power, TransAlta Utilities Corporation, Manitoba Hydro, Ontario Hydro, Hydro-Quebec, New Brunswick Power Corporation, Nova Scotia Power Inc., and Newfoundland Power. Reviews of the industry, economic growth, market trends and forecasts were discussed

  10. NRC review of Electric Power Research Institute's advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669

    International Nuclear Information System (INIS)

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the open-quotes Advanced Light Water Reactor [ALWR] Utility Requirements Documentclose quotes, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, open-quotes ALWR Policy and Summary of Top-Tier Requirementsclose quotes, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, open-quotes NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Program Summaryclose quotes, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review

  11. Electric plant cost and power production expenses 1991

    International Nuclear Information System (INIS)

    1993-01-01

    Electric Plant Cost and Power Production Expenses is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels (CNEAF); Energy Information Administration (EIA); US Department of Energy. This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, Federal, State, and local governments, and the general public. These data are collected and published to fulfill data collection and dissemination responsibilities of the Energy Information Administration (EIA), as specified in the Federal Energy Administration Act (Public Law 93-275), as amended

  12. Electric plant cost and power production expenses 1990

    International Nuclear Information System (INIS)

    1992-06-01

    Electric Plant Cost and Power Production Expenses is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA); US Department of Energy. This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, Federal, State, and local governments, and the general public. These data are collected and published to fulfill data collection and dissemination responsibilities of the Energy Information Administration (EIA), as specified in the Federal Energy Administration Act (Public Law 93-275), as amended

  13. Context analysis for a new regulatory model for electric utilities in Brazil

    International Nuclear Information System (INIS)

    El Hage, Fabio S.; Rufín, Carlos

    2016-01-01

    This article examines what would have to change in the Brazilian regulatory framework in order to make utilities profit from energy efficiency and the integration of resources, instead of doing so from traditional consumption growth, as it happens at present. We argue that the Brazilian integrated electric sector resembles a common-pool resources problem, and as such it should incorporate, in addition to the centralized operation for power dispatch already in place, demand side management, behavioral strategies, and smart grids, attained through a new business and regulatory model for utilities. The paper proposes several measures to attain a more sustainable and productive electricity distribution industry: decoupling revenues from volumetric sales through a fixed maximum load fee, which would completely offset current disincentives for energy efficiency; the creation of a market for negawatts (saved megawatts) using the current Brazilian mechanism of public auctions for the acquisition of wholesale energy; and the integration of technologies, especially through the growth of unregulated products and services. Through these measures, we believe that Brazil could improve both energy security and overall sustainability of its power sector in the long run. - Highlights: • Necessary changes in the Brazilian regulatory framework towards energy efficiency. • How to incorporate demand side management, behavioral strategies, and smart grids. • Proposition of a market for negawatts at public auctions. • Measures to attain a more sustainable electricity distribution industry in Brazil.

  14. General conditions for electric power supply

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    If it is uncertain whether future power bills will be paid fully, it is admissible to take an action claiming a declaration which states that the electricity rate payment boycotter has no right to non-payment nor a right to withhold payment towards the electricity supply utility, and that the electricity supply utility has the right to stop energy supply because of reduced electricity rate payments effected and/or announced, and to denounce the contract without observing any term of notice. If the electricity buyer reduces a power bill to be paid without any legal grounds, the electricity supply utility has the right to stop power supplies and to denounce the power supply contract without observing any term of notice. The freedom of thought and the freedom of opinion must not be expressed by reducing power bills to be paid. Basic rights discontinue to be effective as soon as a contract or law is broken. A weighing of protected interests is not effected if the exercise of a basic law is unlawful. (orig./HP) [de

  15. Electric utility application of wind energy conversion systems on the island of Oahu

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, C.A.; Melton, W.C.

    1979-02-23

    This wind energy application study was performed by The Aerospace Corporation for the Wind Systems Branch of the Department of Energy. The objective was to identify integration problems for a Wind Energy Conversion System (WECS) placed into an existing conventional utility system. The integration problems included environmental, institutional and technical aspects as well as economic matters, but the emphasis was on the economics of wind energy. The Hawaiian Electric Company utility system on the island of Oahu was selected for the study because of the very real potential for wind energy on that island, and because of the simplicity afforded in analyzing that isolated utility.

  16. Small Wind Electric Systems An Alaska Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Alaska Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  17. Small Wind Electric Systems: A Vermont Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Vermont Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  18. Factors influencing electric utility expansion. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Masud, E. [ed.

    1977-01-01

    This report, Vol. 2, submitted by the General Electric Co., identifies factors that should be considered in planning interconnected systems and discusses how these factors relate to one another. The objective is to identify all the factors and classify them by their use and importance in arriving at a decision. Chapter 2 discusses the utility system and its system behavior characteristics, emphasizing behavior that affects the planning of the bulk-power generation and transmission system. Chapter 3 introduces interconnection planning by discussing the new system characteristics brought to operation and planning. Forty-two factors associated with cost, reliability, constraints, and coordination are related to each other by factor trees. Factor trees display the relationship of one factor such as reliability to more-detailed factors which in turn are further related to individual characteristics of facilities. These factor trees provide a structure to the presentation. A questionnaire including the 42 factors was completed by 52 system planners from utility companies and government authorities. The results of these questionnaires are tabulated and presented with pertinent discussion of each factor. Chapter 4 deals with generation planning, recognizing the existence of interconnections. Chapter 5 addresses transmission planning, questions related to reliability and cost measures and constraints, and factors related to both analytical techniques and planning procedures. The chapter ends with a discussion of combined generation-transmission planning. (MCW)

  19. 77 FR 28872 - Notice of FERC Staff Attendance at the SPP-ITO Louisville Gas & Electric/Kentucky Utilities...

    Science.gov (United States)

    2012-05-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Notice of FERC Staff Attendance at the SPP-ITO Louisville Gas & Electric/Kentucky Utilities Stakeholder Meeting The Federal Energy Regulatory... is part of the Commission's ongoing outreach efforts. SPP-ITO Louisville Gas & Electric/Kentucky...

  20. Utilization of nuclear energy for generating electric power in the FRG, with special regard to LWR-type reactors

    International Nuclear Information System (INIS)

    Vollradt, J.

    1977-01-01

    Comments on interdependencies in energy industry and energy generation as seen by energy supply utilities, stating that the generation of electric power in Germany can only be based on coal and nuclear energy in the long run, are followed by the most important, fundamental, nuclear-physical, technological and in part political interdependencies prevailing in the starting situation of 1955/58 when the construction of nuclear power plant reactors began. Then the development ranging to the 28000 MW nuclear power output to be expected in 1985 is outlined, totalling in 115000 MW electric power in the FRG. Finally, using the respectively latest order, the technical set up of each of the reactor types with 1300 MWe unit power offered by German manufacturers are described: BBC/BBR PWR-type reactor Neupotz, KWU-PWR-type reactor Hamm and KWU PWR-type reactor double unit B+C Gundremmingen. (orig.) [de

  1. The Research of Utilization Hours of Coal-Fired Power Generation Units Based on Electric Energy Balance

    Science.gov (United States)

    Liu, Junhui; Yang, Jianlian; Wang, Jiangbo; Yang, Meng; Tian, Chunzheng; He, Xinhui

    2018-01-01

    With grid-connected scale of clean energy such as wind power and photovoltaic power expanding rapidly and cross-province transmission scale being bigger, utilization hours of coal-fired power generation units become lower and lower in the context of the current slowdown in electricity demand. This paper analyzes the influencing factors from the three aspects of demand, supply and supply and demand balance, and the mathematical model has been constructed based on the electric energy balance. The utilization hours of coal-fired power generation units have been solved considering the relationship among proportion of various types of power installed capacity, the output rate and utilization hours. By carrying out empirical research in Henan Province, the utilization hours of coal-fired units of Henan Province in 2020 has been achieved. The example validates the practicability and the rationality of the model, which can provide a basis for the decision-making for coal-fired power generation enterprises.

  2. Electricity system performance in Brazil

    International Nuclear Information System (INIS)

    Pires Rodrigues, A.; Souza Dias, D. De

    1992-01-01

    Nowadays, there is great uncertainty and concern about the capacity of the electric sector to go ahead with the programme of investments which was planned to keep pace with the growth in electricity demand. The sector is in an important financial crisis caused by the progressive reduction in its ability to generate resources either through self-financing or through external sources. The Brazilian electric sector is mostly public. Moreover, it is marked by a high degree of integration, which makes the whole system vulnerable to problem in each of its parts. First, the financial health of the Electrobras system which is at the top of the pyramidal sectoral structure depends on the capacity of the state-level utilities (operating mainly on the distribution side) to pay for the bulk supplies which they buy from Electrobras-controlled utilities. Second, tariffs are equal in the country as a whole regardless of differences in costs. Differences must be covered by the transfers between state utilities. Thus, there is also a significant horizontal financial inter-dependence in the sector. These institutional characteristics have been very important in the context of the present financial crisis

  3. Diversity of fuel sources for electricity generation in an evolving U.S. power sector

    Science.gov (United States)

    DiLuccia, Janelle G.

    Policymakers increasingly have shown interest in options to boost the relative share of renewable or clean electricity generating sources in order to reduce negative environmental externalities from fossil fuels, guard against possible resource constraints, and capture economic advantages from developing new technologies and industries. Electric utilities and non-utility generators make decisions regarding their generation mix based on a number of different factors that may or may not align with societal goals. This paper examines the makeup of the electric power sector to determine how the type of generator and the presence (or lack) of competition in electricity markets at the state level may relate to the types of fuel sources used for generation. Using state-level electricity generation data from the U.S. Energy Information Administration from 1990 through 2010, this paper employs state and time fixed-effects regression modeling to attempt to isolate the impacts of state-level restructuring policies and the emergence of non-utility generators on states' generation from coal, from fossil fuel and from renewable sources. While the analysis has significant limitations, I do find that state-level electricity restructuring has a small but significant association with lowering electricity generation from coal specifically and fossil fuels more generally. Further research into the relationship between competition and fuel sources would aid policymakers considering legislative options to influence the generation mix.

  4. Conference Proceedings: Effectively utilizing energy derivatives in a deregulated electricity market

    International Nuclear Information System (INIS)

    1998-01-01

    This conference was devoted to a discussion about the likely impacts of deregulation on electricity markets in North America. Many of the presentations emphasized price risk in a competitive open access energy market. It was noted that deregulation is frequently associated with the creation of larger companies, higher risks and lower costs. Some of the individual topics addressed by the speakers included discussion of : (1) how underlying physical markets will work in Ontario, (2) experiences in derivative trading in the natural gas industry, (3) how to create value through multiple commodity risk management products, (4) trading with energy derivatives in the U.S. (5) how derivatives can add value for municipal electrical utilities, and (6) risk management mechanisms for energy derivative trading. refs., tabs., figs

  5. Regulator preferences and utility prices: evidence from natural gas distribution utilities

    International Nuclear Information System (INIS)

    Klein, C.C.; Sweeney, G.H.

    1999-01-01

    We investigate the determinants of regulators' relative weighting of the social welfare of customer groups and utilities using panel data on natural gas distribution utilities in the US state of Tennessee. In contrast to previous empirical work on cross-sections of electric utilities, our results are statistically robust and consistent with the interest group theory of regulation. Intervention in rate cases, settlement vs. litigation of cases, and prices of alternative energy sources, as well as the size characteristics of customer groups and the firm, are significant determinants of the elasticity-weighted price-cost margin (Ramsey number) for each group. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. Optimal timing in the privatisation of a utility in an emerging country: the case of electricity distribution in Delhi

    International Nuclear Information System (INIS)

    Ruet, Joel

    2006-01-01

    Privatisation of utilities in emerging countries is impeded by informational problems. We analyse privatisation of utilities as a process, focusing on the creation of information that arises both before and after the transfer of property. We take the example of the privatisation of electricity in Delhi (). We examine the interest in creating as much information as possible before the transfer of property, and propose a model based on a trade-off between the potential benefits of creating information prior to selling of assets, vs. facing the costs of delays associated with the risks of a state's failure in creating this information prior to privatisation. We operationalise the model in the case of Delhi and argue that, in similar conditions, it is reasonable and profitable to invest a few years in information building (). We test the robustness of this model with what risks to be the most stringent critique: the inefficiency of the state (). We conclude that this simple model is fit for a clear and transparent decision-making on privatisation and reforms

  7. Creating New Incentives for Risk Identification and Insurance Process for the Electric Utility Industry (initial award through Award Modification 2); Energy & Risk Transfer Assessment (Award Modifications 3 - 6)

    Energy Technology Data Exchange (ETDEWEB)

    Michael Ebert

    2008-02-28

    This is the final report for the DOE-NETL grant entitled 'Creating New Incentives for Risk Identification & Insurance Processes for the Electric Utility Industry' and later, 'Energy & Risk Transfer Assessment'. It reflects work done on projects from 15 August 2004 to 29 February 2008. Projects were on a variety of topics, including commercial insurance for electrical utilities, the Electrical Reliability Organization, cost recovery by Gulf State electrical utilities after major hurricanes, and review of state energy emergency plans. This Final Technical Report documents and summarizes all work performed during the award period, which in this case is from 15 August 2004 (date of notification of original award) through 29 February 2008. This report presents this information in a comprehensive, integrated fashion that clearly shows a logical and synergistic research trajectory, and is augmented with findings and conclusions drawn from the research as a whole. Four major research projects were undertaken and completed during the 42 month period of activities conducted and funded by the award; these are: (1) Creating New Incentives for Risk Identification and Insurance Process for the Electric Utility Industry (also referred to as the 'commercial insurance' research). Three major deliverables were produced: a pre-conference white paper, a two-day facilitated stakeholders workshop conducted at George Mason University, and a post-workshop report with findings and recommendations. All deliverables from this work are published on the CIP website at http://cipp.gmu.edu/projects/DoE-NETL-2005.php. (2) The New Electric Reliability Organization (ERO): an examination of critical issues associated with governance, standards development and implementation, and jurisdiction (also referred to as the 'ERO study'). Four major deliverables were produced: a series of preliminary memoranda for the staff of the Office of Electricity Delivery and

  8. Utility-Scale Solar 2014. An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Seel, Joachim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    Other than the nine Solar Energy Generation Systems (“SEGS”) parabolic trough projects built in the 1980s, virtually no large-scale or “utility-scale” solar projects – defined here to include any groundmounted photovoltaic (“PV”), concentrating photovoltaic (“CPV”), or concentrating solar thermal power (“CSP”) project larger than 5 MWAC – existed in the United States prior to 2007. By 2012 – just five years later – utility-scale had become the largest sector of the overall PV market in the United States, a distinction that was repeated in both 2013 and 2014 and that is expected to continue for at least the next few years. Over this same short period, CSP also experienced a bit of a renaissance in the United States, with a number of large new parabolic trough and power tower systems – some including thermal storage – achieving commercial operation. With this critical mass of new utility-scale projects now online and in some cases having operated for a number of years (generating not only electricity, but also empirical data that can be mined), the rapidly growing utility-scale sector is ripe for analysis. This report, the third edition in an ongoing annual series, meets this need through in-depth, annually updated, data-driven analysis of not just installed project costs or prices – i.e., the traditional realm of solar economics analyses – but also operating costs, capacity factors, and power purchase agreement (“PPA”) prices from a large sample of utility-scale solar projects in the United States. Given its current dominance in the market, utility-scale PV also dominates much of this report, though data from CPV and CSP projects are presented where appropriate.

  9. The air quality and human health effects of integrating utility-scale batteries into the New York State electricity grid

    International Nuclear Information System (INIS)

    Gilmore, Elisabeth A.; Apt, Jay; Lave, Lester B.; Walawalkar, Rahul; Adams, Peter J.

    2010-01-01

    In a restructured electricity market, utility-scale energy storage technologies such as advanced batteries can generate revenue by charging at low electricity prices and discharging at high prices. This strategy changes the magnitude and distribution of air quality emissions and the total carbon dioxide (CO 2 ) emissions. We evaluate the social costs associated with these changes using a case study of 500 MW sodium-sulfur battery installations with 80% round-trip efficiency. The batteries displace peaking generators in New York City and charge using off-peak generation in the New York Independent System Operator (NYISO) electricity grid during the summer. We identify and map charging and displaced plant types to generators in the NYISO. We then convert the emissions into ambient concentrations with a chemical transport model, the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAM x ). Finally, we transform the concentrations into their equivalent human health effects and social benefits and costs. Reductions in premature mortality from fine particulate matter (PM 2.5 ) result in a benefit of 4.5 cents kWh -1 and 17 cents kWh -1 from displacing a natural gas and distillate fuel oil fueled peaking plant, respectively, in New York City. Ozone (O 3 ) concentrations increase due to decreases in nitrogen oxide (NO x ) emissions, although the magnitude of the social cost is less certain. Adding the costs from charging, displacing a distillate fuel oil plant yields a net social benefit, while displacing the natural gas plant has a net social cost. With the existing base-load capacity, the upstate population experiences an increase in adverse health effects. If wind generation is charging the battery, both the upstate charging location and New York City benefit. At $20 per tonne of CO 2 , the costs from CO 2 are small compared to those from air quality. We conclude that storage could be added to existing electricity grids as part of an integrated

  10. The air quality and human health effects of integrating utility-scale batteries into the New York State electricity grid

    Science.gov (United States)

    Gilmore, Elisabeth A.; Apt, Jay; Walawalkar, Rahul; Adams, Peter J.; Lave, Lester B.

    In a restructured electricity market, utility-scale energy storage technologies such as advanced batteries can generate revenue by charging at low electricity prices and discharging at high prices. This strategy changes the magnitude and distribution of air quality emissions and the total carbon dioxide (CO 2) emissions. We evaluate the social costs associated with these changes using a case study of 500 MW sodium-sulfur battery installations with 80% round-trip efficiency. The batteries displace peaking generators in New York City and charge using off-peak generation in the New York Independent System Operator (NYISO) electricity grid during the summer. We identify and map charging and displaced plant types to generators in the NYISO. We then convert the emissions into ambient concentrations with a chemical transport model, the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAM x). Finally, we transform the concentrations into their equivalent human health effects and social benefits and costs. Reductions in premature mortality from fine particulate matter (PM 2.5) result in a benefit of 4.5 ¢ kWh -1 and 17 ¢ kWh -1 from displacing a natural gas and distillate fuel oil fueled peaking plant, respectively, in New York City. Ozone (O 3) concentrations increase due to decreases in nitrogen oxide (NO x) emissions, although the magnitude of the social cost is less certain. Adding the costs from charging, displacing a distillate fuel oil plant yields a net social benefit, while displacing the natural gas plant has a net social cost. With the existing base-load capacity, the upstate population experiences an increase in adverse health effects. If wind generation is charging the battery, both the upstate charging location and New York City benefit. At 20 per tonne of CO 2, the costs from CO 2 are small compared to those from air quality. We conclude that storage could be added to existing electricity grids as part of an integrated strategy from a

  11. Implications of the Ontario government's white paper and competition strategies for Ontario's municipal electric utilities

    International Nuclear Information System (INIS)

    Wills, D.L.

    1998-01-01

    The strategies that Municipal Electric Utilities (MEU) should follow to deal with competition were discussed. North Bay Hydro is the 34th largest MEU out of 300 in Ontario but it serves only 23,000 out of 4 million electrical customers in Ontario. Therefore, the main strategy for municipal utilities to ensure their future would be to become part of an alliance and association like the MEA and the SAC - the Strategic Alliance for Competition and Customer Choice. Strong criticism was voiced regarding the contents of the recent Ontario Government White Paper for being vague with regard to electrical distribution and the role of MEUs in Ontario. It was suggested that it is vitally important that MEUs ally themselves with other stakeholders, to resist an Ontario Hydro monopoly, to make sure that prices stay low, to avoid excessive debt and bureaucratic inefficiency, be innovative, and consumer oriented and be prepared to anticipate events and conditions. 3 figs

  12. New competition hits the U.S. electric industry

    International Nuclear Information System (INIS)

    Hunter, M.

    1993-01-01

    Three case studies of competition in the United States electric industry are described which illustrate some of the most striking characteristics of the new competitive situation: utilities foraging in other service areas for long-term customers, customers playing one service-area's pricing against another to obtain better terms, and new generating entities being created with the option of seeking mandated transmission access. The trends illustrated by these studies indicate a move away from a regulated monopoly setting toward a market in which the price of bulk electricity is driven down toward the long-run marginal cost of the service. In New England, non-utility generation in 1992 accounted for 17% of electricity sales, up from essentially zero in 1980. Although increasing competition among electric utilities could lower electric power prices and improve industrial competitiveness, there are several concerns which may signify unpleasant outcomes for electric utilities. These concerns include inefficient investment, in which local utility grids are bypassed in favor of other generating units whose competitive advantage may be the result of arbitrary cost-shifting; the exit of large power users placing more of a fixed-cost burden on the remaining customers of a utility, resulting in a vicious spiral of more defections; and insecurities in purchasing power from a new supplier who may not be subject to the same legal obligations as a local utility. Recommendations are made for accommodating more competition without causing adverse effects, including proper pricing of transmission, helping utilities compete on generation, and avoiding non-electric mandates for utilities. 9 refs

  13. Heat operated cryogenic electrical generator

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Wang, T.C.; Saffren, M.M.; Elleman, D.D.

    1975-01-01

    An electrical generator useful for providing electrical power in deep space, is disclosed. The subject electrical generator utilizes the unusual hydrodynamic property exhibited by liquid helium as it is converted to and from a superfluid state to cause opposite directions of rotary motion for a rotor cell thereof. The physical motion of said rotor cell is employed to move a magnetic field provided by a charged superconductive coil mounted on the exterior of said cell. An electrical conductor is placed in surrounding proximity to said cell to interact with the moving magnetic field provided by the superconductive coil and thereby generate electrical energy. A heat control arrangement is provided for the purpose of causing the liquid helium to be partially converted to and from a superfluid state by being cooled and heated, respectively. (U.S.)

  14. Quality of electric service in utility distribution networks under electromagnetic compatibility principles. [ENEL

    Energy Technology Data Exchange (ETDEWEB)

    Chizzolini, P.; Lagostena, L.; Mirra, C.; Sani, G. (ENEL, Rome Milan (Italy))

    1989-03-01

    The development of electromagnetic compatibility criteria, being worked out in international standardization activities, requires the establishment of the characteristics of public utility distribution networks as a reference ambient. This is necessary for gauging the immunity levels towards users and for defining the disturbance emission limits. Therefore, it is a new way to look at the quality of electric service. Consequently, it is necessary to check and specify, in an homogeneous manner, the phenomena that affect electric service. Use must be made of experimental tests and of the collection and elaboration of operation data. In addition to testing techniques, this paper describes the checking procedures for the quality of electric service as they are implemented in the information system developed by ENEL (Italian Electricity Board) for distribution activities. The first reference data obtained from the national and international fields about voltage shape and supply continuity are also indicated.

  15. Forecasting the electricity consumption of the Mexican border states maquiladoras

    Energy Technology Data Exchange (ETDEWEB)

    Flores, C.E.; Phelan, P.E. [Arizona State Univ., Dept. of Mechanical and Aerospace Engineering, Tempe, AZ (United States); Mou, J.-I. [Taiwan Semiconductor Manufacturing Co., Operation Planning Div., Hsin-Chu (Taiwan); Bryan, H. [Arizona State Univ., School of Architecture, Tempe, AZ (United States)

    2004-07-01

    The consumption of electricity by maquiladora industries in the Mexican border states is an important driver for determining future powerplant needs in that area. An industrial electricity forecasting model is developed for the border states' maquiladoras, and the outputs are compared with a reference forecasting model developed for the US industrial sector, for which considerably more data are available. This model enables the prediction of the effect of implementing various energy efficiency measures in the industrial sector. As an illustration, here the impact of implementing energy-efficient lighting and motors in the Mexican border states' maquiladoras was determined to be substantial. Without such energy efficiency measures, electricity consumption for these industries is predicted to rise by 64% from 2001 to 2010, but if these measures are implemented on a gradual basis over the same time period, electricity consumption is forecast to rise by only 36%. (Author)

  16. Public Utility Regulatory Policies Act of 1978. Annual report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1980-05-01

    Titles I and III of the Public Utility Regulatory Policies Act of 1978 (PURPA) establish retail regulatory policies for electric and natural gas utilities, respectively, aimed at achieving three purposes: conservation of energy supplied by electric and gas utilities; efficiency in the use of facilities and resources by these utilities; equitable rates to electricity and natural gas consumers. PURPA also continues the pilot utility implementation program, authorized under Title II of the Energy Conservation and Production ACT (ECPA), to encourage adoption of cost-based rates and efficient energy-management practices. The purpose of this report is twofold: (1) to summarize and analyze the progress that state regulatory authorities and certain nonregulated utilities have made in their consideration of the PURPA standards; and (2) to summarize the Department of Energy (DOE) activities relating to PURPA and ECPA. The report provides a broad overview and assessment of the status of electric and gas regulation nationwide, and thus helps provide the basis for congressional and DOE actions targeted on the utility industry to address pressing national energy problems.

  17. Electric Power Monthly, March 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and state level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data are presented on generation, fuel consumption, stockpiles, costs, sales, and unusual occurrences. Fuels considered are: coal, petroleum, natural gas, nuclear power, and hydroelectric power. 4 figs., 48 tabs

  18. NRC review of Electric Power Research Institute's advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    International Nuclear Information System (INIS)

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the open-quotes Advanced Light Water Reactor [ALWR] Utility Requirements Documentclose quotes, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, open-quotes ALWR Policy and Summary of Top-Tier Requirementsclose quotes, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, open-quotes NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Program Summaryclose quotes, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review

  19. Initial state regulation of investor-owned utilities

    International Nuclear Information System (INIS)

    Savitski, D.W.

    2001-01-01

    This paper examines state initiation of public service (or utility) commission regulation of investor-owned utilities (IOUs) using an economic theory of regulation. The decision to regulate IOUs is assumed to have depended on the strength of competing interest groups, e.g. consumers and producers, and on institutional factors, e.g. whether commissioners were appointed or elected. Regulators, which then had jurisdiction over IOU rates, are assumed to have been optimizing agents. The potential benefits of regulation, in turn, translated into pressure to initiate regulation. To test this, a hazard model is applied to state-level data. On the demand side of the regulation market, the distribution of federal power and population density were unrelated, while a set of time dummies was positively related to the probability that a state initiated regulation. On the supply side, the fraction of the population that was urban and whether the governor was Republican or not were positively and negatively related to this probability

  20. Electric power monthly, June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  1. Electric power monthly, August 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-24

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  2. Electric power monthly, July 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-29

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  3. Electric power monthly, November 1994

    International Nuclear Information System (INIS)

    1994-11-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended

  4. European utility requirements: common rules to design next LWR plants in an open electricity market

    International Nuclear Information System (INIS)

    Berbey, Pierre; Ingemarsson, Karl-Fredrik

    2004-01-01

    The major European electricity producers want to keep able to build new nuclear power plants and they believe 3. generation LWRs would be the most adapted response to their needs in the first decades of this century. Producing a common European Utility Requirement (EUR) document has been one of the basic tasks towards this objective. In this common frame, standardized and competitive LWR NPPs could be developed and offered to the investors. This idea is now well supported by all the other actors on the European electricity market: vendors, regulators, grid managers, administrations although in the competitive and unified European electricity market that is emerging, the electricity producers' stakes are more and more different from the other electricity business actors'. The next term objectives of the electricity producers involved in EUR are focused on negotiating common rules of the game together with the regulators. This covers the nuclear safety approaches, the conditions requested to connect a plant to a HV grid, as well as the design standards. Discussions are going on between the EUR organization and all the corresponding bodies to develop stabilized and predictable design rules that would meet the constraints of nuclear electricity generation in this new environment. Finally there cannot be competition without competitors. The EUR organization has proven to be the right place to establish trustful relationship between the vendors and their potential customers, through fair assessment of the proposed designs performance vs. the utility needs. This will be continued and developed with the main vendors present in Europe, so as to keep alive a list of 4 to 6 designs 'qualified', i.e. showing an acceptable score of non-compliance vs. EUR. (authors)

  5. Operating and impact of the compensation mechanism of the electric utility charges on the energy offer in non connected areas

    International Nuclear Information System (INIS)

    Levratto, N.

    2005-01-01

    Since the law of the 10 february 2000 relative to the modernization and the development of the electric utility, the France adopted a mechanism aiming to compensate the costs subjected by EDF and other suppliers providing a public utility mission in the domain of the electricity production and distribution. This document takes stock on the organization, the evaluation and the economical and environmental consequences of the implementing of a compensation system of costs bond to the electricity production in non connected areas. (A.L.B.)

  6. A comparison of hydrogen-fueled fuel cells and combustion engines for electric utility applications

    International Nuclear Information System (INIS)

    Schoenung, S.M.

    2000-01-01

    Hydrogen-fueled systems have been proposed for a number of stationary electric generation applications including remote power generation, load management, distribution system peak shaving, and reliability or power quality enhancement. Hydrogen fueling permits clean, low pollution operation. This is particularly true for systems that use hydrogen produced from electrolysis, rather than the reforming of hydrocarbon fuels. Both fuel cells and combustion engines are suitable technologies for using hydrogen in many electric utility applications. This paper presents results from several studies performed for the U.S. Department of Energy Hydrogen Program. A comparison between the two technologies shows that, whereas fuel cells are somewhat more energy efficient, combustion engine technology is less expensive. In this paper, a comparison of the two technologies is presented, with an emphasis on distributed power and power quality applications. The special case of a combined distributed generation I hydrogen refueling station is also addressed. The comparison is made on the basis of system costs and benefits, but also includes a comparison of technology status: power ratings and response time. A discussion of pollutant emissions and pollutant control strategies is included. The results show those electric utility applications for which each technology is best suited. (author)

  7. State-level renewable electricity policies and reductions in carbon emissions

    International Nuclear Information System (INIS)

    Prasad, Monica; Munch, Steven

    2012-01-01

    A wide range of renewable electricity policies has been adopted at the state level in the United States, but to date there has been no large-scale, empirical assessment of the effect of these policies on carbon emissions. Such an assessment is important because scholars have pointed out that increases in renewable electricity will not necessarily lead to declines in carbon emissions. We examine the effects of a range of policies across 39 states. We find significant and robust decreases in carbon emissions associated with the introduction of public benefit funds, a form of “carbon tax” adopted by 19 states to date. Our aim in this paper is not to provide a final judgment on these policies, many of which may not have been in place long enough to show strong effects, but to shift the attention of the research community away from proximate measures such as increases in clean electricity generation and onto measurement of lower carbon emissions. - Highlights: ► We ask whether state-level renewable electricity policies in the United States have succeeded in lowering carbon emissions. ► We examine net metering, retail choice, fuel generation disclosure, mandatory green power options, public benefit funds, and renewable portfolio standards. ► The introduction of public benefit funds, a kind of carbon tax, is associated with decreases in carbon emissions.

  8. Small Wind Electric Systems: A New Mexico Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The New Mexico Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  9. Small Wind Electric Systems: A South Dakota Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The South Dakota Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  10. Environmental compliance audits of electric generating facilities - a practical approach

    International Nuclear Information System (INIS)

    Staker, R.D.

    1992-01-01

    As environmental regulations expand in complexity and number, and as regulatory agencies place more emphasis on enforcing regulations, it is increasingly important that electric utilities perform periodic environmental compliance audits to determine if their facilities are in compliance with federal, state, and local environmental regulations. Explicit commitment by the utility's top management and careful planning and execution of an audit are key elements in the effectiveness of an audit. This paper is directed to electric utility environmental managers and company management. The paper presents a practical approach for planning and performing a multi-media environmental compliance of an electric generating facility

  11. Staff Utilization and Commitment in Borno State Colleges of Education, Nigeria

    Science.gov (United States)

    Fika, Ibrahim Baba; Ibi, Mustapha Baba; Abdulrahman, Aishatu

    2016-01-01

    The study determines the relationship between staff utilization and staff commitment in Borno State Colleges of Education, Nigeria. The objectives of the study were to determine: the level of staff utilization in Borno State Colleges of Education, the level of staff commitment in Borno State Colleges of Education and the relationship between staff…

  12. A supply chain analysis framework for assessing state-level forest biomass utilization policies in the United States

    International Nuclear Information System (INIS)

    Becker, Dennis R.; Moseley, Cassandra; Lee, Christine

    2011-01-01

    The number of state policies aimed at fostering biomass utilization has proliferated in recent years in the United States. Several states aim to increase the use of forest and agriculture biomass through renewable energy production. Several more indirectly encourage utilization by targeting aspects of the supply chain from trees standing in the forest to goods sold. This research classifies 370 state policies from across the United States that provides incentives for forest biomass utilization. We compare those policies by types of incentives relative to the supply chain and geographic clustering. We then develop a framework for policy evaluation building on the supply chain steps, which can be used to assess intended and unintended consequences of policy interactions. These findings may inform policy development and identify synergies at different steps in the supply chain to enhance forest biomass utilization.

  13. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  14. Small Wind Electric Systems: A Kansas Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Kansas Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of state incentives and state contacts for more information

  15. Electricity derivatives

    CERN Document Server

    Aïd, René

    2015-01-01

    Offering a concise but complete survey of the common features of the microstructure of electricity markets, this book describes the state of the art in the different proposed electricity price models for pricing derivatives and in the numerical methods used to price and hedge the most prominent derivatives in electricity markets, namely power plants and swings. The mathematical content of the book has intentionally been made light in order to concentrate on the main subject matter, avoiding fastidious computations. Wherever possible, the models are illustrated by diagrams. The book should allow prospective researchers in the field of electricity derivatives to focus on the actual difficulties associated with the subject. It should also offer a brief but exhaustive overview of the latest techniques used by financial engineers in energy utilities and energy trading desks.

  16. Electric Power monthly, November 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This publication presents monthly electricity statistics for a wide audience including Congress, Federal and state agencies, the electric utility industry, and the general public. Purpose is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  17. Phosphorylation states of the (Na+ + K+)-transporting ATPase in preparations from lamb kidney and electric-eel (Electophorus electricus) electric organ.

    Science.gov (United States)

    Harris, W E; Stahl, W L

    1984-01-01

    Phosphorylation states of the (Na+ + K+)-transporting ATPase were studied in highly purified preparations isolated from electric-eel electric organ and from lamb kidney. The steady-state level of phosphorylated lamb kidney enzyme, obtained by reaction with [gamma-32P]ATP, was not appreciably reduced in the presence of ADP unless oligomycin was present. The phosphorylated form of the electric-eel electric-organ enzyme was reduced by at least 95% under the same conditions, suggesting that the E1P state in the kidney enzyme is more transitory than that in electric organ. The level of phosphorylation from [32P]Pi was higher in the lamb kidney preparation than in the electric-organ preparation, and the difference in stimulation of phosphorylation by ouabain in the two preparations was striking. Ouabain increased the level of phosphorylation by 35% in the kidney preparation and 734% in the electric-organ preparation. The E2P state seems to be stabilized by ouabain in the latter preparation. These findings, as well as the different reactivities of the thiol groups to blocking reagents in these preparations, suggest that the tertiary structure in the enzyme isolated from these two sources is different. PMID:6324756

  18. A critical assessment of the Hong Kong Government's proposed post-2008 regulatory regime for local electricity utilities

    International Nuclear Information System (INIS)

    Woo, Chi-Keung; Horowitz, Ira; Tishler, Asher

    2006-01-01

    In December 2005, the Hong Kong Government issued a 'Consultation Paper on Future Development of the Electricity Markets in Hong Kong: Stage II Consultation,' proposing a post-2008 regulatory regime upon the expiration of the existing regulatory contract between the Hong Kong Government and each of the two local electricity utilities. We assess the proposal using the criteria of safe, reliable, and environmentally friendly service at the lowest rates that will allow the utilities reasonable returns on their investments. We caution that if fully adopted, the highly risky proposal may lead to less-reliable service without the compensating benefits to the environment

  19. Can we delay the replacement of this component?-an asset management approach to the question [for electric utilities

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Jensen, A. Norsk

    2001-01-01

    Asset management is emerging as a new approach on how to exploit an electric utility physical asset in the most profitable way. One of the major questions to answer by the asset management staff is when to do replacements? This is a difficult question, which require weighting of several parameter...... on Windows CE handheld computers which are presented in this paper. The calculations shown in the paper are based on this tool, and the software system is today available and used by Danish electric utilities....

  20. Markets for utility electricity

    International Nuclear Information System (INIS)

    Brooks, D.B.

    1990-01-01

    Every analysis of energy use, no matter what the sector or the country, has shown enormous opportunities for cost-effective conservation. Such opportunities should be identified and pursued wherever they appear. Because of its capital intensity and balance-of-payments implications on the supply side, and its potential to improve industrial efficiency and quality of life on the demand side, nowhere are such opportunities more critical than with electricity. Indeed, given the large and unsatisfied demand for electricity in those markets where it can be used efficiently, to ignore those opportunities is to invite ever more serious energy supply and demand problems. (author). 34 refs., 3 tabs., 1 appendix

  1. Electric power annual 1995. Volume I

    International Nuclear Information System (INIS)

    1996-07-01

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts, and the general public with data that may be used in understanding U.S. electricity markets. The Electric Power Annual is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy. In the private sector, the majority of the users of the Electric Power Annual are researchers and analysts and, ultimately, individuals with policy- and decisionmaking responsibilities in electric utility companies. Financial and investment institutions, economic development organizations interested in new power plant construction, special interest groups, lobbyists, electric power associations, and the news media will find data in the Electric Power Annual useful. In the public sector, users include analysts, researchers, statisticians, and other professionals with regulatory, policy, and program responsibilities for Federal, State, and local governments. The Congress and other legislative bodies may also be interested in general trends related to electricity at State and national levels. Much of the data in these reports can be used in analytic studies to evaluate new legislation. Public service commissions and other special government groups share an interest in State-level statistics. These groups can also compare the statistics for their States with those of other jurisdictions

  2. NRC review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Evolutionary plant designs, Chapter 1, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 2 (Parts 1 and 2) of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Evolutionary Plant Designs,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER gives the results of the staff's review of Volume II of the Requirements Document for evolutionary plant designs, which consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant (approximately 1300 megawatts-electric)

  3. Renewable Energy Price-Stability Benefits in Utility Green Power Programs. 36 pp

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Lori A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cory, Karlynn S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Swezey, Blair G. [Applied Materials, Santa Clara, CA (United States)

    2008-08-01

    This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states that have not undergone electric industry restructuring.

  4. The effects of rate of return and environmental regulations on the productivity performance in the US electric utility industry

    International Nuclear Information System (INIS)

    Durongkaveroj, P.

    1991-01-01

    Productivity growth in the US electric power industry has been declining since the late 1960's. Rate of return regulation and environmental regulations are hypothesized to adversely affect the productivity performance. Employing a Divisa index of the total factor productivity (TEP) an electric utility's performance is measured based on a profit maximization framework subject to both regulatory constraints. The empirical analysis attempts to analyze the effects of these regulations on the productivity growth employing data from privately-owned, fossil-fueled electric utilities. Results show a consistent decline in productivity growth over time averaging at 2% annually during 1977 and 1982, as well as the existence of regional differences in TFP growth among utilities. It shows positive and significant relationships between TFP growth and the rate of return, regulatory lag, the use of future test year, and deferred tax credit in the rate-making process. In the environmental case, results show that a stringent emission standard, using scrubbers for sulfur reduction and the utilization of aging power plants all contribute to the decline in productivity growth

  5. Utility Leadership in Defining Requirements for Advanced Light Water Reactors

    International Nuclear Information System (INIS)

    Sugnet, William R.; Layman, William H.

    1990-01-01

    It is appropriate, based on twenty five years of operating experience, that utilities take a position of leadership in developing the technical design and performance requirements for the next generations of nuclear electric generating plants. The U. S. utilities, through the Electric Power Research Institute, began an initiative in 1985 to develop such Utility requirements. Many international Utility organizations, including Korea Electric Power Corporation, have joined as full participants in this important Utility industry initiative. In light of the closer linkage among countries of the world due to rapid travel and telecommunications, it is also appropriate that there be international dialogue and agreement on the principal standards for nuclear power plant acceptability and performance. The Utility/EPRI Advanced Light Water Reactor Program guided by the ALRR Utility Steering Committee has been very successful in developing these Utility requirements. This paper will summarize the state of development of the ALRR Utility Requirements for Evolutionary Plants, recent developments in their review by the U. S. Nuclear Regulatory Commission, resolution of open issues, and the extension of this effort to develop a companion set of ALRR Utility Requirements for plants employing passive safety features

  6. Status of electricity trading in the United States

    International Nuclear Information System (INIS)

    McMillan, P.H.

    1999-01-01

    The evolution of the energy marketplace in the United States is presented in a series of overhead viewgraphs. The influencing factors of energy trading are described as being supply concentration, rate cross subsidization, price volatility, physics, stranded investment, market structure and value drivers. A map depicting trading hubs and market structures is included, along with an outline of the key characteristics of a successful market hub. Gas-electric interface issues are also discussed. It was stated that contrary to conventional wisdom that as gas and electricity markets converge, traders will routinely cross-hedge gas and power, the practical reality is that volatility of the gas to electricity basis spread actually limits hedging opportunities. A winning strategy should include thorough fundamental and technical analysis; every trade or position should have a well thought-out exit strategy; get closer to physical assets; and be careful across regional hubs and commodities. 2 tabs., 7 figs

  7. How satisfied are the major customers of electric utilities?; Wie zufrieden sind die grossen Stromkunden?

    Energy Technology Data Exchange (ETDEWEB)

    Edelmann, H. [VEW Energie AG, Dortmund (Germany). Abt. Marktforschung und Volkswirtschaft

    1998-07-27

    In the liberalised electric power market, satisfying customers is a very important objective of utilities, as customers are free to enter into supply contracts with competitors in the market. Satisfaction of customers enhances customer loyalty, as many electric utilities know by now, but only few utilities have a clear picture of the level of satisfaction of their customers, and of their standing in their customers` opinion in comparison with other marketers. The article explains approaches and methods for a systematic and well-founded survey of customers and assessment of customer satisfaction. (orig./CB) [Deutsch] In einem liberalisierten Elektrizitaetsmarkt kommt der Kundenzufriedenheit eine zentrale Bedeutung zu. Diese ist massgebend dafuer, ob ein Kunde zu einem anderen Anbieter wechselt oder nicht. Hohe Kundenzufriedenheit bedeutet hohe Kundenbindung. Viele Stromversorger haben das bereits erkannt, doch nur bei wenigen existiert ein klares Bild darueber, wie zufrieden ihre Kunden tatsaechlich mit ihnen sind und wie sie im Vergleich zu anderen Stromversorgern stehen. Wie dargestellt wird, laesst sich ein solches Bild nur ueber eine systematische und fundierte Messung der Kundenzufriedenheit gewinnen. (orig./RHM)

  8. Barriers and Opportunities to Broader Adoption of Integrated Demand Side Management at Electric Utilities: A Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Jennifer [Hawaii Natural Energy Institute, Honolulu, HI (United States); Stuart, Elizabeth [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Div.; Cappers, P [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Div.

    2018-02-13

    Integrated demand-side management (IDSM) is a strategic approach to designing and delivering a portfolio of demand side management (DSM) programs to customers. IDSM typically delivers customer centric strategies with the goal of increasing the amount of DSM in the field, but doing so in a way that integrates various measures and technologies to improve their collective performance and/or penetration. Specifically, IDSM can be defined as the integrated or coordinated delivery of three or more of: (1) energy efficiency (EE), (2) demand response (DR), (3) distributed generation (DG), (4) storage, (5) electric vehicle (EV) technologies, and (6) time-based rate programs to residential and commercial electric utility customers. The electric industry’s limited experience deploying IDSM to date suggests that significant barriers may exist. A Berkeley Lab report “Barriers and Opportunities to Broader Adoption of Integrated Demand Side Management at Electric Utilities: A Scoping Study” explores recent electric utility experience with IDSM to provide an assessment of the barriers and potential benefits perceived or experienced by program administrators in their attempts to implement integrated programs. The research draws on surveys and interviews with eleven staff from a sample of eight DSM program administrators and program implementers who were currently implementing or had previously attempted to implement an IDSM program or initiative. Respondents provided their perspectives on drivers for IDSM and barriers to broader deployment. They also reported on actions they had undertaken to promote expanded delivery of IDSM and provided their assessments of the most important under-tapped opportunities for expanding IDSM efforts, both for program administrator and regulatory organizations.

  9. The intermittency of wind, solar, and renewable electricity generators. Technical barrier or rhetorical excuse?

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2009-09-15

    A consensus has long existed within the electric utility sector of the United States that renewable electricity generators such as wind and solar are unreliable and intermittent to a degree that they will never be able to contribute significantly to electric utility supply or provide baseload power. This paper asks three interconnected questions: (1) What do energy experts really think about renewables in the United States?; (2) To what degree are conventional baseload units reliable?; (3) Is intermittency a justifiable reason to reject renewable electricity resources? To provide at least a few answers, the author conducted 62 formal, semi-structured interviews at 45 different institutions including electric utilities, regulatory agencies, interest groups, energy systems manufacturers, nonprofit organizations, energy consulting firms, universities, national laboratories, and state institutions in the United States. In addition, an extensive literature review of government reports, technical briefs, and journal articles was conducted to understand how other countries have dealt with (or failed to deal with) the intermittent nature of renewable resources around the world. It was concluded that the intermittency of renewables can be predicted, managed, and mitigated, and that the current technical barriers are mainly due to the social, political, and practical inertia of the traditional electricity generation system. (author)

  10. Electric power monthly, July 1997 with data for April 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. 57 tabs.

  11. Electric power monthly, June 1997 with data for March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. 63 tabs.

  12. Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States

    International Nuclear Information System (INIS)

    Onat, Nuri Cihat; Kucukvar, Murat; Tatari, Omer

    2015-01-01

    Highlights: • Driving patterns and electricity generation mix influence vehicle preferences. • EVs are found to be least carbon-intensive vehicle option in 24 states. • HEVs are found to be the most energy-efficient option in 45 states. • EVs across the board are unfavorable in the marginal electricity mix scenario. • Use of renewable energy to power EVs/PHEVs is crucial. - Abstract: Electric vehicles (EVs), plug-in hybrid electric vehicles (PHEVs), and hybrid electric vehicles (HEVs) are often considered as better options in terms of greenhouse gas emissions and energy consumption compared to internal combustion vehicles. However, making any decision among these vehicle options is not a straightforward process due to temporal and spatial variations, such as the sources of the electricity used and regional driving patterns. In this study, we compared these vehicle options across 50 states, taking into account state-specific average and marginal electricity generation mixes, regional driving patterns, and vehicle and battery manufacturing impacts. Furthermore, a policy scenario proposing the widespread use of solar energy to charge EVs and PHEVs is evaluated. Based on the average electricity generation mix scenario, EVs are found to be least carbon-intensive vehicle option in 24 states, while HEVs are found to be the most energy-efficient option in 45 states. In the marginal electricity mix scenario, widespread adoption of EVs is found to be an unwise strategy given the existing and near-future marginal electricity generation mix. On the other hand, EVs can be superior to other alternatives in terms of energy-consumption, if the required energy to generate 1 kW h of electricity is below 1.25 kW h

  13. Hawaii Electric System Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Loose, Verne William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silva Monroy, Cesar Augusto [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-08-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers’ views of reliability “worth” and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers’ views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  14. The application of financial options theory to electric utility decision making in integrated resource planning and maintenance shutdowns

    International Nuclear Information System (INIS)

    Felder, F.

    1995-01-01

    Increased competition in wholesale power generation will allow electric utilities to use financial models to improve their decision making. This competition will result in the creation of electricity spot, futures, and forward markets, which will provide necessary information for utility executives to used advance financial tools, such as random walk models and options theory. These models will allow executives to place a value on risk. Once this value is known, executives can determine how best to manage that risk, whether by entering into financial transactions, adjusting their operational and planning decisions, or both

  15. Performance issues for a changing electric power industry

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Extremely cold weather created record demands for electricity in the eastern two-thirds of the United States during the week of January 16, 1994. Fuel-related problems, mostly the result of transportation constraints resulting from ice accumulation on roads and water-ways, and unexpected generating capacity outages at utilities and nonutilities resulted in demand not being met. Some utilities asked nonessential customers along with State governments and a portion of the Federal Government to shut down. Two electric control areas, the Pennsylvania-New Jersey-Maryland Interconnection (PJM) and Virginia Electric & Power Company (VEPCO), instituted rolling blackouts. This disturbance was reported widely in the press and, along with other disturbances, peaked renewed interest in the reliability of the electric power system. The renewed interest in reliability has coincided with substantial changes that are beginning to occur in the structure and competitiveness of the electric power industry. Juxtaposing the question of reliability and the issue of changing industry structure leads to the central concern of this report: What effect, if any, will the changing structure of the industry have on the reliability of the system?

  16. Fourteenth electric power survey of India

    International Nuclear Information System (INIS)

    1991-03-01

    Fourteenth Electric Power Supply Committee was set up by the Government of India in February 1989 to review the demand projections for electric power, in detail, keeping in view the Eight Plan proposals and to project the perspective demand for (electric) power upto the year 2009-10. Partial End-use method was adopted for forecasting the power demands over a short term period. For estimating the power requirements on a long-term basis, the trend in overall requirements in a state system formed the basis of projections. The long term forecast covering the period 1995-96 to 2009-10 was made by extrapolating the overall requirement of electricity for various states and Union Territories with 1994-95 as the base year. The data were collected from various State Electricity Boards, Public utilities, concerned departments of State Governments and various Ministries and Departments of the Government of India and were computerised. The data base was used to develop a number of scenarios and to make projections. (M.G.B.)

  17. How energy derivatives can add value for municipal electrical utilities

    International Nuclear Information System (INIS)

    Tamplen, B.

    1998-01-01

    The challenges that municipal electric utilities (MEUs) face in the new deregulated power market in North America were discussed. This presentation also highlighted the factors that affected the risk that companies in the U.S. Mid-West were exposed to in June 1998. During that time, MEUs had to deal with financial fallouts and price spikes as a result of very high temperatures, generation outages, and transmission line relief. The focus is on price risk and credit risk and how a strong risk management team can be instrumental in avoiding price spikes like those that occurred in June 1998

  18. Lowering electricity prices through deregulation

    OpenAIRE

    Thomas Klitgaard; Rekha Reddy

    2000-01-01

    A wave of regulatory reform is now transforming the U.S. electricity industry. As state and federal authorities allow independent power producers to compete with utilities in supplying electricity, consumers are paying close attention to the effects of this change on their energy bills. Although deregulation poses significant structural challenges, the introduction of competitive pressures should ultimately lead to efficiency gains for the industry and cost savings for households and businesses.

  19. The Integration of Renewable Energy Sources into Electric Power Distribution Systems, Vol. II Utility Case Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Zaininger, H.W.

    1994-01-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: the local solar insolation and/or wind characteristics, renewable energy source penetration level, whether battery or other energy storage systems are applied, and local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kW-scale applications may be connected to three+phase secondaries, and larger hundred-kW and y-scale applications, such as MW-scale windfarms, or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. In any case, the installation of small, distributed renewable energy sources is expected to have a significant impact on local utility distribution primary and secondary system economics. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications. The

  20. Electricity sector abounds with energy

    International Nuclear Information System (INIS)

    Berger, P.

    2006-01-01

    This short article takes a look at Swiss energy utilities and provides a brief review of the current state of the electricity business in Switzerland. Increasing turnover has lead to increased profits. The situation in five leading utilities is looked at and commented on. The various activities of the utilities are discussed. Apart from providing normal power supply, these range from international power trading and investment through to the generation and sale of renewable forms of energy such as photovoltaics and wind power

  1. Subjective Expected Utility Theory without States of the World

    OpenAIRE

    Edi Karni

    2005-01-01

    This paper develops an axiomatic theory of decision making under uncertainty that dispenses with the state space. The results are subjective expected utility models with unique, action-dependent, subjective probabilities, and a utility function defined over wealth-effect pairs that is unique up to positive linear transformation.

  2. Public Utility Holding Company Act of 1935: 1935--1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-15

    This report provides an economic and legislative history and analysis of the Public Utilities Holding Company Act (PUHCA) of 1935. This Act was substantially amended for the first time in 1992 by passage of the Energy Policy Act (EPACT). The report also includes a discussion of the issues which led to the amendment of PUHCA and projections of the impact of these changes on the electric industry. The report should be of use to Federal and State regulators, trade associations, electric utilities, independent power producers, as well as decision-makers in Congress and the Administration.

  3. Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1989 and Preceding Years.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1990-06-01

    This report officially releases the compilation of regional 1989 retail customer sector sales data by the Bonneville Power Administration. This report is intended to enable detailed examination of annual regional electricity consumption. It gives statistics covering the time period 1970--1989, and also provides observations based on statistics covering the 1983--1989 time period. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell to consumers annually. Data is provided on each retail customer sector: residential, commercial, industrial, direct-service industrial, and irrigation. The data specifically supports forecasting activities, rate development, conservation and market assessments, and conservation and market program development and delivery. All of these activities require a detailed look at electricity use. 25 figs., 34 tabs.

  4. An assessment of household electricity load curves and corresponding CO2 marginal abatement cost curves for Gujarat state, India

    International Nuclear Information System (INIS)

    Garg, Amit; Shukla, P.R.; Maheshwari, Jyoti; Upadhyay, Jigeesha

    2014-01-01

    Gujarat, a large industrialized state in India, consumed 67 TWh of electricity in 2009–10, besides experiencing a 4.5% demand–supply short-fall. Residential sector accounted for 15% of the total electricity consumption. We conducted load research survey across 21 cities and towns of the state to estimate residential electricity load curves, share of appliances by type and usage patterns for all types of household appliances at utility, geographic, appliance, income and end-use levels. The results indicate that a large scope exists for penetration of energy efficient devices in residential sector. Marginal Abatement Cost (MAC) curves for electricity and CO 2 were generated to analyze relative attractiveness of energy efficient appliance options. Results indicate that up to 7.9 TWh of electricity can be saved per year with 6.7 Mt-CO 2 emissions mitigation at negative or very low CO 2 prices of US$ 10/t-CO 2 . Despite such options existing, their penetration is not realized due to myriad barriers such as financial, institutional or awareness and therefore cannot be taken as baseline options for CO 2 emission mitigation regimes. - Highlights: • Residential sector provides focused mitigation opportunities. • Energy efficient space cooling is the main technology transition required. • Almost 26% residential load could be reduced by DSM measures. • Myriad barriers limit penetration of negative marginal cost efficient options

  5. Management report 2001 of COPEL - Electrical Company of Parana State, Brazil

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    The COPEL - Electrical Company of Parana State, Brazil - management report of calendar year of 2000 is presented, covering the following topics: COPEL - standing for much more than energy; extending the benefits of electricity to everyone in Parana state, Brazil; protecting and recovering the environment; philanthropy and volunteer work; education; social integration; support to cultural expression and gratitude

  6. Inventory of power plants in the United States 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-18

    The Inventory of Power Plants in the US provides year-end statistics on generating units operated by electric utilities in the US (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of December 31, 1994. The publication also provides a 10-year outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress, Federal, and State agencies; the electric utility industry; and the general public. This is a report of electric utility data; in cases where summary data of nonutility capacity are presented, it is specifically noted as such.

  7. The analysis of Taiwan's residential electricity demand under the electricity tariff policy

    Science.gov (United States)

    Chen, Po-Jui

    In October 2013, the Taiwan Power Company (Taipower), the monopolized state utility service in Taiwan, implemented an electricity tariff adjustment policy to reduce residential electricity demand. Using bi-monthly billing data from 6,932 electricity consumers, this study examine how consumers respond to an increase in electricity prices. This study employs an empirical approach that takes advantage of quasi-random variation over a period of time when household bills were affected by a change in electricity price. The study found that this price increase caused a 1.78% decline in residential electricity consumption, implying a price elasticity of -0.19 for summer-season months and -0.15 for non-summer-season months. The demand for electricity is therefore relatively inelastic, likely because it is hard for people to change their electricity consumption behavior in the short-term. The results of this study highlight that demand-side management cannot be the only lever used to address Taiwan's forecasted decrease in electricity supply.

  8. Estimation of health state utilities in breast cancer

    Directory of Open Access Journals (Sweden)

    Kim SH

    2017-03-01

    Full Text Available Seon-Ha Kim,1 Min-Woo Jo,2 Minsu Ock,2 Hyeon-Jeong Lee,2 Jong-Won Lee3,4 1Department of Nursing, College of Nursing, Dankook University, Cheonan, 2Department of Preventive Medicine, University of Ulsan College of Medicine, Seoul, 3Department of Breast and Endocrine Surgery, Asan Medical Center, Seoul, 4Department of Surgery, University of Ulsan College of Medicine, Seoul, South Korea Purpose: The aim of this study is to determine the utility of breast cancer health states using the standard gamble (SG and visual analog scale (VAS methods in the Korean general population.Materials and methods: Eight hypothetical breast cancer health states were developed based on patient education material and previous publications. Data from 509 individuals from the Korean general population were used to evaluate breast cancer health states using the VAS and the SG methods, which were obtained via computer-assisted personal interviews. Mean utility values were calculated for each human papillomavirus (HPV-related health state.Results: The rank of health states was identical between two valuation methods. SG values were higher than VAS values in all health states. The utility values derived from SG were 0.801 (noninvasive breast cancer with mastectomy and followed by reconstruction, 0.790 (noninvasive breast cancer with mastectomy only, 0.779 (noninvasive breast cancer with breast-conserving surgery and radiation therapy, 0.731 (invasive breast cancer with surgery, radiation therapy, and/or chemotherapy, 0.610 (locally advanced breast cancer with radical mastectomy with radiation therapy, 0.587 (inoperable locally advanced breast cancer, 0.496 (loco-regional recurrent breast cancer, and 0.352 (metastatic breast cancer.Conclusion: Our findings might be useful for economic evaluation of breast cancer screening and interventions in general populations. Keywords: breast neoplasm, Korea, quality-adjusted life years, quality of life

  9. Electric power monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  10. Demand-controlling marketing of electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Raffee, H; Fritz, W

    1980-01-01

    In situations like the shortage of energy resources the particular autonomy of the users concerning energy demand raises more and more aggravating problems for the electric utilities (EU) and, last not least, for society (i.e. the peak-load problem, threatening bottlenecks in the supply situation). Thus the requirement for a demand-controlling marketing strategy of the EU with the help of which the individual demand should be influenced in the following manner is legitimate. The article discusses the targets, strategies, and instruments of marketing performed by the EU under the aspect of their efficiency concerning demand control. The discussion leads to e.g. the following results: that a marketing strategy for the sensible, responsible, and efficent use of energy, in the long-term, serves both the interests of the users and the interests of the EU; that such a marketing programme can have the required controlling effects especially with the help of strategies like market segmentation and cooperation. The discussion makes also clear that a demand-controlling marketing strategy of the EU can hardly be realized without a considerable change within the organization of the EU on one hand and, on the other, without expanding the marketing programme toward a marketing strategy of balance.

  11. NRC review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Evolutionary plant designs, Chapters 2--13, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 2 (Parts 1 and 2) of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Evolutionary Plant Designs,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER gives the results of the staff's review of Volume II of the Requirements Document for evolutionary plant designs, which consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant (approximately 1300 megawatts-electric)

  12. Concept of a utility scale dispatch able solar thermal electricity plant with an indirect particle receiver in a single tower layout

    Science.gov (United States)

    Schwaiger, Karl; Haider, Markus; Haemmerle, Martin; Steiner, Peter; Obermaier, Michael-Dario

    2016-05-01

    Flexible dispatch able solar thermal electricity plants applying state of the art power cycles have the potential of playing a vital role in modern electricity systems and even participating in the ancillary market. By replacing molten salt via particles, operation temperatures can be increased and plant efficiencies of over 45 % can be reached. In this work the concept for a utility scale plant using corundum as storage/heat transfer material is thermodynamically modeled and its key performance data are cited. A novel indirect fluidized bed particle receiver concept is presented, profiting from a near black body behavior being able to heat up large particle flows by realizing temperature cycles over 500°C. Specialized fluidized bed steam-generators are applied with negligible auxiliary power demand. The performance of the key components is discussed and a rough sketch of the plant is provided.

  13. Correction: Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Graves, Christopher R.; Mogensen, Mogens Bjerg

    2017-01-01

    Correction for ‘Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4’ by S. H. Jensen et al., Energy Environ. Sci., 2015, 8, 2471–2479.......Correction for ‘Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4’ by S. H. Jensen et al., Energy Environ. Sci., 2015, 8, 2471–2479....

  14. On the economics of PURPA auctions. [Contracts between utilities and electricity producers in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Bolle, Friedel (Energiewirtschaftliches Inst. an der Univ. zu Koeln (Germany))

    1991-04-01

    It is shown that, under certain conditions, Public Utility Regulatory Policies Act (PURPA) auctions in the USA theoretically lead to efficient contracts between utilities and producers of electricity. In contrast to normal auctions bidders compete with (potentially non-linear) revenue functions and with non-price attributes. In practice, there are tremendous difficulties in the evaluation of bids which result from the long duration of contracts and from the necessity to evaluate risks and non-price attributes. (author).

  15. Spot markets vs. long-term contracts - modelling tools for regional electricity generating utilities

    International Nuclear Information System (INIS)

    Grohnheit, P.E.

    1999-01-01

    A properly organised market for electricity requires that some information will be available for all market participants. Also a range of generally available modelling tools are necessary. This paper describes a set of simple models based on published data for analyses of the long-term revenues of regional utilities with combined heat and power generation (CHP), who will operate a competitive international electricity market and a local heat market. The future revenues from trade on the spot market is analysed using a load curve model, in which marginal costs are calculated on the basis of short-term costs of the available units and chronological hourly variations in the demands for electricity and heat. Assumptions on prices, marginal costs and electricity generation by the different types of generating units are studied for selected types of local electricity generators. The long-term revenue requirements to be met by long-term contracts are analysed using a traditional techno-economic optimisation model focusing on technology choice and competition among technologies over 20.30 years. A possible conclusion from this discussion is that it is important for the economic and environmental efficiency of the electricity market that local or regional generators of CHP, who are able to react on price signals, do not conclude long-term contracts that include fixed time-of-day tariff for sale of electricity. Optimisation results for a CHP region (represented by the structure of the Danish electricity and CHP market in 1995) also indicates that a market for CO 2 tradable permits is unlikely to attract major non-fossil fuel technologies for electricity generation, e.g. wind power. (au)

  16. NRC review of Electric Power Research Institute's Advanced Light Reactor Utility Requirements Document - Program summary, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 1 of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Program Summary,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER provides a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review

  17. An essay pertaining to the supply and price of natural gas as fuel for electric utilities and independent power producers; and, the related growth of non-utility generators to meet capacity shortfalls in the next decade

    International Nuclear Information System (INIS)

    Clements, J.R.

    1990-01-01

    This paper addresses the impact natural gas and petroleum prices have on how the electric power industry decides to meet increasing demand for electric power. The topics of the paper include the pricing impact of the Iraq-Kuwait conflict, the BTU parity argument, electric utility capacity shortfalls in 1993, the growth of the non-utility generator and the independent power developer market, natural gas as the desired fuel of the decade, the financial strategy in acquiring natural gas reserves, the cost and availability of natural gas supplies for non-utility generators, and the reluctance of the gas producers to enter long term contracts

  18. Comparison of electricity prices in major North American cities : rates effective May 1, 2001

    International Nuclear Information System (INIS)

    2002-01-01

    This report presents the major findings of a comparative evaluation of electricity prices in major North American cities, by customer category, based on rates in effect on May 1, 2001. Besides Hydro-Quebec, the comparison includes 21 utilities, of which 11 serve the major cities across Canada and 10 utilities located in 10 American states. Hydro-Quebec is one of the largest electric utilities in North America with one of the most extensive systems. Of the 190 billion kilowatt-hours delivered annually, 37 billion are exported to neighbouring provinces in Canada and to the United States. 93 per cent of the generating facilities are hydroelectric. The report covers consumption levels, taxes, optional programs, location, time-of-use rates, exchange rates, and other factors that affect electricity prices such as fuel adjustment clauses for utilities that produce electricity in thermal power plants. It was noted that Hydro-Quebec has frozen its rates until April 2002, keeping them at the same level as those set on May 1, 1998. The report showed that Hydro-Quebec has maintained a competitive position at a level similar to or better than previous years. Three of the 11 Canadian utilities implemented rate increases between May 1, 2000 and May 1, 2001, and 2 utilities reduced their rates. Two utilities modified their rate structure following deregulation. During the same time period, 3 of the 10 utilities in the United States increased their rates, and one reduced them. The rates in the United States varied regardless of increases or freezes because many utilities had incorporated adjustment clauses. Quebec residential consumers enjoy the second lowest rates in North America. Only Winnipeg ranked higher. Hydro-Quebec has also remained competitive when it comes to small, medium and large power customers. It ranked fifth for small power customers, third for medium power customers, and third for large power customers. tabs., figs., appendices

  19. Air pollution effects due to deregulation of the electric industry

    Science.gov (United States)

    Davoodi, Khojasteh Riaz

    The Energy Policy Act of 1992 introduced the concept of open-access into the electric utility industry which allows privately-owned utilities to transmit power produced by non-utility generators and independent power producers (IPPs). In April 1996, the Federal Energy Regulatory Commission (FERC) laid down the final rules (Orders No. 888 & No. 889), which required utilities to open their transmission lines to any power producer and charge them no more than what they pay for the use of their own lines. These rules set the stage for the retail sale of electricity to industrial, commercial and residential utility customers; non-utility generators (Nugs); and power marketers. These statutory, regulatory and administrative changes create for the electric utility industry two different forces that contradict each other. The first is the concept of competition among utility companies; this places a greater emphasis on electric power generation cost control and affects generation/fuel mix selection and demand side management (DSM) activities. The second force, which is converse to the first, is that utilities are major contributors to the air pollution burden in the United States and environmental concerns are forcing them to reduce emissions of air pollutants by using more environmentally friendly fuels and implementing energy saving programs. This study evaluates the impact of deregulation within the investor owned electric utilities and how this deregulation effects air quality by investigating the trend in demand side management programs and generation/fuel mix. A survey was conducted of investor owned utilities and independent power producers. The results of the survey were analyzed by analysis of variance and regression analysis to determine the impact to Air Pollution. An air Quality Impact model was also developed in this study. This model consists of six modules: (1) demand side management and (2) consumption of coal, (3) gas, (4) renewable, (5) oil and (6

  20. Incentive regulation of nuclear power plants by state public utility commissions

    International Nuclear Information System (INIS)

    Petersen, J.C.

    1987-12-01

    This report on incentive regulation of nuclear power plants by state public utility commissions (PUCs). Economic performance incentives established by state PUCs are applicable to the construction or operation of about 45 nuclear power reactors owned by 30 utilities in 17 states. The NRC staff monitors development of the incentives and periodically provides an updated report on all nuclear plant incentives to its regional offices. The staff maintains contact with the PUCs and the utilities responsible for implementing the incentives in order to obtain the updated information and to consider potential safety effects of the incentives. This report presents the NRC staff's concerns on potential safety effects of economic performance incentives. It also includes a plant-by-plant survey that describes the mechanics of each incentive and discusses the financial effects of the incentive on the utility-owner(s) of the plant

  1. Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)

    International Nuclear Information System (INIS)

    Cavallo, Alfred

    2007-01-01

    World wind energy resources are substantial, and in many areas, such as the US and northern Europe, could in theory supply all of the electricity demand. However, the remote or challenging location (i.e. offshore) and especially the intermittent character of the wind resources present formidable barriers to utilization on the scale required by a modern industrial economy. All of these technical challenges can be overcome. Long distance transmission is well understood, while offshore wind technology is being developed rapidly. Intermittent wind power can be transformed to a controllable power source with hybrid wind/compressed air energy storage (CAES) systems. The cost of electricity from such hybrid systems (including transmission) is affordable, and comparable to what users in some modern industrial economies already pay for electricity. This approach to intermittent energy integration has many advantages compared to the current strategy of forcing utilities to cope with supply uncertainty and transmission costs. Above all, it places intermittent wind on an equal technical footing with every other generation technology, including nuclear power, its most important long-term competitor

  2. Electric Power Monthly, August 1990. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  3. Nuclear option: one of several choices open to electric utilities; the European case

    International Nuclear Information System (INIS)

    Charrault, J.C.

    1983-01-01

    Acknowledging a difference of opinion on nuclear energy between the US and Europe, the author states the European Community's main energy problems and the solutions that are planned, gives the economic aspects of interfuel competition for electricity generation, and promotes nuclear energy as a secure source of electricity supply. Fast-breeder-reactor (FBR) technology and nuclear-fusion technology are discussed as the reliable successors to nuclear power in the beginning of the next century when uranium shortages and failing renewable energy substitutes will be inadequate to meet Europe's electricity needs

  4. Electric power monthly, May 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Statistics by company and plant are published on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  5. The politics of power: Electricity reform in India

    International Nuclear Information System (INIS)

    Joseph, Kelli L.

    2010-01-01

    Ongoing theft, corruption, and an artificially decreased pricing structure have made it nearly impossible for the state utilities in India to improve power service. As a result, industrial consumers across India exit the state-run system and rely on their own on-site power generation in order to ensure a consistent and reliable source of electricity. The 2003 Electricity Act encourages further power production from these captive plants through its open access clause. By encouraging the growth of these captive power plants, politicians in India set up a dual-track economy, whereby state-run and market-run production exist side-by-side. This strategy allows politicians to encourage private sector involvement in the electricity market, without jeopardizing the support of key political constituencies at the state level.

  6. Highway vehicle electric drive in the United States : 2009 status and issues.

    Energy Technology Data Exchange (ETDEWEB)

    Santini, D. J.; Energy Systems

    2011-02-16

    The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.

  7. Public-policy responsibilities in a restructured electricity industry

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, B.; Hirst, E.; Bauer, D.

    1995-06-01

    In this report, we identify and define the key public-policy values, objectives, and actions that the US electricity industry currently meets. We also discuss the opportunities for meeting these objectives in a restructured industry that relies primarily on market forces rather than on government mandates. And we discuss those functions that governments might undertake, presumably because they will not be fully met by a restructured industry on its own. These discussions are based on a variety of inputs. The most important inputs came from participants in an April 1995 workshop on Public-Policy Responsibilities and Electric Industry Restructuring: Shaping the Research Agenda. Other sources of information and insights include the reviews of a draft of this report by workshop participants and others and the rapidly growing literature on electric-industry restructuring and its implications. One of the major concerns about the future of the electricity industry is the fate of numerous social and environmental programs supported by today`s electric utilities. Many people worry that a market-driven industry may not meet the public-policy objectives that electric utilities have met in the past. Examples of potentially at-risk programs include demand-side management (DSM), renewable energy, low-income weatherization, and fuel diversity. Workshop participants represented electric utilities, public utility commissions (PUCs), state energy offices, public-interest groups, other energy providers, and the research community.

  8. Moving from Outsider to Insider: Peer Status and Partnerships between Electricity Utilities and Residential Consumers

    Science.gov (United States)

    Morris, Peter; Buys, Laurie; Vine, Desley

    2014-01-01

    An electricity demand reduction project based on comprehensive residential consumer engagement was established within an Australian community in 2008. By 2011, both the peak demand and grid supplied electricity consumption had decreased to below pre-intervention levels. This case study research explored the relationship developed between the utility, community and individual consumer from the residential customer perspective through qualitative research of 22 residential households. It is proposed that an energy utility can be highly successful at peak demand reduction by becoming a community member and a peer to residential consumers and developing the necessary trust, access, influence and partnership required to create the responsive environment to change. A peer-community approach could provide policymakers with a pathway for implementing pro-environmental behaviour for low carbon communities, as well as peak demand reduction, thereby addressing government emission targets while limiting the cost of living increases from infrastructure expenditure. PMID:24979234

  9. Characterization of PTO and Idle Behavior for Utility Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Adam W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Konan, Arnaud M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, Eric S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kelly, Kenneth J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Prohaska, Robert S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-09-28

    This report presents the results of analyses performed on utility vehicle data composed primarily of aerial lift bucket trucks sampled from the National Renewable Energy Laboratory's Fleet DNA database to characterize power takeoff (PTO) and idle operating behavior for utility trucks. Two major data sources were examined in this study: a 75-vehicle sample of Odyne electric PTO (ePTO)-equipped vehicles drawn from multiple fleets spread across the United States and 10 conventional PTO-equipped Pacific Gas and Electric fleet vehicles operating in California. Novel data mining approaches were developed to identify PTO and idle operating states for each of the datasets using telematics and controller area network/onboard diagnostics data channels. These methods were applied to the individual datasets and aggregated to develop utilization curves and distributions describing PTO and idle behavior in both absolute and relative operating terms. This report also includes background information on the source vehicles, development of the analysis methodology, and conclusions regarding the study's findings.

  10. Hawaii electric system reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Silva Monroy, Cesar Augusto; Loose, Verne William

    2012-09-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  11. Solid-state supercapacitors with ionic liquid gel polymer electrolyte based on poly (3, 4-ethylenedioxythiophene), carbon nanotubes, and metal oxides nanocomposites for electrical energy storage

    Science.gov (United States)

    Obeidat, Amr M.

    Clean and renewable energy systems have emerged as an important area of research having diverse and significant new applications. These systems utilize different energy storage methods such as the batteries and supercapacitors. Supercapacitors are electrochemical energy storage devices that are designed to bridge the gap between batteries and conventional capacitors. Supercapacitors which store electrical energy by electrical double layer capacitance are based on large surface area structured carbons. The materials systems in which the Faradaic reversible redox reactions store electrical energy are the transition metal oxides and electronically conducting polymers. Among the different types of conducting polymers, poly (3, 4- ethylenedioxythiophene) (PEDOT) is extensively investigated owing to its chemical and mechanical stability. Due to instability of aqueous electrolytes at high voltages and toxicity of organic electrolytes, potential of supercapacitors has not been fully exploited. A novel aspect of this work is in utilizing the ionic liquid gel polymer electrolyte to design solid-state supercapacitors for energy storage. Various electrochemical systems were investigated including graphene, PEDOT, PEDOT-carbon nanotubes, PEDOT-manganese oxide, and PEDOT-iron oxide nanocomposites. The electrochemical performance of solid-state supercapacitor devices was evaluated based on cyclic voltammetry (CV), charge-discharge (CD), prolonged cyclic tests, and electrochemical impedance spectroscopy (EIS) techniques. Raman spectroscopy technique was also utilized to analyze the bonding structure of the electrode materials. The graphene solid-state supercapacitor system displayed areal capacitance density of 141.83 mF cm-2 based on high potential window up to 4V. The PEDOT solid-state supercapacitor system was synthesized in acetonitrile and aqueous mediums achieving areal capacitance density of 219.17 mF cm-2. The hybrid structure of solid-state supercapacitors was also

  12. Utilizing a vanadium redox flow battery to avoid wind power deviation penalties in an electricity market

    International Nuclear Information System (INIS)

    Turker, Burak; Arroyo Klein, Sebastian; Komsiyska, Lidiya; Trujillo, Juan José; Bremen, Lueder von; Kühn, Martin; Busse, Matthias

    2013-01-01

    Highlights: • Vanadium redox flow battery utilized for wind power grid integration was studied. • Technical and financial analyses at single wind farm level were performed. • 2 MW/6 MW h VRFB is suitable for mitigating power deviations for a 10 MW wind farm. • Economic incentives might be required in the short-term until the VRFB prices drop. - Abstract: Utilizing a vanadium redox flow battery (VRFB) for better market integration of wind power at a single wind farm level was evaluated. A model which combines a VRFB unit and a medium sized (10 MW) wind farm was developed and the battery was utilized to compensate for the deviations resulting from the forecast errors in an electricity market bidding structure. VRFB software model which was introduced in our previous paper was integrated with real wind power data, power forecasts and market data based on the Spanish electricity market. Economy of the system was evaluated by financial assessments which were done by considering the VRFB costs and the amount of deviation penalty payments resulting from forecast inaccuracies

  13. Electric utility system benefits of factory packaged GE LM Modular Generator sets

    Energy Technology Data Exchange (ETDEWEB)

    West, G.

    1994-12-31

    Electric utility system benefits of factory packaged GE LM modular generator sets are outlined. The following topics are discussed: GE LM gas turbine history, operating experience, maintenance, gas turbine spare engines, modular gas turbine generator sets, typical LM2500 cogeneration plant and STIG cycle plant, factory packaging concept, gas turbine/generator package, performance, comparison, competitive capital cost, phased construction, comparison of revenue requirements, capacity evaluation, heat rate evaluation, fuel evaluation, startup, and dispatch flexibility without maintenance penalty.

  14. Incentive regulation of nuclear power plants by state Public Utility Commissions

    International Nuclear Information System (INIS)

    Martin, R.L.; Olson, J.; Hendrickson, P.

    1989-12-01

    Economic performance incentives established by state Public Utility Commissions (PUCs) currently are applicable to the construction or operation of approximately 73 nuclear power reactors owned by 27 utilities with investment greater than 10% in 18 states. The NRC staff monitors development of the incentives and periodically provides an updated report on all nuclear plant incentives to its headquarters and regional offices. The staff maintains contact with the PUCs and the utilities responsible for implementing the incentives in order to obtain the updated information and to consider potential safety effects of the incentives. This report on incentive regulation of nuclear power plants by state PUCs presents the NRC staff's concerns on potential safety effects of economic performance incentives. It also includes a plant-by-plant survey that describes the mechanics of each incentive and discusses the financial effects of the incentive on the utility-owner(s) of the plant

  15. Inventory of power plants in the United States, 1993

    International Nuclear Information System (INIS)

    1994-12-01

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended

  16. Inventory of power plants in the United States, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  17. Methodology and results of the impacts of modeling electric utilities: a comparative evaluation of MEMM and REM

    International Nuclear Information System (INIS)

    1981-09-01

    This study compares two models of the US electric utility industry including the EIA's electric utility submodel in the Midterm Energy Market Model (MEMM), and the Baughman-Joskow Regionalized Electricity Model (REM). The method of comparison emphasizes reconciliation of differences in data common to both models, and the performance of simulation experiments to evaluate the empirical significance of certain structural differences in the models. The major research goal was to contrast and compare the effects of alternative modeling structures and data assumptions on model results; and, particularly to considered each model's approach to the impacts of generation technology and fuel use choices on electric utilities. The methodology used was to run the REM model first without and, then, with a representation of the Power Plant and Industrial Fuel Act of 1978, assuming medium supply and demand curves and varying fuel prices. The models and data structures of the two models are described. The original 1978 data used in MEMM and REM are analyzed and compared. The computations and effects of different assumptions on fuel use decisions are discussed. The adjusted REM data required for the experiments are presented. Simulation results of the two models are compared. These results represent projections for 1985, 1990, and 1995 of: US power generation by plant type; amounts of each type of fuel used for power generation; average electricity prices; and the effects of additional or fewer nuclear and coal-fired plants. A significant result is that the REM model exhibits about 7 times as much gas and oil consumption in 1995 as the MEMM model. Continuing simulation experiments on MEMM are recommended to determine whether the input data to MEMM are reasonable and properly adjusted

  18. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

    2014-09-01

    This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

  19. Testing the equation of state and electrical conductivity of copper by the electrical wire explosion in air: Experiment and magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Barysevich, A. E.; Cherkas, S. L.

    2011-01-01

    We perform experiments on testing the equations of state and electrical conductivity of copper in three different regimes of copper wire electrical explosion, when the inserted energy (i) is slightly exceeded, (ii) is approximately equal, and (iii) is substantially exceeded the energy needed for the wire complete evaporation. Magnetohydrodynamic simulation is performed. The results predicted by the two different equations of state are compared with the experiment. Empirical expression for the copper electrical conductivity is presented. Parameters in this expression is fit on every of two equations of state. Map of copper conductivity is plotted.

  20. Electric heating systems - Measures and options for the reduction of electricity consumption; Elektroheizungen Massnahmen und Vorgehensoptionen zur Reduktion des Stromverbrauchs

    Energy Technology Data Exchange (ETDEWEB)

    Nipkow, J.; Togni, G.

    2009-10-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at how electricity consumption for electrical heating systems can be reduced. The authors state that electric space heating consumes roughly 6% to 12% of Swiss electricity consumption, depending on the source of data. Important reduction potentials obtainable through the implementation of efficiency measures and substitution are well known. The results of two surveys on hardware installations and heating users' and utility companies' preferences are presented and discussed. The user survey yielded more than 900 evaluable answers. The main focus was on conditions considered necessary for changing a heating system. The utilities' survey was carried out by means of letters posted to 62 utilities, half of whom sent back evaluable answers. The main focus was on the number of dwellings supplied with electric space heating, current and past tariffs and utility activities to motivate customers to change their heating systems. The results showed that high investments necessary for a new heating system and additional thermal insulation of the building are the main obstacles for making changes. On the basis of the project's findings, a catalogue of measures was developed, whereby financial aspects and general conditions were taken into account.