WorldWideScience

Sample records for stat3-mediated constitutive expression

  1. STAT3-mediated constitutive expression of SOCS-3 in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Brender, C; Nielsen, M; Kaltoft, K

    2001-01-01

    ) obtained from affected skin from a patient with mycosis fungoides (MF) and from peripheral blood from a patient with Sezary syndrome (SS). In contrast, constitutive SOCS-3 expression is not found in the leukemic Jurkat T-cell line, the MOLT-4 acute lymphoblastic leukemia cell line, and the monocytic......, it has been hypothesized that an aberrant SOCS expression plays a role in neoplastic transformation. This study reports on a constitutive SOCS-3 expression in cutaneous T-cell lymphoma (CTCL) cell lines. SOCS-3 protein is constitutively expressed in tumor cell lines (but not in nonmalignant T cells...... leukemic cell line U937. Expression of SOCS-3 coincides with a constitutive activation of STAT3 in CTCL tumor cells, and stable transfection of CTCL tumor cells with a dominant negative STAT3 strongly inhibits SOCS-3 expression, whereas transfection with wild-type STAT3 does not. Moreover, the reduced SOCS...

  2. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells

    DEFF Research Database (Denmark)

    Eriksen, K W; Kaltoft, K; Mikkelsen, G

    2001-01-01

    are IL-2Ralpha negative. An aberrant expression of IL-2Ralpha has recently been described in cutaneous T-cell lymphoma (CTCL). Here, we study the regulation of IL-2Ralpha expression and STATs in a tumor cell line obtained from peripheral blood from a patient with Sezary syndrome (SS), a leukemic variant...... of CTCL. We show that (1) STAT3 (a transcription factor known to regulate IL-2Ralpha transcription) is constitutively tyrosine-phosphorylated in SS tumor cells, but not in non-malignant T cells; (2) STAT3 binds constitutively to a STAT-binding sequence in the promotor of the IL-2Ralpha gene; (3) the Janus...... kinase inhibitor, tyrphostine AG490, inhibits STAT3 activation, STAT3 DNA binding, and IL-2Ralpha mRNA and protein expression in parallel; and (4) tyrphostine AG490 inhibits IL-2 driven mitogenesis and triggers apoptosis in SS tumor cells. In conclusion, we provide the first example of a constitutive...

  3. Screening for MPL mutations in essential thrombocythemia and primary myelofibrosis: normal Mpl expression and absence of constitutive STAT3 and STAT5 activation in MPLW515L-positive platelets.

    Science.gov (United States)

    Glembotsky, Ana C; Korin, Laura; Lev, Paola R; Chazarreta, Carlos D; Marta, Rosana F; Molinas, Felisa C; Heller, Paula G

    2010-05-01

    To evaluate the frequency of MPL W515L, W515K and S505N mutations in essential thrombocythemia (ET) and primary myelofibrosis (PMF) and to determine whether MPLW515L leads to impaired Mpl expression, constitutive STAT3 and STAT5 activation and enhanced response to thrombopoietin (TPO). Mutation detection was performed by allele-specific PCR and sequencing. Platelet Mpl expression was evaluated by flow cytometry, immunoblotting and real-time RT-PCR. Activation of STAT3 and STAT5 before and after stimulation with increasing concentrations of TPO was studied by immunoblotting. Plasma TPO was measured by ELISA. MPLW515L was detected in 1 of 100 patients with ET and 1 of 11 with PMF. Platelets from the PMF patient showed 100% mutant allele, which was Mpl surface and total protein expression were normal, and TPO levels were mildly increased in the MPLW515L-positive ET patient, while MPL transcripts did not differ from controls in both MPLW515L-positive patients. Constitutive STAT3 and STAT5 phosphorylation was absent and dose response to TPO-induced phosphorylation was not enhanced. The low frequency of MPL mutations in this cohort is in agreement with previous studies. The finding of normal Mpl levels in MPLW515L-positive platelets indicates this mutation does not lead to dysregulated Mpl expression, as frequently shown for myeloproliferative neoplasms. The lack of spontaneous STAT3 and STAT5 activation and the normal response to TPO is unexpected as MPLW515L leads to constitutive receptor activation and hypersensitivity to TPO in experimental models.

  4. Defective interleukin-4/Stat6 activity correlates with increased constitutive expression of negative regulators SOCS-3, SOCS-7, and CISH in colon cancer cells.

    Science.gov (United States)

    Liu, Xiao Hong; Xu, Shuang Bing; Yuan, Jia; Li, Ben Hui; Zhang, Yan; Yuan, Qin; Li, Pin Dong; Li, Feng; Zhang, Wen Jie

    2009-12-01

    Interleukin-4 (IL-4)-induced Stat6 activities (phenotypes) vary among human cancer cells, of which the HT-29 cell line carries an active Stat6(high) phenotype, while Caco-2 carries a defective Stat6(null) phenotype, respectively. Cancer cells with Stat6(high) show resistance to apoptosis and exaggerated metastasis, suggesting the clinical significance of Stat6 phenotypes. We previously showed that Stat6(high) HT-29 cells exhibited low constitutive expression of Stat6-negative regulators SOCS-1 and SHP-1 because of gene hypermethylation. This study further examined the constitutive expression of other closely related SOCS family numbers including SOCS-3, SOCS-5, SOCS-7, and CISH using RT-PCR. Similar to SOCS-1 and SHP-1, Stat6(high) HT-29 cells expressed low constitutive mRNA of SOCS-3, SOCS-7, and CISH than Stat6(null) Caco-2 cells. Interestingly, DNA demethylation using 5-aza-2'-deoxycytidine in HT-29 cells up-regulated mRNA expression of the above genes, indicating a hypermethylation status, which was confirmed by methylation-specific sequencing in selected SOCS-3 gene. Furthermore, defective Stat6(null) Caco-2 exhibited impaired phosphorylation of Stat6 after IL-4 stimulation by flow cytometry, in keeping with the notion of an over-performed negative regulation. The findings that IL-4/Stat6 phenotypes show differential expression of multiple negative regulators suggest a model that a collective force of powerful negative regulators, directly and indirectly, acts on Stat6 activation, which may result in differential Stat6 phenotypes.

  5. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    Energy Technology Data Exchange (ETDEWEB)

    Camporeale, Annalisa, E-mail: annalisa.camporeale@unito.it [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy); Demaria, Marco [Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945 (United States); Monteleone, Emanuele [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy); Giorgi, Carlotta [Department of Experimental and Diagnostic Medicine, Section of General Pathology, Laboratory for Technologies of Advances Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121 (Italy); Wieckowski, Mariusz R. [Nencki Institute of Experimental Biology, Department of Biochemistry, Pasteur Str. 3, Warsaw 02-093 (Poland); Pinton, Paolo [Department of Experimental and Diagnostic Medicine, Section of General Pathology, Laboratory for Technologies of Advances Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121 (Italy); Poli, Valeria, E-mail: annalisa.camporeale@unito.it [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy)

    2014-07-31

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3{sup C/C}) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3{sup C/C} MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3{sup C/C} MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms.

  6. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    International Nuclear Information System (INIS)

    Camporeale, Annalisa; Demaria, Marco; Monteleone, Emanuele; Giorgi, Carlotta; Wieckowski, Mariusz R.; Pinton, Paolo; Poli, Valeria

    2014-01-01

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3 C/C ) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3 C/C MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3 C/C MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms

  7. Stat1 activation attenuates IL-6 induced Stat3 activity but does not alter apoptosis sensitivity in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Dimberg Lina Y

    2012-07-01

    Full Text Available Abstract Background Multiple myeloma (MM is at present an incurable malignancy, characterized by apoptosis-resistant tumor cells. Interferon (IFN treatment sensitizes MM cells to Fas-induced apoptosis and is associated with an increased activation of Signal transducer and activator of transcription (Stat1. The role of Stat1 in MM has not been elucidated, but Stat1 has in several studies been ascribed a pro-apoptotic role. Conversely, IL-6 induction of Stat3 is known to confer resistance to apoptosis in MM. Methods To delineate the role of Stat1 in IFN mediated sensitization to apoptosis, sub-lines of the U-266-1970 MM cell line with a stable expression of the active mutant Stat1C were utilized. The influence of Stat1C constitutive transcriptional activation on endogenous Stat3 expression and activation, and the expression of apoptosis-related genes were analyzed. To determine whether Stat1 alone would be an important determinant in sensitizing MM cells to apoptosis, the U-266-1970-Stat1C cell line and control cells were exposed to high throughput compound screening (HTS. Results To explore the role of Stat1 in IFN mediated apoptosis sensitization of MM, we established sublines of the MM cell line U-266-1970 constitutively expressing the active mutant Stat1C. We found that constitutive nuclear localization and transcriptional activity of Stat1 was associated with an attenuation of IL-6-induced Stat3 activation and up-regulation of mRNA for the pro-apoptotic Bcl-2 protein family genes Harakiri, the short form of Mcl-1 and Noxa. However, Stat1 activation alone was not sufficient to sensitize cells to Fas-induced apoptosis. In a screening of > 3000 compounds including bortezomib, dexamethasone, etoposide, suberoylanilide hydroxamic acid (SAHA, geldanamycin (17-AAG, doxorubicin and thalidomide, we found that the drug response and IC50 in cells constitutively expressing active Stat1 was mainly unaltered. Conclusion We conclude that Stat1 alters IL-6

  8. Stat1 activation attenuates IL-6 induced Stat3 activity but does not alter apoptosis sensitivity in multiple myeloma

    International Nuclear Information System (INIS)

    Dimberg, Lina Y; Nilsson, Kenneth; Öberg, Fredrik; Wiklund, Helena Jernberg; Dimberg, Anna; Ivarsson, Karolina; Fryknäs, Mårten; Rickardson, Linda; Tobin, Gerard; Ekman, Simon; Larsson, Rolf; Gullberg, Urban

    2012-01-01

    Multiple myeloma (MM) is at present an incurable malignancy, characterized by apoptosis-resistant tumor cells. Interferon (IFN) treatment sensitizes MM cells to Fas-induced apoptosis and is associated with an increased activation of Signal transducer and activator of transcription (Stat)1. The role of Stat1 in MM has not been elucidated, but Stat1 has in several studies been ascribed a pro-apoptotic role. Conversely, IL-6 induction of Stat3 is known to confer resistance to apoptosis in MM. To delineate the role of Stat1 in IFN mediated sensitization to apoptosis, sub-lines of the U-266-1970 MM cell line with a stable expression of the active mutant Stat1C were utilized. The influence of Stat1C constitutive transcriptional activation on endogenous Stat3 expression and activation, and the expression of apoptosis-related genes were analyzed. To determine whether Stat1 alone would be an important determinant in sensitizing MM cells to apoptosis, the U-266-1970-Stat1C cell line and control cells were exposed to high throughput compound screening (HTS). To explore the role of Stat1 in IFN mediated apoptosis sensitization of MM, we established sublines of the MM cell line U-266-1970 constitutively expressing the active mutant Stat1C. We found that constitutive nuclear localization and transcriptional activity of Stat1 was associated with an attenuation of IL-6-induced Stat3 activation and up-regulation of mRNA for the pro-apoptotic Bcl-2 protein family genes Harakiri, the short form of Mcl-1 and Noxa. However, Stat1 activation alone was not sufficient to sensitize cells to Fas-induced apoptosis. In a screening of > 3000 compounds including bortezomib, dexamethasone, etoposide, suberoylanilide hydroxamic acid (SAHA), geldanamycin (17-AAG), doxorubicin and thalidomide, we found that the drug response and IC50 in cells constitutively expressing active Stat1 was mainly unaltered. We conclude that Stat1 alters IL-6 induced Stat3 activity and the expression of pro

  9. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression

    International Nuclear Information System (INIS)

    Kamitani, Shinya; Ohbayashi, Norihiko; Ikeda, Osamu; Togi, Sumihito; Muromoto, Ryuta; Sekine, Yuichi; Ohta, Kazuhide; Ishiyama, Hironobu; Matsuda, Tadashi

    2008-01-01

    Signal transducers and activators of transcription (STATs) mediate cell proliferation, differentiation, and survival in immune responses, hematopoiesis, neurogenesis, and other biological processes. Recently, we showed that KAP1 is a novel STAT-binding partner that regulates STAT3-mediated transactivation. KAP1 is a universal co-repressor protein for the KRAB zinc finger protein superfamily of transcriptional repressors. In this study, we found KAP1-dependent repression of interferon (IFN)/STAT1-mediated signaling. We also demonstrated that endogenous KAP1 associates with endogenous STAT1 in vivo. Importantly, a small-interfering RNA-mediated reduction in KAP1 expression enhanced IFN-induced STAT1-dependent IRF-1 gene expression. These results indicate that KAP1 may act as an endogenous regulator of the IFN/STAT1 signaling pathway

  10. Dual inhibition of STAT1 and STAT3 activation downregulates expression of PD-L1 in human breast cancer cells.

    Science.gov (United States)

    Sasidharan Nair, Varun; Toor, Salman M; Ali, Bassam R; Elkord, Eyad

    2018-05-02

    Breast cancer is the most commonly diagnosed cancer, and it is a leading cause of cancer-related deaths in females worldwide. Triple-negative breast cancer (TNBC) constitutes 15% of breast cancer and shows distinct metastasis profiles with poor prognosis. Strong PD-L1 expression has been observed in some tumors, supporting their escape from immune surveillance. Targeting PD-L1 could be a promising therapeutic approach in breast cancer patients. We investigated potential molecular mechanisms for constitutive expression of PD-L1 by inhibiting upstream STAT1 and STAT3 signals. PD-L1 expression in three breast cancer cell lines was measured using quantitative PCR and western blotting. Activation of STAT1 and STAT3 was blocked using pharmacological inhibitors and siRNA. The mechanism underlying the constitutive expression of PD-L1 was investigated using ChIP and co-immunoprecipitation assays. We found that individual inhibition of STAT1 and STAT3 activation partially downregulated PD-L1, while combined inhibition completely downregulated PD-L1 expression. Moreover, our results suggest that pSTAT1-pSTAT3 dimerize in cytosol and translocate to the nucleus, where they bind to PD-L1 promoter and induce PD-L1 expression. These findings provide a rationale for combined targeting of STAT1 and STAT3 for the development of immune-based cancer therapies for down regulation of PD-L1 expression.

  11. Negative Regulation of STAT3 Protein-mediated Cellular Respiration by SIRT1 Protein

    DEFF Research Database (Denmark)

    Bernier, Michel; Paul, Rajib K; Martin-Montalvo, Alejandro

    2011-01-01

    those of wild-type controls. Comparison of profiles of phospho-antibody array data indicated that the deletion of SirT1 was accompanied by constitutive activation of the pro-inflammatory NF-¿B pathway, which is key for STAT3 induction and increased cellular respiration in Sirt1-KO cells. Thus, SIRT1...... cells exhibited higher mitochondrial respiration as compared with wild-type MEFs. Two independent approaches, including ectopic expression of SIRT1 and siRNA-mediated knockdown of STAT3, led to reduction in intracellular ATP levels and increased lactate production in Sirt1-KO cells that were approaching...

  12. Characterization of STAT3 activation and expression in canine and human osteosarcoma

    Directory of Open Access Journals (Sweden)

    Li Pui-Kai

    2009-03-01

    Full Text Available Abstract Background Dysregulation of signal transducer and activator of transcription 3 (STAT3 has been implicated as a key participant in tumor cell survival, proliferation, and metastasis and is often correlated with a more malignant tumor phenotype. STAT3 phosphorylation has been demonstrated in a subset of human osteosarcoma (OSA tissues and cell lines. OSA in the canine population is known to exhibit a similar clinical behavior and molecular biology when compared to its human counterpart, and is often used as a model for preclinical testing of novel therapeutics. The purpose of this study was to investigate the potential role of STAT3 in canine and human OSA, and to evaluate the biologic activity of a novel small molecule STAT3 inhibitor. Methods To examine STAT3 and Src expression in OSA, we performed Western blotting and RT-PCR. OSA cells were treated with either STAT3 siRNA or small molecule Src (SU6656 or STAT3 (LLL3 inhibitors and cell proliferation (CyQUANT, caspase 3/7 activity (ELISA, apoptosis (Western blotting for PARP cleavage and/or viability (Wst-1 were determined. Additionally, STAT3 DNA binding after treatment was determined using EMSA. Expression of STAT3 targets after treatment was demonstrated with Western blotting, RT-PCR, or gel zymography. Results Our data demonstrate that constitutive activation of STAT3 is present in a subset of canine OSA tumors and human and canine cell lines, but not normal canine osteoblasts. In both canine and human OSA cell lines, downregulation of STAT3 activity through inhibition of upstream Src family kinases using SU6656, inhibition of STAT3 DNA binding and transcriptional activities using LLL3, or modulation of STAT3 expression using siRNA, all resulted in decreased cell proliferation and viability, ultimately inducing caspase-3/7 mediated apoptosis in treated cells. Furthermore, inhibition of either Src or STAT3 activity downregulated the expression of survivin, VEGF, and MMP2, all known

  13. Characterization of STAT3 activation and expression in canine and human osteosarcoma

    International Nuclear Information System (INIS)

    Fossey, Stacey L; Liao, Albert T; McCleese, Jennifer K; Bear, Misty D; Lin, Jiayuh; Li, Pui-Kai; Kisseberth, William C; London, Cheryl A

    2009-01-01

    Dysregulation of signal transducer and activator of transcription 3 (STAT3) has been implicated as a key participant in tumor cell survival, proliferation, and metastasis and is often correlated with a more malignant tumor phenotype. STAT3 phosphorylation has been demonstrated in a subset of human osteosarcoma (OSA) tissues and cell lines. OSA in the canine population is known to exhibit a similar clinical behavior and molecular biology when compared to its human counterpart, and is often used as a model for preclinical testing of novel therapeutics. The purpose of this study was to investigate the potential role of STAT3 in canine and human OSA, and to evaluate the biologic activity of a novel small molecule STAT3 inhibitor. To examine STAT3 and Src expression in OSA, we performed Western blotting and RT-PCR. OSA cells were treated with either STAT3 siRNA or small molecule Src (SU6656) or STAT3 (LLL3) inhibitors and cell proliferation (CyQUANT), caspase 3/7 activity (ELISA), apoptosis (Western blotting for PARP cleavage) and/or viability (Wst-1) were determined. Additionally, STAT3 DNA binding after treatment was determined using EMSA. Expression of STAT3 targets after treatment was demonstrated with Western blotting, RT-PCR, or gel zymography. Our data demonstrate that constitutive activation of STAT3 is present in a subset of canine OSA tumors and human and canine cell lines, but not normal canine osteoblasts. In both canine and human OSA cell lines, downregulation of STAT3 activity through inhibition of upstream Src family kinases using SU6656, inhibition of STAT3 DNA binding and transcriptional activities using LLL3, or modulation of STAT3 expression using siRNA, all resulted in decreased cell proliferation and viability, ultimately inducing caspase-3/7 mediated apoptosis in treated cells. Furthermore, inhibition of either Src or STAT3 activity downregulated the expression of survivin, VEGF, and MMP2, all known transcriptional targets of STAT3. These data

  14. Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines

    DEFF Research Database (Denmark)

    Nielsen, M; Kaltoft, K; Nordahl, M

    1997-01-01

    . Jaks link cytokine receptors to Stats, and abnormal Jak/Stat signaling has been observed in some hemopoietic cancers. In MF tumor cells, a slowly migrating isoform of Stat3, Stat3(sm), was found to be constitutively activated, i.e., (i) Stat3(sm) was constitutively phosphorylated on tyrosine residues...... specific. Thus, neither the fast migrating isoform of Stat3 (Stat3(fm)) nor other Stats (Stat1, Stat2, and Stat4 through Stat6) were constitutively activated. The Jak kinase inhibitor, tyrphostin AG490, blocked the constitutive activation of Stat3(sm) and inhibited spontaneous as well as interleukin 2...

  15. Stat3 induces oncogenic Skp2 expression in human cervical carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hanhui [Shanghai Medical College of Fudan University, Shanghai 200032 (China); Zhao, Wenrong [Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011 (China); Yang, Dan, E-mail: yangdandr@gmail.com [Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai 200040 (China)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Upregulation of Skp2 by IL-6 or Stat3 activation. Black-Right-Pointing-Pointer Stat3 activates Skp2 expression through bound to its promoter region. Black-Right-Pointing-Pointer Stat3 activates Skp2 expression through recruitment of P300. Black-Right-Pointing-Pointer Stat3 activation decreases the P27 stability. -- Abstract: Dysregulated Skp2 function promotes cell proliferation, which is consistent with observations of Skp2 over-expression in many types of human cancers, including cervical carcinoma (CC). However, the molecular mechanisms underlying elevated Skp2 expression have not been fully explored. Interleukin-6 (IL-6) induced Stat3 activation is viewed as crucial for multiple tumor growth and metastasis. Here, we demonstrate that Skp2 is a direct transcriptional target of Stat3 in the human cervical carcinoma cells. Our data show that IL-6 administration or transfection of a constitutively activated Stat3 in HeLa cells activates Skp2 mRNA transcription. Using luciferase reporter and ChIP assays, we show that Stat3 binds to the promoter region of Skp2 and promotes its activity through recruiting P300. As a result of the increase of Skp2 expression, endogenous p27 protein levels are markedly decreased. Thus, our results suggest a previously unknown Stat3-Skp2 molecular network controlling cervical carcinoma development.

  16. Monoclonal Antibodies Specific for STAT3β Reveal Its Contribution to Constitutive STAT3 Phosphorylation in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Uddalak Bharadwaj

    2014-09-01

    Full Text Available Since its discovery in mice and humans 19 years ago, the contribution of alternatively spliced Stat3, Stat3β, to the overall functions of Stat3 has been controversial. Tyrosine-phosphorylated (p Stat3β homodimers are more stable, bind DNA more avidly, are less susceptible to dephosphorylation, and exhibit distinct intracellular dynamics, most notably markedly prolonged nuclear retention, compared to pStat3α homodimers. Overexpression of one or the other isoform in cell lines demonstrated that Stat3β acted as a dominant-negative of Stat3α in transformation assays; however, studies with mouse strains deficient in one or the other isoform indicated distinct contributions of Stat3 isoforms to inflammation. Current immunological reagents cannot differentiate Stat3β proteins derived from alternative splicing vs. proteolytic cleavage of Stat3α. We developed monoclonal antibodies that recognize the 7 C-terminal amino acids unique to Stat3β (CT7 and do not cross-react with Stat3α. Immunoblotting studies revealed that levels of Stat3β protein, but not Stat3α, in breast cancer cell lines positively correlated with overall pStat3 levels, suggesting that Stat3β may contribute to constitutive Stat3 activation in this tumor system. The ability to unambiguously discriminate splice alternative Stat3β from proteolytic Stat3β and Stat3α will provide new insights into the contribution of Stat3β vs. Stat3α to oncogenesis, as well as other biological and pathological processes.

  17. Inhibition of STAT3 phosphorylation by sulforaphane reduces adhesion molecule expression in vascular endothelial cell.

    Science.gov (United States)

    Cho, Young S; Kim, Chan H; Ha, Tae S; Ahn, Hee Y

    2015-11-18

    Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) play key roles in the initiation of vascular inflammation. In this study, we explored whether sulforaphane, a dietary phytochemical, can inhibit the expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS), and the mechanisms involved. Sulforaphane prevented the LPS-mediated increase in ICAM-1 and VCAM-1 expression, (P < 0.01) in HUVEC. Sulforaphane also prevented the LPS-mediated increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) (P < 0.01). Stattic, a STAT3 inhibitor, reduced the LPS-induced expression of ICAM-1 and VCAM-1, and STAT3 phosphorylation (P < 0.01). STAT3 small interfering RNA treatment reduced the LPS-induced expression of ICAM-1, VCAM-1, and STAT3 (P < 0.01). Sulforaphane reduced LPS-mediated THP-1 monocyte adhesion to HUVEC (P < 0.01). In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, and this effect was prevented by sulforaphane. These data provide insight into the mechanism through which sulforaphane partly reduces the expression of ICAM-1 and VCAM-1 on the vascular wall by inhibiting STAT3 phosphorylation.

  18. Expression and Purification of Soluble STAT5b/STAT3 Proteins for SH2 Domain Binding Assay.

    Science.gov (United States)

    Asai, Akira; Takakuma, Kazuyuki

    2017-01-01

    When a large hydrophobic full-length protein is expressed in bacteria, it is often challenging to obtain recombinant proteins in the soluble fraction. One way to overcome this challenge is expression of deletion mutants that have improved solubility while maintaining biological activity. In this chapter, we describe a protocol for expression of truncated forms of STAT5b and STAT3 proteins that are soluble and retain SH2-mediated activity for phospho-Tyr peptide recognition.

  19. Lung Adenocarcinomas and Lung Cancer Cell Lines Show Association of MMP-1 Expression With STAT3 Activation

    Directory of Open Access Journals (Sweden)

    Alexander Schütz

    2015-04-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 is constitutively activated in the majority of lung cancer. This study aims at defining connections between STAT3 function and the malignant properties of non–small cell lung carcinoma (NSCLC cells. To address possible mechanisms by which STAT3 influences invasiveness, the expression of matrix metalloproteinase-1 (MMP-1 was analyzed and correlated with the STAT3 activity status. Studies on both surgical biopsies and on lung cancer cell lines revealed a coincidence of STAT3 activation and strong expression of MMP-1. MMP-1 and tyrosine-phosphorylated activated STAT3 were found co-localized in cancer tissues, most pronounced in tumor fronts, and in particular in adenocarcinomas. STAT3 activity was constitutive, although to different degrees, in the lung cancer cell lines investigated. Three cell lines (BEN, KNS62, and A549 were identified in which STAT3 activitation was inducible by Interleukin-6 (IL-6. In A549 cells, STAT3 activity enhanced the level of MMP-1 mRNA and stimulated transcription from the MMP-1 promoter in IL-6–stimulated A549 cells. STAT3 specificity of this effect was confirmed by STAT3 knockdown through RNA interference. Our results link aberrant activity of STAT3 in lung cancer cells to malignant tumor progression through up-regulation of expression of invasiveness-associated MMPs.

  20. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype

    Science.gov (United States)

    Murakami, Shunichi; Balmes, Gener; McKinney, Sandra; Zhang, Zhaoping; Givol, David; de Crombrugghe, Benoit

    2004-01-01

    We generated transgenic mice that express a constitutively active mutant of MEK1 in chondrocytes. These mice showed a dwarf phenotype similar to achondroplasia, the most common human dwarfism, caused by activating mutations in FGFR3. These mice displayed incomplete hypertrophy of chondrocytes in the growth plates and a general delay in endochondral ossification, whereas chondrocyte proliferation was unaffected. Immunohistochemical analysis of the cranial base in transgenic embryos showed reduced staining for collagen type X and persistent expression of Sox9 in chondrocytes. These observations indicate that the MAPK pathway inhibits hypertrophic differentiation of chondrocytes and negatively regulates bone growth without inhibiting chondrocyte proliferation. Expression of a constitutively active mutant of MEK1 in chondrocytes of Fgfr3-deficient mice inhibited skeletal overgrowth, strongly suggesting that regulation of bone growth by FGFR3 is mediated at least in part by the MAPK pathway. Although loss of Stat1 restored the reduced chondrocyte proliferation in mice expressing an achondroplasia mutant of Fgfr3, it did not rescue the reduced hypertrophic zone, the delay in formation of secondary ossification centers, and the achondroplasia-like phenotype. These observations suggest a model in which Fgfr3 signaling inhibits bone growth by inhibiting chondrocyte differentiation through the MAPK pathway and by inhibiting chondrocyte proliferation through Stat1. PMID:14871928

  1. Inhibition of STAT3 reduces astrocytoma cell invasion and constitutive activation of STAT3 predicts poor prognosis in human astrocytoma.

    Directory of Open Access Journals (Sweden)

    Qinchuan Liang

    Full Text Available Astrocytoma cells characteristically possess high invasion potentials. Recent studies have revealed that knockdown of signal transducers and activators of transcription 3 (STAT3 expression by RNAi induces apoptosis in astrocytoma cell. Nevertheless, the distinct roles of STAT3 in astrocytoma's invasion and recurrence have not been elucidated. In this study, we silenced STAT3 using Small interfering RNAs in two human glioblastoma multiforme (GBM cell lines (U251 and U87, and investigated the effect on GBM cell adhesion and invasion. Our results demonstrate that disruption of STAT3 inhibits GBM cell's adhesion and invasion. Knockdown of STAT3 significantly increased E-cadherin but decreased N-cadherin, vascular endothelial growth factor, matrix metalloproteinase 2 and matrix metalloproteinase 9. Additionally, expression of pSTAT3(Tyr705 correlates with astrocytoma WHO classification, Karnofsky performance status scale score, tumor recurrence and survival. Furthermore, pSTAT3(Tyr705 is a significant prognostic factor in astrocytoma. In conclusion, STAT3 may affect astrocytoma invasion, expression of pSTAT3(Tyr705 is a significant prognostic factor in tumor recurrence and overall survival in astrocytoma patients. Therefore, STAT3 may provide a potential target for molecular therapy in human astrocytoma, and pSTAT3(Tyr705could be an important biomarker for astrocytoma prognosis.

  2. Catecholamine up-regulates MMP-7 expression by activating AP-1 and STAT3 in gastric cancer

    Directory of Open Access Journals (Sweden)

    Yu Ming

    2010-10-01

    Full Text Available Abstract Background Stress, anxiety and depression can cause complex physiological and neuroendocrine changes, resulting in increased level of stress related hormone catecholamine, which may constitute a primary mechanism by which physiological factors impact gene expression in tumors. In the present study, we investigated the effects of catecholamine stimulation on MMP-7 expression in gastric cancer cells and elucidated the molecular mechanisms of the up-regulation of MMP-7 level by catecholamine through an adrenergic signaling pathway. Results Increased MMP-7 expression was identified at both mRNA and protein levels in the gastric cancer cells in response to isoproterenol stimulation. β2-AR antigonist effectively abrogated isoproterenol-induced MMP-7 expression. The activation of STAT3 and AP-1 was prominently induced by isoproterenol stimulation and AP-1 displayed a greater efficacy than STAT3 in isoproterenol-induced MMP-7 expression. Mutagenesis of three STAT3 binding sites in MMP-7 promoter failed to repress the transactivation of MMP-7 promoter and silencing STAT3 expression was not effective in preventing isoproterenol-induced MMP-7 expression. However, isoproterenol-induced MMP-7 promoter activities were completely disappeared when the AP-1 site was mutated. STAT3 and c-Jun could physically interact and bind to the AP-1 site, implicating that the interplay of both transcriptional factors on the AP-1 site is responsible for isoproterenol-stimulated MMP-7 expression in gastric cancer cells. The expression of MMP-7 in gastric cancer tissues was found to be at the site where β2-AR was overexpressed and the levels of MMP-7 and β2-AR were the highest in the metastatic locus of gastric cancer. Conclusions Up-regulation of MMP-7 expression through β2-AR-mediated signaling pathway is involved in invasion and metastasis of gastric cancer.

  3. Eriocalyxin B Inhibits STAT3 Signaling by Covalently Targeting STAT3 and Blocking Phosphorylation and Activation of STAT3.

    Directory of Open Access Journals (Sweden)

    Xiaokui Yu

    Full Text Available Activated STAT3 plays an important role in oncogenesis by stimulating cell proliferation and resisting apoptosis. STAT3 therefore is an attractive target for cancer therapy. We have screened a traditional Chinese herb medicine compound library and found Eriocalyxin B (EB, a diterpenoid from Isodon eriocalyx, as a specific inhibitor of STAT3. EB selectively inhibited constitutive as well as IL-6-induced phosphorylation of STAT3 and induced apoptosis of STAT3-dependent tumor cells. EB did not affect the upstream protein tyrosine kinases or the phosphatase (PTPase of STAT3, but rather interacted directly with STAT3. The effects of EB could be abolished by DTT or GSH, suggesting a thiol-mediated covalent linkage between EB and STAT3. Site mutagenesis of cysteine in and near the SH2 domain of STAT3 identified Cys712 to be the critical amino acid for the EB-induced inactivation of STAT3. Furthermore, LC/MS/MS analyses demonstrated that an α, β-unsaturated carbonyl of EB covalently interacted with the Cys712 of STAT3. Computational modeling analyses also supported a direct interaction between EB and the Cys712 of STAT3. These data strongly suggest that EB directly targets STAT3 through a covalent linkage to inhibit the phosphorylation and activation of STAT3 and induces apoptosis of STAT3-dependent tumor cells.

  4. STAT5-mediated expression of oncogenic miR-155 in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Kopp, Katharina L; Ralfkiaer, Ulrik; Gjerdrum, Lise Mette R

    2013-01-01

    show that malignant T cells constitutively express high levels of miR-155 and its host gene BIC (B cell integration cluster). Using ChIP-seq, we identify BIC as a target of transcription factor STAT5, which is aberrantly activated in malignant T cells and induced by IL-2/IL-15 in non-malignant T cells...... of BIC/miR-155 expression by STAT5 is highly specific. Malignant proliferation is significantly inhibited by an antisense-miR-155 as well as by knockdown of STAT5 and BIC.   In conclusion, we provide the first evidence that STAT5 drives expression of oncogenic BIC/miR-155 in cancer. Moreover, our data...

  5. Constitutive STAT5 Activation Correlates With Better Survival in Cervical Cancer Patients Treated With Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Helen H.W. [Department of Radiation Oncology, National Cheng Kung University, Medical College and Hospital, Tainan, Taiwan (China); Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Chou, Cheng-Yang [Department of Obstetrics and Gynecology, National Cheng Kung University, Medical College and Hospital, Tainan, Taiwan (China); Wu, Yuan-Hua; Hsueh, Wei-Ting; Hsu, Chiung-Hui [Department of Radiation Oncology, National Cheng Kung University, Medical College and Hospital, Tainan, Taiwan (China); Guo, How-Ran [Department of Environmental and Occupational Health, National Cheng Kung University, Medical College and Hospital, Tainan, Taiwan (China); Lee, Wen-Ying, E-mail: 7707@so-net.net.tw [Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan (China) and Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Su, Wu-Chou, E-mail: sunnysu@mail.ncku.edu.tw [Department of Internal Medicine, National Cheng Kung University, Medical College and Hospital, Tainan, Taiwan (China)

    2012-02-01

    Purpose: Constitutively activated signal transducers and activators of transcription (STAT) factors, in particular STAT1, STAT3, and STAT5, have been detected in a wide variety of human primary tumors and have been demonstrated to directly contribute to oncogenesis. However, the expression pattern of these STATs in cervical carcinoma is still unknown, as is whether or not they have prognostic significance. This study investigated the expression patterns of STAT1, STAT3, and STAT5 in cervical cancer and their associations with clinical outcomes in patients treated with radical radiation therapy. Methods and Materials: A total of 165 consecutive patients with International Federation of Gynecology and Obstetrics (FIGO) Stages IB to IVA cervical cancer underwent radical radiation therapy, including external beam and/or high-dose-rate brachytherapy between 1989 and 2002. Immunohistochemical studies of their formalin-fixed, paraffin-embedded tissues were performed. Univariate and multivariate analyses were performed to identify and to evaluate the effects of these factors affecting patient survival. Results: Constitutive activations of STAT1, STAT3, and STAT5 were observed in 11%, 22%, and 61% of the participants, respectively. While STAT5 activation was associated with significantly better metastasis-free survival (p < 0.01) and overall survival (p = 0.04), STAT1 and STAT3 activation were not. Multivariate analyses showed that STAT5 activation, bulky tumor ({>=}4 cm), advanced stage (FIGO Stages III and IV), and brachytherapy (yes vs. no) were independent prognostic factors for cause-specific overall survival. None of the STATs was associated with local relapse. STAT5 activation (odds ratio = 0.29, 95% confidence interval = 0.13-0.63) and advanced stage (odds ratio = 2.54; 95% confidence interval = 1.03-6.26) were independent predictors of distant metastasis. Conclusions: This is the first report to provide the overall expression patterns and prognostic significance of

  6. Suppression of STAT3 NH2 -terminal domain chemosensitizes medulloblastoma cells by activation of protein inhibitor of activated STAT3 via de-repression by microRNA-21.

    Science.gov (United States)

    Ray, Sutapa; Coulter, Don W; Gray, Shawn D; Sughroue, Jason A; Roychoudhury, Shrabasti; McIntyre, Erin M; Chaturvedi, Nagendra K; Bhakat, Kishor K; Joshi, Shantaram S; McGuire, Timothy R; Sharp, John G

    2018-04-01

    Medulloblastoma (MB) is a malignant pediatric brain tumor with poor prognosis. Signal transducers and activators of transcription-3 (STAT3) is constitutively activated in MB where it functions as an oncoprotein, mediating cancer progression and metastasis. Here, we have delineated the functional role of activated STAT3 in MB, by using a cell permeable STAT3-NH 2 terminal domain inhibitor (S3-NTDi) that specifically perturbs the structure/function of STAT3. We have implemented several biochemical experiments using human MB tumor microarray (TMA) and pediatric MB cell lines, derived from high-risk SHH-TP53-mutated and MYC-amplified Non-WNT/SHH tumors. Treatment of MB cells with S3-NTDi leads to growth inhibition, cell cycle arrest, and apoptosis. S3-NTDi downregulated expression of STAT3 target genes, delayed migration of MB cells, attenuated epithelial-mesenchymal transition (EMT) marker expressions and reduced cancer stem-cell associated protein expressions in MB-spheres. To elucidate mechanisms, we showed that S3-NTDi induce expression of pro-apoptotic gene, C/EBP-homologous protein (CHOP), and decrease association of STAT3 to the proximal promoter of CCND1 and BCL2. Of note, S3-NTDi downregulated microRNA-21, which in turn, de-repressed Protein Inhibitor of Activated STAT3 (PIAS3), a negative regulator of STAT3 signaling pathway. Furthermore, combination therapy with S3-NTDi and cisplatin significantly decreased highly aggressive MYC-amplified MB cell growth and induced apoptosis by downregulating STAT3 regulated proliferation and anti-apoptotic gene expression. Together, our results revealed an important role of STAT3 in regulating MB pathogenesis. Disruption of this pathway with S3-NTDi, therefore, may serves as a promising candidate for targeted MB therapy by enhancing chemosensitivity of MB cells and potentially improving outcomes in high-risk patients. © 2017 Wiley Periodicals, Inc.

  7. Rac1 promotes chondrogenesis by regulating STAT3 signaling pathway.

    Science.gov (United States)

    Kim, Hyoin; Sonn, Jong Kyung

    2016-09-01

    The small GTPase protein Rac1 is involved in a wide range of biological processes including cell differentiation. Previously, Rac1 was shown to promote chondrogenesis in micromass cultures of limb mesenchyme. However, the pathways mediating Rac1's role in chondrogenesis are not fully understood. This study aimed to explore the molecular mechanisms by which Rac1 regulates chondrogenic differentiation. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) was increased as chondrogenesis proceeded in micromass cultures of chick wing bud mesenchyme. Inhibition of Rac1 with NSC23766, janus kinase 2 (JAK2) with AG490, or STAT3 with stattic inhibited chondrogenesis and reduced phosphorylation of STAT3. Conversely, overexpression of constitutively active Rac1 (Rac L61) increased phosphorylation of STAT3. Rac L61 expression resulted in increased expression of interleukin 6 (IL-6), and treatment with IL-6 increased phosphorylation of STAT3. NSC23766, AG490, and stattic prohibited cell aggregation, whereas expression of Rac L61 increased cell aggregation, which was reduced by stattic treatment. Our studies indicate that Rac1 induces STAT3 activation through expression and action of IL-6. Overexpression of Rac L61 increased expression of bone morphogenic protein 4 (BMP4). BMP4 promoted chondrogenesis, which was inhibited by K02288, an activin receptor-like kinase-2 inhibitor, and increased phosphorylation of p38 MAP kinase. Overexpression of Rac L61 also increased phosphorylation of p38 MAPK, which was reduced by K02288. These results suggest that Rac1 activates STAT3 by expression of IL-6, which in turn increases expression and activity of BMP4, leading to the promotion of chondrogenesis. © 2016 International Federation for Cell Biology.

  8. The role of STAT3 in leading the crosstalk between human cancers and the immune system.

    Science.gov (United States)

    Wang, Yu; Shen, Yicheng; Wang, Sinan; Shen, Qiang; Zhou, Xuan

    2018-02-28

    The development and progression of human cancers are continuously and dynamically regulated by intrinsic and extrinsic factors. As a converging point of multiple oncogenic pathways, signal transducer and activator of transcription 3 (STAT3) is constitutively activated both in tumor cells and tumor-infiltrated immune cells. Activated STAT3 persistently triggers tumor progression through direct regulation of oncogenic gene expression. Apart from its oncogenic role in regulating gene expression in tumor cells, STAT3 also paves the way for human cancer growth through immunosuppression. Activated STAT3 in immune cells results in inhibition of immune mediators and promotion of immunosuppressive factors. Therefore, STAT3 modulates the interaction between tumor cells and host immunity. Accumulating evidence suggests that targeting STAT3 may enhance anti-cancer immune responses and rescue the suppressed immunologic microenvironment in tumors. Taken together, STAT3 has emerged as a promising target in cancer immunotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Analysis of signal transducer and activator of transcription 3 (Stat 3) pathway in multiple myeloma: Stat 3 activation and cyclin D1 dysregulation are mutually exclusive events.

    Science.gov (United States)

    Quintanilla-Martinez, Leticia; Kremer, Marcus; Specht, Katja; Calzada-Wack, Julia; Nathrath, Michaela; Schaich, Robert; Höfler, Heinz; Fend, Falko

    2003-05-01

    The signal transducer and activator of transcription molecules (Stats) play key roles in cytokine-induced signal transduction. Recently, it was proposed that constitutively activated Stat 3 (Stat 3 phosphorylated) contributes to the pathogenesis of multiple myeloma (MM) by preventing apoptosis and inducing proliferation. The study aim was to investigate Stat 3 activation in a series of multiple myeloma (MM) cases and its effect on downstream targets such as the anti-apoptotic proteins Bcl-xL, Mcl-1, and Bcl-2, and the cell-cycle protein cyclin D1. Forty-eight cases of MM were analyzed. Immunohistochemistry was performed on paraffin sections using antibodies against cyclin D1, Bcl-2, Bcl-xL, Mcl-1, p21, Stat 3, and Stat 3 phosphorylated (P). Their specificity was corroborated by Western blot analysis using eight human MM cell lines as control. The proliferation rate was assessed with the antibody MiB1. In addition, the mRNA levels of cyclin D1 and Stat 3 were determined by quantitative real-time reverse transcriptase-polymerase chain reaction of paraffin-embedded microdissected tissue. Three different groups determined by the expression of Stat 3P and cyclin D1 (protein and mRNA) were identified: group 1, Stat 3-activated (23 cases, 48%). All cases revealed nuclear expression of Stat 3P. No elevation of Stat 3 mRNA was identified in any of the cases. Three cases in this group showed intermediate to low cyclin D1 protein and mRNA expression. Group 2 included 15 (31%) cases with cyclin D1 staining and lack of Stat 3P. All cases showed intermediate to high levels of cyclin D1 mRNA expression. Group 3 included 10 (21%) cases with no expression of either cyclin D1 or Stat 3P. High levels of anti-apoptotic proteins Bcl-xL and Mcl-1 were identified in 89% and 100% of all cases, respectively. In contrast to Bcl-xL and Mcl-1, the expression of Bcl-2 showed an inverse correlation with proliferation rate (P: 0.0003). No significant differences were found between the three

  10. RANKL downregulates cell surface CXCR6 expression through JAK2/STAT3 signaling pathway during osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changhong; Zhao, Jinxia; Sun, Lin; Yao, Zhongqiang; Liu, Rui [Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191 (China); Huang, Jiansheng [Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (United States); Liu, Xiangyuan, E-mail: liu-xiangyuan@263.net [Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191 (China)

    2012-12-14

    Highlights: Black-Right-Pointing-Pointer CXCR6 is down-regulated during RANKL-induced osteoclastogenesis in RAW264.7 cells. Black-Right-Pointing-Pointer CXCR6 reduction was nearly reversed by inhibition of JAK2/STAT3 signaling pathway. Black-Right-Pointing-Pointer CXCL16 alone does not positively regulate osteoclastogenesis. -- Abstract: The receptor activator of nuclear factor-{kappa}B ligand (RANKL), as a member of the tumor necrosis factor (TNF) family, plays an essential role in osteoclast differentiation and function. Chemokines and their receptors have recently been shown to play critical roles in osteoclastogenesis, however, whether CXCL16-CXCR6 plays role in RANKL-mediated osteoclastogenesis is unknown. In this study, we first reported that RANKL decreased CXCR6 in a dose-dependent manner, which may be through deactivation of Akt and STAT3 signaling induced by CXCL16. Interestingly, RANKL-mediated CXCR6 reduction may be associated to the activation of STAT3 by phosphorylation. When STAT3 activation was blocked by JAK2/STAT3 inhibitor AG490, RANKL failed to shut down CXCR6 expression during osteoclastogenesis. However, CXCL16 alone did not augment RANKL-mediated osteoclast differentiation and did not alter RANKL-receptor RANK mRNA expression. These results demonstrate that reduction of CXCL16-CXCR6 is critical in RANKL-mediated osteoclastogenesis, which is mainly through the activation of JAK2/STAT3 signaling. CXCL16-CXCR6 axis may become a novel target for the therapeutic intervention of bone resorbing diseases such as rheumatoid arthritis and osteoporosis.

  11. The synthetic α-bromo-2',3,4,4'-tetramethoxychalcone (α-Br-TMC) inhibits the JAK/STAT signaling pathway.

    Science.gov (United States)

    Pinz, Sophia; Unser, Samy; Brueggemann, Susanne; Besl, Elisabeth; Al-Rifai, Nafisah; Petkes, Hermina; Amslinger, Sabine; Rascle, Anne

    2014-01-01

    Signal transducer and activator of transcription STAT5 and its upstream activating kinase JAK2 are essential mediators of cytokine signaling. Their activity is normally tightly regulated and transient. However, constitutive activation of STAT5 is found in numerous cancers and a driving force for malignant transformation. We describe here the identification of the synthetic chalcone α-Br-2',3,4,4'-tetramethoxychalcone (α-Br-TMC) as a novel JAK/STAT inhibitor. Using the non-transformed IL-3-dependent B cell line Ba/F3 and its oncogenic derivative Ba/F3-1*6 expressing constitutively activated STAT5, we show that α-Br-TMC targets the JAK/STAT pathway at multiple levels, inhibiting both JAK2 and STAT5 phosphorylation. Moreover, α-Br-TMC alters the mobility of STAT5A/B proteins in SDS-PAGE, indicating a change in their post-translational modification state. These alterations correlate with a decreased association of STAT5 and RNA polymerase II with STAT5 target genes in chromatin immunoprecipitation assays. Interestingly, expression of STAT5 target genes such as Cis and c-Myc was differentially regulated by α-Br-TMC in normal and cancer cells. While both genes were inhibited in IL-3-stimulated Ba/F3 cells, expression of the oncogene c-Myc was down-regulated and that of the tumor suppressor gene Cis was up-regulated in transformed Ba/F3-1*6 cells. The synthetic chalcone α-Br-TMC might therefore represent a promising novel anticancer agent for therapeutic intervention in STAT5-associated malignancies.

  12. Blocking c-myc and stat3 by E. coli expressed and enzyme digested siRNA in mouse melanoma

    International Nuclear Information System (INIS)

    Hong Jie; Zhao Yingchun; Huang Weida

    2006-01-01

    Tumour cells often show alteration in the signal-transduction pathways, leading to proliferation in response to external signals. Oncogene overexpression and constitutive expression is a common phenomenon in the development and progression of many human cancers. Therefore oncogenes provide potential targets for cancer therapy. RNA interference (RNAi), mediated by small interfering RNA (siRNA), silences genes with a high degree of specificity and potentially represents a general approach for molecularly targeted anti-cancer therapy. The data presented in this report evaluated the method of systemically administering combined esiRNAs to multiple targets as compared with the method of using a single kind of esiRNA to a single target. Our experimental data revealed that the mixed treatment of esiC-MYC and esiSTAT3 had a better inhibition effect than the single treatment of esiC-MYC or esiSTAT3 on mouse B16 melanoma

  13. Arctigenin enhances chemosensitivity of cancer cells to cisplatin through inhibition of the STAT3 signaling pathway.

    Science.gov (United States)

    Yao, Xiangyang; Zhu, Fenfen; Zhao, Zhihui; Liu, Chang; Luo, Lan; Yin, Zhimin

    2011-10-01

    Arctigenin is a dibenzylbutyrolactone lignan isolated from Bardanae fructus, Arctium lappa L, Saussureamedusa, Torreya nucifera, and Ipomea cairica. It has been reported to exhibit anti-inflammatory activities, which is mainly mediated through its inhibitory effect on nuclear transcription factor-kappaB (NF-κB). But the role of arctigenin in JAK-STAT3 signaling pathways is still unclear. In present study, we investigated the effect of arctigenin on signal transducer and activator of transcription 3 (STAT3) pathway and evaluated whether suppression of STAT3 activity by arctigenin could sensitize cancer cells to a chemotherapeutic drug cisplatin. Our results show that arctigenin significantly suppressed both constitutively activated and IL-6-induced STAT3 phosphorylation and subsequent nuclear translocation in cancer cells. Inhibition of STAT3 tyrosine phosphorylation was found to be achieved through suppression of Src, JAK1, and JAK2, while suppression of STAT3 serine phosphorylation was mediated by inhibition of ERK activation. Pervanadate reversed the arctigenin-induced downregulation of STAT3 activation, suggesting the involvement of a protein tyrosine phosphatase. Indeed, arctigenin can obviously induce the expression of the PTP SHP-2. Furthermore, the constitutive activation level of STAT3 was found to be correlated to the resistance of cancer cells to cisplatin-induced apoptosis. Arctigenin dramatically promoted cisplatin-induced cell death in cancer cells, indicating that arctigenin enhanced the sensitivity of cancer cells to cisplatin mainly via STAT3 suppression. These observations suggest a novel anticancer function of arctigenin and a potential therapeutic strategy of using arctigenin in combination with chemotherapeutic agents for cancer treatment. Copyright © 2011 Wiley-Liss, Inc.

  14. APPL1-mediated activation of STAT3 contributes to inhibitory effect of adiponectin on hepatic gluconeogenesis.

    Science.gov (United States)

    Ding, Youming; Zhang, Deling; Wang, Bin; Zhang, Yemin; Wang, Lei; Chen, Xiaoyan; Li, Mingxin; Tang, Zhao; Wang, Changhua

    2016-09-15

    Adiponectin has been shown to suppress hepatic gluconeogenesis. However, the signaling pathways underlying its action remain ill-defined. The purpose of this study was to examine the potential role of APPL1 in mediating anti-gluconeogenic ability of adiponectin. Primary hepatocytes were isolated from male C57BL/6 mice. Western blot and RT-PCR were performed to detect protein expression and mRNA level, respectively. The protein-protein association was determined by immunoprecipitation and GST pull-down assay. We found that APPL1 protein levels were negatively associated with expressions of proteins and mRNAs of gluconeogenesis enzymes under stimulation with adiponectin. In addition, adiponectin-stimulated STAT3 phosphorylation and acetylation were positively regulated by APPL1 and negative regulated by SirT1. Pharmacological and genetic inhibition of STAT3 mitigated impact of adiponectin on hepatic gluconeogenesis. Furthermore, adiponectin administration facilitated the binding of APPL1 to SirT1 and suppressed the association of SirT1 with STAT3. Taken together, our study showed that APPL1-SirT1-STAT3 pathway mediated adiponectin signaling in primary hepatocytes. This new finding provides a novel mechanism by which adiponectin suppresses hepatic gluconeogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. STAT5A and STAT5B have opposite correlations with drug response gene expression

    International Nuclear Information System (INIS)

    Lamba, V.; Jia, B.; Liang, F.

    2016-01-01

    Introduction: STAT5A and STAT5B are important transcription factors that play a key role in regulation of several important physiological processes including proliferation, survival, mediation of responses to cytokines and in regulating gender differences in drug response genes such as the hepatic cytochrome P450s (CYPs) that are responsible for a large majority of drug metabolism reactions in the human body. STAT5A and STAT5b have a high degree of sequence homology and have been reported to have largely similar functions. Recent studies have, however, indicated that they can also often have distinct and unique roles in regulating gene expression. Objective: In this study, we evaluated the association of STAT5A and STAT5B mRNA expression levels with those of several key hepatic cytochrome P450s (CYPs) and hepatic transcription factors (TFs) and evaluated the potential roles of STAT5A and 5b in mediating gender differences in these CYPs and TFs. Methods: Expression profiling for major hepatic CYP isoforms and transcription factors was performed using RNA sequencing (RNA-seq) in 102 human liver samples (57 female, 45 male). Real time PCR gene expression data for selected CYPs and TFs was available on a subset of 50 human liver samples (25 female, 25 male) and was used to validate the RNA-seq findings. Results: While STAT5A demonstrated significant negative correlation with expression levels of multiple hepatic transcription factors (including NR1I2 and HNF4A) and DMEs such as CYP3A4 and CYP2C19, STAT5B expression was observed to demonstrate positive associations with several CYPs and TFs analyzed. As STAT5A and STAT5B have been shown to be important in regulation of gender differences in CYPs, we also analyzed STAT5A and 5b associations with CYPs and TFs separately in males and females and observed gender dependent differential associations of STATs with several CYPs and TFs. Results from the real time PCR validation largely supported our RNA-seq findings

  16. STAT3 mediates regorafenib-induced apoptosis in hepatocellular carcinoma.

    Science.gov (United States)

    Tai, Wei-Tien; Chu, Pei-Yi; Shiau, Chung-Wai; Chen, Yao-Li; Li, Yong-Shi; Hung, Man-Hsin; Chen, Li-Ju; Chen, Pei-Lung; Su, Jung-Chen; Lin, Ping-Yi; Yu, Hui-Chuan; Chen, Kuen-Feng

    2014-11-15

    Here, we aim to investigate the molecular mechanism of regorafenib and verify the potential druggable target for the treatment of hepatocellular carcinoma (HCC). HCC cell lines (PLC5, HepG2, Hep3B, SK-Hep1, and HA59T) were used to investigate the in vitro effect of regorafenib. Phosphatase activity was analyzed in HCC cells and purified SHP-1 proteins. PLC5-bearing mice were used to test the therapeutic efficiency of 20 and 40 mg/kg/d treatment with regorafenib ([Formula: see text] mice). The clinical relevance of STAT3 signaling was investigated with 142 tumor samples from different patients with HCC. Descriptive statistical analysis was used to compare the baseline characteristics of patients and the expression of p-STAT3. Regorafenib inhibited STAT3-related signaling in a dose-dependent manner and was a more potent inhibitor of STAT3 than sorafenib. Regorafenib increased SHP-1 phosphatase activity in purified SHP-1 protein directly. N-SH2 domain deletion and D61A mutants mimicking open-form SHP-1 partially abolished regorafenib-induced STAT3 inhibition and apoptosis. Importantly, a higher level of expression of STAT3 was found in patients with advanced clinical stages (P = 0.009) and poorly differentiated tumors (P = 0.035). Regorafenib induced significant tumor inhibition by relieving the autoinhibited N-SH2 domain of SHP-1 directly and inhibiting p-STAT3 signals. STAT3 may be suitable as a prognostic marker of HCC development, and may be a druggable target for HCC-targeted therapy using regorafenib. ©2014 American Association for Cancer Research.

  17. Transforming growth factor-β-mediated CD44/STAT3 signaling contributes to the development of atrial fibrosis and fibrillation.

    Science.gov (United States)

    Chang, Shang-Hung; Yeh, Yung-Hsin; Lee, Jia-Lin; Hsu, Yu-Juei; Kuo, Chi-Tai; Chen, Wei-Jan

    2017-09-04

    Atrial fibrillation (AF) is associated with atrial fibrosis. Inhibition of atrial fibrosis might be a plausible approach for AF prevention and therapy. This study is designed to evaluate the potential role of CD44, a membrane receptor known to regulate fibrosis, and its related signaling in the pathogenesis of atrial fibrosis and AF. Treatment of cultured rat atrial fibroblasts with transforming growth factor-β (TGF-β, a key mediator of atrial fibrosis) led to a higher expression of hyaluronan (HA), CD44, STAT3, and collagen (a principal marker of fibrosis) than that of ventricular fibroblasts. In vivo, TGF-β transgenic mice and AF patients exhibited a greater expression of HA, CD44, STAT3, and collagen in their atria than wild-type mice and sinus rhythm subjects, respectively. Treating TGF-β transgenic mice with an anti-CD44 blocking antibody resulted in a lower expression of STAT3 and collagen in their atria than those with control IgG antibody. Programmed stimulation triggered less AF episodes in TGF-β transgenic mice treated with anti-CD44 blocking antibody than in those with control IgG. Blocking CD44 signaling with anti-CD44 antibody and mutated CD44 plasmids attenuated TGF-β-induced STAT3 activation and collagen expression in cultured atrial fibroblasts. Deletion and mutational analysis of the collagen promoter along with chromatin immunoprecipitation demonstrated that STAT3 served as a vital transcription factor in collagen expression. TGF-β-mediated HA/CD44/STAT3 pathway plays a crucial role in the development of atrial fibrosis and AF. Blocking CD44-dependent signaling may be a feasible way for AF management.

  18. The Synthetic α-Bromo-2′,3,4,4′-Tetramethoxychalcone (α-Br-TMC) Inhibits the JAK/STAT Signaling Pathway

    Science.gov (United States)

    Brueggemann, Susanne; Besl, Elisabeth; Al-Rifai, Nafisah; Petkes, Hermina; Amslinger, Sabine; Rascle, Anne

    2014-01-01

    Signal transducer and activator of transcription STAT5 and its upstream activating kinase JAK2 are essential mediators of cytokine signaling. Their activity is normally tightly regulated and transient. However, constitutive activation of STAT5 is found in numerous cancers and a driving force for malignant transformation. We describe here the identification of the synthetic chalcone α-Br-2′,3,4,4′-tetramethoxychalcone (α-Br-TMC) as a novel JAK/STAT inhibitor. Using the non-transformed IL-3-dependent B cell line Ba/F3 and its oncogenic derivative Ba/F3-1*6 expressing constitutively activated STAT5, we show that α-Br-TMC targets the JAK/STAT pathway at multiple levels, inhibiting both JAK2 and STAT5 phosphorylation. Moreover, α-Br-TMC alters the mobility of STAT5A/B proteins in SDS-PAGE, indicating a change in their post-translational modification state. These alterations correlate with a decreased association of STAT5 and RNA polymerase II with STAT5 target genes in chromatin immunoprecipitation assays. Interestingly, expression of STAT5 target genes such as Cis and c-Myc was differentially regulated by α-Br-TMC in normal and cancer cells. While both genes were inhibited in IL-3-stimulated Ba/F3 cells, expression of the oncogene c-Myc was down-regulated and that of the tumor suppressor gene Cis was up-regulated in transformed Ba/F3-1*6 cells. The synthetic chalcone α-Br-TMC might therefore represent a promising novel anticancer agent for therapeutic intervention in STAT5-associated malignancies. PMID:24595334

  19. APC loss in breast cancer leads to doxorubicin resistance via STAT3 activation.

    Science.gov (United States)

    VanKlompenberg, Monica K; Leyden, Emily; Arnason, Anne H; Zhang, Jian-Ting; Stefanski, Casey D; Prosperi, Jenifer R

    2017-11-28

    Resistance to chemotherapy is one of the leading causes of death from breast cancer. We recently established that loss of Adenomatous Polyposis Coli (APC) in the Mouse Mammary Tumor Virus - Polyoma middle T (MMTV-PyMT) transgenic mouse model results in resistance to cisplatin or doxorubicin-induced apoptosis. Herein, we aim to establish the mechanism that is responsible for APC-mediated chemotherapeutic resistance. Our data demonstrate that MMTV-PyMT; Apc Min/+ cells have increased signal transducer and activator of transcription 3 (STAT3) activation. STAT3 can be constitutively activated in breast cancer, maintains the tumor initiating cell (TIC) population, and upregulates multidrug resistance protein 1 (MDR1). The activation of STAT3 in the MMTV-PyMT; Apc Min/+ model is independent of interleukin 6 (IL-6); however, enhanced EGFR expression in the MMTV-PyMT; Apc Min/+ cells may be responsible for the increased STAT3 activation. Inhibiting STAT3 with a small molecule inhibitor A69 in combination with doxorubicin, but not cisplatin, restores drug sensitivity. A69 also decreases doxorubicin enhanced MDR1 gene expression and the TIC population enhanced by loss of APC. In summary, these results have revealed the molecular mechanisms of APC loss in breast cancer that can guide future treatment plans to counteract chemotherapeutic resistance.

  20. Altholactone Inhibits NF-κB and STAT3 Activation and Induces Reactive Oxygen Species-Mediated Apoptosis in Prostate Cancer DU145 Cells

    Directory of Open Access Journals (Sweden)

    Chunwa Jiang

    2017-02-01

    Full Text Available Altholactone, a natural compound isolated from Goniothalamus spp., has demonstrated anti-inflammatory and anticancer activities, but its molecular mechanisms are still not fully defined. Nuclear factor kappa B (NF-κB and signal transducer and activator of transcription 3 (STAT3 play pivotal roles in the cell survival of many human tumors. The objective of this study was to elucidate the mechanism of action of altholactone against prostate cancer DU145 cells and to evaluate whether its effects are mediated by inhibition of NF-κB and STAT3 activity. Altholactone inhibited proliferation of DU145 cells and induced cell cycle arrest in S phase and triggered apoptosis. Reporter assays revealed that altholactone repressed p65- and TNF-α-enhanced NF-κB transcriptional activity and also inhibited both constitutive and IL-6-induced transcriptional activity of STAT3. Consistent with this, altholactone down-regulated phosphorylation of STAT3 and moreover, decreased constitutively active mutant of STAT3 (STAT3C-induced transcriptional activity. Altholactone treatment also results in down-regulation of STAT3 target genes such as survivin, and Bcl-2 followed by up regulation of pro-apoptotic Bax protein. However, pre-treatment with the antioxidant N-acetylcysteine (NAC significantly inhibited the activation of Bax and prevented down-regulation of STAT3 target genes. Collectively, our findings suggest that altholactone induces DU145 cells death through inhibition of NF-κB and STAT3 activity.

  1. MDM2 facilitates adipocyte differentiation through CRTC-mediated activation of STAT3

    DEFF Research Database (Denmark)

    Hallenborg, P.; Siersbæk, M.; Barrio-Hernandez, I.

    2016-01-01

    on activation of the STAT family of transcription factors. Their activation was required for the cAMP-mediated induction of target genes. Interestingly, rather than influencing all cAMP-stimulated genes, inhibition of the kinases directly responsible for STAT activation, namely JAKs, or ablation of MDM2, each......The ubiquitin ligase MDM2 is best known for balancing the activity of the tumor suppressor p53. We have previously shown that MDM2 is vital for adipocyte conversion through controlling Cebpd expression in a p53-independent manner. Here, we show that the proadipogenic effect of MDM2 relies...... resulted in abolished induction of a subset of cAMP-stimulated genes, with Cebpd being among the most affected. Moreover, STATs were able to interact with the transcriptional cofactors CRTC2 and CRTC3, hitherto only reported to associate with the cAMP-responsive transcription factor CREB. Last...

  2. Inhibition of STAT3 Expression and Signaling in Resveratrol-Differentiated Medulloblastoma Cells

    Directory of Open Access Journals (Sweden)

    Li-Jun Yu

    2008-07-01

    Full Text Available In this study, the potential influence of resveratrol (3,5,4′-trihydroxy-trans-stilbene in signal transducer and activator of transcription 3 (STAT3 signaling of medulloblastoma cells was evaluated by checking the status of STAT3 signaling and its downstream gene expression in two medulloblastoma cell lines (UW228-2 and UW228-3 with and without resveratrol treatment. The results revealed that resveratrol induced neuronal differentiation of medulloblastoma cells. Signal transducer and activator of transcription 3 expression and phosphorylation were detected in normally cultured UW228-2 and UW228-3 cells that were apparently attenuated after resveratrol treatment. The expression of STAT3 downstream genes, survivin, cyclin D1, Cox-2, and c-Myc, was suppressed but Bcl-2 was enhanced by resveratrol. Meanwhile, the production and secretion of leukemia inhibitory factor, a STAT3 activator, became active in resveratrol-treated cells. To further ascertain the significance of STAT3 signaling for medulloblastoma cells, AG490, a selective inhibitor of STAT3 phosphorylation, was used to treat UW228-3 cells. Phosphorylation of STAT3 was inhibited by AG490 accompanied with growth suppression, differentiation-like changes, and down-regulation of survivin, cyclin D1, Cox-2, and c-Myc. Our data thus suggest the importance of STAT3 signaling in maintenance and survival of medulloblastoma cells. This signaling may be the major target of resveratrol. Enhanced leukemia inhibitory factor and Bcl-2 expressions in resveratrol-treated cells might reflect a compensatory response to the loss of STAT3 function.

  3. STAT3 and NF-κB are common targets for kaempferol-mediated attenuation of COX-2 expression in IL-6-induced macrophages and carrageenan-induced mouse paw edema

    Directory of Open Access Journals (Sweden)

    Anandita Basu

    2017-12-01

    Full Text Available Cycloxygenase-2 (COX-2 is the inducible isoform of cycloxygenase enzyme family that catalyzes synthesis of inflammatory mediators, prostanoids and prostaglandins, and therefore, can be targeted by anti-inflammatory drugs. Here, we showed a plant polyphenol, kaempferol, attenuated IL-6-induced COX-2 expression in human monocytic THP-1 cells suggesting its beneficial role in chronic inflammation. Kaempferol deactivated and prevented nuclear localization of two major transcription factors STAT3 and NF-κB, mutually responsible for COX-2 induction in response to IL-6. Moreover, STAT3 and NF-κB were simultaneously deactivated by kaempferol in acute inflammation, as shown by carrageenan-induced mouse paw edema model. The concomitant reduction in COX-2 expression in paw tissues suggested kaempferol’s role in mitigation of inflammation by targeting STAT3 and NF-κB.

  4. STAT3 activation in monocytes accelerates liver cancer progression

    International Nuclear Information System (INIS)

    Wu, Wen-Yong; Li, Jun; Wu, Zheng-Sheng; Zhang, Chang-Le; Meng, Xiang-Ling

    2011-01-01

    Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor ubiquitously expressed in different cell types. STAT3 plays an essential role in cell survival, proliferation, and differentiation. Aberrantly hyper-activated STAT3 signaling in cancer cells and in the tumor microenvironment has been detected in a wide variety of human cancers and is considered an important factor for cancer initiation, development, and progression. However, the role of STAT3 activation in monocytes in the development of HCC has not been well understood. Immunohistochemical analysis of phosphorylated STAT3 was performed on tissue microarray from HCC patients. Using a co-culture system in vivo, HCC cell growth was determined by the MTT assay. In vivo experiments were conducted with mice given diethylinitrosamine (DEN), which induces HCC was used to investigate the role of STAT3 expression in monocytes on tumor growth. Real-time PCR was used to determine the expression of cell proliferation and cell arrest associated genes in the tumor and nontumor tissue from liver. Phosphorylated STAT3 was found in human hepatocellular carcinoma tissue samples and was expressed in tumor cells and also in monocytes. Phosphorylated STAT3 expression in monocyte was significantly correlated to advanced clinical stage of HCC and a poor prognosis. Using a co-culture system in vivo, monocytes promoted HCC cell growth via the IL-6/STAT3 signaling pathway. The STAT3 inhibitor, NSC 74859, significantly suppressed tumor growth in vivo in mice with diethylinitrosamine (DEN)-induced HCC. In this animal model, blockade of STAT3 with NSC 74859 induced tumor cell apoptosis, while inhibiting both tumor cells and monocytes proliferation. Furthermore, NSC 74859 treatment suppressed cancer associated inflammation in DEN-induce HCC. Our data suggest constitutively activated STAT3 monocytes promote liver tumorigenesis in clinical patients and animal experiments. Thus, STAT3 in tumor

  5. Apoptosis induced by knockdown of uPAR and MMP-9 is mediated by inactivation of EGFR/STAT3 signaling in medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Ramaprasada Rao Kotipatruni

    Full Text Available Medulloblastoma is a highly invasive cancer of central nervous system diagnosed mainly in children. Matrix metalloproteinase-9 (MMP-9 and urokinase plasminogen activator receptor (uPAR are over expressed in several cancers and well established for their roles in tumor progression. The present study is aimed to determine the consequences of targeting these molecules on medulloblastoma progression.Radiation is one of the foremost methods applied for treating cancer and considerable evidence showed that radiation elevated uPAR and MMP-9 expression in medulloblastoma cell. Therefore efforts are made to target these molecules in non-irradiated and irradiated medulloblastoma cells. Our results showed that siRNA-mediated knockdown of uPAR and MMP-9, either alone or in combination with radiation modulated a series of events leading to apoptosis. Down regulation of uPAR and MMP-9 inhibited the expression of anti-apoptotic molecules like Bcl-2, Bcl-xL, survivin, XIAP and cIAPI; activated BID cleavage, enhanced the expression of Bak and translocated cyctochrome C to cytosol. Capsase-3 and -9 activities were also increased in uPAR- and MMP-9-downregulated cells. The apoptosis induced by targeting MMP-9 and uPAR was initiated by inhibiting epidermal growth factor receptor (EGFR mediated activation of STAT3 and NF-κB related signaling molecules. Silencing uPAR and MMP-9 inhibited DNA binding activity of STAT3 and also reduced the recruitment of STAT3 protein at the promoter region of Bcl-2 and survivin genes. Our results suggest that inhibiting uPAR and MMP-9 reduced the expression of anti-apoptotic molecules by inactivating the transcriptional activity of STAT3. In addition, treating pre-established medulloblastoma with siRNAs against uPAR and MMP-9 both alone or in combination with radiation suppressed uPAR, MMP-9, EGFR, STAT3 expression and induced Bak activation leading to apoptosis.Taken together, our results illustrated that RNAi mediated targeting of

  6. Activation of Stat3 in renal tumors.

    Science.gov (United States)

    Guo, Charles; Yang, Guanyu; Khun, Kyle; Kong, Xiantian; Levy, David; Lee, Peng; Melamed, Jonathan

    2009-02-28

    Signal transducer and activator of transcription 3 (Stat3) plays a vital role in signal transduction pathways that mediate transformation and inhibit apoptosis. Oncogenic Stat3 is persistently activated in several human cancers and transformed cell lines. Previous studies indicate activation of Stat3 in renal cell carcinoma (RCC). However, the detailed characterization of the Stat3 expression pattern in different histologic types of RCC is lacking. We have analyzed the immunoprofile of activated or phosphorylated Stat3 (pStat3) in a tissue microarray of renal tumors of different histologic types, including 42 cases of conventional clear cell type, 24 chromophobe, and 7 papillary, 15 oncocytoma, 7 urothelial carcinoma and 21 normal kidney tissues using an anti-pStat3 antibody (recognizes only activated STAT3). pStat3 nuclear staining was observed in 25 of 42 conventional clear cell RCC (59.5 %), 8 of 24 chromophobe RCC (33.3%), 4 of 7 papillary RCC (57.1%). In the other tumor groups, 4 of 15 oncocytomas (26.7%) and 6 of 7 urothelial carcinomas (85.7%) showed positive nuclear staining. Weak nuclear immunoreactivity for pStat3 was seen in 4 of 21 cases of non-neoplastic kidney tissue (19.0%). The extent of Stat3 activation as determined by nuclear expression of its phosphorylated form is increased in histologic types of renal tumors with greater malignant potential, specifically conventional clear cell RCC, papillary RCC and urothelial carcinoma, only slightly increased in chromophobe RCC, and not increased in oncocytoma. These results suggest a role of Stat3 activation in different types of renal neoplasia, possibly serving as a prognostic marker or therapeutic target.

  7. Expression of p53/HGF/c-met/STAT3 signal in fetuses with neural tube defects.

    Science.gov (United States)

    Trovato, Maria; D'Armiento, Maria; Lavra, Luca; Ulivieri, Alessandra; Dominici, Roberto; Vitarelli, Enrica; Grosso, Maddalena; Vecchione, Raffaella; Barresi, Gaetano; Sciacchitano, Salvatore

    2007-02-01

    Neural tube defects (NTD) are morphogenetic alterations due to a defective closure of neural tube. Hepatocyte growth factor (HGF)/c-met system plays a role in morphogenesis of nervous system, lung, and kidney. HGF/c-met morphogenetic effects are mediated by signal transducers and activators of transcription (STAT)3 and both HGF and c-met genes are regulated from p53. The aim of our study was to analyze mRNA and protein expressions of p53, HGF, c-met, and STAT3 in fetuses with NTD. By reverse transcriptase-polymerase chain reaction and immunohistochemistry, we analyzed neural tissues from four NTD fetuses and the corresponding non-malformed lungs, kidneys and placentas. We found a reduced mRNA expression of HGF/c-met/STAT3 pathway, in the malformed nervous systems and placentas. The reduced expression of this pathway correlated with the absence of p53 in all these samples. On the contrary, detectable expression levels of p53, HGF, c-met, and STAT3 were observed in non-malformed lungs and kidneys obtained from the same fetuses. Comparable results were obtained by immunohistochemistry, with the exception of p53, which was undetected in all fetal tissues. In conclusion, in NTD fetuses, both the defective neural tube tissue and the placenta have a reduction in all components of the p53/HGF/c-met/STAT3 cascade. This raises the possibility of using the suppression of these genes for early diagnosis of NTD especially on chorionic villus sampling.

  8. STAT3 in Cancer—Friend or Foe?

    Science.gov (United States)

    Zhang, Hai-Feng; Lai, Raymond

    2014-01-01

    The roles and significance of STAT3 in cancer biology have been extensively studied for more than a decade. Mounting evidence has shown that constitutive activation of STAT3 is a frequent biochemical aberrancy in cancer cells, and this abnormality directly contributes to tumorigenesis and shapes many malignant phenotypes in cancer cells. Nevertheless, results from more recent experimental and clinicopathologic studies have suggested that STAT3 also can exert tumor suppressor effects under specific conditions. Importantly, some of these studies have demonstrated that STAT3 can function either as an oncoprotein or a tumor suppressor in the same cell type, depending on the specific genetic background or presence/absence of specific coexisting biochemical defects. Thus, in the context of cancer biology, STAT3 can be a friend or foe. In the first half of this review, we will highlight the “evil” features of STAT3 by summarizing its oncogenic functions and mechanisms. The differences between the canonical and non-canonical pathway will be highlighted. In the second half, we will summarize the evidence supporting that STAT3 can function as a tumor suppressor. To explain how STAT3 may mediate its tumor suppressor effects, we will discuss several possible mechanisms, one of which is linked to the role of STAT3β, one of the two STAT3 splicing isoforms. Taken together, it is clear that the roles of STAT3 in cancer are multi-faceted and far more complicated than one appreciated previously. The new knowledge has provided us with new approaches and strategies when we evaluate STAT3 as a prognostic biomarker or therapeutic target. PMID:24995504

  9. STAT3 in Cancer—Friend or Foe?

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng [Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1Z2 (Canada); The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong (China); Lai, Raymond, E-mail: rlai@ualberta.ca [Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1Z2 (Canada)

    2014-07-03

    The roles and significance of STAT3 in cancer biology have been extensively studied for more than a decade. Mounting evidence has shown that constitutive activation of STAT3 is a frequent biochemical aberrancy in cancer cells, and this abnormality directly contributes to tumorigenesis and shapes many malignant phenotypes in cancer cells. Nevertheless, results from more recent experimental and clinicopathologic studies have suggested that STAT3 also can exert tumor suppressor effects under specific conditions. Importantly, some of these studies have demonstrated that STAT3 can function either as an oncoprotein or a tumor suppressor in the same cell type, depending on the specific genetic background or presence/absence of specific coexisting biochemical defects. Thus, in the context of cancer biology, STAT3 can be a friend or foe. In the first half of this review, we will highlight the “evil” features of STAT3 by summarizing its oncogenic functions and mechanisms. The differences between the canonical and non-canonical pathway will be highlighted. In the second half, we will summarize the evidence supporting that STAT3 can function as a tumor suppressor. To explain how STAT3 may mediate its tumor suppressor effects, we will discuss several possible mechanisms, one of which is linked to the role of STAT3β, one of the two STAT3 splicing isoforms. Taken together, it is clear that the roles of STAT3 in cancer are multi-faceted and far more complicated than one appreciated previously. The new knowledge has provided us with new approaches and strategies when we evaluate STAT3 as a prognostic biomarker or therapeutic target.

  10. STAT3 Target Genes Relevant to Human Cancers

    International Nuclear Information System (INIS)

    Carpenter, Richard L.; Lo, Hui-Wen

    2014-01-01

    Since its discovery, the STAT3 transcription factor has been extensively studied for its function as a transcriptional regulator and its role as a mediator of development, normal physiology, and pathology of many diseases, including cancers. These efforts have uncovered an array of genes that can be positively and negatively regulated by STAT3, alone and in cooperation with other transcription factors. Through regulating gene expression, STAT3 has been demonstrated to play a pivotal role in many cellular processes including oncogenesis, tumor growth and progression, and stemness. Interestingly, recent studies suggest that STAT3 may behave as a tumor suppressor by activating expression of genes known to inhibit tumorigenesis. Additional evidence suggested that STAT3 may elicit opposing effects depending on cellular context and tumor types. These mixed results signify the need for a deeper understanding of STAT3, including its upstream regulators, parallel transcription co-regulators, and downstream target genes. To help facilitate fulfilling this unmet need, this review will be primarily focused on STAT3 downstream target genes that have been validated to associate with tumorigenesis and/or malignant biology of human cancers

  11. A molecular model for the differential activation of STAT3 and STAT6 by the herpesviral oncoprotein tip.

    Directory of Open Access Journals (Sweden)

    Eman Dey Mazumder

    Full Text Available Constitutive STAT signaling provides growth promoting signals in many forms of malignancy. We performed molecular modeling and molecular dynamics studies of the interaction between the regulatory Src homology 2 (SH2 domains of STAT3 and 6 with phosphorylated peptides of the herpesviral oncoprotein Tip, which facilitates Src kinase mediated STAT-activation and T cell proliferation. The studies give insight into the ligand binding specificity of the STAT SH2 domains and provide the first model for the differential activation of STAT3 or STAT6 by two distinct regions of the viral Tip protein. The biological relevance of the modeled interactions was then confirmed by activation studies using corresponding recombinant oncoproteins, and finally by respective recombinant viruses. The functional data give experimental validation of the molecular dynamics study, and provide evidence for the involvement of STAT6 in the herpesvirus induced T cell proliferation.

  12. Decreased STAT3 Phosphorylation Mediates Cell Swelling in Ammonia-Treated Astrocyte Cultures

    Directory of Open Access Journals (Sweden)

    Arumugam R. Jayakumar

    2016-12-01

    Full Text Available Brain edema, due largely to astrocyte swelling, and the subsequent increase in intracranial pressure and brain herniation, are major complications of acute liver failure (ALF. Elevated level of brain ammonia has been strongly implicated in the development of astrocyte swelling associated with ALF. The means by which ammonia brings about astrocyte swelling, however, is incompletely understood. Recently, oxidative/nitrosative stress and associated signaling events, including activation of mitogen-activated protein kinases (MAPKs, as well as activation of the transcription factor, nuclear factor-kappaB (NF-κB, have been implicated in the mechanism of ammonia-induced astrocyte swelling. Since these signaling events are known to be regulated by the transcription factor, signal transducer and activator of transcription 3 (STAT3, we examined the state of STAT3 activation in ammonia-treated cultured astrocytes, and determined whether altered STAT3 activation and/or protein expression contribute to the ammonia-induced astrocyte swelling. STAT3 was found to be dephosphorylated (inactivated at Tyrosine705 in ammonia-treated cultured astrocytes. Total STAT3 protein level was also reduced in ammonia-treated astrocytes. We also found a significant increase in protein tyrosine phosphatase receptor type-1 (PTPRT-1 protein expression in ammonia-treated cultured astrocytes, and that inhibition of PTPRT-1 enhanced the phosphorylation of STAT3 after ammonia treatment. Additionally, exposure of cultured astrocytes to inhibitors of protein tyrosine phosphatases diminished the ammonia-induced cell swelling, while cultured astrocytes over-expressing STAT3 showed a reduction in the astrocyte swelling induced by ammonia. Collectively, these studies strongly suggest that inactivation of STAT3 represents a critical event in the mechanism of the astrocyte swelling associated with acute liver failure.

  13. Increased skin barrier disruption by sodium lauryl sulfate in mice expressing a constitutively active STAT6 in T cells.

    Science.gov (United States)

    DaSilva, Sonia C; Sahu, Ravi P; Konger, Raymond L; Perkins, Susan M; Kaplan, Mark H; Travers, Jeffrey B

    2012-01-01

    Atopic dermatitis (AD) is a pruritic, chronic inflammatory skin disease that affects 10-20% of children and 1-3% of adults worldwide. Recent studies have indicated that the ability of Th2 cytokines, such as interleukin-4 (IL-4) to regulate skin barrier function may be a predisposing factor for AD development. The present studies examined the ability of increased Th2 activity to affect cutaneous barrier function in vivo and epidermal thickening. Mice that express a constitutively active Signal Transducer and Activator of Transcription 6 (STAT6VT) have increased Th2 cells and a predisposition to allergic inflammation were used in these studies, they demonstrate that topical treatment with the irritant sodium lauryl sulfate (SLS) caused increased transepidermal water loss and epidermal thickening in STAT6VT mice over similarly treated wild-type mice. The proliferation marker Ki-67 was increased in the epidermis of STAT6VT compared to the wild-type mice. However, these differences do not appear to be linked to the addition of an irritant as control-treated STAT6VT skin also exhibited elevated Ki-67 levels, suggesting that the increased epidermal thickness in SLS-treated STAT6VT mice is primarily driven by epidermal cell hypertrophy rather than an increase in cellular proliferation. Our results suggest that an environment with increased Th2 cytokines results in abnormal responses to topical irritants.

  14. Overload-mediated skeletal muscle hypertrophy is not impaired by loss of myofiber STAT3.

    Science.gov (United States)

    Pérez-Schindler, Joaquín; Esparza, Mary C; McKendry, James; Breen, Leigh; Philp, Andrew; Schenk, Simon

    2017-09-01

    Although the signal pathways mediating muscle protein synthesis and degradation are well characterized, the transcriptional processes modulating skeletal muscle mass and adaptive growth are poorly understood. Recently, studies in mouse models of muscle wasting or acutely exercised human muscle have suggested a potential role for the transcription factor signal transducer and activator of transcription 3 (STAT3), in adaptive growth. Hence, in the present study we sought to define the contribution of STAT3 to skeletal muscle adaptive growth. In contrast to previous work, two different resistance exercise protocols did not change STAT3 phosphorylation in human skeletal muscle. To directly address the role of STAT3 in load-induced (i.e., adaptive) growth, we studied the anabolic effects of 14 days of synergist ablation (SA) in skeletal muscle-specific STAT3 knockout (mKO) mice and their floxed, wild-type (WT) littermates. Plantaris muscle weight and fiber area in the nonoperated leg (control; CON) was comparable between genotypes. As expected, SA significantly increased plantaris weight, muscle fiber cross-sectional area, and anabolic signaling in WT mice, although interestingly, this induction was not impaired in STAT3 mKO mice. Collectively, these data demonstrate that STAT3 is not required for overload-mediated hypertrophy in mouse skeletal muscle. Copyright © 2017 the American Physiological Society.

  15. Interleukin-6 induces S100A9 expression in colonic epithelial cells through STAT3 activation in experimental ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Min Jeoung Lee

    Full Text Available BACKGROUND: Intestinal epithelium is essential for maintaining normal intestinal homeostasis; its breakdown leads to chronic inflammatory pathologies, such as inflammatory bowel diseases (IBDs. Although high concentrations of S100A9 protein and interleukin-6 (IL-6 are found in patients with IBD, the expression mechanism of S100A9 in colonic epithelial cells (CECs remains elusive. We investigated the role of IL-6 in S100A9 expression in CECs using a colitis model. METHODS: IL-6 and S100A9 expression, signal transducer and activator of transcription 3 (STAT3 phosphorylation, and infiltration of immune cells were analyzed in mice with dextran sulfate sodium (DSS-induced colitis. The effects of soluble gp130-Fc protein (sgp130Fc and S100A9 small interfering (si RNA (si-S100A9 on DSS-induced colitis were evaluated. The molecular mechanism of S100A9 expression was investigated in an IL-6-treated Caco-2 cell line using chromatin immunoprecipitation assays. RESULTS: IL-6 concentrations increased significantly in the colon tissues of DSS-treated mice. sgp130Fc or si-S100A9 administration to DSS-treated mice reduced granulocyte infiltration in CECs and induced the down-regulation of S100A9 and colitis disease activity. Treatment with STAT3 inhibitors upon IL-6 stimulation in the Caco-2 cell line demonstrated that IL-6 mediated S100A9 expression through STAT3 activation. Moreover, we found that phospho-STAT3 binds directly to the S100A9 promoter. S100A9 may recruit immune cells into inflamed colon tissues. CONCLUSIONS: Elevated S100A9 expression in CECs mediated by an IL-6/STAT3 signaling cascade may play an important role in the development of colitis.

  16. Novel high-throughput screening system for identifying STAT3-SH2 antagonists

    International Nuclear Information System (INIS)

    Uehara, Yutaka; Mochizuki, Masato; Matsuno, Kenji; Haino, Takeharu; Asai, Akira

    2009-01-01

    Constitutive activation of the oncogenic transcription factor STAT3 frequently occurs in various human malignancies. STAT3 activation involves dimerization via intermolecular pTyr-SH2 interaction. Thus, antagonizing this interaction is a feasible approach to inhibit STAT3 activation for cancer therapy. In order to identify selective STAT3 inhibitors, we developed a biochemical HTS system based on AlphaScreen technology, which measures the abilities of test compounds to antagonize pTyr-SH2 interactions. We screened our chemical libraries using this system and identified 5,15-diphenylporphyrin (5,15-DPP) as a selective STAT3-SH2 antagonist. Selective inhibition of STAT3 nuclear translocation and DNA biding activity was observed in cells treated with 5,15-DPP. IL-6-dependent dimerization of STAT3, c-myc promoter binding and c-myc protein expression were all suppressed by 5,15-DPP, whereas no decrement in either expression or phosphorylation level of STAT3 was observed. Thus, the HTS assay system represented herein may be useful for identifying novel STAT3-SH2 antagonists.

  17. Role of proopiomelanocortin neuron Stat3 in regulating arterial pressure and mediating the chronic effects of leptin.

    Science.gov (United States)

    Dubinion, John H; do Carmo, Jussara M; Adi, Ahmad; Hamza, Shereen; da Silva, Alexandre A; Hall, John E

    2013-05-01

    Although signal transducer and activator of transcription 3 (Stat3) is a key second messenger by which leptin regulates appetite and body weight, its role in specific neuronal populations in metabolic regulation and in mediating the chronic effects of leptin on blood pressure is unknown. The current study tested the hypothesis that Stat3 signaling in proopiomelanocortin (POMC) neurons mediates the chronic effects of leptin on mean arterial pressure (MAP), as well as on glucose regulation, energy expenditure, and food intake. Stat3(flox/flox) mice were crossed with POMC-Cre mice to generate mice with Stat3 deletion specifically in POMC neurons (Stat3(flox/flox)/POMC-Cre). Oxygen consumption (Vo2), carbon dioxide respiration (Vco2), motor activity, heat production, food intake, and MAP were measured 24 hours/d. After baseline measurements, leptin was infused (4 μg/kg per min, IP) for 7 days. Stat3(flox/flox)/POMC-Cre mice were hyperphagic, heavier, and had increased respiratory quotients compared with control Stat3(flox/flox) mice. Baseline MAP was not different between the groups, and chronic leptin infusion reduced food intake similarly in both groups (27 versus 29%). Vo2, Vco2, and heat production responses to leptin were not significantly different in control and Stat3(flox/flox)/POMC-Cre mice. However, leptin-mediated increases in MAP were completely abolished, and blood pressure responses to acute air-jet stress were attenuated in male Stat3(flox/flox)/POMC-Cre mice. These results indicate that Stat3 signaling in POMC neurons is essential for leptin-mediated increases in MAP, but not for anorexic or thermogenic effects of leptin.

  18. Stat3 inhibition attenuates mechanical allodynia through transcriptional regulation of chemokine expression in spinal astrocytes.

    Directory of Open Access Journals (Sweden)

    Xiaodong Liu

    Full Text Available BACKGROUND: Signal transducer and activator of transcription 3 (Stat3 is known to induce cell proliferation and inflammation by regulating gene transcription. Recent studies showed that Stat3 modulates nociceptive transmission by reducing spinal astrocyte proliferation. However, it is unclear whether Stat3 also contributes to the modulation of nociceptive transmission by regulating inflammatory response in spinal astrocytes. This study aimed at investigating the role of Stat3 on neuroinflammation during development of pain in rats after intrathecal injection of lipopolysaccharide (LPS. METHODS: Stat3 specific siRNA oligo and synthetic selective inhibitor (Stattic were applied to block the activity of Stat3 in primary astrocytes or rat spinal cord, respectively. LPS was used to induce the expression of proinflammatory genes in all studies. Immunofluorescence staining of cells and slices of spinal cord was performed to monitor Stat3 activation. The impact of Stat3 inhibition on proinflammatory genes expression was determined by cytokine antibody array, enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Mechanical allodynia, as determined by the threshold pressure that could induce hind paw withdrawal after application of standardized von Frey filaments, was used to detect the effects of Stat3 inhibition after pain development with intrathecal LPS injection. RESULTS: Intrathecal injection of LPS activated Stat3 in reactive spinal astrocytes. Blockade of Stat3 activity attenuated mechanical allodynia significantly and was correlated with a lower number of reactive astrocytes in the spinal dorsal horn. In vitro study demonstrated that Stat3 modulated inflammatory response in primary astrocytes by transcriptional regulation of chemokine expression including Cx3cl1, Cxcl5, Cxcl10 and Ccl20. Similarly, inhibition of Stat3 reversed the expression of these chemokines in the spinal dorsal horn. CONCLUSIONS: Stat3 acted as a

  19. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway

    International Nuclear Information System (INIS)

    Mao, Jiamin; Yang, Jianbing; Zhang, Yan; Li, Ting; Wang, Cheng; Xu, Lingfei; Hu, Qiaoyun; Wang, Xiaoke; Jiang, Shengyang; Nie, Xiaoke; Chen, Gang

    2016-01-01

    Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 and P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. - Highlights: • Arsenic trioxide exposure induced expression of IL-β in HAPI microglia. • Arsenic trioxide exposure induced activation of MAPK pathways in HAPI microglia. • Arsenic trioxide exposure induced activation of STAT3 pathways in HAPI microglia. • The expression of IL-β though P38/JNK MAPK/STAT3 pathways in HAPI microglia.

  20. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jiamin [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Yang, Jianbing [Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001 (China); Zhang, Yan [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Li, Ting [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Wang, Cheng [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Xu, Lingfei; Hu, Qiaoyun; Wang, Xiaoke; Jiang, Shengyang [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Nie, Xiaoke [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Chen, Gang, E-mail: chengang@ntu.edu.cn [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China)

    2016-07-15

    Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 and P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. - Highlights: • Arsenic trioxide exposure induced expression of IL-β in HAPI microglia. • Arsenic trioxide exposure induced activation of MAPK pathways in HAPI microglia. • Arsenic trioxide exposure induced activation of STAT3 pathways in HAPI microglia. • The expression of IL-β though P38/JNK MAPK/STAT3 pathways in HAPI microglia.

  1. Curcumin induces growth-arrest and apoptosis in association with the inhibition of constitutively active JAK-STAT pathway in T cell leukemia

    International Nuclear Information System (INIS)

    Rajasingh, Johnson; Raikwar, Himanshu P.; Muthian, Gladson; Johnson, Caroline; Bright, John J.

    2006-01-01

    Adult T cell leukemia is an aggressive and frequently fatal malignancy that expressess constitutively activated growth-signaling pathways in association with deregulated growth and resistance to apoptosis. Curcumin (diferuloylmethane) is a naturally occurring yellow pigment, isolated from the rhizomes of the plant Curcuma longa that has traditionally been used in the treatment of injury and inflammation. But the effect and mechanism of action of curcumin on T cell leukemia is not known. To investigate the antitumor activity of curcumin in T cell leukemia, we examined its effect on constitutive phosphorylation of JAK and STAT proteins, proliferation, and apoptosis in HTLV-I-transformed T cell lines. HTLV-I-transformed T cell leukemia lines, MT-2, HuT-102, and SLB-1, express constitutively phosphorylated JAK3, TYK2, STAT3, and STAT5 signaling proteins. In vitro treatment with curcumin induced a dose-dependent decrease in JAK and STAT phosphorylation resulting in the induction of growth-arrest and apoptosis in T cell leukemia. The induction of growth-arrest and apoptosis in association with the blockade of constitutively active JAK-STAT pathway suggests this be a mechanism by which curcumin induces antitumor activity in T cell leukemia

  2. Knockdown of stat3 expression by RNAi inhibits in vitro growth of human ovarian cancer

    International Nuclear Information System (INIS)

    Zhao, Shu-Hua; Zhao, Fan; Zheng, Jing-Ying; Gao, Li-Fang; Zhao, Xue-Jian; Cui, Man-Hua

    2011-01-01

    The aim of the study was to investigate the suppressive effects of pSilencer2.1-U6-siRNA-stat3 recombinant plasmids on the growth of ovarian cancer in vitro. Three pairs of DNA template (stat3-1, stat3-2, stat3-3) specific for different target sites on stat3 mRNA were synthesized to reconstruct pSilencer2.1-U6-siRNA-stat3s, which were transfected into SKOV3 cells. The expressions of STAT3, BcL-2, cyclin D1 and C-myc in these cells were detected by Western blot and Northern blot. The cell cycle and the growth were determined by flow cytometry (FCM) and MTT assay, respectively. Cell apoptosis was determined by TUNEL staining. Of the three siRNAs, only siRNA targeting stat3-3 markedly suppressed the protein expression of stat3 in SKOV3 cells; MTT assay and FCM showed that transfection of stat3-3 siRNA could significantly suppress the growth of SKOV3 cells and arrest the cell cycle in vitro. TUNEL staining also showed massive apoptosis in SKOV3 cells transfected with stat3-3 siRNA. pSilencer2.1-U6-siRNA-stat3-3 can significantly inhibit the STAT3 expression in human ovarian cancer cells resulting in the inhibition of the cancer growth and the increase of apoptosis of cancer cells

  3. Stat3 is involved in control of MASP2 gene expression

    International Nuclear Information System (INIS)

    Unterberger, Claudia; Hanson, Steven; Klingenhoff, Andreas; Oesterle, Daniela; Frankenberger, Marion; Endo, Yuichi; Matsushita, Misao; Fujita, Teizo; Schwaeble, Wilhelm; Weiss, Elisabeth H.; Ziegler-Heitbrock, Loems; Stover, Cordula

    2007-01-01

    Little is known about determinants regulating expression of Mannan-binding lectin associated serine protease-2 (MASP-2), the effector component of the lectin pathway of complement activation. Comparative bioinformatic analysis of the MASP2 promoter regions in human, mouse, and rat, revealed conservation of two putative Stat binding sites, termed StatA and StatB. Site directed mutagenesis specific for these sites was performed. Transcription activity was decreased 5-fold when StatB site was mutated in the wildtype reporter gene construct. Gel retardation and competition assays demonstrated that proteins contained in the nuclear extract prepared from HepG2 specifically bound double-stranded StatB oligonucleotides. Supershift analysis revealed Stat3 to be the major specific binding protein. We conclude that Stat3 binding is important for MASP2 promoter activity

  4. 5-hydroxy-2-methyl-1,4-naphthoquinone, a vitamin K3 analogue, suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase, SHP-1: potential role in chemosensitization.

    Science.gov (United States)

    Sandur, Santosh K; Pandey, Manoj K; Sung, Bokyung; Aggarwal, Bharat B

    2010-01-01

    The activation of signal transducers and activators of transcription 3 (STAT3) has been linked with carcinogenesis through survival, proliferation, and angiogenesis of tumor cells. Agents that can suppress STAT3 activation have potential not only for prevention but also for treatment of cancer. In the present report, we investigated whether 5-hydroxy-2-methyl-1,4-naphthoquinone (plumbagin), an analogue of vitamin K, and isolated from chitrak (Plumbago zeylanica), an Ayurvedic medicinal plant, can modulate the STAT3 pathway. We found that plumbagin inhibited both constitutive and interleukin 6-inducible STAT3 phosphorylation in multiple myeloma (MM) cells and this correlated with the inhibition of c-Src, Janus-activated kinase (JAK)1, and JAK2 activation. Vanadate, however, reversed the plumbagin-induced downregulation of STAT3 activation, suggesting the involvement of a protein tyrosine phosphatase. Indeed, we found that plumbagin induced the expression of the protein tyrosine phosphatase, SHP-1, and silencing of the SHP-1 abolished the effect of plumbagin. This agent also downregulated the expression of STAT3-regulated cyclin D1, Bcl-xL, and vascular endothelial growth factor; activated caspase-3; induced poly (ADP ribose) polymerase cleavage; and increased the sub-G(1) population of MM cells. Consistent with these results, overexpression of constitutive active STAT3 significantly reduced the plumbagin-induced apoptosis. When compared with AG490, a rationally designed STAT3/JAK2 inhibitor, plumbagin was found more potent in suppressing the proliferation of cells. Plumbagin also significantly potentiated the apoptotic effects of thalidomide and bortezomib in MM cells. Overall, these results suggest that the plumbagin inhibits STAT3 activation pathway through the induction of SHP-1 and this may mediate the sensitization of STAT3 overexpressing cancers to chemotherapeutic agents.

  5. Antitumorigenic potential of STAT3 alternative splicing modulation.

    Science.gov (United States)

    Zammarchi, Francesca; de Stanchina, Elisa; Bournazou, Eirini; Supakorndej, Teerawit; Martires, Kathryn; Riedel, Elyn; Corben, Adriana D; Bromberg, Jacqueline F; Cartegni, Luca

    2011-10-25

    Signal transducer and activator of transcription 3 (STAT3) plays a central role in the activation of multiple oncogenic pathways. Splicing variant STAT3β uses an alternative acceptor site within exon 23 that leads to a truncated isoform lacking the C-terminal transactivation domain. Depending on the context, STAT3β can act as a dominant-negative regulator of transcription and promote apoptosis. We show that modified antisense oligonucleotides targeted to a splicing enhancer that regulates STAT3 exon 23 alternative splicing specifically promote a shift of expression from STAT3α to STAT3β. Induction of endogenous STAT3β leads to apoptosis and cell-cycle arrest in cell lines with persistent STAT3 tyrosine phosphorylation compared with total STAT3 knockdown obtained by forced splicing-dependent nonsense-mediated decay (FSD-NMD). Comparison of the molecular effects of splicing redirection to STAT3 knockdown reveals a unique STAT3β signature, with a down-regulation of specific targets (including lens epithelium-derived growth factor, p300/CBP-associated factor, CyclinC, peroxisomal biogenesis factor 1, and STAT1β) distinct from canonical STAT3 targets typically associated with total STAT3 knockdown. Furthermore, similar in vivo redirection of STAT3 alternative splicing leads to tumor regression in a xenograft cancer model, demonstrating how pharmacological manipulation of a single key splicing event can manifest powerful antitumorigenic properties and validating endogenous splicing reprogramming as an effective cancer therapeutic approach.

  6. Hes1 promotes the IL-22-mediated antimicrobial response by enhancing STAT3-dependent transcription in human intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Murano, Tatsuro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Okamoto, Ryuichi, E-mail: rokamoto.gast@tmd.ac.jp [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Ito, Go; Nakata, Toru; Hibiya, Shuji; Shimizu, Hiromichi; Fujii, Satoru; Kano, Yoshihito; Mizutani, Tomohiro; Yui, Shiro; Akiyama-Morio, Junko; Nemoto, Yasuhiro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Tsuchiya, Kiichiro; Nakamura, Tetsuya [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Watanabe, Mamoru [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan)

    2014-01-17

    Highlights: •Hes1 enhances IL-22-STAT3 signaling in human intestinal epithelial cells. •Hes1 enhances REG family gene induction by IL-22-STAT3 signaling. •Protein level of Hes1 restricts the response to IL-22. •Present regulation of a cytokine signal represents a new mode of Hes1 function. -- Abstract: Notch signaling plays an essential role in the proliferation and differentiation of intestinal epithelial cells (IECs). We have previously shown that Notch signaling is up-regulated in the inflamed mucosa of ulcerative colitis (UC) and thereby plays an indispensable role in tissue regeneration. Here we show that in addition to Notch signaling, STAT3 signaling is highly activated in the inflamed mucosa of UC. Forced expression of the Notch target gene Hes1 dramatically enhanced the IL-22-mediated STAT3-dependent transcription in human IECs. This enhancement of STAT3-dependent transcription was achieved by the extended phosphorylation of STAT3 by Hes1. Microarray analysis revealed that Hes1-mediated enhancement of IL-22-STAT3 signaling significantly increased the induction of genes encoding antimicrobial peptides, such as REG1A, REG3A and REG3G, in human IECs. Conversely, the reduction of Hes1 protein levels with a γ-secretase inhibitor significantly down-regulated the induction of those genes in IECs, resulting in a markedly poor response to IL-22. Our present findings identify a new role for the molecular function of Hes1 in which the protein can interact with cytokine signals and regulate the immune response of IECs.

  7. 4-Phenylbutyrate stimulates Hsp70 expression through the Elp2 component of elongator and STAT-3 in cystic fibrosis epithelial cells.

    Science.gov (United States)

    Suaud, Laurence; Miller, Katelyn; Panichelli, Ashley E; Randell, Rachel L; Marando, Catherine M; Rubenstein, Ronald C

    2011-12-30

    Sodium 4-phenylbutyrate (4PBA) corrects trafficking of ΔF508-CFTR in Cystic Fibrosis (CF) epithelia, which is hypothesized to, at least in part, result from increased expression of Hsp70 (stress-induced 70 kDa heat shock protein). To identify other 4PBA-regulated proteins that may promote correction of ΔF508 trafficking, we performed differential display RT-PCR on mRNA from IB3-1 CF bronchiolar epithelial cells treated for 0-24 h with 1 mM 4PBA. In this screen, a STAT-3 (signal transducer and activator of transcription-3)-interacting protein, StIP-1 that regulates STAT-3 activation had transiently increased expression. StIP-1 is identical to Elongator protein 2 (Elp2), a component of the Elongator complex that regulates RNA polymerase II. Previous studies have suggested that Elongator regulates Hsp70 mRNA transcription, and that the Hsp70 promoter contains functional STAT-3-binding sites. We therefore tested the hypothesis that 4PBA increases Hsp70 expression by an Elongator- and STAT-3-dependent mechanism. 4PBA treatment of IB3-1 CF bronchiolar epithelial cells caused transiently increased expression of Hsp70 protein, as well as Elp2 protein and mRNA. Elp2 depletion by transfection of small interfering RNAs, reduced both Elp2 and Hsp70 protein expression. 4PBA also caused transient activation of STAT-3, and increased abundance of nuclear proteins that bind to the STAT-3-responsive element of the Hsp70 promoter. Luciferase reporter assays demonstrated that both Elp2 overexpression and 4PBA increase Hsp70 promoter activity, while Elp2 depletion blocked the ability of 4PBA to stimulate Hsp70 promoter activity. Together, these data suggest that Elp2 and STAT-3 mediate, at least in part, the stimulation of Hsp70 expression by 4PBA.

  8. A novel small molecular STAT3 inhibitor, LY5, inhibits cell viability, cell migration, and angiogenesis in medulloblastoma cells.

    Science.gov (United States)

    Xiao, Hui; Bid, Hemant Kumar; Jou, David; Wu, Xiaojuan; Yu, Wenying; Li, Chenglong; Houghton, Peter J; Lin, Jiayuh

    2015-02-06

    Signal transducers and activators of transcription 3 (STAT3) signaling is persistently activated and could contribute to tumorigenesis of medulloblastoma. Numerous studies have demonstrated that inhibition of the persistent STAT3 signaling pathway results in decreased proliferation and increased apoptosis in human cancer cells, indicating that STAT3 is a viable molecular target for cancer therapy. In this study, we investigated a novel non-peptide, cell-permeable small molecule, named LY5, to target STAT3 in medulloblastoma cells. LY5 inhibited persistent STAT3 phosphorylation and induced apoptosis in human medulloblastoma cell lines expressing constitutive STAT3 phosphorylation. The inhibition of STAT3 signaling by LY5 was confirmed by down-regulating the expression of the downstream targets of STAT3, including cyclin D1, bcl-XL, survivin, and micro-RNA-21. LY5 also inhibited the induction of STAT3 phosphorylation by interleukin-6 (IL-6), insulin-like growth factor (IGF)-1, IGF-2, and leukemia inhibitory factor in medulloblastoma cells, but did not inhibit STAT1 and STAT5 phosphorylation stimulated by interferon-γ (IFN-γ) and EGF, respectively. In addition, LY5 blocked the STAT3 nuclear localization induced by IL-6, but did not block STAT1 and STAT5 nuclear translocation mediated by IFN-γ and EGF, respectively. A combination of LY5 with cisplatin or x-ray radiation also showed more potent effects than single treatment alone in the inhibition of cell viability in human medulloblastoma cells. Furthermore, LY5 demonstrated a potent inhibitory activity on cell migration and angiogenesis. Taken together, these findings indicate LY5 inhibits persistent and inducible STAT3 phosphorylation and suggest that LY5 is a promising therapeutic drug candidate for medulloblastoma by inhibiting persistent STAT3 signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Fludarabine inhibits STAT1-mediated up-regulation of caspase-3 expression in dexamethasone-induced osteoblasts apoptosis and slows the progression of steroid-induced avascular necrosis of the femoral head in rats.

    Science.gov (United States)

    Feng, Zhenhua; Zheng, Wenhao; Tang, Qian; Cheng, Liang; Li, Hang; Ni, Wenfei; Pan, Xiaoyun

    2017-08-01

    Steroid-induced avascular necrosis of the femoral head (SANFH) is a major limitation of long-term or excessive clinical administration of glucocorticoids. Fludarabine, which is a compound used to treat various hematological malignancies, such as chronic lymphocytic leukemia, acts by down-regulating signal transducer and activator of transcription 1 (STAT1) by inhibiting STAT1 phosphorylation in both normal and cancer cells. This study assessed the effects of fludarabine in vitro (primary murine osteoblasts) and in vivo (rat SANFH model). In vitro, pretreatment with fludarabine significantly inhibited Dexamethasone (Dex)-induced apoptosis in osteoblasts, which was examined by TUNEL staining. Treatment with Dex caused a remarkable decrease in the expression of Bcl-2; an increase in cytochrome c release; activation of BAX, caspase-9, and caspase-3; and an obvious enhancement in STAT1 phosphorylation. However, treatment resulted in the up-regulation of caspase-3 expression. Enhanced P-STAT1 activity and up-regulation of caspase-3 expression were also observed in osteoblasts. In vivo, the subchondral trabeculae in fludarabine-treated rats exhibited less bone loss and a lower ratio of empty lacunae. Taken together, our results suggest that STAT1-mediated up-regulation of caspase-3 is involved in osteoblast apoptosis induced by Dex and indicates that fludarabine may serve as a potential agent for the treatment of SANFH.

  10. Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-Cell lymphoma

    DEFF Research Database (Denmark)

    Sibbesen, Nina A; Kopp, Katharina L; Litvinov, Ivan V

    2015-01-01

    the promoter of the miR-22 host gene, and (iii) inhibition of Jak3, STAT3, and STAT5 triggers increased expression of pri-miR-22 and miR-22. Curcumin, a nutrient with anti-Jak3 activity and histone deacetylase inhibitors (HDACi) also trigger increased expression of pri-miR-22 and miR-22. Transfection...

  11. Differences in antiproliferative effect of STAT3 inhibition in HCC cells with versus without HBV expression

    International Nuclear Information System (INIS)

    Hong, Yun; Zhou, Lin; Xie, Haiyang; Wang, Weilin; Zheng, Shusen

    2015-01-01

    Chronic infection with hepatitis B virus (HBV) plays an important role in the etiology of hepatocellular carcinoma (HCC). Signal transducer and activator of transcription 3 (STAT3) inactivation could inhibit the tumor growth of HCC. In this study, differential antiproliferative effect of STAT3 inhibition was observed with HBV-related HCC cells being more resistant than non-HBV-related HCC cells. Resistance of HBV-related HCC cells to STAT3 inhibition was positively correlated to the expression of HBV. Enhanced ERK activation after STAT3 blockade was detected in HBV-related HCC cells but not in non-HBV-related HCC cells. Combined ERK and STAT3 inhibition eliminates the discrepancy between the two types of HCC cells. Moderate reduced HBV expression was found after STAT3 inhibition. These findings disclose a discrepancy in cellular response to STAT3 inhibition between non-HBV-related and HBV-related HCC cells and underscore the complexity of antiproliferative effect of STAT3 inactivation in HBV-related HCC cells. - Highlights: • HBV endows HCC cells with resistance to STAT3 inactivation on proliferation. • Abnormal ERK activation after STAT3 inhibition in HBV-related HCC cells. • Combined ERK and STAT3 inhibition eliminates the discrepancy. • STAT3 inhibition moderately reduces HBV expression

  12. Differences in antiproliferative effect of STAT3 inhibition in HCC cells with versus without HBV expression

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yun; Zhou, Lin; Xie, Haiyang; Wang, Weilin [Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, Zhejiang 310003 (China); Key Laboratory of Combined Multi-organ Transplantation of Ministry of Public Health, Qingchun Road 79, Hangzhou, Zhejiang 310003 (China); Zheng, Shusen, E-mail: shusenzheng@zju.edu.cn [Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, Zhejiang 310003 (China); Key Laboratory of Combined Multi-organ Transplantation of Ministry of Public Health, Qingchun Road 79, Hangzhou, Zhejiang 310003 (China)

    2015-06-05

    Chronic infection with hepatitis B virus (HBV) plays an important role in the etiology of hepatocellular carcinoma (HCC). Signal transducer and activator of transcription 3 (STAT3) inactivation could inhibit the tumor growth of HCC. In this study, differential antiproliferative effect of STAT3 inhibition was observed with HBV-related HCC cells being more resistant than non-HBV-related HCC cells. Resistance of HBV-related HCC cells to STAT3 inhibition was positively correlated to the expression of HBV. Enhanced ERK activation after STAT3 blockade was detected in HBV-related HCC cells but not in non-HBV-related HCC cells. Combined ERK and STAT3 inhibition eliminates the discrepancy between the two types of HCC cells. Moderate reduced HBV expression was found after STAT3 inhibition. These findings disclose a discrepancy in cellular response to STAT3 inhibition between non-HBV-related and HBV-related HCC cells and underscore the complexity of antiproliferative effect of STAT3 inactivation in HBV-related HCC cells. - Highlights: • HBV endows HCC cells with resistance to STAT3 inactivation on proliferation. • Abnormal ERK activation after STAT3 inhibition in HBV-related HCC cells. • Combined ERK and STAT3 inhibition eliminates the discrepancy. • STAT3 inhibition moderately reduces HBV expression.

  13. In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3

    DEFF Research Database (Denmark)

    Sommer, V H; Clemmensen, O J; Nielsen, O

    2004-01-01

    in the epidermal Pautrier abscesses associated with early stages of MF did not express activated STAT3. To address the role of STAT3 in survival/apoptosis, CTCL tumor cells from an advanced skin tumor were transfected with either wild-type STAT3 (STAT3wt) or dominant-negative STAT3 (STAT3D). Forced inducible...... expression of STAT3D triggered a significant increase in tumor cells undergoing apoptosis, whereas forced expression of STAT3wt or empty vector had no effect. In conclusion, a profound in vivo activation of STAT3 is observed in MF tumors but not in the early stages of MF. Moreover, STAT3 protects tumor cells...

  14. The novel curcumin analog FLLL32 decreases STAT3 DNA binding activity and expression, and induces apoptosis in osteosarcoma cell lines

    International Nuclear Information System (INIS)

    Fossey, Stacey L; London, Cheryl A; Bear, Misty D; Lin, Jiayuh; Li, Chenglong; Schwartz, Eric B; Li, Pui-Kai; Fuchs, James R; Fenger, Joelle; Kisseberth, William C

    2011-01-01

    Curcumin is a naturally occurring phenolic compound shown to have a wide variety of antitumor activities; however, it does not attain sufficient blood levels to do so when ingested. Using structure-based design, a novel compound, FLLL32, was generated from curcumin. FLLL32 possesses superior biochemical properties and more specifically targets STAT3, a transcription factor important in tumor cell survival, proliferation, metastasis, and chemotherapy resistance. In our previous work, we found that several canine and human osteosarcoma (OSA) cell lines, but not normal osteoblasts, exhibit constitutive phosphorylation of STAT3. Compared to curcumin, we hypothesized that FLLL32 would be more efficient at inhibiting STAT3 function in OSA cells and that this would result in enhanced downregulation of STAT3 transcriptional targets and subsequent death of OSA cells. Human and canine OSA cells were treated with vehicle, curcumin, or FLLL32 and the effects on proliferation (CyQUANT ® ), apoptosis (SensoLyte ® Homogeneous AMC Caspase- 3/7 Assay kit, western blotting), STAT3 DNA binding (EMSA), and vascular endothelial growth factor (VEGF), survivin, and matrix metalloproteinase-2 (MMP2) expression (RT-PCR, western blotting) were measured. STAT3 expression was measured by RT-PCR, qRT- PCR, and western blotting. Our data showed that FLLL32 decreased STAT3 DNA binding by EMSA. FLLL32 promoted loss of cell proliferation at lower concentrations than curcumin leading to caspase-3- dependent apoptosis, as evidenced by PARP cleavage and increased caspase 3/7 activity; this could be inhibited by treatment with the pan-caspase inhibitor Z-VAD-FMK. Treatment of OSA cells with FLLL32 decreased expression of survivin, VEGF, and MMP2 at both mRNA and protein levels with concurrent decreases in phosphorylated and total STAT3; this loss of total STAT3 occurred, in part, via the ubiquitin-proteasome pathway. These data demonstrate that the novel curcumin analog FLLL32 has biologic activity

  15. The novel curcumin analog FLLL32 decreases STAT3 DNA binding activity and expression, and induces apoptosis in osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Li Pui-Kai

    2011-03-01

    Full Text Available Abstract Background Curcumin is a naturally occurring phenolic compound shown to have a wide variety of antitumor activities; however, it does not attain sufficient blood levels to do so when ingested. Using structure-based design, a novel compound, FLLL32, was generated from curcumin. FLLL32 possesses superior biochemical properties and more specifically targets STAT3, a transcription factor important in tumor cell survival, proliferation, metastasis, and chemotherapy resistance. In our previous work, we found that several canine and human osteosarcoma (OSA cell lines, but not normal osteoblasts, exhibit constitutive phosphorylation of STAT3. Compared to curcumin, we hypothesized that FLLL32 would be more efficient at inhibiting STAT3 function in OSA cells and that this would result in enhanced downregulation of STAT3 transcriptional targets and subsequent death of OSA cells. Methods Human and canine OSA cells were treated with vehicle, curcumin, or FLLL32 and the effects on proliferation (CyQUANT®, apoptosis (SensoLyte® Homogeneous AMC Caspase- 3/7 Assay kit, western blotting, STAT3 DNA binding (EMSA, and vascular endothelial growth factor (VEGF, survivin, and matrix metalloproteinase-2 (MMP2 expression (RT-PCR, western blotting were measured. STAT3 expression was measured by RT-PCR, qRT- PCR, and western blotting. Results Our data showed that FLLL32 decreased STAT3 DNA binding by EMSA. FLLL32 promoted loss of cell proliferation at lower concentrations than curcumin leading to caspase-3- dependent apoptosis, as evidenced by PARP cleavage and increased caspase 3/7 activity; this could be inhibited by treatment with the pan-caspase inhibitor Z-VAD-FMK. Treatment of OSA cells with FLLL32 decreased expression of survivin, VEGF, and MMP2 at both mRNA and protein levels with concurrent decreases in phosphorylated and total STAT3; this loss of total STAT3 occurred, in part, via the ubiquitin-proteasome pathway. Conclusions These data demonstrate

  16. STAT5A-mediated NOX5-L expression promotes the proliferation and metastasis of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Dho, So Hee [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Ji Young; Lee, Kwang-Pyo; Kwon, Eun-Soo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Lim, Jae Cheong [Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Chang-Jin [Department of Pathology, Soonchunhyang Medical Science Research Institute, Chonan 330-090 (Korea, Republic of); Jeong, Dongjun, E-mail: juny1024@sch.ac.kr [Department of Pathology, Soonchunhyang Medical Science Research Institute, Chonan 330-090 (Korea, Republic of); Kwon, Ki-Sun, E-mail: kwonks@kribb.re.kr [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 305-333 (Korea, Republic of)

    2017-02-01

    NADPH oxidase (NOX) generates reactive oxygen species (ROS) and has been suggested to mediate cell proliferation in some cancers. Here, we show that an increase in the expression of NOX5 long form (NOX5-L) is critical for tumor progression in breast tumor tissues. Immunostaining of clinical samples indicated that NOX5 was overexpressed in 41.1% of breast ductal carcinoma samples. NOX5-L depletion consistently suppressed cell proliferation, invasion, and migration in vitro. Antibody-mediated neutralization of NOX5-L attenuated tumor progression in a mouse xenograft model. Promoter analysis revealed that NOX5-L expression is regulated by STAT5A in breast cancer cells. Based on our novel findings, we suggest that inhibition of NOX5-L may be a promising therapeutic strategy that exerts anti-cancer effects via the modulation of ROS-mediated cell signaling. - Highlights: • The ROS-generating protein, NOX5-L, determines cellular proliferation and metastasis in subset of breast tumor. • Tumor growth was attenuated by the treatment of anti-NOX5-L antibody in a xenograft model. • NOX5-L expression is transcriptionally regulated by STAT5A in breast cancer cells.

  17. Stat3 signaling regulates embryonic stem cell fate in a dose-dependent manner

    Directory of Open Access Journals (Sweden)

    Chih-I Tai

    2014-09-01

    Full Text Available Stat3 is essential for mouse embryonic stem cell (mESC self-renewal mediated by LIF/gp130 receptor signaling. Current understanding of Stat3-mediated ESC self-renewal mechanisms is very limited, and has heretofore been dominated by the view that Stat3 signaling functions in a binary “on/off” manner. Here, in contrast to this binary viewpoint, we demonstrate a contextual, rheostat-like mechanism for Stat3's function in mESCs. Activation and expression levels determine whether Stat3 functions in a self-renewal or a differentiation role in mESCs. We also show that Stat3 induces rapid differentiation of mESCs toward the trophectoderm (TE lineage when its activation level exceeds certain thresholds. Stat3 induces this differentiation phenotype via induction of Tfap2c and its downstream target Cdx2. Our findings provide a novel concept in the realm of Stat3, self-renewal signaling, and pluripotent stem cell biology. Ultimately, this finding may facilitate the development of conditions for the establishment of authentic non-rodent ESCs.

  18. STAT6 Mediates Interleukin-4 Growth Inhibition in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jennifer L. Gooch

    2002-01-01

    Full Text Available In addition to acting as a hematopoietic growth factor, interleukin-4 (IL-4 inhibits growth of some transformed cells in vitro and in vivo. In this study, we show that insulin receptor substrate (IRS-1, IRS-2, and signal transducer and activator of transcription 6 (STAT6 are phosphorylated following IL-4 treatment in MCF-7 breast cancer cells. STAT6 DNA binding is enhanced by IL-4 treatment. STAT6 activation occurs even after IRS-1 depletion, suggesting the two pathways are independent. To examine the role of STAT6 in IL-4-mediated growth inhibition and apoptosis, a fulllength STAT6 cDNA was transfected into MCF-7 cells. Transient overexpression of STAT6 resulted in both cytoplasmic and nuclear expression of the protein, increased DNA binding in response to IL-4, and increased transactivation of an IL-4 responsive promoter. In STAT6-transfected cells, basal proliferation was reduced whereas apoptosis was increased. Finally, stable expression of STAT6 resulted in reduced foci formation compared to vector-transfected cells alone. These results suggest STAT6 is required for IL-4mediated growth inhibition and induction of apoptosis in human breast cancer cells.

  19. STAT1 pathway mediates amplification of metastatic potential and resistance to therapy.

    Directory of Open Access Journals (Sweden)

    Nikolai N Khodarev

    Full Text Available BACKGROUND: Traditionally IFN/STAT1 signaling is connected with an anti-viral response and pro-apoptotic tumor-suppressor functions. Emerging functions of a constitutively activated IFN/STAT1 pathway suggest an association with an aggressive tumor phenotype. We hypothesized that tumor clones that constitutively overexpress this pathway are preferentially selected by the host microenvironment due to a resistance to STAT1-dependent cytotoxicity and demonstrate increased metastatic ability combined with increased resistance to genotoxic stress. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that clones of B16F1 tumors grown in the lungs of syngeneic C57BL/6 mice demonstrate variable transcriptional levels of IFN/STAT1 pathway expression. Tumor cells that constitutively overexpress the IFN/STAT1 pathway (STAT1(H genotype are selected by the lung microenvironment. STAT1(H tumor cells also demonstrate resistance to IFN-gamma (IFNgamma, ionizing radiation (IR, and doxorubicin relative to parental B16F1 and low expressors of the IFN/STAT1 pathway (STAT1(L genotype. Stable knockdown of STAT1 reversed the aggressive phenotype and decreased both lung colonization and resistance to genotoxic stress. CONCLUSIONS: Our results identify a pathway activated by tumor-stromal interactions thereby selecting for pro-metastatic and therapy-resistant tumor clones. New therapies targeted against the IFN/STAT1 signaling pathway may provide an effective strategy to treat or sensitize aggressive tumor clones to conventional cancer therapies and potentially prevent distant organ colonization.

  20. Therapeutic effect of Cryptotanshinone on experimental rheumatoid arthritis through downregulating p300 mediated-STAT3 acetylation.

    Science.gov (United States)

    Wang, Ying; Zhou, Chun; Gao, Hui; Li, Cuixian; Li, Dong; Liu, Peiqing; Huang, Min; Shen, Xiaoyan; Liu, Liang

    2017-08-15

    The balance between T helper 17 (Th17) cells and regulatory T (Treg) cells, plays a critical role in rheumatoid arthritis (RA). The differentiation of Th17 cells requires the activation of STAT3, which determines the balance of Th17/Treg. Here, we investigated the therapeutic effect of Cryptotanshinone (CTS) on collagen induced mouse arthritis and explored the underlying mechanisms. Arthritis was induced in DBA/1 mice with bovine collagen type II and complete Freund's adjuvant. CTS was given at 20mgkg -1 d -1 or 60mgkg -1 d -1 by gavage for 6weeks. The immuno-inflammation and joint destruction were evaluated and the balance of Th17/Treg was determined. STAT3 acetylation and phosphorylation were detected by western blotting, and the involvement of p300 was investigated by siRNA and plasmid overexpression. CTS at a dose of 60mgkg -1 d -1 ameliorated the inflammation and joint destruction in CIA mice. It improved Th17/Treg imbalance, and inhibited both acetylation and phosphorylation of STAT3. CTS reduced p300 expression and its binding to STAT3, but increased phosphorylated AMPK. Knockdown of p300 mimicked the inhibitory effect of CTS on STAT3 acetylation and phosphorylation, which could be partially rescued by overexpression of p300-WT, but not p300-dominant negative (DN) construct. Our study suggested that the anti-arthritis effects of CTS were attained through suppression of p300-mediated STAT3 acetylation. Our data suggest that CTS might be a potential immune modulator for RA treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The STAT3 inhibitor pimozide impedes cell proliferation and induces ROS generation in human osteosarcoma by suppressing catalase expression.

    Science.gov (United States)

    Cai, Nan; Zhou, Wei; Ye, Lan-Lan; Chen, Jun; Liang, Qiu-Ni; Chang, Gang; Chen, Jia-Jie

    2017-01-01

    Currently, there is a considerable need to develop new treatments for osteosarcoma (OS), a very aggressive bone cancer. The activation of STAT3 signaling is positively associated with poor prognosis and aggressive progression in OS patients. Our previous study reported that the FDA-approved antipsychotic drug pimozide had anti-tumor activity against hepatocellular carcinoma and prostate cancer cells by suppressing STAT3 activity. Therefore, the aim of this study was to investigate the specific effect of pimozide on OS cells and the underlying molecular mechanism. Pimozide inhibited cell proliferation, colony formation, and sphere formation capacities of the OS cells in a dose-dependent manner, inducing G0/G1 phase cell cycle arrest. Pimozide reduced the percentage of side population cells representing cancer stem-like cells and enhanced the sensitivity of OS cells to 5-FU induced proliferative inhibition. In addition, pimozide induced apoptosis of U2OS cells, which showed increased expression of cleaved-PARP, a marker of programmed cell death. Moreover, pimozide suppressed Erk signaling in OS cells. Importantly, pimozide induced ROS generation by downregulating the expression of the antioxidant enzyme catalase (CAT). NAC treatment partially reversed the ROS generation and cytotoxic effects induced by pimozide. CAT treatment attenuated the pimozide-induced proliferation inhibition. The decrease of CAT expression induced by pimozide was potentially mediated through the suppression of cellular STAT3 activity in OS cells. Thus, pimozide may be a novel STAT3 inhibitor that suppresses cellular STAT3 activity to inhibit OS cells or stem-like cells and is a novel potential anti-cancer agent in OS treatment.

  2. A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells

    Directory of Open Access Journals (Sweden)

    Lin Li

    2010-08-01

    Full Text Available Abstract Background Targeting Signal Transducer and Activator of Transcription 3 (STAT3 signaling is an attractive therapeutic approach for most types of human cancers with constitutively activated STAT3. A novel small molecular STAT3 inhibitor, FLLL32 was specifically designed from dietary agent, curcumin to inhibit constitutive STAT3 signaling in multiple myeloma, glioblastoma, liver cancer, and colorectal cancer cells. Results FLLL32 was found to be a potent inhibitor of STAT3 phosphorylation, STAT3 DNA binding activity, and the expression of STAT3 downstream target genes in vitro, leading to the inhibition of cell proliferation as well as the induction of Caspase-3 and PARP cleavages in human multiple myeloma, glioblastoma, liver cancer, and colorectal cancer cell lines. However, FLLL32 exhibited little inhibition on some tyrosine kinases containing SH2 or both SH2 and SH3 domains, and other protein and lipid kinases using a kinase profile assay. FLLL32 was also more potent than four previously reported JAK2 and STAT3 inhibitors as well as curcumin to inhibit cell viability in these cancer cells. Furthermore, FLLL32 selectively inhibited the induction of STAT3 phosphorylation by Interleukin-6 but not STAT1 phosphorylation by IFN-γ. Conclusion Our findings indicate that FLLL32 exhibits potent inhibitory activity to STAT3 and has potential for targeting multiple myeloma, glioblastoma, liver cancer, and colorectal cancer cells expressing constitutive STAT3 signaling.

  3. Stat3 Expression and Its Correlation with Proliferation and Apoptosis/Autophagy in Gliomas

    Directory of Open Access Journals (Sweden)

    Valentina Caldera

    2008-01-01

    Full Text Available Signal transducer and activator of transcription-3 (Stat3 was studied along with several steps of the PI3/Akt pathway in a series of 64 gliomas that included both malignant and low-grade tumors, using quantitative immunohistochemistry, Western blotting, and molecular biology techniques. The goal of the study was to investigate whether activated Stat3 (phospho-Stat3 levels correlated with cell proliferation, apoptosis, and autophagy. Stat3 and activated Akt (phospho-Akt expression increased with malignancy grade, but did not correlate with proliferation and survival within the category of glioblastomas. A correlation of Stat3 with Akt was found, indicating a regulation of the former by the PI3/Akt pathway, which, in turn, was in relation with EGFR amplification. Stat3 and Akt did not show any correlation with apoptosis, whereas they showed an inverse correlation with Beclin 1, a stimulator of autophagy, which was rarely positive in glioblastomas. Autophagy seems then to be inactivated in malignant gliomas.

  4. Loss of function mutations in PTPN6 promote STAT3 deregulation via JAK3 kinase in diffuse large B-cell lymphoma

    Science.gov (United States)

    Demosthenous, Christos; Han, Jing Jing; Hu, Guangzhen; Stenson, Mary; Gupta, Mamta

    2015-01-01

    PTPN6 (SHP1) is a tyrosine phosphatase that negatively controls the activity of multiple signaling pathways including STAT signaling, however role of mutated PTPN6 is not much known. Here we investigated whether PTPN6 might also be a potential target for diffuse large B cell lymphoma (DLBCL) and performed Sanger sequencing of the PTPN6 gene. We have identified missense mutations within PTPN6 (N225K and A550V) in 5% (2/38) of DLBCL tumors. Site directed mutagenesis was performed to mutate wild type (WT) PTPN6 and stable cell lines were generated by lentiviral transduction of PTPN6WT, PTPN6N225K and PTPN6A550V constructs, and effects of WT or mutated PTPN6 on STAT3 signaling were analyzed. WT PTPN6 dephosphorylated STAT3, but had no effect on STAT1, STAT5 or STAT6 phosphorylation. Both PTPN6 mutants were unable to inhibit constitutive, as well as cytokines induced STAT3 activation. Both PTPN6 mutants also demonstrated reduced tyrosine phosphatase activity and exhibited enhanced STAT3 transactivation activity. Intriguingly, a lack of direct binding between STAT3 and WT or mutated PTPN6 was observed. However, compared to WT PTPN6, cells expressing PTPN6 mutants exhibited increased binding between JAK3 and PTPN6 suggesting a more dynamic interaction of PTPN6 with upstream regulators of STAT3. Consistent with this notion, both the mutants demonstrated increased resistance to JAK3 inhibitor, WHIP-154 relative to WT PTPN6. Overall, this is the first study, which demonstrates that N225K and A550V PTPN6 mutations cause loss-of-function leading to JAK3 mediated deregulation of STAT3 pathway and uncovers a mechanism that tumor cells can use to control PTPN6 substrate specificity. PMID:26565811

  5. Correlation of STATs family expression in oral lichen planus tissue with peripheral blood PD-1 and PD-L1 expression as well as immune function

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2016-12-01

    Full Text Available Objective: To study the correlation of STATs family expression in oral lichen planus tissue with peripheral blood PD-1 and PD-L1 expression as well as immune function. Methods: A total of 47 patients diagnosed with oral lichen planus in our hospital between May 2015 and March 2016 were selected as the oral lichen planus group (OLP group of the study, and healthy volunteers receiving physical examination during the same period were selected as the control group of the study. Peripheral blood mononuclear cells were collected to detect the expression of PD-1, PD-L1 and immune cell surface marker molecules, serum was collected to detect the content of Th1 and Th2 cytokines as well as immunoglobulin, and oral lichen planus lesion tissue and adjacent normal tissue were collected to determine STATs family expression. Results: p-STAT1, p-STAT3 and p-STAT5a expression in lesion tissue were significantly higher than those in normal tissue while p-STAT2, p-STAT4 and p-STAT5b expression were not significantly different from those in normal tissue; PD-1 and PD-L1 mRNA expression as well as the mean fluorescence intensity of CD19+ in peripheral blood mononuclear cells of OLP group were significantly higher than those of control group and positively correlated with p-STAT1, p-STAT3 and p-STAT5a expression while the mean fluorescence intensity of CD3+, CD4+, CD8+ and CD16+CD56+ were significantly lower than those of control group and negatively correlated with p-STAT1, p-STAT3 and p-STAT5a expression; serum IFN-γ and IL-2 content of OLP group were significantly lower than those of control group and negatively correlated with p-STAT1, p-STAT3 and p-STAT5a expression while IL-4, IL-10, IgG, IgM and IgA content were significantly higher than those of control group and positively correlated with p-STAT1, p-STAT3 and p-STAT5a expression. Conclusion: p-STAT1, p-STAT3 and p-STAT5a expression abnormally increase in oral lichen planus tissues, and the Th1/Th2 cellular

  6. Inflammatory impact of IFN-γ in CD8+ T cell-mediated lung injury is mediated by both Stat1-dependent and -independent pathways

    Science.gov (United States)

    Ramana, Chilakamarti V.; DeBerge, Matthew P.; Kumar, Aseem; Alia, Christopher S.; Durbin, Joan E.

    2015-01-01

    Influenza infection results in considerable pulmonary pathology, a significant component of which is mediated by CD8+ T cell effector functions. To isolate the specific contribution of CD8+ T cells to lung immunopathology, we utilized a nonviral murine model in which alveolar epithelial cells express an influenza antigen and injury is initiated by adoptive transfer of influenza-specific CD8+ T cells. We report that IFN-γ production by adoptively transferred influenza-specific CD8+ T cells is a significant contributor to acute lung injury following influenza antigen recognition, in isolation from its impact on viral clearance. CD8+ T cell production of IFN-γ enhanced lung epithelial cell expression of chemokines and the subsequent recruitment of inflammatory cells into the airways. Surprisingly, Stat1 deficiency in the adoptive-transfer recipients exacerbated the lung injury that was mediated by the transferred influenza-specific CD8+ T cells but was still dependent on IFN-γ production by these cells. Loss of Stat1 resulted in sustained activation of Stat3 signaling, dysregulated chemokine expression, and increased infiltration of the airways by inflammatory cells. Taken together, these data identify important roles for IFN-γ signaling and Stat1-independent IFN-γ signaling in regulating CD8+ T cell-mediated acute lung injury. This is the first study to demonstrate an anti-inflammatory effect of Stat1 on CD8+ T cell-mediated lung immunopathology without the complication of differences in viral load. PMID:25617378

  7. IL-6 Promotes FSH-Induced VEGF Expression Through JAK/STAT3 Signaling Pathway in Bovine Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Meng Yang

    2017-11-01

    Full Text Available Background/Aims: Vascular endothelial growth factor (VEGF has been demonstrated to play a pivotal role in the regulation of angiogenesis in ovarian follicular development, particularly during the preovulatory period. Although numerous studies have shown that interleukin-6 (IL-6 is one of the major inducing factors that regulate the expression of VEGF in non-ovarian cells, whether it involved in regulating the expression of VEGF in normal ovarian granulosa cells is still unknown. The aim of this study was to elucidate the mechanisms underlying the effect of IL-6 on FSH-induced VEGF expression in bovine granulosa cells derived from large follicles. Methods: VEGF mRNA expression in granulosa cells after IL-6 with/without inhibitors treatment was analyzed by RT-qPCR. Phosphorylation levels of ERK1/2 and STAT3 proteins induced by IL-6 were analyzed by western blotting. The protein levels produced by granulosa cells were detected by ELISA. Results: High concentration of IL-6 (10ng/ml can significantly up-regulate FSH-induced VEGF gene and protein expression levels in granulosa cells, and also promote the VEGF upstream regulators HIF-1α and COX2 mRNA expression. VEGF expression levels were significantly decreased after specifically blocking HIF-1α and COX2 by using inhibitors. The up-regulation effect of IL-6 on FSH-induced VEGF expression in granulosa cells mainly through activating the JAK/STAT3 signaling pathway, which can be impaired by JAK inhibitors. Conclusion: IL-6 can promote FSH-induced VEGF expression in granulosa cells, which is mainly achieved by increasing the expression of HIF-1α and COX2.This promoting effect is mediated by activating the JAK/STAT3 pathway. Moreover, there may be a synergistic relationship between FSH and IL-6 in the regulation of VEGF expression.

  8. Docosahexaenoic acid inhibits IL-6 expression via PPARγ-mediated expression of catalase in cerulein-stimulated pancreatic acinar cells.

    Science.gov (United States)

    Song, Eun Ah; Lim, Joo Weon; Kim, Hyeyoung

    2017-07-01

    Cerulein pancreatitis mirrors human acute pancreatitis. In pancreatic acinar cells exposed to cerulein, reactive oxygen species (ROS) mediate inflammatory signaling by Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, and cytokine induction. Docosahexaenoic acid (DHA) acts as an agonist of peroxisome proliferator activated receptor γ (PPARγ), which mediates the expression of some antioxidant enzymes. We hypothesized that DHA may induce PPARγ-target catalase expression and reduce ROS levels, leading to the inhibition of JAK2/STAT3 activation and IL-6 expression in cerulein-stimulated acinar cells. Pancreatic acinar AR42J cells were treated with DHA in the presence or absence of the PPARγ antagonist GW9662, or treated with the PPARγ agonist troglitazone, and then stimulated with cerulein. Expression of IL-6 and catalase, ROS levels, JAK2/STAT3 activation, and nuclear translocation of PPARγ were assessed. DHA suppressed the increase in ROS, JAK2/STAT3 activation, and IL-6 expression induced nuclear translocation of PPARγ and catalase expression in cerulein-stimulated AR42J cells. Troglitazone inhibited the cerulein-induced increase in ROS and IL-6 expression, but induced catalase expression similar to DHA in AR42J cells. GW9662 abolished the inhibitory effect of DHA on cerulein-induced increase in ROS and IL-6 expression in AR42J cells. DHA-induced expression of catalase was suppressed by GW9662 in cerulein-stimulated AR42J cells. Thus, DHA induces PPARγ activation and catalase expression, which inhibits ROS-mediated activation of JAK2/STAT3 and IL-6 expression in cerulein-stimulated pancreatic acinar cells. Copyright © 2017. Published by Elsevier Ltd.

  9. An oncogenic axis of STAT-mediated BATF3 upregulation causing MYC activity in classical Hodgkin lymphoma and anaplastic large cell lymphoma.

    Science.gov (United States)

    Lollies, A; Hartmann, S; Schneider, M; Bracht, T; Weiß, A L; Arnolds, J; Klein-Hitpass, L; Sitek, B; Hansmann, M-L; Küppers, R; Weniger, M A

    2018-01-01

    Classical Hodgkin lymphoma (cHL) and anaplastic large cell lymphoma (ALCL) feature high expression of activator protein-1 (AP-1) transcription factors, which regulate various physiological processes but also promote lymphomagenesis. The AP-1 factor basic leucine zipper transcription factor, ATF-like 3 (BATF3), is highly transcribed in cHL and ALCL; however, its functional importance in lymphomagenesis is unknown. Here we show that proto-typical CD30 + lymphomas, namely cHL (21/30) and primary mediastinal B-cell lymphoma (8/9), but also CD30 + diffuse large B-cell lymphoma (15/20) frequently express BATF3 protein. Mass spectrometry and co-immunoprecipitation established interactions of BATF3 with JUN and JUNB in cHL and ALCL lines. BATF3 knockdown using short hairpin RNAs was toxic for cHL and ALCL lines, reducing their proliferation and survival. We identified MYC as a critical BATF3 target and confirmed binding of BATF3 to the MYC promoter. JAK/STAT signaling regulated BATF3 expression, as chemical JAK2 inhibition reduced and interleukin 13 stimulation induced BATF3 expression in cHL lines. Chromatin immunoprecipitation substantiated a direct regulation of BATF3 by STAT proteins in cHL and ALCL lines. In conclusion, we identified STAT-mediated BATF3 expression that is essential for lymphoma cell survival and promoted MYC activity in cHL and ALCL, hence we recognized a new oncogenic axis in these lymphomas.

  10. Development of a STAT3 reporter prostate cancer cell line for high throughput screening of STAT3 activators and inhibitors

    International Nuclear Information System (INIS)

    Chau, My N.; Banerjee, Partha P.

    2008-01-01

    STAT3 is constitutively activated in several cancers, including prostate cancer, and is therefore, a potential target for cancer therapy. DU-145 prostate cancer cells were stably co-transfected with STAT3 reporter and puromycin resistant plasmids to create a stable STAT3 reporter cell line that can be used for high throughput screening of STAT3 modulators. The applicability of this cell line was tested with two known activators and inhibitors of STAT3. As expected, EGF and IL-6 increased STAT3 reporter activity and enhanced the nuclear localization of phosphorylated STAT3 (pSTAT3); whereas Cucurbitacin I and AG490 decreased STAT3 reporter activity dose and time-dependently and reduced the localization of pSTAT3 in the nuclei of prostate cancer cells. Given the importance of STAT3 in cancer initiation and progression, the development of a stable STAT3 reporter cell line in prostate cancer cells provides a rapid, sensitive, and cost effective method for the screening of potential STAT3 modulators.

  11. ATF3 activates Stat3 phosphorylation through inhibition of p53 expression in skin cancer cells.

    Science.gov (United States)

    Hao, Zhen-Feng; Ao, Jun-Hong; Zhang, Jie; Su, You-Ming; Yang, Rong-Ya

    2013-01-01

    ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

  12. Nuclear protein IκB-ζ inhibits the activity of STAT3

    International Nuclear Information System (INIS)

    Wu, Zhihao; Zhang, Xiaoai; Yang, Juntao; Wu, Guangzhou; Zhang, Ying; Yuan, Yanzhi; Jin, Chaozhi; Chang, Zhijie; Wang, Jian; Yang, Xiaoming; He, Fuchu

    2009-01-01

    STAT3 (Signal transducer and activator of transcription 3) is a key transcription factor of the JAK-STAT (Janus kinase/signal transducer and activator of transcription) pathway that regulates cell proliferation and apoptosis. Activation of STAT3 is under tight regulation, and yet the different signaling pathways and the mechanisms that regulate its activity remain to be elucidated. Using a yeast two-hybrid screening, we have identified a nuclear protein IκB-ζ that interacts in a novel way with STAT3. This physical interaction was further confirmed by co-immunoprecipitation assays. The interaction regions were mapped to the coiled-coil domain of STAT3 and the C-terminal of IκB-ζ. Overexpression of IκB-ζ inhibited the transcriptional activity of STAT3. It also suppressed cell growth and induced cell apoptosis in SRC-simulated cells, which is partially mediated by down-regulation of expression of a known STAT3 target gene, MCL1. Our results suggest that IκB-ζ is a negative regulator of STAT3, and demonstrate a novel mechanism in which a component of the NF-κB signaling pathway inhibits the activation of STAT3.

  13. C/EBPβ Promotes STAT3 Expression and Affects Cell Apoptosis and Proliferation in Porcine Ovarian Granulosa Cells.

    Science.gov (United States)

    Yuan, Xiaolong; Zhou, Xiaofeng; He, Yingting; Zhong, Yuyi; Zhang, Ailing; Zhang, Zhe; Zhang, Hao; Li, Jiaqi

    2018-06-13

    Previous studies suggest that signal transducer and activator of transcription 3 (STAT3) and CCAAT/enhancer binding protein beta (C/EBPβ) play an essential role in ovarian granulosa cells (GCs) for mammalian follicular development. Several C/EBPβ putative binding sites were previously predicted on the STAT3 promoter in mammals. However, the molecular regulation of C/EBPβ on STAT3 and their effects on cell proliferation and apoptosis remain virtually unexplored in GCs. Using porcine GCs as a model, the 5′-deletion, luciferase report assay, mutation, chromatin immunoprecipitation, Annexin-V/PI staining and EdU assays were applied to investigate the molecular mechanism for C/EBPβ regulating the expression of STAT3 and their effects on the cell proliferation and apoptosis ability. We found that over and interfering with the expression of C/EBPβ significantly increased and decreased the messenger RNA (mRNA) and protein levels of STAT3 , respectively. The dual luciferase reporter assay showed that C/EBPβ directly bound at −1397/−1387 of STAT3 to positively regulate the mRNA and protein expressions of STAT3 . Both C/EBPβ and STAT3 were observed to inhibit cell apoptosis and promote cell proliferation. Furthermore, C/EBPβ might enhance the antiapoptotic and pro-proliferative effects of STAT3 . These results would be of great insight in further exploring the molecular mechanism of C/EBPβ and STAT3 on the function of GCs and the development of ovarian follicles in mammals.

  14. Blueberry and malvidin inhibit cell cycle progression and induce mitochondrial-mediated apoptosis by abrogating the JAK/STAT-3 signalling pathway.

    Science.gov (United States)

    Baba, Abdul Basit; Nivetha, Ramesh; Chattopadhyay, Indranil; Nagini, Siddavaram

    2017-11-01

    Blueberries, a rich source of anthocyanins have attracted considerable attention as functional foods that confer immense health benefits including anticancer properties. Herein, we assessed the potential of blueberry and its major constituent malvidin to target STAT-3, a potentially druggable oncogenic transcription factor with high therapeutic index. We demonstrate that blueberry abrogates the JAK/STAT-3 pathway and modulates downstream targets that influence cell proliferation and apoptosis in a hamster model of oral oncogenesis. Further, we provide mechanistic evidence that blueberry and malvidin function as STAT-3 inhibitors in the oral cancer cell line SCC131. Blueberry and malvidin suppressed STAT-3 phosphorylation and nuclear translocation thereby inducing cell cycle arrest and mitochondrial-mediated apoptosis. However, the combination of blueberry and malvidin with the STAT-3 inhibitor S3I-201 was more efficacious in STAT-3 inhibition relative to single agents. The present study has provided leads for the development of novel combinations of compounds that can serve as inhibitors of STAT-mediated oncogenic signalling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The effect of curcumol on protein expression of JAK2/STAT3 signaling pathway in human ovarian cancer line SKOV3

    Directory of Open Access Journals (Sweden)

    Feng-juan HAN

    2013-12-01

    Full Text Available Objective: To study the effects of curcumol on the protein expression of JAK2 and STAT3 in SKOV3 and to investigate its treatment on molecular mechanism of ovarian cancer. Methods: Choose curcumol of different concentrations to act on human ovarian cancer cell line SKOV3, and extract the corresponding cell protein, and detect the protein expression of JAK2 and STAT3 by western blotting. Results: The protein expression of JAK2 and STAT3 in SKOV3 are significantly inhabited by curcumol, and its strength will enhance with the increase in drug concentration, and it shows in a dose-dependent manner. Conclusion: Curcumol can significantly inhabit the proliferation of SKOV3 cells, and induce apoptosis, and achieve its mechanism by regulating the protein expression of JAK2 and STAT3.

  16. Characterization of STAT5B phosphorylation correlating with expression of cytokine-inducible SH2-containing protein (CIS).

    Science.gov (United States)

    Cooper, John C; Boustead, Jared N; Yu, Chao-Lan

    2006-06-01

    Cytokine-inducible SH2-containing protein (CIS) is the first identified member of genes encoding for the suppressor of cytokine signaling (SOCS). CIS is also a well-known target gene of signal transducer and activator of transcription 5 (STAT5) pathways, providing normal negative feedback control of signaling by cytokines and growth factors. Three other SOCS genes, SOCS1, SOCS2, and SOCS3, can be silenced by DNA hypermethylation in human cancers, suggesting a potential mechanism for constitutive STAT activation. However, it is not known whether CIS expression is similarly perturbed in tumor cells. We report here the absence of CIS expression in T lymphoma LSTRA that overexpresses the Lck protein tyrosine kinase and exhibits elevated STAT5 activity. Pervanadate-induced CIS expression and STAT5 binding to the CIS promoter in vivo over a short time course implies that mechanisms other than DNA hypermethylation may contribute to defective CIS expression in LSTRA cells. Comparison with cytokine-dependent BaF3 cells stimulated with interleukin-3 (IL-3) further reveals that CIS induction correlates with specific STAT5b post-translational modifications. It exhibits as the slowest migrating form through SDS-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. This distinctly modified STAT5b is the predominant form that binds to the consensus STAT5 sites in the CIS promoter and accumulates in the nucleus. In vitro phosphatase assays and phosphoamino acid analysis suggest the involvement of phosphorylation on residues other than the highly conserved tyrosine and serine sites in this distinct STAT5b mobility shift. All together, our results provide a novel link between incomplete STAT5b phosphorylation and defective SOCS gene expression in cancer cells.

  17. Clinical Implications of Phosphorylated STAT3 Expression in de novo Diffuse Large B-cell Lymphoma

    DEFF Research Database (Denmark)

    Ok, Chi Y; Chen, Jiayu; Xu-Monette, Ziju

    2014-01-01

    PURPOSE: Activated signal transducer and activator of transcription 3 (STAT3) regulates tumor growth, invasion, cell proliferation, angiogenesis, immune response, and survival. Data regarding expression of phosphorylated (activated) STAT3 in diffuse large B-cell lymphoma (DLBCL) and the impact of...

  18. Stem cell-specific expression of Dax1 is conferred by STAT3 and Oct3/4 in embryonic stem cells

    International Nuclear Information System (INIS)

    Sun Chuanhai; Nakatake, Yuhki; Ura, Hiroki; Akagi, Tadayuki; Niwa, Hitoshi; Koide, Hiroshi; Yokota, Takashi

    2008-01-01

    Embryonic stem (ES) cells are pluripotent cells derived from inner cell mass of blastocysts. An orphan nuclear receptor, Dax1, is specifically expressed in undifferentiated ES cells and plays an important role in their self-renewal. The regulatory mechanism of Dax1 expression in ES cells, however, remains unknown. In this study, we found that STAT3 and Oct3/4, essential transcription factors for ES cell self-renewal, are involved in the regulation of Dax1 expression. Suppression of either STAT3 or Oct3/4 resulted in down-regulation of Dax1. Reporter assay identified putative binding sites for these factors in the promoter/enhancer region of the Dax1 gene. Chromatin immunoprecipitation analysis suggested the in vivo association of STAT3 and Oct3/4 with the putative sites. Furthermore, gel shift assay indicated that these transcription factors directly bind to their putative binding sites. These results suggest that STAT3 and Oct3/4 control the expression of Dax1 to maintain the self-renewal of ES cells

  19. Scoparone exerts anti-tumor activity against DU145 prostate cancer cells via inhibition of STAT3 activity.

    Directory of Open Access Journals (Sweden)

    Jeong-Kook Kim

    Full Text Available Scoparone, a natural compound isolated from Artemisia capillaris, has been used in Chinese herbal medicine to treat neonatal jaundice. Signal transducer and activator of transcription 3 (STAT3 contributes to the growth and survival of many human tumors. This study was undertaken to investigate the anti-tumor activity of scoparone against DU145 prostate cancer cells and to determine whether its effects are mediated by inhibition of STAT3 activity. Scoparone inhibited proliferation of DU145 cells via cell cycle arrest in G1 phase. Transient transfection assays showed that scoparone repressed both constitutive and IL-6-induced transcriptional activity of STAT3. Western blot and quantitative real-time PCR analyses demonstrated that scoparone suppressed the transcription of STAT3 target genes such as cyclin D1, c-Myc, survivin, Bcl-2, and Socs3. Consistent with this, scoparone decreased phosphorylation and nuclear accumulation of STAT3, but did not reduce phosphorylation of janus kinase 2 (JAK2 or Src, the major upstream kinases responsible for STAT3 activation. Moreover, transcriptional activity of a constitutively active mutant of STAT3 (STAT3C was inhibited by scoparone, but not by AG490, a JAK2 inhibitor. Furthermore, scoparone treatment suppressed anchorage-independent growth in soft agar and tumor growth of DU145 xenografts in nude mice, concomitant with a reduction in STAT3 phosphorylation. Computational modeling suggested that scoparone might bind the SH2 domain of STAT3. Our findings suggest that scoparone elicits an anti-tumor effect against DU145 prostate cancer cells in part through inhibition of STAT3 activity.

  20. Kaempferol attenuates COX-2 expression in IL-6-induced macrophages and carrageenan-induced mouse paw edema by targeting STAT3 and NF-kB

    Directory of Open Access Journals (Sweden)

    Anandita Basu

    2017-10-01

    Full Text Available Dietary polyphenols are reported to possess varied pharmacological activities, viz. antioxidant, anti-inflammatory, anti-cancer, anti-allergic actions. Here, we report the efficacy of Kaempferol (kae to attenuate expression of IL-6 induced cycloxygenase-2 (COX-2, an inducible isoform of cycloxygenase enzyme family that catalyzes synthesis of inflammatory mediators, prostanoids and prostaglandins. IL-6 is a pleiotropic cytokine involved in both acute and chronic inflammation. Our results showed that kae attenuated COX-2 expression at both mRNA and protein level in IL-6-induced THP1 macrophages. This attenuation of COX-2 expression by kae involved dose-dependent inhibition of phosphorylation of STAT3 (Tyr 705 and NF-kB p65 (Ser 536 leading to their deactivation and reduced nuclear localization in THP-1 macrophages. Moreover, kae modulates COX-2 expression as well as STAT3 and NF-kB activation in carrageenan-induced mouse paw edema model. RT-PCR and western blot analysis from paw tissues were harvested after kae injection (i.p followed by carrageenan-treatment in sub-plantar region of right hind paw. Results showed that kae attenuated COX-2 expression and STAT3 and NF-kB activation in carrageenan-induced mouse paw edema, suggesting that inhibition of both IL-6-STAT3-COX-2 and IL-6-NFkB-COX-2 axes by kae might be stimulus-independent. To understand binding affinity of kae with NF-kB and STAT3, docking analysis was performed using Patchdock server. From our findings, we observed strong binding affinity and transient interaction in both NF-kB/kae and STAT3/kae complexes. We noticed negative atomic contact energy and greater interface area for both the complexes. Selected complexes obtained from Patchdock were refined using Firedock online server which also suggested similar negative binding energy profile. It is plausible that kae attenuates COX-2 expression by directly binding to both STAT3 and NF-kB proteins and inhibiting their activation and

  1. Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway.

    Science.gov (United States)

    Kou, Xianjuan; Qi, Shimei; Dai, Wuxing; Luo, Lan; Yin, Zhimin

    2011-08-01

    Arctigenin has been demonstrated to have an anti-inflammatory function, but the precise mechanisms of its action remain to be fully defined. In the present study, we determined the effects of arctigenin on lipopolysaccharide (LPS)-induced production of proinflammatory mediators and the underlying mechanisms involved in RAW264.7 cells. Our results indicated that arctigenin exerted its anti-inflammatory effect by inhibiting ROS-dependent STAT signaling through its antioxidant activity. Arctigenin also significantly reduced the phosphorylation of STAT1 and STAT 3 as well as JAK2 in LPS-stimulated RAW264.7 cells. The inhibitions of STAT1 and STAT 3 by arctigenin prevented their translocation to the nucleus and consequently inhibited expression of iNOS, thereby suppressing the expression of inflammation-associated genes, such as IL-1β, IL-6 and MCP-1, whose promoters contain STAT-binding elements. However, COX-2 expression was slightly inhibited at higher drug concentrations (50 μM). Our data demonstrate that arctigenin inhibits iNOS expression via suppressing JAK-STAT signaling pathway in macrophages. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  2. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Luo, Fei; Xu, Yuan; Ling, Min; Zhao, Yue; Xu, Wenchao; Liang, Xiao; Jiang, Rongrong; Wang, Bairu; Bian, Qian; Liu, Qizhan

    2013-01-01

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT

  3. STAT6 expression in glioblastoma promotes invasive growth

    International Nuclear Information System (INIS)

    Merk, Barbara C; Owens, Jennifer L; Lopes, Maria-Beatriz S; Silva, Corinne M; Hussaini, Isa M

    2011-01-01

    Glioblastoma (GBM) is a highly aggressive malignant primary brain tumor, characterized by rapid growth, diffuse infiltration of cells into both adjacent and remote brain regions, and a generalized resistance to currently available treatment modalities. Recent reports in the literature suggest that Signal Transducers and Activators of Transcription (STATs) play important roles in the regulation of GBM pathophysiology. STAT6 protein expression was analyzed by Western blotting in GBM cell lines and by immunohistochemistry in a tissue microarray (TMA) of glioma patient tissues. We utilized shRNA against STAT6 to investigate the effects of prolonged STAT6 depletion on the growth and invasion of two STAT6-positive GBM cell lines. Cell proliferation was assessed by measuring 3 H-Thymidine uptake over time. Invasion was measured using an in vitro transwell assay in which cells invade through a type IV collagen matrix toward a chemoattractant (Fetal Bovine Serum). Cells were then stained and counted. Kaplan-Meyer survival curves were generated to show the correlation between STAT6 gene expression and patient survival in 343 glioma patients and in a subset of patients with only GBM. Gene expression microarray and clinical data were acquired from the Rembrandt [1] public data depository (https://caintegrator.nci.nih.gov/rembrandt/). Lastly, a genome-wide expression microarray analysis was performed to compare gene expression in wild-type GBM cells to expression in stable STAT6 knockdown clones. STAT6 was expressed in 2 GBM cell lines, U-1242MG and U-87MG, and in normal astrocytes (NHA) but not in the U-251MG GBM cell line. In our TMA study, STAT6 immunostaining was visible in the majority of astrocytomas of all grades (I-IV) but not in normal brain tissue. In positive cells, STAT6 was localized exclusively in the nuclei over 95% of the time. STAT6-deficient GBM cells showed a reduction in 3 H-Thymidine uptake compared to the wild-type. There was some variation among the

  4. Inhibition of DNA methyltransferase induces G2 cell cycle arrest and apoptosis in human colorectal cancer cells via inhibition of JAK2/STAT3/STAT5 signalling.

    Science.gov (United States)

    Xiong, Hua; Chen, Zhao-Fei; Liang, Qin-Chuan; Du, Wan; Chen, Hui-Min; Su, Wen-Yu; Chen, Guo-Qiang; Han, Ze-Guang; Fang, Jing-Yuan

    2009-09-01

    DNA methyltransferase inhibitors (MTIs) have recently emerged as promising chemotherapeutic or preventive agents for cancer, despite their poorly characterized mechanisms of action. The present study shows that DNA methylation is integral to the regulation of SH2-containing protein tyrosine phosphatase 1 (SHP1) expression, but not for regulation of suppressors of cytokine signalling (SOCS)1 or SOCS3 in colorectal cancer (CRC) cells. SHP1 expression correlates with down-regulation of Janus kinase/signal transducers and activators of transcription (JAK2/STAT3/STAT5) signalling, which is mediated in part by tyrosine dephosphorylation events and modulation of the proteasome pathway. Up-regulation of SHP1 expression was achieved using a DNA MTI, 5-aza-2'-deoxycytidine (5-aza-dc), which also generated significant down-regulation of JAK2/STAT3/STAT5 signalling. We demonstrate that 5-aza-dc suppresses growth of CRC cells, and induces G2 cell cycle arrest and apoptosis through regulation of downstream targets of JAK2/STAT3/STAT5 signalling including Bcl-2, p16(ink4a), p21(waf1/cip1) and p27(kip1). Although 5-aza-dc did not significantly inhibit cell invasion, 5-aza-dc did down-regulate expression of focal adhesion kinase and vascular endothelial growth factor in CRC cells. Our results demonstrate that 5-aza-dc can induce SHP1 expression and inhibit JAK2/STAT3/STAT5 signalling. This study represents the first evidence towards establishing a mechanistic link between inhibition of JAK2/STAT3/STAT5 signalling and the anticancer action of 5-aza-dc in CRC cells that may lead to the use of MTIs as a therapeutic intervention for human colorectal cancer.

  5. Altered IFN-γ-mediated immunity and transcriptional expression patterns in N-Ethyl-N-nitrosourea-induced STAT4 mutants confer susceptibility to acute typhoid-like disease.

    Science.gov (United States)

    Eva, Megan M; Yuki, Kyoko E; Dauphinee, Shauna M; Schwartzentruber, Jeremy A; Pyzik, Michal; Paquet, Marilène; Lathrop, Mark; Majewski, Jacek; Vidal, Silvia M; Malo, Danielle

    2014-01-01

    Salmonella enterica is a ubiquitous Gram-negative intracellular bacterium that continues to pose a global challenge to human health. The etiology of Salmonella pathogenesis is complex and controlled by pathogen, environmental, and host genetic factors. In fact, patients immunodeficient in genes in the IL-12, IL-23/IFN-γ pathway are predisposed to invasive nontyphoidal Salmonella infection. Using a forward genomics approach by N-ethyl-N-nitrosourea (ENU) germline mutagenesis in mice, we identified the Ity14 (Immunity to Typhimurium locus 14) pedigree exhibiting increased susceptibility following in vivo Salmonella challenge. A DNA-binding domain mutation (p.G418_E445) in Stat4 (Signal Transducer and Activator of Transcription Factor 4) was the causative mutation. STAT4 signals downstream of IL-12 to mediate transcriptional regulation of inflammatory immune responses. In mutant Ity14 mice, the increased splenic and hepatic bacterial load resulted from an intrinsic defect in innate cell function, IFN-γ-mediated immunity, and disorganized granuloma formation. We further show that NK and NKT cells play an important role in mediating control of Salmonella in Stat4(Ity14/Ity14) mice. Stat4(Ity14/Ity14) mice had increased expression of genes involved in cell-cell interactions and communication, as well as increased CD11b expression on a subset of splenic myeloid dendritic cells, resulting in compromised recruitment of inflammatory cells to the spleen during Salmonella infection. Stat4(Ity14/Ity14) presented upregulated compensatory mechanisms, although inefficient and ultimately Stat4(Ity14/Ity14) mice develop fatal bacteremia. The following study further elucidates the pathophysiological impact of STAT4 during Salmonella infection.

  6. Silencing of the transcription factor STAT3 sensitizes lung cancer cells to DNA damaging drugs, but not to TNFα- and NK cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kulesza, Dorota W. [Laboratory of Transcription Regulation, Department of Cell Biology, The Nencki Institute of Experimental Biology, Warsaw (Poland); Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw (Poland); Carré, Thibault; Chouaib, Salem [Unité INSERM U753, Institut de Cancérologie Gustave Roussy, Villejuif Cedex (France); Kaminska, Bozena, E-mail: bozenakk@nencki.gov.pl [Laboratory of Transcription Regulation, Department of Cell Biology, The Nencki Institute of Experimental Biology, Warsaw (Poland)

    2013-02-15

    Transcription factor STAT3 (Signal Transducers and Activators of Transcription 3) is persistently active in human tumors and may contribute to tumor progression. Inhibition of STAT3 expression/activity could be a good strategy to modulate tumor cell survival and responses to cancer chemotherapeutics or immune cytotoxicity. We silenced STAT3 expression in human A549 lung cancer cells to elucidate its role in cell survival and resistance to chemotherapeutics, TNFα and natural killer (NK)-mediated cytotoxicity. We demonstrate that STAT3 is not essential for basal survival and proliferation of A549 cancer cells. Stable silencing of STAT3 expression sensitized A549 cells to DNA damaging chemotherapeutics doxorubicin and cisplatin in a p53-independent manner. Sensitization to DNA damage-inducing chemotherapeutics could be due to down-regulation of the Bcl-xL expression in STAT3 depleted cells. In contrast, knockdown of STAT3 in cancer cells did not modulate responses to TNFα and NK-mediated cytotoxicity. We found that STAT3 depletion increased the NFκB activity likely providing the compensatory, pro-survival signal. The treatment with TNFα, but not doxorubicin, enhanced this effect. We conclude that STAT3 is not crucial for the control of basal cell proliferation and survival of lung carcinoma cells but modulates susceptibility to DNA damaging chemotherapeutics by regulation of intrinsic pro-survival pathways. - Highlights: ► STAT3 silencing is negligent for basal lung cancer cell viability and proliferation. ► STAT3 depletion sensitizes lung cancer cells to DNA damaging chemotherapeutics. ► STAT3 depletion has no effect on susceptibility to extrinsic apoptosis inducers. ► Increased pro-survival NFκB activity may compensate for STAT3 depletion.

  7. SOCS3 Expression Correlates with Severity of Inflammation, Expression of Proinflammatory Cytokines, and Activation of STAT3 and p38 MAPK in LPS-Induced Inflammation In Vivo

    Directory of Open Access Journals (Sweden)

    João Antônio Chaves de Souza

    2013-01-01

    Full Text Available SOCS3 is an inducible endogenous negative regulator of JAK/STAT pathway, which is relevant in inflammatory conditions. We used a model of LPS-induced periodontal disease in rats to correlate SOCS3 expression with the inflammatory status. In vitro we used a murine macrophage cell line to assess the physical interaction between SOCS3 and STAT3 by coimmunoprecipitation. 30 ug of LPS from Escherichia coli were injected in the gingival tissues on the palatal aspect of first molars of the animals 3x/week for up to 4 weeks. Control animals were injected with the vehicle (PBS. The rats were sacrificed at 7, 15, and 30 days. Inflammation and gene expression were assessed by stereometric analysis, immunohistochemistry, RT-qPCR, and western blot. LPS injections increased inflammation, paralleled by an upregulation of SOCS3, of the proinflammatory cytokines IL-1β, IL-6, and TNF-α and increased phosphorylation of STAT3 and p38 MAPK. SOCS3 expression accompanied the severity of inflammation and the expression of proinflammatory cytokines, as well as the activation status of STAT3 and p38 MAPK. LPS stimulation in a macrophage cell line in vitro induced transient STAT3 activation, which was inversely correlated with a dynamic physical interaction with SOCS3, suggesting that this may be a mechanism for SOCS3 regulatory function.

  8. TIMP-1 mediates the inhibitory effect of interleukin-6 on the proliferation of a hepatocarcinoma cell line in a STAT3-dependent manner

    Directory of Open Access Journals (Sweden)

    S.-Y. Guo

    2007-05-01

    Full Text Available The tissue inhibitor of metalloproteinases (TIMP-1 is a multifunctional protein which is not only an inhibitor of matrix metalloproteinases (MMPs but also to have a possible "cytokine-like" action. Here, we first compared mRNA expression of TIMP-1 and MMP-9 in BEL-7402 (a hepatocellular carcinoma cell line, L-02 (a normal liver cell line and QSG-7701 (a cell line derived from peripheral tissue of liver carcinoma using real-time quantitative RT-PCR. By evaluating the variation of the MMP-9/TIMP-1 ratio as an index of reciprocal changes of the expression of the two genes, we observed that the MMP-9/TIMP-1 ratio was about 13- and 5-fold higher in BEL-7402 than in L-02 and QSG-7701, respectively. Significantly, overexpression of TIMP-1 decreased the MMP-9/TIMP-1 ratio in BEL-7402 and then inhibited the cell growth to 60% and reduced the migration to about 30%. Meanwhile, our data showed that interleukin-6 (IL-6 (100 ng/mL could also inhibited the cell growth of BEL-7402. Further studies indicated that TIMP-1 mediated the inhibitory effect of IL-6 on BEL-7402 cell proliferation in a STAT3-dependent manner, which could further accelerate the expression of the cyclin-dependent kinase inhibitor p21. A dominant negative STAT3 mutant totally abolished IL-6-induced TIMP-1 expression and its biological functions. The present results demonstrate that TIMP-1 may be one of the mediators that regulate the inhibitory effect of IL-6 on BEL-7402 proliferation in which STAT3 signal transduction and p21 up-regulation also play important roles.

  9. STAT6 expression in glioblastoma promotes invasive growth

    Directory of Open Access Journals (Sweden)

    Silva Corinne M

    2011-05-01

    Full Text Available Abstract Background Glioblastoma (GBM is a highly aggressive malignant primary brain tumor, characterized by rapid growth, diffuse infiltration of cells into both adjacent and remote brain regions, and a generalized resistance to currently available treatment modalities. Recent reports in the literature suggest that Signal Transducers and Activators of Transcription (STATs play important roles in the regulation of GBM pathophysiology. Methods STAT6 protein expression was analyzed by Western blotting in GBM cell lines and by immunohistochemistry in a tissue microarray (TMA of glioma patient tissues. We utilized shRNA against STAT6 to investigate the effects of prolonged STAT6 depletion on the growth and invasion of two STAT6-positive GBM cell lines. Cell proliferation was assessed by measuring 3H-Thymidine uptake over time. Invasion was measured using an in vitro transwell assay in which cells invade through a type IV collagen matrix toward a chemoattractant (Fetal Bovine Serum. Cells were then stained and counted. Kaplan-Meyer survival curves were generated to show the correlation between STAT6 gene expression and patient survival in 343 glioma patients and in a subset of patients with only GBM. Gene expression microarray and clinical data were acquired from the Rembrandt 1 public data depository (https://caintegrator.nci.nih.gov/rembrandt/. Lastly, a genome-wide expression microarray analysis was performed to compare gene expression in wild-type GBM cells to expression in stable STAT6 knockdown clones. Results STAT6 was expressed in 2 GBM cell lines, U-1242MG and U-87MG, and in normal astrocytes (NHA but not in the U-251MG GBM cell line. In our TMA study, STAT6 immunostaining was visible in the majority of astrocytomas of all grades (I-IV but not in normal brain tissue. In positive cells, STAT6 was localized exclusively in the nuclei over 95% of the time. STAT6-deficient GBM cells showed a reduction in 3H-Thymidine uptake compared to the wild

  10. Inhibition of STAT3 signaling and induction of SHP1 mediate antiangiogenic and antitumor activities of ergosterol peroxide in U266 multiple myeloma cells

    International Nuclear Information System (INIS)

    Rhee, Yun-Hee; Jeong, Soo-Jin; Lee, Hyo-Jeong; Lee, Hyo-Jung; Koh, Wonil; Jung, Ji Hoon; Kim, Sun-Hee; Sung-Hoon, Kim

    2012-01-01

    Ergosterol peroxide (EP) derived from edible mushroom has been shown to exert anti-tumor activity in several cancer cells. In the present study, anti-angiogenic activity of EP was investigated with the underlying molecular mechanisms in human multiple myeloma U266 cells. Despite weak cytotoxicity against U266 cells, EP suppressed phosphorylation, DNA binding activity and nuclear translocalization of signal transducer and activator of transcription 3 (STAT3) in U266 cells at nontoxic concentrations. Also, EP inhibited phosphorylation of the upstream kinases Janus kinase 2 (JAK2) and Src in a time-dependent manner. Furthermore, EP increased the expression of protein tyrosine phosphatase SHP-1 at protein and mRNA levels, and conversely silencing of the SHP-1 gene clearly blocked EP-mediated STAT3 inactivation. In addition, EP significantly decreased vascular endothelial growth factor (VEGF), one of STAT3 target genes at cellular and protein levels as well as disrupted in vitro tube formation assay. Moreover, EP significantly suppressed the growth of U266 cells inoculated in female BALB/c athymic nude mice and immunohistochemistry revealed that EP effectively reduced the expression of STAT3 and CD34 in tumor sections compared to untreated control. These findings suggest that EP can exert antitumor activity in multiple myeloma U266 cells partly with antiangiogenic activity targeting JAK2/STAT3 signaling pathway as a potent cancer preventive agent for treatment of multiple myeloma cells

  11. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response.

    Directory of Open Access Journals (Sweden)

    Thomas Harwardt

    2016-07-01

    Full Text Available The human cytomegalovirus (hCMV major immediate-early 1 protein (IE1 is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445 in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420 deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.

  12. STAT3 Activation in Glioblastoma: Biochemical and Therapeutic Implications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jennifer E.; Patel, Mira; Ruzevick, Jacob; Jackson, Christopher M.; Lim, Michael, E-mail: mlim3@jhmi.edu [Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St., Phipps Building Rm 123, Baltimore, MD 21287 (United States)

    2014-02-10

    Signal transducer and activator of transcription 3 (STAT3) is a potent regulator of gliomagenesis through its induction of angiogenesis, host immunosuppression, and tumor invasion. Gain of function mutations result in constitutive activation of STAT3 in glioma cells, making STAT3 an attractive target for inhibition in cancer therapy. Nevertheless, some studies show that STAT3 also participates in terminal differentiation and apoptosis of various cell lines and in glioma with phosphatase and tensin homolog (PTEN)-deficient genetic backgrounds. In light of these findings, the utility of STAT3 as a prognostic indicator and as a target of drug therapies will be contingent on a more nuanced understanding of its pro- and anti-tumorigenic effects.

  13. Role of Stat in Skin Carcinogenesis: Insights Gained from Relevant Mouse Models

    International Nuclear Information System (INIS)

    Macias, E.; Rao, D.; DiGiovanni, J.; DiGiovanni, J.; DiGiovanni, J.

    2013-01-01

    Signal transducer and activator of transcription 3 (Stat) is a cytoplasmic protein that is activated in response to cytokines and growth factors and acts as a transcription factor. Stat plays critical roles in various biological activities including cell proliferation, migration, and survival. Studies using keratinocyte-specific Stat-deficient mice have revealed that Stat plays an important role in skin homeostasis including keratinocyte migration, wound healing, and hair follicle growth. Use of both constitutive and inducible keratinocyte-specific Stat-deficient mouse models has demonstrated that Stat is required for both the initiation and promotion stages of multistage skin carcinogenesis. Further studies using a transgenic mouse model with a gain of function mutant of Stat (Stat3C) expressed in the basal layer of the epidermis revealed a novel role for Stat in skin tumor progression. Studies using similar Stat-deficient and gain-of-function mouse models have indicated its similar roles in ultraviolet B (UVB) radiation-mediated skin carcinogenesis. This paper summarizes the use of these various mouse models for studying the role and underlying mechanisms for the function of Stat in skin carcinogenesis. Given its significant role throughout the skin carcinogenesis process, Stat is an attractive target for skin cancer prevention and treatment.

  14. Vanillin Suppresses Cell Motility by Inhibiting STAT3-Mediated HIF-1α mRNA Expression in Malignant Melanoma Cells.

    Science.gov (United States)

    Park, Eun-Ji; Lee, Yoon-Mi; Oh, Taek-In; Kim, Byeong Mo; Lim, Beong-Ou; Lim, Ji-Hong

    2017-03-01

    Recent studies have shown that vanillin has anti-cancer, anti-mutagenic, and anti-metastatic activity; however, the precise molecular mechanism whereby vanillin inhibits metastasis and cancer progression is not fully elucidated. In this study, we examined whether vanillin has anti-cancer and anti-metastatic activities via inhibition of hypoxia-inducible factor-1α (HIF-1α) in A2058 and A375 human malignant melanoma cells. Immunoblotting and quantitative real time (RT)-PCR analysis revealed that vanillin down-regulates HIF-1α protein accumulation and the transcripts of HIF-1α target genes related to cancer metastasis including fibronectin 1 ( FN1 ), lysyl oxidase-like 2 ( LOXL2 ), and urokinase plasminogen activator receptor ( uPAR ). It was also found that vanillin significantly suppresses HIF-1α mRNA expression and de novo HIF-1α protein synthesis. To understand the suppressive mechanism of vanillin on HIF-1α expression, chromatin immunoprecipitation was performed. Consequently, it was found that vanillin causes inhibition of promoter occupancy by signal transducer and activator of transcription 3 (STAT3), but not nuclear factor-κB (NF-κB), on HIF1A . Furthermore, an in vitro migration assay revealed that the motility of melanoma cells stimulated by hypoxia was attenuated by vanillin treatment. In conclusion, we demonstrate that vanillin might be a potential anti-metastatic agent that suppresses metastatic gene expression and migration activity under hypoxia via the STAT3-HIF-1α signaling pathway.

  15. HAb18G/CD147 Promotes pSTAT3-Mediated Pancreatic Cancer Development via CD44s †, ‡

    Science.gov (United States)

    Li, Ling; Tang, Wenhua; Wu, Xiaoqing; Karnak, David; Meng, Xiaojie; Thompson, Rachel; Hao, Xinbao; Li, Yongmin; Qiao, Xiaotan T.; Lin, Jiayuh; Fuchs, James; Simeone, Diane M.; Chen, Zhi-Nan; Lawrence, Theodore S.; Xu, Liang

    2013-01-01

    Purpose STAT3 plays a critical role in initiation and progression of pancreatic cancer. However, therapeutically targeting STAT3 is failure in clinic. We previously identified HAb18G/CD147 as an effective target for cancer treatment. In this study, we aimed to investigate potential role of HAb18G/CD147 in STAT3-involved pancreatic tumorigenesis in vitro and in vivo. Experimental Design The expression of HAb18G/CD147, pSTAT3 and CD44s were determined in tissue microarrays. The tumorigenic function and molecular signaling mechanism of HAb18G/CD147 was assessed by in vitro cellular and clonogenic growth, reporter assay, immunoblot, immunofluorescence staining, immunoprecipitation, and in vivo tumor formationusing loss or gain-of-function strategies. Results Highly expressed HAb18G/CD147 promoted cellular and clonogenic growth in vitro and tumorigenicity in vivo. CyPA, a ligand of CD147, stimulated STAT3 phosphorylation and its downstream genes cyclin D1/survivin through HAb18G/CD147 dependent mechanisms. HAb18G/CD147 was associated and co-localized with cancer stem cell marker CD44s in lipid rafts. The inhibitors of STAT3 and survivin, as well as CD44s neutralizing antibodies suppressed the HAb18G/CD147-induced cell growth. High HAb18G/CD147 expression in pancreatic cancer was significantly correlated with the poor tumor differentiation, and the high co-expression of HAb18G/CD147-CD44s-STAT3 associated with poor survival of patients with pancreatic cancer. Conclusions We identified HAb18G/CD147 as a novel upstream activator of STAT3 via interacts with CD44s and plays a critical role in the development of pancreatic cancer. The data suggest HAb18G/CD147 could be a promising therapeutic target for highly aggressive pancreatic cancer and a surrogate marker in the STAT3-targeted molecular therapies. PMID:24132924

  16. MMP-2 participates in the sclera of guinea pig with form-deprivation myopia via IGF-1/STAT3 pathway.

    Science.gov (United States)

    Liu, Y-X; Sun, Y

    2018-05-01

    To investigate the expression changes of MMP-2 (matrix metalloproteinases-2) mediated by IGF-1 (insulin-like growth factors-1) STAT3 (signal transducer and activator of transcription 3) pathway in the sclera of the form-deprivation myopia guinea pigs. Twenty-four three-week-old guinea pigs were randomly divided into 4 groups: group A (Control), B, C and D. Guinea pigs in group A were sacrificed after 21 days without any special treatment. Guinea pigs in group B were sacrificed 7 days after receiving stitch in the right eye. Guinea pigs in group C were sacrificed 14 days after receiving stitch in the right eye. Guinea pigs in group D were sacrificed 21 days after receiving stitch in the right eye. Eyeball refraction and axial length of guinea pigs were measured before sacrifice. Eyeballs of guinea pigs were enucleated after sacrifice. The expressions of IGF-1, STAT3 and MMP-2 in scleral tissue were detected by Western blot. Axial length extension and myopia appeared in the right eye of guinea pigs in group B. The expressions of IGF-1, STAT3 and MMP-2 in the sclera significantly increased after 7 days of occlusion compared with that in control group A (pIGF-1, STAT3 and MMP-2 in sclera significantly increased compared with that in group A (pIGF-1, STAT3 and MMP-2 in scleral significantly upregulated 21 days after occlusion (pIGF-1 in sclera were positively correlated (r = 0.962, pIGF-1, STAT3 and MMP-2 in the sclera and myopia of guinea pigs. The expressions of IGF-1, STAT3 and MMP-2 increased progressively over the time of deprivation. Additionally, overexpression of MMP-2 mediated by IGF-1/STAT3 pathway in sclera might promote the formation of myopia.

  17. Biologic activity of the novel small molecule STAT3 inhibitor LLL12 against canine osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Couto Jason I

    2012-12-01

    Full Text Available Abstract Background STAT3 [1] has been shown to be dysregulated in nearly every major cancer, including osteosarcoma (OS. Constitutive activation of STAT3, via aberrant phosphorylation, leads to proliferation, cell survival and resistance to apoptosis. The present study sought to characterize the biologic activity of a novel allosteric STAT3 inhibitor, LLL12, in canine OS cell lines. Results We evaluated the effects of LLL12 treatment on 4 canine OS cell lines and found that LLL12 inhibited proliferation, induced apoptosis, reduced STAT3 phosphorylation, and decreased the expression of several transcriptional targets of STAT3 in these cells. Lastly, LLL12 exhibited synergistic anti-proliferative activity with the chemotherapeutic doxorubicin in the OS lines. Conclusion LLL12 exhibits biologic activity against canine OS cell lines through inhibition of STAT3 related cellular functions supporting its potential use as a novel therapy for OS.

  18. Oncostatin M promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines

    International Nuclear Information System (INIS)

    Fossey, Stacey L; Bear, Misty D; Kisseberth, William C; Pennell, Michael; London, Cheryl A

    2011-01-01

    We have previously demonstrated that both canine and human OSA cell lines, as well as 8 fresh canine OSA tumor samples, exhibit constitutive phosphorylation of STAT3, and that this correlates with enhanced expression of matrix metalloproteinase-2 (MMP2). While multiple signal transduction pathways can result in phosphorylation of STAT3, stimulation of the cytokine receptor gp130 through either IL-6 or Oncostatin M (OSM) is the most common mechanism through which STAT3 is activated. The purpose of this study was to evaluate the role of IL-6 and OSM stimulation on both canine and human OSA cell lines to begin to determine the role of these cytokines in the biology of OSA. RT-PCR and Western blotting were used to interrogate the consequences of OSM and IL-6 stimulation of OSA cell lines. OSA cells were stimulated with OSM and/or hepatocyte growth factor (HGF) and the effects on MMP2 activity (gel zymography), proliferation (CyQUANT), invasion (Matrigel transwell assay), and VEGF production (Western blotting, ELISA) were assessed. The small molecule STAT3 inhibitor LLL3 was used to investigate the impact of STAT3 inhibition following OSM stimulation of OSA cells. Our data demonstrate that the OSM receptor (OSMR), but not IL-6 or its receptor, is expressed by all human and canine OSA cell lines and canine OSA tumor samples; additionally, OSM expression was noted in all tumor samples. Treatment of OSA cell lines with OSM induced phosphorylation of STAT3, Src, and JAK2. OSM stimulation also resulted in a dose dependent increase in MMP2 activity and VEGF expression that was markedly reduced following treatment with the small molecule STAT3 inhibitor LLL3. Lastly, OSM stimulation of OSA cell lines enhanced invasion through Matrigel, particularly in the presence of rhHGF. In contrast, both OSM and HGF stimulation of OSA cell lines did not alter their proliferative capacity. These data indicate OSM stimulation of human and canine OSA cells induces STAT3 activation, thereby

  19. Oncostatin M promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Kisseberth William C

    2011-04-01

    Full Text Available Abstract Background We have previously demonstrated that both canine and human OSA cell lines, as well as 8 fresh canine OSA tumor samples, exhibit constitutive phosphorylation of STAT3, and that this correlates with enhanced expression of matrix metalloproteinase-2 (MMP2. While multiple signal transduction pathways can result in phosphorylation of STAT3, stimulation of the cytokine receptor gp130 through either IL-6 or Oncostatin M (OSM is the most common mechanism through which STAT3 is activated. The purpose of this study was to evaluate the role of IL-6 and OSM stimulation on both canine and human OSA cell lines to begin to determine the role of these cytokines in the biology of OSA. Methods RT-PCR and Western blotting were used to interrogate the consequences of OSM and IL-6 stimulation of OSA cell lines. OSA cells were stimulated with OSM and/or hepatocyte growth factor (HGF and the effects on MMP2 activity (gel zymography, proliferation (CyQUANT, invasion (Matrigel transwell assay, and VEGF production (Western blotting, ELISA were assessed. The small molecule STAT3 inhibitor LLL3 was used to investigate the impact of STAT3 inhibition following OSM stimulation of OSA cells. Results Our data demonstrate that the OSM receptor (OSMR, but not IL-6 or its receptor, is expressed by all human and canine OSA cell lines and canine OSA tumor samples; additionally, OSM expression was noted in all tumor samples. Treatment of OSA cell lines with OSM induced phosphorylation of STAT3, Src, and JAK2. OSM stimulation also resulted in a dose dependent increase in MMP2 activity and VEGF expression that was markedly reduced following treatment with the small molecule STAT3 inhibitor LLL3. Lastly, OSM stimulation of OSA cell lines enhanced invasion through Matrigel, particularly in the presence of rhHGF. In contrast, both OSM and HGF stimulation of OSA cell lines did not alter their proliferative capacity. Conclusions These data indicate OSM stimulation of

  20. Dysregulation of suppressor of cytokine signaling 3 in keratinocytes causes skin inflammation mediated by interleukin-20 receptor-related cytokines.

    Directory of Open Access Journals (Sweden)

    Ayako Uto-Konomi

    Full Text Available Homeostatic regulation of epidermal keratinocytes is controlled by the local cytokine milieu. However, a role for suppressor of cytokine signaling (SOCS, a negative feedback regulator of cytokine networks, in skin homeostasis remains unclear. Keratinocyte specific deletion of Socs3 (Socs3 cKO caused severe skin inflammation with hyper-production of IgE, epidermal hyperplasia, and S100A8/9 expression, although Socs1 deletion caused no inflammation. The inflamed skin showed constitutive STAT3 activation and up-regulation of IL-6 and IL-20 receptor (IL-20R related cytokines, IL-19, IL-20 and IL-24. Disease development was rescued by deletion of the Il6 gene, but not by the deletion of Il23, Il4r, or Rag1 genes. The expression of IL-6 in Socs3 cKO keratinocytes increased expression of IL-20R-related cytokines that further facilitated STAT3 hyperactivation, epidermal hyperplasia and neutrophilia. These results demonstrate that skin homeostasis is strictly regulated by the IL-6-STAT3-SOCS3 axis. Moreover, the SOCS3-mediated negative feedback loop in keratinocytes has a critical mechanistic role in the prevention of skin inflammation caused by hyperactivation of STAT3.

  1. A mathematical analysis of Prx2-STAT3 disulfide exchange rate constants for a bimolecular reaction mechanism.

    Science.gov (United States)

    Langford, Troy F; Deen, William M; Sikes, Hadley D

    2018-03-22

    Appreciation of peroxiredoxins as the major regulators of H 2 O 2 concentrations in human cells has led to a new understanding of redox signaling. In addition to their status as the primary reducers of H 2 O 2 to water, the oxidized peroxiredoxin byproduct of this reaction has recently been shown capable of participation in H 2 O 2 -mediated signaling pathways through disulfide exchange reactions with the transcription factor STAT3. The dynamics of peroxidase-transcription factor disulfide exchange reactions have not yet been considered in detail with respect to how these reactions fit into the larger network of competing reactions in human cells. In this study, we used a kinetic model of oxidation and reduction reactions related to H 2 O 2 metabolism in the cytosol of human cells to study the dynamics of peroxiredoxin-2 mediated oxidation of the redox-regulated transcription factor STAT3. In combination with previously reported experimental data, the model was used to estimate the rate coefficient of a biomolecular reaction between Prx2 and STAT3 for two sets of assumptions that constitute lower and upper bound cases. Using these estimates, we calculated the relative rates of the reaction of oxidized peroxiredoxin-2 and STAT3 and other competing reactions in the cytosol. These calculations revealed that peroxiredoxin-2-mediated oxidation of STAT3 likely occurs at a much slower rate than competing reactions in the cytosol. This analysis suggests the existence of more complex mechanisms, potentially involving currently unknown protein-protein recognition partners, which facilitate disulfide exchange reactions between peroxiredoxin-2 and STAT3. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. A STAT3-decoy oligonucleotide induces cell death in a human colorectal carcinoma cell line by blocking nuclear transfer of STAT3 and STAT3-bound NF-κB

    Directory of Open Access Journals (Sweden)

    Le Coquil Stéphanie

    2011-04-01

    Full Text Available Abstract Background The transcription factor STAT3 (signal transducer and activator of transcription 3 is frequently activated in tumor cells. Activated STAT3 forms homodimers, or heterodimers with other TFs such as NF-κB, which becomes activated. Cytoplasmic STAT3 dimers are activated by tyrosine phosphorylation; they interact with importins via a nuclear localization signal (NLS one of which is located within the DNA-binding domain formed by the dimer. In the nucleus, STAT3 regulates target gene expression by binding a consensus sequence within the promoter. STAT3-specific decoy oligonucleotides (STAT3-decoy ODN that contain this consensus sequence inhibit the transcriptional activity of STAT3, leading to cell death; however, their mechanism of action is unclear. Results The mechanism of action of a STAT3-decoy ODN was analyzed in the colon carcinoma cell line SW 480. These cells' dependence on activated STAT3 was verified by showing that cell death is induced by STAT3-specific siRNAs or Stattic. STAT3-decoy ODN was shown to bind activated STAT3 within the cytoplasm, and to prevent its translocation to the nucleus, as well as that of STAT3-associated NF-κB, but it did not prevent the nuclear transfer of STAT3 with mutations in its DNA-binding domain. The complex formed by STAT3 and the STAT3-decoy ODN did not associate with importin, while STAT3 alone was found to co-immunoprecipitate with importin. Leptomycin B and vanadate both trap STAT3 in the nucleus. They were found here to oppose the cytoplasmic trapping of STAT3 by the STAT3-decoy ODN. Control decoys consisting of either a mutated STAT3-decoy ODN or a NF-κB-specific decoy ODN had no effect on STAT3 nuclear translocation. Finally, blockage of STAT3 nuclear transfer correlated with the induction of SW 480 cell death. Conclusions The inhibition of STAT3 by a STAT3-decoy ODN, leading to cell death, involves the entrapment of activated STAT3 dimers in the cytoplasm. A mechanism is

  3. Screening of Stat3 inhibitory effects of Korean herbal medicines in the A549 human lung cancer cell line.

    Science.gov (United States)

    Park, Jong-Shik; Bang, Ok-Sun; Kim, Jinhee

    2014-06-01

    The transcription factor signal transducer and activator of transcription 3 (Stat3) is constitutively activated in many human cancers. It promotes tumor cell proliferation, inhibits apoptosis, induces angiogenesis and metastasis, and suppresses antitumor host immune responses. Therefore, Stat3 has emerged as a promising molecular target for cancer therapies. In this study, we evaluated the Stat3-suppressive activity of 38 herbal medicines traditionally used in Korea. Medicinal herb extracts in 70% ethanol were screened for their ability to suppress Stat3 in the A549 human lung cancer cell line. A Stat3-responsive reporter assay system was used to detect intracellular Stat3 activity in extract-treated cells, and Western blot analyses were performed to measure the expression profiles of Stat3-regulated proteins. Fifty percent of the 38 extracts possessed at least mild Stat3-suppressive activities (i.e., activity less than 75% of the vehicle control). Ethanol extracts of Bupleurum falcatum L., Taraxacum officinale Weber, Solanum nigrum L., Ulmus macrocarpa Hance, Euonymus alatus Sieb., Artemisia capillaris Thunb., and Saururus chinensis (Lour.) Baill inhibited up to 75% of the vehicle control Stat3 activity level. A549 cells treated with these extracts also had reduced Bcl-xL, Survivin, c-Myc, and Mcl-1 expression. Many medicinal herbs traditionally used in Korea contain Stat3 activity-suppressing substances. Because of the therapeutic impact of Stat3 inhibition, these results could be useful when developing novel cancer therapeutics from medicinal herbs.

  4. IL-6 Inhibition Reduces STAT3 Activation and Enhances the Antitumor Effect of Carboplatin

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Wang

    2016-01-01

    Full Text Available Recent studies suggest that tumor-associated macrophage-produced IL-6 is an important mediator within the tumor microenvironment that promotes tumor growth. The activation of IL-6/STAT3 axis has been associated with chemoresistance and poor prognosis of a variety of cancers including colorectal carcinoma and thus serves as a potential immunotherapeutic target for cancer treatment. However, it is not fully understood whether anticytokine therapy could reverse chemosensitivity and enhance the suppressive effect of chemotherapy on tumor growth. In this study, we aimed to investigate the effect of IL-6 inhibition therapy on the antitumor effect of carboplatin. Enhanced expression of IL-6 and activation of STAT3 were observed in human colorectal carcinoma samples compared to normal colorectal tissue, with higher levels of IL-6/STAT3 in low grade carcinomas. Treatment of carboplatin (CBP dose-dependently increased IL-6 production and STAT3 activation in human colorectal LoVo cells. Blockade of IL-6 with neutralizing antibody enhanced chemosensitivity of LoVo cells to carboplatin as evidenced by increased cell apoptosis. IL-6 blockade abolished carboplatin-induced STAT3 activation. IL-6 blockade and carboplatin synergistically reduced cyclin D1 expression and enhanced caspase-3 activity in LoVo cells. Our results suggest that inhibition of IL-6 may enhance chemosensitivity of colon cancers with overactive STAT3 to platinum agents.

  5. Cutaneous T cell lymphoma expresses immunosuppressive CD80 (B7-1) cell surface protein in a STAT5-dependent manner

    DEFF Research Database (Denmark)

    Zhang, Qian; Wang, Hong Yi; Wei, Fang

    2014-01-01

    as their joint ability to transcriptionally activate the CD80 gene. In IL-2-dependent CTCL cells, CD80 expression is induced by the cytokine in a Jak1/3- and STAT5a/b-dependent manner, whereas in the CTCL cells with constitutive STAT5 activation, CD80 expression is also STAT5a/b dependent but is independent......(+) and CD8(+) populations or the CD4(+) subset alone, transfected with CD152 mRNA, inhibits proliferation of normal T cells in a CD152- and CD80-dependent manner. These data identify a new mechanism of immune evasion in CTCL and suggest that the CD80-CD152 axis may become a therapeutic target in this type...

  6. Hippocalcin Is Required for Astrocytic Differentiation through Activation of Stat3 in Hippocampal Neural Precursor Cells.

    Directory of Open Access Journals (Sweden)

    Min-Jeong Kang

    2016-10-01

    Full Text Available Hippocalcin (Hpca is a neuronal calcium sensor protein expressed in the mammalian brain. However, its function in neural stem/precursor cells has not yet been studied. Here, we clarify the function of Hpca in astrocytic differentiation in hippocampal neural precursor cells (HNPCs. When we overexpressed Hpca in HNPCs in the presence or absence of bFGF, expression levels of nerve-growth factors such as neurotrophin-3 (NT-3, neurotrophin-4/5 (NT-4/5 and brain-derived neurotrophic factor (BDNF, together with the proneural basic helix loop helix (bHLH transcription factors neuroD and neurogenin 1 (ngn1, increased significantly. In addition, there was an increase in the number of cells expressing glial fibrillary acidic protein (GFAP, an astrocyte marker, and in dendrite outgrowth, indicating astrocytic differentiation of the HNPCs. Downregulation of Hpca by transfection with Hpca siRNA reduced expression of NT-3, NT-4/5, BDNF, neuroD and ngn1 as well as levels of GFAP protein. Furthermore, overexpression of Hpca increased the phosphorylation of STAT3 (Ser727, and this effect was abolished by treatment with a STAT3 inhibitor (S3I-201, suggesting that STAT3 (Ser727 activation is involved in Hpca-mediated astrocytic differentiation. As expected, treatment with Stat3 siRNA or STAT3 inhibitor caused a complete inhibition of astrogliogenesis induced by Hpca overexpression. Taken together, this is the first report to show that Hpca, acting through Stat3, has an important role in the expression of neurotrophins and proneural bHLH transcription factors, and that it is an essential regulator of astrocytic differentiation and dendrite outgrowth in HNPCs.

  7. ATP mediates NADPH oxidase/ROS generation and COX-2/PGE2 expression in A549 cells: role of P2 receptor-dependent STAT3 activation.

    Directory of Open Access Journals (Sweden)

    Shin-Ei Cheng

    Full Text Available BACKGROUND: Up-regulation of cyclooxygenase (COX-2 and its metabolite prostaglandin E(2 (PGE(2 are frequently implicated in lung inflammation. Extracellular nucleotides, such as ATP have been shown to act via activation of P2 purinoceptors, leading to COX-2 expression in various inflammatory diseases, such as lung inflammation. However, the mechanisms underlying ATP-induced COX-2 expression and PGE(2 release remain unclear. PRINCIPAL FINDINGS: Here, we showed that ATPγS induced COX-2 expression in A549 cells revealed by western blot and real-time PCR. Pretreatment with the inhibitors of P2 receptor (PPADS and suramin, PKC (Gö6983, Gö6976, Ro318220, and Rottlerin, ROS (Edaravone, NADPH oxidase [diphenyleneiodonium chloride (DPI and apocynin], Jak2 (AG490, and STAT3 [cucurbitacin E (CBE] and transfection with siRNAs of PKCα, PKCι, PKCμ, p47(phox, Jak2, STAT3, and cPLA(2 markedly reduced ATPγS-induced COX-2 expression and PGE(2 production. In addition, pretreatment with the inhibitors of P2 receptor attenuated PKCs translocation from the cytosol to the membrane in response to ATPγS. Moreover, ATPγS-induced ROS generation and p47(phox translocation was also reduced by pretreatment with the inhibitors of P2 receptor, PKC, and NADPH oxidase. On the other hand, ATPγS stimulated Jak2 and STAT3 activation which were inhibited by pretreatment with PPADS, suramin, Gö6983, Gö6976, Ro318220, GF109203X, Rottlerin, Edaravone, DPI, and apocynin in A549 cells. SIGNIFICANCE: Taken together, these results showed that ATPγS induced COX-2 expression and PGE(2 production via a P2 receptor/PKC/NADPH oxidase/ROS/Jak2/STAT3/cPLA(2 signaling pathway in A549 cells. Increased understanding of signal transduction mechanisms underlying COX-2 gene regulation will create opportunities for the development of anti-inflammation therapeutic strategies.

  8. STAT6: its role in interleukin 4-mediated biological functions.

    Science.gov (United States)

    Takeda, K; Kishimoto, T; Akira, S

    1997-05-01

    Interleukin (IL) 4 is known to be a cytokine which plays a central role in the regulation of immune response. Studies on cytokine signal transduction have clarified the mechanism by which IL4 exerts its functions. Two cytoplasmic proteins, signal transducer and activator of transcription (STAT) 6 and IL4-induced phosphotyrosine substrate/insulin receptor substrate 2 (4PS/IRS2), are activated in IL4 signal transduction. Recent studies from STAT6-deficient mice have revealed the essential role of STAT6 in IL4-mediated biological actions. In addition, STAT6 has also been demonstrated to be important for the functions mediated by IL13, which is related to IL4. IL4 and IL13 have been shown to induce the production of IgE, which is a major mediator in an allergic response. These findings indicate that STAT6 activation is involved in IL4- and IL13-mediated disorders such as allergy.

  9. Expression of Myc, but not pSTAT3, is an adverse prognostic factor for diffuse large B-cell lymphoma treated with epratuzumab/R-CHOP.

    Science.gov (United States)

    Gupta, Mamta; Maurer, Matthew J; Wellik, Linda E; Law, Mark E; Han, Jing Jing; Ozsan, Nazan; Micallef, Ivana N; Dogan, Ahmet; Witzig, Thomas E

    2012-11-22

    STAT3 regulates cell growth by up-regulating downstream targets, such as Myc. The frequency of phosphorylated STAT3 (pSTAT3) and Myc expression and their prognostic relevance is unknown within diffuse large B-cell lymphoma (DLBCL) germinal center B-cell (GCB) and non-GCB subtypes. pSTAT3 and Myc were studied by immunohistochemistry (IHC) on tumors from 40 DLBCL patients uniformly treated on a clinical trial of epratuzumab/rituximab-CHOP. A total of 35% of cases were pSTAT3-positive, and pSTAT3 positivity was more frequent in the non-GCB (P = .06) type but did not correlate with event-free survival (EFS). Myc expression was observed in 50% of cases and was more frequent in non-GCB type (P = .07). Myc-positive cases had inferior EFS in all patients, including the GCB and pSTAT3-positive cases, were more likely to express Myc (P = .06). Myc translocations involving the major breakpoint regions were found in 10% (3 of 29) of cases, and all 3 cases were GCB and had an inferior EFS (P = .09). pSTAT3, but not Myc expression, was correlated with elevated pretreatment serum cytokines, such as IL-10 (P = .05), G-CSF (P = .03), and TNF-α (P = .04). pSTAT3 IHC in DLBCL tumors has the potential to identify patients for STAT3 pathway-directed therapy; Myc IHC is a potential marker for inferior EFS in GCB patients.

  10. Identification of STAT1 and STAT3 specific inhibitors using comparative virtual screening and docking validation.

    Directory of Open Access Journals (Sweden)

    Malgorzata Szelag

    Full Text Available Signal transducers and activators of transcription (STATs facilitate action of cytokines, growth factors and pathogens. STAT activation is mediated by a highly conserved SH2 domain, which interacts with phosphotyrosine motifs for specific STAT-receptor contacts and STAT dimerization. The active dimers induce gene transcription in the nucleus by binding to a specific DNA-response element in the promoter of target genes. Abnormal activation of STAT signaling pathways is implicated in many human diseases, like cancer, inflammation and auto-immunity. Searches for STAT-targeting compounds, exploring the phosphotyrosine (pTyr-SH2 interaction site, yielded many small molecules for STAT3 but sparsely for other STATs. However, many of these inhibitors seem not STAT3-specific, thereby questioning the present modeling and selection strategies of SH2 domain-based STAT inhibitors. We generated new 3D structure models for all human (hSTATs and developed a comparative in silico docking strategy to obtain further insight into STAT-SH2 cross-binding specificity of a selection of previously identified STAT3 inhibitors. Indeed, by primarily targeting the highly conserved pTyr-SH2 binding pocket the majority of these compounds exhibited similar binding affinity and tendency scores for all STATs. By comparative screening of a natural product library we provided initial proof for the possibility to identify STAT1 as well as STAT3-specific inhibitors, introducing the 'STAT-comparative binding affinity value' and 'ligand binding pose variation' as selection criteria. In silico screening of a multi-million clean leads (CL compound library for binding of all STATs, likewise identified potential specific inhibitors for STAT1 and STAT3 after docking validation. Based on comparative virtual screening and docking validation, we developed a novel STAT inhibitor screening tool that allows identification of specific STAT1 and STAT3 inhibitory compounds. This could increase our

  11. Short Stat5-interacting peptide derived from phospholipase C-β3 inhibits hematopoietic cell proliferation and myeloid differentiation.

    Directory of Open Access Journals (Sweden)

    Hiroki Yasudo

    Full Text Available Constitutive activation of the transcription factor Stat5 in hematopoietic stem/progenitor cells leads to various hematopoietic malignancies including myeloproliferative neoplasm (MPN. Our recent study found that phospholipase C (PLC-β3 is a novel tumor suppressor involved in MPN, lymphoma and other tumors. Stat5 activity is negatively regulated by the SH2 domain-containing protein phosphatase SHP-1 in a PLC-β3-dependent manner. PLC-β3 can form the multimolecular SPS complex together with SHP-1 and Stat5. The close physical proximity of SHP-1 and Stat5 brought about by interacting with the C-terminal segment of PLC-β3 (PLC-β3-CT accelerates SHP-1-mediated dephosphorylation of Stat5. Here we identify the minimal sequences within PLC-β3-CT required for its tumor suppressor function. Two of the three Stat5-binding noncontiguous regions, one of which also binds SHP-1, substantially inhibited in vitro proliferation of Ba/F3 cells. Surprisingly, an 11-residue Stat5-binding peptide (residues 988-998 suppressed Stat5 activity in Ba/F3 cells and in vivo proliferation and myeloid differentiation of hematopoietic stem/progenitor cells. Therefore, this study further defines PLC-β3-CT as the Stat5- and SHP-1-binding domain by identifying minimal functional sequences of PLC-β3 for its tumor suppressor function and implies their potential utility in the control of hematopoietic malignancies.

  12. In silico simulations of STAT1 and STAT3 inhibitors predict SH2 domain cross-binding specificity.

    Science.gov (United States)

    Szelag, Malgorzata; Sikorski, Krzysztof; Czerwoniec, Anna; Szatkowska, Katarzyna; Wesoly, Joanna; Bluyssen, Hans A R

    2013-11-15

    Signal transducers and activators of transcription (STATs) comprise a family of transcription factors that are structurally related and which participate in signaling pathways activated by cytokines, growth factors and pathogens. Activation of STAT proteins is mediated by the highly conserved Src homology 2 (SH2) domain, which interacts with phosphotyrosine motifs for specific contacts between STATs and receptors and for STAT dimerization. By generating new models for human (h)STAT1, hSTAT2 and hSTAT3 we applied comparative in silico docking to determine SH2-binding specificity of the STAT3 inhibitor stattic, and of fludarabine (STAT1 inhibitor). Thus, we provide evidence that by primarily targeting the highly conserved phosphotyrosine (pY+0) SH2 binding pocket stattic is not a specific hSTAT3 inhibitor, but is equally effective towards hSTAT1 and hSTAT2. This was confirmed in Human Micro-vascular Endothelial Cells (HMECs) in vitro, in which stattic inhibited interferon-α-induced phosphorylation of all three STATs. Likewise, fludarabine inhibits both hSTAT1 and hSTAT3 phosphorylation, but not hSTAT2, by competing with the highly conserved pY+0 and pY-X binding sites, which are less well-preserved in hSTAT2. Moreover we observed that in HMECs in vitro fludarabine inhibits cytokine and lipopolysaccharide-induced phosphorylation of hSTAT1 and hSTAT3 but does not affect hSTAT2. Finally, multiple sequence alignment of STAT-SH2 domain sequences confirmed high conservation between hSTAT1 and hSTAT3, but not hSTAT2, with respect to stattic and fludarabine binding sites. Together our data offer a molecular basis that explains STAT cross-binding specificity of stattic and fludarabine, thereby questioning the present selection strategies of SH2 domain-based competitive small inhibitors. © 2013 Elsevier B.V. All rights reserved.

  13. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of); Kang, Ho Young [Department of Microbiology, Pusan National University, Busan 609-736 (Korea, Republic of); Kim, Manbok [Department of Medical Science, Dankook University College of Medicine, Cheonan 330-714 (Korea, Republic of); Koh, Sang Seok [Department of Biological Sciences, Dong-A University, Busan 604-714 (Korea, Republic of); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of)

    2015-04-03

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells.

  14. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    International Nuclear Information System (INIS)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok; Kang, Ho Young; Kim, Manbok; Koh, Sang Seok; Chung, Young-Hwa

    2015-01-01

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells

  15. Overcoming Chemoresistance of Pediatric Ependymoma by Inhibition of STAT3 Signaling

    Directory of Open Access Journals (Sweden)

    Ji Hoon Phi

    2015-10-01

    Full Text Available The long-term clinical outcome of pediatric intracranial epepdymoma is poor with a high rate of recurrence. One of the main reasons for this poor outcome is the tumor’s inherent resistance to chemotherapy. Signal transducer and activator of transcription 3 (STAT3 is overactive in many human cancers, and inhibition of STAT3 signaling is an emerging area of interest in oncology. In this study, the possibility of STAT3 inhibition as a treatment was investigated in pediatric intracranial ependymoma tissues and cell lines. STAT3 activation status was checked in ependymoma tissues. The responses to conventional chemotherapeutic agents and a STAT3 inhibitor WP1066 in primarily cultured ependymoma cells were measured by cell viability assay. Apoptosis assays were conducted to reveal the cytotoxic mechanism of applied agents. Knockdown of STAT3 was tried to confirm the effects of STAT3 inhibition in ependymoma cells. High levels of phospho-STAT3 (p-STAT3 expression were observed in ependymoma tissue, especially in the anaplastic histology group. There was no cytotoxic effect of cisplatin, ifosfamide, and etoposide. Both brain tumor-initiating cells (BTICs and bulk tumor cells (BCs showed considerably decreased viability after WP1066 treatment. However, BTICs had fewer responses than BCs. No additive or synergistic effect was observed for combination therapy of WP1066 and cisplatin. WP1066 effectively abrogated p-STAT3 expression. An increased apoptosis and decreased Survivin expression were observed after WP1066 treatment. Knockdown of STAT3 also decreased cell survival, supporting the critical role of STAT3 in sustaining ependymoma cells. In this study, we observed a cytotoxic effect of STAT3 inhibitor on ependymoma BTICs and BCs. There is urgent need to develop new therapeutic agents for pediatric ependymoma. STAT3 inhibitors may be a new group of drugs for clinical application.

  16. Differential binding activity of the transcription factor LIL-Stat in immature and differentiated normal and leukemic myeloid cells

    NARCIS (Netherlands)

    Tuyt, LML; Bregman, K; Lummen, C; Dokter, WHA; Vellenga, E

    1998-01-01

    Cytokines and growth factors induce activation of the family of signal transducers and activators of transcription (Stats) that directly activate gene expression. Recently, constitutively activated Stat1, Stat3, and Stat5 were identified in nuclear extracts of acute myeloid leukemia (AML) patients,

  17. Persistent STAT3 Activation in Colon Cancer Is Associated with Enhanced Cell Proliferation and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Florian M. Corvinus

    2005-06-01

    Full Text Available Colorectal carcinoma (CRC is a major cause of morbidity and mortality in Western countries. It has so far been molecularly defined mainly by alterations of the Wnt pathway. We show here for the first time that aberrant activities of the signal transducer and activator of transcription STAT3 actively contribute to this malignancy and, thus, are a potential therapeutic target for CRC. Constitutive STAT3 activity was found to be abundant in dedifferentiated cancer cells and infiltrating lymphocytes of CRC samples, but not in non-neoplastic colon epithelium. Cell lines derived from malignant colorectal tumors lost persistent STAT3 activity in culture. However, implantation of colon carcinoma cells into nude mice resulted in restoration of STAT3 activity, suggesting a role of an extracellular stimulus within the tumor microenvironment as a trigger for STAT activation. STAT3 activity in CRC cells triggered through interleukin-6 or through a constitutively active STAT3 mutant promoted cancer cell multiplication, whereas STAT3 inhibition through a dominant-negative variant impaired IL-6-driven proliferation. Blockade of STAT3 activation in CRCderived xenograft tumors slowed down their development, arguing for a contribution of STAT3 to colorectal tumor growth.

  18. Proinflammatory Cytokines IL-6 and TNF-α Increased Telomerase Activity through NF-κB/STAT1/STAT3 Activation, and Withaferin A Inhibited the Signaling in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Seyung S. Chung

    2017-01-01

    Full Text Available There are increasing evidences of proinflammatory cytokine involvement in cancer development. Here, we found that two cytokines, IL-6 and TNF-α, activated colorectal cancer cells to be more invasive and stem-like. Combined treatment of IL-6 and TNF-α phosphorylated transcription factors STAT3 in a synergistic manner. STAT3, STAT1, and NF-κB physically interacted upon the cytokine stimulation. STAT3 was bound to the promoter region of human telomerase reverse transcriptase (hTERT. IL-6 and TNF-α stimulation further enhanced STAT3 binding affinity. Stem cell marker Oct-4 was upregulated in colorectal cancer cells upon IL-6 and TNF-α stimulation. Withaferin A, an anti-inflammatory steroidal lactone, inhibited the IL-6- and TNF-α-induced cancer cell invasion and decreased colonosphere formation. Notably, withaferin A inhibited STAT3 phosphorylation and abolished the STAT3, STAT1, and NF-κB interactions. Oct-4 expression was also downregulated by withaferin A inhibition. The binding of STAT3 to the hTERT promoter region and telomerase activity showed reduction with withaferin A treatments. Proinflammatory cytokine-induced cancer cell invasiveness is mediated by a STAT3-regulated mechanism in colorectal cancer cells. Our data suggest that withaferin A could be a promising anticancer agent that effectively inhibits the progression of colorectal cancer.

  19. Transcription Factor STAT3 as a Novel Molecular Target for Cancer Prevention

    International Nuclear Information System (INIS)

    Xiong, Ailian; Yang, Zhengduo; Shen, Yicheng; Zhou, Jia; Shen, Qiang

    2014-01-01

    Signal Transducers and Activators of Transcription (STATs) are a family of transcription factors that regulate cell proliferation, differentiation, apoptosis, immune and inflammatory responses, and angiogenesis. Cumulative evidence has established that STAT3 has a critical role in the development of multiple cancer types. Because it is constitutively activated during disease progression and metastasis in a variety of cancers, STAT3 has promise as a drug target for cancer therapeutics. Recently, STAT3 was found to have an important role in maintaining cancer stem cells in vitro and in mouse tumor models, suggesting STAT3 is integrally involved in tumor initiation, progression and maintenance. STAT3 has been traditionally considered as nontargetable or undruggable, and the lag in developing effective STAT3 inhibitors contributes to the current lack of FDA-approved STAT3 inhibitors. Recent advances in cancer biology and drug discovery efforts have shed light on targeting STAT3 globally and/or specifically for cancer therapy. In this review, we summarize current literature and discuss the potential importance of STAT3 as a novel target for cancer prevention and of STAT3 inhibitors as effective chemopreventive agents

  20. Reciprocal occupancy of BCL6 and STAT5 on Growth Hormone target genes: contrasting transcriptional outcomes and promoter-specific roles of p300 and HDAC3.

    Science.gov (United States)

    Lin, Grace; LaPensee, Christopher R; Qin, Zhaohui S; Schwartz, Jessica

    2014-09-01

    Expression of the Growth Hormone (GH)-stimulated gene Socs2 (Suppressor of Cytokine Signaling 2) is mediated by the transcription activator STAT5 (Signal Transducer and Activator of Transcription 5) and the transcription repressor BCL6 (B-Cell Lymphoma 6). ChIP-Sequencing identified Cish (Cytokine-Inducible SH2-containing protein) and Bcl6 as having similar patterns of reciprocal occupancy by BCL6 and STAT5 in response to GH, though GH stimulates Cish and inhibits Bcl6 expression. The co-activator p300 occupied Socs2, Cish and Bcl6 promoters, and enhanced STAT5-mediated activation of Socs2 and Cish. In contrast, on Bcl6, p300 functioned as a repressor and inhibited in conjunction with STAT5 or BCL6. The co-repressor HDAC3 (Histone deacetylase 3) inhibited the Socs2, Cish and Bcl6 promoters in the presence of STAT5. Thus transcriptional outcomes on GH-regulated genes occupied by BCL6 and STAT5 are determined in a promoter-specific fashion by co-regulatory proteins which mediate the distinction between activating and repressive transcription factors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Pharmacological Targeting SHP-1-STAT3 Signaling Is a Promising Therapeutic Approach for the Treatment of Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Li-Ching Fan

    2015-09-01

    Full Text Available STAT3 activation is associated with poor prognosis in human colorectal cancer (CRC. Our previous data demonstrated that regorafenib (Stivarga is a pharmacological agonist of SH2 domain-containing phosphatase 1 (SHP-1 that enhances SHP-1 activity and induces apoptosis by targeting STAT3 signals in CRC. This study aimed to find a therapeutic drug that is more effective than regorafenib for CRC treatment. Here, we showed that SC-43 was more effective than regorafenib at inducing apoptosis in vitro and suppressing tumorigenesis in vivo. SC-43 significantly increased SHP-1 activity, downregulated p-STAT3Tyr705 level, and induced apoptosis in CRC cells. An SHP-1 inhibitor or knockdown of SHP-1 by siRNA both significantly rescued the SC-43–induced apoptosis and decreased p-STAT3Tyr705 level. Conversely, SHP-1 overexpression increased the effects of SC-43 on apoptosis and p-STAT3Tyr705 level. These data suggest that SC-43–induced apoptosis mediated through the loss of p-STAT3Tyr705 was dependent on SHP-1 function. Importantly, SC-43–enhanced SHP-1 activity was because of the docking potential of SC-43, which relieved the autoinhibited N-SH2 domain of SHP-1 and inhibited p-STAT3Tyr705 signals. Importantly, we observed that a significant negative correlation existed between SHP-1 and p-STAT3Tyr705expression in CRC patients (P = .038. Patients with strong SHP-1 and weak p-STAT3Tyr705 expression had significantly higher overall survival compared with patients with weak SHP-1 and strong p-STAT3Tyr705 expression (P = .029. In conclusion, SHP-1 is suitable to be a useful prognostic marker and a pharmacological target for CRC treatment. Targeting SHP-1-STAT3 signaling by SC-43 may serve as a promising pharmacotherapy for CRC.

  2. Inhibition of JAK1, 2/STAT3 Signaling Induces Apoptosis, Cell Cycle Arrest, and Reduces Tumor Cell Invasion in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hua Xiong

    2008-03-01

    Full Text Available Abnormalities in the STAT3 pathway are involved in the oncogenesis of several cancers. However, the mechanism by which dysregulated STAT3 signaling contributes to the progression of human colorectal cancer (CRC has not been elucidated, nor has the role of JAK, the physiological activator of STAT3, been evaluated. To investigate the role of both JAK and STAT3 in CRC progression, we inhibited JAK with AG490 and depleted STAT3 with a SiRNA. Our results demonstrate that STAT3 and both JAK1 and 2 are involved in CRC cell growth, survival, invasion, and migration through regulation of gene expression, such as Bcl-2, p16ink4a, p21waf1/cip1, p27kip1, E-cadherin, VEGF, and MMPs. Importantly, the FAK is not required for STAT3-mediated regulation, but does function downstream of JAK. In addition, our data show that proteasome-mediated proteolysis promotes dephosphorylation of the JAK2, and consequently, negatively regulates STAT3 signaling in CRC. Moreover, immunohistochemical staining reveals that nuclear staining of phospho-STAT3 mostly presents in adenomas and adenocarcinomas, and a positive correlation is found between phospho-JAK2 immunoreactivity and the differentiation of colorectal adenocarcinomas. Therefore, our findings illustrate the biologic significance of JAK1, 2/STAT3 signaling in CRC progression and provide novel evidence that the JAK/STAT3 pathway may be a new potential target for therapy of CRC.

  3. Assessing the role of STAT3 in DC differentiation and autologous DC immunotherapy in mouse models of GBM.

    Directory of Open Access Journals (Sweden)

    Hikmat Assi

    Full Text Available Cellular microenvironments, particularly those found in tumors, elicit a tolerogenic DC phenotype which can attenuate immune responses. Central to this process is the STAT3-mediated signaling cascade. As a transcription factor and oncogene, STAT3 promotes the expression of genes which allow tumor cells to proliferate, migrate and evade apoptosis. More importantly, activation of STAT3 in tumor infiltrating immune cells has been shown to be responsible, in part, for their immune-suppressed phenotype. The ability of STAT3 to orchestrate a diverse set of immunosuppressive instructions has made it an attractive target for cancer vaccines. Using a conditional hematopoietic knockout mouse model of STAT3, we evaluated the impact of STAT3 gene ablation on the differentiation of dendritic cells from bone marrow precursors. We also assessed the impact of STAT3 deletion on phagocytosis, maturation, cytokine secretion and antigen presentation by GM-CSF derived DCs in vitro. In addition to in vitro studies, we compared the therapeutic efficacy of DC vaccination using STAT3 deficient DCs to wild type counterparts in an intracranial mouse model of GBM. Our results indicated the following pleiotropic functions of STAT3: hematopoietic cells which lacked STAT3 were unresponsive to Flt3L and failed to differentiate as DCs. In contrast, STAT3 was not required for GM-CSF induced DC differentiation as both wild type and STAT3 null bone marrow cells gave rise to similar number of DCs. STAT3 also appeared to regulate the response of GM-CSF derived DCs to CpG. STAT3 null DCs expressed high levels of MHC-II, secreted more IL-12p70, IL-10, and TNFα were better antigen presenters in vitro. Although STAT3 deficient DCs displayed an enhanced activated phenotype in culture, they elicited comparable therapeutic efficacy in vivo compared to their wild type counterparts when utilized in vaccination paradigms in mice bearing intracranial glioma tumors.

  4. Assessing the role of STAT3 in DC differentiation and autologous DC immunotherapy in mouse models of GBM.

    Science.gov (United States)

    Assi, Hikmat; Espinosa, Jaclyn; Suprise, Sarah; Sofroniew, Michael; Doherty, Robert; Zamler, Daniel; Lowenstein, Pedro R; Castro, Maria G

    2014-01-01

    Cellular microenvironments, particularly those found in tumors, elicit a tolerogenic DC phenotype which can attenuate immune responses. Central to this process is the STAT3-mediated signaling cascade. As a transcription factor and oncogene, STAT3 promotes the expression of genes which allow tumor cells to proliferate, migrate and evade apoptosis. More importantly, activation of STAT3 in tumor infiltrating immune cells has been shown to be responsible, in part, for their immune-suppressed phenotype. The ability of STAT3 to orchestrate a diverse set of immunosuppressive instructions has made it an attractive target for cancer vaccines. Using a conditional hematopoietic knockout mouse model of STAT3, we evaluated the impact of STAT3 gene ablation on the differentiation of dendritic cells from bone marrow precursors. We also assessed the impact of STAT3 deletion on phagocytosis, maturation, cytokine secretion and antigen presentation by GM-CSF derived DCs in vitro. In addition to in vitro studies, we compared the therapeutic efficacy of DC vaccination using STAT3 deficient DCs to wild type counterparts in an intracranial mouse model of GBM. Our results indicated the following pleiotropic functions of STAT3: hematopoietic cells which lacked STAT3 were unresponsive to Flt3L and failed to differentiate as DCs. In contrast, STAT3 was not required for GM-CSF induced DC differentiation as both wild type and STAT3 null bone marrow cells gave rise to similar number of DCs. STAT3 also appeared to regulate the response of GM-CSF derived DCs to CpG. STAT3 null DCs expressed high levels of MHC-II, secreted more IL-12p70, IL-10, and TNFα were better antigen presenters in vitro. Although STAT3 deficient DCs displayed an enhanced activated phenotype in culture, they elicited comparable therapeutic efficacy in vivo compared to their wild type counterparts when utilized in vaccination paradigms in mice bearing intracranial glioma tumors.

  5. Acetylation within the N- and C-Terminal Domains of Src Regulates Distinct Roles of STAT3-Mediated Tumorigenesis.

    Science.gov (United States)

    Huang, Chao; Zhang, Zhe; Chen, Lihan; Lee, Hank W; Ayrapetov, Marina K; Zhao, Ting C; Hao, Yimei; Gao, Jinsong; Yang, Chunzhang; Mehta, Gautam U; Zhuang, Zhengping; Zhang, Xiaoren; Hu, Guohong; Chin, Y Eugene

    2018-06-01

    Posttranslational modifications of mammalian c-Src N-terminal and C-terminal domains regulate distinct functions. Myristoylation of G 2 controls its cell membrane association and phosphorylation of Y419/Y527 controls its activation or inactivation, respectively. We provide evidence that Src-cell membrane association-dissociation and catalytic activation-inactivation are both regulated by acetylation. In EGF-treated cells, CREB binding protein (CBP) acetylates an N-terminal lysine cluster (K5, K7, and K9) of c-Src to promote dissociation from the cell membrane. CBP also acetylates the C-terminal K401, K423, and K427 of c-Src to activate intrinsic kinase activity for STAT3 recruitment and activation. N-terminal domain phosphorylation (Y14, Y45, and Y68) of STAT3 by c-Src activates transcriptionally active dimers of STAT3. Moreover, acetyl-Src translocates into nuclei, where it forms the Src-STAT3 enhanceosome for gene regulation and cancer cell proliferation. Thus, c-Src acetylation in the N-terminal and C-terminal domains play distinct roles in Src activity and regulation. Significance: CBP-mediated acetylation of lysine clusters in both the N-terminal and C-terminal regions of c-Src provides additional levels of control over STAT3 transcriptional activity. Cancer Res; 78(11); 2825-38. ©2018 AACR . ©2018 American Association for Cancer Research.

  6. Radiation response and regulation of apoptosis induced by a combination of TRAIL and CHX in cells lacking mitochondrial DNA: A role for NF-κB-STAT3-directed gene expression

    International Nuclear Information System (INIS)

    Ivanov, Vladimir N.; Ghandhi, Shanaz A.; Zhou, Hongning; Huang, Sarah X.; Chai, Yunfei; Amundson, Sally A.; Hei, Tom K.

    2011-01-01

    Mitochondrial DNA depleted (ρ 0 ) human skin fibroblasts (HSF) with suppressed oxidative phosphorylation were characterized by significant changes in the expression of 2100 nuclear genes, encoding numerous protein classes, in NF-κB and STAT3 signaling pathways, and by decreased activity of mitochondrial death pathway, compared to the parental ρ + HSF. In contrast, the extrinsic TRAIL/TRAIL-Receptor mediated death pathway remained highly active, and exogenous TRAIL in a combination with cycloheximide (CHX) induced higher levels of apoptosis in ρ 0 cells compared to ρ + HSF. Global gene expression analysis using microarray and qRT-PCR demonstrated that mRNA expression levels of many growth factors and their adaptor proteins (FGF13, HGF, IGFBP4, IGFBP6, and IGFL2), cytokines (IL6, ΙL17Β, ΙL18, ΙL19, and ΙL28Β) and cytokine receptors (IL1R1, IL21R, and IL31RA) were substantially decreased after mitochondrial DNA depletion. Some of these genes were targets of NF-κB and STAT3, and their protein products could regulate the STAT3 signaling pathway. Alpha-irradiation further induced expression of several NF-κB/STAT3 target genes, including IL1A, IL1B, IL6, PTGS2/COX2 and MMP12, in ρ + HSF, but this response was substantially decreased in ρ 0 HSF. Suppression of the IKK-NF-κB pathway by the small molecular inhibitor BMS-345541 and of the JAK2-STAT3 pathway by AG490 dramatically increased TRAIL-induced apoptosis in the control and irradiated ρ + HSF. Inhibitory antibodies against IL6, the main activator of JAK2-STAT3 pathway, added into the cell media, also increased TRAIL-induced apoptosis in HSF, especially after alpha-irradiation. Collectively, our results indicated that NF-κB activation was partially lost in ρ 0 HSF resulting in downregulation of the basal or radiation-induced expression of numerous NF-κB targets, further suppressing IL6-JAK2-STAT3 that in concert with NF-κB regulated protection against TRAIL-induced apoptosis.

  7. Aging and calorie restriction regulate the expression of miR-125a-5p and its target genes Stat3, Casp2 and Stard13.

    Science.gov (United States)

    Makwana, Kuldeep; Patel, Sonal Arvind; Velingkaar, Nikkhil; Ebron, Jey Sabith; Shukla, Girish C; Kondratov, Roman V Kondratov V

    2017-07-31

    Calorie restriction (CR) is a dietary intervention known to delay aging. In order, to understand molecular mechanisms of CR, we analyzed the expression of 983 MicroRNAs (miRNAs) in the liver of female mice after 2 years of 30% CR using micro-array. 16 miRNAs demonstrated significant changes in their expression upon CR in comparison with age-matched control. mmu-miR-125a-5p (miR-125a-5p) was significantly upregulated upon CR, and in agreement with this, the expression of mRNAs for its three predicted target genes: Stat3, Casp2, and Stard13 was significantly downregulated in the liver of CR animals. The expression of precursor miRNA for miR-125a-5p was also upregulated upon CR, which suggests its regulation at the level of transcription. Upon aging miR-125a-5p expression was downregulated while the expression of its target genes was upregulated. Thus, CR prevented age-associated changes in the expression of miR-125a-5p and its targets. We propose that miR-125a-5p dependent downregulation of Stat3, Casp2, and Stard13 contributes to the calorie restriction-mediated delay of aging.

  8. Meningeal hemangiopericytoma and solitary fibrous tumors carry the NAB2-STAT6 fusion and can be diagnosed by nuclear expression of STAT6 protein.

    Science.gov (United States)

    Schweizer, Leonille; Koelsche, Christian; Sahm, Felix; Piro, Rosario M; Capper, David; Reuss, David E; Pusch, Stefan; Habel, Antje; Meyer, Jochen; Göck, Tanja; Jones, David T W; Mawrin, Christian; Schittenhelm, Jens; Becker, Albert; Heim, Stephanie; Simon, Matthias; Herold-Mende, Christel; Mechtersheimer, Gunhild; Paulus, Werner; König, Rainer; Wiestler, Otmar D; Pfister, Stefan M; von Deimling, Andreas

    2013-05-01

    Non-central nervous system hemangiopericytoma (HPC) and solitary fibrous tumor (SFT) are considered by pathologists as two variants of a single tumor entity now subsumed under the entity SFT. Recent detection of frequent NAB2-STAT6 fusions in both, HPC and SFT, provided additional support for this view. On the other hand, current neuropathological practice still distinguishes between HPC and SFT. The present study set out to identify genes involved in the formation of meningeal HPC. We performed exome sequencing and detected the NAB2-STAT6 fusion in DNA of 8/10 meningeal HPC thereby providing evidence of close relationship of these tumors with peripheral SFT. Due to the considerable effort required for exome sequencing, we sought to explore surrogate markers for the NAB2-STAT6 fusion protein. We adopted the Duolink proximity ligation assay and demonstrated the presence of NAB2-STAT6 fusion protein in 17/17 HPC and the absence in 15/15 meningiomas. More practical, presence of the NAB2-STAT6 fusion protein resulted in a strong nuclear signal in STAT6 immunohistochemistry. The nuclear reallocation of STAT6 was detected in 35/37 meningeal HPC and 25/25 meningeal SFT but not in 87 meningiomas representing the most important differential diagnosis. Tissues not harboring the NAB2-STAT6 fusion protein presented with nuclear expression of NAB2 and cytoplasmic expression of STAT6 proteins. In conclusion, we provide strong evidence for meningeal HPC and SFT to constitute variants of a single entity which is defined by NAB2-STAT6 fusion. In addition, we demonstrate that this fusion can be rapidly detected by STAT6 immunohistochemistry which shows a consistent nuclear reallocation. This immunohistochemical assay may prove valuable for the differentiation of HPC and SFT from other mesenchymal neoplasms.

  9. Hydrogen sulfide postconditioning protects isolated rat hearts against ischemia and reperfusion injury mediated by the JAK2/STAT3 survival pathway

    Directory of Open Access Journals (Sweden)

    Heng-Fei Luan

    2012-10-01

    Full Text Available The JAK2/STAT3 signal pathway is an important component of survivor activating factor enhancement (SAFE pathway. The objective of the present study was to determine whether the JAK2/STAT3 signaling pathway participates in hydrogen sulfide (H2S postconditioning, protecting isolated rat hearts from ischemic-reperfusion injury. Male Sprague-Dawley rats (230-270 g were divided into 6 groups (N = 14 per group: time-matched perfusion (Sham group, ischemia/reperfusion (I/R group, NaHS postconditioning group, NaHS with AG-490 group, AG-490 (5 µM group, and dimethyl sulfoxide (DMSO; <0.2% group. Langendorff-perfused rat hearts, with the exception of the Sham group, were subjected to 30 min of ischemia followed by 90 min of reperfusion after 20 min of equilibrium. Heart rate, left ventricular developed pressure (LVDP, left ventricular end-diastolic pressure (LVEDP, and the maximum rate of increase or decrease of left ventricular pressure (± dp/dt max were recorded. Infarct size was determined using triphenyltetrazolium chloride (TTC staining. Myocardial TUNEL staining was used as the in situ cell death detection method and the percentage of TUNEL-positive nuclei to all nuclei counted was used as the apoptotic index. The expression of STAT3, bcl-2 and bax was determined by Western blotting. After reperfusion, compared to the I/R group, H2S significantly improved functional recovery and decreased infarct size (23.3 ± 3.8 vs 41.2 ± 4.7%, P < 0.05 and apoptotic index (22.1 ± 3.6 vs 43.0 ± 4.8%, P < 0.05. However, H2S-mediated protection was abolished by AG-490, the JAK2 inhibitor. In conclusion, H2S postconditioning effectively protects isolated I/R rat hearts via activation of the JAK2/STAT3 signaling pathway.

  10. IGF-1-induced MMP-11 expression promotes the proliferation and invasion of gastric cancer cells through the JAK1/STAT3 signaling pathway.

    Science.gov (United States)

    Su, Chao; Wang, Wenchang; Wang, Cunchuan

    2018-05-01

    The present study aimed to investigate the association between insulin-like growth factor-1 (IGF-1) and matrix metalloproteinase-11 (MMP-11) expression in gastric cancer (GC) and the underlying mechanisms in SGC-7901 cells. Reverse transcription-quantitative polymerase chain reaction analysis revealed that the expression of IGF-1 and MMP-11 was significantly upregulated in GC tissues compared with normal gastric tissue. Furthermore, IGF-1 significantly and dose-dependently promoted MMP-11. Western blotting revealed that the addition of IGF-1 to SGC-7901 cells led to an evident enhancement in signal transducer and activator of transcription 3 (STAT3), IGF-1R and Janus kinase 1 (JAK1) phosphorylation at 20 and 40 min. A decrease in the extent of the elevated expression of MMP-11 and the enhanced phosphorylation of STAT3, JAK1 and IGF-1 receptor (IGF-1R) induced by IGF-1 in SGC-7901 cells were observed following treatment with NT157 (an IGF-1R inhibitor). Furthermore, piceatannol (a JAK1 inhibitor) or small interfering RNA against STAT3 reduced the extent of the increased expression of MMP-11 induced by IGF-1 in SGC-7901 cells. Piceatannol treatment induced the dose-dependent decline in the enhancement of STAT3 phosphorylation induced by IGF-1, indicating that the JAK1/STAT3 pathway may be implicated in the elevated expression of MMP-11 induced by IGF-1 in SGC-7901 cells. Finally, IGF-1 treatment significantly promoted the proliferation and invasion of SGC-7901 cells, which was inhibited following NT157, piceatannol or si-STAT3 treatment. The present study therefore demonstrated that IGF-1-induced MMP-11 may have facilitated the proliferation and invasion of SGC-7901 cells via the JAK1/STAT3 pathway.

  11. Opposing roles of STAT4 and Dnmt3a in Th1 gene regulation

    Science.gov (United States)

    Pham, Duy; Yu, Qing; Walline, Crystal C.; Muthukrishnan, Rajarajeswari; Blum, Janice S.; Kaplan, Mark H.

    2013-01-01

    The Signal Transducer and Activator of Transcription factor STAT4 is a critical regulator of Th1 differentiation and inflammatory disease. Yet, how STAT4 regulates gene expression is still unclear. In this report, we define a STAT4-dependent sequence of events including H3K4 methylation, Jmjd3 association with STAT4 target loci, and a Jmjd3-dependent decrease in H3K27 trimethylation and DNA methyltransferase (Dnmt) 3a association with STAT4 target loci. Dnmt3a has an obligate role in repressing Th1 gene expression, and in Th1 cultures deficient in both STAT4 and Dnmt3a, there is recovery in the expression of a subset of Th1 genes that is sufficient to increase IFNγ production. Moreover, although STAT4-deficient mice are protected from the development of EAE, mice deficient in STAT4 and conditionally-deficient in Dnmt3a in T cells develop paralysis. Th1 genes that are de-repressed in the absence of Dnmt3a have greater induction following the ectopic expression of the Th1-associated transcription factors T-bet and Hlx1. Together, these data demonstrate that STAT4 and Dnmt3a play opposing roles in regulating Th1 gene expression, and that one mechanism for STAT4-dependent gene programming is in establishing a de-repressed genetic state susceptible to transactivation by additional fate-determining transcription factors. PMID:23772023

  12. The dipeptide Pro-Asp promotes IGF-1 secretion and expression in hepatocytes by enhancing JAK2/STAT5 signaling pathway.

    Science.gov (United States)

    Wang, Songbo; Wang, Guoqing; Zhang, Mengyuan; Zhuang, Lu; Wan, Xiaojuan; Xu, Jingren; Wang, Lina; Zhu, Xiaotong; Gao, Ping; Xi, Qianyun; Zhang, Yongliang; Shu, Gang; Jiang, Qingyan

    2016-11-15

    It has been implicated that IGF-1 secretion can be regulated by dietary protein. However, whether the dipeptides, one of digested products of dietary protein, have influence on IGF-1 secretion remain largely unknown. Our study aimed to investigate the effects of the dipeptide Pro-Asp on IGF-1 secretion and expression in hepatocytes and to explore the possible underlying mechanisms. Our findings demonstrated that Pro-Asp promoted the secretion and gene expression of IGF-1 in HepG2 cells and primary porcine hepatocytes. Meanwhile, Pro-Asp activated the ERK and Akt signaling pathways, downstream of IGF-1. In addition, Pro-Asp enhanced GH-mediated JAK2/STAT5 signaling pathway, while inhibition of JAK2/STAT5 blocked the promotive effect of Pro-Asp on IGF-1 secretion and expression. Moreover, acute injection of Pro-Asp stimulated IGF-1 expression and activated JAK2/STAT5 signaling pathway in mice liver. Together, these results suggested that the dipeptide Pro-Asp promoted IGF-1 secretion and expression in hepatocytes by enhancing GH-mediated JAK2/STAT5 signaling pathway. Copyright © 2016. Published by Elsevier Ireland Ltd.

  13. [Study on the correlation between EGFR-STAT3 signal pathway and laryngeal papilloma].

    Science.gov (United States)

    Wang, Xinhua; Sun, Jingwu

    2009-09-01

    To explore the relationship between the expression of EGFR and STAT3 in human laryngeal papilloma and its biological behavior. Reverse transcription polymerase chain reaction(RT-PCR), immunohistochemical staining and Western blot were used to evaluate the mRNA and protein expression of EGFR and STAT3 (p-STAT3) in 42 laryngeal papilloma tissues and 15 samples of normal laryngeal tissue, and the relationship between the protein expression of them and clinic pathological parameters was also analyzed. The mRNA expression levels of EGFR and STAT3 in laryngeal papilloma tissue were significantly higher than that in normal laryngeal tissue (P papilloma than normal laryngeal tissue by immunohistochemistry and western blot (P papilloma (P papilloma (P papilloma,, and the persistent activation of STAT3 gene plays an important role in the recurrence and canceration of laryngeal papilloma.

  14. Modulatory role of phospholipase D in the activation of signal transducer and activator of transcription (STAT-3 by thyroid oncogenic kinase RET/PTC

    Directory of Open Access Journals (Sweden)

    Kim Dong Wook

    2008-05-01

    Full Text Available Abstract Background RET/PTC (rearranged in transformation/papillary thyroid carcinomas gene rearrangements are the most frequent genetic alterations identified in papillary thyroid carcinoma. Although it has been established that RET/PTC kinase plays a crucial role in intracellular signaling pathways that regulate cellular transformation, growth, and proliferation in thyroid epithelial cells, the upstream signaling that leads to the activation of RET/PTC is largely unknown. Based on the observation of high levels of PLD expression in human papillary thyroid cancer tissues, we investigated whether PLD plays a role in the regulating the RET/PTC-induced STAT3 activation. Methods Cancer tissue samples were obtained from papillary thyroid cancer patients (n = 6. The expression level of PLD was examined using immunohistochemistry and western blotting. Direct interaction between RET/PTC and PLD was analyzed by co-immunoprecipitation assay. PLD activity was assessed by measuring the formation of [3H]phosphatidylbutanol, the product of PLD-mediated transphosphatidylation, in the presence of n-butanol. The transcriptional activity of STAT3 was assessed by m67 luciferase reporter assay. Results In human papillary thyroid cancer, the expression levels of PLD2 protein were higher than those in the corresponding paired normal tissues. PLD and RET/PTC could be co-immunoprecipitated from cells where each protein was over-expressed. In addition, the activation of PLD by pervanadate triggered phosphorylation of tyrosine 705 residue on STAT-3, and its phosphorylation was dramatically higher in TPC-1 cells (from papillary carcinoma that have an endogenous RET/PTC1 than in ARO cells (from anaplastic carcinoma without alteration of total STAT-3 expression. Moreover, the RET/PTC-mediated transcriptional activation of STAT-3 was synergistically increased by over-expression of PLD, whereas the PLD activity as a lipid hydrolyzing enzyme was not affected by RET

  15. Withaferin A Inhibits STAT3 and Induces Tumor Cell Death in Neuroblastoma and Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Lisette P. Yco

    2014-01-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 is an oncogenic transcription factor that has been implicated in many human cancers and has emerged as an ideal target for cancer therapy. Withaferin A (WFA is a natural product with promising antiproliferative properties through its association with a number of molecular targets including STAT3. However, the effect of WFA in pediatric neuroblastoma (NB and its interaction with STAT3 have not been reported. In this study, we found that WFA effectively induces dose-dependent cell death in high-risk and drug-resistant NB as well as multiple myeloma (MM tumor cells, prevented interleukin-6 (IL-6–mediated and persistently activated STAT3 phosphorylation at Y705, and blocked the transcriptional activity of STAT3. We further provide computational models that show that WFA binds STAT3 near the Y705 phosphotyrosine residue of the STAT3 Src homology 2 (SH2 domain, suggesting that WFA prevents STAT3 dimer formation similar to BP-1-102, a well-established STAT3 inhibitor. Our findings propose that the antitumor activity of WFA is mediated at least in part through inhibition of STAT3 and provide a rationale for further drug development and clinical use in NB and MM.

  16. Bortezomib induces apoptosis and suppresses cell growth and metastasis by inactivation of Stat3 signaling in chondrosarcoma.

    Science.gov (United States)

    Bao, Xing; Ren, Tingting; Huang, Yi; Ren, Chongmin; Yang, Kang; Zhang, Hongliang; Guo, Wei

    2017-02-01

    Bortezomib, formerly known as PS341, is a novel proteasome inhibitor with in vitro and in vivo antineoplastic effects in many malignancies. However, diverse antitumor mechanisms of bortezomib have been identified in many investigations and preclinical studies. Understanding the molecular and cellular mechanisms through which bortezomib acts will improve the therapeutic utility of this drug in different cancer types. In the present study, we investigated the in vitro and in vivo effects of bortezomib on chondrosarcoma. Bortezomib selectively inhibited cell growth in chondrosarcoma cells but not in normal articular cartilage cells. In addition to growth inhibition, apoptosis and cell cycle arrest, bortezomib triggered alleviation of migratory and invasive properties of chondrosarcoma cells. Mechanistically, signal transducer and activator of transcription 3 (Stat3) and its downstream targets Bcl-2, cyclin D1 and c-Myc was inactivated by bortezomib treatment. Accordingly, small interfering RNA (siRNA)-mediated Stat3 knockdown enhanced bortezomib-induced apoptosis, and concomitantly enhanced the inhibitory effect of bortezomib on cell viability, migration and invasion. Moreover, while Slug, MMP9, MMP2, CD44, N-cadherin and vimentin, the mesenchymal cell markers, were repressed by bortezomib concomitant increased expression of E-cadherin was observed. In vivo, bortezomib downregulated Stat3 activity and mesenchymal cell marker expression, induced apoptosis and inhibition of metastasis and tumor growth. Together, inactivation of Stat3 signaling contributes to bortezomib-induced inhibition of tumor growth, migration and invation on chondrosarcoma. Bortezomib demonstrates an antineoplastic role on chondrosarcoma both in vitro and in vivo. These beneficial effects can be explained by bortezomib-mediated Stat3 supression. The present study suggests a promising therapeutics target in chondrosarcoma and probably in other kinds of metastatic malignant tumors.

  17. High density lipoprotein (HDL)-associated sphingosine 1-phosphate (S1P) inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression.

    Science.gov (United States)

    Feuerborn, Renata; Becker, Susen; Potì, Francesco; Nagel, Petra; Brodde, Martin; Schmidt, Harmut; Christoffersen, Christina; Ceglarek, Uta; Burkhardt, Ralph; Nofer, Jerzy-Roch

    2017-02-01

    Macrophage apoptosis is critically involved in atherosclerosis. We here examined the effect of anti-atherogenic high density lipoprotein (HDL) and its component sphingosine-1-phosphate (S1P) on apoptosis in RAW264.7 murine macrophages. Mitochondrial or endoplasmic reticulum-dependent apoptosis was induced by exposure of macrophages to etoposide or thapsigargin/fukoidan, respectively. Cell death induced by these compounds was inhibited by S1P as inferred from reduced annexin V binding, TUNEL staining, and caspase 3, 9 and 12 activities. S1P induced expression of the inhibitor of apoptosis protein (IAP) family proteins cIAP1, cIAP2 and survivin, but only the inhibitor of survivin expression YM155 and not the cIAP1/2 blocker GDC0152 reversed the inhibitory effect of S1P on apoptosis. Moreover, S1P activated signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2) and the stimulatory effect of S1P on survivin expression and inhibitory effects on apoptosis were attenuated by STAT3 or JAK2 inhibitors, S3I-201 or AG490, respectively. The effects of S1P on STAT3 activation, survivin expression and macrophage apoptosis were emulated by HDL, HDL lipids, and apolipoprotein (apo) M-containing HDL, but not by apoA-I or HDL deprived of S1P or apoM. In addition, JTE013 and CAY10444, S1P receptor 2 and 3 antagonists, respectively, compromised the S1P and HDL capacities to stimulate STAT3 activation and survivin expression, and to inhibit apoptosis. HDL-associated S1P inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression. The suppression of macrophage apoptosis may represent a novel mechanism utilized by HDL to exert its anti-atherogenic effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. The small molecule, LLL12, inhibits STAT3 phosphorylation and induces apoptosis in medulloblastoma and glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Sarah Ball

    Full Text Available Tumors of the central nervous system represent a major source of cancer-related deaths, with medulloblastoma and glioblastoma being the most common malignant brain tumors in children and adults respectively. While significant advances in treatment have been made, with the 5-year survival rate for medulloblastoma at 70-80%, treating patients under 3 years of age still poses a problem due to the deleterious effects of radiation on the developing brain, and the median survival for patients with glioblastoma is only 15 months. The transcription factor, STAT3, has been found constitutively activated in a wide variety of cancers and in recent years it has become an attractive therapeutic target. We designed a non-peptide small molecule STAT3 inhibitor, LLL12, using structure-based design. LLL12 was able to inhibit STAT3 phosphorylation, decrease cell viability and induce apoptosis in medulloblastoma and glioblastoma cell lines with elevated levels of p-STAT3 (Y705. IC(50 values for LLL12 were found to be between 1.07 µM and 5.98 µM in the five cell lines expressing phosphorylated STAT3. STAT3 target genes were found to be downregulated and a decrease in STAT3 DNA binding was observed following LLL12 treatment, indicating that LLL12 is an effective STAT3 inhibitor. LLL12 was also able to inhibit colony formation, wound healing and decreased IL-6 and LIF secretion. Our results suggest that LLL12 is a potent STAT3 inhibitor and that it may be a potential therapeutic treatment for medulloblastoma and glioblastoma.

  19. Asiatic acid attenuates methamphetamine-induced neuroinflammation and neurotoxicity through blocking of NF-kB/STAT3/ERK and mitochondria-mediated apoptosis pathway.

    Science.gov (United States)

    Park, Ji-Hyun; Seo, Young Ho; Jang, Jung-Hee; Jeong, Chul-Ho; Lee, Sooyeun; Park, Byoungduck

    2017-12-11

    Methamphetamine (METH) is a commonly abused drug that may result in neurotoxic effects. Recent studies have suggested that involvement of neuroinflammatory processes in brain dysfunction is induced by misuse of this drug. However, the mechanism underlying METH-induced inflammation and neurotoxicity in neurons is still unclear. In this study, we investigated whether asiatic acid (AA) effected METH-mediated neuroinflammation and neurotoxicity in dopaminergic neuronal cells. And we further determined whether the effect involved in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription (STAT)3 and extracellular signal-regulated kinase (ERK) pathway. We used the human dopaminergic neuroblastoma SH-SY5Y cell line, murine microglial BV2 cell line, and primary culture of rat embryo mesencephalic neurons. Pro-inflammatory cytokine production was monitored by ELISA and RT/real-time PCR. The cell cycle distribution and mitochondrial membrane integrity was analyzed by flow cytometry. We used immunoblotting, DNA-binding activity, and immunofluorescence staining to analyze the effect of AA on activation of the NF-κB, STAT3, MAPK-ERK, and apoptosis signaling pathways. METH induced TNF receptor (TNFR) expression and led to morphological changes of cells. Additionally, this drug increased pro-inflammatory cytokine (TNFα and IL-6) expression. AA significantly suppressed METH-induced TNFR expression in concentration dependent. Increased secretion of TNFα and IL-6 was inhibited in METH-stimulated neuronal cells by AA administration. AA showed significant protection against METH-induced translocation of NF-κB/STAT3 and ERK phosphorylation. AA inhibited METH-induced proteolytic fragmentation of caspase-3 and PARP. The pro-apoptotic protein Bax was significantly decreased, while the anti-apoptotic protein Bcl-xL was increased by AA treatment in METH-stimulated cells. A similar protective effect of AA on

  20. Cross-talk between KLF4 and STAT3 regulates axon regeneration

    Science.gov (United States)

    Qin, Song; Zou, Yuhua; Zhang, Chun-Li

    2013-10-01

    Cytokine-induced activation of signal transducer and activator of transcription 3 (STAT3) promotes the regrowth of damaged axons in the adult central nervous system (CNS). Here we show that KLF4 physically interacts with STAT3 upon cytokine-induced phosphorylation of tyrosine 705 (Y705) on STAT3. This interaction suppresses STAT3-dependent gene expression by blocking its DNA-binding activity. The deletion of KLF4 in vivo induces axon regeneration of adult retinal ganglion cells (RGCs) via Janus kinase (JAK)-STAT3 signalling. This regeneration can be greatly enhanced by exogenous cytokine treatment, or removal of an endogenous JAK-STAT3 pathway inhibitor called suppressor of cytokine signalling 3 (SOCS3). These findings reveal an unexpected cross-talk between KLF4 and activated STAT3 in the regulation of axon regeneration that might have therapeutic implications in promoting repair of injured adult CNS.

  1. Inhibition of Epidermal Growth Factor Receptor and PI3K/Akt Signaling Suppresses Cell Proliferation and Survival through Regulation of Stat3 Activation in Human Cutaneous Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    Bito, T.; Sumita, N.; Ashida, M.; Budiyanto, A.; Ueda, M.; Ichihashi, M.; Nishigori, C.; Tokura, Y.; Bito, T.

    2011-01-01

    Recent studies have emphasized the important role of Stat3 activation in a number of human tumors from the viewpoint of its oncogenic and anti apoptotic activity. In this study, we examined the role and related signaling molecules of Stat3 in the carcinogenesis of human cutaneous squamous cell carcinoma (SCC). In 35 human cutaneous SCC samples, 86% showed overexpression of phosphorylated (p)-Stat3, and most of those simultaneously over expressed p-EGFR or p-Akt. Constitutive activation of EGFR and Stat3 was observed in three SCC cell lines and four of five SCC tissues. AG1478, an inhibitor of the EGFR, down regulated Stat3 activation in HSC-1 human SCC cells. AG1478 inhibited cell proliferation and induced apoptosis of HSC-1 cells but did not inhibit the growth of normal human epidermal keratinocytes that did not show Stat3 activation. Furthermore, a PI3K inhibitor also suppressed Stat3 activation in HSC-1 cells to some degree. Combined treatment with the PI3K inhibitor and AG1478 strongly suppressed Stat3 activity and dramatically induced apoptosis of HSC-1 cells. These data suggest that Stat3 activation through EGFR and/or PI3K/Akt activation plays a critical role in the proliferation and survival of human cutaneous SCC.

  2. Intracellular expression of IRF9 Stat fusion protein overcomes the defective Jak-Stat signaling and inhibits HCV RNA replication

    Directory of Open Access Journals (Sweden)

    Balart Luis A

    2010-10-01

    Full Text Available Abstract Interferon alpha (IFN-α binds to a cell surface receptor that activates the Jak-Stat signaling pathway. A critical component of this pathway is the translocation of interferon stimulated gene factor 3 (a complex of three proteins Stat1, Stat2 and IRF9 to the nucleus to activate antiviral genes. A stable sub-genomic replicon cell line resistant to IFN-α was developed in which the nuclear translocation of Stat1 and Stat2 proteins was prevented due to the lack of phosphorylation; whereas the nuclear translocation of IRF9 protein was not affected. In this study, we sought to overcome defective Jak-Stat signaling and to induce an antiviral state in the IFN-α resistant replicon cell line by developing a chimera IRF9 protein fused with the trans activating domain (TAD of either a Stat1 (IRF9-S1C or Stat2 (IRF9-S2C protein. We show here that intracellular expression of fusion proteins using the plasmid constructs of either IRF9-S1C or IRF9-S2C, in the IFN-α resistant cells, resulted in an increase in Interferon Stimulated Response Element (ISRE luciferase promoter activity and significantly induced HLA-1 surface expression. Moreover, we show that transient transfection of IRF9-S1C or IRF9-S2C plasmid constructs into IFN-α resistant replicon cells containing sub-genomic HCV1b and HCV2a viruses resulted in an inhibition of viral replication and viral protein expression independent of IFN-α treatment. The results of this study indicate that the recombinant fusion proteins of IRF9-S1C, IRF9-S2C alone, or in combination, have potent antiviral properties against the HCV in an IFN-α resistant cell line with a defective Jak-Stat signaling.

  3. Gastric Cancer Cell Proliferation and Survival Is Enabled by a Cyclophilin B/STAT3/miR-520d-5p Signaling Feedback Loop.

    Science.gov (United States)

    Li, Ting; Guo, Hanqing; Zhao, Xiaodi; Jin, Jiang; Zhang, Lifeng; Li, Hong; Lu, Yuanyuan; Nie, Yongzhan; Wu, Kaichun; Shi, Yongquan; Fan, Daiming

    2017-03-01

    Molecular links between inflammation and cancer remain obscure despite their great pathogenic significance. The JAK2/STAT3 pathway activated by IL6 and other proinflammatory cytokines has garnered attention as a pivotal link in cancer pathogenesis, but the basis for its activation in cancer cells is not understood. Here we report that an IL6-triggered feedback loop involving STAT3-mediated suppression of miR-520d-5p and upregulation of its downstream target cyclophilin B (CypB) regulate the growth and survival of gastric cancer cells. In clinical specimens of gastric cancer, we documented increased expression of CypB and activation of STAT3. Mechanistic investigations identified miR-520d-5p as a regulator of CypB mRNA levels. This signaling axis regulated gastric cancer growth by modulating phosphorylation of STAT3. Furthermore, miR-520d-5p was identified as a direct STAT3 target and IL6-mediated inhibition of miR-520d-5p relied upon STAT3 activity. Our findings define a positive feedback loop that drives gastric carcinogenesis as influenced by H. pylori infections that involve proinflammatory IL6 stimulation. Cancer Res; 77(5); 1227-40. ©2016 AACR . ©2016 American Association for Cancer Research.

  4. pSTAT3 Levels Have Divergent Expression Patterns and Associations with Survival in Squamous Cell Carcinoma and Adenocarcinoma of the Oesophagus

    Directory of Open Access Journals (Sweden)

    Katie E. O’ Sullivan

    2018-06-01

    Full Text Available Signal transducers and activator of transcription (STAT-3 is activated in cancers, where it promotes growth, inflammation, angiogenesis, and inhibits apoptosis. Tissue microarrays were generated using tissues from 154 patients, with oesophageal adenocarcinoma (OAC (n = 116 or squamous cell carcinoma (SCC (n = 38 tumours. The tissues were stained for pSTAT3 and IL-6R using immunohistochemistry. The OE33 (OAC and OE21 (SCC cell lines were treated with the STAT3 inhibitor, STATTIC. The Univariate cox regression analysis revealed that a positive pSTAT3 in SCC was adversely associated with survival (Hazard ratio (HR 6.382, 95% CI 1.266–32.184, while a protective effect was demonstrated with the higher pSTAT3 levels in OAC epithelium (HR 0.74, 95% CI 0.574–0.953. The IL-6R intensity levels were higher in the SCC tumours compared with the OAC tumours for the core and leading edge tumour tissue. The pSTAT3 levels correlated positively with the IL-6R levels in both the OAC and SCC. The treatment of OE21 and OE33 cells with the STAT3 inhibitor STATTIC in vitro resulted in decreased survival, proliferation, migration, and increased apoptosis. The pSTAT3 expression was associated with adverse survival in SCC, but not in the OAC patients. The inhibition of STAT3 in both of the tumour subtypes resulted in alterations in the survival, proliferation, migration, and apoptosis, suggesting a potential role for therapeutically targeting STAT3.

  5. pSTAT3 Levels Have Divergent Expression Patterns and Associations with Survival in Squamous Cell Carcinoma and Adenocarcinoma of the Oesophagus.

    Science.gov (United States)

    O' Sullivan, Katie E; Michielsen, Adriana J; O' Regan, Esther; Cathcart, Mary C; Moore, Gillian; Breen, Eamon; Segurado, Ricardo; Reynolds, John V; Lysaght, Joanne; O' Sullivan, Jacintha

    2018-06-10

    Signal transducers and activator of transcription (STAT)-3 is activated in cancers, where it promotes growth, inflammation, angiogenesis, and inhibits apoptosis. Tissue microarrays were generated using tissues from 154 patients, with oesophageal adenocarcinoma (OAC) ( n = 116) or squamous cell carcinoma (SCC) ( n = 38) tumours. The tissues were stained for pSTAT3 and IL-6R using immunohistochemistry. The OE33 (OAC) and OE21 (SCC) cell lines were treated with the STAT3 inhibitor, STATTIC. The Univariate cox regression analysis revealed that a positive pSTAT3 in SCC was adversely associated with survival (Hazard ratio (HR) 6.382, 95% CI 1.266⁻32.184), while a protective effect was demonstrated with the higher pSTAT3 levels in OAC epithelium (HR 0.74, 95% CI 0.574⁻0.953). The IL-6R intensity levels were higher in the SCC tumours compared with the OAC tumours for the core and leading edge tumour tissue. The pSTAT3 levels correlated positively with the IL-6R levels in both the OAC and SCC. The treatment of OE21 and OE33 cells with the STAT3 inhibitor STATTIC in vitro resulted in decreased survival, proliferation, migration, and increased apoptosis. The pSTAT3 expression was associated with adverse survival in SCC, but not in the OAC patients. The inhibition of STAT3 in both of the tumour subtypes resulted in alterations in the survival, proliferation, migration, and apoptosis, suggesting a potential role for therapeutically targeting STAT3.

  6. Leptin differentially regulate STAT3 activation in ob/ob mouse adipose mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    2012-12-01

    Full Text Available Abstract Background Leptin-deficient ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute toward increased adipocyte cell numbers, obesity, and inflamm ation. Currently, information is lacking regarding regulation of adipose stem cell numbers as well as leptin-induced inflammation and its signaling pathway in ob/ob mice. Methods Using leptin deficient ob/ob mice, we investigated whether leptin injection into ob/ob mice increases adipose stem cell numbers and adipose tissue inflammatory marker MCP-1 mRNA and secretion levels. We also determined leptin mediated signaling pathways in the adipose stem cells. Results We report here that adipose stem cell number is significantly increased following leptin injection in ob/ob mice and with treatment of isolated stem cells with leptin in vitro. Leptin also up-regulated MCP-1 secretion in a dose- and time-dependent manner. We further showed that increased MCP-1 mRNA levels were due to increased phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3 Ser727 but not STAT3 Tyr705 phosphorylation, suggesting differential regulation of MCP-1 gene expression under basal and leptin-stimulated conditions in adipose stem cells. Conclusions Taken together, these studies demonstrate that leptin increases adipose stem cell number and differentially activates STAT3 protein resulting in up-regulation of MCP-1 gene expression. Further studies of mechanisms mediating adipose stem cell hyperplasia and leptin signaling in obesity are warranted and may help identify novel anti-obesity target strategies.

  7. Stat3: linking inflammation to epithelial cancer - more than a "gut" feeling?

    Directory of Open Access Journals (Sweden)

    Putoczki Tracy

    2010-05-01

    Full Text Available Abstract Inflammation is an important environmental factor that promotes tumourigenesis and the progression of established cancerous lesions, and recent studies have started to dissect the mechanisms linking the two pathologies. These inflammatory and infectious conditions trigger immune and stromal cell release of soluble mediators which facilitate survival and proliferation of tumour cells in a paracrine manner. In addition, (epi-genetic mutations affecting oncogenes, tumour-suppressor genes, chromosomal rearrangements and amplifications trigger the release of inflammatory mediators within the tumour microenvironment to promote neoplastic growth in an autocrine manner. These two pathways converge in tumour cells and result in activation of the latent signal transducer and activator of transcription 3 (Stat3 which mediates a transcriptional response favouring survival, proliferation and angiogenesis. The abundance of cytokines that activate Stat3 within the tumour microenvironment, which comprises of members of the interleukin (IL IL6, IL10 and IL17/23 families, underpins a signaling network that simultaneously promotes the growth of neoplastic epithelium, fuels inflammation and suppresses the host's anti-tumour immune response. Accordingly, aberrant and persistent Stat3 activation is a frequent observation in human cancers of epithelial origin and is often associated with poor outcome. Here we summarize insights gained from mice harbouring mutations in components of the Stat3 signaling cascade and in particular of gp130, the shared receptor for the IL6 family of cytokines. We focus on the various feed-back and feed-forward loops in which Stat3 provides the signaling node in cells of the tumour and its microenvironment thereby functionally linking excessive inflammation to neoplastic growth. Although these observations are particularly pertinent to gastrointestinal tumours, we suggest that the tumour's addiction to persistent Stat3 activation

  8. Dovitinib Acts As a Novel Radiosensitizer in Hepatocellular Carcinoma by Targeting SHP-1/STAT3 Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao-Yuan [Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Department of Radiological Technology, Yuanpei University, Hsinchu, Taiwan (China); Tai, Wei-Tien [Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan (China); Wu, Szu-Yuan [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan (China); Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Biotechnology, Hungkuang University, Taichung, Taiwan (China); Shih, Chih-Ting; Chen, Min-Hsuan; Tsai, Ming-Hsien [Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan (China); Kuo, Chiung-Wen [Department of Medical Imaging and Radiological Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan (China); Shiau, Chung-Wai [Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan (China); Hung, Man-Hsin, E-mail: cindybeaty@gmail.com [Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (China); Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Program in Molecular Medicine, School of Life Science, National Yang-Ming University, Taipei, Taiwan (China); School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Chen, Kuen-Feng, E-mail: kfchen1970@ntu.edu.tw [Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan (China)

    2016-06-01

    Purpose: Hepatocellular carcinoma (HCC) is among the most lethal human malignancies, and curative therapy is not an option for most patients. There is growing interest in the potential benefit of combining targeted therapies with radiation therapy (RT). This study aimed to characterize the efficacy and mechanism of an investigational drug, dovitinib, used in combination with RT. Methods and Materials: HCC cell lines (PLC5, Hep3B, SK-Hep1, HA59T, and Huh-7) were treated with dovitinib, RT, or both, and apoptosis and signal transduction were analyzed. Results: Dovitinib treatment resulted in Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1)-mediated downregulation of p-STAT3 and promoted potent apoptosis of HCC cells. Ectopic expression of STAT3, or inhibition of SHP-1, diminished the effects of dovitinib on HCC cells. By ectopic expression and purified recombinant proteins of various mutant forms of SHP-1, the N-SH2 domain of SHP-1 was found to be required for dovitinib treatment. Overexpression of STAT3 or catalytic-dead mutant SHP-1 restored RT-induced reduction of HCC cell survival. Conversely, ectopic expression of SHP-1 or activation of SHP-1 by dovitinib enhanced the effects of RT against HCC in vitro and in vivo. Conclusions: SHP-1/STAT3 signaling is critically associated with the radiosensitivity of HCC cells. Combination therapy with RT and the SHP-1 agonist, such as dovitinib, resulted in enhanced in vitro and in vivo anti-HCC effects.

  9. Dovitinib Acts As a Novel Radiosensitizer in Hepatocellular Carcinoma by Targeting SHP-1/STAT3 Signaling

    International Nuclear Information System (INIS)

    Huang, Chao-Yuan; Tai, Wei-Tien; Wu, Szu-Yuan; Shih, Chih-Ting; Chen, Min-Hsuan; Tsai, Ming-Hsien; Kuo, Chiung-Wen; Shiau, Chung-Wai; Hung, Man-Hsin; Chen, Kuen-Feng

    2016-01-01

    Purpose: Hepatocellular carcinoma (HCC) is among the most lethal human malignancies, and curative therapy is not an option for most patients. There is growing interest in the potential benefit of combining targeted therapies with radiation therapy (RT). This study aimed to characterize the efficacy and mechanism of an investigational drug, dovitinib, used in combination with RT. Methods and Materials: HCC cell lines (PLC5, Hep3B, SK-Hep1, HA59T, and Huh-7) were treated with dovitinib, RT, or both, and apoptosis and signal transduction were analyzed. Results: Dovitinib treatment resulted in Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1)-mediated downregulation of p-STAT3 and promoted potent apoptosis of HCC cells. Ectopic expression of STAT3, or inhibition of SHP-1, diminished the effects of dovitinib on HCC cells. By ectopic expression and purified recombinant proteins of various mutant forms of SHP-1, the N-SH2 domain of SHP-1 was found to be required for dovitinib treatment. Overexpression of STAT3 or catalytic-dead mutant SHP-1 restored RT-induced reduction of HCC cell survival. Conversely, ectopic expression of SHP-1 or activation of SHP-1 by dovitinib enhanced the effects of RT against HCC in vitro and in vivo. Conclusions: SHP-1/STAT3 signaling is critically associated with the radiosensitivity of HCC cells. Combination therapy with RT and the SHP-1 agonist, such as dovitinib, resulted in enhanced in vitro and in vivo anti-HCC effects.

  10. The role of JAK/STAT3 signaling pathway on apoptosis of lung adenocarcinoma cell line PC-9 induced by icotinib.

    Science.gov (United States)

    Zhang, Yuping; Meng, Xia; Shi, Hongyang; Li, Wei; Ming, Zongjuan; Zhong, Yujie; Deng, Wenjing; Zhang, Qiuhong; Fan, Na; Niu, Zequn; Chen, Guo'an; Yang, Shuanying

    2016-01-01

    The aim of this study is to estimate the role of JAK/STAT3 signaling pathway on apoptosis of lung adenocarcinoma induced by icotinib. EGFR mutation was detected in lung adenocarcinoma cell line PC-9 by ARMS assay; The inhibitory rates of cell proliferation of PC-9 cells which were exposed to different concentrations of icotinib (0~100 μMol/L) for different time (24~72 h) respectively were evaluated by MTT assay; Apoptosis of PC-9 cells exposed to different concentrations of icotinib (0, 0.1, 1 and 10 μMol/L) for 48 h were evaluated by TUNEL assay; JAK2, STAT3, Bcl-2, Bax mRNA expressions were evaluated by Real-time PCR assay; The protein levels of P-STAT3 and IL-6 were evaluated by Western-blot assay. Human lung adenocarcinoma cell line PC-9 had an exon 19 deletion mutation in EGFR gene; Followed by treatment of icotinib, the proliferation of PC-9 cells were all inhibited significantly, especially in 48 and 72 h (Picotinib. The most likely mechanism is icotinib inhibited the gene expression levels of JAK2, STAT3 and Bcl-2, so with the P-STAT3 and IL-6 protein levels, and mediated gene Bax overexpression.

  11. Cyclophilins contribute to Stat3 signaling and survival of multiple myeloma cells.

    Science.gov (United States)

    Bauer, K; Kretzschmar, A K; Cvijic, H; Blumert, C; Löffler, D; Brocke-Heidrich, K; Schiene-Fischer, C; Fischer, G; Sinz, A; Clevenger, C V; Horn, F

    2009-08-06

    Signal transducer and activator of transcription 3 (Stat3) is the major mediator of interleukin-6 (IL-6) family cytokines. In addition, Stat3 is known to be involved in the pathophysiology of many malignancies. Here, we show that the cis-trans peptidyl-prolyl isomerase cyclophilin (Cyp) B specifically interacts with Stat3, whereas the highly related CypA does not. CypB knockdown inhibited the IL-6-induced transactivation potential but not the tyrosine phosphorylation of Stat3. Binding of CypB to Stat3 target promoters and alteration of the intranuclear localization of Stat3 on CypB depletion suggested a nuclear function of Stat3/CypB interaction. By contrast, CypA knockdown inhibited Stat3 IL-6-induced tyrosine phosphorylation and nuclear translocation. The Cyp inhibitor cyclosporine A (CsA) caused similar effects. However, Stat1 activation in response to IL-6 or interferon-gamma was not affected by Cyp silencing or CsA treatment. As a result, Cyp knockdown shifted IL-6 signaling to a Stat1-dominated pathway. Furthermore, Cyp depletion or treatment with CsA induced apoptosis in IL-6-dependent multiple myeloma cells, whereas an IL-6-independent line was not affected. Thus, Cyps support the anti-apoptotic action of Stat3. Taken together, CypA and CypB both play pivotal roles, yet at different signaling levels, for Stat3 activation and function. These data also suggest a novel mechanism of CsA action.

  12. Secoisolariciresinol diglucoside prevents the oxidative stress-induced apoptosis of myocardial cells through activation of the JAK2/STAT3 signaling pathway.

    Science.gov (United States)

    Huang, Guiqiong; Huang, Xiaofang; Liu, Min; Hua, Yue; Deng, Bo; Jin, Wen; Yan, Wen; Tan, Zhangbin; Wu, Yifen; Liu, Bin; Zhou, Yingchun

    2018-06-01

    Myocardial cell apoptosis mediated by oxidative stress has previously been identified as a key process in ischemic heart disease. Secoisolariciresinol diglucoside (SDG), a polyphenolic plant lignan primarily found in flaxseed, has been demonstrated to effectively protect myocardial cells from apoptosis. In the present study, the role of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) was investigated in mediating the protective effect of SDG. Findings of the present study revealed that treatment with H2O2 reduced cell viability and induced apoptosis in H9C2 rat cardiomyocytes. However, SDG was able to reduce the effect of H2O2 in a dose‑dependent manner. H2O2 reduced the expression level of phosphorylated STAT3 and inhibited the levels of B‑cell lymphoma‑extra‑large and induced myeloid leukemia cell differentiation protein, which are the STAT3 target genes. Conversely, SDG rescued phosphorylation of STAT3 and increased the levels of STAT3 target genes. Treatment with SDG alone led to a dose‑dependent increased phosphorylation of JAK2 and STAT3, without activating Src. Furthermore, the anti‑apoptotic effects of SDG were partially abolished by a JAK2/STAT3 inhibitor. In addition, molecular docking revealed that SDG may bind to the protein kinase domain of JAK2, at a binding energy of ‑8.258 kcal/mol. Molecular dynamics simulations revealed that JAK2‑SDG binding was stable. In conclusion, activation of the JAK2/STAT3 signaling pathway contributed to the anti‑apoptotic activity of SDG, which may be a potential JAK2 activator.

  13. The Novel miR-9600 Suppresses Tumor Progression and Promotes Paclitaxel Sensitivity in Non–small-cell Lung Cancer Through Altering STAT3 Expression

    Directory of Open Access Journals (Sweden)

    Cheng-Cao Sun

    2016-01-01

    Full Text Available MicroRNAs have been identified to be involved in center stage of cancer biology. They accommodate cell proliferation and migration by negatively regulate gene expression either by hampering the translation of targeted mRNAs or by promoting their degradation. We characterized and identified the novel miR-9600 and its target in human non–small-cell lung cancer (NSCLC. Our results demonstrated that the miR-9600 were downregulated in NSCLC tissues and cells. It is confirmed that signal transducer and activator of transcription 3 (STAT3, a putative target gene, is directly inhibited by miR-9600. The miR-9600 markedly suppressed the protein expression of STAT3, but with no significant influence in corresponding mRNA levels, and the direct combination of miR-9600 and STAT3 was confirmed by a luciferase reporter assay. miR-9600 inhibited cell growth, hampered expression of cell cycle-related proteins and inhibited cell migration and invasion in human NSCLC cell lines. Further, miR-9600 significantly suppressed tumor growth in nude mice. Similarly, miR-9600 impeded tumorigenesis and metastasis through directly targeting STAT3. Furthermore, we identified that miR-9600 augmented paclitaxel and cisplatin sensitivity by downregulating STAT3 and promoting chemotherapy-induced apoptosis. These data demonstrate that miR-9600 might be a useful and novel therapeutic target for NSCLC.

  14. STAT3 Regulates Proliferation and Immunogenicity of the Ewing Family of Tumors In Vitro

    Directory of Open Access Journals (Sweden)

    Sam Behjati

    2012-01-01

    Full Text Available The Ewing sarcoma family of tumors (ESFT represents an aggressive spectrum of malignant tumour types with common defining histological and cytogenetic features. To evaluate the functional activation of signal transducer and activator of transcription 3 (STAT3 in ESFT, we evaluated its activation in primary tissue sections and observed the functional consequences of its inhibition in ESFT cell lines. STAT3 was activated (tyrosine 705-phosphorylated in 18 out of 31 primary tumours (58%, either diffusely (35% or focally (23%. STAT3 was constitutively activated in 3 out of 3 ESFT cell lines tested, and its specific chemical inhibition resulted in complete loss of cell viability. STAT3 inhibition in ESFT cell lines was associated with several consistent changes in chemokine profile suggesting a role of STAT3 in ESFT in both cell survival and modification of the cellular immune environment. Together these data support the investigation of STAT3 inhibitors for the Ewing family of tumors.

  15. Ginkgolide B Suppresses TLR4-Mediated Inflammatory Response by Inhibiting the Phosphorylation of JAK2/STAT3 and p38 MAPK in High Glucose-Treated HUVECs

    Directory of Open Access Journals (Sweden)

    Kun Chen

    2017-01-01

    Full Text Available Aim. Ginkgolide B is a Ginkgo biloba leaf extract that has been identified as a natural platelet-activating factor receptor (PAFR antagonist. We investigated the effect of ginkgolide B on high glucose-induced TLR4 activation in human umbilical vein endothelial cells (HUVECs. Methods. Protein expression was analyzed by immunoblotting. Small-interfering RNA (siRNA was used to knock down PAFR and TLR4 expression. Results. Ginkgolide B suppressed the expression of TLR4 and MyD88 that was induced by high glucose. Ginkgolide B also reduced the levels of platelet endothelial cell adhesion molecule-1, interleukin-6, and monocyte chemotactic protein 1. Further, we examined the association between PAFR and TLR4 by coimmunoprecipitation. The result showed that high glucose treatment caused the binding of PAFR and TLR4, whereas ginkgolide B abolished this binding. The functional analysis indicated that PAFR siRNA treatment reduced TLR4 expression, and TLR4 siRNA treatment decreased PAFR expression in high glucose-treated HUVECs, further supporting the coimmunoprecipitation data. Ginkgolide B inhibited the phosphorylation of Janus kinase 2 (JAK2/signal transducer and activator of transcription 3 (STAT3 and p38 mitogen-activated protein kinase (MAPK. Conclusion. Ginkgolide B exerted protective effects by inhibiting the TLR4-mediated inflammatory response in high glucose-treated endothelial cells. The mechanism of action of ginkgolide B might be associated with inhibition of the JAK2/STAT3 and p38 MAPK phosphorylation.

  16. STAT6 silencing induces hepatocellular carcinoma-derived cell apoptosis and growth inhibition by decreasing the RANKL expression.

    Science.gov (United States)

    Qing, Tian; Yamin, Zhang; Guijie, Wang; Yan, Jin; Zhongyang, Shen

    2017-08-01

    Signal transducer and activator of transcription-6 (STAT6) is highly expressed in various human cancers and considered a regulator of multiple biological processes in cancers, including cell apoptosis. Evidence has indicated that STAT6 predicts a worse prognosis in hepatocellular carcinoma (HCC) patients. The objective of this study was to investigate the effects and mechanism of STAT6 in human HCC cells. We found that STAT6 silencing significantly inhibited HepG2 and Hep3B cell survival and proliferation. We observed that depletion of STAT6 increased HepG2 and Hep3B cell apoptosis by using a histone DNA ELISA detection kit. STAT6 silencing induced expression of apoptosis-associated genes Bax and caspase-3/7 and inhibited anti-apoptosis gene Bcl-2 levels. We also observed that STAT6 silencing downregulated the expression of receptor activator of NF-κB ligand (RANKL). Our results demonstrated that treatment with pcDNA3.1-RANKL abolished STAT6 depletion-induced HepG2 and Hep3B cell apoptosis and growth inhibition. Based on these findings, we believe that RANKL plays a major role in STAT6-induced HCC cell apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. IL-8 induces miR-424-5p expression and modulates SOCS2/STAT5 signaling pathway in oral squamous cell carcinoma.

    Science.gov (United States)

    Peng, Hsuan-Yu; Jiang, Shih-Sheng; Hsiao, Jenn-Ren; Hsiao, Michael; Hsu, Yuan-Ming; Wu, Guan-Hsun; Chang, Wei-Min; Chang, Jang-Yang; Jin, Shiow-Lian Catherine; Shiah, Shine-Gwo

    2016-06-01

    Suppressor of cytokine signaling (SOCS) proteins are negative feedback regulators of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Dysregulation of SOCS protein expression in cancers can be one of the mechanisms that maintain STAT activation, but this mechanism is still poorly understood in oral squamous cell carcinoma (OSCC). Here, we report that SOCS2 protein is significantly downregulated in OSCC patients and its levels are inversely correlated with miR-424-5p expression. We identified the SOCS2 protein, which modulates STAT5 activity, as a direct target of miR-424-5p. The miR-424-5p-induced STAT5 phosphorylation, matrix metalloproteinases (MMPs) expression, and cell migration and invasion were blocked by SOCS2 restoration, suggesting that miR-424-5p exhibits its oncogenic activity through negatively regulating SOCS2 levels. Furthermore, miR-424-5p expression could be induced by the cytokine IL-8 primarily through enhancing STAT5 transcriptional activity rather than NF-κB signaling. Antagomir-mediated inactivation of miR-424-5p prevented the IL-8-induced cell migration and invasion, indicating that miR-424-5p is required for IL-8-induced cellular invasiveness. Taken together, these data indicate that STAT5-dependent expression of miR-424-5p plays an important role in mediating IL-8/STAT5/SOCS2 feedback loop, and scavenging miR-424-5p function using antagomir may have therapeutic potential for the treatment of OSCC. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Three STATs are involved in the regulation of the expression of antimicrobial peptides in the triangle sail mussel, Hyriopsis cumingii.

    Science.gov (United States)

    Dai, Yun-Jia; Hui, Kai-Min; Zhang, Ying-Hao; Liu, Yan; Wang, Yu-Qing; Zhao, Li-Juan; Lin, Li; Chai, Lian-Qin; Wei, Shun; Lan, Jiang-Feng

    2017-04-01

    Janus kinase (Jak) and signal transducers and activators of transcription (STAT) signaling pathway is associated in antiviral and antibacterial immune response. Previous studies primarily investigated the function of STATs in mammals. For most invertebrates, only one STAT was found in each species, such as STAT92E was found in Drosophila melanogaster. The studies, which focus on the functional difference between various STATs in the same species of invertebrate, are limited. In the present study, three STATs (HcSTAT1, HcSTAT2 and HcSTAT3) were identified in triangle shell pearl mussel, Hyriopsis cumingii. Phylogenetic analysis showed that HcSTAT1 and HcSTAT3 were clustered with Homo sapiens STAT5, and HcSTAT2 was clustered with Pinctada fucata STAT and Crassostea gigas STAT6. All three STATs could be detected in all tested tissues (hemocytes, hepatopancreas, gill, mantle and foot), and were induced expression when challenged with Staphylococcus aureus or Aeromonas hydrophilia in hemocytes and hepatopancreas. HcSTAT1 regulated the expression of HcDef, HcWAP, HcThe and HcTNF. The expression of HcWAP and HcTNF was down-regulated in HcSTAT2-RNAi mussel. And HcSTAT3 affected the expression of HcTNF. The study is the first report of different functions in antibacterial immune responses between STATs in mollusks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Malignant T cells exhibit CD45 resistant Stat 3 activation and proliferation in cutaneous T cell lymphoma

    DEFF Research Database (Denmark)

    Krejsgaard, T; Helvad, Rikke; Ralfkiær, Elisabeth

    2010-01-01

    CD45 is a protein tyrosine phosphatase, which is well-known for regulating antigen receptor signalling in T and B cells via its effect on Src kinases. It has recently been shown that CD45 can also dephosphorylate Janus kinases (Jaks) and thereby regulate Signal transducer and activator of transcr......CD45 is a protein tyrosine phosphatase, which is well-known for regulating antigen receptor signalling in T and B cells via its effect on Src kinases. It has recently been shown that CD45 can also dephosphorylate Janus kinases (Jaks) and thereby regulate Signal transducer and activator...... of transcription (Stat) activation and cytokine-induced proliferation in lymphocytes. Consequently, CD45 dysregulation could be implicated in aberrant Jak/Stat activation and proliferation in lymphoproliferative diseases. Despite high expression of the CD45 ligand, Galectin-1, in skin lesions from cutaneous T......-cell lymphoma (CTCL), the malignant T cells exhibit constitutive activation of the Jak3/Stat3 signalling pathway and uncontrolled proliferation. We show that CD45 expression is down-regulated on malignant T cells when compared to non-malignant T cells established from CTCL skin lesions. Moreover, CD45 cross...

  20. The Inflammatory Transcription Factors NFκB, STAT1 and STAT3 Drive Age-Associated Transcriptional Changes in the Human Kidney

    Science.gov (United States)

    O’Brown, Zach K.; Van Nostrand, Eric L.; Higgins, John P.; Kim, Stuart K.

    2015-01-01

    Human kidney function declines with age, accompanied by stereotyped changes in gene expression and histopathology, but the mechanisms underlying these changes are largely unknown. To identify potential regulators of kidney aging, we compared age-associated transcriptional changes in the human kidney with genome-wide maps of transcription factor occupancy from ChIP-seq datasets in human cells. The strongest candidates were the inflammation-associated transcription factors NFκB, STAT1 and STAT3, the activities of which increase with age in epithelial compartments of the renal cortex. Stimulation of renal tubular epithelial cells with the inflammatory cytokines IL-6 (a STAT3 activator), IFNγ (a STAT1 activator), or TNFα (an NFκB activator) recapitulated age-associated gene expression changes. We show that common DNA variants in RELA and NFKB1, the two genes encoding subunits of the NFκB transcription factor, associate with kidney function and chronic kidney disease in gene association studies, providing the first evidence that genetic variation in NFκB contributes to renal aging phenotypes. Our results suggest that NFκB, STAT1 and STAT3 underlie transcriptional changes and chronic inflammation in the aging human kidney. PMID:26678048

  1. TOX3 (TNRC9) Over Expression in Bladder Cancer Cells Decreases Cellular Proliferation and Triggers an Interferon-Like Response

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Mansilla Castaño, Francisco; Dyrskjøt, Lars

    2013-01-01

    Background: Human TOX3 (TOX high mobility group box family member 3) regulates Ca2+ dependent transcription in neurons and has been associated with breast cancer susceptibility. Aim of the study was to investigate the expression of TOX3 in bladder cancer tissue samples and to identify genes...... urothelium. Microarray expression profiling of human bladder cancer cells over expressing TOX3 followed by Pathway analysis showed that TOX3 Overexpression mainly affected the Interferon Signaling Pathway. TOX3 up regulation induced the expression of several genes with a gamma interferon activation site (GAS......), e.g. STAT1. In vitro functional studies showed that TOX3 was able to bind to the GAS-sequence located at the STAT1 promoter. siRNA mediated knockdown of TOX3 in RT4 bladder cancer cells decreased STAT1 expression suggesting a direct impact of TOX3 on STAT1. Immunoprecipitation of TOX3 over...

  2. STAT3 can be activated through paracrine signaling in breast epithelial cells

    International Nuclear Information System (INIS)

    Lieblein, Jacqueline C; Ball, Sarah; Hutzen, Brian; Sasser, A Kate; Lin, Huey-Jen; Huang, Tim HM; Hall, Brett M; Lin, Jiayuh

    2008-01-01

    Many cancers, including breast cancer, have been identified with increased levels of phosphorylated or the active form of Signal Transducers and Activators of Transcription 3 (STAT3) protein. However, whether the tumor microenvironment plays a role in this activation is still poorly understood. Conditioned media, which contains soluble factors from MDA-MB-231 and MDA-MB-468 breast cancer cells and breast cancer associated fibroblasts, was added to MCF-10A breast epithelial and MDA-MB-453 breast cancer cells. The stimulation of phosphorylated STAT3 (p-STAT3) levels by conditioned media was assayed by Western blot in the presence or absence of neutralized IL-6 antibody, or a JAK/STAT3 inhibitor, JSI-124. The stimulation of cell proliferation in MCF-10A cells by conditioned media in the presence or absence of JSI-124 was subjected to MTT analysis. IL-6, IL-10, and VEGF levels were determined by ELISA analysis. Our results demonstrated that conditioned media from cell lines with constitutively active STAT3 are sufficient to induce p-STAT3 levels in various recipients that do not possess elevated p-STAT3 levels. This signaling occurs through the JAK/STAT3 pathway, leading to STAT3 phosphorylation as early as 30 minutes and is persistent for at least 24 hours. ELISA analysis confirmed a correlation between elevated levels of IL-6 production and p-STAT3. Neutralization of the IL-6 ligand or gp130 was sufficient to block increased levels of p-STAT3 (Y705) in treated cells. Furthermore, soluble factors within the MDA-MB-231 conditioned media were also sufficient to stimulate an increase in IL-6 production from MCF-10A cells. These results demonstrate STAT3 phosphorylation in breast epithelial cells can be stimulated by paracrine signaling through soluble factors from both breast cancer cells and breast cancer associated fibroblasts with elevated STAT3 phosphorylation. The induction of STAT3 phosphorylation is through the IL-6/JAK pathway and appears to be associated with

  3. Inhibition of interleukin-3- and interferon- α-induced JAK/STAT signaling by the synthetic α-X-2',3,4,4'-tetramethoxychalcones α-Br-TMC and α-CF3-TMC.

    Science.gov (United States)

    Jobst, Belinda; Weigl, Julia; Michl, Carina; Vivarelli, Fabio; Pinz, Sophia; Amslinger, Sabine; Rascle, Anne

    2016-11-01

    The JAK/STAT pathway is an essential mediator of cytokine signaling, often upregulated in human diseases and therefore recognized as a relevant therapeutic target. We previously identified the synthetic chalcone α-bromo-2',3,4,4'-tetramethoxychalcone (α-Br-TMC) as a novel JAK2/STAT5 inhibitor. We also found that treatment with α-Br-TMC resulted in a downward shift of STAT5 proteins in SDS-PAGE, suggesting a post-translational modification that might affect STAT5 function. In the present study, we show that a single cysteine within STAT5 is responsible for the α-Br-TMC-induced protein shift, and that this modification does not alter STAT5 transcriptional activity. We also compared the inhibitory activity of α-Br-TMC to that of another synthetic chalcone, α-trifluoromethyl-2',3,4,4'-tetramethoxychalcone (α-CF3-TMC). We found that, like α-Br-TMC, α-CF3-TMC inhibits JAK2 and STAT5 phosphorylation in response to interleukin-3, however without altering STAT5 mobility in SDS-PAGE. Moreover, we demonstrate that both α-Br-TMC and α-CF3-TMC inhibit interferon-α-induced activation of STAT1 and STAT2, by inhibiting their phosphorylation and the expression of downstream interferon-stimulated genes. Together with the previous finding that α-Br-TMC and α-CF3-TMC inhibit the response to inflammation by inducing Nrf2 and blocking NF-κB activities, our data suggest that synthetic chalcones might be useful as anti-inflammatory, anti-cancer and immunomodulatory agents in the treatment of human diseases.

  4. Identification of BLCAP as a novel STAT3 interaction partner in bladder cancer

    DEFF Research Database (Denmark)

    Gromova, Irina; Svensson, Sofia; Gromov, Pavel

    2017-01-01

    Bladder cancer associated protein (Blcap) expression is commonly down-regulated in invasive bladder cancer, and may have prognostic value given that its expression is negatively correlated with patient survival. We have previously investigated the expression patterns and cellular localization...... and canonical signaling pathways. We performed serial immunohistochemistry (IHC) analysis of bladder tissue samples, with serial sections stained with phospho-specific antibodies recognizing key signaling intermediates, such as P-Stat3, P-Akt, and P-Erk1/2, among others, in an immunophenotyping approach we have......, using an in situ proximity ligation assay that Blcap and Stat3 are in close physical proximity of each other in bladder tissue, and that Blcap physically interacts with Stat3 as determined by co-immunoprecipitation of these proteins. Our data indicates that Blcap is a novel Stat3 interaction partner...

  5. Structural and functional characterization of salmon STAT1, STAT2 and IRF9 homologs sheds light on interferon signaling in teleosts

    Directory of Open Access Journals (Sweden)

    Mehrdad Sobhkhez

    2014-01-01

    Full Text Available Mammalian IRF9 and STAT2, together with STAT1, form the ISGF3 transcription factor complex, which is critical for type I interferon (IFN-induced signaling, while IFNγ stimulation is mediated by homodimeric STAT1 protein. Teleost fish are known to possess most JAK and STAT family members, however, description of their functional activity in lower vertebrates is still scarce. In the present study we have identified two different STAT2 homologs and one IRF9 homolog from Atlantic salmon (Salmo salar. Both proteins have domain-like structures with functional motifs that are similar to higher vertebrates, suggesting that they are orthologs to mammalian STAT2 and IRF9. The two identified salmon STAT2s, named STAT2a and STAT2b, showed high sequence identity but were divergent in their transactivation domain (TAD. Like STAT1, ectopically expressed STAT2a and b were shown to be tyrosine phosphorylated by type I IFNs and, interestingly, also by IFNγ. Microscopy analyses demonstrated that STAT2 co-localized with STAT1a in the cytoplasm of unstimulated cells, while IFNa1 and IFNγ stimulation seemed to favor their nuclear localization. Overexpression of STAT2a or STAT2b together with STAT1a activated a GAS-containing reporter gene construct in IFNγ-stimulated cells. The highest induction of GAS promoter activation was found in IFNγ-stimulated cells transfected with IRF9 alone. Taken together, these data suggest that salmon STAT2 and IRF9 may have a role in IFNγ-induced signaling and promote the expression of GAS-driven genes in bony fish. Since mammalian STAT2 is primarily an ISGF3 component and not involved in IFNγ signaling, our finding features a novel role for STAT2 in fish.

  6. Adenosine A1 Receptor Protects Against Cisplatin Ototoxicity by Suppressing the NOX3/STAT1 Inflammatory Pathway in the Cochlea

    Science.gov (United States)

    Kaur, Tejbeer; Borse, Vikrant; Sheth, Sandeep; Sheehan, Kelly; Ghosh, Sumana; Tupal, Srinivasan; Jajoo, Sarvesh; Mukherjea, Debashree; Rybak, Leonard P.

    2016-01-01

    Cisplatin is a commonly used antineoplastic agent that produces ototoxicity that is mediated in part by increasing levels of reactive oxygen species (ROS) via the NOX3 NADPH oxidase pathway in the cochlea. Recent studies implicate ROS generation in mediating inflammatory and apoptotic processes and hearing loss by activating signal transducer and activator of transcription (STAT1). In this study, we show that the adenosine A1 receptor (A1AR) protects against cisplatin ototoxicity by suppressing an inflammatory response initiated by ROS generation via NOX3 NADPH oxidase, leading to inhibition of STAT1. Trans-tympanic administration of the A1AR agonist R-phenylisopropyladenosine (R-PIA) inhibited cisplatin-induced ototoxicity, as measured by auditory brainstem responses and scanning electron microscopy in male Wistar rats. This was associated with reduced NOX3 expression, STAT1 activation, tumor necrosis factor-α (TNF-α) levels, and apoptosis in the cochlea. In vitro studies in UB/OC-1 cells, an organ of Corti immortalized cell line, showed that R-PIA reduced cisplatin-induced phosphorylation of STAT1 Ser727 (but not Tyr701) and STAT1 luciferase activity by suppressing the ERK1/2, p38, and JNK mitogen-activated protein kinase (MAPK) pathways. R-PIA also decreased the expression of STAT1 target genes, such as TNF-α, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced cisplatin-mediated apoptosis. These data suggest that the A1AR provides otoprotection by suppressing NOX3 and inflammation in the cochlea and could serve as an ideal target for otoprotective drug therapy. SIGNIFICANCE STATEMENT Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. Its use results in significant and permanent hearing loss, for which no US Food and Drug Administration-approved treatment is currently available. In this study, we targeted the cochlear adenosine A1 receptor (A1AR) by trans-tympanic injections of the agonist R

  7. Epstein-Barr Virus Latent Membrane Protein 2A (LMP2A) enhances IL-10 production through the activation of Bruton's tyrosine kinase and STAT3.

    Science.gov (United States)

    Incrocci, Ryan; Barse, Levi; Stone, Amanda; Vagvala, Sai; Montesano, Michael; Subramaniam, Vijay; Swanson-Mungerson, Michelle

    2017-01-01

    Previous data demonstrate that Epstein-Barr Virus Latent Membrane Protein 2A (LMP2A) enhances IL-10 to promote the survival of LMP2A-expressing B cell lymphomas. Since STAT3 is an important regulator of IL-10 production, we hypothesized that LMP2A activates a signal transduction cascade that increases STAT3 phosphorylation to enhance IL-10. Using LMP2A-negative and -positive B cell lines, the data indicate that LMP2A requires the early signaling molecules of the Syk/RAS/PI3K pathway to increase IL-10. Additional studies indicate that the PI3K-regulated kinase, BTK, is responsible for phosphorylating STAT3, which ultimately mediates the LMP2A-dependent increase in IL-10. These data are the first to show that LMP2A signaling results in STAT3 phosphorylation in B cells through a PI3K/BTK-dependent pathway. With the use of BTK and STAT3 inhibitors to treat B cell lymphomas in clinical trials, these findings highlight the possibility of using new pharmaceutical approaches to treat EBV-associated lymphomas that express LMP2A. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Activated Rac1 requires gp130 for Stat3 activation, cell proliferation and migration

    International Nuclear Information System (INIS)

    Arulanandam, Rozanne; Geletu, Mulu; Feracci, Helene; Raptis, Leda

    2010-01-01

    Rac1 (Rac) is a member of the Rho family of small GTPases which controls cell migration by regulating the organization of actin filaments. Previous results suggested that mutationally activated forms of the Rho GTPases can activate the Signal Transducer and Activator of Transcription-3 (Stat3), but the exact mechanism is a matter of controversy. We recently demonstrated that Stat3 activity of cultured cells increases dramatically following E-cadherin engagement. To better understand this pathway, we now compared Stat3 activity levels in mouse HC11 cells before and after expression of the mutationally activated Rac1 (Rac V12 ), at different cell densities. The results revealed for the first time a dramatic increase in protein levels and activity of both the endogenous Rac and Rac V12 with cell density, which was due to inhibition of proteasomal degradation. In addition, Rac V12 -expressing cells had higher Stat3, tyrosine-705 phosphorylation and activity levels at all densities, indicating that Rac V12 is able to activate Stat3. Further examination of the mechanism of Stat3 activation showed that Rac V12 expression caused a surge in mRNA of Interleukin-6 (IL6) family cytokines, known potent Stat3 activators. Knockdown of gp130, the common subunit of this family reduced Stat3 activity, indicating that these cytokines may be responsible for the Stat3 activation by Rac V12 . The upregulation of IL6 family cytokines was required for cell migration and proliferation induced by Rac V12 , as shown by gp130 knockdown experiments, thus demonstrating that the gp130/Stat3 axis represents an essential effector of activated Rac for the regulation of key cellular functions.

  9. Activated Rac1 requires gp130 for Stat3 activation, cell proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Arulanandam, Rozanne; Geletu, Mulu [Departments of Microbiology and Immunology and Pathology and Molecular Medicine, and Queen' s University Cancer Institute, Queen' s University, Botterell Hall, Rm. 713, Kingston, Ontario, Canada K7L 3N6 (Canada); Feracci, Helene [Universite Bordeaux 1, Centre de Recherche Paul Pascal, CNRS UPR 8641, 33600 Pessac (France); Raptis, Leda, E-mail: raptisl@queensu.ca [Departments of Microbiology and Immunology and Pathology and Molecular Medicine, and Queen' s University Cancer Institute, Queen' s University, Botterell Hall, Rm. 713, Kingston, Ontario, Canada K7L 3N6 (Canada)

    2010-03-10

    Rac1 (Rac) is a member of the Rho family of small GTPases which controls cell migration by regulating the organization of actin filaments. Previous results suggested that mutationally activated forms of the Rho GTPases can activate the Signal Transducer and Activator of Transcription-3 (Stat3), but the exact mechanism is a matter of controversy. We recently demonstrated that Stat3 activity of cultured cells increases dramatically following E-cadherin engagement. To better understand this pathway, we now compared Stat3 activity levels in mouse HC11 cells before and after expression of the mutationally activated Rac1 (Rac{sup V12}), at different cell densities. The results revealed for the first time a dramatic increase in protein levels and activity of both the endogenous Rac and Rac{sup V12} with cell density, which was due to inhibition of proteasomal degradation. In addition, Rac{sup V12}-expressing cells had higher Stat3, tyrosine-705 phosphorylation and activity levels at all densities, indicating that Rac{sup V12} is able to activate Stat3. Further examination of the mechanism of Stat3 activation showed that Rac{sup V12} expression caused a surge in mRNA of Interleukin-6 (IL6) family cytokines, known potent Stat3 activators. Knockdown of gp130, the common subunit of this family reduced Stat3 activity, indicating that these cytokines may be responsible for the Stat3 activation by Rac{sup V12}. The upregulation of IL6 family cytokines was required for cell migration and proliferation induced by Rac{sup V12}, as shown by gp130 knockdown experiments, thus demonstrating that the gp130/Stat3 axis represents an essential effector of activated Rac for the regulation of key cellular functions.

  10. Inhibition of STAT3 Signaling Reduces IgA1 Autoantigen Production in IgA Nephropathy

    Directory of Open Access Journals (Sweden)

    Koshi Yamada

    2017-11-01

    Discussion: Our results revealed that IL-6−induced aberrant activation of STAT3-mediated overproduction of galactose-deficient IgA1. STAT3 signaling pathway may thus represent a new target for disease-specific therapy of IgA nephropathy.

  11. Inhibition of Stat3 signaling ameliorates atrophy of the soleus muscles in mice lacking the vitamin D receptor.

    Science.gov (United States)

    Gopinath, Suchitra D

    2017-01-25

    Although skeletal muscle wasting has long been observed as a clinical outcome of impaired vitamin D signaling, precise molecular mechanisms that mediate the loss of muscle mass in the absence of vitamin D signaling are less clear. To determine the molecular consequences of vitamin D signaling, we analyzed the role of signal transducer and activator of transcription 3 (Stat3) signaling, a known contributor to various muscle wasting pathologies, in skeletal muscles. We isolated soleus (slow) and tibialis anterior (fast) muscles from mice lacking the vitamin D receptor (VDR -/- ) and used western blot analysis, quantitative RTPCR, and pharmacological intervention to analyze muscle atrophy in VDR -/- mice. We found that slow and fast subsets of muscles of the VDR -/- mice displayed elevated levels of phosphorylated Stat3 accompanied by an increase in Myostatin expression and signaling. Consequently, we observed reduced activity of mammalian target of rapamycin (mTOR) signaling components, ribosomal S6 kinase (p70S6K) and ribosomal S6 protein (rpS6), that regulate protein synthesis and cell size, respectively. Concomitantly, we observed an increase in atrophy regulators and a block in autophagic gene expression. An examination of the upstream regulation of Stat3 levels in VDR -/- muscles revealed an increase in IL-6 protein expression in the soleus, but not in the tibialis anterior muscles. To investigate the involvement of satellite cells (SCs) in atrophy in VDR -/- mice, we found that there was no significant deficit in SC numbers in VDR -/- muscles compared to the wild type. Unlike its expression within VDR -/- fibers, Myostatin levels in VDR -/- SCs from bulk muscles were similar to those of wild type. However, VDR -/- SCs induced to differentiate in culture displayed increased p-Stat3 signaling and Myostatin expression. Finally, VDR -/- mice injected with a Stat3 inhibitor displayed reduced Myostatin expression and function and restored active p70S6K and rpS6

  12. Lactococcus lactis KR-050L inhibit IL-6/STAT3 activation.

    Science.gov (United States)

    Hwang, J T; Jang, H-J; Kim, J H; Park, C S; Kim, Y; Lim, C-H; Lee, S W; Rho, M-C

    2017-05-01

    The purpose of this study was to investigate IL-6/STAT3 inhibitory activity using lactic acid bacteria (LABs) isolated from Gajuknamu kimchi. Six LABs were isolated from Gajuknamu kimchi and identified through 16S rRNA sequencing. Among them, the culture broth of Lactococcus lactis KR-050L inhibited IL-6-induced STAT3 luciferase activity. Fifteen compounds were isolated from the EtOAc extract of culture broth though column chromatography and preparative high-performance liquid chromatography, and they were identified as 2,5-diketopipperazine structures by spectroscopic analyses (MS, 1 H- and 13 C-NMR). They also showed inhibitory activities on IL-6-induced STAT3 activation, and showed the different in activity according to the presence of a phenylalanine residue, hydroxyl groups and isometric structure. The six new LABs isolated from Gajuknamu kimchi, and Lc. lactis KR-050L was selected as candidate IL-6/STAT3 inhibitors. The activity levels of 15 2,5-DKPs isolated from Lc. lactis KR-050L were verified. This study constitutes the first attempt to isolate various LABs from Gajuknamu kimchi and to discover IL-6/STAT3 inhibitors in the EtOAc extract of Lc. lactis KR-050L culture broth. Moreover, our data provide useful biochemical information regarding the commercialization of Lc. lactis isolated from Gajuknamu kimchi as an approach to use functional foods for the treatment of various diseases via IL-6/STAT3 activation. © 2017 The Society for Applied Microbiology.

  13. Progesterone receptors (PR) mediate STAT actions: PR and prolactin receptor signaling crosstalk in breast cancer models.

    Science.gov (United States)

    Leehy, Katherine A; Truong, Thu H; Mauro, Laura J; Lange, Carol A

    2018-02-01

    Estrogen is the major mitogenic stimulus of mammary gland development during puberty wherein ER signaling acts to induce abundant PR expression. PR signaling, in contrast, is the primary driver of mammary epithelial cell proliferation in adulthood. The high circulating levels of progesterone during pregnancy signal through PR, inducing expression of the prolactin receptor (PRLR). Cooperation between PR and prolactin (PRL) signaling, via regulation of downstream components in the PRL signaling pathway including JAKs and STATs, facilitates the alveolar morphogenesis observed during pregnancy. Indeed, these pathways are fully integrated via activation of shared signaling pathways (i.e. JAKs, MAPKs) as well as by the convergence of PRs and STATs at target genes relevant to both mammary gland biology and breast cancer progression (i.e. proliferation, stem cell outgrowth, tissue cell type heterogeneity). Thus, rather than a single mediator such as ER, transcription factor cascades (ER>PR>STATs) are responsible for rapid proliferative and developmental programming in the normal mammary gland. It is not surprising that these same mediators typify uncontrolled proliferation in a majority of breast cancers, where ER and PR are most often co-expressed and may cooperate to drive malignant tumor progression. This review will primarily focus on the integration of PR and PRL signaling in breast cancer models and the importance of this cross-talk in cancer progression in the context of mammographic density. Components of these PR/PRL signaling pathways could offer alternative drug targets and logical complements to anti-ER or anti-estrogen-based endocrine therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Hierarchy of protein tyrosine kinases in interleukin-2 (IL-2) signaling: activation of syk depends on Jak3; however, neither Syk nor Lck is required for IL-2-mediated STAT activation.

    Science.gov (United States)

    Zhou, Y J; Magnuson, K S; Cheng, T P; Gadina, M; Frucht, D M; Galon, J; Candotti, F; Geahlen, R L; Changelian, P S; O'Shea, J J

    2000-06-01

    Interleukin-2 (IL-2) activates several different families of tyrosine kinases, but precisely how these kinases interact is not completely understood. We therefore investigated the functional relationships among Jak3, Lck, and Syk in IL-2 signaling. We first observed that in the absence of Jak3, both Lck and Syk had the capacity to phosphorylate Stat3 and Stat5a. However, neither supported IL-2-induced STAT activation, nor did dominant negative alleles of these kinases inhibit. Moreover, pharmacological abrogation of Lck activity did not inhibit IL-2-mediated phosphorylation of Jak3 and Stat5a. Importantly, ligand-dependent Syk activation was dependent on the presence of catalytically active Jak3, whereas Lck activation was not. Interestingly, Syk functioned as a direct substrate of Jak1 but not Jak3. Additionally, Jak3 phosphorylated Jak1, whereas the reverse was not the case. Taken together, our data support a model in which Lck functions in parallel with Jak3, while Syk functions as a downstream element of Jaks in IL-2 signaling. Jak3 may regulate Syk catalytic activity indirectly via Jak1. However, IL-2-mediated Jak3/Stat activation is not dependent on Lck or Syk. While the essential roles of Jak1 and Jak3 in signaling by gammac-utilizing cytokines are clear, it will be important to dissect the exact contributions of Lck and Syk in mediating the effects of IL-2 and related cytokines.

  15. T-bet- and STAT4-dependent IL-33 receptor expression directly promotes antiviral Th1 cell responses.

    Science.gov (United States)

    Baumann, Claudia; Bonilla, Weldy V; Fröhlich, Anja; Helmstetter, Caroline; Peine, Michael; Hegazy, Ahmed N; Pinschewer, Daniel D; Löhning, Max

    2015-03-31

    During infection, the release of damage-associated molecular patterns, so-called "alarmins," orchestrates the immune response. The alarmin IL-33 plays a role in a wide range of pathologies. Upon release, IL-33 signals through its receptor ST2, which reportedly is expressed only on CD4(+) T cells of the Th2 and regulatory subsets. Here we show that Th1 effector cells also express ST2 upon differentiation in vitro and in vivo during lymphocytic choriomeningitis virus (LCMV) infection. The expression of ST2 on Th1 cells was transient, in contrast to constitutive ST2 expression on Th2 cells, and marked highly activated effector cells. ST2 expression on virus-specific Th1 cells depended on the Th1-associated transcription factors T-bet and STAT4. ST2 deficiency resulted in a T-cell-intrinsic impairment of LCMV-specific Th1 effector responses in both mixed bone marrow-chimeric mice and adoptive cell transfer experiments. ST2-deficient virus-specific CD4(+) T cells showed impaired expansion, Th1 effector differentiation, and antiviral cytokine production. Consequently, these cells mediated little virus-induced immunopathology. Thus, IL-33 acts as a critical and direct cofactor to drive antiviral Th1 effector cell activation, with implications for vaccination strategies and immunotherapeutic approaches.

  16. STAT proteins: from normal control of cellular events to tumorigenesis.

    Science.gov (United States)

    Calò, Valentina; Migliavacca, Manuela; Bazan, Viviana; Macaluso, Marcella; Buscemi, Maria; Gebbia, Nicola; Russo, Antonio

    2003-11-01

    Signal transducers and activators of transcription (STAT) proteins comprise a family of transcription factors latent in the cytoplasm that participate in normal cellular events, such as differentiation, proliferation, cell survival, apoptosis, and angiogenesis following cytokine, growth factor, and hormone signaling. STATs are activated by tyrosine phosphorylation, which is normally a transient and tightly regulates process. Nevertheless, several constitutively activated STATs have been observed in a wide number of human cancer cell lines and primary tumors, including blood malignancies and solid neoplasias. STATs can be divided into two groups according to their specific functions. One is made up of STAT2, STAT4, and STAT6, which are activated by a small number of cytokines and play a distinct role in the development of T-cells and in IFNgamma signaling. The other group includes STAT1, STAT3, and STAT5, activated in different tissues by means of a series of ligands and involved in IFN signaling, development of the mammary gland, response to GH, and embriogenesis. This latter group of STATS plays an important role in controlling cell-cycle progression and apoptosis and thus contributes to oncogenesis. Although an increased expression of STAT1 has been observed in many human neoplasias, this molecule can be considered a potential tumor suppressor, since it plays an important role in growth arrest and in promoting apoptosis. On the other hand, STAT3 and 5 are considered as oncogenes, since they bring about the activation of cyclin D1, c-Myc, and bcl-xl expression, and are involved in promoting cell-cycle progression, cellular transformation, and in preventing apoptosis.

  17. Increased STAT1 signaling in endocrine-resistant breast cancer.

    Directory of Open Access Journals (Sweden)

    Rui Huang

    Full Text Available Proteomic profiling of the estrogen/tamoxifen-sensitive MCF-7 cell line and its partially sensitive (MCF-7/LCC1 and fully resistant (MCF-7/LCC9 variants was performed to identify modifiers of endocrine sensitivity in breast cancer. Analysis of the expression of 120 paired phosphorylated and non-phosphorylated epitopes in key oncogenic and tumor suppressor pathways revealed that STAT1 and several phosphorylated epitopes (phospho-STAT1(Tyr701 and phospho-STAT3(Ser727 were differentially expressed between endocrine resistant and parental controls, confirmed by qRT-PCR and western blotting. The STAT1 inhibitor EGCG was a more effective inhibitor of the endocrine resistant MCF-7/LCC1 and MCF-7/LCC9 lines than parental MCF-7 cells, while STAT3 inhibitors Stattic and WP1066 were equally effective in endocrine-resistant and parental lines. The effects of the STAT inhibitors were additive, rather than synergistic, when tested in combination with tamoxifen in vitro. Expression of STAT1 and STAT3 were measured by quantitative immunofluorescence in invasive breast cancers and matched lymph nodes. When lymph node expression was compared to its paired primary breast cancer expression, there was greater expression of cytoplasmic STAT1 (∼3.1 fold, phospho-STAT3(Ser727 (∼1.8 fold, and STAT5 (∼1.5 fold and nuclear phospho-STAT3(Ser727 (∼1.5 fold in the nodes. Expression levels of STAT1 and STAT3 transcript were analysed in 550 breast cancers from publicly available gene expression datasets (GSE2990, GSE12093, GSE6532. When treatment with tamoxifen was considered, STAT1 gene expression was nearly predictive of distant metastasis-free survival (DMFS, log-rank p = 0.067, while STAT3 gene expression was predictive of DMFS (log-rank p<0.0001. Analysis of STAT1 and STAT3 protein expression in a series of 546 breast cancers also indicated that high expression of STAT3 protein was associated with improved survival (DMFS, p = 0.006. These results suggest

  18. Leptin Suppresses the Rewarding Effects of Running via STAT3 Signaling in Dopamine Neurons.

    Science.gov (United States)

    Fernandes, Maria Fernanda A; Matthys, Dominique; Hryhorczuk, Cécile; Sharma, Sandeep; Mogra, Shabana; Alquier, Thierry; Fulton, Stephanie

    2015-10-06

    The adipose hormone leptin potently influences physical activity. Leptin can decrease locomotion and running, yet the mechanisms involved and the influence of leptin on the rewarding effects of running ("runner's high") are unknown. Leptin receptor (LepR) signaling involves activation of signal transducer and activator of transcription-3 (STAT3), including in dopamine neurons of the ventral tegmental area (VTA) that are essential for reward-relevant behavior. We found that mice lacking STAT3 in dopamine neurons exhibit greater voluntary running, an effect reversed by viral-mediated STAT3 restoration. STAT3 deletion increased the rewarding effects of running whereas intra-VTA leptin blocked it in a STAT3-dependent manner. Finally, STAT3 loss-of-function reduced mesolimbic dopamine overflow and function. Findings suggest that leptin influences the motivational effects of running via LepR-STAT3 modulation of dopamine tone. Falling leptin is hypothesized to increase stamina and the rewarding effects of running as an adaptive means to enhance the pursuit and procurement of food. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The Role of Epithelial Stat3 in Amelogenesis during Mouse Incisor Renewal.

    Science.gov (United States)

    Zhang, Bin; Meng, Bo; Viloria, Edward; Naveau, Adrien; Ganss, Bernhard; Jheon, Andrew H

    2018-03-16

    The aim of this study was to evaluate the role of epithelial signal transducer and activator of transcription 3 (STAT3) in mouse incisor amelogenesis. Since Stat3 is expressed in the epithelial component of developing and adult mouse teeth, we generated and analyzed Krt14Cre/+;Stat3fl/fl mutant mice in which Stat3 was inactivated in epithelia including ameloblast progenitors and ameloblasts, the cells responsible for enamel formation. Histological analysis showed little enamel matrix in mutant incisors compared to controls. Delayed incisor enamel mineralization was demonstrated using micro-computed X-ray tomography analysis and was supported by an increase in the pre-expression distance of enamel-enriched proteins such as amelogenin, ameloblastin, and kallikrein-4. Lastly, scanning electron microscopy analysis showed little enamel mineralization in mutant incisors underneath the mesial root of the 1st molar; however, the micro-architecture of enamel mineralization was similar in the erupted portion of control and mutant incisors. Taken together, our findings demonstrate for the first time that the absence of epithelial Stat3 in mice leads to delayed incisor amelogenesis. © 2018 S. Karger AG, Basel.

  20. RTVP-1 promotes mesenchymal transformation of glioma via a STAT-3/IL-6-dependent positive feedback loop

    Science.gov (United States)

    Giladi, Nis David; Ziv-Av, Amotz; Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Ben-Asher, Hiba Waldman; deCarvalho, Ana; Mikkelsen, Tom; Poisson, Laila; Brodie, Chaya

    2015-01-01

    Glioblastomas (GBMs), the most aggressive primary brain tumors, exhibit increased invasiveness and resistance to anti-tumor treatments. We explored the role of RTVP-1, a glioma-associated protein that promotes glioma cell migration, in the mesenchymal transformation of GBM. Analysis of The Cancer Genome Atlas (TCGA) demonstrated that RTVP-1 expression was higher in mesenchymal GBM and predicted tumor recurrence and poor clinical outcome. ChiP analysis revealed that the RTVP-1 promoter binds STAT3 and C/EBPβ, two master transcription factors that regulate mesenchymal transformation of GBM. In addition, IL-6 induced RTVP-1 expression in a STAT3-dependent manner. RTVP-1 increased the migration and mesenchymal transformation of glioma cells. Similarly, overexpression of RTVP-1 in human neural stem cells induced mesenchymal differentiation, whereas silencing of RTVP-1 in glioma stem cells (GSCs) decreased the mesenchymal transformation and stemness of these cells. Silencing of RTVP-1 also increased the survival of mice bearing GSC-derived xenografts. Using gene array analysis of RTVP-1 silenced glioma cells we identified IL-6 as a mediator of RTVP-1 effects on the mesenchymal transformation and migration of GSCs, therefore acting in a positive feedback loop by upregulating RTVP-1 expression via the STAT3 pathway. Collectively, these results implicate RTVP-1 as a novel prognostic marker and therapeutic target in GBM. PMID:26267319

  1. The Chemopreventive Phytochemical Moringin Isolated from Moringa oleifera Seeds Inhibits JAK/STAT Signaling.

    Directory of Open Access Journals (Sweden)

    Carina Michl

    Full Text Available Sulforaphane (SFN and moringin (GMG-ITC are edible isothiocyanates present as glucosinolate precursors in cruciferous vegetables and in the plant Moringa oleifera respectively, and recognized for their chemopreventive and medicinal properties. In contrast to the well-studied SFN, little is known about the molecular pathways targeted by GMG-ITC. We investigated the ability of GMG-ITC to inhibit essential signaling pathways that are frequently upregulated in cancer and immune disorders, such as JAK/STAT and NF-κB. We report for the first time that, similarly to SFN, GMG-ITC in the nanomolar range suppresses IL-3-induced expression of STAT5 target genes. GMG-ITC, like SFN, does not inhibit STAT5 phosphorylation, suggesting a downstream inhibitory event. Interestingly, treatment with GMG-ITC or SFN had a limited inhibitory effect on IFNα-induced STAT1 and STAT2 activity, indicating that both isothiocyanates differentially target JAK/STAT signaling pathways. Furthermore, we showed that GMG-ITC in the micromolar range is a more potent inhibitor of TNF-induced NF-κB activity than SFN. Finally, using a cellular system mimicking constitutive active STAT5-induced cell transformation, we demonstrated that SFN can reverse the survival and growth advantage mediated by oncogenic STAT5 and triggers cell death, therefore providing experimental evidence of a cancer chemopreventive activity of SFN. This work thus identified STAT5, and to a lesser extent STAT1/STAT2, as novel targets of moringin. It also contributes to a better understanding of the biological activities of the dietary isothiocyanates GMG-ITC and SFN and further supports their apparent beneficial role in the prevention of chronic illnesses such as cancer, inflammatory diseases and immune disorders.

  2. Structurally modified curcumin analogs inhibit STAT3 phosphorylation and promote apoptosis of human renal cell carcinoma and melanoma cell lines.

    Directory of Open Access Journals (Sweden)

    Matthew A Bill

    Full Text Available The Janus kinase-2 (Jak2-signal transducer and activator of transcription-3 (STAT3 pathway is critical for promoting an oncogenic and metastatic phenotype in several types of cancer including renal cell carcinoma (RCC and melanoma. This study describes two small molecule inhibitors of the Jak2-STAT3 pathway, FLLL32 and its more soluble analog, FLLL62. These compounds are structurally distinct curcumin analogs that bind selectively to the SH2 domain of STAT3 to inhibit its phosphorylation and dimerization. We hypothesized that FLLL32 and FLLL62 would induce apoptosis in RCC and melanoma cells and display specificity for the Jak2-STAT3 pathway. FLLL32 and FLLL62 could inhibit STAT3 dimerization in vitro. These compounds reduced basal STAT3 phosphorylation (pSTAT3, and induced apoptosis in four separate human RCC cell lines and in human melanoma cell lines as determined by Annexin V/PI staining. Apoptosis was also confirmed by immunoblot analysis of caspase-3 processing and PARP cleavage. Pre-treatment of RCC and melanoma cell lines with FLLL32/62 did not inhibit IFN-γ-induced pSTAT1. In contrast to FLLL32, curcumin and FLLL62 reduced downstream STAT1-mediated gene expression of IRF1 as determined by Real Time PCR. FLLL32 and FLLL62 significantly reduced secretion of VEGF from RCC cell lines in a dose-dependent manner as determined by ELISA. Finally, each of these compounds inhibited in vitro generation of myeloid-derived suppressor cells. These data support further investigation of FLLL32 and FLLL62 as lead compounds for STAT3 inhibition in RCC and melanoma.

  3. Benzoxathiol derivative BOT-4-one suppresses L540 lymphoma cell survival and proliferation via inhibition of JAK3/STAT3 signaling.

    Science.gov (United States)

    Kim, Byung Hak; Min, Yun Sook; Choi, Jung Sook; Baeg, Gyeong Hun; Kim, Young Soo; Shin, Jong Wook; Kim, Tae Yoon; Ye, Sang Kyu

    2011-05-31

    Persistently activated JAK/STAT3 signaling pathway plays a pivotal role in various human cancers including major carcinomas and hematologic tumors, and is implicated in cancer cell survival and proliferation. Therefore, inhibition of JAK/STAT3 signaling may be a clinical application in cancer therapy. Here, we report that 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo [1,3]oxathiol-4-one (BOT-4-one), a small molecule inhibitor of JAK/STAT3 signaling, induces apoptosis through inhibition of STAT3 activation. BOT-4-one suppressed cytokine (upd)-induced tyrosine phosphorylation and transcriptional activity of STAT92E, the sole Drosophila STAT homolog. Consequently, BOT-4-one significantly inhibited STAT3 tyrosine phosphorylation and expression of STAT3 downstream target gene SOCS3 in various human cancer cell lines, and its effect was more potent in JAK3-activated Hodgkin's lymphoma cell line than in JAK2-activated breast cancer and prostate cancer cell lines. In addition, BOT-4-one-treated Hodgkin's lymphoma cells showed decreased cell survival and proliferation by inducing apoptosis through down-regulation of STAT3 downstream target anti-apoptotic gene expression. These results suggest that BOT-4-one is a novel small molecule inhibitor of JAK3/STAT3 signaling and may have therapeutic potential in the treatment of human cancers harboring aberrant JAK3/STAT3 signaling, specifically Hodgkin's lymphoma.

  4. Inhibition of STAT3 activity delays obesity-induced thyroid carcinogenesis in a mouse model

    Science.gov (United States)

    Park, Jeong Won; Han, Cho Rong; Zhao, Li; Willingham, Mark C.; Cheng, Sheue-yann

    2015-01-01

    Compelling epidemiologic studies indicate that obesity is a risk factor for many human cancers, including thyroid cancer. In recent decades, the incidence of thyroid cancer has dramatically increased along with a marked rise in obesity prevalence. We previously demonstrated that a high fat diet (HFD) effectively induced the obese phenotype in a mouse model of thyroid cancer (ThrbPV/PVPten+/− mice). Moreover, HFD activates the STAT3 signal pathway to promote more aggressive tumor phenotypes. The aim of the present study was to evaluate the effect of S3I-201, a specific inhibitor of STAT3 activity, on HFD-induced aggressive cancer progression in the mouse model of thyroid cancer. Wild type and ThrbPV/PVPten+/− mice were treated with HFD together with S3I-201 or vehicle-only as controls. We assessed the effects of S3I-201 on HFD-induced thyroid cancer progression, the leptin-JAK2-STAT3 signaling pathway, and key regulators of epithelial-mesenchymal transition. S3I-201 effectively inhibited HFD-induced aberrant activation of STAT3 and its downstream targets to markedly inhibit thyroid tumor growth and to prolong survival. Decreased protein levels of cyclins D1 and B1, cyclin dependent kinase (CDK) 4, CDK 6, and phosphorylated retinoblastoma protein led to the inhibition of tumor cell proliferation in S3I-201-treated ThrbPV/PVPten+/− mice. Reduced occurrence of vascular invasion and blocking of anaplasia and lung metastasis in thyroid tumors of S3I-201-treated ThrbPV/PVPten+/− mice were mediated via decreased expression of vimentin and matrix metalloproteinases, two key effectors of epithelial-mesenchymal transition. The present findings suggest that inhibition of the STAT3 activity would be a novel treatment strategy for obesity-induced thyroid cancer. PMID:26552408

  5. Novel multiplexed assay for identifying SH2 domain antagonists of STAT family proteins.

    Science.gov (United States)

    Takakuma, Kazuyuki; Ogo, Naohisa; Uehara, Yutaka; Takahashi, Susumu; Miyoshi, Nao; Asai, Akira

    2013-01-01

    Some of the signal transducer and activator of transcription (STAT) family members are constitutively activated in a wide variety of human tumors. The activity of STAT depends on their Src homology 2 (SH2) domain-mediated binding to sequences containing phosphorylated tyrosine. Thus, antagonizing this binding is a feasible approach to inhibiting STAT activation. We have developed a novel multiplexed assay for STAT3- and STAT5b-SH2 binding, based on amplified luminescent proximity homogeneous assay (Alpha) technology. AlphaLISA and AlphaScreen beads were combined in a single-well assay, which allowed the binding of STAT3- and STAT5b-SH2 to phosphotyrosine peptides to be simultaneously monitored. Biotin-labeled recombinant human STAT proteins were obtained as N- and C-terminal deletion mutants. The spacer length of the DIG-labeled peptide, the reaction time, and the concentration of sodium chloride were optimized to establish a HTS system with Z' values of greater than 0.6 for both STAT3- and STAT5b-SH2 binding. We performed a HTS campaign for chemical libraries using this multiplexed assay and identified hit compounds. A 2-chloro-1,4-naphthalenedione derivative, Compound 1, preferentially inhibited STAT3-SH2 binding in vitro, and the nuclear translocation of STAT3 in HeLa cells. Initial structure activity relationship (SAR) studies using the multiplexed assay showed the 3-substituent effect on both the activity and selectivity of STAT3 and STAT5b inhibition. Therefore, this multiplexed assay is useful for not only searching for potential lead compounds but also obtaining SAR data for developing new STAT3/STAT5b inhibitors.

  6. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression.

    Science.gov (United States)

    DeSmet, Marsha L; Fleet, James C

    2017-10-01

    High vitamin D status is associated with reduced colon cancer risk but these studies ignore the diversity in the molecular etiology of colon cancer. RAS activating mutations are common in colon cancer and they activate pro-proliferative signaling pathways. We examined the impact of RAS activating mutations on 1,25 dihydroxyvitamin D (1,25(OH) 2 D)-mediated gene expression in cultured colon and intestinal cell lines. Transient transfection of Caco-2 cells with a constitutively active mutant K-RAS (G12 V) significantly reduced 1,25(OH) 2 D-induced activity of both a human 25-hydroxyvitamin D, 24 hydroxyase (CYP24A1) promoter-luciferase and an artificial 3X vitamin D response element (VDRE) promoter-luciferase reporter gene. Young Adult Mouse Colon (YAMC) and Rat Intestinal Epithelial (RIE) cell lines with stable expression of mutant H-RAS had suppressed 1,25(OH) 2 D-mediated induction of CYP24A1 mRNA. The RAS effects were associated with lower Vitamin D receptor (VDR) mRNA and protein levels in YAMC and RIE cells and they could be partially reversed by VDR overexpression. RAS-mediated suppression of VDR levels was not due to either reduced VDR mRNA stability or increased VDR gene methylation. However, chromatin accessibility to the VDR gene at the proximal promoter (-300bp), an enhancer region at -6kb, and an enhancer region located in exon 3 was significantly reduced in RAS transformed YAMC cells (YAMC-RAS). These data show that constitutively active RAS signaling suppresses 1,25(OH) 2 D-mediated gene transcription in colon epithelial cells by reducing VDR gene transcription but the mechanism for this suppression is not yet known. These data suggest that cancers with RAS-activating mutations may be less responsive to vitamin D mediated treatment or chemoprevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Screening of Stat3 inhibitory effects of Korean herbal medicines in the A549 human lung cancer cell line

    OpenAIRE

    Jong-Shik Park; Ok-Sun Bang; Jinhee Kim

    2014-01-01

    Background: The transcription factor signal transducer and activator of transcription 3 (Stat3) is constitutively activated in many human cancers. It promotes tumor cell proliferation, inhibits apoptosis, induces angiogenesis and metastasis, and suppresses antitumor host immune responses. Therefore, Stat3 has emerged as a promising molecular target for cancer therapies. In this study, we evaluated the Stat3-suppressive activity of 38 herbal medicines traditionally used in Korea. Methods: M...

  8. The Role of STAT3 in Thyroid Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sosonkina, Nadiya; Starenki, Dmytro; Park, Jong-In, E-mail: jipark@mcw.edu [Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 (United States)

    2014-03-06

    Thyroid cancer is the most common endocrine malignancy and its global incidence rates are rapidly increasing. Although the mortality of thyroid cancer is relatively low, its rate of recurrence or persistence is relatively high, contributing to incurability and morbidity of the disease. Thyroid cancer is mainly treated by surgery and radioiodine remnant ablation, which is effective only for non-metastasized primary tumors. Therefore, better understanding of the molecular targets available in this tumor is necessary. Similarly to many other tumor types, oncogenic molecular alterations in thyroid epithelium include aberrant signal transduction of the mitogen-activated protein kinase, phosphatidylinositol 3-kinase/AKT (also known as protein kinase B), NF-κB, and WNT/β-catenin pathways. However, the role of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT3) pathway, a well-known mediator of tumorigenesis in different tumor types, is relatively less understood in thyroid cancer. Intriguingly, recent studies have demonstrated that, in thyroid cancer, the JAK/STAT3 pathway may function in the context of tumor suppression rather than promoting tumorigenesis. In this review, we provide an update of STAT3 function in thyroid cancer and discuss some of the evidences that support this hypothesis.

  9. Oncogenic Ras-Induced Morphologic Change Is through MEK/ERK Signaling Pathway to Downregulate Stat3 at a Posttranslational Level in NIH3T3 Cells

    Directory of Open Access Journals (Sweden)

    Hsuan-Heng Yeh

    2008-01-01

    Full Text Available Ras is a key regulator of the MAP kinase-signaling cascade and may cause morphologic change of Ras-transformed cells. Signal transducer and activator of transcription 3 (Stat3 can be activated by cytokine stimulation. In this study, we unravel that Ha-rasV12 overexpression can downregulate the expression of Stat3 protein at a posttranslational level in NIH3T3 cells. Furthermore, we demonstrate that Stat3 expression downregulated by Ha-rasV12 overexpression is through proteosome degradation and not through a mTOR/p70S6K-related signaling pathway. The suppression of Stat3 accompanied by the morphologic change induced by Ha-rasV12 was through mitogen extracellular kinase (MEK/extracellular-regulated kinase (ERK signaling pathway. Microtubule disruption is involved in Ha-rasV12-induced morphologic change, which could be reversed by overexpression of Stat3. Taken together, we are the first to demonstrate that Stat3 protein plays a critical role in Ha-rasV12-induced morphologic change. Oncogenic Ras-triggered morphologic change is through the activation of MEK/ERK to posttranslationally downregulate Stat3 expression. Our finding may shed light on developing novel therapeutic strategies against Ras-related tumorigenesis.

  10. HIV-1 Promotes the Degradation of Components of the Type 1 IFN JAK/STAT Pathway and Blocks Anti-viral ISG Induction.

    Science.gov (United States)

    Gargan, Siobhan; Ahmed, Suaad; Mahony, Rebecca; Bannan, Ciaran; Napoletano, Silvia; O'Farrelly, Cliona; Borrow, Persephone; Bergin, Colm; Stevenson, Nigel J

    2018-04-01

    Anti-retroviral therapy successfully suppresses HIV-1 infection, but fails to provide a cure. During infection Type 1 IFNs normally play an essential role in viral clearance, but in vivo IFN-α only has a modest impact on HIV-1 infection, suggesting its possible targeting by HIV. Here, we report that the HIV protein, Vif, inhibits effective IFN-α signalling via degradation of essential JAK/STAT pathway components. We found that STAT1 and STAT3 are specifically reduced in HEK293T cells expressing Vif and that full length, infectious HIV-1 IIIB strain promotes their degradation in a Vif-dependent manner. HIV-1 IIIB infection of myeloid ThP-1 cells also reduced the IFN-α-mediated induction of the anti-viral gene, ISG15, but not MxA, revealing a functional consequence of this HIV-1-mediated immune evasion strategy. Interestingly, while total STAT levels were not reduced upon in vitro IIIB infection of primary human PBMCs, IFN-α-mediated phosphorylation of STAT1 and STAT3 and ISG induction were starkly reduced, with removal of Vif (IIIBΔVif), partially restoring pSTATs, ISG15 and MxB induction. Similarly, pSTAT1 and pSTAT3 expression and IFN-α-induced ISG15 were reduced in PBMCs from HIV-infected patients, compared to healthy controls. Furthermore, IFN-α pre-treatment of a CEM T lymphoblast cells significantly inhibited HIV infection/replication (measured by cellular p24), only in the absence of Vif (IIIBΔVif), but was unable to suppress full length IIIB infection. When analysing the mechanism by which Vif might target the JAK/STAT pathway, we found Vif interacts with both STAT1 and STAT3, (but not STAT2), and its expression promotes ubiquitination and MG132-sensitive, proteosomal degradation of both proteins. Vif's Elongin-Cullin-SOCS-box binding motif enables the formation of an active E3 ligase complex, which we found to be required for Vif's degradation of STAT1 and STAT3. In fact, the E3 ligase scaffold proteins, Cul5 and Rbx2, were also found to be

  11. Serine/Threonine Kinase 35, a Target Gene of STAT3, Regulates the Proliferation and Apoptosis of Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Zhong Wu

    2018-01-01

    Full Text Available Background/Aims: Serine/threonine kinase 35 (STK35 may be associated with Parkinson disease and human colorectal cancer, but there have been no reports on the expression levels or roles of STK35 in osteosarcoma. Methods: STK35 mRNA expression was determined in osteosarcoma and bone cyst tissues by real-time PCR. Cell proliferation and apoptosis were assessed by Cell Counting Kit-8 (CCK-8 assay and flow cytometry analysis, respectively. Results: STK35 was up-regulated in osteosarcoma tissues as indicated by analyzing publicly available expression data (GEO dataset E-MEXP-3628 and real-time PCR analysis on our own cohort. We subsequently investigated the effects of STK35 knockdown on two osteosarcoma cell lines, MG63 and U2OS. STK35 knockdown inhibited the growth of osteosarcoma cells in vitro and in xenograft tumors. Meanwhile, STK35 knockdown enhanced apoptosis. Expression of the active forms and the activity of two major executioner caspases, caspase 3 and caspase 7, were also increased in osteosarcoma cells with STK35 silenced. Additionally, Gene Set Enrichment Analysis (GSEA identified that the JAK/STAT signaling pathway was positively correlated with STK35 expression. The mRNA expression of STK35 was repressed by STAT3 small interfering RNA (siRNA, but not by siRNA of STAT4, STAT5A or STAT6. A luciferase reporter assay further demonstrated that STAT3 transcriptionally regulated STK35 expression. A chromatin immunoprecipitation (ChIP assay confirmed the direct recruitment of STAT3 to the STK35 promoter. The promotion effects of STAT3 knockdown on cell apoptosis were partially abolished by STK35 overexpression. Furthermore, STK35 mRNA expression was positively correlated with STAT3 mRNA expression in osteosarcoma tissues by Pearson correlation analysis. Conclusions: These results collectively reveal that STAT3 regulates the transcription of STK35 in osteosarcoma. STK35 may exert an oncogenic role in osteosarcoma.

  12. Analysis list: Stat3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Stat3 Blood,Digestive tract,Neural + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u.../mm9/target/Stat3.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Stat3.5.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/target/Stat3.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Stat3.B...lood.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Stat3.Digestive_trac...t.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Stat3.Neural.tsv http://dbarchive.biosciencedbc.jp

  13. Artesunate inhibits adipogeneis in 3T3-L1 preadipocytes by reducing the expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Byeong-Churl, E-mail: jangbc123@gw.kmu.ac.kr

    2016-05-20

    Differentiation of preadipocyte, also called adipogenesis, leads to the phenotype of mature adipocyte. However, excessive adipogenesis is closely linked to the development of obesity. Artesunate, one of artemisinin-type sesquiterpene lactones from Artemisia annua L., is known for anti-malarial and anti-cancerous activities. In this study, we investigated the effect of artesunate on adipogenesis in 3T3-L1 preadipocytes. Artesunate strongly inhibited lipid accumulation and triglyceride (TG) synthesis during the differentiation of 3T3-L1 preadipocytes into adipocytes at 5 μM concentration. Artesunate at 5 μM also reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during adipocyte differentiation. Moreover, artesunate at 5 μM reduced leptin, but not adiponectin, mRNA expression during adipocyte differentiation. Taken together, these findings demonstrate that artesunate inhibits adipogenesis in 3T3-L1 preadipoytes through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. -- Highlights: •Artesunate, an artemisinin derivative, inhibits adipogenesis. •Artesunate inhibits C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3 in 3T3-L1 adipocytes. •Artesunate reduces leptin, but not adiponectin, expression in 3T3-L1 adipocytes. •Artesunate thus may have therapeutic potential against obesity.

  14. Adenosine A1 Receptor Protects Against Cisplatin Ototoxicity by Suppressing the NOX3/STAT1 Inflammatory Pathway in the Cochlea.

    Science.gov (United States)

    Kaur, Tejbeer; Borse, Vikrant; Sheth, Sandeep; Sheehan, Kelly; Ghosh, Sumana; Tupal, Srinivasan; Jajoo, Sarvesh; Mukherjea, Debashree; Rybak, Leonard P; Ramkumar, Vickram

    2016-04-06

    Cisplatin is a commonly used antineoplastic agent that produces ototoxicity that is mediated in part by increasing levels of reactive oxygen species (ROS) via the NOX3 NADPH oxidase pathway in the cochlea. Recent studies implicate ROS generation in mediating inflammatory and apoptotic processes and hearing loss by activating signal transducer and activator of transcription (STAT1). In this study, we show that the adenosine A1 receptor (A1AR) protects against cisplatin ototoxicity by suppressing an inflammatory response initiated by ROS generation via NOX3 NADPH oxidase, leading to inhibition of STAT1. Trans-tympanic administration of the A1AR agonist R-phenylisopropyladenosine (R-PIA) inhibited cisplatin-induced ototoxicity, as measured by auditory brainstem responses and scanning electron microscopy in male Wistar rats. This was associated with reduced NOX3 expression, STAT1 activation, tumor necrosis factor-α (TNF-α) levels, and apoptosis in the cochlea. In vitro studies in UB/OC-1 cells, an organ of Corti immortalized cell line, showed that R-PIA reduced cisplatin-induced phosphorylation of STAT1 Ser(727) (but not Tyr(701)) and STAT1 luciferase activity by suppressing the ERK1/2, p38, and JNK mitogen-activated protein kinase (MAPK) pathways.R-PIA also decreased the expression of STAT1 target genes, such as TNF-α, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced cisplatin-mediated apoptosis. These data suggest that the A1AR provides otoprotection by suppressing NOX3 and inflammation in the cochlea and could serve as an ideal target for otoprotective drug therapy. Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. Its use results in significant and permanent hearing loss, for which no US Food and Drug Administration-approved treatment is currently available. In this study, we targeted the cochlear adenosine A1 receptor (A1AR) by trans-tympanic injections of the agonist R

  15. Tetrandrine has anti-adipogenic effect on 3T3-L1 preadipocytes through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3

    International Nuclear Information System (INIS)

    Jang, Byeong-Churl

    2016-01-01

    Tetrandrine is a bisbenzylisoquinoline alkaloid isolated from the roots of Stephania tetrandra S. Moore and has been shown to possess anti-inflammatory and anti-cancerous activities. In this study, the effect of tetrandrine on adipogenesis in 3T3-L1 preadipocytes was investigated. Tetrandrine at 10 μM concentration strongly inhibited lipid accumulation and triglyceride (TG) synthesis during the differentiation of 3T3-L1 preadipocytes into adipocytes. On mechanistic levels, tetrandrine reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during 3T3-L1 adipocyte differentiation. Tetrandrine also reduced the mRNA expression of leptin, but not adiponectin, during 3T3-L1 adipocyte differentiation. Collectively, these findings show that tetrandrine has strong anti-adipogenic effect on 3T3-L1 preadipocytes and the effect is largely attributable to the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. - Highlights: • Tetrandrine, a bisbenzylisoquinoline alkaloid, inhibits adipogenesis. • Tetrandrine inhibits C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3 in 3T3-L1 adipocytes. • Tetrandrine reduces leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Tetrandrine may thus have therapeutic potential against obesity.

  16. Tetrandrine has anti-adipogenic effect on 3T3-L1 preadipocytes through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Byeong-Churl, E-mail: jangbc123@gw.kmu.ac.kr

    2016-08-05

    Tetrandrine is a bisbenzylisoquinoline alkaloid isolated from the roots of Stephania tetrandra S. Moore and has been shown to possess anti-inflammatory and anti-cancerous activities. In this study, the effect of tetrandrine on adipogenesis in 3T3-L1 preadipocytes was investigated. Tetrandrine at 10 μM concentration strongly inhibited lipid accumulation and triglyceride (TG) synthesis during the differentiation of 3T3-L1 preadipocytes into adipocytes. On mechanistic levels, tetrandrine reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during 3T3-L1 adipocyte differentiation. Tetrandrine also reduced the mRNA expression of leptin, but not adiponectin, during 3T3-L1 adipocyte differentiation. Collectively, these findings show that tetrandrine has strong anti-adipogenic effect on 3T3-L1 preadipocytes and the effect is largely attributable to the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. - Highlights: • Tetrandrine, a bisbenzylisoquinoline alkaloid, inhibits adipogenesis. • Tetrandrine inhibits C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3 in 3T3-L1 adipocytes. • Tetrandrine reduces leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Tetrandrine may thus have therapeutic potential against obesity.

  17. 1,4-benzoquinone-induced STAT-3 hypomethylation in AHH-1 cells: Role of oxidative stress

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2015-01-01

    Full Text Available Benzene, a known occupational and environmental contaminant, is associated with increased risk of leukemia. The objectives of this study were to elucidate the regulatory mechanism of the hypomethylated STAT3 involved in benzene toxicity in vitro. As 1,4-benzoquinone (1,4-BQ is one of benzene’s major toxic metabolites, AHH-1 cells were treated by 1,4-BQ for 24 h with or without pretreatment of the antioxidant a-LA or the methyltransferase inhibitor, 5-aza-2′ deoxycytidine (5-aza. The cell viability was investigated using the 3-(4, 5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. ROS was determined via 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA flow cytometric assays. The level of oxidative stress marker 8-OHdG was measured by enzyme-linked immunosorbent assay. Methylation-specific PCR was used to detect the methylation status of STAT3. Results indicated the significantly increasing expression of ROS and 8-OHdG which accompanied with STAT3 hypomethylation in 1,4-BQ-treated AHH-1 cells. α-LA suppressed the expression of both ROS and 8-OHdG, simultaneously reversed 1,4-BQ-induced STAT3 hypomethylation. However, although the methylation inhibitor, 5-aza reduced the expression level of ROS and 8-OHdG, but had no obvious inhibiting effect on STAT3 methylation level. Taken together, oxidative stress are involved 1,4-BQ-induced STAT3 methylation expression.

  18. STAT3 Potentiates SIAH-1 Mediated Proteasomal Degradation of β-Catenin in Human Embryonic Kidney Cells.

    Science.gov (United States)

    Shin, Minkyung; Yi, Eun Hee; Kim, Byung-Hak; Shin, Jae-Cheon; Park, Jung Youl; Cho, Chung-Hyun; Park, Jong-Wan; Choi, Kang-Yell; Ye, Sang-Kyu

    2016-11-30

    The β-catenin functions as an adhesion molecule and a component of the Wnt signaling pathway. In the absence of the Wnt ligand, β-catenin is constantly phosphorylated, which designates it for degradation by the APC complex. This process is one of the key regulatory mechanisms of β-catenin. The level of β-catenin is also controlled by the E3 ubiquitin protein ligase SIAH-1 via a phosphorylation-independent degradation pathway. Similar to β-catenin, STAT3 is responsible for various cellular processes, such as survival, proliferation, and differentiation. However, little is known about how these molecules work together to regulate diverse cellular processes. In this study, we investigated the regulatory relationship between STAT3 and β-catenin in HEK293T cells. To our knowledge, this is the first study to report that β-catenin-TCF-4 transcriptional activity was suppressed by phosphorylated STAT3; furthermore, STAT3 inactivation abolished this effect and elevated activated β-catenin levels. STAT3 also showed a strong interaction with SIAH-1, a regulator of active β-catenin via degradation, which stabilized SIAH-1 and increased its interaction with β-catenin. These results suggest that activated STAT3 regulates active β-catenin protein levels via stabilization of SIAH-1 and the subsequent ubiquitin-dependent proteasomal degradation of β-catenin in HEK293T cells.

  19. Omeprazole blocks STAT6 binding to the eotaxin-3 promoter in eosinophilic esophagitis cells.

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    Full Text Available Patients who have esophageal eosinophilia without gastroesophageal reflux disease (GERD nevertheless can respond to proton pump inhibitors (PPIs, which can have anti-inflammatory actions independent of effects on gastric acid secretion. In esophageal cell cultures, omeprazole has been reported to inhibit Th2 cytokine-stimulated expression of eotaxin-3, an eosinophil chemoattractant contributing to esophageal eosinophilia in eosinophilic esophagitis (EoE. The objective of this study was to elucidate molecular mechanisms underlying PPI inhibition of IL-4-stimulated eotaxin-3 production by esophageal cells.Telomerase-immortalized and primary cultures of esophageal squamous cells from EoE patients were treated with IL-4 in the presence or absence of acid-activated omeprazole or lansoprazole. We measured eotaxin-3 protein secretion by ELISA, mRNA expression by PCR, STAT6 phosphorylation and nuclear translocation by Western blotting, eotaxin-3 promoter activation by an exogenous reporter construct, and STAT6, RNA polymerase II, and trimethylated H3K4 binding to the endogenous eotaxin-3 promoter by ChIP assay. Omeprazole in concentrations ≥5 µM significantly decreased IL-4-stimulated eotaxin-3 protein secretion and mRNA expression. Lansoprazole also blocked eotaxin-3 protein secretion. Omeprazole had no effect on eotaxin-3 mRNA stability or on STAT6 phosphorylation and STAT6 nuclear translocation. Rather, omeprazole blocked binding of IL-4-stimulated STAT6, RNA polymerase II, and trimethylated H3K4 to the eotaxin-3 promoter.PPIs, in concentrations achieved in blood with conventional dosing, significantly inhibit IL-4-stimulated eotaxin-3 expression in EoE esophageal cells and block STAT6 binding to the promoter. These findings elucidate molecular mechanisms whereby patients with Th2 cytokine-driven esophageal eosinophilia can respond to PPIs, independent of effects on gastric acid secretion.

  20. Human papillomavirus infection correlates with inflammatory Stat3 signaling activity and IL-17 level in patients with colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Yi Xin Li

    Full Text Available Colorectal cancer (CRC is a major burden of public health and healthcare worldwide. Microbiota has been suggested in promoting chronic inflammation in the intestine which, in turn, promotes tumor development. This study focuses on possible correlations of human papillomavirus (HPV infection with proinflammatory Stat3 signaling activities and the resulting levels of its downstream proinflammatory cytokine IL-17 in CRC patients.HPV was examined using HPV Genotyping Chip technology and constitutively active Stat3 (p-Stat3 and IL-17 levels were tested using immunohistochemistry (IHC in paraffin-embedded cancerous and adjacent normal tissues (ANT from a cohort of 95 CRC patients. Correlation analyses were performed between HPV infection and clinicopathological characteristics, Stat3 activities and IL-17 levels among these CRC patients.Three major findings were observed: (1 HPV infection existed in a high rate of CRC cases (48.4%, 46/95, of which 45 cases (45/46, 97.8% were high-risk HPV16-positive and only one case was HPV53-positive. (2 HPV infection correlated with poorer clinical stages (III+IV of CRC. (3 HPV infection strongly correlated with both constitutively higher Stat3 activities (P<0.01 and higher IL-17 levels (P<0.01 only in CRC tissues but not in ANT tissues.HPV infection is common in CRC patients suggesting potentially preventive effectiveness of HPV vaccination among high-risk young individuals. We have for the first time revealed a tri-lateral relationship among HPV infection, constitutive Stat3 activity and IL-17 level, whose collaborative act may orchestrate a proinflammatory microenvironment in the colorectum that, in turn, may promote carcinogenesis and possibly facilitate progression of CRC.

  1. Prognostic Role of Phospho-STAT3 in Patients with Cancers of the Digestive System: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Li, Mu-xing; Bi, Xin-yu; Huang, Zhen; Zhao, Jian-jun; Han, Yue; Li, Zhi-Yu; Zhang, Ye-fan; Li, Yuan; Chen, Xiao; Hu, Xu-hui; Zhao, Hong; Cai, Jian-qiang

    2015-01-01

    The definite prognostic role of p-STAT3 has not been well defined. We performed a meta-analysis evaluating the prognostic role of p-STAT3 expression in patients with digestive system cancers. We searched the available articles reporting the prognostic value of p-STAT3 in patients with cancers of the digestive system, mainly including colorectal cancer, gastric cancer, hepatocellular carcinoma, esophagus cancer and pancreatic cancer. The pooled hazard ratios (HRs) with 95 % confidence intervals (95 % CIs) of overall survival (OS) and disease-free survival (DFS) were used to assess the prognostic role of p-STAT3 expression level in cancer tissues. And the association between p-STAT3 expression and clinicopathological characteristics was evaluated. A total of 22 studies with 3585 patients were finally enrolled in the meta-analysis. The results showed that elevated p-STAT3 expression level predicted inferior OS (HR = 1.809, 95% CI: 1.442-2.270, P digestive system. Increased expression of p-STAT3 is significantly related with tumor cell differentiation (Odds ratio (OR) = 1.895, 95% CI: 1.364-2.632, P digestive system cancers. More well designed studies with adequate follow-up are needed to gain a thorough understanding of the prognostic role of p-STAT3.

  2. Inhibition of STAT-3 results in radiosensitization of human squamous cell carcinoma

    International Nuclear Information System (INIS)

    Bonner, James A.; Trummell, Hoa Q.; Willey, Christopher D.; Plants, Brian A.; Raisch, Kevin P.

    2009-01-01

    Background: Signal transducer and activator of transcription-3 (STAT-3) is a downstream component of the Epidermal Growth Factor Receptor (EGFr) signaling process that may facilitate the resistance of tumor cells to conventional cancer treatments. Studies were performed to determine if inhibition of this downstream protein produces radiosensitization. Methods/Results: A431 cells (human squamous cell carcinoma cells with EGFr overexpression) were found to be sensitized to radiation after treatment with STAT-3 small interfering RNA (siRNA). Therefore, a short hairpin RNA (shRNA) against STAT-3 was designed and cloned into a pBABE vector system modified for shRNA expression. Following transfection, clone 2.1 was selected for further study as it showed a dramatic reduction of STAT-3 protein (and mRNA) when compared to A431 parental cells or a negative control shRNA cell line (transfected with STAT-3 shRNA with 2 base pairs mutated). A431 2.1 showed doubling times of 25-31 h as compared to 18-24 h for the parental cell line. The A431 shRNA knockdown STAT-3 cells A431 were more sensitive to radiation than A431 parental or negative STAT-3 control cells. Conclusion: A431 cells stably transfected with shRNA against STAT-3 resulted in enhanced radiosensitivity. Further work will be necessary to determine whether the inhibition of STAT-3 phosphorylation is a necessary step for the radiosensitization that is induced by the inhibition of EGFr.

  3. Stat1-independent regulation of gene expression in response to IFN-γ

    Science.gov (United States)

    Ramana, Chilakamarti V.; Gil, M. Pilar; Han, Yulong; Ransohoff, Richard M.; Schreiber, Robert D.; Stark, George R.

    2001-01-01

    Although Stat1 is essential for cells to respond fully to IFN-γ, there is substantial evidence that, in the absence of Stat1, IFN-γ can still regulate the expression of some genes, induce an antiviral state and affect cell growth. We have now identified many genes that are regulated by IFN-γ in serum-starved Stat1-null mouse fibroblasts. The proteins induced by IFN-γ in Stat1-null cells can account for the substantial biological responses that remain. Some genes are induced in both wild-type and Stat1-null cells and thus are truly Stat1-independent. Others are subject to more complex regulation in response to IFN-γ, repressed by Stat1 in wild-type cells and activated in Stat1-null cells. Many genes induced by IFN-γ in Stat1-null fibroblasts also are induced by platelet-derived growth factor in wild-type cells and thus are likely to be involved in cell proliferation. In mouse cells expressing the docking site mutant Y440F of human IFN-γ receptor subunit 1, the mouse Stat1 is not phosphorylated in response to human IFN-γ, but c-myc and c-jun are still induced, showing that the Stat1 docking site is not required for Stat1-independent signaling. PMID:11390994

  4. Orphan Nuclear Receptor Small Heterodimer Partner Negatively Regulates Growth Hormone-mediated Induction of Hepatic Gluconeogenesis through Inhibition of Signal Transducer and Activator of Transcription 5 (STAT5) Transactivation*

    Science.gov (United States)

    Kim, Yong Deuk; Li, Tiangang; Ahn, Seung-Won; Kim, Don-Kyu; Lee, Ji-Min; Hwang, Seung-Lark; Kim, Yong-Hoon; Lee, Chul-Ho; Lee, In-Kyu; Chiang, John Y. L.; Choi, Hueng-Sik

    2012-01-01

    Growth hormone (GH) is a key metabolic regulator mediating glucose and lipid metabolism. Ataxia telangiectasia mutated (ATM) is a member of the phosphatidylinositol 3-kinase superfamily and regulates cell cycle progression. The orphan nuclear receptor small heterodimer partner (SHP: NR0B2) plays a pivotal role in regulating metabolic processes. Here, we studied the role of ATM on GH-dependent regulation of hepatic gluconeogenesis in the liver. GH induced phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase gene expression in primary hepatocytes. GH treatment and adenovirus-mediated STAT5 overexpression in hepatocytes increased glucose production, which was blocked by a JAK2 inhibitor, AG490, dominant negative STAT5, and STAT5 knockdown. We identified a STAT5 binding site on the PEPCK gene promoter using reporter assays and point mutation analysis. Up-regulation of SHP by metformin-mediated activation of the ATM-AMP-activated protein kinase pathway led to inhibition of GH-mediated induction of hepatic gluconeogenesis, which was abolished by an ATM inhibitor, KU-55933. Immunoprecipitation studies showed that SHP physically interacted with STAT5 and inhibited STAT5 recruitment on the PEPCK gene promoter. GH-induced hepatic gluconeogenesis was decreased by either metformin or Ad-SHP, whereas the inhibition by metformin was abolished by SHP knockdown. Finally, the increase of hepatic gluconeogenesis following GH treatment was significantly higher in the liver of SHP null mice compared with that of wild-type mice. Overall, our results suggest that the ATM-AMP-activated protein kinase-SHP network, as a novel mechanism for regulating hepatic glucose homeostasis via a GH-dependent pathway, may be a potential therapeutic target for insulin resistance. PMID:22977252

  5. STAT3 induces transcription of the DNA methyltransferase 1 gene (DNMT1) in malignant T lymphocytes

    DEFF Research Database (Denmark)

    Zhang, Qian; Wang, Hong Y; Woetmann, Anders

    2006-01-01

    In this study, we demonstrated that STAT3, a well-characterized transcription factor expressed in continuously activated oncogenic form in the large spectrum of cancer types, induces in malignant T lymphocytes the expression of DNMT1, the key effector of epigenetic gene silencing. STAT3 binds in ...

  6. Molecular cloning and expression analysis of the STAT1 gene from olive flounder, Paralichthys olivaceus

    Directory of Open Access Journals (Sweden)

    Chung Jongkyeong

    2008-06-01

    Full Text Available Abstract Background Signal transducer and activator of transcription 1 (STAT1 is a critical component of interferon (IFN-alpha/beta and IFN-gamma signaling. Although seven isoforms of STAT proteins have been reported from mammals, limited information is available for the STAT genes in fish. We isolated complementary DNA with high similarity to mammalian STAT1 from the olive flounder, Paralichthys olivaceus. Results A DNA fragment containing the conserved SH2 domain was amplified by RT-PCR using degenerate primers designed based on the highly conserved sequences in the SH2 domains of the zebrafish and mammalian STAT1. The complete cDNA sequence was obtained by 5' and 3' RACE. The flounder STAT1 transcript consisted of 2,909 bp that encoded a polypeptide of 749 amino acids. The overall similarity between flounder STAT1 and other STATs was very high, with the highest amino acid sequence identity to snakehead (89%. Phylogenetic analyses reveal that flounder STAT1 is in the same monophyletic group with snakehead STAT1. Quantitative real time RT-PCR and in situ hybridization revealed that STAT1 was expressed in almost all examined organs and tissues, with high expression in gill, spleen, kidney, and heart. The accumulation of STAT1 mRNA in different developmental stages, as determined by real time RT-PCR, increased with development. Conclusion Recent cloning of various cytokine genes and the STAT1 gene of olive flounder here suggest that fish also use the highly specialized JAK-STAT pathway for cytokine signaling. Identification of other STAT genes will elucidate in detail the signal transduction system in this fish.

  7. Hydroxychloroquine inhibits CD154 expression in CD4+ T lymphocytes of systemic lupus erythematosus through NFAT, but not STAT5, signaling.

    Science.gov (United States)

    Wu, Shu-Fen; Chang, Chia-Bin; Hsu, Jui-Mei; Lu, Ming-Chi; Lai, Ning-Sheng; Li, Chin; Tung, Chien-Hsueh

    2017-08-09

    Overexpression of membranous CD154 in T lymphocytes has been found previously in systemic lupus erythematosus (SLE). Because hydroxychloroquine (HCQ) has been used frequently in the treatment of lupus, we sought to identify the effects of HCQ on CD154 and a possibly regulatory mechanism. CD4 + T cells were isolated from the blood of lupus patients. After stimulation with ionomycin or IL-15 and various concentrations of HCQ, expression of membranous CD154 and NFAT and STAT5 signaling were assessed. HCQ treatment had significant dose-dependent suppressive effects on membranous CD154 expression in ionomycin-activated T cells from lupus patients. Furthermore, HCQ inhibited intracellular sustained calcium storage release, and attenuated the nuclear translocation of NFATc2 and the expression of NFATc1. However, CD154 expressed through IL-15-mediated STAT5 signaling was not inhibited by HCQ treatment. HCQ inhibited NFAT signaling in activated T cells and blocked the expression of membranous CD154, but not STAT5 signaling. These findings provide a mechanistic insight into SLE in HCQ treatment.

  8. The combination of IL-21 and IFN-alpha boosts STAT3 activation, cytotoxicity and experimental tumor therapy

    DEFF Research Database (Denmark)

    Eriksen, Karsten W; Søndergaard, Henrik; Woetmann, Anders

    2008-01-01

    such as IFN-alpha and IL-2 have multiple and severe side effects. Accordingly, they are generally used at sub-optimal doses, which limit their clinical efficacy. Here we hypothesized that a combination of IFN-alpha and IL-21, a novel cytokine of the IL-2 family with anti-cancer effects, will increase the anti......-cancer efficacy at sub-optimal cytokine doses. We show that the combined stimulation of target-cells with IFN-alpha and IL-21 triggers an increased STAT3 activation whereas the activation of other STATs including STAT1/2 is unaffected. In parallel, the combined stimulation with IFN-alpha and IL-21 triggers...... a selective increase in MHC class I expression and NK- and CD8(+) T-cell-mediated cytotoxicity. In an experimental in vivo model of renal carcinoma, the combined treatment of IFN-alpha and IL-21 also produces a significant anti-cancer effect as judged by an inhibition of tumor growth and an increased survival...

  9. Upregulated STAT3 and RhoA signaling in colorectal cancer (CRC) regulate the invasion and migration of CRC cells.

    Science.gov (United States)

    Zhang, G-Y; Yang, W-H; Chen, Z

    2016-05-01

    We aimed to reveal the expression and activation of signal transducers and activators of transcription 3 (STAT3) and RhoA/Rho-associated coiled-coil forming kinase 1 (ROCK1) signaling in CRC tissues, and to investigate the regulatory role of STAT3 and RhoA signaling in the invasion and migration of colorectal cancer cells. We examined the expression of STAT3, RhoA and ROCK1 in CRC tissues with real-time PCR and Western blotting methods. And then we examined the interaction between STAT3 and RhoA/ROCK1 signaling in CRC HT-29 cells with gain-of-function and loss-of-function strategies. In addition, we determined the regulation by STAT3 and RhoA/ROCK1 on the invasion and migration of CRC HT-29 cells. Our study demonstrated a significant upregulation of RhoA and ROCK1 expression and STAT3-Y705 phosphorylation in 32 CRC specimens, compared to the 17 normal CRC tissues. Further study demonstrated there was a coordination between STAT3 and RhoA/Rock signaling in the HT-29 cells. Moreover, STAT3 knockdown or RhoA knockdown significantly repressed the migration and invasion in HT-29 cells and vice versa. STAT3 and RhoA signaling regulate the invasion and migration of CRC cells, implying the orchestrated and oncogenic roles of STAT3 and RhoA/ROCK1 signaling in CRC.

  10. Loss of claudin-3 expression induces IL6/gp130/Stat3 signaling to promote colon cancer malignancy by hyperactivating Wnt/β-catenin signaling.

    Science.gov (United States)

    Ahmad, R; Kumar, B; Chen, Z; Chen, X; Müller, D; Lele, S M; Washington, M K; Batra, S K; Dhawan, P; Singh, A B

    2017-11-23

    The hyperactivated Wnt/β-catenin signaling acts as a switch to induce epithelial to mesenchymal transition and promote colorectal cancer. However, due to its essential role in gut homeostasis, therapeutic targeting of this pathway has proven challenging. Additionally, IL-6/Stat-3 signaling, activated by microbial translocation through the dysregulated mucosal barrier in colon adenomas, facilitates the adenoma to adenocarcinomas transition. However, inter-dependence between these signaling pathways and key mucosal barrier components in regulating colon tumorigenesis and cancer progression remains unclear. In current study, we have discovered, using a comprehensive investigative regimen, a novel and tissue-specific role of claudin-3, a tight junction integral protein, in inhibiting colon cancer progression by serving as the common rheostat of Stat-3 and Wnt-signaling activation. Loss of claudin-3 also predicted poor patient survival. These findings however contrasted an upregulated claudin-3 expression in other cancer types and implicated role of the epigenetic regulation. Claudin-3-/- mice revealed dedifferentiated and leaky colonic epithelium, and developed invasive adenocarcinoma when subjected to colon cancer. Wnt-signaling hyperactivation, albeit in GSK-3β independent manner, differentiated colon cancer in claudin-3-/- mice versus WT-mice. Claudin-3 loss also upregulated the gp130/IL6/Stat3 signaling in colonic epithelium potentially assisted by infiltrating immune components. Genetic and pharmacological studies confirmed that claudin-3 loss induces Wnt/β-catenin activation, which is further exacerbated by Stat-3-activation and help promote colon cancer. Overall, these novel findings identify claudin-3 as a therapeutic target for inhibiting overactivation of Wnt-signaling to prevent CRC malignancy.

  11. d,l-Sulforaphane Induces ROS-Dependent Apoptosis in Human Gliomablastoma Cells by Inactivating STAT3 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ziwei Miao

    2017-01-01

    Full Text Available d,l-Sulforaphane (SFN, a synthetic analogue of broccoli-derived isomer l-SFN, exerts cytotoxic effects on multiple tumor cell types through different mechanisms and is more potent than the l-isomer at inhibiting cancer growth. However, the means by which SFN impairs glioblastoma (GBM cells remains poorly understood. In this study, we investigated the anti-cancer effect of SFN in GBM cells and determined the underlying molecular mechanisms. Cell viability assays, flow cytometry, immunofluorescence, and Western blot results revealed that SFN could induced apoptosis of GBM cells in a dose- and time-dependent manner, via up-regulation of caspase-3 and Bax, and down-regulation of Bcl-2. Mechanistically, SFN treatment led to increase the intracellular reactive oxygen species (ROS level in GBM cells. Meanwhile, SFN also suppressed both constitutive and IL-6-induced phosphorylation of STAT3, and the activation of upstream JAK2 and Src tyrosine kinases, dose- and time-dependently. Moreover, blockage of ROS production by using the ROS inhibitor N-acetyl-l-cysteine totally reversed SFN-mediated down-regulation of JAK2/Src-STAT3 signaling activation and the subsequent effects on apoptosis by blocking the induction of apoptosis-related genes in GBM cells. Taken together, our data suggests that SFN induces apoptosis in GBM cells via ROS-dependent inactivation of STAT3 phosphorylation. These findings motivate further evaluation of SFN as a cancer chemopreventive agent in GBM treatment.

  12. The CXCR4–STAT3–IL-10 Pathway Controls the Immunoregulatory Function of Chronic Lymphocytic Leukemia and Is Modulated by Lenalidomide

    Directory of Open Access Journals (Sweden)

    Hila Shaim

    2018-01-01

    Full Text Available Chronic lymphocytic leukemia (CLL cells possess regulatory functions comparable to those of normal B10 cells, a regulatory B cell subset that suppresses effector T-cell function through STAT3-mediated IL-10 production. However, the mechanisms governing IL-10 production by CLL cells are not fully understood. Here, we show that the CXC chemokine ligand 12 (CXCL12–CXCR4–STAT3 axis regulates IL-10 production by CLL cells and their ability to suppress T-cell effector function through an IL-10 mediated mechanism. Knockdown of STAT3 significantly impaired the ability of CLL cells to produce IL-10. Furthermore, experiments to assess the role of lenalidomide, an immunomodulatory agent with direct antitumor effect as well as pleiotropic activity on the immune system, showed that this agent prevents a CXCL12-induced increase in p-S727-STAT3 and the IL-10 response by CLL cells. Lenalidomide also suppressed IL-10-induced Y705-STAT3 phosphorylation in healthy T cells, thus reversing CLL-induced T-cell dysfunction. We conclude that the capacity of CLL cells to produce IL-10 is mediated by the CXCL12–CXCR4–STAT3 pathway and likely contributes to immunodeficiency in patients. Lenalidomide appears to be able to reverse CLL-induced immunosuppression through including abrogation of the CXCL12–CXCR4–S727–STAT3-mediated IL-10 response by CLL cells and prevention of IL-10-induced phosphorylation of Y705-STAT3 in T cells.

  13. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition.

    Science.gov (United States)

    Quoc Trung, Ly; Espinoza, J Luis; Takami, Akiyoshi; Nakao, Shinji

    2013-01-01

    Natural killer (NK) cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.

  14. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition.

    Directory of Open Access Journals (Sweden)

    Ly Quoc Trung

    Full Text Available Natural killer (NK cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.

  15. Active Stat3 is required for survival of human squamous cell carcinoma cells in serum-free conditions

    Directory of Open Access Journals (Sweden)

    DiGiovanni John

    2006-04-01

    Full Text Available Abstract Background Squamous cell carcinoma (SCC of the skin is the most aggressive form of non-melanoma skin cancer (NMSC, and is the single most commonly diagnosed cancer in the U.S., with over one million new cases reported each year. Recent studies have revealed an oncogenic role of activated signal transducer and activator of transcription 3 (Stat3 in many human tumors, especially in those of epithelial origin, including skin SCC. Stat3 is a mediator of numerous growth factor and cytokine signaling pathways, all of which activate it through phosphorylation of tyrosine 705. Results To further address the role of Stat3 in skin SCC tumorigenesis, we have analyzed a panel of human skin-derived cell lines ranging from normal human epidermal keratinocytes (NHEK, to non-tumorigenic transformed skin cells (HaCaT, to highly tumorigenic cells (SRB1-m7 and SRB12-p9 and observed a positive correlation between Stat3 phosphorylation and SCC malignancy. We next determined the role of Stat3 activity in cell proliferation and viability under serum-free culture conditions. This was accomplished by suppressing Stat3 activity in the SRB12-p9 cells through stable expression of a dominant negative acting form of Stat3β, which contains a tyrosine 705 to phenylalanine mutation (S3DN. The S3DN cells behaved similar to parental SRB12-p9 cells when cultured in optimal growth conditions, in the presence of 10% fetal calf serum. However, unlike the SRB12-p9 cells, S3DN cells underwent apoptotic cell death when cultured in serum-free medium (SFM. This was evidenced by multiple criteria, including accumulation of sub-G1 particles, induced PARP cleavage, and acquisition of the characteristic morphological changes associated with apoptosis. Conclusion This study provides direct evidence for a role for Stat3 in maintaining cell survival in the conditions of exogenous growth factor deprivation produced by culture in SFM. We also propose that delivery of the S3DN gene or

  16. Variant G6PD levels promote tumor cell proliferation or apoptosis via the STAT3/5 pathway in the human melanoma xenograft mouse model

    International Nuclear Information System (INIS)

    Hu, Tao; Zhang, Chunhua; Tang, Qiongling; Su, Yanan; Li, Bo; Chen, Long; Zhang, Zheng; Cai, Tianchi; Zhu, Yuechun

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD), elevated in tumor cells, catalyzes the first reaction in the pentose-phosphate pathway. The regulation mechanism of G6PD and pathological change in human melanoma growth remains unknown. HEM (human epidermal melanocyte) cells and human melanoma cells with the wild-type G6PD gene (A375-WT), G6PD deficiency (A375-G6PD∆), G6PD cDNA overexpression (A375-G6PD∆-G6PD-WT), and mutant G6PD cDNA (A375-G6PD∆-G6PD-G487A) were subcutaneously injected into 5 groups of nude mice. Expressions of G6PD, STAT3, STAT5, cell cycle-related proteins, and apoptotic proteins as well as mechanistic exploration of STAT3/STAT5 were determined by quantitative real-time PCR (qRT-PCR), immunohistochemistry and western blot. Delayed formation and slowed growth were apparent in A375-G6PD∆ cells, compared to A375-WT cells. Significantly decreased G6PD expression and activity were observed in tumor tissues induced by A375-G6PD∆, along with down-regulated cell cycle proteins cyclin D1, cyclin E, p53, and S100A4. Apoptosis-inhibited factors Bcl-2 and Bcl-xl were up-regulated; however, apoptosis factor Fas was down-regulated, compared to A375-WT cells. Moderate protein expressions were observed in A375-G6PD∆-G6PD-WT and A375-G6PD∆-G6PD-G487A cells. G6PD may regulate apoptosis and expression of cell cycle-related proteins through phosphorylation of transcription factors STAT3 and STAT5, thus mediating formation and growth of human melanoma cells. Further study will, however, be required to determine potential clinical applications

  17. STAT5 induces miR-21 expression in cutaneous T cell lymphoma

    DEFF Research Database (Denmark)

    Lindahl, Lise M; Fredholm, Simon; Joseph, Claudine

    2016-01-01

    was inhibited by Tofacitinib (CP-690550), a clinical-grade JAK3 inhibitor. Chromatin immunoprecipitation (ChIP) analysis showed direct binding of STAT5 to the miR-21 promoter. Cytokine starvation ex vivo triggered a decrease in miR-21 expression, whereas IL-2 induced an increased miR-21 expression in primary SS...

  18. Regulation of c–myc expression by IFN–γ through Stat1-dependent and -independent pathways

    Science.gov (United States)

    Ramana, Chilakamarti V.; Grammatikakis, Nicholas; Chernov, Mikhail; Nguyen, Hannah; Goh, Kee Chuan; Williams, Bryan R.G.; Stark, George R.

    2000-01-01

    Interferons (IFNs) inhibit cell growth in a Stat1-dependent fashion that involves regulation of c–myc expression. IFN–γ suppresses c–myc in wild-type mouse embryo fibroblasts, but not in Stat1-null cells, where IFNs induce c–myc mRNA rapidly and transiently, thus revealing a novel signaling pathway. Both tyrosine and serine phosphorylation of Stat1 are required for suppression. Induced expression of c–myc is likely to contribute to the proliferation of Stat1-null cells in response to IFNs. IFNs also suppress platelet-derived growth factor (PDGF)-induced c–myc expression in wild-type but not in Stat1-null cells. A gamma-activated sequence element in the promoter is necessary but not sufficient to suppress c–myc expression in wild-type cells. In PKR-null cells, the phosphorylation of Stat1 on Ser727 and transactivation are both defective, and c–myc mRNA is induced, not suppressed, in response to IFN–γ. A role for Raf–1 in the Stat1-independent pathway is revealed by studies with geldanamycin, an HSP90-specific inhibitor, and by expression of a mutant of p50cdc37 that is unable to recruit HSP90 to the Raf–1 complex. Both agents abrogated the IFN–γ-dependent induction of c–myc expression in Stat1-null cells. PMID:10637230

  19. Identification, gene expression and immune function of the novel Bm-STAT gene in virus-infected Bombyx mori.

    Science.gov (United States)

    Zhang, Xiaoli; Guo, Rui; Kumar, Dhiraj; Ma, Huanyan; Liu, Jiabin; Hu, Xiaolong; Cao, Guangli; Xue, Renyu; Gong, Chengliang

    2016-02-10

    Genes in the signal transducer and activator of transcription (STAT) family are vital for activities including gene expression and immune response. To investigate the functions of the silkworm Bombyx mori STAT (Bm-STAT) gene in antiviral immunity, two Bm-STAT gene isoforms, Bm-STAT-L for long form and Bm-STAT-S for short form, were cloned. Sequencing showed that the open reading frames were 2313 bp encoding 770 amino acid residues for Bm-STAT-L and 2202 bp encoding 734 amino acid residues for Bm-STAT-S. The C-terminal 42 amino acid residues of Bm-STAT-L were different from the last 7 amino acid residues of Bm-STAT-S. Immunofluorescence showed that Bm-STAT was primarily distributed in the nucleus. Transcription levels of Bm-STAT in different tissues were determined by quantitative PCR, and the results revealed Bm-STAT was mainly expressed in testes. Western blots showed two bands with molecular weights of 70 kDa and 130 kDa in testes, but no bands were detected in ovaries by using anti-Bm-STAT antibody as the primary antibody. Expression of Bm-STAT in hemolymph at 48 h post infection with B. mori macula-like virus (BmMLV) was slightly enhanced compared with controls, suggesting a weak response induced by infection with BmMLV. Hemocyte immunofluorescence showed that Bm-STAT expression was elevated in B. mori nucleopolyhedrovirus (BmNPV)-infected cells. Moreover, resistance of BmN cells to BmNPV was reduced by downregulation of Bm-STAT expression and increased by upregulation. Resistance of BmN cells to BmCPV was not significantly improved by upregulating Bm-STAT expression. Therefore, we concluded that Bm-STAT is a newly identified insect gene of the STAT family. The JAK-STAT pathway has a more specialized role in antiviral defense in silkworms, but JAK-STAT pathway is not triggered in response to all viruses. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Thunbergia alata inhibits inflammatory responses through the inactivation of ERK and STAT3 in macrophages.

    Science.gov (United States)

    Cho, Young-Chang; Kim, Ye Rang; Kim, Ba Reum; Bach, Tran The; Cho, Sayeon

    2016-11-01

    Thunbergia alata (Acanthaceae) has been used traditionally to treat various inflammatory diseases such as fever, cough and diarrhea in East African countries including Uganda and Kenya. However, systemic studies elucidating the anti-inflammatory effects and precise mechanisms of action of T. alata have not been conducted, to the best of our knowledge. To address these concerns, we explored the anti-inflammatory effects of a methanol extract of T. alata (MTA) in macrophages. Non-cytotoxic concentrations of MTA (≤300 µg/ml) inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)‑stimulated RAW 264.7 macrophages by transcriptional regulation of inducible NO synthase in a dose-dependent manner. The expression of cyclooxygenase-2, the enzyme responsible for the production of prostaglandin E2, was unchanged by MTA at the mRNA and protein levels. MTA treatment inhibited interleukin (IL)-6 production and decreased the mRNA expression of pro‑inflammatory cytokines, including IL-6 and IL-1β. Tumor necrosis factor-α production and mRNA expression were not regulated by MTA treatment. The decreased production of inflammatory mediators by MTA was followed by the reduced phosphorylation of extracellular signal‑regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3). MTA treatment had no effect on activity of other mitogen‑activated protein kinases (MAPKs), p38, c-Jun N-terminal kinase (JNK), and nuclear factor-κB (NF-κB). These results indicate that MTA selectively inhibits the excessive production of inflammatory mediators in LPS-stimulated murine macrophages by reducing the activity of ERK and STAT3, suggesting that MTA plays an important inhibitory role in the modulation of severe inflammation.

  1. Sustained Submicromolar H2O2 Levels Induce Hepcidin via Signal Transducer and Activator of Transcription 3 (STAT3)*

    Science.gov (United States)

    Millonig, Gunda; Ganzleben, Ingo; Peccerella, Teresa; Casanovas, Guillem; Brodziak-Jarosz, Lidia; Breitkopf-Heinlein, Katja; Dick, Tobias P.; Seitz, Helmut-Karl; Muckenthaler, Martina U.; Mueller, Sebastian

    2012-01-01

    The peptide hormone hepcidin regulates mammalian iron homeostasis by blocking ferroportin-mediated iron export from macrophages and the duodenum. During inflammation, hepcidin is strongly induced by interleukin 6, eventually leading to the anemia of chronic disease. Here we show that hepatoma cells and primary hepatocytes strongly up-regulate hepcidin when exposed to low concentrations of H2O2 (0.3–6 μm), concentrations that are comparable with levels of H2O2 released by inflammatory cells. In contrast, bolus treatment of H2O2 has no effect at low concentrations and even suppresses hepcidin at concentrations of >50 μm. H2O2 treatment synergistically stimulates hepcidin promoter activity in combination with recombinant interleukin-6 or bone morphogenetic protein-6 and in a manner that requires a functional STAT3-responsive element. The H2O2-mediated hepcidin induction requires STAT3 phosphorylation and is effectively blocked by siRNA-mediated STAT3 silencing, overexpression of SOCS3 (suppressor of cytokine signaling 3), and antioxidants such as N-acetylcysteine. Glycoprotein 130 (gp130) is required for H2O2 responsiveness, and Janus kinase 1 (JAK1) is required for adequate basal signaling, whereas Janus kinase 2 (JAK2) is dispensable upstream of STAT3. Importantly, hepcidin levels are also increased by intracellular H2O2 released from the respiratory chain in the presence of rotenone or antimycin A. Our results suggest a novel mechanism of hepcidin regulation by nanomolar levels of sustained H2O2. Thus, similar to cytokines, H2O2 provides an important regulatory link between inflammation and iron metabolism. PMID:22932892

  2. [Knockdown of STAT3 inhibits proliferation and migration of HepG2 hepatoma cells induced by IFN1].

    Science.gov (United States)

    Li, Xiaofang; Wang, Yuqi; Yan, Ben; Fang, Peipei; Ma, Chao; Xu, Ning; Fu, Xiaoyan; Liang, Shujuan

    2018-02-01

    Objective To prepare lentiviruses expressing shRNA sequences targeting human signal transducer and activator of transcription 3 (STAT3) and detect the effect of STAT3 knockdown on type I interferon (IFN1)-induced proliferation and migration in HepG2 cells. Methods Four STAT3-targeting shRNA sequences (shRNA1-shRNA4) and one control sequence (Ctrl shRNA) were selected and cloned respectively into pLKO.1-sp6-pgk-GFP to construct shRNA-expressing vectors. Along with backbone psPAX2 and pMD2.G vectors, they were separately transfected into HEK293T cells to prepare lentiviruses. HepG2 cells were infected with the lentiviruses. Cytoplastic STAT3 level was detected by Western blotting to screen effective shRNA sequence(s) targeting STAT3. Proliferation and migration of HepG2 cells were analyzed by CCK-8 assay and Transwell TM migration and scratching assay, respectively. To detect the effect of IFN1 on cell proliferation and migration of HepG2 cells, the cells were treated with 2000 U/mL IFNα2b for indicated time and the activation of IFN-triggered STAT1 signal transduction was assayed by Western blotting. Results Two most effective STAT3-targeting shRNA sequences shRNA1 and shRNA2 were selected, and the expression of both STAT3 shRNA significantly decreased proliferation and migration of HepG2 cells. When treated with IFNα2b, 2000 U/mL of IFN1 showed more competent in attenuating growth and migration of HepG2 cells. Our data further proved that knockdown of STAT3 increased the phosphorylation of STAT1, and IFNα2b further enhanced the activation of STAT1 signaling in HepG2 cells. Conclusion Knockdown of STAT3 inhibits cell migration and growth, and rescues IFN response through up-regulating STAT1 signal transduction in HepG2 hepatoma cells.

  3. Inhibition of STAT-3 results in greater cetuximab sensitivity in head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Bonner, James A.; Yang, Eddy S.; Trummell, Hoa Q.; Nowsheen, Somaira; Willey, Christopher D.; Raisch, Kevin P.

    2011-01-01

    Objective: The inhibition of epidermal growth factor receptor (EGFr) with the monoclonal antibody cetuximab reduces cell proliferation and survival which correlates with increased DNA damage. Since the signal transducer and activator of transcription-3 (STAT-3) is involved in the EGFr-induced signaling pathway, we hypothesized that depletion of STAT-3 may augment cetuximab-induced processes in human head and neck cancer cells. Materials and methods: Human head and neck squamous carcinoma cells (UM-SCC-5) were transfected with short hairpin RNA (shRNA) against STAT-3 (STAT3-2.4 and 2.9 cells). A mutated form of this shRNA was transfected for a control (NEG4.17 cells). Radiosensitivity was assessed by a standard colony formation assay. Proliferation was assessed by daily cell counts following treatment and apoptosis was assessed by an annexin V-FITC assay. The alkaline comet assay was used to assess DNA damage. Results: The STAT-3 knockdown cells (STAT3-2.4 and STAT3-2.9 cells) demonstrated enhanced radiosensitivity compared to control NEG4.17 cells, which correlated with increased apoptosis. Also, the STAT-3 knockdown cells demonstrated decreased proliferation with cetuximab treatments compared to control cells (NEG4.17). The increased cetuximab sensitivity of the STAT-3 knockdown cells correlated with increased apoptosis and DNA damage compared to control cells (NEG4.17). Conclusion: These studies revealed that the greater anti-proliferative effects and increased cytotoxicity of cetuximab in the STAT3-2.4 and STAT3-2.9 cells compared to control NEG4.17 cells, may be a result of STAT3-mediated effects on cellular apoptosis and DNA damage.

  4. Avicin D: a protein reactive plant isoprenoid dephosphorylates Stat 3 by regulating both kinase and phosphatase activities.

    Directory of Open Access Journals (Sweden)

    Valsala Haridas

    Full Text Available Avicins, a class of electrophilic triterpenoids with pro-apoptotic, anti-inflammatory and antioxidant properties, have been shown to induce redox-dependant post-translational modification of cysteine residues to regulate protein function. Based on (a the cross-talk that occurs between redox and phosphorylation processes, and (b the role of Stat3 in the process of apoptosis and carcinogenesis, we chose to study the effects of avicins on the processes of phosphorylation/dephosphorylation in Stat3. Avicins dephosphorylate Stat3 in a variety of human tumor cell lines, leading to a decrease in the transcriptional activity of Stat3. The expression of Stat3-regulated proteins such as c-myc, cyclin D1, Bcl2, survivin and VEGF were reduced in response to avicin treatment. Underlying avicin-induced dephosphorylation of Stat3 was dephosphorylation of JAKs, as well as activation of protein phosphatase-1. Downregulation of both Stat3 activity and expression of Stat 3-controlled pro-survival proteins, contributes to the induction of apoptosis in avicin treated tumor cells. Based on the role of Stat3 in inflammation and wounding, and the in vivo inhibition of VEGF by avicins in a mouse skin carcinogenesis model, it is likely that avicin-induced inhibition of Stat3 activity results in the suppression of the pro-inflammatory and pro-oxidant stromal environment of tumors. Activation of PP-1, which also acts as a cellular economizer, combined with the redox regulation by avicins, can aid in redirecting metabolism from growth promoting anabolic to energy sparing pathways.

  5. STAT3 activation is associated with cerebrospinal fluid interleukin-10 (IL-10) in primary central nervous system diffuse large B cell lymphoma.

    Science.gov (United States)

    Mizowaki, Takashi; Sasayama, Takashi; Tanaka, Kazuhiro; Mizukawa, Katsu; Takata, Kumi; Nakamizo, Satoshi; Tanaka, Hirotomo; Nagashima, Hiroaki; Nishihara, Masamitsu; Hirose, Takanori; Itoh, Tomoo; Kohmura, Eiji

    2015-09-01

    Signal transducers and activators of transcription 3 (STAT3) are activated by various cytokines and oncogenes; however, the activity and pathogenesis of STAT3 in diffuse large B cell lymphoma of the central nervous system have not been thoroughly elucidated. We investigated the phosphorylation levels of STAT3 in 40 specimens of primary central nervous system diffuse large B-cell lymphoma (PCNS DLBCL) and analyzed the association between phsopho-STAT3 (pSTAT3) expression and cerebrospinal fluid (CSF) concentration of interleukin-10 (IL-10) or IL-6. Immunohistochemistry and Western blot analysis revealed that most of the specimens in PCNS DLBCL expressed pSTST3 protein, and a strong phosphorylation levels of STAT3 was statistically associated with high CSF IL-10 levels, but not with CSF IL-6 levels. Next, we demonstrated that recombinant IL-10 and CSF containing IL-10 induced the phosphorylation of STAT3 in PCNS DLBCL cells. Furthermore, molecular subtype classified by Hans' algorithm was correlated with pSTAT3 expression levels and CSF IL-10 levels. These results suggest that the STAT3 activity is correlated with CSF IL-10 level, which is a useful marker for STAT3 activity in PCNS DLBCLs.

  6. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice.

    Science.gov (United States)

    Takeda, K; Kamanaka, M; Tanaka, T; Kishimoto, T; Akira, S

    1996-10-15

    IL-13 shares many biologic responses with IL-4. In contrast to well-characterized IL-4 signaling pathways, which utilize STAT6 and 4PS/IRS2, IL-13 signaling pathways are poorly understood. Recent studies performed with STAT6-deficient mice have demonstrated that STAT6 plays an essential role in IL-4 signaling. In this study, the functions of peritoneal macrophages of STAT6-deficient mice in response to IL-13 were analyzed. In STAT6-deficient mice, neither morphologic changes nor augmentation of MHC class II expression in response to IL-13 was observed. In addition, IL-13 did not decrease the nitric oxide production by activated macrophages. Taken together, these results suggest that the macrophage functions in response to IL-13 were impaired in STAT6-deficient mice, indicating that IL-13 and IL-4 share the signaling pathway via STAT6.

  7. [HSP90 inhibitor 17-AAG plays an important role in JAK3/STAT5 signaling pathways in HTLV-1 infection cell line HUT-102].

    Science.gov (United States)

    Yang, Q Q; Tan, H; Fu, Z P; Ma, Q; Song, J L

    2017-08-14

    Objective: To analyze whether heat-shock protein 90 (HSP90) be involved in a permanently abnormal activated JAK/STAT signaling in ATL cells in vitro. Methods: The effect of 17-AAG on proliferation of ATL cell lines HUT-102 was assessed using CCK8 at different time points. Cell apoptosis was measured by flow cytometry. The specific proteins HSP90, STAT5, p-STAT5 and JAK3 were detected by Western blotting. Results: Overexpression of HSP90 in HUT-102 cell lines was disclosed ( P AAG led to reduced cell proliferation, but there was no significant change in terms of cell proliferation when the concentration of 17-AAG between 2 000-8 000 nmol/L ( P >0.05) . 17-AAG induced cell apoptosis in different time-points and concentrations. 17-AAG don't affect the expression of JAK3 gene. Conclusion: This study indicated that JAK3 as HSP90 client protein was aberrantly activated in HTLV-1-infected T-cell lines, leading to constitutive activation of p-STAT5 in JAK/STAT signal pathway, which demonstrated that HSP90-inhibitors 17-AAG inhibited the growth of HTLV-1-infected T-cell lines by reducing cell proliferation and inducing cell apoptosis.

  8. MIG-6 negatively regulates STAT3 phosphorylation in uterine epithelial cells

    Science.gov (United States)

    Yoo, Jung-Yoon; Yang, Woo Sub; Lee, Jae Hee; Kim, Byung Gak; Broaddus, Russell R.; Lim, Jeong M.; Kim, Tae Hoon; Jeong, Jae-Wook

    2017-01-01

    Endometrial cancer is the most common malignancy of the female genital tract. Progesterone (P4) has been used for several decades in endometrial cancer treatment, especially in women who wish to retain fertility. However, it is unpredictable which patients will respond to P4 treatment and which may have a P4 resistant cancer. Therefore, identifying the mechanism of P4 resistance is essential to improve the therapies for endometrial cancer. Mitogen-inducible gene 6 (Mig-6) is a critical mediator of progesterone receptor (PGR) action in the uterus. In order to study the function of Mig-6 in P4 resistance, we generated a mouse model in which we specifically ablated Mig-6 in uterine epithelial cells using Sprr2f-cre mice (Sprr2fcre+Mig-6f/f). Female mutant mice develop endometrial hyperplasia due to aberrant phosphorylation of STAT3 and proliferation of the endometrial epithelial cells. The results from our immunoprecipitation and cell culture experiments showed that MIG-6 inhibited phosphorylation of STAT3 via protein interactions. Our previous study showed P4 resistance in mice with Mig-6 ablation in Pgr positive cells (Pgrcre/+Mig-6f/f). However, Sprr2fcre+Mig-6f/f mice were P4 responsive. P4 treatment significantly decreased STAT3 phosphorylation and epithelial proliferation in the uterus of mutant mice. We showed that Mig-6 has an important function of tumor suppressor via inhibition of STAT3 phosphorylation in uterine epithelial cells and the anti-tumor effects of P4 are mediated by the endometrial stroma. This data helps to develop a new signaling pathway in the regulation of steroid hormones in the uterus, and to overcome P4 resistance in human reproductive diseases, such as endometrial cancer. PMID:28925396

  9. Reciprocal activation of α5-nAChR and STAT3 in nicotine-induced human lung cancer cell proliferation.

    Science.gov (United States)

    Zhang, Yao; Jia, Yanfei; Li, Ping; Li, Huanjie; Xiao, Dongjie; Wang, Yunshan; Ma, Xiaoli

    2017-07-20

    Cigarette smoking is the top environmental risk factor for lung cancer. Nicotine, the addictive component of cigarettes, induces lung cancer cell proliferation, invasion and migration via the activation of nicotinic acetylcholine receptors (nAChRs). Genome-wide association studies (GWAS) show that CHRNA5 gene encoding α5-nAChR is especially relevant to lung cancer. However, the mechanism of this subunit in lung cancer is not clear. In the present study, we demonstrate that the expression of α5-nAChR is correlated with phosphorylated STAT3 (pSTAT3) expression, smoking history and lower survival of non-small cell lung cancer (NSCLC) samples. Nicotine increased the levels of α5-nAChR mRNA and protein in NSCLC cell lines and activated the JAK2/STAT3 signaling cascade. Nicotine-induced activation of JAK2/STAT3 signaling was inhibited by the silencing of α5-nAChR. Characterization of the CHRNA5 promoter revealed four STAT3-response elements. ChIP assays confirmed that the CHRNA5 promoter contains STAT3 binding sites. By silencing STAT3 expression, nicotine-induced upregulation of α5-nAChR was suppressed. Downregulation of α5-nAChR and/or STAT3 expression inhibited nicotine-induced lung cancer cell proliferation. These results suggest that there is a feedback loop between α5-nAChR and STAT3 that contributes to the nicotine-induced tumor cell proliferation, which indicates that α5-nAChR is an important therapeutic target involved in tobacco-associated lung carcinogenesis. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  10. Arctigenin promotes apoptosis in ovarian cancer cells via the iNOS/NO/STAT3/survivin signalling.

    Science.gov (United States)

    Huang, Ke; Li, Li-an; Meng, Yuan-guang; You, Yan-qin; Fu, Xiao-yu; Song, Lei

    2014-12-01

    Arctigenin is a biologically active lignan extracted from the seeds of Arctium lappa and shows anticancer activity against a variety of human cancers. The aim of this study was to determine the effects of arctigenin on ovarian cancer cell proliferation and survival and associated molecular mechanisms. Human ovarian cancer OVCAR3 and SKOV3 cells were treated with arctigenin, and cell proliferation and apoptosis were assessed. Western blot analysis was used to examine signal transducer and activator of transcription-3 (STAT3) phosphorylation and survivin and inducible nitric oxide synthase (iNOS) expression. The involvement of STAT3/survivin/iNOS/NO signalling in arctigenin action was checked. Arctigenin treatment resulted in a significant and dose-dependent inhibition of cell proliferation. Arctigenin-treated cells showed a 4-6 times increase in the percentage of apoptosis, compared with control cells. Pre-treatment with Ac-DEVD-CHO, a specific inhibitor of caspase-3, counteracted the induction of apoptosis by arctigenin. Arctigenin treatment significantly inhibited STAT3 phosphorylation and survivin and iNOS expression. Arctigenin-induced apoptosis was impaired by pre-transfection with survivin-expressing plasmid or addition of chemical nitric oxide (NO) donors. Additionally, exogenous NO prevented the suppression of STAT3 phosphorylation and survivin expression by arctigenin. Arctigenin treatment inhibits the proliferation and induces caspase-3-dependent apoptosis of ovarian cancer cells. Suppression of iNOS/NO/STAT3/survivin signalling is causally linked to the anticancer activity of arctigenin. Therefore, arctigenin may be applicable to anticancer therapy for ovarian cancer. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  11. Deregulation of a STAT3-IL8 Signaling Pathway Promotes Human Glioblastoma Cell Proliferation and Invasiveness

    Science.gov (United States)

    de la Iglesia, Núria; Konopka, Genevieve; Lim, Kah Leong; Nutt, Catherine L.; Bromberg, Jacqueline F.; Frank, David A.; Mischel, Paul S.; Louis, David N.; Bonni, Azad

    2009-01-01

    Inactivation of the tumor suppressor PTEN is recognized as a major event in the pathogenesis of the brain tumor glioblastoma. However, the mechanisms by which PTEN loss specifically impacts the malignant behavior of glioblastoma cells including their proliferation and propensity for invasiveness remain poorly understood. Genetic studies suggest that the transcription factor STAT3 harbors a PTEN-regulated tumor suppressive function in mouse astrocytes. Here, we report that STAT3 plays a critical tumor suppressive role in PTEN-deficient human glioblastoma cells. Endogenous STAT3 signaling is specifically inhibited in PTEN-deficient glioblastoma cells. Strikingly, reactivation of STAT3 in PTEN-deficient glioblastoma cells inhibits their proliferation, invasiveness, and ability to spread on myelin. We also identify the chemokine IL8 as a novel target gene of STAT3 in human glioblastoma cells. Activated STAT3 occupies the endogenous IL8 promoter and directly represses IL8 transcription. Consistent with these results, IL8 is upregulated in PTEN-deficient human glioblastoma tumors. Importantly, IL8 repression mediates STAT3-inhibition of glioblastoma cell proliferation, invasiveness, and spreading on myelin. Collectively, our findings uncover a novel link between STAT3 and IL8 whose deregulation plays a key role in the malignant behavior of PTEN-deficient glioblastoma cells. These studies suggest that STAT3 activation or IL8 inhibition may have potential in patient-tailored treatment of PTEN-deficient brain tumors. PMID:18524891

  12. Inactivation of STAT3 Signaling Impairs Hair Cell Differentiation in the Developing Mouse Cochlea.

    Science.gov (United States)

    Chen, Qianqian; Quan, Yizhou; Wang, Naitao; Xie, Chengying; Ji, Zhongzhong; He, Hao; Chai, Renjie; Li, Huawei; Yin, Shankai; Chin, Y Eugene; Wei, Xunbin; Gao, Wei-Qiang

    2017-07-11

    Although STAT3 signaling is demonstrated to regulate sensory cell differentiation and regeneration in the zebrafish, its exact role is still unclear in mammalian cochleae. Here, we report that STAT3 and its activated form are specifically expressed in hair cells during mouse cochlear development. Importantly, conditional cochlear deletion of Stat3 leads to an inhibition on hair cell differentiation in mice in vivo and in vitro. By cell fate analysis, inactivation of STAT3 signaling shifts the cell division modes from asymmetric to symmetric divisions from supporting cells. Moreover, inhibition of Notch signaling stimulates STAT3 phosphorylation, and inactivation of STAT3 signaling attenuates production of supernumerary hair cells induced by a Notch pathway inhibitor. Our findings highlight an important role of the STAT3 signaling during mouse cochlear hair cell differentiation and may have clinical implications for the recovery of hair cell loss-induced hearing impairment. Copyright © 2017 International Society for Stem Cell Research. Published by Elsevier Inc. All rights reserved.

  13. Inactivation of STAT3 Signaling Impairs Hair Cell Differentiation in the Developing Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Qianqian Chen

    2017-07-01

    Full Text Available Although STAT3 signaling is demonstrated to regulate sensory cell differentiation and regeneration in the zebrafish, its exact role is still unclear in mammalian cochleae. Here, we report that STAT3 and its activated form are specifically expressed in hair cells during mouse cochlear development. Importantly, conditional cochlear deletion of Stat3 leads to an inhibition on hair cell differentiation in mice in vivo and in vitro. By cell fate analysis, inactivation of STAT3 signaling shifts the cell division modes from asymmetric to symmetric divisions from supporting cells. Moreover, inhibition of Notch signaling stimulates STAT3 phosphorylation, and inactivation of STAT3 signaling attenuates production of supernumerary hair cells induced by a Notch pathway inhibitor. Our findings highlight an important role of the STAT3 signaling during mouse cochlear hair cell differentiation and may have clinical implications for the recovery of hair cell loss-induced hearing impairment.

  14. Enhancing SHP-1 expression with 5-azacytidine may inhibit STAT3 activation and confer sensitivity in lestaurtinib (CEP-701)-resistant FLT3-ITD positive acute myeloid leukemia

    International Nuclear Information System (INIS)

    Al-Jamal, Hamid Ali Nagi; Mat Jusoh, Siti Asmaa; Hassan, Rosline; Johan, Muhammad Farid

    2015-01-01

    Tumor-suppressor genes are inactivated by methylation in several cancers including acute myeloid leukemia (AML). Src homology-2 (SH2)-containing protein-tyrosine phosphatase 1 (SHP-1) is a negative regulator of the JAK/STAT pathway. Transcriptional silencing of SHP-1 plays a critical role in the development and progression of cancers through STAT3 activation. 5-Azacytidine (5-Aza) is a DNA methyltransferase inhibitor that causes DNA demethylation resulting in re-expression of silenced SHP-1. Lestaurtinib (CEP-701) is a multi-targeted tyrosine kinase inhibitor that potently inhibits FLT3 tyrosine kinase and induces hematological remission in AML patients harboring the internal tandem duplication of the FLT3 gene (FLT3-ITD). However, the majority of patients in clinical trials developed resistance to CEP-701. Therefore, the aim of this study, was to assess the effect of re-expression of SHP-1 on sensitivity to CEP-701 in resistant AML cells. Resistant cells harboring the FLT3-ITD were developed by overexposure of MV4-11 to CEP-701, and the effects of 5-Aza treatment were investigated. Apoptosis and cytotoxicity of CEP-701 were determined using Annexin V and MTS assays, respectively. Gene expression was performed by quantitative real-time PCR. STATs activity was examined by western blotting and the methylation profile of SHP-1 was studied using MS-PCR and pyrosequencing analysis. Repeated-measures ANOVA and Kruskal–Wallis tests were used for statistical analysis. The cytotoxic dose of CEP-701 on resistant cells was significantly higher in comparison with parental and MV4-11R-cep + 5-Aza cells (p = 0.004). The resistant cells showed a significant higher viability and lower apoptosis compared with other cells (p < 0.001). Expression of SHP-1 was 7-fold higher in MV4-11R-cep + 5-Aza cells compared to parental and resistant cells (p = 0.011). STAT3 was activated in resistant cells. Methylation of SHP-1 was significantly decreased in MV4-11R-cep + 5-Aza cells (p = 0

  15. Activation of intestinal epithelial Stat3 orchestrates tissue defense during gastrointestinal infection.

    Directory of Open Access Journals (Sweden)

    Nadine Wittkopf

    Full Text Available Gastrointestinal infections with EHEC and EPEC are responsible for outbreaks of diarrheal diseases and represent a global health problem. Innate first-line-defense mechanisms such as production of mucus and antimicrobial peptides by intestinal epithelial cells are of utmost importance for host control of gastrointestinal infections. For the first time, we directly demonstrate a critical role for Stat3 activation in intestinal epithelial cells upon infection of mice with Citrobacter rodentium - a murine pathogen that mimics human infections with attaching and effacing Escherichia coli. C. rodentium induced transcription of IL-6 and IL-22 in gut samples of mice and was associated with activation of the transcription factor Stat3 in intestinal epithelial cells. C. rodentium infection induced expression of several antimicrobial peptides such as RegIIIγ and Pla2g2a in the intestine which was critically dependent on Stat3 activation. Consequently, mice with specific deletion of Stat3 in intestinal epithelial cells showed increased susceptibility to C. rodentium infection as indicated by high bacterial load, severe gut inflammation, pronounced intestinal epithelial cell death and dissemination of bacteria to distant organs. Together, our data implicate an essential role for Stat3 activation in intestinal epithelial cells during C. rodentium infection. Stat3 concerts the host response to bacterial infection by controlling bacterial growth and suppression of apoptosis to maintain intestinal epithelial barrier function.

  16. p-STAT3 in luminal breast cancer: Integrated RNA-protein pooled analysis and results from the BIG 2-98 phase III trial.

    Science.gov (United States)

    Sonnenblick, Amir; Salgado, Roberto; Brohée, Sylvain; Zahavi, Tamar; Peretz, Tamar; Van den Eynden, Gert; Rouas, Ghizlane; Salmon, Asher; Francis, Prudence A; Di Leo, Angelo; Crown, John P A; Viale, Giuseppe; Daly, Laura; Javdan, Bahar; Fujisawa, Sho; De Azambuja, Evandro; Lieveke, Ameye; Piccart, Martine J; Bromberg, Jacqueline F; Sotiriou, Christos

    2018-02-01

    In the present study, in order to investigate the role of signal transducer and activator of transcription 3 (STAT3) in estrogen receptor (ER)-positive breast cancer prognosis, we evaluated the phosphorylated STAT3 (p-STAT3) status and investigated its effect on the outcome in a pooled analysis and in a large prospective adjuvant trial. By using the TCGA repository, we developed gene signatures that reflected the level of p-STAT3. Using pooled analysis of the expression data from luminal breast cancer patients, we assessed the effects of the p-STAT3 expression signature on prognosis. We further validated the p-STAT3 prognostic effect using immunohistochemistry (IHC) and immunofluorescence staining of p-STAT3 tissue microarrays from a large randomised prospective trial. Our analysis demonstrated that p-STAT3 expression was elevated in luminal A-type breast cancer (Kruskal-Wallis test, PBIG 2-98 randomised trial. With a median follow-up of 10.1 years, p-STAT3 was associated with a reduced risk of recurrence in ER-positive/HER2-negative breast cancer (Cox univariate HR, 0.66; 95% CI, 0.44-0.98; P=0.04). On the whole, our data indicate that p-STAT3 is associated with an improved outcome in ER-positive breast cancer.

  17. Analysis of STAT4 expression in cutaneous T-cell lymphoma (CTCL) patients and patient-derived cell lines

    DEFF Research Database (Denmark)

    Litvinov, Ivan V; Cordeiro, Brendan; Fredholm, Simon Mayland

    2014-01-01

    Deregulation of STAT signaling has been implicated in the pathogenesis for a variety of cancers, including CTCL. Recent reports indicate that loss of STAT4 expression is an important prognostic marker for CTCL progression and is associated with the acquisition of T helper 2 cell phenotype......R-155 leads to upregulation in STAT4 expression in MyLa cells. In summary, our results suggest that loss of STAT4 expression and associated switch to Th2 phenotype during Mycosis Fungoides progression may be driven via aberrant histone acetylation and/or upregulation of oncogenic miR-155 microRNA....... by malignant cells. However, little is known about the molecular mechanism behind the downregulation of STAT4 in this cancer. In the current work we test the expression of STAT4 and STAT6 via RT-PCR and/or Western Blot in CTCL lesional skin samples and in immortalized patient-derived cell lines...

  18. Loss of cytokine-STAT5 signaling in the CNS and pituitary gland alters energy balance and leads to obesity.

    Directory of Open Access Journals (Sweden)

    Ji-Yeon Lee

    Full Text Available Signal transducers and activators of transcription (STATs are critical components of cytokine signaling pathways. STAT5A and STAT5B (STAT5, the most promiscuous members of this family, are highly expressed in specific populations of hypothalamic neurons in regions known to mediate the actions of cytokines in the regulation of energy balance. To test the hypothesis that STAT5 signaling is essential to energy homeostasis, we used Cre-mediated recombination to delete the Stat5 locus in the CNS. Mutant males and females developed severe obesity with hyperphagia, impaired thermal regulation in response to cold, hyperleptinemia and insulin resistance. Furthermore, central administration of GM-CSF mediated the nuclear accumulation of STAT5 in hypothalamic neurons and reduced food intake in control but not in mutant mice. These results demonstrate that STAT5 mediates energy homeostasis in response to endogenous cytokines such as GM-CSF.

  19. NIK is required for NF-κB-mediated induction of BAG3 upon inhibition of constitutive protein degradation pathways.

    Science.gov (United States)

    Rapino, F; Abhari, B A; Jung, M; Fulda, S

    2015-03-12

    Recently, we reported that induction of the co-chaperone Bcl-2-associated athanogene 3 (BAG3) is critical for recovery of rhabdomyosarcoma (RMS) cells after proteotoxic stress upon inhibition of the two constitutive protein degradation pathways, that is, the ubiquitin-proteasome system by Bortezomib and the aggresome-autophagy system by histone deacetylase 6 (HDAC6) inhibitor ST80. In the present study, we investigated the molecular mechanisms mediating BAG3 induction under these conditions. Here, we identify nuclear factor-kappa B (NF-κB)-inducing kinase (NIK) as a key mediator of ST80/Bortezomib-stimulated NF-κB activation and transcriptional upregulation of BAG3. ST80/Bortezomib cotreatment upregulates mRNA and protein expression of NIK, which is accompanied by an initial increase in histone H3 acetylation. Importantly, NIK silencing by siRNA abolishes NF-κB activation and BAG3 induction by ST80/Bortezomib. Furthermore, ST80/Bortezomib cotreatment stimulates NF-κB transcriptional activity and upregulates NF-κB target genes. Genetic inhibition of NF-κB by overexpression of dominant-negative IκBα superrepressor (IκBα-SR) or by knockdown of p65 blocks the ST80/Bortezomib-stimulated upregulation of BAG3 mRNA and protein expression. Interestingly, inhibition of lysosomal activity by Bafilomycin A1 inhibits ST80/Bortezomib-stimulated IκBα degradation, NF-κB activation and BAG3 upregulation, indicating that IκBα is degraded via the lysosome in the presence of Bortezomib. Thus, by demonstrating a critical role of NIK in mediating NF-κB activation and BAG3 induction upon ST80/Bortezomib cotreatment, our study provides novel insights into mechanisms of resistance to proteotoxic stress in RMS.

  20. JAK/STAT signaling pathway-mediated immune response in silkworm (Bombyx mori) challenged by Beauveria bassiana.

    Science.gov (United States)

    Geng, Tao; Lv, Ding-Ding; Huang, Yu-Xia; Hou, Cheng-Xiang; Qin, Guang-Xing; Guo, Xi-Jie

    2016-12-20

    Innate immunity was critical in insects defensive system and able to be induced by Janus kinase/signal transducer and activator of transcription cascade transduction (JAK/STAT) signaling pathway. Currently, it had been identified many JAK/STAT signaling pathway-related genes in silkworm, but little function was known on insect innate immunity. To explore the roles of JAK/STAT pathway in antifungal immune response in silkworm (Bombyx mori) against Beauveria bassiana infection, the expression patterns of B. mori C-type lectin 5 (BmCTL5) and genes encoding 6 components of JAK/STAT signaling pathway in silkworm challenged by B. bassiana were analyzed using quantitative real time PCR. Meanwhile the activation of JAK/STAT signaling pathway by various pathogenic micro-organisms and the affect of JAK/STAT signaling pathway inhibitors on antifungal activity in silkworm hemolymph was also detected. Moreover, RNAi assay of BmCTL5 and the affect on expression levels of signaling factors were also analyzed. We found that JAK/STAT pathway could be obviously activated in silkworm challenged with B. bassiana and had no response to bacteria and B. mori cytoplasmic polyhedrosis virus (BmCPV). However, the temporal expression patterns of JAK/STAT signaling pathway related genes were significantly different. B. mori downstream receptor kinase (BmDRK) might be a positive regulator of JAK/STAT signaling pathway in silkworm against B. bassiana infection. Moreover, antifungal activity assay showed that the suppression of JAK/STAT signaling pathway by inhibitors could significantly inhibit the antifungal activity in hemolymph and resulted in increased sensitivity of silkworm to B. bassiana infection, indicating that JAK/STAT signaling pathway might be involved in the synthesis and secretion of antifungal substances. The results of RNAi assays suggested that BmCTL5 might be one pattern recognition receptors for JAK/STAT signaling pathway in silkworm. These findings yield insights for better

  1. The JAK-STAT transcriptional regulator, STAT-5, activates the ATM DNA damage pathway to induce HPV 31 genome amplification upon epithelial differentiation.

    Directory of Open Access Journals (Sweden)

    Shiyuan Hong

    Full Text Available High-risk human papillomavirus (HPV must evade innate immune surveillance to establish persistent infections and to amplify viral genomes upon differentiation. Members of the JAK-STAT family are important regulators of the innate immune response and HPV proteins downregulate expression of STAT-1 to allow for stable maintenance of viral episomes. STAT-5 is another member of this pathway that modulates the inflammatory response and plays an important role in controlling cell cycle progression in response to cytokines and growth factors. Our studies show that HPV E7 activates STAT-5 phosphorylation without altering total protein levels. Inhibition of STAT-5 phosphorylation by the drug pimozide abolishes viral genome amplification and late gene expression in differentiating keratinocytes. In contrast, treatment of undifferentiated cells that stably maintain episomes has no effect on viral replication. Knockdown studies show that the STAT-5β isoform is mainly responsible for this activity and that this is mediated through the ATM DNA damage response. A downstream target of STAT-5, the peroxisome proliferator-activated receptor γ (PPARγ contributes to the effects on members of the ATM pathway. Overall, these findings identify an important new regulatory mechanism by which the innate immune regulator, STAT-5, promotes HPV viral replication through activation of the ATM DNA damage response.

  2. CXCL12 suppresses cisplatin-induced apoptosis through activation of JAK2/STAT3 signaling in human non-small-cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Wang M

    2017-06-01

    Full Text Available Meng Wang,1 Tie Lin,2 Yicun Wang,3 Song Gao,4 Zhaoyang Yang,1 Xuan Hong,1 Gongyan Chen1 1Department of Respiratory Medicine, Harbin Medical University Cancer Hospital, 2Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 3Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 4Department of Clinical Oncology, Shengjing Hospital, China Medical University, Shenyang, People’s Republic of China Aims: Poor efficacy of chemotherapy drugs in non-small-cell lung cancer (NSCLC is the key reason for the failure of treatment, but the mechanism of this remains largely unknown. Stromal cell-derived factor 1-alpha (SDF-1α/CXCL12 is a small chemotactic cytokine protein that plays an important role in tumor progression. In this study, we investigated the anti-apoptotic mechanism of the CXCL12/CXCR4 axis in response to cisplatin, a commonly used chemotherapeutic drug, in human lung adenocarcinoma A549 cells.Methods: CXCL12 blocks cisplatin-induced apoptosis in A549, and the results were shown by propidium iodide/annexin V staining in vitro. The mechanism of CXCL12 stimulating phosphorylation of STAT3 through CXCR4/JAK2 was demonstrated by immunofluorescence and Western blotting. The expression of CXCL12 and p-STAT3 in clinical specimens was examined by immunohistochemistry.Results: CXCL12 significantly decreased the ratio of apoptotic cells and stimulation of phospho-signal transducer and activator of transcription (p-STAT-3 in a time-dependent manner through interaction with CXCR4. Among the signaling molecules downstream of CXCR4, the JAK2/STAT3 pathway plays a predominant role in the anti-apoptotic effect of CXCL12. Analysis of clinical specimens revealed that increased CXCL12 and p-STAT3 expression correlates with enhanced lung cancer progression.Conclusion: These data suggest that CXCR4 contributes to CXCL12-mediated anti-apoptosis by activating JAK2

  3. Target specificity, in vivo pharmacokinetics, and efficacy of the putative STAT3 inhibitor LY5 in osteosarcoma, Ewing's sarcoma, and rhabdomyosarcoma.

    Directory of Open Access Journals (Sweden)

    Peter Y Yu

    Full Text Available STAT3 is a transcription factor involved in cytokine and receptor kinase signal transduction that is aberrantly activated in a variety of sarcomas, promoting metastasis and chemotherapy resistance. The purpose of this work was to develop and test a novel putative STAT3 inhibitor, LY5.An in silico fragment-based drug design strategy was used to create LY5, a small molecule inhibitor that blocks the STAT3 SH2 domain phosphotyrosine binding site, inhibiting homodimerization. LY5 was evaluated in vitro demonstrating good biologic activity against rhabdomyosarcoma, osteosarcoma and Ewing's sarcoma cell lines at high nanomolar/low micromolar concentrations, as well as specific inhibition of STAT3 phosphorylation without effects on other STAT3 family members. LY5 exhibited excellent oral bioavailability in both mice and healthy dogs, and drug absorption was enhanced in the fasted state with tolerable dosing in mice at 40 mg/kg BID. However, RNAi-mediated knockdown of STAT3 did not phenocopy the biologic effects of LY5 in sarcoma cell lines. Moreover, concentrations needed to inhibit ex vivo metastasis growth using the PuMA assay were significantly higher than those needed to inhibit STAT3 phosphorylation in vitro. Lastly, LY5 treatment did not inhibit the growth of sarcoma xenografts or prevent pulmonary metastasis in mice.LY5 is a novel small molecule inhibitor that effectively inhibits STAT3 phosphorylation and cell proliferation at nanomolar concentrations. LY5 demonstrates good oral bioavailability in mice and dogs. However LY5 did not decrease tumor growth in xenograft mouse models and STAT3 knockdown did not induce concordant biologic effects. These data suggest that the anti-cancer effects of LY5 identified in vitro were not mediated through STAT3 inhibition.

  4. Target specificity, in vivo pharmacokinetics, and efficacy of the putative STAT3 inhibitor LY5 in osteosarcoma, Ewing's sarcoma, and rhabdomyosarcoma.

    Science.gov (United States)

    Yu, Peter Y; Gardner, Heather L; Roberts, Ryan; Cam, Hakan; Hariharan, Seethalakshmi; Ren, Ling; LeBlanc, Amy K; Xiao, Hui; Lin, Jiayuh; Guttridge, Denis C; Mo, Xiaokui; Bennett, Chad E; Coss, Christopher C; Ling, Yonghua; Phelps, Mitch A; Houghton, Peter; London, Cheryl A

    2017-01-01

    STAT3 is a transcription factor involved in cytokine and receptor kinase signal transduction that is aberrantly activated in a variety of sarcomas, promoting metastasis and chemotherapy resistance. The purpose of this work was to develop and test a novel putative STAT3 inhibitor, LY5. An in silico fragment-based drug design strategy was used to create LY5, a small molecule inhibitor that blocks the STAT3 SH2 domain phosphotyrosine binding site, inhibiting homodimerization. LY5 was evaluated in vitro demonstrating good biologic activity against rhabdomyosarcoma, osteosarcoma and Ewing's sarcoma cell lines at high nanomolar/low micromolar concentrations, as well as specific inhibition of STAT3 phosphorylation without effects on other STAT3 family members. LY5 exhibited excellent oral bioavailability in both mice and healthy dogs, and drug absorption was enhanced in the fasted state with tolerable dosing in mice at 40 mg/kg BID. However, RNAi-mediated knockdown of STAT3 did not phenocopy the biologic effects of LY5 in sarcoma cell lines. Moreover, concentrations needed to inhibit ex vivo metastasis growth using the PuMA assay were significantly higher than those needed to inhibit STAT3 phosphorylation in vitro. Lastly, LY5 treatment did not inhibit the growth of sarcoma xenografts or prevent pulmonary metastasis in mice. LY5 is a novel small molecule inhibitor that effectively inhibits STAT3 phosphorylation and cell proliferation at nanomolar concentrations. LY5 demonstrates good oral bioavailability in mice and dogs. However LY5 did not decrease tumor growth in xenograft mouse models and STAT3 knockdown did not induce concordant biologic effects. These data suggest that the anti-cancer effects of LY5 identified in vitro were not mediated through STAT3 inhibition.

  5. 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol negatively regulates activation of STAT3 and ERK pathways and exhibits anti-cancer effects in HepG2 cells.

    Science.gov (United States)

    Ai, Hui-Han; Zhou, Zi-Long; Sun, Lu-Guo; Yang, Mei-Ting; Li, Wei; Yu, Chun-Lei; Song, Zhen-Bo; Huang, Yan-Xin; Wu, Yin; Liu, Lei; Yang, Xiao-Guang; Zhao, Yu-Qing; Bao, Yong-Li; Li, Yu-Xin

    2017-11-01

    The pro-inflammatory cytokine interleukin 6 (IL-6), via activating its downstream JAK/STAT3 and Ras/ERK signaling pathways, is involved in cell growth, proliferation and anti-apoptotic activities in various malignancies. To screen inhibitors of IL-6 signaling, we constructed a STAT3 and ERK dual-pathway responsive luciferase reporter vector (Co.RE). Among several candidates, the natural compound 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol (25-OCH 3 -PPD, GS25) was identified to clearly inhibit the luciferase activity of Co.RE. GS25 was confirmed to indeed inhibit activation of both STAT3 and ERK pathways and expression of downstream target genes of IL-6, and to predominantly decrease the viability of HepG2 cells via induction of cell cycle arrest and apoptosis. Interestingly, GS25 showed preferential inhibition of HepG2 cell viability relative to normal liver L02 cells. Further investigation showed that GS25 could not induce apoptosis and block activation of STAT3 and ERK pathways in L02 cells as efficiently as in HepG2 cells, which may result in differential effects of GS25 on malignant and normal liver cells. In addition, GS25 was found to potently suppress the expression of endogenous STAT3 at a higher concentration and dramatically induce p38 phosphorylation in HepG2 cells, which could mediate its anti-cancer effects. Finally, we demonstrated that GS25 also inhibited tumor growth in HepG2 xenograft mice. Taken together, these findings indicate that GS25 elicits its anti-cancer effects on HepG2 cells through multiple mechanisms and has the potential to be used as an inhibitor of IL-6 signaling. Thus, GS25 may be developed as a treatment for hepatocarcinoma with low toxicity on normal liver tissues as well as other inflammation-associated diseases.

  6. STAT1, STAT3 and p38MAPK are involved in the apoptotic effect induced by a chimeric cyclic interferon-{alpha}2b peptide

    Energy Technology Data Exchange (ETDEWEB)

    Blank, Viviana C.; Pena, Clara [Institute of Biochemistry and Biophysics (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956-C1113AAD Buenos Aires (Argentina); Roguin, Leonor P., E-mail: rvroguin@qb.ffyb.uba.ar [Institute of Biochemistry and Biophysics (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956-C1113AAD Buenos Aires (Argentina)

    2010-02-15

    In the search of mimetic peptides of the interferon-{alpha}2b molecule (IFN-{alpha}2b), we have previously designed and synthesized a chimeric cyclic peptide of the IFN-{alpha}2b that inhibits WISH cell proliferation by inducing an apoptotic response. Here, we first studied the ability of this peptide to activate intracellular signaling pathways and then evaluated the participation of some signals in the induction of apoptosis. Stimulation of WISH cells with the cyclic peptide showed tyrosine phosphorylation of Jak1 and Tyk2 kinases, tyrosine and serine phosphorylation of STAT1 and STAT3 transcription factors and activation of p38 MAPK pathway, although phosphorylation levels or kinetics were in some conditions different to those obtained under IFN-{alpha}2b stimulus. JNK and p44/42 pathways were not activated by the peptide in WISH cells. We also showed that STAT1 and STAT3 downregulation by RNA interference decreased the antiproliferative activity and the amount of apoptotic cells induced by the peptide. Pharmacological inhibition of p38 MAPK also reduced the peptide growth inhibitory activity and the apoptotic effect. Thus, we demonstrated that the cyclic peptide regulates WISH cell proliferation through the activation of Jak/STAT signaling pathway. In addition, our results indicate that p38 MAPK may also be involved in cell growth regulation. This study suggests that STAT1, STAT3 and p38 MAPK would be mediating the antitumor and apoptotic response triggered by the cyclic peptide in WISH cells.

  7. STAT1, STAT3 and p38MAPK are involved in the apoptotic effect induced by a chimeric cyclic interferon-α2b peptide

    International Nuclear Information System (INIS)

    Blank, Viviana C.; Pena, Clara; Roguin, Leonor P.

    2010-01-01

    In the search of mimetic peptides of the interferon-α2b molecule (IFN-α2b), we have previously designed and synthesized a chimeric cyclic peptide of the IFN-α2b that inhibits WISH cell proliferation by inducing an apoptotic response. Here, we first studied the ability of this peptide to activate intracellular signaling pathways and then evaluated the participation of some signals in the induction of apoptosis. Stimulation of WISH cells with the cyclic peptide showed tyrosine phosphorylation of Jak1 and Tyk2 kinases, tyrosine and serine phosphorylation of STAT1 and STAT3 transcription factors and activation of p38 MAPK pathway, although phosphorylation levels or kinetics were in some conditions different to those obtained under IFN-α2b stimulus. JNK and p44/42 pathways were not activated by the peptide in WISH cells. We also showed that STAT1 and STAT3 downregulation by RNA interference decreased the antiproliferative activity and the amount of apoptotic cells induced by the peptide. Pharmacological inhibition of p38 MAPK also reduced the peptide growth inhibitory activity and the apoptotic effect. Thus, we demonstrated that the cyclic peptide regulates WISH cell proliferation through the activation of Jak/STAT signaling pathway. In addition, our results indicate that p38 MAPK may also be involved in cell growth regulation. This study suggests that STAT1, STAT3 and p38 MAPK would be mediating the antitumor and apoptotic response triggered by the cyclic peptide in WISH cells.

  8. JAK/Stat signaling regulates heart precursor diversification in Drosophila

    Science.gov (United States)

    Johnson, Aaron N.; Mokalled, Mayssa H.; Haden, Tom N.; Olson, Eric N.

    2011-01-01

    Intercellular signal transduction pathways regulate the NK-2 family of transcription factors in a conserved gene regulatory network that directs cardiogenesis in both flies and mammals. The Drosophila NK-2 protein Tinman (Tin) was recently shown to regulate Stat92E, the Janus kinase (JAK) and Signal transducer and activator of transcription (Stat) pathway effector, in the developing mesoderm. To understand whether the JAK/Stat pathway also regulates cardiogenesis, we performed a systematic characterization of JAK/Stat signaling during mesoderm development. Drosophila embryos with mutations in the JAK/Stat ligand upd or in Stat92E have non-functional hearts with luminal defects and inappropriate cell aggregations. Using strong Stat92E loss-of-function alleles, we show that the JAK/Stat pathway regulates tin expression prior to heart precursor cell diversification. tin expression can be subdivided into four phases and, in Stat92E mutant embryos, the broad phase 2 expression pattern in the dorsal mesoderm does not restrict to the constrained phase 3 pattern. These embryos also have an expanded pericardial cell domain. We show the E(spl)-C gene HLHm5 is expressed in a pattern complementary to tin during phase 3 and that this expression is JAK/Stat dependent. In addition, E(spl)-C mutant embryos phenocopy the cardiac defects of Stat92E embryos. Mechanistically, JAK/Stat signals activate E(spl)-C genes to restrict Tin expression and the subsequent expression of the T-box transcription factor H15 to direct heart precursor diversification. This study is the first to characterize a role for the JAK/Stat pathway during cardiogenesis and identifies an autoregulatory circuit in which tin limits its own expression domain. PMID:21965617

  9. Activation of the Constitutive Androstane Receptor induces hepatic lipogenesis and regulates Pnpla3 gene expression in a LXR-independent way

    International Nuclear Information System (INIS)

    Marmugi, Alice; Lukowicz, Céline; Lasserre, Frederic; Montagner, Alexandra; Polizzi, Arnaud; Ducheix, Simon; Goron, Adeline; Gamet-Payrastre, Laurence; Gerbal-Chaloin, Sabine; Pascussi, Jean Marc; Moldes, Marthe; Pineau, Thierry; Guillou, Hervé; Mselli-Lakhal, Laila

    2016-01-01

    The Constitutive Androstane Receptor (CAR, NR1I3) has been newly described as a regulator of energy metabolism. A relevant number of studies using animal models of obesity suggest that CAR activation could be beneficial on the metabolic balance. However, this remains controversial and the underlying mechanisms are still unknown. This work aimed to investigate the effect of CAR activation on hepatic energy metabolism during physiological conditions, i.e. in mouse models not subjected to metabolic/nutritional stress. Gene expression profiling in the liver of CAR knockout and control mice on chow diet and treated with a CAR agonist highlighted CAR-mediated up-regulations of lipogenic genes, concomitant with neutral lipid accumulation. A strong CAR-mediated up-regulation of the patatin-like phospholipase domain-containing protein 3 (Pnpla3) was demonstrated. Pnpla3 is a gene whose polymorphism is associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD) development. This observation was confirmed in human hepatocytes treated with the antiepileptic drug and CAR activator, phenobarbital and in immortalized human hepatocytes treated with CITCO. Studying the molecular mechanisms controlling Pnpla3 gene expression, we demonstrated that CAR does not act by a direct regulation of Pnpla3 transcription or via the Liver X Receptor but may rather involve the transcription factor Carbohydrate Responsive Element-binding protein. These data provide new insights into the regulation by CAR of glycolytic and lipogenic genes and on pathogenesis of steatosis. This also raises the question concerning the impact of drugs and environmental contaminants in lipid-associated metabolic diseases. - Highlights: • Induction of hepatic glycolytic and lipogenic genes upon CAR activation by TCPOBOP. • These effects are not mediated by the nuclear receptor LXR. • CAR activation resulted in hepatic lipid accumulation. • Pnpla3 expression is regulated by CAR in mouse liver and

  10. Activation of the Constitutive Androstane Receptor induces hepatic lipogenesis and regulates Pnpla3 gene expression in a LXR-independent way

    Energy Technology Data Exchange (ETDEWEB)

    Marmugi, Alice; Lukowicz, Céline; Lasserre, Frederic; Montagner, Alexandra; Polizzi, Arnaud; Ducheix, Simon; Goron, Adeline; Gamet-Payrastre, Laurence [INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse (France); Université de Toulouse, INP, UPS, TOXALIM, Toulouse (France); Gerbal-Chaloin, Sabine [Institute of Regenerative Medicine and Biotherapy, INSERM, U1183 Montpellier (France); Pascussi, Jean Marc [Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier (France); Moldes, Marthe [Centre de Recherche Saint-Antoine, INSERM, UMR 938, Sorbonne Universités, Université Paris 6, Paris (France); Institut Hospitalo-Universitaire ICAN, Paris (France); Pineau, Thierry; Guillou, Hervé [INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse (France); Université de Toulouse, INP, UPS, TOXALIM, Toulouse (France); Mselli-Lakhal, Laila, E-mail: laila.lakhal@toulouse.inra.fr [INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse (France); Université de Toulouse, INP, UPS, TOXALIM, Toulouse (France)

    2016-07-15

    The Constitutive Androstane Receptor (CAR, NR1I3) has been newly described as a regulator of energy metabolism. A relevant number of studies using animal models of obesity suggest that CAR activation could be beneficial on the metabolic balance. However, this remains controversial and the underlying mechanisms are still unknown. This work aimed to investigate the effect of CAR activation on hepatic energy metabolism during physiological conditions, i.e. in mouse models not subjected to metabolic/nutritional stress. Gene expression profiling in the liver of CAR knockout and control mice on chow diet and treated with a CAR agonist highlighted CAR-mediated up-regulations of lipogenic genes, concomitant with neutral lipid accumulation. A strong CAR-mediated up-regulation of the patatin-like phospholipase domain-containing protein 3 (Pnpla3) was demonstrated. Pnpla3 is a gene whose polymorphism is associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD) development. This observation was confirmed in human hepatocytes treated with the antiepileptic drug and CAR activator, phenobarbital and in immortalized human hepatocytes treated with CITCO. Studying the molecular mechanisms controlling Pnpla3 gene expression, we demonstrated that CAR does not act by a direct regulation of Pnpla3 transcription or via the Liver X Receptor but may rather involve the transcription factor Carbohydrate Responsive Element-binding protein. These data provide new insights into the regulation by CAR of glycolytic and lipogenic genes and on pathogenesis of steatosis. This also raises the question concerning the impact of drugs and environmental contaminants in lipid-associated metabolic diseases. - Highlights: • Induction of hepatic glycolytic and lipogenic genes upon CAR activation by TCPOBOP. • These effects are not mediated by the nuclear receptor LXR. • CAR activation resulted in hepatic lipid accumulation. • Pnpla3 expression is regulated by CAR in mouse liver and

  11. Benzyl isothiocyanate suppresses pancreatic tumor angiogenesis and invasion by inhibiting HIF-α/VEGF/Rho-GTPases: pivotal role of STAT-3.

    Directory of Open Access Journals (Sweden)

    Srinivas Reddy Boreddy

    Full Text Available Our previous studies have shown that benzyl isothiocyanate (BITC suppresses pancreatic tumor growth by inhibiting STAT-3; however, the exact mechanism of tumor growth suppression was not clear. Here we evaluated the effects and mechanism of BITC on pancreatic tumor angiogenesis. Our results reveal that BITC significantly inhibits neovasularization on rat aorta and Chicken-Chorioallantoic membrane. Furthermore, BITC blocks the migration and invasion of BxPC-3 and PanC-1 pancreatic cancer cells in a dose dependant manner. Moreover, secretion of VEGF and MMP-2 in normoxic and hypoxic BxPC-3 and PanC-1 cells was significantly suppressed by BITC. Both VEGF and MMP-2 play a critical role in angiogenesis and metastasis. Our results reveal that BITC significantly suppresses the phosphorylation of VEGFR-2 (Tyr-1175, and expression of HIF-α. Rho-GTPases, which are regulated by VEGF play a crucial role in pancreatic cancer progression. BITC treatment reduced the expression of RhoC whereas up-regulated the expression of tumor suppressor RhoB. STAT-3 over-expression or IL-6 treatment significantly induced HIF-1α and VEGF expression; however, BITC substantially suppressed STAT-3 as well as STAT-3-induced HIF-1α and VEGF expression. Finally, in vivo tumor growth and matrigel-plug assay show reduced tumor growth and substantial reduction of hemoglobin content in the matrigel plugs and tumors of mice treated orally with 12 µmol BITC, indicating reduced tumor angiogenesis. Immunoblotting of BITC treated tumors show reduced expression of STAT-3 phosphorylation (Tyr-705, HIF-α, VEGFR-2, VEGF, MMP-2, CD31 and RhoC. Taken together, our results suggest that BITC suppresses pancreatic tumor growth by inhibiting tumor angiogenesis through STAT-3-dependant pathway.

  12. Genetic requirements for high constitutive SOS expression in recA730 mutants of Escherichia coli.

    Science.gov (United States)

    Vlašić, Ignacija; Šimatović, Ana; Brčić-Kostić, Krunoslav

    2011-09-01

    The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5'-3' exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a β-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5'-3' exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  13. Analysis of the epidermal growth factor receptor specific transcriptome: effect of receptor expression level and an activating mutation

    DEFF Research Database (Denmark)

    Pedersen, Mikkel W; Pedersen, Nina; Damstrup, Lars

    2005-01-01

    moderately expressed or overexpressed at an in-itself transforming level. These changes were compared to those induced by the naturally occurring constitutively active variant EGFRvIII. This study provides novel insight on the activities and mechanisms of EGFRvIII and EGFR mediated transformation, as genes...... by interferons. Expression of this module was absent in the EGFRvIII-expressing cell line and the parental cell line. Treatment with the specific EGFR inhibitor AG1478 indicated that the regulations were primary, receptor-mediated events. Furthermore, activation of this module correlated with activation of STAT1...

  14. IL-22/STAT3-Induced Increases in SLURP1 Expression within Psoriatic Lesions Exerts Antimicrobial Effects against Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Moriwaki

    Full Text Available SLURP1 is the causal gene for Mal de Meleda (MDM, an autosomal recessive skin disorder characterized by diffuse palmoplantar keratoderma and transgressive keratosis. Moreover, although SLURP1 likely serves as an important proliferation/differentiation factor in keratinocytes, the possible relation between SLURP1 and other skin diseases, such as psoriasis and atopic dermatitis, has not been studied, and the pathophysiological control of SLURP1 expression in keratinocytes is largely unknown.Our aim was to examine the involvement of SLURP1 in the pathophysiology of psoriasis using an imiquimod (IMQ-induced psoriasis model mice and normal human epidermal keratinocytes (NHEKs.SLURP1 expression was up-regulated in the skin of IMQ-induced psoriasis model mice. In NHEKs stimulated with the inflammatory cytokines IL-17, IL-22 and TNF-α, which are reportedly expressed in psoriatic lesions, SLURP1 mRNA expression was significantly up-regulated by IL-22 but not the other two cytokines. The stimulatory effect of IL-22 was completely suppressed in NHEKs treated with a STAT3 inhibitor or transfected with siRNA targeting STAT3. Because IL-22 induces production of antimicrobial proteins in epithelial cells, the antibacterial activity of SLURP1 was assessed against Staphylococcus aureus (S. aureus, which is known to be associated with disease severity in psoriasis. SLURP1 significantly suppressed the growth of S. aureus.These results indicate SLURP1 participates in pathophysiology of psoriasis by regulating keratinocyte proliferation and differentiation, and by suppressing the growth of S. aureus.

  15. Activated STAT5 Confers Resistance to Intestinal Injury by Increasing Intestinal Stem Cell Proliferation and Regeneration

    Directory of Open Access Journals (Sweden)

    Shila Gilbert

    2015-02-01

    Full Text Available Intestinal epithelial stem cells (IESCs control the intestinal homeostatic response to inflammation and regeneration. The underlying mechanisms are unclear. Cytokine-STAT5 signaling regulates intestinal epithelial homeostasis and responses to injury. We link STAT5 signaling to IESC replenishment upon injury by depletion or activation of Stat5 transcription factor. We found that depletion of Stat5 led to deregulation of IESC marker expression and decreased LGR5+ IESC proliferation. STAT5-deficient mice exhibited worse intestinal histology and impaired crypt regeneration after γ-irradiation. We generated a transgenic mouse model with inducible expression of constitutively active Stat5. In contrast to Stat5 depletion, activation of STAT5 increased IESC proliferation, accelerated crypt regeneration, and conferred resistance to intestinal injury. Furthermore, ectopic activation of STAT5 in mouse or human stem cells promoted LGR5+ IESC self-renewal. Accordingly, STAT5 promotes IESC proliferation and regeneration to mitigate intestinal inflammation. STAT5 is a functional therapeutic target to improve the IESC regenerative response to gut injury.

  16. STAT3-Activated GM-CSFRα Translocates to the Nucleus and Protects CLL Cells from Apoptosis

    Science.gov (United States)

    Li, Ping; Harris, David; Liu, Zhiming; Rozovski, Uri; Ferrajoli, Alessandra; Wang, Yongtao; Bueso-Ramos, Carlos; Hazan-Halevy, Inbal; Grgurevic, Srdana; Wierda, William; Burger, Jan; O'Brien, Susan; Faderl, Stefan; Keating, Michael; Estrov, Zeev

    2014-01-01

    Here it was determined that Chronic Lymphocytic Leukemia (CLL) cells express the α-subunit but not the β-subunit of the granulocyte-macrophage colony-stimulating factor receptor (GM-CSFR/CSF3R). GM-CSFRα was detected on the surface, in the cytosol, and the nucleus of CLL cells via confocal microscopy, cell fractionation, and GM-CSFRα antibody epitope mapping. Because STAT3 is frequently activated in CLL and the GM-CSFRα promoter harbors putative STAT3 consensus binding sites, MM1 cells were transfected with truncated forms of the GM-CSFRα promoter, then stimulated with IL-6 to activate STAT3 to identify STAT3 binding sites. Chromatin immunoprecipitation (ChIP) and an electoromobility shift assay (EMSA) confirmed STAT3 occupancy to those promoter regions in both IL-6 stimulated MM1 and CLL cells. Transfection of MM1 cells with STAT3 siRNA or CLL cells with STAT3 shRNA significantly down-regulated GM-CSFRα mRNA and protein levels. RNA transcripts, involved in regulating cell-survival pathways, and the proteins KAP1 (TRIM28) and ISG15 co-immunoprecipitated with GM-CSFRα. GM-CSFRα-bound KAP1 enhanced the transcriptional activity of STAT3, whereas ISG15 inhibited the NF-κB pathway. Nevertheless, overexpression of GM-CSFRα protected MM1 cells from dexamethasone-induced apoptosis, and GM-CSFRα knockdown induced apoptosis in CLL cells, suggesting that GM-CSFRα provides a ligand-independent survival advantage. PMID:24836891

  17. Exercise Inhibits the Effects of Smoke-Induced COPD Involving Modulation of STAT3

    Directory of Open Access Journals (Sweden)

    Maysa Alves Rodrigues Brandao-Rangel

    2017-01-01

    Full Text Available Purpose. Evaluate the participation of STAT3 in the effects of aerobic exercise (AE in a model of smoke-induced COPD. Methods. C57Bl/6 male mice were divided into control, Exe, COPD, and COPD+Exe groups. Smoke were administered during 90 days. Treadmill aerobic training begun on day 61 until day 90. Pulmonary inflammation, systemic inflammation, the level of lung emphysema, and the airway remodeling were evaluated. Analysis of integral and phosphorylated expression of STAT3 by airway epithelial cells, peribronchial leukocytes, and parenchymal leukocytes was performed. Results. AE inhibited smoke-induced accumulation of total cells (p<0.001, lymphocytes (p<0.001, and neutrophils (p<0.001 in BAL, as well as BAL levels of IL-1β (p<0.001, CXCL1 (p<0.001, IL-17 (p<0.001, and TNF-α (p<0.05, while increased the levels of IL-10 (p<0.001. AE also inhibited smoke-induced increases in total leukocytes (p<0.001, neutrophils (p<0.05, lymphocytes (p<0.001, and monocytes (p<0.01 in blood, as well as serum levels of IL-1β (p<0.01, CXCL1 (p<0.01, IL-17 (p<0.05, and TNF-α (p<0.01, while increased the levels of IL-10 (p<0.001. AE reduced smoke-induced emphysema (p<0.001 and collagen fiber accumulation in the airways (p<0.001. AE reduced smoke-induced STAT3 and phospho-STAT3 expression in airway epithelial cells (p<0.001, peribronchial leukocytes (p<0.001, and parenchymal leukocytes (p<0.001. Conclusions. AE reduces smoke-induced COPD phenotype involving STAT3.

  18. Genetic Interactions of STAT3 and Anticancer Drug Development

    International Nuclear Information System (INIS)

    Fang, Bingliang

    2014-01-01

    Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors

  19. IFNγ Induces DNA Methylation-Silenced GPR109A Expression via pSTAT1/p300 and H3K18 Acetylation in Colon Cancer.

    Science.gov (United States)

    Bardhan, Kankana; Paschall, Amy V; Yang, Dafeng; Chen, May R; Simon, Priscilla S; Bhutia, Yangzom D; Martin, Pamela M; Thangaraju, Muthusamy; Browning, Darren D; Ganapathy, Vadivel; Heaton, Christopher M; Gu, Keni; Lee, Jeffrey R; Liu, Kebin

    2015-07-01

    Short-chain fatty acids, metabolites produced by colonic microbiota from fermentation of dietary fiber, act as anti-inflammatory agents in the intestinal tract to suppress proinflammatory diseases. GPR109A is the receptor for short-chain fatty acids. The functions of GPR109A have been the subject of extensive studies; however, the molecular mechanisms underlying GPR109A expression is largely unknown. We show that GPR109A is highly expressed in normal human colon tissues, but is silenced in human colon carcinoma cells. The GPR109A promoter DNA is methylated in human colon carcinoma. Strikingly, we observed that IFNγ, a cytokine secreted by activated T cells, activates GPR109A transcription without altering its promoter DNA methylation. Colon carcinoma grows significantly faster in IFNγ-deficient mice than in wild-type mice in an orthotopic colon cancer mouse model. A positive correlation was observed between GPR109A protein level and tumor-infiltrating T cells in human colon carcinoma specimens, and IFNγ expression level is higher in human colon carcinoma tissues than in normal colon tissues. We further demonstrated that IFNγ rapidly activates pSTAT1 that binds to the promoter of p300 to activate its transcription. p300 then binds to the GPR109A promoter to induce H3K18 hyperacetylation, resulting in chromatin remodeling in the methylated GPR109A promoter. The IFNγ-activated pSTAT1 then directly binds to the methylated but hyperacetylated GPR109 promoter to activate its transcription. Overall, our data indicate that GPR109A acts as a tumor suppressor in colon cancer, and the host immune system might use IFNγ to counteract DNA methylation-mediated GPR109A silencing as a mechanism to suppress tumor development. ©2015 American Association for Cancer Research.

  20. IFNγ induces DNA methylation-silenced GPR109A expression via pSTAT1/p300 and H3K18 acetylation in colon cancer

    Science.gov (United States)

    Bardhan, Kankana; Paschall, Amy V.; Yang, Dafeng; Chen, May R.; Simon, Priscilla S.; Bhutia, Yangzom; Martin, Pamela M.; Thangaraju, Muthusamy; Browning, Darren D.; Ganapathy, Vadivel; Heaton, Christopher M.; Gu, Keni; Lee, Jeffrey R.; Liu, Kebin

    2015-01-01

    Short-chain fatty acids, metabolites produced by colonic microbiota from fermentation of dietary fiber, act as anti-inflammatory agents in the intestinal tract to suppress proinflammatory diseases. GPR109A is the receptor for short-chain fatty acids. The functions of GPR109A has been the subject of extensive studies, however, the molecular mechanisms underlying GPR109A expression is largely unknown. We show that GPR109A is highly expressed in normal human colon tissues, but is silenced in human colon carcinoma cells. The GPR109A promoter DNA is methylated in human colon carcinoma. Strikingly, we observed that IFNγ, a cytokine secreted by activated T cells, activates GPR109A transcription without altering its promoter DNA methylation. Colon carcinoma grows significantly faster in IFNγ-deficient mice than in wildtype mice in an orthotopic colon cancer mouse model. A positive correlation was observed between GPR109A protein level and tumor-infiltrating T cells in human colon carcinoma specimens, and IFNγ expression level is higher in human colon carcinoma tissues than in normal colon tissues. We further demonstrated that IFNγ rapidly activates pSTAT1 that binds to the promoter of p300 to activate its transcription. p300 then binds to the GPR109A promoters to induce H3K18 hyperacetylation, resulting in chromatin remodeling in the methylated GPR109A promoter. The IFNγ-activated pSTAT1 then directly binds to the methylated but hyperacetylated GPR109 promoters to activate its transcription. Overall, our data indicate that GPR109A acts as a tumor suppressor in colon cancer and the host immune system might use IFNγ to counteract DNA methylation-mediated GPR109A silencing as a mechanism to suppress tumor development. PMID:25735954

  1. Deficiency of PTP1B Attenuates Hypothalamic Inflammation via Activation of the JAK2-STAT3 Pathway in Microglia.

    Science.gov (United States)

    Tsunekawa, Taku; Banno, Ryoichi; Mizoguchi, Akira; Sugiyama, Mariko; Tominaga, Takashi; Onoue, Takeshi; Hagiwara, Daisuke; Ito, Yoshihiro; Iwama, Shintaro; Goto, Motomitsu; Suga, Hidetaka; Sugimura, Yoshihisa; Arima, Hiroshi

    2017-02-01

    Protein tyrosine phosphatase 1B (PTP1B) regulates leptin signaling in hypothalamic neurons via the JAK2-STAT3 pathway. PTP1B has also been implicated in the regulation of inflammation in the periphery. However, the role of PTP1B in hypothalamic inflammation, which is induced by a high-fat diet (HFD), remains to be elucidated. Here, we showed that STAT3 phosphorylation (p-STAT3) was increased in microglia in the hypothalamic arcuate nucleus of PTP1B knock-out mice (KO) on a HFD, accompanied by decreased Tnf and increased Il10 mRNA expression in the hypothalamus compared to wild-type mice (WT). In hypothalamic organotypic cultures, incubation with TNFα led to increased p-STAT3, accompanied by decreased Tnf and increased Il10 mRNA expression, in KO compared to WT. Incubation with p-STAT3 inhibitors or microglial depletion eliminated the differences in inflammation between genotypes. These data indicate an important role of JAK2-STAT3 signaling negatively regulated by PTP1B in microglia, which attenuates hypothalamic inflammation under HFD conditions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Deficiency of PTP1B Attenuates Hypothalamic Inflammation via Activation of the JAK2-STAT3 Pathway in Microglia

    Directory of Open Access Journals (Sweden)

    Taku Tsunekawa

    2017-02-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B regulates leptin signaling in hypothalamic neurons via the JAK2-STAT3 pathway. PTP1B has also been implicated in the regulation of inflammation in the periphery. However, the role of PTP1B in hypothalamic inflammation, which is induced by a high-fat diet (HFD, remains to be elucidated. Here, we showed that STAT3 phosphorylation (p-STAT3 was increased in microglia in the hypothalamic arcuate nucleus of PTP1B knock-out mice (KO on a HFD, accompanied by decreased Tnf and increased Il10 mRNA expression in the hypothalamus compared to wild-type mice (WT. In hypothalamic organotypic cultures, incubation with TNFα led to increased p-STAT3, accompanied by decreased Tnf and increased Il10 mRNA expression, in KO compared to WT. Incubation with p-STAT3 inhibitors or microglial depletion eliminated the differences in inflammation between genotypes. These data indicate an important role of JAK2-STAT3 signaling negatively regulated by PTP1B in microglia, which attenuates hypothalamic inflammation under HFD conditions.

  3. Correlation between endometriosis combined with infertility and STAT3 gene polymorphisms

    Directory of Open Access Journals (Sweden)

    Juan Hu

    2016-05-01

    Full Text Available Objective: To investigate the correlation between STAT3 gene polymorphisms and endometriosis complicated with infertility. Methods: A total of 35 patients with endometriosis complicated with infertility and 35 cases of healthy volunteer from October 2014 to October 2015 in our hospital were selected as research objects. STAT3 gene polymorphisms of all objects were detected by PCR-RFLP method. Results: Polymorphic sites of STAT3 gene rs2293152 were expressed as three genotypes, namely, CC, GC, and GG. There were 18 cases, 10 cases and 7 cases of type CC, GC and GG in the observation group, accounted for 51.43%, 28.57% and 20.00%, respectively. There were 29 cases, 3 cases and 3 cases of type CC, GC and GG in the control group, accounted for 82.86%, 8.57% and 8.57%. There was a statistically difference` between the two groups. The frequency of C and G allele in the observation group and the control group were 65.71%, 34.29% and 87.14%, 12.86%, respectively. There were statistically significant differences between two groups. In addition, compared with the CC genotype, genotype G might increase the risk of the disease. Conclusions: The susceptibility of endometriosis complicated with infertility may be associated with STAT3 gene polymorphism and women who carried the G allele may have an increased the risk of the disease.

  4. MSM enhances GH signaling via the Jak2/STAT5b pathway in osteoblast-like cells and osteoblast differentiation through the activation of STAT5b in MSCs.

    Directory of Open Access Journals (Sweden)

    Youn Hee Joung

    Full Text Available Methylsulfonylmethane (MSM is a naturally occurring sulfur compound with well-known anti-oxidant properties and anti-inflammatory activities. But, its effects on bone are unknown. Growth hormone (GH is regulator of bone growth and bone metabolism. GH activates several signaling pathways such as the Janus kinase (Jak/signal transducers and activators of transcription (STAT pathway, thereby regulating expression of genes including insulin-like growth factor (IGF-1. GH exerts effects both directly and via IGF-1, which signals by activating the IGF-1 receptor (IGF-1R. In this study, we investigated the effects of MSM on the GH signaling via the Jak/STAT pathway in osteoblasts and the differentiation of primary bone marrow mesenchymal stem cells (MSCs. MSM was not toxic to osteoblastic cells and MSCs. MSM increased the expression of GH-related proteins including IGF-1R, p-IGF-1R, STAT5b, p-STAT5b, and Jak2 in osteoblastic cells and MSCs. MSM increased IGF-1R and GHR mRNA expression in osteoblastic cells. The expression of MSM-induced IGF-1R and GHR was inhibited by AG490, a Jak2 kinase inhibitor. MSM induced binding of STAT5 to the IGF-1R and increased IGF-1 and IGF-1R promoter activities. Analysis of cell extracts by immunoprecipitation and Western blot showed that MSM enhanced GH-induced activation of Jak2/STAT5b. We found that MSM and GH, separately or in combination, activated GH signaling via the Jak2/STAT5b pathway in UMR-106 cells. Using siRNA analysis, we found that STAT5b plays an essential role in GH signaling activation in C3H10T1/2 cells. Osteogenic marker genes (ALP, ON, OCN, BSP, OSX, and Runx2 were activated by MSM, and siRNA-mediated STAT5b knockdown inhibited MSM-induced expression of osteogenic markers. Furthermore, MSM increased ALP activity and the mineralization of MSCs. Taken together, these results indicated that MSM can promote osteogenic differentiation of MSCs through activation of STAT5b.

  5. Kobuvirus VP3 protein restricts the IFN-β-triggered signaling pathway by inhibiting STAT2-IRF9 and STAT2-STAT2 complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Qianqian; Lan, Xi; Wang, Chen [State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046 (China); Ren, Yujie; Yue, Ningning [College of Life Sciences, Wuhan University, Wuhan 430072 (China); Wang, Junyong [State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046 (China); Zhong, Bo [College of Life Sciences, Wuhan University, Wuhan 430072 (China); Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071 (China); Zhu, Qiyun, E-mail: zhuqiyun@caas.cn [State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046 (China)

    2017-07-15

    Emerged porcine kobuvirus (PKV) has adversely affected the global swine industry since 2008, but the etiological biology of PKV is unclear. Screening PKV-encoded structural and non-structural proteins with a type I IFN-responsive luciferase reporter showed that PKV VP3 protein inhibited the IFN-β-triggered signaling pathway, resulting in the decrease of VSV-GFP replication. QPCR data showed that IFN-β downstream cytokine genes were suppressed without cell-type specificity as well. The results from biochemical experiments indicated that PKV VP3 associated with STAT2 and IRF9, and interfered with the formation of the STAT2-IRF9 and STAT2-STAT2 complex, impairing nuclear translocation of STAT2 and IRF9. Taken together, these data reveal a new mechanism for immune evasion of PKV. - Highlights: •PKV VP3 inhibits the IFN-β-triggered signaling pathway. •VP3 associates with STAT2 and IRF9. •VP3 blocks the STAT2-IRF9 nuclear translocation. •VP3 utilizes a novel strategy for innate immune evasion.

  6. SH2 modified STAT1 induces HLA-I expression and improves IFN-γ signaling in IFN-α resistant HCV replicon cells.

    Directory of Open Access Journals (Sweden)

    Bret Poat

    2010-09-01

    Full Text Available We have developed multiple stable cell lines containing subgenomic HCV RNA that are resistant to treatment with interferon alpha (IFN-α. Characterization of these IFN-α resistant replicon cells showed defects in the phosphorylation and nuclear translocation of STAT1 and STAT2 proteins due to a defective Jak-STAT pathway.In this study, we have developed an alternative strategy to overcome interferon resistance in a cell culture model by improving intracellular STAT1 signaling. An engineered STAT1-CC molecule with double cysteine substitutions in the Src-homology 2 (SH2 domains of STAT1 (at Ala-656 and Asn-658 efficiently phosphorylates and translocates to the nucleus of IFN-resistant cells in an IFN-γ dependent manner. Transfection of a plasmid clone containing STAT1-CC significantly activated the GAS promoter compared to wild type STAT1 and STAT3. The activity of the engineered STAT1-CC is dependent upon the phosphorylation of tyrosine residue 701, since the construct with a substituted phenylalanine residue at position 701 (STAT1-CC-Y701F failed to activate GAS promoter in the replicon cells. Intracellular expression of STAT1-CC protein showed phosphorylation and nuclear translocation in the resistant cell line after IFN-γ treatment. Transient transfection of STAT1-CC plasmid clone into an interferon resistant cell line resulted in inhibition of viral replication and viral clearance in an IFN-γ dependent manner. Furthermore, the resistant replicon cells transfected with STAT1-CC constructs significantly up regulated surface HLA-1 expression when compared to the wild type and Y to F mutant controls.These results suggest that modification of the SH2 domain of the STAT1 molecule allows for improved IFN-γ signaling through increased STAT1 phosphorylation, nuclear translocation, HLA-1 surface expression, and prolonged interferon antiviral gene activation.

  7. Circulating interleukin-6 induces fever through a STAT3-linked activation of COX-2 in the brain.

    Science.gov (United States)

    Rummel, Christoph; Sachot, Christelle; Poole, Stephen; Luheshi, Giamal N

    2006-11-01

    Interleukin (IL)-6 is an important humoral mediator of fever following infection and inflammation and satisfies a number of criteria for a circulating pyrogen. However, evidence supporting such a role is diminished by the moderate or even absent ability of the recombinant protein to induce fever and activate the cyclooxygenase-2 (COX-2) pathway in the brain, a prerequisite step in the initiation and maintenance of fever. In the present study, we investigated the role of endogenous circulating IL-6 in a rodent model of localized inflammation, by neutralizing its action using a specific antiserum (IL-6AS). Rats were injected with LPS (100 microg/kg) or saline into a preformed air pouch in combination with an intraperitoneal injection of either normal sheep serum or IL-6AS (1.8 ml/rat). LPS induced a febrile response, which was accompanied by a significant rise in plasma IL-6 and nuclear STAT3 translocation in endothelial cells throughout the brain 2 h after treatment, including areas surrounding the sensory circumventricular organs and the median preoptic area (MnPO), important regions in mediating fever. These responses were abolished in the presence of the IL-6AS, which also significantly inhibited the LPS-induced upregulation of mRNA expression or immunoreactivity (IR) of the inducible form of COX, the rate-limiting enzyme for PGE2-synthesis. Interestingly, nuclear signal transducer and activator of transcription (STAT)3-positive cells colocalized with COX-2-IR, signifying that IL-6-activated cells are directly involved in PGE2 production. These observations suggest that IL-6 is an important circulating pyrogen that activates the COX-2-pathway in cerebral microvasculature, most likely through a STAT3-dependent pathway.

  8. Evidence for association of STAT4 and IL12RB2 variants with Myasthenia gravis susceptibility: What is the effect on gene expression in thymus?

    Science.gov (United States)

    Zagoriti, Zoi; Lagoumintzis, George; Perroni, Gianluca; Papathanasiou, George; Papadakis, Andreas; Ambrogi, Vincenzo; Mineo, Tommaso Claudio; Tzartos, John S; Poulas, Konstantinos

    2018-06-15

    Myasthenia gravis (MG) is an autoimmune disease mediated by the presence of autoantibodies that bind mainly to the acetylcholine receptor (AChR) in the neuromuscular junction. In our case-control association study, we analyzed common variants located in genes of the IL12/STAT4 and IL10/STAT3 signaling pathways. A total of 175 sporadic MG patients of Greek descent, positively detected with anti-AChR autoantibodies and 84 ethnically-matched, healthy volunteers were enrolled in the study. Thymus samples were obtained from 16 non-MG individuals for relative gene expression analysis. The strongest signals of association were observed in the cases of rs6679356 between the late-onset MG patients and controls and rs7574865 between early-onset MG and controls. Our investigation of the correlation between the MG-associated variants and the expression levels of each gene in thymus did not result in significant differences. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. STAT3: An Anti-Invasive Factor in Colorectal Cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Jong, Petrus Rudolf de [Department of Medicine, University of California, San Diego, 9500 Gilman Dr. MC 0663, La Jolla, CA 92093 (United States); Mo, Ji-Hun [Department of Otorhinolaryngology, Dankook University College of Medicine, 16-5 Anseo-dong, Cheonan, Chungcheongnam-do 330-715 (Korea, Republic of); Harris, Alexandra R.; Lee, Jongdae, E-mail: j142lee@ucsd.edu; Raz, Eyal [Department of Medicine, University of California, San Diego, 9500 Gilman Dr. MC 0663, La Jolla, CA 92093 (United States)

    2014-07-03

    Signal Transducer and Activator of Transcription 3 (STAT3) is activated in a majority of cancers, and promotes tumorigenesis and even metastasis through transcriptional activation of its target genes. Recently, we discovered that STAT3 suppresses epithelial-to-mesenchymal transition (EMT) and thus metastasis in a mouse model of colorectal cancer (CRC), while it did not affect the overall tumor burden. Furthermore, we found that STAT3 in intestinal epithelial cells (IEC) suppresses EMT by regulating stability of an EMT inducer, SNAI-1 (Snail-1). Here, STAT3 functions as an adaptor rather than a transcription factor in the post-translational modification of SNAI-1. In this review, we discuss the unexpected and contradictory role of STAT3 in metastasis of CRC and its clinical implications.

  10. Autophagy Facilitates IFN-γ-induced Jak2-STAT1 Activation and Cellular Inflammation*

    Science.gov (United States)

    Chang, Yu-Ping; Tsai, Cheng-Chieh; Huang, Wei-Ching; Wang, Chi-Yun; Chen, Chia-Ling; Lin, Yee-Shin; Kai, Jui-In; Hsieh, Chia-Yuan; Cheng, Yi-Lin; Choi, Pui-Ching; Chen, Shun-Hua; Chang, Shih-Ping; Liu, Hsiao-Sheng; Lin, Chiou-Feng

    2010-01-01

    Autophagy is regulated for IFN-γ-mediated antimicrobial efficacy; however, its molecular effects for IFN-γ signaling are largely unknown. Here, we show that autophagy facilitates IFN-γ-activated Jak2-STAT1. IFN-γ induces autophagy in wild-type but not in autophagy protein 5 (Atg5−/−)-deficient mouse embryonic fibroblasts (MEFs), and, autophagy-dependently, IFN-γ induces IFN regulatory factor 1 and cellular inflammatory responses. Pharmacologically inhibiting autophagy using 3-methyladenine, a known inhibitor of class III phosphatidylinositol 3-kinase, confirms these effects. Either Atg5−/− or Atg7−/− MEFs are, independent of changes in IFN-γ receptor expression, resistant to IFN-γ-activated Jak2-STAT1, which suggests that autophagy is important for IFN-γ signal transduction. Lentivirus-based short hairpin RNA for Atg5 knockdown confirmed the importance of autophagy for IFN-γ-activated STAT1. Without autophagy, reactive oxygen species increase and cause SHP2 (Src homology-2 domain-containing phosphatase 2)-regulated STAT1 inactivation. Inhibiting SHP2 reversed both cellular inflammation and the IFN-γ-induced activation of STAT1 in Atg5−/− MEFs. Our study provides evidence that there is a link between autophagy and both IFN-γ signaling and cellular inflammation and that autophagy, because it inhibits the expression of reactive oxygen species and SHP2, is pivotal for Jak2-STAT1 activation. PMID:20592027

  11. Primate-specific microRNA-637 inhibits tumorigenesis in hepatocellular carcinoma by disrupting signal transducer and activator of transcription 3 signaling.

    Science.gov (United States)

    Zhang, Jin-fang; He, Ming-liang; Fu, Wei-ming; Wang, Hua; Chen, Lian-zhou; Zhu, Xiao; Chen, Ying; Xie, Dan; Lai, Paul; Chen, Gong; Lu, Gang; Lin, Marie C M; Kung, Hsiang-fu

    2011-12-01

    MiR-637 (microRNA-637) is a primate-specific miRNA belonging to the small noncoding RNA family, which represses gene regulation at the post-transcriptional expression level. Although it was discovered approximately 5 years ago, its biomedical significance and regulatory mechanism remain obscure. Our preliminary data showed that miR-637 was significantly suppressed in four HCC cell lines and, also, in most of the hepatocellular carcinoma (HCC) specimens, thereby suggesting that miR-637 would be a tumor suppressor in HCC. Simultaneously, the enforced overexpression of miR-637 dramatically inhibited cell growth and induced the apoptosis of HCC cells. The transcription factor, signal transducer and activator of transcription 3 (Stat3), is constitutively activated in multiple tumors, and aberrant Stat3 activation is linked to the promotion of growth and desensitization of apoptosis. Our study showed that Stat3 tyrosine 705 phosphorylation and several Stat3-regulated antiapoptotic genes were down-regulated in miR-637 mimics-transfected and Lv-miR637-infected HCC cells. In addition, miR-637 overexpression negatively regulated Stat3 phosphorylation by suppressing autocrine leukemia inhibitory factor (LIF) expression and exogenous LIF-triggered Stat3 activation and rescued cell growth in these cells. A nude mice model also demonstrated the above-described results, which were obtained from the cell model. Furthermore, we found that LIF was highly expressed in a large proportion of HCC specimens, and its expression was inversely associated with miR-637 expression. Our data indicate that miR-637 acted as a tumor suppressor in HCC, and the suppressive effect was mediated, at least in part, by the disruption of Stat3 activation. Copyright © 2011 American Association for the Study of Liver Diseases.

  12. Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis.

    Science.gov (United States)

    Latourte, Augustin; Cherifi, Chahrazad; Maillet, Jérémy; Ea, Hang-Korng; Bouaziz, Wafa; Funck-Brentano, Thomas; Cohen-Solal, Martine; Hay, Eric; Richette, Pascal

    2017-04-01

    To investigate the impact of systemic inhibition of interleukin 6 (IL-6) or signal transducer and activator of transcription (Stat3) in an experimental model of osteoarthritis (OA). Expression of major catabolic and anabolic factors of cartilage was determined in IL-6-treated mouse chondrocytes and cartilage explants. The anti-IL-6-receptor neutralising antibody MR16-1 was used in the destabilisation of the medial meniscus (DMM) mouse model of OA. Stat3 blockade was investigated by the small molecule Stattic ex vivo and in the DMM model. In chondrocytes and cartilage explants, IL-6 treatment reduced proteoglycan content with increased production of matrix metalloproteinase (MMP-3 and MMP-13) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-4 and ADAMTS-5). IL-6 induced Stat3 and extracellular signal-regulated kinase (ERK) 1/2 signalling but not p38, c-Jun N-terminal kinase or Akt. In the DMM model, Stat3 was activated in cartilage, but neither in the synovium nor in the subchondral bone. Systemic blockade of IL-6 by MR16-1 alleviated DMM-induced OA cartilage lesions, impaired the osteophyte formation and the extent of synovitis. In the same model, Stattic had similar beneficial effects on cartilage and osteophyte formation. Stattic, but not an ERK1/2 inhibitor, significantly counteracted the catabolic effects of IL-6 on cartilage explants and suppressed the IL-6-induced chondrocytes apoptosis. IL-6 induces chondrocyte catabolism mainly via Stat3 signalling, a pathway activated in cartilage from joint subjected to DMM. Systemic blockade of IL-6 or STAT-3 can alleviate DMM-induced OA in mice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH+/CD133+ stem cell-like human colon cancer cells

    International Nuclear Information System (INIS)

    Lin, Li; Fuchs, James; Li, Chenglong; Olson, Veronica; Bekaii-Saab, Tanios; Lin, Jiayuh

    2011-01-01

    Highlights: ► The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. ► STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. ► Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. ► STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. ► Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existence of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH + /CD133 + ). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower IC50 in colon cancer stem-like cells. In summary, our results indicate that STAT3 is a novel therapeutic target in colon cancer stem

  14. STAT3: An Anti-Invasive Factor in Colorectal Cancer?

    Directory of Open Access Journals (Sweden)

    Petrus Rudolf de Jong

    2014-07-01

    Full Text Available Signal Transducer and Activator of Transcription 3 (STAT3 is activated in a majority of cancers, and promotes tumorigenesis and even metastasis through transcriptional activation of its target genes. Recently, we discovered that STAT3 suppresses epithelial-to-mesenchymal transition (EMT and thus metastasis in a mouse model of colorectal cancer (CRC, while it did not affect the overall tumor burden. Furthermore, we found that STAT3 in intestinal epithelial cells (IEC suppresses EMT by regulating stability of an EMT inducer, SNAI-1 (Snail-1. Here, STAT3 functions as an adaptor rather than a transcription factor in the post-translational modification of SNAI-1. In this review, we discuss the unexpected and contradictory role of STAT3 in metastasis of CRC and its clinical implications.

  15. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    International Nuclear Information System (INIS)

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-01-01

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC

  16. Overexpression of B7-H3 augments anti-apoptosis of colorectal cancer cells by Jak2-STAT3.

    Science.gov (United States)

    Zhang, Ting; Jiang, Bo; Zou, Shi-Tao; Liu, Fen; Hua, Dong

    2015-02-14

    To investigate the role of the overexpression of B7-H3 in apoptosis in colorectal cancer cell lines and the underlying molecular mechanisms. SW620 cells that highly overexpressed B7-H3 (SW620-B7-H3-EGFP) and HCT8 cells stably transfected with B7-H3 shRNA (HCT8-shB7-H3) were previously constructed in our laboratory. Cells transfected with pIRES2-EGFP were used as negative controls (SW620-NC and HCT8-NC). Real-time PCR and western blotting analysis were used to detect the mRNA and protein expressions of the apoptosis regulator proteins Bcl-2, Bcl-xl and Bax. A cell proliferation assay was used to evaluate the survival rate and drug sensitivity of the cells. The effect of drug resistance was detected by a cell cycle assay. Active caspase-3 western blotting was used to reflect the anti-apoptotic ability of cells. Western blotting was also performed to determine the expression of proteins associated with the Jak2-STAT3 signaling pathway and the apoptosis regulator proteins after the treatment with AG490, a Jak2 specific inhibitor, in B7-H3 overexpressing cells. The data were analyzed by GraphPad Prism 6 using a non-paired t-test. Whether by overexpression in SW620 cells or downregulation in HCT8, B7-H3 significantly affected the expression of anti- and pro-apoptotic proteins, at both the transcriptional and translational levels, compared with the negative control (P overexpression increased the drug resistance of cells and resulted in a higher survival rate (P overexpression inhibited apoptosis in colorectal cancer cell lines (P overexpression improved Jak2 and STAT3 phosphorylation and, in turn, increased the expression of the downstream anti-apoptotic proteins B-cell CLL/lymphoma 2 (Bcl-2) and Bcl-xl, based on western blotting (P overexpressing cells with the Jak2-specific inhibitor AG490, the phosphorylation of Jak2 and STAT3, and the expression of Bcl-2 and Bcl-xl, decreased accordingly (P overexpression of B7-H3 induces resistance to apoptosis in colorectal cancer

  17. Hyperglycaemia exacerbates choroidal neovascularisation in mice via the oxidative stress-induced activation of STAT3 signalling in RPE cells.

    Directory of Open Access Journals (Sweden)

    Xia Li

    Full Text Available Choroidal neovascularisation (CNV that occurs as a result of age-related macular degeneration (AMD causes severe vision loss among elderly patients. The relationship between diabetes and CNV remains controversial. However, oxidative stress plays a critical role in the pathogenesis of both AMD and diabetes. In the present study, we investigated the influence of diabetes on experimentally induced CNV and on the underlying molecular mechanisms of CNV. CNV was induced via photocoagulation in the ocular fundi of mice with streptozotocin-induced diabetes. The effect of diabetes on the severity of CNV was measured. An immunofluorescence technique was used to determine the levels of oxidative DNA damage by anti-8-hydroxy-2-deoxyguanosine (8-OHdG antibody, the protein expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3 and vascular endothelial growth factor (VEGF, in mice with CNV. The production of reactive oxygen species (ROS in retinal pigment epithelial (RPE cells that had been cultured under high glucose was quantitated using the 2',7'-dichlorofluorescein diacetate (DCFH-DA method. p-STAT3 expression was examined using Western blot analysis. RT-PCR and ELISA processes were used to detect VEGF expression. Hyperglycaemia exacerbated the development of CNV in mice. Oxidative stress levels and the expression of p-STAT3 and VEGF were highly elevated both in mice and in cultured RPE cells. Treatment with the antioxidant compound N-acetyl-cysteine (NAC rescued the severity of CNV in diabetic mice. NAC also inhibited the overexpression of p-STAT3 and VEGF in CNV and in RPE cells. The JAK-2/STAT3 pathway inhibitor AG490 blocked VEGF expression but had no effect on the production of ROS in vitro. These results suggest that hyperglycaemia promotes the development of CNV by inducing oxidative stress, which in turn activates STAT3 signalling in RPE cells. Antioxidant supplementation helped attenuate the development of CNV

  18. Recombinant vectors construction for cellobiohydrolase encoding gene constitutive expression

    Directory of Open Access Journals (Sweden)

    Leontina GURGU

    2012-12-01

    Full Text Available Cellobiohydrolases (EC 3.2.1.91 are important exo enzymes involved in cellulose hydrolysis alongside endoglucanases (EC 3.2.1.4 and β-glucosidases (EC 3.2.1.21. Heterologous cellobiohydrolase gene expression under constitutive promoter control using Saccharomyces cerevisiae as host system is of great importance for a successful SSF process. From this point of view, the main objective of the work was to use Yeplac181 expression vector as a recipient for cellobiohdrolase - cbhB encoding gene expression under the control of the actin promoter, in Saccharomyces cerevisiae. Two hybridvectors, YEplac-Actp and YEplac-Actp-CbhB, were generated usingEscherichia coli XLI Blue for the cloning experiments. Constitutive cbhB gene expression was checked by proteine gel electrophoresis (SDS-PAGE after insertion of these constructs into Saccharomyces cerevisiae.

  19. STAT3 Activation in Skeletal Muscle Links Muscle Wasting and the Acute Phase Response in Cancer Cachexia

    Science.gov (United States)

    Kunzevitzky, Noelia; Guttridge, Denis C.; Khuri, Sawsan; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2011-01-01

    Background Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26)-carcinoma cachexia. Methodology/Principal Findings Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer. Conclusions/Significance These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and translated in muscle such

  20. Synergistic Effect of Radiation and Interleukin-6 on Hepatitis B Virus Reactivation in Liver Through STAT3 Signaling Pathway

    International Nuclear Information System (INIS)

    Chou, C.H.; Chen, P.-J.; Jeng, Y.-M.; Cheng, A.-L.; Huang, L.-R.; Cheng, J.C.-H.

    2009-01-01

    Purpose: Hepatitis B virus (HBV) reactivation can occur after radiotherapy (RT) for hepatobiliary malignancies. Our previous in vitro culture study identified interleukin-6 (IL-6) as the main bystander mediator of RT-induced HBV replication. We attempted to examine the molecular mechanism in HBV-transgenic mice. Methods and materials: HBV transgenic mice were treated with whole liver RT (4 Gy daily for 5 days) with or without administration of IL-6 (400 ng twice daily for 15 days). The serum level of HBV DNA was measured using real-time polymerase chain reaction, and the IL-6 concentration was measured using enzyme-linked immunosorbent assay. The intensity of immunostaining with antibodies to HBV core protein and phosphorylated signal transducer and activator of transcription (STAT)3 in the mouse liver was qualitatively analyzed. HepG2.2.15 cells (a human hepatoblastoma cell line that persistently produces HBV DNA) were used to investigate the molecular role of IL-6 plus RT in HBV reactivation. Results: HBV reactivation was induced in vivo with IL-6 plus RT (5.58-fold) compared with RT alone (1.31-fold, p = .005), IL-6 alone (1.31-fold, p = .005), or sham treatment (1.22-fold, p = .004). HBV core protein staining confirmed augmentation of intrahepatic HBV replication. IL-6 plus RT-induced HBV DNA replication in HepG2.2.15 cells was suppressed by the STAT3 inhibitor AG490 and by transfection with dominant-negative STAT3 plasmid. Phosphorylated STAT3 staining was strongest in liver tissue from mice treated with IL-6 plus RT. The mobility shift assay demonstrated that reactivation was mediated through the interaction of phosphorylated STAT3/hepatocyte nuclear factor-3 complex with HBV enhancer 1. Conclusion: RT to the liver and longer sustained IL-6 induced HBV reactivation through the STAT3 signal transduction pathway.

  1. The fruits of Gleditsia sinensis Lam. inhibits adipogenesis through modulation of mitotic clonal expansion and STAT3 activation in 3T3-L1 cells.

    Science.gov (United States)

    Lee, Ji-Hye; Go, Younghoon; Lee, Bonggi; Hwang, Youn-Hwan; Park, Kwang Il; Cho, Won-Kyung; Ma, Jin Yeul

    2018-08-10

    Gleditsia sinensis Lam. (G. sinensis) has been used in Oriental medicine for tumor, thrombosis, inflammation-related disease, and obesity. The pharmacological inhibitory effects of fruits of G. sinensis (GFE) on hyperlipidemia have been reported, but its inhibitory effects on adipogenesis and underlying mechanisms have not been elucidated. Herein we evaluated the anti-adipogenic effects of GFE and described the underlying mechanisms. The effects of ethanol extracts of GFE on adipocyte differentiation were examined in 3T3-L1 cells using biochemical and molecular analyses. During the differentiation of 3T3-L1 cells, GFE significantly reduced lipid accumulation and downregulated master adipogenic transcription factors, including CCAAT/enhancer-binding protein-α and peroxisome proliferator-activated receptor-γ, at mRNA and protein levels. These changes led to the suppression of several adipogenic-specific genes and proteins, including fatty acid synthase, sterol regulatory element-binding protein 1, stearoyl-CoA desaturase-1, and acetyl CoA carboxylase. However, the inhibitory effects of GFE on lipogenesis were only shown when GFE is treated in the early stage of adipogenesis within the first two days of differentiation. As a potential mechanism, during the early stages of differentiation, GFE inhibited cell proliferation by a decrease in the expression of DNA synthesis-related proteins and increased p27 expression and suppressed signal transducer and activator of transcription 3 (STAT3) activation induced in a differentiation medium. GFE inhibits lipogenesis by negative regulation of adipogenic transcription factors, which is associated with GFE-mediated cell cycle arrest and STAT3 inhibition. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Signal Transducer and Activator of Transcription 1 (STAT1) Knock-down Induces Apoptosis in Malignant Pleural Mesothelioma.

    Science.gov (United States)

    Arzt, Lisa; Halbwedl, Iris; Gogg-Kamerer, Margit; Popper, Helmut H

    2017-07-01

    Malignant pleural mesothelioma (MPM) is the most common primary tumor of the pleura. Its incidence is still increasing in Europe and the prognosis remains poor. We investigated the oncogenic function of signal transducer and activator of transcription 1 (STAT1) in MPM in more detail. A miRNA profiling was performed on 52 MPM tissue samples. Upregulated miRNAs (targeting SOCS1/3) were knocked-down using miRNA inhibitors. mRNA expression levels of STAT1/3, SOCS1/3 were detected in MPM cell lines. STAT1 has been knocked-down using siRNA and qPCR was used to detect mRNA expression levels of all JAK/STAT family members and genes that regulate them. An immunohistochemical staining was performed to detect the expression of caspases. STAT1 was upregulated and STAT3 was downregulated, SOCS1/3 protein was not detected but it was possible to detect SOCS1/3 mRNA in MPM cell lines. The upregulated miRNAs were successfully knocked-down, however the expected effect on SOCS1 expression was not detected. STAT1 knock-down had different effects on STAT3/5 expression. Caspase 3a and 8 expression was found to be increased after STAT1 knock-down. The physiologic regulation of STAT1 via SOCS1 is completely lost in MPM and it does not seem that the miRNAs identified by now, do inhibit the expression of SOCS1. MPM cell lines compensate STAT1 knock-down by increasing the expression of STAT3 or STAT5a, two genes which are generally considered to be oncogenes. And much more important, STAT1 knock-down induces apoptosis in MPM cell lines and STAT1 might therefore be a target for therapeutic intervention.

  3. Novel somatic mutations in large granular lymphocytic leukemia affecting the STAT-pathway and T-cell activation

    International Nuclear Information System (INIS)

    Andersson, E I; Rajala, H L M; Eldfors, S; Ellonen, P; Olson, T; Jerez, A; Clemente, M J; Kallioniemi, O; Porkka, K; Heckman, C; Loughran, T P Jr; Maciejewski, J P; Mustjoki, S

    2013-01-01

    T-cell large granular lymphocytic (T-LGL) leukemia is a clonal disease characterized by the expansion of mature CD3+CD8+ cytotoxic T cells. It is often associated with autoimmune disorders and immune-mediated cytopenias. Our recent findings suggest that up to 40% of T-LGL patients harbor mutations in the STAT3 gene, whereas STAT5 mutations are present in 2% of patients. In order to identify putative disease-causing genetic alterations in the remaining T-LGL patients, we performed exome sequencing from three STAT mutation-negative patients and validated the findings in 113 large granular lymphocytic (LGL) leukemia patients. On average, 11 CD8+ LGL leukemia cell-specific high-confidence nonsynonymous somatic mutations were discovered in each patient. Interestingly, all patients had at least one mutation that affects either directly the STAT3-pathway (such as PTPRT) or T-cell activation (BCL11B, SLIT2 and NRP1). In all three patients, the STAT3 pathway was activated when studied by RNA expression or pSTAT3 analysis. Screening of the remaining 113 LGL leukemia patients did not reveal additional patients with same mutations. These novel mutations are potentially biologically relevant and represent rare genetic triggers for T-LGL leukemia, and are associated with similar disease phenotype as observed in patients with mutations in the STAT3 gene

  4. Scutellarin suppresses migration and invasion of human hepatocellular carcinoma by inhibiting the STAT3/Girdin/Akt activity.

    Science.gov (United States)

    Ke, Yang; Bao, Tianhao; Wu, Xuesong; Tang, Haoran; Wang, Yan; Ge, Jiayun; Fu, Bimang; Meng, Xu; Chen, Li; Zhang, Cheng; Tan, Yuqi; Chen, Haotian; Guo, Zhitang; Ni, Fan; Lei, Xuefen; Shi, Zhitian; Wei, Dong; Wang, Lin

    2017-01-29

    Scutellarin is an active flavone from Erigeron breviscapine (vant) Hand Mass. This study aimed to investigate the potential role of scutellarin in migration and invasion of human hepatocellular carcinoma (HCC) cells and its possible mechanism. In comparison with the vehicle-treated controls, treatment with scutellarin (50 mg/kg/day) for 35 days significantly mitigated the lung and intrahepatic metastasis of HCC tumors in vivo. Scutellarin treatment significantly reduced HepG2 cell viability in a dose-dependent manner, and inhibited migration and invasion of HCC cells in vitro. Scutellarin treatment significantly reduced STAT3 and Girders of actin filaments (Girdin) expression, STAT3 and Akt phosphorylation in HCC cells. Introduction of STAT3 overexpression restored the scutellarin-downregulated Girdin expression, Akt activation, migration and invasion of HCC cells. Furthermore, induction of Girdin overexpression completely abrogated the inhibition of scutellarin on the Akt phosphorylation, migration and invasion of HCC cells. Scutellarin can inhibit HCC cell metastasis in vivo, and migration and invasion in vitro by down-regulating the STAT3/Girdin/Akt signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cisplatin ototoxicity involves cytokines and STAT6 signaling network

    Institute of Scientific and Technical Information of China (English)

    Hyung-Jin Kim; Jeong-Dug Sul; Channy Park; Sang-Young Chung; Sung-Kyun Moon; David J Lim; Hong-Seob So; Raekil Park; Gi-Su Oh; Jeong-Han Lee; Ah-Ra Lyu; Hye-Min Ji; Sang-Heon Lee; Jeho Song; Sung-Joo Park; Yong-Ouk You

    2011-01-01

    We herein investigated the role of the STAT signaling cascade in the production of pro-inflammatory cytokines and cisplatin ototoxicity. A significant hearing impairment caused by cisplatin injection was observed in Balb/c (wild type,WT) and STAT4-/-,but not in STAT6-/- mice. Moreover,the expression levels of the protein and mRNA of proinflammatory cytokines,including TNF-α,IL-1β,and IL-6,were markedly increased in the serum and cochlea of WT and STAT4+,but not STAT6-/- mice. Organotypic culture revealed that the shape of stereocilia bundles and arrays of sensory hair cell layers in the organ of Corti from STAT6-/- mice were intact after treatment with cisplatin,whereas those from WT and STAT4-/- mice were highly distorted and disarrayed after the treatment. Cisplatin induced the phosphorylation of STAT6 in HEI-OC1 auditory cells,and the knockdown of STAT6 by STAT6-specific siRNA significantly protected HEI-OC1 auditory cells from cisplatin-induced cell death and inhibited pro-inflammatory cytokine production. We further demonstrated that IL-4 and IL-13 induced by cisplatin modulated the phosphorylation of STAT6 by binding with IL-4 receptor alpha and IL-13Rα1. These findings suggest that STAT6 signaling plays a pivotal role in cisplatin-mediated pro-inflammatory cytokine production and ototoxicity.

  6. A novel STAT inhibitor, OPB-31121, has a significant antitumor effect on leukemia with STAT-addictive oncokinases

    International Nuclear Information System (INIS)

    Hayakawa, F; Sugimoto, K; Harada, Y; Hashimoto, N; Ohi, N; Kurahashi, S; Naoe, T

    2013-01-01

    Signal transduction and activator of transcription (STAT) proteins are extracellular ligand-responsive transcription factors that mediate cell proliferation, apoptosis, differentiation, development and the immune response. Aberrant signals of STAT induce uncontrolled cell proliferation and apoptosis resistance and are strongly involved in cancer. STAT has been identified as a promising target for antitumor drugs, but to date most trials have not been successful. Here, we demonstrated that a novel STAT inhibitor, OPB-31121, strongly inhibited STAT3 and STAT5 phosphorylation without upstream kinase inhibition, and induced significant growth inhibition in various hematopoietic malignant cells. Investigation of various cell lines suggested that OPB-31121 is particularly effective against multiple myeloma, Burkitt lymphoma and leukemia harboring BCR–ABL, FLT3/ITD and JAK2 V617F, oncokinases with their oncogenicities dependent on STAT3/5. Using an immunodeficient mouse transplantation system, we showed the significant antitumor effect of OPB-31121 against primary human leukemia cells harboring these aberrant kinases and its safety for normal human cord blood cells. Finally, we demonstrated a model to overcome drug resistance to upstream kinase inhibitors with a STAT inhibitor. These results suggested that OPB-31121 is a promising antitumor drug. Phase I trials have been performed in Korea and Hong Kong, and a phase I/II trial is underway in Japan

  7. Epstein-Barr virus-derived EBNA2 regulates STAT3 activation

    International Nuclear Information System (INIS)

    Muromoto, Ryuta; Ikeda, Osamu; Okabe, Kanako; Togi, Sumihito; Kamitani, Shinya; Fujimuro, Masahiro; Harada, Shizuko; Oritani, Kenji; Matsuda, Tadashi

    2009-01-01

    The Epstein-Barr virus (EBV)-encoded latency protein EBNA2 is a nuclear transcriptional activator that is essential for EBV-induced cellular transformation. Here, we show that EBNA2 interacts with STAT3, a signal transducer for an interleukin-6 family cytokine, and enhances the transcriptional activity of STAT3 by influencing its DNA-binding activity. Furthermore, EBNA2 cooperatively acts on STAT3 activation with LMP1. These data demonstrate that EBNA2 acts as a transcriptional coactivator of STAT3.

  8. Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3 and KIT driven Leukemogenesis

    Science.gov (United States)

    Chatterjee, Anindya; Ghosh, Joydeep; Ramdas, Baskar; Mali, Raghuveer Singh; Martin, Holly; Kobayashi, Michihiro; Vemula, Sasidhar; Canela, Victor H.; Waskow, Emily R.; Visconte, Valeria; Tiu, Ramon V.; Smith, Catherine C.; Shah, Neil; Bunting, Kevin D.; Boswell, H. Scott; Liu, Yan; Chan, Rebecca J.; Kapur, Reuben

    2015-01-01

    SUMMARY Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPN) and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK), whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis. PMID:25456130

  9. Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Anindya Chatterjee

    2014-11-01

    Full Text Available Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML and myeloproliferative neoplasms (MPNs, and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription, is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis.

  10. Discovery of novel STAT3 small molecule inhibitors via in silico site-directed fragment-based drug design.

    Science.gov (United States)

    Yu, Wenying; Xiao, Hui; Lin, Jiayuh; Li, Chenglong

    2013-06-13

    Constitutive activation of signal transducer and activator of transcription 3 (STAT3) has been validated as an attractive therapeutic target for cancer therapy. To stop both STAT3 activation and dimerization, a viable strategy is to design inhibitors blocking its SH2 domain phosphotyrosine binding site that is responsible for both actions. A new fragment-based drug design (FBDD) strategy, in silico site-directed FBDD, was applied in this study. A designed novel compound, 5,8-dioxo-6-(pyridin-3-ylamino)-5,8-dihydronaphthalene-1-sulfonamide (LY5), was confirmed to bind to STAT3 SH2 by fluorescence polarization assay. In addition, four out of the five chosen compounds have IC50 values lower than 5 μM for the U2OS cancer cells. 8 (LY5) has an IC50 range in 0.5-1.4 μM in various cancer cell lines. 8 also suppresses tumor growth in an in vivo mouse model. This study has demonstrated the utility of this approach and could be used to other drug targets in general.

  11. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH{sup +}/CD133{sup +} stem cell-like human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Li, E-mail: lin.796@osu.edu [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States); Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Fuchs, James; Li, Chenglong [Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Olson, Veronica [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States); Bekaii-Saab, Tanios [Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Lin, Jiayuh, E-mail: lin.674@osu.edu [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. Black-Right-Pointing-Pointer STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. Black-Right-Pointing-Pointer Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. Black-Right-Pointing-Pointer STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. Black-Right-Pointing-Pointer Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existence of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH{sup +}/CD133{sup +}). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower

  12. Transgenic Expression of Constitutively Active RAC1 Disrupts Mouse Rod Morphogenesis

    Science.gov (United States)

    Song, Hongman; Bush, Ronald A.; Vijayasarathy, Camasamudram; Fariss, Robert N.; Kjellstrom, Sten; Sieving, Paul A.

    2014-01-01

    Purpose. Dominant-active RAC1 rescues photoreceptor structure in Drosophila rhodopsin-null mutants, indicating an important role in morphogenesis. This report assesses the morphogenetic effect of activated RAC1 during mammalian rod photoreceptor development using transgenic mice that express constitutively active (CA) RAC1. Methods. Transgenic mice were generated by expressing CA RAC1 under control of the Rhodopsin promoter, and morphological features of the photoreceptors were evaluated by histology, immunohistochemistry, and transmission electron microscopy. Function was evaluated by electroretinography. Potential protein partners of CA RAC1 were identified by co-immunoprecipitation of retinal extracts. Results. Constitutively active RAC1 expression in differentiating rods disrupted outer retinal lamination as early as postnatal day (P)6, and many photoreceptor cell nuclei were displaced apically into the presumptive subretinal space. These photoreceptors did not develop normal inner and outer segments and had abnormal placement of synaptic elements. Some photoreceptor nuclei were also mislocalized into the inner nuclear layer. Extensive photoreceptor degeneration was subsequently observed in the adult animal. Constitutively active RAC1 formed a complex with the polarity protein PAR6 and with microtubule motor dynein in mouse retina. The normal localization of the PAR6 complex was disrupted in CA RAC1-expressing rod photoreceptors. Conclusions. Constitutively active RAC1 had a profound negative effect on mouse rod cell viability and development. Rod photoreceptors in the CA RAC1 retina exhibited a defect in polarity and migration. Constitutively active RAC1 disrupted rod morphogenesis and gave a phenotype resembling that found in the Crumbs mutant. PAR6 and dynein are two potential downstream effectors that may be involved in CA RAC1-mediated defective mouse photoreceptor morphogenesis. PMID:24651551

  13. Activation of Stat-3 is involved in the induction of apoptosis after ligation of major histocompatibility complex class I molecules on human Jurkat T cells

    DEFF Research Database (Denmark)

    Skov, S; Nielsen, M; Bregenholt, S

    1998-01-01

    Activation of Janus tyrosine kinases (Jak) and Signal transducers and activators of transcription (Stat) after ligation of major histocompatibility complex class I (MHC-I) was explored in Jurkat T cells. Cross-linking of MHC-I mediated tyrosine phosphorylation of Tyk2, but not Jak1, Jak2, and Jak3......-probe derived from the interferon-gamma activated site (GAS) in the c-fos promoter, a common DNA sequence for Stat protein binding. An association between hSIE and Stat-3 after MHC-I ligation was directly demonstrated by precipitating Stat-3 from nuclear extracts with biotinylated hSIE probe and avidin......-coupled agarose. To investigate the function of the activated Stat-3, Jurkat T cells were transiently transfected with a Stat-3 isoform lacking the transactivating domain. This dominant-negative acting Stat-3 isoform significantly inhibited apoptosis induced by ligation of MHC-I. In conclusion, our data suggest...

  14. Concerted suppression of STAT3 and GSK3β is involved in growth inhibition of non-small cell lung cancer by Xanthatin.

    Science.gov (United States)

    Tao, Li; Fan, Fangtian; Liu, Yuping; Li, Weidong; Zhang, Lei; Ruan, Junshan; Shen, Cunsi; Sheng, Xiaobo; Zhu, Zhijie; Wang, Aiyun; Chen, Wenxing; Huang, Shile; Lu, Yin

    2013-01-01

    Xanthatin, a sesquiterpene lactone purified from Xanthium strumarium L., possesses prominent anticancer activity. We found that disruption of GSK3β activity was essential for xanthatin to exert its anticancer properties in non-small cell lung cancer (NSCLC), concurrent with preferable suppression of constitutive activation of STAT3. Interestingly, inactivation of the two signals are two mutually exclusive events in xanthatin-induced cell death. Moreover, we surprisingly found that exposure of xanthatin failed to trigger the presumable side effect of canonical Wnt/β-Catenin followed by GSK3β inactivation. We further observed that the downregulation of STAT3 was required for xanthatin to fine-tune the risk. Thus, the discovery of xanthatin, which has ability to simultaneously orchestrate two independent signaling cascades, may have important implications for screening promising drugs in cancer therapies.

  15. Stat6 Promotes Intestinal Tumorigenesis in a Mouse Model of Adenomatous Polyposis by Expansion of MDSCs and Inhibition of Cytotoxic CD8 Response

    Directory of Open Access Journals (Sweden)

    Asha Jayakumar

    2017-08-01

    Full Text Available Intestinal tumorigenesis in the ApcMin/+ model is initiated by aberrant activation of Wnt pathway. Increased IL-4 expression in human colorectal cancer tissue and growth of colon cancer cell lines implied that IL-4–induced Stat6-mediated tumorigenic signaling likely contributes to intestinal tumor progression in ApcMin/+ mice. Stat6 also appears to promote expansion of myeloid-derived suppressor cells (MDSCs cells. MDSCs promote polyp formation in the ApcMin/+ model. Hence, Stat6 could have a broad role in coordinating both polyp cell proliferation and MDSC expansion. We found that IL-4–induced Stat6-mediated proliferation of intestinal epithelial cells is augmented by platelet-derived growth factor–BB, a tumor-promoting growth factor. To determine whether polyp progression in ApcMin/+ mice is dependent on Stat6 signaling, we disrupted Stat6 in this model. Total polyps in the small intestine were fewer in ApcMin/+ mice lacking Stat6. Furthermore, proliferation of polyp epithelial cells was reduced, indicating that Stat6 in part controlled polyp formation. Stat6 also promoted expansion of MDSCs in the spleen and lamina propria of ApcMin/+ mice, implying regulation of antitumor T-cell response. More CD8 cells and reduced PD-1 expression on CD4 cells correlated with reduced polyps. In addition, a strong CD8-mediated cytotoxic response led to killing of tumor cells in Stat6-deficient ApcMin/+ mice. Therefore, these findings show that Stat6 has an oncogenic role in intestinal tumorigenesis by promoting polyp cell proliferation and immunosuppressive mediators, and preventing an active cytotoxic process.

  16. Stat6 Promotes Intestinal Tumorigenesis in a Mouse Model of Adenomatous Polyposis by Expansion of MDSCs and Inhibition of Cytotoxic CD8 Response.

    Science.gov (United States)

    Jayakumar, Asha; Bothwell, Alfred L M

    2017-08-01

    Intestinal tumorigenesis in the ApcMin/+ model is initiated by aberrant activation of Wnt pathway. Increased IL-4 expression in human colorectal cancer tissue and growth of colon cancer cell lines implied that IL-4-induced Stat6-mediated tumorigenic signaling likely contributes to intestinal tumor progression in ApcMin/+ mice. Stat6 also appears to promote expansion of myeloid-derived suppressor cells (MDSCs) cells. MDSCs promote polyp formation in the ApcMin/+ model. Hence, Stat6 could have a broad role in coordinating both polyp cell proliferation and MDSC expansion. We found that IL-4-induced Stat6-mediated proliferation of intestinal epithelial cells is augmented by platelet-derived growth factor-BB, a tumor-promoting growth factor. To determine whether polyp progression in ApcMin/+ mice is dependent on Stat6 signaling, we disrupted Stat6 in this model. Total polyps in the small intestine were fewer in ApcMin/+ mice lacking Stat6. Furthermore, proliferation of polyp epithelial cells was reduced, indicating that Stat6 in part controlled polyp formation. Stat6 also promoted expansion of MDSCs in the spleen and lamina propria of ApcMin/+ mice, implying regulation of antitumor T-cell response. More CD8 cells and reduced PD-1 expression on CD4 cells correlated with reduced polyps. In addition, a strong CD8-mediated cytotoxic response led to killing of tumor cells in Stat6-deficient ApcMin/+ mice. Therefore, these findings show that Stat6 has an oncogenic role in intestinal tumorigenesis by promoting polyp cell proliferation and immunosuppressive mediators, and preventing an active cytotoxic process. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. STAT3 inhibitor enhances chemotherapy drug efficacy by ...

    African Journals Online (AJOL)

    Immunohistochemistry and Kaplan-Meier method of survival analysis were used to determine chemoresistance trends in patients. STAT3 inhibitor treatment, RNAi or ectopic overexpression of STAT3 or MUC1 in NSCLC cells were used to determine their inter-molecular relation and for modulating stemness-related genes.

  18. TEAD1-dependent expression of the FoxO3a gene in mouse skeletal muscle

    Directory of Open Access Journals (Sweden)

    Xu Xuewen

    2011-01-01

    Full Text Available Abstract Background TEAD1 (TEA domain family member 1 is constitutively expressed in cardiac and skeletal muscles. It acts as a key molecule of muscle development, and trans-activates multiple target genes involved in cell proliferation and differentiation pathways. However, its target genes in skeletal muscles, regulatory mechanisms and networks are unknown. Results In this paper, we have identified 136 target genes regulated directly by TEAD1 in skeletal muscle using integrated analyses of ChIP-on-chip. Most of the targets take part in the cell process, physiology process, biological regulation metabolism and development process. The targets also play an important role in MAPK, mTOR, T cell receptor, JAK-STAT, calcineurin and insulin signaling pathways. TEAD1 regulates foxo3a transcription through binding to the M-CAT element in foxo3a promoter, demonstrated with independent ChIP-PCR, EMSA and luciferase reporter system assay. In addition, results of over-expression and inhibition experiments suggest that foxo3a is positively regulated by TEAD1. Conclusions Our present data suggests that TEAD1 plays an important role in the regulation of gene expression and different signaling pathways may co-operate with each other mediated by TEAD1. We have preliminarily concluded that TEAD1 may regulate FoxO3a expression through calcineurin/MEF2/NFAT and IGF-1/PI3K/AKT signaling pathways in skeletal muscles. These findings provide important clues for further analysis of the role of FoxO3a gene in the formation and transformation of skeletal muscle fiber types.

  19. Antagonizing STAT3 dimerization with a rhodium(III) complex.

    Science.gov (United States)

    Ma, Dik-Lung; Liu, Li-Juan; Leung, Ka-Ho; Chen, Yen-Ting; Zhong, Hai-Jing; Chan, Daniel Shiu-Hin; Wang, Hui-Min David; Leung, Chung-Hang

    2014-08-25

    Kinetically inert metal complexes have arisen as promising alternatives to existing platinum and ruthenium chemotherapeutics. Reported herein, to our knowledge, is the first example of a substitutionally inert, Group 9 organometallic compound as a direct inhibitor of signal transducer and activator of transcription 3 (STAT3) dimerization. From a series of cyclometalated rhodium(III) and iridium(III) complexes, a rhodium(III) complex emerged as a potent inhibitor of STAT3 that targeted the SH2 domain and inhibited STAT3 phosphorylation and dimerization. Significantly, the complex exhibited potent anti-tumor activities in an in vivo mouse xenograft model of melanoma. This study demonstrates that rhodium complexes may be developed as effective STAT3 inhibitors with potent anti-tumor activity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Active Components with Inhibitory Activities on IFN-γ/STAT1 and IL-6/STAT3 Signaling Pathways from Caulis Trachelospermi

    Directory of Open Access Journals (Sweden)

    Xiao-Ting Liu

    2014-08-01

    Full Text Available Initial investigation for new active herbal extract with inhibiting activity on JAK/STAT signaling pathway revealed that the extract of Caulis Trachelospermi, which was separated by 80% alcohol extraction and subsequent HP-20 macroporous resin column chromatography, was founded to strongly inhibit IFN-γ-induced STAT1-responsive luciferase activity (IFN-γ/STAT1 with IC50 value of 2.43 μg/mL as well as inhibiting IL-6-induced STAT3-responsive luciferase activity (IL-6/STAT3 with IC50 value of 1.38 μg/mL. Subsequent study on its active components led to the isolation and identification of two new dibenzylbutyrolactone lignans named 4-demethyltraxillaside (1 and nortrachelogenin 4-O-β-d-glucopyranoside (2, together with six known compounds. The lignan compounds 1–4 together with other lignan compounds isolated in previous study were tested the activities on IFN-γ/STAT1 and IL-6/STAT3 pathways. The following result showed that the main components trachelogenin and arctigenin had corresponding activities on IFN-γ/STAT1 pathway with IC50 values of 3.14 μM and 9.46 μM as well as trachelogenin, arctigenin and matairesinol strongly inhibiting IL-6/STAT3 pathway with IC50 values of 3.63 μM, 6.47 μM and 2.92 μM, respectively.

  1. STAT3 and the Hyper-IgE syndrome

    DEFF Research Database (Denmark)

    Mogensen, Trine H

    2013-01-01

    somatic manifestations. In 2007 the genetic basis of HIES was revealed by identification of dominant negative STAT3 mutations in HIES patients. Subsequently impaired function of Tyk2 and DOCK8 have been implicated in milder forms of HIES. Since STAT3 acts as a central transcription factor downstream...

  2. Enterovirus 71 antagonizes the antiviral activity of host STAT3 and IL-6R with partial dependence on virus-induced miR-124.

    Science.gov (United States)

    Chang, Zhangmei; Wang, Yan; Bian, Liang; Liu, Qingqing; Long, Jian-Er

    2017-12-01

    Enterovirus 71 (EV71) has caused major outbreaks of hand, foot and mouth disease. EV71 infections increase the production of many host cytokines and pro-inflammatory factors, including interleukin (IL)-6, IL-10 and COX-2. Some of these molecules could stimulate the signal transducer and activator of transcription 3 (STAT3), which plays a key role in regulating host immune responses and several viral diseases. However, the role of STAT3 in EV71 infection remains unknown. This study found that the phosphorylation levels of STAT3 (p Y705 -STAT3) are closely related to EV71 infection. Further experiments revealed that STAT3 exerts an anti-EV71 activity. However, the antiviral activity of STAT3 is partially antagonized by EV71-induced miR-124, which directly targets STAT3 mRNA. Similarly, IL-6R, the α-subunit of the IL-6 receptor complex, exhibits anti-EV71 activity and is directly targeted by the virus-induced miR-124. These results indicate that EV71 can evade host IL-6R- and STAT3-mediated antiviral activities by EV71-induced miR-124. This suggests that controlling miR-124 and the downstream targets, IL-6R and STAT3, might benefit the antiviral treatment of EV71 infection.

  3. Interleukin 2 and 15 activate Stat3alpha in human T lymphocytes

    DEFF Research Database (Denmark)

    Nielsen, M; Nordahl, M; Svejgaard, A

    1998-01-01

    Signal transducer and activator of transcription 3 (Stat3) has recently been shown to exist in two alternatively spliced isoforms, a short form, Stat3beta, and a longer form, Stat3alpha, displaying differences in transcriptional activity. It is unknown which Stat3 isoform(s) is activated in respo...

  4. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    International Nuclear Information System (INIS)

    Boku, Shuken; Nakagawa, Shin; Takamura, Naoki; Kato, Akiko; Takebayashi, Minoru; Hisaoka-Nakashima, Kazue; Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro

    2013-01-01

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis

  5. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    Energy Technology Data Exchange (ETDEWEB)

    Boku, Shuken, E-mail: shuboku@med.hokudai.ac.jp [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Nakagawa, Shin [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Takamura, Naoki [Pharmaceutical Laboratories, Dainippon Sumitomo Pharma Co. Ltd., Osaka (Japan); Kato, Akiko [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Takebayashi, Minoru [Department of Psychiatry, National Hospital Organization Kure Medical Center, Kure (Japan); Hisaoka-Nakashima, Kazue [Department of Pharmacology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima (Japan); Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan)

    2013-05-17

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis.

  6. STAT1 in cancer: friend or foe?

    Science.gov (United States)

    Zhang, Ying; Liu, Zhaoyong

    2017-08-01

    The first STAT family member, STAT1, is an essential component of interferon (IFN)-signaling, which mediates several cellular functions in response to stimulation by cytokines, growth factors, and hormones, such as the IFNs and IL-6. The role and significance of STAT1 in cancer biology have been studied for a decade. The majority of evidence shows that activating STAT1 plays a tumor suppressor role in cancer cells. Nevertheless, results from some experiments and clinical studies suggest that STAT1 also exerts tumor promoter effects under specific conditions. In some malignant phenotypes, STAT1 can function either as an oncoprotein or tumor suppressor in the same cell type, depending on the specific genetic background. Thus, the function of STAT1 in cancer biology remains a mystery. In this review, we discuss both the "friend" and "foe" features of STAT1 by summarizing its tumor suppressor or oncogenic functions and mechanisms. To explain how STAT1 may mediate its tumor suppressor effects, we discuss several possible mechanisms, one of which is linked to the role of STAT1β, an isoform of STAT1.

  7. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts.

    Science.gov (United States)

    Lee, Tsung-Ming; Chang, Nen-Chung; Lin, Shinn-Zong

    2017-03-01

    During myocardial infarction, infiltrated macrophages have pivotal roles in cardiac remodeling and delayed M1 toward M2 macrophage phenotype transition is considered one of the major factors for adverse ventricular remodeling. We investigated whether dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, attenuates cardiac fibrosis via regulating macrophage phenotype by a reactive oxygen and nitrogen species (RONS)/STAT3-dependent pathway in postinfarcted rats. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline, dapagliflozin (a specific SGLT2 inhibitor), phlorizin (a nonspecific SGLT1/2 inhibitor), dapagliflozin + S3I-201 (a STAT3 inhibitor), or phlorizin + S3I-201 for 4 weeks. There were similar infarct sizes among the infarcted groups at the acute and chronic stages of infarction. At day 3 after infarction, post-infarction was associated with increased levels of superoxide and nitrotyrosine, which can be inhibited by administering either dapagliflozin or phlorizin. SGLT2 inhibitors significantly increased STAT3 activity, STAT3 nuclear translocation, myocardial IL-10 levels and the percentage of M2 macrophage infiltration. At day 28 after infarction, SGLT2 inhibitors were associated with attenuated myofibroblast infiltration and cardiac fibrosis. Although phlorizin decreased myofibroblast infiltration, the effect of dapagliflozin on attenuated myofibroblast infiltration was significantly higher than phlorizin. The effects of SGLT2 inhibitors on cardiac fibrosis were nullified by adding S3I-201. Furthermore, the effects of dapagliflozin on STAT3 activity and myocardial IL-10 levels can be reversed by 3-morpholinosydnonimine, a peroxynitrite generator. Taken together, these observations provide a novel mechanism of SGLT2 inhibitors-mediated M2 polarization through a RONS-dependent STAT3-mediated pathway and selective SGLT2 inhibitors are more effective in attenuating myofibroblast infiltration during

  8. Concerted suppression of STAT3 and GSK3β is involved in growth inhibition of non-small cell lung cancer by Xanthatin.

    Directory of Open Access Journals (Sweden)

    Li Tao

    Full Text Available Xanthatin, a sesquiterpene lactone purified from Xanthium strumarium L., possesses prominent anticancer activity. We found that disruption of GSK3β activity was essential for xanthatin to exert its anticancer properties in non-small cell lung cancer (NSCLC, concurrent with preferable suppression of constitutive activation of STAT3. Interestingly, inactivation of the two signals are two mutually exclusive events in xanthatin-induced cell death. Moreover, we surprisingly found that exposure of xanthatin failed to trigger the presumable side effect of canonical Wnt/β-Catenin followed by GSK3β inactivation. We further observed that the downregulation of STAT3 was required for xanthatin to fine-tune the risk. Thus, the discovery of xanthatin, which has ability to simultaneously orchestrate two independent signaling cascades, may have important implications for screening promising drugs in cancer therapies.

  9. Concerted Suppression of STAT3 and GSK3β Is Involved in Growth Inhibition of Non-Small Cell Lung Cancer by Xanthatin

    Science.gov (United States)

    Tao, Li; Fan, Fangtian; Liu, Yuping; Li, Weidong; Zhang, Lei; Ruan, Junshan; Shen, Cunsi; Sheng, Xiaobo; Zhu, Zhijie; Wang, Aiyun; Chen, Wenxing; Huang, Shile; Lu, Yin

    2013-01-01

    Xanthatin, a sesquiterpene lactone purified from Xanthium strumarium L., possesses prominent anticancer activity. We found that disruption of GSK3β activity was essential for xanthatin to exert its anticancer properties in non-small cell lung cancer (NSCLC), concurrent with preferable suppression of constitutive activation of STAT3. Interestingly, inactivation of the two signals are two mutually exclusive events in xanthatin-induced cell death. Moreover, we surprisingly found that exposure of xanthatin failed to trigger the presumable side effect of canonical Wnt/β-Catenin followed by GSK3β inactivation. We further observed that the downregulation of STAT3 was required for xanthatin to fine-tune the risk. Thus, the discovery of xanthatin, which has ability to simultaneously orchestrate two independent signaling cascades, may have important implications for screening promising drugs in cancer therapies. PMID:24312384

  10. Human airway eosinophils exhibit preferential reduction in STAT signaling capacity and increased CISH expression.

    Science.gov (United States)

    Burnham, Mandy E; Koziol-White, Cynthia J; Esnault, Stephane; Bates, Mary E; Evans, Michael D; Bertics, Paul J; Denlinger, Loren C

    2013-09-15

    Allergic asthma, a chronic respiratory disorder marked by inflammation and recurrent airflow obstruction, is associated with elevated levels of IL-5 family cytokines and elevated numbers of eosinophils (EOS). IL-5 family cytokines elongate peripheral blood EOS (EOS(PB)) viability, recruit EOS(PB) to the airways, and, at higher concentrations, induce degranulation and reactive oxygen species generation. Although airway EOS (EOS(A)) remain signal ready in that GM-CSF treatment induces degranulation, treatment of EOS(A) with IL-5 family cytokines no longer confers a survival advantage. Because the IL-5 family receptors have common signaling capacity, but are uncoupled from EOS(A) survival, whereas other IL-5 family induced endpoints remain functional, we tested the hypothesis that EOS(A) possess a JAK/STAT-specific regulatory mechanism (because JAK/STAT signaling is critical to EOS survival). We found that IL-5 family-induced STAT3 and STAT5 phosphorylation is attenuated in EOS(A) relative to blood EOS from airway allergen-challenged donors. However, IL-5 family-induced ERK1/2 phosphorylation is not altered between EOS(A) and EOS from airway allergen-challenged donors. These observations suggest EOS(A) possess a regulatory mechanism for suppressing STAT signaling distinct from ERK1/2 activation. Furthermore, we found, in EOS(PB), IL-5 family cytokines induce members of the suppressors of cytokine signaling (SOCS) genes, CISH and SOCS1. Additionally, following allergen challenge, EOS(A) express significantly more CISH and SOCS1 mRNA and CISH protein than EOS(PB) counterparts. In EOS(PB), long-term pretreatment with IL-5 family cytokines, to varying degrees, attenuates IL-5 family-induced STAT5 phosphorylation. These data support a model in which IL-5 family cytokines trigger a selective downregulation mechanism in EOS(A) for JAK/STAT pathways.

  11. Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis.

    Science.gov (United States)

    Chatterjee, Anindya; Ghosh, Joydeep; Ramdas, Baskar; Mali, Raghuveer Singh; Martin, Holly; Kobayashi, Michihiro; Vemula, Sasidhar; Canela, Victor H; Waskow, Emily R; Visconte, Valeria; Tiu, Ramon V; Smith, Catherine C; Shah, Neil; Bunting, Kevin D; Boswell, H Scott; Liu, Yan; Chan, Rebecca J; Kapur, Reuben

    2014-11-20

    Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs), and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription, is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK) whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Retinoic acid induces signal transducer and activator of transcription (STAT) 1, STAT2, and p48 expression in myeloid leukemia cells and enhances their responsiveness to interferons.

    Science.gov (United States)

    Matikainen, S; Ronni, T; Lehtonen, A; Sareneva, T; Melén, K; Nordling, S; Levy, D E; Julkunen, I

    1997-06-01

    IFNs are antiproliferative cytokines that have growth-inhibitory effects on various normal and malignant cells. Therefore, they have been used in the treatment of certain forms of cancer, such as chronic myelogenous leukemia and hairy cell leukemia. However, there is little evidence that IFNs would be effective in the treatment of acute myelogenous leukemia, and molecular mechanisms underlying IFN unresponsiveness have not been clarified. Here we have studied the activation and induction of IFN-specific transcription factors signal transducer and activator of transcription (STAT) 1, STAT2, and p48 in all-trans-retinoic acid (ATRA)-differentiated myeloid leukemia cells using promyelocytic NB4, myeloblastic HL-60, and monoblastic U937 cells as model systems. These cells respond to ATRA by growth inhibition and differentiation. We show that in undifferentiated NB4 cells, 2',5'-oligoadenylate synthetase and MxB gene expression is not activated by IFN-alpha, possibly due to a relative lack of signaling molecules, especially p48 protein. However, during ATRA-induced differentiation, steady-state STAT1, STAT2, and especially p48 mRNA and corresponding protein levels were elevated both in NB4 and U937 cells, apparently correlating to an enhanced responsiveness of these cells to IFNs. ATRA treatment of NB4 cells sensitized them to IFN action as seen by increased IFN-gamma activation site DNA-binding activity or by efficient formation of IFN-alpha-specific ISGF3 complex and subsequent oligoadenylate synthetase and MxB gene expression. Lack of p48 expression could be one of the mechanisms of promyelocytic leukemia cell escape from growth-inhibitory effects of IFN-alpha.

  13. Chemical and Hormonal Effects on STAT5b-Dependent Sexual Dimorphism of the Liver Transcriptome.

    Directory of Open Access Journals (Sweden)

    Keiyu Oshida

    Full Text Available The growth hormone (GH-activated transcription factor signal transducer and activator of transcription 5b (STAT5b is a key regulator of sexually dimorphic gene expression in the liver. Suppression of hepatic STAT5b signaling is associated with lipid metabolic dysfunction leading to steatosis and liver cancer. In the companion publication, a STAT5b biomarker gene set was identified and used in a rank-based test to predict both increases and decreases in liver STAT5b activation status/function with high (≥ 97% accuracy. Here, this computational approach was used to identify chemicals and hormones that activate (masculinize or suppress (feminize STAT5b function in a large, annotated mouse liver and primary hepatocyte gene expression compendium. Exposure to dihydrotestosterone and thyroid hormone caused liver masculinization, whereas glucocorticoids, fibroblast growth factor 15, and angiotensin II caused liver feminization. In mouse models of diabetes and obesity, liver feminization was consistently observed and was at least partially reversed by leptin or resveratrol exposure. Chemical-induced feminization of male mouse liver gene expression profiles was a relatively frequent phenomenon: of 156 gene expression biosets from chemically-treated male mice, 29% showed feminization of liver STAT5b function, while <1% showed masculinization. Most (93% of the biosets that exhibited feminization of male liver were also associated with activation of one or more xenobiotic-responsive receptors, most commonly constitutive activated receptor (CAR or peroxisome proliferator-activated receptor alpha (PPARα. Feminization was consistently associated with increased expression of peroxisome proliferator-activated receptor gamma (Pparg but not other lipogenic transcription factors linked to steatosis. GH-activated STAT5b signaling in mouse liver is thus commonly altered by diverse chemicals, and provides a linkage between chemical exposure and dysregulated gene

  14. Stat6 activity-related Th2 cytokine profile and tumor growth advantage of human colorectal cancer cells in vitro and in vivo.

    Science.gov (United States)

    Li, Ben Hui; Xu, Shuang Bing; Li, Feng; Zou, Xiao Guang; Saimaiti, Abudukeyoumu; Simayi, Dilixia; Wang, Ying Hong; Zhang, Yan; Yuan, Jia; Zhang, Wen Jie

    2012-03-01

    Signal transducer and activator of transcription 6 (Stat6) is critical in Th2 polarization of immune cells and active Stat6 activity has been suggested in anti-tumor immunity in animal models. The present study aims at investigating the impact of natural Stat6 activity on tumor microenvironment in human colorectal cancer cells in vitro and in vivo. Using colorectal cancer cell lines HT-29 and Caco-2 whose IL-4/Stat6 activities were known and nude mice as a model, we examined correlative relationships between Stat6 activities and gene expression profiles together with cellular behaviors in vitro and in vivo. HT-29 cells carrying active Stat6 signaling displayed spontaneous expression profiles favoring Th2 cytokines, cell cycle promotion, anti-apoptosis and pro-metastasis with increased mRNA levels of IL-4, IL-13, GATA-3, CDK4, CD44v6 and S100A4 using RT-PCR. In contrast, Caco-2 cells carrying defective Stat6 signaling exhibited spontaneous expression profiles favoring Th1 and Th17 cytokines, cell cycle inhibition, pro-apoptosis and anti-metastasis with elevated mRNA expression of IFNγ, TNFα, IL-12A, IL-17, IL-23, T-bet, CDKN1A, CDKNIB, CDKN2A and NM23-H1. Xenograft tumors of Stat6-active HT-29 cells showed a growth advantage over those of Stat6-defective Caco-2 cells. Furthermore, mice bearing HT-29 tumors expressed increased levels of Th2 cytokines IL-4 and IL-5 in the blood and pro-growth and/or pro-metastasis proteins CDK4 and CD44v6 in the tumor. To the contrary, mice bearing Caco-2 tumors expressed heightened levels of Th1 cytokines IFNγ and TNF in the blood and pro-apoptosis and anti-metastatic proteins p53 and p27(kip1) in the tumor. Colorectal cancer cells carrying active Stat6 signaling may create a microenvironment favoring Th2 cytokines and promoting expression of genes related to pro-growth, pro-metastasis and anti-apoptosis, which leads to a tumor growth advantage in vivo. These findings may imply why Stat6 pathway is constitutively activated in a

  15. HSP90 is essential for Jak-STAT signaling in classical Hodgkin lymphoma cells

    Directory of Open Access Journals (Sweden)

    Kube Dieter

    2009-07-01

    Full Text Available Abstract In classical Hodgkin lymphoma (cHL chemotherapeutic regimens are associated with stagnant rates of secondary malignancies requiring the development of new therapeutic strategies. We and others have shown that permanently activated Signal Transducer and Activator of Transcription (STAT molecules are essential for cHL cells. Recently an overexpression of heat-shock protein 90 (HSP90 in cHL cells has been shown and inhibition of HSP90 seems to affect cHL cell survival. Here we analysed the effects of HSP90 inhibition by geldanamycin derivative 17-AAG or RNA interference (RNAi on aberrant Jak-STAT signaling in cHL cells. Treatment of cHL cell lines with 17-AAG led to reduced cell proliferation and a complete inhibition of STAT1, -3, -5 and -6 tyrosine phosphorylation probably as a result of reduced protein expression of Janus kinases (Jaks. RNAi-mediated inhibition of HSP90 showed similar effects on Jak-STAT signaling in L428 cHL cells. These results suggest a central role of HSP90 in permanently activated Jak-STAT signaling in cHL cells. Therapeutics targeting HSP90 may be a promising strategy in cHL and other cancer entities associated with deregulated Jak-STAT pathway activation.

  16. The Minor Allele of rs7574865 in the STAT4 Gene Is Associated with Increased mRNA and Protein Expression.

    Science.gov (United States)

    Lamana, Amalia; López-Santalla, Mercedes; Castillo-González, Raquel; Ortiz, Ana María; Martín, Javier; García-Vicuña, Rosario; González-Álvaro, Isidoro

    2015-01-01

    The T allele of rs7574865 in STAT4 confers risk of developing autoimmune disorders. However, its functional significance remains unclear. Here we analyze how rs7574865 affects the transcription of STAT4 and its protein expression. We studied 201 patients (80% female; median age, 54 years; median disease duration, 5.4 months) from PEARL study. Demographic, clinical, laboratory and therapeutic data were collected at each visit. IL-6 serum levels were measured by enzyme immune assay. The rs7574865 was genotyped using TaqMan probes. The expression levels of STAT4 mRNA were determined at 182 visits from 69 patients using quantitative real-time polymerase chain reaction. STAT4 protein was assessed by western blot in 62 samples from 34 patients. To determine the effect of different variables on the expression of STAT4 mRNA and protein, we performed multivariate longitudinal analyses using generalized linear models. After adjustment for age, disease activity and glucocorticoid dose as confounders, the presence of at least one copy of the T allele of rs7574865 was significantly associated with higher levels of STAT4 mRNA. Similarly, TT patients showed significantly higher levels of STAT4 protein than GG patients. IL-6 induced STAT4 and STAT5 phosphorylation in peripheral blood lymphocytes. Patients carrying at least one T allele of rs7574865 displayed lower levels of serum IL-6 compared to GG homozygous; by contrast the production of C-reactive protein was similar in both populations. Our data suggest that the presence of the rs7574865 T allele enhances STAT4 mRNA transcription and protein expression. It may enhance the signaling of molecules depending on the STAT4 pathway.

  17. The Minor Allele of rs7574865 in the STAT4 Gene Is Associated with Increased mRNA and Protein Expression.

    Directory of Open Access Journals (Sweden)

    Amalia Lamana

    Full Text Available The T allele of rs7574865 in STAT4 confers risk of developing autoimmune disorders. However, its functional significance remains unclear. Here we analyze how rs7574865 affects the transcription of STAT4 and its protein expression.We studied 201 patients (80% female; median age, 54 years; median disease duration, 5.4 months from PEARL study. Demographic, clinical, laboratory and therapeutic data were collected at each visit. IL-6 serum levels were measured by enzyme immune assay. The rs7574865 was genotyped using TaqMan probes. The expression levels of STAT4 mRNA were determined at 182 visits from 69 patients using quantitative real-time polymerase chain reaction. STAT4 protein was assessed by western blot in 62 samples from 34 patients. To determine the effect of different variables on the expression of STAT4 mRNA and protein, we performed multivariate longitudinal analyses using generalized linear models.After adjustment for age, disease activity and glucocorticoid dose as confounders, the presence of at least one copy of the T allele of rs7574865 was significantly associated with higher levels of STAT4 mRNA. Similarly, TT patients showed significantly higher levels of STAT4 protein than GG patients. IL-6 induced STAT4 and STAT5 phosphorylation in peripheral blood lymphocytes. Patients carrying at least one T allele of rs7574865 displayed lower levels of serum IL-6 compared to GG homozygous; by contrast the production of C-reactive protein was similar in both populations.Our data suggest that the presence of the rs7574865 T allele enhances STAT4 mRNA transcription and protein expression. It may enhance the signaling of molecules depending on the STAT4 pathway.

  18. MicroRNA 17-5p regulates autophagy in Mycobacterium tuberculosis-infected macrophages by targeting Mcl-1 and STAT3.

    Science.gov (United States)

    Kumar, Ranjeet; Sahu, Sanjaya Kumar; Kumar, Manish; Jana, Kuladip; Gupta, Pushpa; Gupta, Umesh D; Kundu, Manikuntala; Basu, Joyoti

    2016-05-01

    Autophagy plays a crucial role in the control of bacterial burden during Mycobacterium tuberculosis infection. MicroRNAs (miRNAs) are small non-coding RNAs that regulate immune signalling and inflammation in response to challenge by pathogens. Appreciating the potential of host-directed therapies designed to control autophagy during mycobacterial infection, we focused on the role of miRNAs in regulating M. tuberculosis-induced autophagy in macrophages. Here, we demonstrate that M. tuberculosis infection leads to downregulation of miR-17 and concomitant upregulation of its targets Mcl-1 and STAT3, a transcriptional activator of Mcl-1. Forced expression of miR-17 reduces expression of Mcl-1 and STAT3 and also the interaction between Mcl-1 and Beclin-1. This is directly linked to enhanced autophagy, because Mcl-1 overexpression attenuates the effects of miR-17. At the same time, transfection with a kinase-inactive mutant of protein kinase C δ (PKCδ) (an activator of STAT3) augments M. tuberculosis-induced autophagy, and miR-17 overexpression diminishes phosphorylation of PKCδ, suggesting that an miR-17/PKC δ/STAT3 axis regulates autophagy during M. tuberculosis infection. © 2015 John Wiley & Sons Ltd.

  19. STAT3 in the systemic inflammation of cancer cachexia.

    Science.gov (United States)

    Zimmers, Teresa A; Fishel, Melissa L; Bonetto, Andrea

    2016-06-01

    Weight loss is diagnostic of cachexia, a debilitating syndrome contributing mightily to morbidity and mortality in cancer. Most research has probed mechanisms leading to muscle atrophy and adipose wasting in cachexia; however cachexia is a truly systemic phenomenon. Presence of the tumor elicits an inflammatory response and profound metabolic derangements involving not only muscle and fat, but also the hypothalamus, liver, heart, blood, spleen and likely other organs. This global response is orchestrated in part through circulating cytokines that rise in conditions of cachexia. Exogenous Interleukin-6 (IL6) and related cytokines can induce most cachexia symptomatology, including muscle and fat wasting, the acute phase response and anemia, while IL-6 inhibition reduces muscle loss in cancer. Although mechanistic studies are ongoing, certain of these cachexia phenotypes have been causally linked to the cytokine-activated transcription factor, STAT3, including skeletal muscle wasting, cardiac dysfunction and hypothalamic inflammation. Correlative studies implicate STAT3 in fat wasting and the acute phase response in cancer cachexia. Parallel data in non-cancer models and disease states suggest both pathological and protective functions for STAT3 in other organs during cachexia. STAT3 also contributes to cancer cachexia through enhancing tumorigenesis, metastasis and immune suppression, particularly in tumors associated with high prevalence of cachexia. This review examines the evidence linking STAT3 to multi-organ manifestations of cachexia and the potential and perils for targeting STAT3 to reduce cachexia and prolong survival in cancer patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The IGF-I/JAK2-STAT3/miR-21 signaling pathway may be associated with human renal cell carcinoma cell growth.

    Science.gov (United States)

    Su, Ying; Zhao, An; Cheng, Guoping; Xu, Jingjing; Ji, Enming; Sun, Wenyong

    2017-07-04

    Renal cell carcinoma (RCC) is the highest mortality rate of the genitourinary cancers, and the treatment options are very limited. Thus, identification of molecular mechanisms underlying RCC tumorigenesis, is critical for identifying biomarkers for RCC diagnosis and prognosis. To validate whether the IGF-I/JAK2-STAT3/miR-21 signaling pathway is associated with human RCC cell growth. qRT-PCR and Western blotting were used to detect the mRNA and protein expression levels, respectively. The MTT assay was performed to determine cell survival rate. The Annexin V-FITC/PI apoptosis detection kit was used to detect cell apoptosis. We employed RCC tissues and cell lines (A498; ACHN; Caki-1; Caki-2 and 786-O) in the study. IGF-I, and its inhibitor (NT-157) were administrated to detect the effects of IGF-I on the expression of miR-21 and p-JAK2. JAK2 inhibitor (AG490), and si-STAT3 were used to detect the effects of JAK2/STAT3 signaling pathway on the expression of miR-21. In our study, we firstly showed that the expression levels of IGF-I and miR-21 were up-regulated in RCC tissues and cell lines. After exogenous IGF-I treatment, the expression levels of miR-21, p-IGF-IR and p-JAK2 were significantly increased, whereas NT-157 treatment showed the reversed results. Further study indicated that JAK2 inhibitor or si-STAT3 significantly reversed the IGF-I-induced miR-21 expression level. Finally, we found that IGF-I treatment significantly prompted human RCC cell survival and inhibited cell apoptosis, and NT-157 treatment showed the reversed results. The IGF-I/JAK2-STAT3/miR-21 signaling pathway may be associated with human RCC cell growth.

  1. Role of STAT3 in Transformation and Drug Resistance in CML

    International Nuclear Information System (INIS)

    Nair, Rajesh R.; Tolentino, Joel H.; Hazlehurst, Lori A.

    2012-01-01

    Chronic myeloid leukemia (CML) is initially driven by the bcr–abl fusion oncoprotein. The identification of bcr–abl led to the discovery and rapid translation into the clinic of bcr–abl kinase inhibitors. Although, bcr–abl inhibitors are efficacious, experimental evidence indicates that targeting bcr–abl is not sufficient for elimination of minimal residual disease found within the bone marrow (BM). Experimental evidence indicates that the failure to eliminate the leukemic stem cell contributes to persistent minimal residual disease. Thus curative strategies will likely need to focus on strategies where bcr–abl inhibitors are given in combination with agents that specifically target the leukemic stem cell or the leukemic stem cell niche. One potential target to be exploited is the Janus kinase (JAK)/signal transducers and activators of transcription 3 (STAT3) pathway. Recently using STAT3 conditional knock-out mice it was shown that STAT3 is critical for initiating the disease. Interestingly, in the absence of treatment, STAT3 was not shown to be required for maintenance of the disease, suggesting that STAT3 is required only in the tumor initiating stem cell population (Hoelbl et al., 2010). In the context of the BM microenvironment, STAT3 is activated in a bcr–abl independent manner by the cytokine milieu. Activation of JAK/STAT3 was shown to contribute to cell survival even in the event of complete inhibition of bcr–abl activity within the BM compartment. Taken together, these studies suggest that JAK/STAT3 is an attractive therapeutic target for developing strategies for targeting the JAK–STAT3 pathway in combination with bcr–abl kinase inhibitors and may represent a viable strategy for eliminating or reducing minimal residual disease located in the BM in CML.

  2. Role of STAT3 in Transformation and Drug Resistance in CML

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Rajesh R.; Tolentino, Joel H.; Hazlehurst, Lori A., E-mail: lori.hazlehurst@moffitt.org [Molecular Oncology Program, H. Lee Moffitt Cancer Center, Tampa, FL (United States)

    2012-04-10

    Chronic myeloid leukemia (CML) is initially driven by the bcr–abl fusion oncoprotein. The identification of bcr–abl led to the discovery and rapid translation into the clinic of bcr–abl kinase inhibitors. Although, bcr–abl inhibitors are efficacious, experimental evidence indicates that targeting bcr–abl is not sufficient for elimination of minimal residual disease found within the bone marrow (BM). Experimental evidence indicates that the failure to eliminate the leukemic stem cell contributes to persistent minimal residual disease. Thus curative strategies will likely need to focus on strategies where bcr–abl inhibitors are given in combination with agents that specifically target the leukemic stem cell or the leukemic stem cell niche. One potential target to be exploited is the Janus kinase (JAK)/signal transducers and activators of transcription 3 (STAT3) pathway. Recently using STAT3 conditional knock-out mice it was shown that STAT3 is critical for initiating the disease. Interestingly, in the absence of treatment, STAT3 was not shown to be required for maintenance of the disease, suggesting that STAT3 is required only in the tumor initiating stem cell population (Hoelbl et al., 2010). In the context of the BM microenvironment, STAT3 is activated in a bcr–abl independent manner by the cytokine milieu. Activation of JAK/STAT3 was shown to contribute to cell survival even in the event of complete inhibition of bcr–abl activity within the BM compartment. Taken together, these studies suggest that JAK/STAT3 is an attractive therapeutic target for developing strategies for targeting the JAK–STAT3 pathway in combination with bcr–abl kinase inhibitors and may represent a viable strategy for eliminating or reducing minimal residual disease located in the BM in CML.

  3. Proteasome Inhibitor YSY01A Abrogates Constitutive STAT3 Signaling via Down-regulation of Gp130 and JAK2 in Human A549 Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2017-08-01

    Full Text Available Proteasome inhibition interfering with many cell signaling pathways has been extensively explored as a therapeutic strategy for cancers. Proteasome inhibitor YSY01A is a novel agent that has shown remarkable anti-tumor effects; however, its mechanisms of action are not fully understood. Here we report that YSY01A is capable of suppressing cancer cell survival by induction of apoptosis. Paradoxically, we find that YSY01A abrogates constitutive activation of STAT3 via proteasome-independent degradation of gp130 and JAK2, but not transcriptional regulation, in human A549 non-small cell lung cancer cells. The reduction in gp130 and JAK2 can be restored by co-treatment with 3-methyladenine, an early-stage autophagy lysosome and type I/III PI3K inhibitor. YSY01A also effectively inhibits cancer cell migration and lung xenograft tumor growth with little adverse effect on animals. Thus, our findings suggest that YSY01A represents a promising candidate for further development of novel anticancer therapeutics targeting the proteasome.

  4. Different associations of CD45 isoforms with STAT3, PKC and ERK regulate IL-6-induced proliferation in myeloma.

    Directory of Open Access Journals (Sweden)

    Xu Zheng

    Full Text Available In response to interleukin 6 (IL-6 stimulation, both CD45RO and CD45RB, but not CD45RA, translocate to lipid rafts. However, the significance of this distinct translocation and the downstream signals in CD45 isoforms-participated IL-6 signal are not well understood. Using sucrose fractionation, we found that phosphorylated signal transducer and activator of transcription (STAT3 and STAT1 were mainly localized in lipid rafts in response to IL-6 stimulation, despite both STAT3 and STAT1 localizing in raft and non-raft fractions in the presence or absence of IL-6. On the other hand, extracellular signal-regulated kinase (ERK, and phosphorylated ERK were localized in non-raft fractions regardless of the existence of IL-6. The rafts inhibitor significantly impeded the phosphorylation of STAT3 and STAT1 and nuclear translocation, but had little effect on (and only postponing the phosphorylation of ERK. This data suggests that lipid raft-dependent STAT3 and STAT1 pathways are dominant pathways of IL-6 signal in myeloma cells. Interestingly, the phosphorylation level of STAT3 but not STAT1 in CD45+ cells was significantly higher compared to that of CD45- cells, while the phosphorylation level of ERK in CD45+ myeloma cells was relatively low. Furthermore, exogenously expressed CD45RO/RB significantly enhanced STAT3, protein kinase C (PKC and downstream NF-κB activation; however, CD45RA/RB inhibited IL-6-induced ERK phosphorylation. CD45 also enhanced the nuclear localization of STAT3 but not that of STAT1. In response to IL-6 stimulation, CD45RO moved into raft compartments and formed a complex with STAT3 and PKC in raft fraction, while CD45RA remained outside of lipid rafts and formed a complex with ERK in non-raft fraction. This data suggests a different role of CD45 isoforms in IL-6-induced signaling, indicating that while CD45RA/RB seems inhibit the rafts-unrelated ERK pathway, CD45RO/RB may actually work to enhance the rafts-related STAT3 and PKC

  5. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alpha-adrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression.

    Science.gov (United States)

    Knowlton, K U; Baracchini, E; Ross, R S; Harris, A N; Henderson, S A; Evans, S M; Glembotski, C C; Chien, K R

    1991-04-25

    To study the mechanisms which mediate the transcriptional activation of cardiac genes during alpha adrenergic stimulation, the present study examined the regulated expression of three cardiac genes, a ventricular embryonic gene (atrial natriuretic factor, ANF), a constitutively expressed contractile protein gene (cardiac MLC-2), and a cardiac sodium channel gene. alpha 1-Adrenergic stimulation activates the expression and release of ANF from neonatal ventricular cells. As assessed by RNase protection analyses, treatment with alpha-adrenergic agonists increases the steady-state levels of ANF mRNA by greater than 15-fold. However, a rat cardiac sodium channel gene mRNA is not induced, indicating that alpha-adrenergic stimulation does not lead to an increase in the expression of all cardiac genes. Studies employing a series of rat ANF luciferase and rat MLC-2 luciferase fusion genes identify 315- and 92-base pair cis regulatory sequences within an embryonic gene (ANF) and a constitutively expressed contractile protein gene (MLC-2), respectively, which mediate alpha-adrenergic-inducible gene expression. Transfection of various ANF luciferase reporters into neonatal rat ventricular cells demonstrated that upstream sequences which mediate tissue-specific expression (-3003 to -638) can be segregated from those responsible for inducibility. The lack of inducibility of a cardiac Na+ channel gene, and the segregation of ANF gene sequences which mediate cardiac specific from those which mediate inducible expression, provides further insight into the relationship between muscle-specific and inducible expression during cardiac myocyte hypertrophy. Based on these results, a testable model is proposed for the induction of embryonic cardiac genes and constitutively expressed contractile protein genes and the noninducibility of a subset of cardiac genes during alpha-adrenergic stimulation of neonatal rat ventricular cells.

  6. Importance of leptin signaling and signal transducer and activator of transcription-3 activation in mediating the cardiac hypertrophy associated with obesity.

    Science.gov (United States)

    Leifheit-Nestler, Maren; Wagner, Nana-Maria; Gogiraju, Rajinikanth; Didié, Michael; Konstantinides, Stavros; Hasenfuss, Gerd; Schäfer, Katrin

    2013-07-11

    The adipokine leptin and its receptor are expressed in the heart, and leptin has been shown to promote cardiomyocyte hypertrophy in vitro. Obesity is associated with hyperleptinemia and hypothalamic leptin resistance as well as an increased risk to develop cardiac hypertrophy and heart failure. However, the role of cardiac leptin signaling in mediating the cardiomyopathy associated with increased body weight is unclear, in particular, whether it develops subsequently to cardiac leptin resistance or overactivation of hypertrophic signaling pathways via elevated leptin levels. The cardiac phenotype of high-fat diet (HFD)-induced obese wildtype (WT) mice was examined and compared to age-matched genetically obese leptin receptor (LepR)-deficient (LepRdb/db) or lean WT mice. To study the role of leptin-mediated STAT3 activation during obesity-induced cardiac remodeling, mice in which tyrosine residue 1138 within LepR had been replaced with a serine (LepRS1138) were also analyzed. Obesity was associated with hyperleptinemia and elevated cardiac leptin expression in both diet-induced and genetically obese mice. Enhanced LepR and STAT3 phosphorylation levels were detected in hearts of obese WT mice, but not in those with LepR mutations. Moreover, exogenous leptin continued to induce cardiac STAT3 activation in diet-induced obese mice. Although echocardiography revealed signs of cardiac hypertrophy in all obese mice, the increase in left ventricular (LV) mass and diameter was significantly more pronounced in LepRS1138 animals. LepRS1138 mice also exhibited an increased activation of signaling proteins downstream of LepR, including Jak2 (1.8-fold), Src kinase (1.7-fold), protein kinase B (1.3-fold) or C (1.6-fold). Histological analysis of hearts revealed that the inability of leptin to activate STAT3 in LepRdb/db and LepRS1138 mice was associated with reduced cardiac angiogenesis as well as increased apoptosis and fibrosis. Our findings suggest that hearts from obese mice

  7. Constitutional 3p26.3 terminal microdeletion in an adolescent with neuroblastoma.

    Science.gov (United States)

    Pezzolo, Annalisa; Sementa, Angela Rita; Lerone, Margherita; Morini, Martina; Ognibene, Marzia; Defferrari, Raffaella; Mazzocco, Katia; Conte, Massimo; Gigliotti, Anna Rita; Garaventa, Alberto; Pistoia, Vito; Varesio, Luigi

    2017-05-04

    Neuroblastoma (NB) is a common and often lethal cancer of early childhood that accounts for 10% of pediatric cancer mortality. Incidence peaks in infancy and then rapidly declines, with less than 5% of cases diagnosed in children and adolescents ≥ 10 y. There is increasing evidence that NB has unique biology and an chronic disease course in older children and adolescents, but ultimately dismal survival. We describe a rare constitutional 3p26.3 terminal microdeletion which occurred in an adolescent with NB, with apparently normal phenotype without neurocognitive defects. We evaluated the association of expression of genes involved in the microdeletion with NB patient outcomes using R2 platform. We screened NB patient's tumor cells for CHL1 protein expression using immunofluorescence. Constitutional and tumor DNA were tested by array-comparative genomic hybridization and single nucleotide-polymorphism-array analyses. Peripheral blood mononuclear cells from the patient showed a 2.54 Mb sub-microscopic constitutional terminal 3p deletion that extended to band p26.3. The microdeletion 3p disrupted the CNTN4 gene and the neighboring CNTN6 and CHL1 genes were hemizygously deleted, each of these genes encode neuronal cell adhesion molecules. Low expression of CNTN6 and CNTN4 genes did not stratify NB patients, whereas low CHL1 expression characterized 417 NB patients having worse overall survival. CHL1 protein expression on tumor cells from the patient was weaker than positive control. This is the first report of a constitutional 3p26.3 deletion in a NB patient. Since larger deletions of 3p, indicative of the presence of one or more tumor suppressor genes in this region, occur frequently in neuroblastoma, our results pave the way to the identification of one putative NB suppressor genes mapping in 3p26.3.

  8. STAT3 mutations correlated with hyper-IgE syndrome lead to ...

    Indian Academy of Sciences (India)

    Of all the causes identified for the disease hyper-immunoglobulinemia E syndrome (HIES), a homozygous mutation in tyrosine kinase2 (TYK2) and heterozygous mutations in STAT3 are implicated the defects in Jak/STAT signalling pathway in the pathogenesis of HIES. Mutations of STAT3 have been frequently clinically ...

  9. Human Airway Eosinophils Exhibit Preferential Reduction in STAT Signaling Capacity and Increased CISH Expression1

    Science.gov (United States)

    Burnham, Mandy E.; Koziol-White, Cynthia J.; Esnault, Stephane; Bates, Mary E.; Evans, Michael D.; Bertics, Paul J.; Denlinger, Loren C.

    2013-01-01

    Allergic asthma, a chronic respiratory disorder marked by inflammation and recurrent airflow obstruction, is associated with elevated levels of Interleukin-5 (IL-5) family cytokines, and elevated numbers of eosinophils (EOS). IL-5 family cytokines elongate peripheral blood EOS (EOSPB) viability, recruit EOSPB to the airways, and at higher concentrations, induce degranulation and reactive oxygen species (ROS) generation. While, EOSA remain signal ready in that GM-CSF treatment induces degranulation, treatment of EOSA with IL-5 family cytokines no longer confers a survival advantage. Since the IL-5 family receptors have common signaling capacity, but are uncoupled from EOSA survival while other IL-5 family induced endpoints remain functional, we tested the hypothesis that EOSA possess a JAK/STAT specific regulatory mechanism (since JAK/STAT signaling is critical to EOS survival). We found that IL-5 family-induced STAT3 and STAT5 phosphorylation is attenuated in EOSA relative to blood EOS from airway allergen-challenged donors (EOSCPB). However, IL-5 family induced ERK1/2 phosphorylation is not altered between EOSA and EOSCPB. These observations suggest EOSA possess a regulatory mechanism for suppressing STAT signaling distinct from ERK1/2 activation. Furthermore, we found, in EOSPB, IL-5 family cytokines induce members of the suppressors of cytokine signaling (SOCS) genes, CISH and SOCS1. Additionally, following allergen challenge, EOSA express significantly more CISH and SOCS1 mRNA and CISH protein than EOSPB counterparts. In EOSPB, long-term pretreatment with IL-5 family cytokines, to varying degrees, attenuates IL-5 family induced STAT5 phosphorylation. These data support a model wherein IL-5 family cytokines trigger a selective down-regulation mechanism in EOSA for JAK/STAT pathways. PMID:23956426

  10. IL-6-induced Bcl6 variant 2 supports IL-6-dependent myeloma cell proliferation and survival through STAT3

    International Nuclear Information System (INIS)

    Tsuyama, Naohiro; Danjoh, Inaho; Otsuyama, Ken-ichiro; Obata, Masanori; Tahara, Hidetoshi; Ohta, Tsutomu; Ishikawa, Hideaki

    2005-01-01

    IL-6 is a growth and survival factor for myeloma cells, although the mechanism by which it induces myeloma cell proliferation through gene expression is largely unknown. Microarray analysis showed that some B-cell lymphoma-associated oncogenes such as Bcl6, which is absent in normal plasma cells, were upregulated by IL-6 in IL-6-dependent myeloma cell lines. We found that Bcl6 variant 2 was upregulated by STAT3. ChIP assay and EMSA showed that STAT3 bound to the upstream region of variant 2 DNA. Expression of p53, a direct target gene of Bcl6, was downregulated in the IL-6-stimulated cells, and this process was impaired by an HDAC inhibitor. Bcl6 was knocked down by introducing small hairpin RNA, resulting in decreased proliferation and increased sensitivity to a DNA damaging agent. Thus, STAT3-inducible Bcl6 variant 2 appears to generate an important IL-6 signal that supports proliferation and survival of IL-6-dependent myeloma cells

  11. Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells.

    Science.gov (United States)

    Xiong, Hua; Du, Wan; Zhang, Yan-Jie; Hong, Jie; Su, Wen-Yu; Tang, Jie-Ting; Wang, Ying-Chao; Lu, Rong; Fang, Jing-Yuan

    2012-02-01

    Aberrant janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling is involved in the oncogenesis of several cancers. Suppressors of cytokine signaling (SOCS) genes and SH2-containing protein tyrosine phosphatase 1 (SHP1) proteins, which are negative regulators of JAK/STAT signaling, have been reported to have tumor suppressor functions. However, in colorectal cancer (CRC) cells, the mechanisms that regulate SOCS and SHP1 genes, and the cause of abnormalities in the JAK/STAT signaling pathway, remain largely unknown. The present study shows that trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, leads to the hyperacetylation of histones associated with the SOCS1 and SOCS3 promoters, but not the SHP1 promoter in CRC cells. This indicates that histone modifications are involved in the regulation of SOCS1 and SOCS3. Moreover, upregulation of SOCS1 and SOCS3 expression was achieved using TSA, which also significantly downregulated JAK2/STAT3 signaling in CRC cells. We also demonstrate that TSA suppresses the growth of CRC cells, and induces G1 cell cycle arrest and apoptosis through the regulation of downstream targets of JAK2/STAT3 signaling, including Bcl-2, survivin and p16(ink4a) . Therefore, our data demonstrate that TSA may induce SOCS1 and SOCS3 expression by inducing histone modifications and consequently inhibits JAK2/STAT3 signaling in CRC cells. These results also establish a mechanistic link between the inhibition of JAK2/STAT3 signaling and the anticancer action of TSA in CRC cells. Copyright © 2011 Wiley Periodicals, Inc.

  12. The Multifaceted Roles of STAT3 Signaling in the Progression of Prostate Cancer

    International Nuclear Information System (INIS)

    Bishop, Jennifer L.; Thaper, Daksh; Zoubeidi, Amina

    2014-01-01

    The signal transducer and activator of transcription (STAT)3 governs essential functions of epithelial and hematopoietic cells that are often dysregulated in cancer. While the role for STAT3 in promoting the progression of many solid and hematopoietic malignancies is well established, this review will focus on the importance of STAT3 in prostate cancer progression to the incurable metastatic castration-resistant prostate cancer (mCRPC). Indeed, STAT3 integrates different signaling pathways involved in the reactivation of androgen receptor pathway, stem like cells and the epithelial to mesenchymal transition that drive progression to mCRPC. As equally important, STAT3 regulates interactions between tumor cells and the microenvironment as well as immune cell activation. This makes it a major factor in facilitating prostate cancer escape from detection of the immune response, promoting an immunosuppressive environment that allows growth and metastasis. Based on the multifaceted nature of STAT3 signaling in the progression to mCRPC, the promise of STAT3 as a therapeutic target to prevent prostate cancer progression and the variety of STAT3 inhibitors used in cancer therapies is discussed

  13. SOCS2 and SOCS3 expression in ulcerative colitis and their correlation with inflammatory response and immune response

    Directory of Open Access Journals (Sweden)

    Le Huang1

    2017-05-01

    Full Text Available Objective: To study the correlation of SOCS2 and SOCS3 expression in ulcerative colitis tissue with inflammatory response and immune response. Methods: Ulcerative colitis lesions and normal mucosa from colonoscopic biopsy in Central Hospital of Zibo Mining Refco Group Ltd between May 2014 and July 2016 were selected and enrolled in UC group and control group respectively. RNA was extracted to determine mRNA expression of SOCS2 and SOCS3 as well as inflammatory response JAKs/STATs pathway molecules; protein was extracted to determine the contents of immune response cytokines. Results: SOCS2 mRNA expression in intestinal mucosa of UC group was not significantly different from that of control group, and SOCS3 mRNA expression was significantly lower than that of control group; JAK1, JAK2, JAK3, STAT1, STAT3 and STAT5 mRNA expression as well as IFN-γ and IL-17 protein contents in intestinal mucosa of UC group were significantly higher than those of control group while IL-4 and IL-10 protein contents were significantly lower than those of control group; JAK1, JAK2, JAK3, STAT1, STAT3 and STAT5 mRNA expression as well as IFN-γ and IL-17 protein contents in UC group of intestinal mucosa with low SOCS3 expression were significantly higher than those of intestinal mucosa with high SOCS3 expression while IL-4 and IL-10 protein contents were significantly lower than those of intestinal mucosa with high SOCS3 expression. Conclusion: Low expression of SOCS3 in ulcerative colitis can aggravate the inflammatory reaction and cause the imbalance of Th1/Th2 and Th17/Treg immune response.

  14. Identification of Novel STAT6-Regulated Proteins in Mouse B Cells by Comparative Transcriptome and Proteome Analysis.

    Science.gov (United States)

    Mokada-Gopal, Lavanya; Boeser, Alexander; Lehmann, Christian H K; Drepper, Friedel; Dudziak, Diana; Warscheid, Bettina; Voehringer, David

    2017-05-01

    The transcription factor STAT6 plays a key role in mediating signaling downstream of the receptors for IL-4 and IL-13. In B cells, STAT6 is required for class switch recombination to IgE and for germinal center formation during type 2 immune responses directed against allergens or helminths. In this study, we compared the transcriptomes and proteomes of primary mouse B cells from wild-type and STAT6-deficient mice cultured for 4 d in the presence or absence of IL-4. Microarray analysis revealed that 214 mRNAs were upregulated and 149 were downregulated >3-fold by IL-4 in a STAT6-dependent manner. Across all samples, ∼5000 proteins were identified by label-free quantitative liquid chromatography/mass spectrometry. A total of 149 proteins was found to be differentially expressed >3-fold between IL-4-stimulated wild-type and STAT6 -/- B cells (75 upregulated and 74 downregulated). Comparative analysis of the proteome and transcriptome revealed that expression of these proteins was mainly regulated at the transcriptional level, which argues against a major role for posttranscriptional mechanisms that modulate the STAT6-dependent proteome. Nine proteins were selected for confirmation by flow cytometry or Western blot. We show that CD30, CD79b, SLP-76, DEC205, IL-5Rα, STAT5, and Thy1 are induced by IL-4 in a STAT6-dependent manner. In contrast, Syk and Fc receptor-like 1 were downregulated. This dataset provides a framework for further functional analysis of newly identified IL-4-regulated proteins in B cells that may contribute to germinal center formation and IgE switching in type 2 immunity. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9.

    Science.gov (United States)

    Demoulin, J B; Uyttenhove, C; Van Roost, E; DeLestré, B; Donckers, D; Van Snick, J; Renauld, J C

    1996-09-01

    Interleukin-9 (IL-9), a T-cell-derived cytokine, interacts with a specific receptor associated with the IL-2 receptor gamma chain. In this report, we analyze the functional domains of the human IL-9 receptor transfected into mouse lymphoid cell lines. Three different functions were examined: growth stimulation in factor-dependent pro-B Ba/F3 cells, protection against dexamethasone-induced apoptosis, and Ly-6A2 induction in BW5147 lymphoma cells. The results indicated that a single tyrosine, at position 116 in the cytoplasmic domain, was required for all three activities. In addition, we observed that human IL-9 reduced the proliferation rate of transfected BW5147 cells, an effect also dependent on the same tyrosine. This amino acid was necessary for IL-9-mediated tyrosine phosphorylation of the receptor and for STAT activation but not for IRS-2/4PS activation or for JAK1 phosphorylation, which depended on a domain closer to the plasma membrane. We also showed that JAK1 was constitutively associated with the IL-9 receptor. Activated STAT complexes induced by IL-9 were found to contain STAT1, STAT3, and STAT5 transcription factors. Moreover, sequence homologies between human IL-9 receptor tyrosine 116 and tyrosines (of other receptors activating STAT3 and STAT5 were observed. Taken together, these data indicate that a single tyrosine of the IL-9 receptor, required for activation of three different STAT proteins, is necessary for distinct activities of this cytokine, including proliferative responses.

  16. Identification of novel small molecules that inhibit STAT3-dependent transcription and function.

    Directory of Open Access Journals (Sweden)

    Iryna Kolosenko

    Full Text Available Activation of Signal Transducer and Activator of Transcription 3 (STAT3 has been linked to several processes that are critical for oncogenic transformation, cancer progression, cancer cell proliferation, survival, drug resistance and metastasis. Inhibition of STAT3 signaling has shown a striking ability to inhibit cancer cell growth and therefore, STAT3 has become a promising target for anti-cancer drug development. The aim of this study was to identify novel inhibitors of STAT-dependent gene transcription. A cellular reporter-based system for monitoring STAT3 transcriptional activity was developed which was suitable for high-throughput screening (Z' = 0,8. This system was used to screen a library of 28,000 compounds (the ENAMINE Drug-Like Diversity Set. Following counter-screenings and toxicity studies, we identified four hit compounds that were subjected to detailed biological characterization. Of the four hits, KI16 stood out as the most promising compound, inhibiting STAT3 phosphorylation and transcriptional activity in response to IL6 stimulation. In silico docking studies showed that KI16 had favorable interactions with the STAT3 SH2 domain, however, no inhibitory activity could be observed in the STAT3 fluorescence polarization assay. KI16 inhibited cell viability preferentially in STAT3-dependent cell lines. Taken together, using a targeted, cell-based approach, novel inhibitors of STAT-driven transcriptional activity were discovered which are interesting leads to pursue further for the development of anti-cancer therapeutic agents.

  17. Stat5 Exerts Distinct, Vital Functions in the Cytoplasm and Nucleus of Bcr-Abl+ K562 and Jak2(V617F)+ HEL Leukemia Cells

    International Nuclear Information System (INIS)

    Weber, Axel; Borghouts, Corina; Brendel, Christian; Moriggl, Richard; Delis, Natalia; Brill, Boris; Vafaizadeh, Vida; Groner, Bernd

    2015-01-01

    Signal transducers and activators of transcription (Stats) play central roles in the conversion of extracellular signals, e.g., cytokines, hormones and growth factors, into tissue and cell type specific gene expression patterns. In normal cells, their signaling potential is strictly limited in extent and duration. The persistent activation of Stat3 or Stat5 is found in many human tumor cells and contributes to their growth and survival. Stat5 activation plays a pivotal role in nearly all hematological malignancies and occurs downstream of oncogenic kinases, e.g., Bcr-Abl in chronic myeloid leukemias (CML) and Jak2(V617F) in other myeloproliferative diseases (MPD). We defined the mechanisms through which Stat5 affects growth and survival of K562 cells, representative of Bcr-Abl positive CML, and HEL cells, representative for Jak2(V617F) positive acute erythroid leukemia. In our experiments we suppressed the protein expression levels of Stat5a and Stat5b through shRNA mediated downregulation and demonstrated the dependence of cell survival on the presence of Stat5. Alternatively, we interfered with the functional capacities of the Stat5 protein through the interaction with a Stat5 specific peptide ligand. This ligand is a Stat5 specific peptide aptamer construct which comprises a 12mer peptide integrated into a modified thioredoxin scaffold, S5-DBD-PA. The peptide sequence specifically recognizes the DNA binding domain (DBD) of Stat5. Complex formation of S5-DBD-PA with Stat5 causes a strong reduction of P-Stat5 in the nuclear fraction of Bcr-Abl-transformed K562 cells and a suppression of Stat5 target genes. Distinct Stat5 mediated survival mechanisms were detected in K562 and Jak2(V617F)-transformed HEL cells. Stat5 is activated in the nuclear and cytosolic compartments of K562 cells and the S5-DBD-PA inhibitor most likely affects the viability of Bcr-Abl + K562 cells through the inhibition of canonical Stat5 induced target gene transcription. In HEL cells, Stat5

  18. Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages.

    Directory of Open Access Journals (Sweden)

    Daniel Unterweger

    Full Text Available The type VI secretion system (T6SS mediates protein translocation across the cell membrane of Gram-negative bacteria, including Vibrio cholerae - the causative agent of cholera. All V. cholerae strains examined to date harbor gene clusters encoding a T6SS. Structural similarity and sequence homology between components of the T6SS and the T4 bacteriophage cell-puncturing device suggest that the T6SS functions as a contractile molecular syringe to inject effector molecules into prokaryotic and eukaryotic target cells. Regulation of the T6SS is critical. A subset of V. cholerae strains, including the clinical O37 serogroup strain V52, express T6SS constitutively. In contrast, pandemic strains impose tight control that can be genetically disrupted: mutations in the quorum sensing gene luxO and the newly described regulator gene tsrA lead to constitutive T6SS expression in the El Tor strain C6706. In this report, we examined environmental V. cholerae isolates from the Rio Grande with regard to T6SS regulation. Rough V. cholerae lacking O-antigen carried a nonsense mutation in the gene encoding the global T6SS regulator VasH and did not display virulent behavior towards Escherichia coli and other environmental bacteria. In contrast, smooth V. cholerae strains engaged constitutively in type VI-mediated secretion and displayed virulence towards prokaryotes (E. coli and other environmental bacteria and a eukaryote (the social amoeba Dictyostelium discoideum. Furthermore, smooth V. cholerae strains were able to outcompete each other in a T6SS-dependent manner. The work presented here suggests that constitutive T6SS expression provides V. cholerae with an advantage in intraspecific and interspecific competition.

  19. Engineered Aedes aegypti JAK/STAT Pathway-Mediated Immunity to Dengue Virus.

    Directory of Open Access Journals (Sweden)

    Natapong Jupatanakul

    2017-01-01

    Full Text Available We have developed genetically modified Ae. aegypti mosquitoes that activate the conserved antiviral JAK/STAT pathway in the fat body tissue, by overexpressing either the receptor Dome or the Janus kinase Hop by the blood feeding-induced vitellogenin (Vg promoter. Transgene expression inhibits infection with several dengue virus (DENV serotypes in the midgut as well as systemically and in the salivary glands. The impact of the transgenes Dome and Hop on mosquito longevity was minimal, but it resulted in a compromised fecundity when compared to wild-type mosquitoes. Overexpression of Dome and Hop resulted in profound transcriptome regulation in the fat body tissue as well as the midgut tissue, pinpointing several expression signatures that reflect mechanisms of DENV restriction. Our transcriptome studies and reverse genetic analyses suggested that enrichment of DENV restriction factor and depletion of DENV host factor transcripts likely accounts for the DENV inhibition, and they allowed us to identify novel factors that modulate infection. Interestingly, the fat body-specific activation of the JAK/STAT pathway did not result in any enhanced resistance to Zika virus (ZIKV or chikungunya virus (CHIKV infection, thereby indicating a possible specialization of the pathway's antiviral role.

  20. Suppression of STAT3 Signaling by Δ9-Tetrahydrocannabinol (THC Induces Trophoblast Dysfunction

    Directory of Open Access Journals (Sweden)

    Xinwen Chang

    2017-06-01

    Full Text Available Aims: Marijuana is a widely used illicit drug and its consumption during pregnancy has been associated with adverse reproductive outcomes. The purpose of this study was to determine the effects of chronic intake of Δ9-tetrahydrocannabinol (THC, the major component of marijuana, on trophoblast function, placental development, and birth outcomes. Methods: The pathological characteristics and distribution of cannabinoid receptors in placenta were observed by immunohistochemical (IHC staining. Cell migration in response to THC was measured by transwell assays. The levels of cannabinoid receptors and Signal Transducer and Activator of Transcription 3 (STAT3 were detected by western blot. Results: We found the placenta expressed two main cannabinoid receptors, suggesting that THC induced biological responses in placental cells. Supporting this hypothesis, we observed dramatic alterations of placental morphology in marijuana users. Using THC and inhibitors of cannabinoid receptors, we demonstrated that THC impaired trophoblast cell migration and invasion partly via cannabinoid receptors. Additionally, pregnant mice injected with THC showed adverse reproductive events including reduced number of fetuses, lower maternal and placental weights. Mechanistically, STAT3 signaling pathway was involved in the THC-induced suppression of trophoblast cell motility and pregnancy outcomes. Conclusion: Our study indicates that the STAT3 signaling pathway plays a critical role in THC-induced trophoblast dysfunction.

  1. mPGES-1-derived prostaglandin E2 stimulates Stat3 to promote podocyte apoptosis.

    Science.gov (United States)

    Yu, Jing; Wu, Yimei; Wang, Lu; Zhang, Wen; Xu, Man; Song, Jiayu; Fu, Yu; Cui, Yiyun; Gong, Wei; Li, Shuzhen; Xia, Weiwei; Huang, Songming; Zhang, Aihua; Jia, Zhanjun

    2017-11-01

    We previously reported that microsomal prostaglandin E synthase-1 (mPGES-1) contributed to adriamycin (Adr)-induced podocyte apoptosis. However, the molecular mechanism remains unclear. Here we studied the role of mPGES-1/PGE2 cascade in activating Stat3 signaling and the contribution of Stat3 in PGE2- and Adr-induced podocyte apoptosis. In murine podocytes, PGE2 dose- and time-dependently increased the phosphorylation of Stat3 in line with the enhanced cell apoptosis and reduced podocyte protein podocin. In agreement with the increased Stat3 phosphorylation, Stat3-derived cytokines including IL-6, IL-17, MCP-1, and ICAM-1 were significantly upregulated following PGE2 treatment. By application of a specific Stat3 inhibitor S3I-201, PGE2-induced podocyte apoptosis was largely abolished in parallel with a blockade of podocin reduction. Next, we observed that Adr treatment also enhanced p-Stat3 and activated mPGES-1/PGE2 cascade. Blockade of Stat3 by S3I-201 significantly ameliorated Adr-induced cell apoptosis and podocin reduction. More interestingly, silencing mPGES-1 in podocytes by mPGES-1 siRNA blocked Adr-induced increments of Stat-3 phosphorylation, PGE2 production, and Stat3-derived inflammatory cytokines. Taken together, this study suggested that mPGES-1-derived PGE2 could activate Stat3 signaling to promote podocyte apoptosis. Targeting mPGES-1/PGE2/Stat3 signaling might be a potential strategy for the treatment of podocytopathy.

  2. CRH promotes human colon cancer cell proliferation via IL-6/JAK2/STAT3 signaling pathway and VEGF-induced tumor angiogenesis.

    Science.gov (United States)

    Fang, Xianjun; Hong, Yali; Dai, Li; Qian, Yuanyuan; Zhu, Chao; Wu, Biao; Li, Shengnan

    2017-11-01

    Corticotrophin-releasing hormone (CRH) has been demonstrated to participate in various diseases. Our previous study showed that its receptor CRHR1 mediated the development of colitis-associated cancer in mouse model. However, the detailed mechanisms remain unclear. In this study, we explored the oncogenetic role of CRH/CRHR1 signaling in colon cancer cells. Cell proliferation and colony formation assays revealed that CRH contributed to cell proliferation. Moreover, tube formation assay showed that CRH-treated colon cancer cell supernatant significantly promoted tube formation of human umbilical vein endothelial cells (HUVECs). And these effects could be reversed by the CRHR1 specific antagonist Antalarmin. Further investigation showed that CRH significantly upregulated the expressions of interlukin-6 (IL-6) and vascular endothelial growth factor (VEGF) through activating nuclear factor-kappa B (NF-κB). The CRH-induced IL-6 promoted phosphorylation of janus kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3). STAT3 inhibition by Stattic significantly inhibited the CRH-induced cell proliferation. In addition, silence of VEGF resulted in declined tube formation induced by CRH. Taken together, CRH/CRHR1 signaling promoted human colon cancer cell proliferation via NF-κB/IL-6/JAK2/STAT3 signaling pathway and tumor angiogenesis via NF-κB/VEGF signaling pathway. Our results provide evidence to support a critical role for the CRH/CRHR1 signaling in colon cancer progression and suggest its potential utility as a new therapeutic target for colon cancer. © 2017 Wiley Periodicals, Inc.

  3. Association of the STAT4 gene with increased susceptibility for some immune-mediated diseases.

    Science.gov (United States)

    Martínez, A; Varadé, J; Márquez, A; Cénit, M C; Espino, L; Perdigones, N; Santiago, J L; Fernández-Arquero, M; de la Calle, H; Arroyo, R; Mendoza, J L; Fernández-Gutiérrez, B; de la Concha, E G; Urcelay, E

    2008-09-01

    The STAT4 gene encodes a transcription factor involved in the signaling pathways of several cytokines, including interleukin-12 (IL-12), the type I interferons, and IL-23. Recently, the association of a STAT4 haplotype marked by rs7574865 with rheumatoid arthritis (RA) and systemic lupus erythematosus was reported. The aim of this study was to investigate the role of this STAT4 tagging polymorphism in other immune-mediated diseases. The study group comprised 2,776 consecutively recruited Spanish individuals: 575 with RA, 440 with multiple sclerosis, 700 with inflammatory bowel disease, 311 with type 1 diabetes, and 723 ethnically matched healthy control subjects. The STAT4 polymorphism rs7574865 was genotyped using a predesigned TaqMan assay. Allele and genotype frequencies in patients and control subjects were compared by chi-square test. The association of STAT4 polymorphism rs7574865 with RA was validated in patients of Spanish origin (for T versus G, P = 1.2 x 10(-6), odds ratio [OR] 1.59, 95% confidence interval [95% CI] 1.31-1.92), and the association was described for the first time in both clinical forms of inflammatory bowel disease, Crohn's disease and ulcerative colitis (for T versus G, P = 0.006, OR 1.29, 95% CI 1.07-1.55), and in type 1 diabetes mellitus (for T versus G, P = 0.008, OR 1.36, 95% CI 1.07-1.71). In contrast, the genotypic distribution of this polymorphism showed no difference between patients with multiple sclerosis and healthy control subjects (for T versus G, P = 0.83, OR 1.02, 95% CI 0.82-1.28). The STAT4 gene is emerging as a novel common risk factor for diverse complex diseases.

  4. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4+CD25+ regulatory T cells

    International Nuclear Information System (INIS)

    Jin, Yulan; Purohit, Sharad; Chen, Xueqin; Yi, Bing; She, Jin-Xiong

    2012-01-01

    Highlights: ► This is the first study to provide direct evidence of the role of Stat5b in NOD mice. ► Over-expression of wild type Stat5b transgene protects NOD mice against diabetes. ► This protection may be mediated by the up-regulation of CD4 + CD25 + Tregs. -- Abstract: The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b in diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4 + T cells and especially CD8 + T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4 + and CD8 + T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-γ, TNF-α and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4 + CD25 + regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4 + CD25 + regulatory T cells.

  5. JANEX-1, a JAK3 inhibitor, protects pancreatic islets from cytokine toxicity through downregulation of NF-{kappa}B activation and the JAK/STAT pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Na; Kim, Eun-Kyung; Song, Mi-Young [Department of Biochemistry, Medical School and Diabetes Research Center, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Choi, Ha-Na; Moon, Woo Sung [Department of Pathology, Medical School and Diabetes Research Center, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Park, Sung-Joo [Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Park, Jin-Woo [Department of Biochemistry, Medical School and Diabetes Research Center, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kwon, Kang-Beom, E-mail: desson@wonkwang.ac.kr [Department of Physiology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Park, Byung-Hyun, E-mail: bhpark@chonbuk.ac.kr [Department of Biochemistry, Medical School and Diabetes Research Center, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2009-07-15

    JANEX-1/WHI-P131, a selective Janus kinase 3 (JAK3) inhibitor, has been shown to delay the onset of diabetes in the NOD mouse model. However, the molecular mechanism by which JANEX-1 protects pancreatic {beta}-cells is unknown. In the current study, we investigated the role of JANEX-1 on interleukin (IL)-1{beta} and interferon (IFN)-{gamma}-induced {beta}-cell damage using isolated islets. JANEX-1-pretreated islets showed resistance to cytokine toxicity, namely suppressed nitric oxide (NO) production, reduced inducible form of NO synthase (iNOS) expression, and decreased islet destruction. The molecular mechanism by which JANEX-1 inhibits iNOS expression was mediated through suppression of the nuclear factor {kappa}B (NF-{kappa}B) and JAK/signal transducer and activator of transcription (STAT) pathways. Islets treated with the cytokines downregulated the protein levels of suppressor of cytokine signaling (SOCS)-1 and SOCS-3, but pretreatment with JANEX-1 attenuated these decreases. Additionally, islets from JAK3{sup -/-} mice were more resistant to cytokine toxicity than islets from control mice. These results demonstrate that JANEX-1 protects {beta}-cells from cytokine toxicity through suppression of the NF-{kappa}B and JAK/STAT pathways and upregulation of SOCS proteins, suggesting that JANEX-1 may be used to preserve functional {beta}-cell mass.

  6. Differentially expressed genes: OCT-4, SOX2, STAT3, CDH1 and CDH2, in cultured mesenchymal stem cells challenged with serum of women with endometriosis

    Directory of Open Access Journals (Sweden)

    Ehab Salama

    2018-06-01

    Full Text Available Endometriosis is a common chronic gynecological disorder defined as the presence of ectopic functional endometrial tissues, outside uterine cavity, primarily on the pelvic peritoneum and the ovaries. Several studies revealed a correlation between aberrant stem-cell activity in the endometrium and endometriosis. Yet the molecular and cellular behaviors of mesnchymal stem cells in development of endometriosis are hampered by lack of invitro experiments. Our aim was to explore morphological and molecular changes associated with mesenchymal stem cells (MSCs exposition to serum derived from women with severe endometriosis. Two cell cultures of MSCs isolated from endometrial tissues of two endometriosis-free women. Each cell culture was treated individually with the serum of women with endometriosis (experimental group/n = 7, and serum of women without endometriosis (control group/ n = 4 for 14 days. Quantitative Real-Time PCR was performed later to reveal expression of OCT-4, CDH1 and CDH2, STAT3 and SOX2 genes. Morphologically, cells showed no significant changes. However from molecular point of view, we found increased expression in OCT-4, CDH1 and CDH2. For STAT3 and SOX2 we did not find a significant difference. This study shows that endometriosis serum induced molecular changes in human endometrial MSCs (EnMSCs that might be related to altered cell behavior which may be a step in differentiation that may be completed invivo by other factors to complete the process of transition. Further researches are needed for optimization to reach differentiation. Keywords: Endometriosis, Mesnchymal stem cells, OCT-4, SOX2, STAT3, E-cadherin, N-cadherin

  7. Regulation of apoptosis by resveratrol through JAK/STAT and mitochondria mediated pathway in human epidermoid carcinoma A431 cells

    International Nuclear Information System (INIS)

    Madan, Esha; Prasad, Sahdeo; Roy, Preeti; George, Jasmine; Shukla, Yogeshwer

    2008-01-01

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic phytoalexin present mainly in grapes, red wine and berries, is known to possess strong chemopreventive and anticancer properties. Here, we demonstrated the anti-proliferative and apoptosis-inducing activities of resveratrol in human epidermoid carcinoma A431 cells. Resveratrol has cytotoxic effects through inhibiting cellular proliferation of A431 cells, which leads to the induction of apoptosis, as evident by an increase in the fraction of cells in the sub-G 1 phase of the cell cycle and Annexin-V binding of externalized phosphatidylserine. Results revealed that inhibition of proliferation is associated with regulation of the JAK/STAT pathway, where resveratrol prevents phosphorylation of JAK, thereby inhibiting STAT1 phosphorylation. Furthermore, resveratrol treatment actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. Consequently, an imbalance in the Bax/Bcl-2 ratio triggered the caspase cascade and subsequent cleavage of PARP, thereby shifting the balance in favor of apoptosis. These observations indicate that resveratrol treatment inhibits JAK/STAT-mediated gene transcription and induce the mitochondrial cell death pathway.

  8. Integrity of the LXXLL motif in Stat6 is required for the inhibition of breast cancer cell growth and enhancement of differentiation in the context of progesterone

    International Nuclear Information System (INIS)

    Wei, Min; Zhu, Zhenggang; Zhang, Guofeng; He, Qi; Yang, Zhongyin; Wang, Zhiwei; Zhang, Qing; Liu, Bingya; Gu, Qinlong; Su, Liping; Yu, Yingyan

    2014-01-01

    Progesterone is essential for the proliferation and differentiation of mammary gland epithelium. Studies of breast cancer cells have demonstrated a biphasic progesterone response consisting of an initial proliferative burst followed by sustained growth arrest. However, the transcriptional factors acting with the progesterone receptor (PR) to mediate the effects of progesterone on mammary cell growth and differentiation remain to be determined. Recently, it was demonstrated that signal transducer and activator of transcription 6 (Stat6) is a cell growth suppressor. Similar to progesterone-bound PR, Stat6 acts by inducing the expression of the G1 cyclin-dependent kinase inhibitors p21 and p27. The possible interaction between Stat6 and progesterone pathways in mammary cells was therefore investigated in the present study. ChIP and luciferase were assayed to determine whether Stat6 induces p21 and p27 expression by recruitment at the proximal Sp1-binding sites of the gene promoters. Immunoprecipitation and Western blotting were performed to investigate the interaction between Stat6 and PR-B. The cellular DNA content and cell cycle distribution in breast cancer cells were analyzed by FACS. We found that Stat6 interacts with progesterone-activated PR in T47D cells. Stat6 synergizes with progesterone-bound PR to transactivate the p21 and p27 gene promoters at the proximal Sp1-binding sites. Moreover, Stat6 overexpression and knockdown, respectively, increased or prevented the induction of p21 and p27 gene expression by progesterone. Stat6 knockdown also abolished the inhibitory effects of progesterone on pRB phosphorylation, G1/S cell cycle progression, and cell proliferation. In addition, knockdown of Stat6 expression prevented the induction of breast cell differentiation markers, previously identified as progesterone target genes. Finally, Stat6 gene expression levels increased following progesterone treatment, indicating a positive auto-regulatory loop between PR and

  9. Role of JAK-STAT signaling in the pathogenesis of myeloproliferative disorders.

    Science.gov (United States)

    Levine, Ross L; Wernig, Gerlinde

    2006-01-01

    The identification of JAK2V617F mutations in polycythemia vera (PV), essential thrombocytosis (ET), and myelofibrosis (MF) represents an important advance in our understanding of these myeloproliferative disorders (MPD). Most, if not all, patients with PV and a significant number of patients with ET and MF are JAK2V617F positive, and the mutation likely arises in the hematopoietic stem cell compartment. JAK2V617F is a constitutively active tyrosine kinase that is able to activate JAK-STAT signaling most efficiently when co-expressed with the erythropoietin receptor (EPOR), the thrombopoietin receptor (MPL), or the granulocyte colony-stimulating factor receptor (GCSFR). Data from murine models supports the central role of JAK2V617F in the pathogenesis of MPD, as expression of JAK2V617F in a bone marrow transplantation assay results in polycythemia and myelofibrosis in recipient mice. Activation of JAK-STAT signaling by JAK2V617F in some, but not all MPD patients with ET and MF led to the identification of the constitutively active MPLW515L allele in ET and MF. Small molecule inhibitors of JAK-STAT signaling are currently being developed, which offer potential for molecularly targeted therapy for patients with PV, ET, and MF. Despite these advances, many questions remain regarding the role of a single disease allele in three phenotypically distinct MPD, the potential clinical efficacy of JAK2 inhibitors, and the identity of oncogenic alleles in JAK2V617F/MPLW515-negative MPD.

  10. HN1L Promotes Triple-Negative Breast Cancer Stem Cells through LEPR-STAT3 Pathway

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2018-01-01

    Full Text Available Here, we show that HEMATOLOGICAL AND NEUROLOGICAL EXPRESSED 1-LIKE (HN1L is a targetable breast cancer stem cell (BCSC gene that is altered in 25% of whole breast cancer and significantly correlated with shorter overall or relapse-free survival in triple-negative breast cancer (TNBC patients. HN1L silencing reduced the population of BCSCs, inhibited tumor initiation, resensitized chemoresistant tumors to docetaxel, and hindered cancer progression in multiple TNBC cell line-derived xenografts. Additionally, gene signatures associated with HN1L correlated with shorter disease-free survival of TNBC patients. We defined HN1L as a BCSC transcription regulator for genes involved in the LEPR-STAT3 signaling axis as HN1L binds to a putative consensus upstream sequence of STAT3, LEPTIN RECEPTOR, and MIR-150. Our data reveal that BCSCs in TNBC depend on the transcription regulator HN1L for the sustained activation of the LEPR-STAT3 pathway, which makes it a potentially important target for both prognosis and BCSC therapy.

  11. Signal transducer and activator of transcription 3 activation is associated with bladder cancer cell growth and survival

    Directory of Open Access Journals (Sweden)

    Hsieh Fu-Chuan

    2008-10-01

    Full Text Available Abstract Background Constitutive activation of signal transducer and activator of transcription 3 (Stat3 signaling pathway plays an important role in several human cancers. Activation of Stat3 is dependent on the phosphorylation at the tyrosine residue 705 by upstream kinases and subsequent nuclear translocation after dimerization. It remains unclear whether oncogenic Stat3 signaling pathway is involved in the oncogenesis of bladder cancer. Results We found that elevated Stat3 phosphorylation in 19 of 100 (19% bladder cancer tissues as well as bladder cancer cell lines, WH, UMUC-3 and 253J. To explore whether Stat3 activation is associated with cell growth and survival of bladder cancer, we targeted the Stat3 signaling pathway in bladder cancer cells using an adenovirus-mediated dominant-negative Stat3 (Y705F and a small molecule compound, STA-21. Both prohibited cell growth and induction of apoptosis in these bladder cancer cell lines but not in normal bladder smooth muscle cell (BdSMC. The survival inhibition might be mediated through apoptotic caspase 3, 8 and 9 pathways. Moreover, down-regulation of anti-apoptotic genes (Bcl-2, Bcl-xL and survivin and a cell cycle regulating gene (cyclin D1 was associated with the cell growth inhibition and apoptosis. Conclusion These results indicated that activation of Stat3 is crucial for bladder cancer cell growth and survival. Therefore, interference of Stat3 signaling pathway emerges as a potential therapeutic approach for bladder cancer.

  12. Identification of amino acids essential for the human parainfluenza type 2 virus V protein to lower the intracellular levels of the STAT2

    International Nuclear Information System (INIS)

    Kozuka, Yuji; Yamashita, Yasufumi; Kawano, Mitsuo; Tsurudome, Masato; Ito, Morihiro; Nishio, Machiko; Komada, Hiroshi; Ito, Yasuhiko

    2003-01-01

    The V protein of SV41 targets STAT1, while a specific loss of STAT2 is induced by the hPIV2 V protein. We established HeLa cells constitutively expressing various chimeric proteins between the hPIV2 and SV41 V proteins, and which STAT (STAT1 or 2) was expressed in these cells was analyzed. Both the P-V common domain and the V specific domain of hPIV2 V protein are necessary for STAT2 lowering. The internal domain (aa145-173) containing a large number of nonidentical amino acids between hPIV2 and SV41 does not direct STAT tropism, and the regions necessary for STAT2 lowering are discontinuous. The N-terminal domain (aa1-104) and the internal domain (aa126-196) of the hPIV2 V protein do not determine STAT tropism. HeLa cells expressing A105E or H108P show distinct expression of STAT2, but do show low expression or a loss of STAT1, indicating that the amino acid residues 105 and 108 of the hPIV2 V protein are essential for STAT2 lowering. Interestingly, there is an important amino acid(s) in the region (aa121-125) for STAT2 lowering, and the presence of either amino acid residue 123 or 125 of the hPIV2 V protein is necessary for lowering of STAT2. In addition, HeLa cells expressing S216D or 1217R expressed STAT2, but no STAT1, indicating that the amino acid residues 216 and 217 of the hPIV2 V protein are indispensable for STAT2 lowering. HeLa/hPIV2V cells and HeLa/S104/P are resistant to IFN-β, while they are sensitive to IFN-γ. On the other hand, HeLa/SV41V, HeLa/S216D, and HeLa1217R cells are resistant to both IFNs. Intriguingly, HeLa/A105E and HeLa/H108P cells were found to be sensitive to IFN-γ

  13. Visual detection of STAT5B gene expression in living cell using the hairpin DNA modified gold nanoparticle beacon.

    Science.gov (United States)

    Xue, Jianpeng; Shan, Lingling; Chen, Haiyan; Li, Yang; Zhu, Hongyan; Deng, Dawei; Qian, Zhiyu; Achilefu, Samuel; Gu, Yueqing

    2013-03-15

    Signal transducer and activator of transcription 5B (STAT5B) is an important protein in JAK-STAT signaling pathway that is responsible for the metastasis and proliferation of tumor cells. Determination of the STAT5B messenger Ribonucleic Acid (mRNA) relating to the STAT5B expression provides insight into the mechanism of tumor progression. In this study, we designed and used a special hairpin deoxyribonucleic acid (DNA) for human STAT5B mRNA to functionalize gold nanoparticles, which served as a beacon for detecting human STAT5B expression. Up to 90% quenching efficiency was achieved. Upon hybridizing with the target mRNA, the hairpin DNA modified gold nanoparticle beacons (hDAuNP beacons) release the fluorophores attached at 5' end of the oligonucleotide sequence. The fluorescence properties of the beacon before and after the hybridization with the complementary DNA were confirmed in vitro. The stability of hDAuNP beacons against degradation by DNase I and GSH indicated that the prepared beacon is stable inside cells. The detected fluorescence in MCF-7 cancer cells correlates with the specific STAT5B mRNA expression, which is consistent with the result from PCR measurement. Fluorescence microscopy showed that the hDAuNP beacons internalized in cells without using transfection agents, with intracellular distribution in the cytoplasm rather than the nucleus. The results demonstrated that this beacon could directly provide quantitative measurement of the intracellular STAT5B mRNA in living cells. Compared to the previous approaches, this beacon has advantages of higher target to background ratio of detection and an increased resistance to nuclease degradation. The strategy reported in this study is a promising approach for the intracellular measurement of RNA or protein expression in living cells, and has great potential in the study of drug screening and discovery. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Stat5 Exerts Distinct, Vital Functions in the Cytoplasm and Nucleus of Bcr-Abl{sup +} K562 and Jak2(V617F){sup +} HEL Leukemia Cells

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Axel [Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main 60596 (Germany); Borghouts, Corina [Ganymed Pharmaceuticals AG, Mainz 55131 (Germany); Brendel, Christian [Boston Children’s Hospital, Division of Hematology/Oncology, Boston, MA 02115 (United States); Moriggl, Richard [Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna 1090 (Austria); Delis, Natalia; Brill, Boris; Vafaizadeh, Vida; Groner, Bernd, E-mail: Groner@em.uni-frankfurt.de [Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main 60596 (Germany)

    2015-03-19

    Signal transducers and activators of transcription (Stats) play central roles in the conversion of extracellular signals, e.g., cytokines, hormones and growth factors, into tissue and cell type specific gene expression patterns. In normal cells, their signaling potential is strictly limited in extent and duration. The persistent activation of Stat3 or Stat5 is found in many human tumor cells and contributes to their growth and survival. Stat5 activation plays a pivotal role in nearly all hematological malignancies and occurs downstream of oncogenic kinases, e.g., Bcr-Abl in chronic myeloid leukemias (CML) and Jak2(V617F) in other myeloproliferative diseases (MPD). We defined the mechanisms through which Stat5 affects growth and survival of K562 cells, representative of Bcr-Abl positive CML, and HEL cells, representative for Jak2(V617F) positive acute erythroid leukemia. In our experiments we suppressed the protein expression levels of Stat5a and Stat5b through shRNA mediated downregulation and demonstrated the dependence of cell survival on the presence of Stat5. Alternatively, we interfered with the functional capacities of the Stat5 protein through the interaction with a Stat5 specific peptide ligand. This ligand is a Stat5 specific peptide aptamer construct which comprises a 12mer peptide integrated into a modified thioredoxin scaffold, S5-DBD-PA. The peptide sequence specifically recognizes the DNA binding domain (DBD) of Stat5. Complex formation of S5-DBD-PA with Stat5 causes a strong reduction of P-Stat5 in the nuclear fraction of Bcr-Abl-transformed K562 cells and a suppression of Stat5 target genes. Distinct Stat5 mediated survival mechanisms were detected in K562 and Jak2(V617F)-transformed HEL cells. Stat5 is activated in the nuclear and cytosolic compartments of K562 cells and the S5-DBD-PA inhibitor most likely affects the viability of Bcr-Abl{sup +} K562 cells through the inhibition of canonical Stat5 induced target gene transcription. In HEL cells

  15. Analysis of STAT1 activation by six FGFR3 mutants associated with skeletal dysplasia undermines dominant role of STAT1 in FGFR3 signaling in cartilage.

    Directory of Open Access Journals (Sweden)

    Pavel Krejci

    Full Text Available Activating mutations in FGFR3 tyrosine kinase cause several forms of human skeletal dysplasia. Although the mechanisms of FGFR3 action in cartilage are not completely understood, it is believed that the STAT1 transcription factor plays a central role in pathogenic FGFR3 signaling. Here, we analyzed STAT1 activation by the N540K, G380R, R248C, Y373C, K650M and K650E-FGFR3 mutants associated with skeletal dysplasias. In a cell-free kinase assay, only K650M and K650E-FGFR3 caused activatory STAT1(Y701 phosphorylation. Similarly, in RCS chondrocytes, HeLa, and 293T cellular environments, only K650M and K650E-FGFR3 caused strong STAT1 activation. Other FGFR3 mutants caused weak (HeLa or no activation (293T and RCS. This contrasted with ERK MAP kinase activation, which was strongly induced by all six mutants and correlated with the inhibition of proliferation in RCS chondrocytes. Thus the ability to activate STAT1 appears restricted to the K650M and K650E-FGFR3 mutants, which however account for only a small minority of the FGFR3-related skeletal dysplasia cases. Other pathways such as ERK should therefore be considered as central to pathological FGFR3 signaling in cartilage.

  16. Suppression of STAT3 Signaling by Δ9-Tetrahydrocannabinol (THC) Induces Trophoblast Dysfunction.

    Science.gov (United States)

    Chang, Xinwen; Bian, Yiding; He, Qizhi; Yao, Julei; Zhu, Jingping; Wu, Jinting; Wang, Kai; Duan, Tao

    2017-01-01

    Marijuana is a widely used illicit drug and its consumption during pregnancy has been associated with adverse reproductive outcomes. The purpose of this study was to determine the effects of chronic intake of Δ9-tetrahydrocannabinol (THC), the major component of marijuana, on trophoblast function, placental development, and birth outcomes. The pathological characteristics and distribution of cannabinoid receptors in placenta were observed by immunohistochemical (IHC) staining. Cell migration in response to THC was measured by transwell assays. The levels of cannabinoid receptors and Signal Transducer and Activator of Transcription 3 (STAT3) were detected by western blot. We found the placenta expressed two main cannabinoid receptors, suggesting that THC induced biological responses in placental cells. Supporting this hypothesis, we observed dramatic alterations of placental morphology in marijuana users. Using THC and inhibitors of cannabinoid receptors, we demonstrated that THC impaired trophoblast cell migration and invasion partly via cannabinoid receptors. Additionally, pregnant mice injected with THC showed adverse reproductive events including reduced number of fetuses, lower maternal and placental weights. Mechanistically, STAT3 signaling pathway was involved in the THC-induced suppression of trophoblast cell motility and pregnancy outcomes. Our study indicates that the STAT3 signaling pathway plays a critical role in THC-induced trophoblast dysfunction. © 2017 The Author(s). Published by S. Karger AG, Basel.

  17. The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis.

    Science.gov (United States)

    Chang, Qing; Bournazou, Eirini; Sansone, Pasquale; Berishaj, Marjan; Gao, Sizhi Paul; Daly, Laura; Wels, Jared; Theilen, Till; Granitto, Selena; Zhang, Xinmin; Cotari, Jesse; Alpaugh, Mary L; de Stanchina, Elisa; Manova, Katia; Li, Ming; Bonafe, Massimiliano; Ceccarelli, Claudio; Taffurelli, Mario; Santini, Donatella; Altan-Bonnet, Gregoire; Kaplan, Rosandra; Norton, Larry; Nishimoto, Norihiro; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline

    2013-07-01

    We have investigated the importance of interleukin-6 (IL-6) in promoting tumor growth and metastasis. In human primary breast cancers, increased levels of IL-6 were found at the tumor leading edge and positively correlated with advanced stage, suggesting a mechanistic link between tumor cell production of IL-6 and invasion. In support of this hypothesis, we showed that the IL-6/Janus kinase (JAK)/signal transducer and activator of transcription 3 (Stat3) pathway drives tumor progression through the stroma and metastatic niche. Overexpression of IL-6 in tumor cell lines promoted myeloid cell recruitment, angiogenesis, and induced metastases. We demonstrated the therapeutic potential of interrupting this pathway with IL-6 receptor blockade or by inhibiting its downstream effectors JAK1/2 or Stat3. These clinically relevant interventions did not inhibit tumor cell proliferation in vitro but had profound effects in vivo on tumor progression, interfering broadly with tumor-supportive stromal functions, including angiogenesis, fibroblast infiltration, and myeloid suppressor cell recruitment in both the tumor and pre-metastatic niche. This study provides the first evidence for IL-6 expression at the leading edge of invasive human breast tumors and demonstrates mechanistically that IL-6/JAK/Stat3 signaling plays a critical and pharmacologically targetable role in orchestrating the composition of the tumor microenvironment that promotes growth, invasion, and metastasis.

  18. The IL-6/JAK/Stat3 Feed-Forward Loop Drives Tumorigenesis and Metastasis

    Directory of Open Access Journals (Sweden)

    Qing Chang

    2013-07-01

    Full Text Available We have investigated the importance of interleukin-6 (IL-6 in promoting tumor growth and metastasis. In human primary breast cancers, increased levels of IL-6 were found at the tumor leading edge and positively correlated with advanced stage, suggesting a mechanistic link between tumor cell production of IL-6 and invasion. In support of this hypothesis, we showed that the IL-6/Janus kinase (JAK/signal transducer and activator of transcription 3 (Stat3 pathway drives tumor progression through the stroma and metastatic niche. Overexpression of IL-6 in tumor cell lines promoted myeloid cell recruitment, angiogenesis, and induced metastases. We demonstrated the therapeutic potential of interrupting this pathway with IL-6 receptor blockade or by inhibiting its downstream effectors JAK1/2 or Stat3. These clinically relevant interventions did not inhibit tumor cell proliferation in vitro but had profound effects in vivo on tumor progression, interfering broadly with tumor-supportive stromal functions, including angiogenesis, fibroblast infiltration, and myeloid suppressor cell recruitment in both the tumor and pre-metastatic niche. This study provides the first evidence for IL-6 expression at the leading edge of invasive human breast tumors and demonstrates mechanistically that IL-6/JAK/Stat3 signaling plays a critical and pharmacologically targetable role in orchestrating the composition of the tumor microenvironment that promotes growth, invasion, and metastasis.

  19. Resveratrol sensitizes melanomas to TRAIL through modulation of antiapoptotic gene expression

    International Nuclear Information System (INIS)

    Ivanov, Vladimir N.; Partridge, Michael A.; Johnson, Geoffrey E.; Huang, Sarah X.L.; Zhou, Hongning; Hei, Tom K.

    2008-01-01

    Although many human melanomas express the death receptors TRAIL-R2/DR5 or TRAIL-R1/DR4 on cell surface, they often exhibit resistance to exogenous TRAIL. One of the main contributors to TRAIL-resistance of melanoma cells is upregulation of transcription factors STAT3 and NF-κB that control the expression of antiapoptotic genes, including cFLIP and Bcl-xL. On the other hand, the JNK-cJun pathway is involved in the negative regulation of cFLIP (a caspase-8 inhibitor) expression. Our observations indicated that resveratrol, a polyphenolic phytoalexin, decreased STAT3 and NF-κB activation, while activating JNK-cJun that finally suppressed expression of cFLIP and Bcl-xL proteins and increased sensitivity to exogenous TRAIL in DR5-positive melanomas. Interestingly, resveratrol did not increase surface expression of DR5 in human melanomas, while γ-irradiation or sodium arsenite treatment substantially upregulated DR5 expression. Hence, an initial increase in DR5 surface expression (either by γ-irradiation or arsenite), and subsequent downregulation of antiapoptotic cFLIP and Bcl-xL (by resveratrol), appear to constitute an efficient approach to reactivate apoptotic death pathways in TRAIL-resistant human melanomas. In spite of partial suppression of mitochondrial function and the mitochondrial death pathway, melanoma cells still retain the potential to undergo the DR5-mediated, caspase-8-dependent death pathway that could be accelerated by either an increase in DR5 surface expression or suppression of cFLIP. Taken together, these results suggest that resveratrol, in combination with TRAIL, may have a significant efficacy in the treatment of human melanomas

  20. Stat3 is a positive regulator of gap junctional intercellular communication in cultured, human lung carcinoma cells

    Directory of Open Access Journals (Sweden)

    Geletu Mulu

    2012-12-01

    Full Text Available Abstract Background Neoplastic transformation of cultured cells by a number of oncogenes such as src suppresses gap junctional, intercellular communication (GJIC; however, the role of Src and its effector Signal transducer and activator of transcription-3 (Stat3 upon GJIC in non small cell lung cancer (NSCLC has not been defined. Immunohistochemical analysis revealed high Src activity in NSCLC biopsy samples compared to normal tissues. Here we explored the potential effect of Src and Stat3 upon GJIC, by assessing the levels of tyr418-phosphorylated Src and tyr705-phosphorylated Stat3, respectively, in a panel of NSCLC cell lines. Methods Gap junctional communication was examined by electroporating the fluorescent dye Lucifer yellow into cells grown on a transparent electrode, followed by observation of the migration of the dye to the adjacent, non-electroporated cells under fluorescence illumination. Results An inverse relationship between Src activity levels and GJIC was noted; in five lines with high Src activity GJIC was absent, while two lines with extensive GJIC (QU-DB and SK-LuCi6 had low Src levels, similar to a non-transformed, immortalised lung epithelial cell line. Interestingly, examination of the mechanism indicated that Stat3 inhibition in any of the NSCLC lines expressing high endogenous Src activity levels, or in cells where Src was exogenously transduced, did not restore GJIC. On the contrary, Stat3 downregulation in immortalised lung epithelial cells or in the NSCLC lines displaying extensive GJIC actually suppressed junctional permeability. Conclusions Our findings demonstrate that although Stat3 is generally growth promoting and in an activated form it can act as an oncogene, it is actually required for gap junctional communication both in nontransformed lung epithelial cells and in certain lung cancer lines that retain extensive GJIC.

  1. Dynamic trafficking of STAT5 depends on an unconventional nuclear localization signal

    Science.gov (United States)

    Shin, Ha Youn; Reich, Nancy C.

    2013-01-01

    Summary Signal transducer and activator of transcription 5 (STAT5) is crucial for physiological processes that include hematopoiesis, liver metabolism and mammary gland development. However, aberrant continual activity of STAT5 has been causally linked to human leukemias and solid tumor formation. As a regulated transcription factor, precise cellular localization of STAT5 is essential. Conventional nuclear localization signals consist of short stretches of basic amino acids. In this study, we provide evidence that STAT5 nuclear import is dependent on an unconventional nuclear localization signal that functions within the conformation of an extensive coiled-coil domain. Both in vitro binding and in vivo functional assays reveal that STAT5 nuclear import is mediated by the importin-α3/β1 system independently of STAT5 activation by tyrosine phosphorylation. The integrity of the coiled-coil domain is essential for STAT5 transcriptional induction of the β-casein gene following prolactin stimulation as well as its ability to synergize with the glucocorticoid receptor. The glucocorticoid receptor accumulates in the nucleus in response to prolactin and this nuclear import is dependent on STAT5 nuclear import. STAT5 continually shuttles in and out of the nucleus and live cell imaging demonstrates that STAT5 nuclear export is mediated by both chromosome region maintenance 1 (Crm1)-dependent and Crm1-independent pathways. A Crm1-dependent nuclear export signal was identified within the STAT5 N-terminus. These findings provide insight into the fundamental mechanisms that regulate STAT5 nuclear trafficking and cooperation with the glucocorticoid receptor and provide a basis for clinical intervention of STAT5 function in disease. PMID:23704351

  2. STAT3 Controls the Long-Term Survival and Phenotype of Repair Schwann Cells during Nerve Regeneration.

    Science.gov (United States)

    Benito, Cristina; Davis, Catherine M; Gomez-Sanchez, Jose A; Turmaine, Mark; Meijer, Dies; Poli, Valeria; Mirsky, Rhona; Jessen, Kristjan R

    2017-04-19

    After nerve injury, Schwann cells convert to a phenotype specialized to promote repair. But during the slow process of axonal regrowth, these repair Schwann cells gradually lose their regeneration-supportive features and eventually die. Although this is a key reason for the frequent regeneration failures in humans, the transcriptional mechanisms that control long-term survival and phenotype of repair cells have not been studied, and the molecular signaling underlying their decline is obscure. We show, in mice, that Schwann cell STAT3 has a dual role. It supports the long-term survival of repair Schwann cells and is required for the maintenance of repair Schwann cell properties. In contrast, STAT3 is less important for the initial generation of repair Schwann cells after injury. In repair Schwann cells, we find that Schwann cell STAT3 activation by Tyr705 phosphorylation is sustained during long-term denervation. STAT3 is required for maintaining autocrine Schwann cell survival signaling, and inactivation of Schwann cell STAT3 results in a striking loss of repair cells from chronically denervated distal stumps. STAT3 inactivation also results in abnormal morphology of repair cells and regeneration tracks, and failure to sustain expression of repair cell markers, including Shh, GDNF, and BDNF. Because Schwann cell development proceeds normally without STAT3, the function of this factor appears restricted to Schwann cells after injury. This identification of transcriptional mechanisms that support long-term survival and differentiation of repair cells will help identify, and eventually correct, the failures that lead to the deterioration of this important cell population. SIGNIFICANCE STATEMENT Although injured peripheral nerves contain repair Schwann cells that provide signals and spatial clues for promoting regeneration, the clinical outcome after nerve damage is frequently poor. A key reason for this is that, during the slow growth of axons through the proximal

  3. IGF-1 induces the epithelial-mesenchymal transition via Stat5 in hepatocellular carcinoma.

    Science.gov (United States)

    Zhao, Chuanzong; Wang, Qian; Wang, Ben; Sun, Qi; He, Zhaobin; Hong, Jianguo; Kuehn, Florian; Liu, Enyu; Zhang, Zongli

    2017-12-19

    It has been reported that the epithelial-mesenchymal transition (EMT) plays an important role in hepatocellular carcinoma (HCC). However, the relationship between the insulin-like growth factor-1 (IGF-1) and EMT of HCC was not fully elucidated. In the present work, we found that the expression of N-cadherin, Vimentin, Snail1, Snail2, and Twist1 was positively associated with IGF-1R expression, while E-cadherin expression was negatively associated with IGF-1 expression in human HCC samples. Furthermore, we observed that IGF-1 up-regulated the expression of N-cadherin, Vimentin, Snail1, Snail2 and Twist1, and down-regulated the expression of E-cadherin. In addition, Stat5 was induced in IGF-1-treated HepG2 and Hep3B cells, and Stat5 inhibition or siRNA significantly affected IGF-1-induced EMT in HepG2 and Hep3B cells. In conclusion, IGF-1 induces EMT of HCC via Stat5 signaling pathway. Thus, IGF-1/Stat5 can be recommended as a potential and novel therapeutic strategy for HCC patients.

  4. Staphylococcus aureus enterotoxin A (SEA) stimulates STAT3 activation and IL-17 expression in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Willerslev-Olsen, Andreas; Krejsgaard, Thorbjørn; Lindahl, Lise Maria

    2016-01-01

    cells. The response is induced via IL-2 receptor common g chain cytokines and a Janus kinase 3 (JAK3)-dependent pathway in malignant T cells, and blocked by tofacitinib, a clinical-grade JAK3 inhibitor. In conclusion, we demonstrate that SEA induces cell cross talk-dependent activation of STAT3...

  5. Nicotine-Mediated Regulation of Nicotinic Acetylcholine Receptors in Non-Small Cell Lung Adenocarcinoma by E2F1 and STAT1 Transcription Factors.

    Directory of Open Access Journals (Sweden)

    Courtney Schaal

    Full Text Available Cigarette smoking is the major risk factor for non-small cell lung cancer (NSCLC, which accounts for 80% of all lung cancers. Nicotine, the addictive component of tobacco smoke, can induce proliferation, migration, invasion, epithelial-mesenchymal transition (EMT, angiogenesis, and survival in NSCLC cell lines, as well as growth and metastasis of NSCLC in mice. This nicotine-mediated tumor progression is facilitated through activation of nicotinic acetylcholine receptors (nAChRs, specifically the α7 subunit; however, how the α7 nAChR gene is regulated in lung adenocarcinoma is not fully clear. Here we demonstrate that the α7 nAChR gene promoter is differentially regulated by E2F and STAT transcription factors through a competitive interplay; E2F1 induces the promoter, while STAT transcription factors repress it by binding to an overlapping site at a region -294 through -463bp upstream of the transcription start site. Treatment of cells with nicotine induced the mRNA and protein levels of α7 nAChR; this could be abrogated by treatment with inhibitors targeting Src, PI3K, MEK, α7 nAChR, CDK4/6 or a disruptor of the Rb-Raf-1 interaction. Further, nicotine-mediated induction of α7 nAChR was reduced when E2F1 was depleted and in contrast elevated when STAT1 was depleted by siRNAs. Interestingly, extracts from e-cigarettes, which have recently emerged as healthier alternatives to traditional cigarette smoking, can also induce α7 nAChR expression in a manner similar to nicotine. These results suggest an autoregulatory feed-forward loop that induces the levels of α7 nAChR upon exposure to nicotine, which enhances the strength of the signal. It can be imagined that such an induction of α7 nAChR contributes to the tumor-promoting functions of nicotine.

  6. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4{sup +}CD25{sup +} regulatory T cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yulan; Purohit, Sharad [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA (United States); Chen, Xueqin; Yi, Bing [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); She, Jin-Xiong, E-mail: jshe@georgiahealth.edu [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA (United States)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer This is the first study to provide direct evidence of the role of Stat5b in NOD mice. Black-Right-Pointing-Pointer Over-expression of wild type Stat5b transgene protects NOD mice against diabetes. Black-Right-Pointing-Pointer This protection may be mediated by the up-regulation of CD4{sup +}CD25{sup +} Tregs. -- Abstract: The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b in diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4{sup +} T cells and especially CD8{sup +} T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4{sup +} and CD8{sup +} T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-{gamma}, TNF-{alpha} and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4{sup +}CD25{sup +} regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4{sup +}CD25{sup +} regulatory T cells.

  7. Fluorescence Imaging Analysis of Upstream Regulators and Downstream Targets of STAT3 in Melanoma Precursor Lesions Obtained from Patients Before and After Systemic Low-Dose Interferon-α Treatment

    Directory of Open Access Journals (Sweden)

    Amanda Pfaff Smith

    2003-01-01

    Full Text Available Atypical nevi are the precursors and risk markers of melanoma. Apart from persistently monitoring these nevocytic lesions and resecting them at the earliest signs of clinical changes, there is as yet no systemic clinical treatment available to interfere with their progression to melanoma. To explore clinical treatments that might interfere with and possibly prevent atypical nevus progression, a previous study documented that 3 months systemic low-dose interferon-α (IFN-α treatment of patients with a clinical history of melanoma and numerous atypical nevi, led to inactivation of the STAT1 and STAT3 transcription factors in atypical nevi. Based upon this finding, we initiated a second study to determine whether systemic low-dose IFN-α treatment also impairs the expression of upstream regulators and downstream targets of STAT1 and STAT3 in atypical nevi. Using cyanine dye-conjugated antibodies, fluorescence imaging analysis revealed expression of JAK2, JNK1, AKT1, NF-κB, and IFN-αβ receptor in benign and atypical nevi, and early- and advanced-stage melanomas. To determine possible changes in the level of expression of these molecules in atypical nevi, excised before and after 3 months of systemic low-dose IFN-α treatment, newly designed optical imaging software was used to quantitate the captured fluorescent hybridization signals on a cell-by-cell basis and across an entire nevus section. The results of this analysis did not provide evidence that systemic low-dose IFN-α treatment alters the level of expression of upstream regulators or downstream targets of STAT1 and STAT3.

  8. TOX3 (TNRC9) overexpression in bladder cancer cells decreases cellular proliferation and triggers an interferon-like response

    DEFF Research Database (Denmark)

    Birkenkamp-Demtröder, Karin; Mansilla, Francisco; Andersen, Lars Dyrskjøt

    2013-01-01

    Background Human TOX3 (TOX high mobility group box family member 3) regulates Ca2+-dependent transcription in neurons and has been associated with breast cancer susceptibility. Aim of the study was to investigate the expression of TOX3 in bladder cancer tissue samples and to identify genes...... urothelium. Microarray expression profiling of human bladder cancer cells overexpressing TOX3 followed by Pathway analysis showed that TOX3 overexpression mainly affected the Interferon Signaling Pathway. TOX3 upregulation induced the expression of several genes with a gamma interferon activation site (GAS......), e.g. STAT1. In vitro functional studies showed that TOX3 was able to bind to the GAS-sequence located at the STAT1 promoter. siRNA mediated knockdown of TOX3 in RT4 bladder cancer cells decreased STAT1 expression suggesting a direct impact of TOX3 on STAT1. Immunoprecipitation of TOX3 overexpressing...

  9. Essential role of Stat6 in IL-4 signalling.

    Science.gov (United States)

    Takeda, K; Tanaka, T; Shi, W; Matsumoto, M; Minami, M; Kashiwamura, S; Nakanishi, K; Yoshida, N; Kishimoto, T; Akira, S

    1996-04-18

    Interleukin-4 (IL-4) is a pleiotropic lymphokine which plays an important role in the immune system. IL-4 activates two distinct signalling pathways through tyrosine phosphorylation of Stat6, a signal transducer and activator of transcription, and of a 170K protein called 4PS. To investigate the functional role of Stat6 in IL-4 signalling, we generated mice deficient in Stat6 by gene targeting. We report here that in the mutant mice, expression of CD23 and major histocompatibility complex (MHC) class II in resting B cells was not enhanced in response to IL-4. IL-4 induced B-cell proliferation costimulated by anti-IgM antibody was abolished. The T-cell proliferative response was also notably reduced. Furthermore, production of Th2 cytokines from T cells as well as IgE and IgG1 responses after nematode infection were profoundly reduced. These findings agreed with those obtained in IL-4 deficient mice or using antibodies to IL-4 and the IL-4 receptor. We conclude that Stat6 plays a central role in exerting IL-4 mediated biological responses.

  10. Biologic consequences of Stat1-independent IFN signaling

    Science.gov (United States)

    Gil, M. Pilar; Bohn, Erwin; O'Guin, Andrew K.; Ramana, Chilakamarti V.; Levine, Beth; Stark, George R.; Virgin, Herbert W.; Schreiber, Robert D.

    2001-01-01

    Although Stat1 is required for many IFN-dependent responses, recent work has shown that IFNγ functions independently of Stat1 to affect the growth of tumor cells or immortalized fibroblasts. We now demonstrate that both IFNγ and IFNα/β regulate proliferative responses in cells of the mononuclear phagocyte lineage derived from Stat1-null mice. Using both representational difference analysis and gene arrays, we show that IFNγ exerts its Stat1-independent actions on mononuclear phagocytes by regulating the expression of many genes. This result was confirmed by monitoring changes in expression and function of the corresponding gene products. Regulation of the expression of these genes requires the IFNγ receptor and Jak1. The physiologic relevance of IFN-dependent, Stat1-independent signaling was demonstrated by monitoring antiviral responses in Stat1-null mice. Thus, the IFN receptors engage alternative Stat1-independent signaling pathways that have important physiological consequences. PMID:11390995

  11. Essential Oil Derived From Eupatorium adenophorum Spreng. Mediates Anticancer Effect by Inhibiting STAT3 and AKT Activation to Induce Apoptosis in Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2018-05-01

    Full Text Available Eupatorium adenophorum Spreng. (EA is a well-known noxious invasive species. Gas chromatography-mass spectrometry (GC-MS analysis revealed that the essential oil derived from EA (EAEO is mainly composed of sesquiterpenes. However, the pharmacological value of EAEO in hepatocellular carcinoma (HCC remains largely unexplored. Herein, we investigated the anti-HCC activities of EAEO, and explored the potential mechanisms of EAEO-induced apoptosis. An MTT assay showed that EAEO inhibited HCC cell proliferation with little toxicity on normal liver cells. Wound healing and FACS assays revealed that EAEO suppressed HCC cell migration and arrested cell cycle, respectively. Moreover, EAEO promoted in vitro HCC cell apoptosis, and EAEO treatment inhibited HepG2 xenografts growth and enhanced apoptotic nucleus of xenografts in HepG2-bearing nude mice. Mechanistically, EAEO significantly decreased the ratio of Bcl-2/Bax and resulted in the activation of caspase-9 and -3. EAEO also reduced the expression of Grp78, which in turn relieved the inhibition of caspase-12 and -7. Meanwhile, EAEO suppressed the phosphorylation of STAT3 and AKT, indicative of its anti-HCC potential. In summary, we determined that EAEO treatment promoted HCC apoptosis via activation of the apoptotic signaling pathway in mitochondria and endoplasmic reticulum, as well as repressed the activity of STAT3 and AKT in HCC cells.

  12. Perilla frutescens Extracts Protects against Dextran Sulfate Sodium-Induced Murine Colitis: NF-κB, STAT3, and Nrf2 as Putative Targets

    Directory of Open Access Journals (Sweden)

    Deung Dae Park

    2017-08-01

    Full Text Available Perilla frutescens is a culinary and medicinal herb which has a strong anti-inflammatory and antioxidative effects. In the present study, we investigated the effects of Perilla frutescens extract (PE against dextran sulfate sodium (DSS-induced mouse colitis, an animal model that mimics human inflammatory bowel disease (IBD. Five-week-old male ICR mice were treated with a daily dose of PE (20 or 100 mg/kg, p.o. for 1 week, followed by administration of 3% DSS in double distilled drinking water and PE by gavage for another week. DSS-induced colitis was characterized by body weight loss, colon length shortening, diarrhea and bloody stool, and these symptoms were significantly ameliorated by PE treatment. PE administration suppressed DSS-induced expression of proinflammatory enzymes, including cyclooxygenase-2 and inducible nitric oxide synthase as well as cyclin D1, in a dose-dependent fashion. Nuclear factor-kappa B (NF-κB and signal transducer and activator of transcription 3 (STAT3 are major transcriptional regulators of inflammatory signaling. PE administration significantly inhibited the activation of both NF-κB and STAT3 induced by DSS, while it elevated the accumulation of Nrf2 and heme oxygenase-1 in the colon. In another experiment, treatment of CCD841CoN human normal colon epithelial cells with PE (10 mg/ml resulted in the attenuation of the tumor necrosis factor-α-induced expression/activation of mediators of proinflammatory signaling. The above results indicate that PE has a preventive potential for use in the management of IBD.

  13. Perilla frutescens Extracts Protects against Dextran Sulfate Sodium-Induced Murine Colitis: NF-κB, STAT3, and Nrf2 as Putative Targets.

    Science.gov (United States)

    Dae Park, Deung; Yum, Hye-Won; Zhong, Xiancai; Kim, Seung Hyeon; Kim, Seong Hoon; Kim, Do-Hee; Kim, Su-Jung; Na, Hye-Kyung; Sato, Atsuya; Miura, Takehito; Surh, Young-Joon

    2017-01-01

    Perilla frutescens is a culinary and medicinal herb which has a strong anti-inflammatory and antioxidative effects. In the present study, we investigated the effects of Perilla frutescens extract (PE) against dextran sulfate sodium (DSS)-induced mouse colitis, an animal model that mimics human inflammatory bowel disease (IBD). Five-week-old male ICR mice were treated with a daily dose of PE (20 or 100 mg/kg, p.o. ) for 1 week, followed by administration of 3% DSS in double distilled drinking water and PE by gavage for another week. DSS-induced colitis was characterized by body weight loss, colon length shortening, diarrhea and bloody stool, and these symptoms were significantly ameliorated by PE treatment. PE administration suppressed DSS-induced expression of proinflammatory enzymes, including cyclooxygenase-2 and inducible nitric oxide synthase as well as cyclin D1, in a dose-dependent fashion. Nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) are major transcriptional regulators of inflammatory signaling. PE administration significantly inhibited the activation of both NF-κB and STAT3 induced by DSS, while it elevated the accumulation of Nrf2 and heme oxygenase-1 in the colon. In another experiment, treatment of CCD841CoN human normal colon epithelial cells with PE (10 mg/ml) resulted in the attenuation of the tumor necrosis factor-α-induced expression/activation of mediators of proinflammatory signaling. The above results indicate that PE has a preventive potential for use in the management of IBD.

  14. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis

    Science.gov (United States)

    Boyle, D L; Soma, K; Hodge, J; Kavanaugh, A; Mandel, D; Mease, P; Shurmur, R; Singhal, A K; Wei, N; Rosengren, S; Kaplan, I; Krishnaswami, S; Luo, Z; Bradley, J; Firestein, G S

    2015-01-01

    Objective Tofacitinib is an oral Janus kinase (JAK) inhibitor for the treatment of rheumatoid arthritis (RA). The pathways affected by tofacitinib and the effects on gene expression in situ are unknown. Therefore, tofacitinib effects on synovial pathobiology were investigated. Methods A randomised, double-blind, phase II serial synovial biopsy study (A3921073; NCT00976599) in patients with RA with an inadequate methotrexate response. Patients on background methotrexate received tofacitinib 10 mg twice daily or placebo for 28 days. Synovial biopsies were performed on Days -7 and 28 and analysed by immunoassay or quantitative PCR. Clinical response was determined by disease activity score and European League Against Rheumatism (EULAR) response on Day 28 in A3921073, and at Month 3 in a long-term extension study (A3921024; NCT00413699). Results Tofacitinib exposure led to EULAR moderate to good responses (11/14 patients), while placebo was ineffective (1/14 patients) on Day 28. Tofacitinib treatment significantly reduced synovial mRNA expression of matrix metalloproteinase (MMP)-1 and MMP-3 (pTofacitinib significantly decreased plasma CXCL10 (pTofacitinib reduces metalloproteinase and interferon-regulated gene expression in rheumatoid synovium, and clinical improvement correlates with reductions in STAT1 and STAT3 phosphorylation. JAK1-mediated interferon and interleukin-6 signalling likely play a key role in the synovial response. Trial registration number NCT00976599. PMID:25398374

  15. Study of genetic variation in the STAT3 on obesity and insulin resistance in male adults.

    Science.gov (United States)

    Gianotti, Tomas F; Sookoian, Silvia; Gemma, Carolina; Burgueño, Adriana L; González, Claudio D; Pirola, Carlos J

    2008-07-01

    Signal transducer and activator of transcription 3 (STAT3) plays an important role in hepatic glucose homeostasis and carbohydrate metabolism and has been implicated in the leptin-mediated energy homeostasis. We explored whether STAT3 gene variants are associated with obesity and insulin resistance in a well-characterized sample of 984 adult men (aged 34.4+/-8.6 years) of self-reported European ancestry from a population-based study. We analyzed three tagging single-nucleotide polymorphisms (tagSNPs), two intronic (rs2293152 and rs6503695) and one located in a noncoding region near the gene promoter (rs9891119). These variants were not associated with either obesity (in which 488 lean individuals were compared to 496 overweight/obese subjects) (P values: 0.68, 0.49, and 0.9 for rs2293152, rs6503695, and rs9891119, respectively) or BMI as a continuous trait (P values: 0.85, 0.73, and 0.58 for rs2293152, rs6503695, and rs9891119, respectively). We found no significant association between the three tagSNPs and fasting plasma glucose and insulin. Likewise, no association was observed between the homeostasis model assessment (HOMA) index and any of the tagSNPs. A significant association was observed with total cholesterol and rs6503695 (nominal P value 0.019), but after correcting for multiple testing by Bonferroni correction, the significance becomes marginal (P=0.057). In conclusion, although STAT3 is an excellent candidate gene for assessing obesity and insulin resistance susceptibility alleles, our results do not support a major role for STAT3 variants in BMI and insulin resistance in our male population.

  16. Interleukin-2 induces tyrosine phosphorylation and nuclear translocation of stat3 in human T lymphocytes

    DEFF Research Database (Denmark)

    Nielsen, M; Svejgaard, A; Skov, S

    1994-01-01

    that stimulation through the IL-2R induced tyrosine phosphorylation and subsequent nuclear translocation of stat3, a newly identified member of the signal transducers and activators of transcription (STAT) family of proteins. In contrast, stat1 proteins were not tyrosine phosphorylated after IL-2 ligation, whereas...... an apparent molecular mass of 84 kDa and was not recognized by stat3 or stat1 mAb or antisera. Since IL-2 induced nuclear translocation of the 84 kDa protein and stat3 followed identical kinetics, p84 is a candidate for a new, yet undefined, member of the STAT family. Taken together, we report that IL-2...... induces tyrosine phosphorylation and subsequent nuclear translocation of stat3 and an as yet undefined 84-kDa protein in antigen-specific human T cell lines....

  17. 17β-estradiol exerts anticancer effects in anoikis-resistant hepatocellular carcinoma cell lines by targeting IL-6/STAT3 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seulki, E-mail: sl10f@naver.com [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of); Lee, Minjong, E-mail: minjonglee2@naver.com [Division of Gastroenterology, Department of Internal Medicine, Kangwon National University Hospital, 156 Baengnyeong-ro, Chuncheon-si, Gangwon-do (Korea, Republic of); Kim, Jong Bin, E-mail: kkimjp@hanmail.net [Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912 (United States); Jo, Ara, E-mail: loveara0315@naver.com [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of); Cho, Eun Ju, E-mail: creatioex@gmail.com [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of); Yu, Su Jong, E-mail: ydoctor2@hanmail.net [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of); Lee, Jeong-Hoon, E-mail: pindra@empal.com [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of); Yoon, Jung-Hwan, E-mail: yoonjh@snu.ac.kr [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of); Kim, Yoon Jun, E-mail: yoonjun@snu.ac.kr [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of)

    2016-05-13

    17β-Estradiol (E2) has been proven to exert protective effects against HCC; however, its mechanism on HCC proliferation and suppression of invasion remains to be further explored. Because HCC up-regulates serum Interleukin-6 (IL-6) levels and Signal Transducer and Activator of Transcription 3 (STAT3), molecular agents that attenuate IL-6/STAT3 signaling can potentially suppress HCC development. In this study, we examined involvement of E2 in anoikis resistance that induces invasion capacities and chemo-resistance. Huh-BAT and HepG2 cells grown under anchorage-independent condition were selected. The anoikis-resistant (AR) cells showed stronger chemo-resistance against sorafenib, doxorubicin, 5-fluorouracil and cisplatin compared to adherent HCC cells. AR HCC cells exhibited decreased expression of E-cadherin and increased expression of the N-cadherin and vimentin compared to adherent HCC cells. We then demonstrated that E2 suppressed cell proliferation in AR HCC cells. IL-6 treatment enhanced invasive characteristics, and E2 reversed it. Regarding mechanism of E2, it decreased in the phosphorylation of STAT3 that overexpressed on AR HCC cells. The inhibitory effect of E2 on cell growth was accompanied with cell cycle arrest at G2/M phase and caspase-3/9/PARP activation through c-Jun N-terminal Kinase (JNK) phosphorylation. Taken together, these findings suggested that E2 inhibited the proliferation of AR HCC cells through down-regulation of IL-6/STAT3 signaling. Thus, E2 can be a potential therapeutic drug for treatment of metastatic or chemo-resistant HCC. -- Highlights: •Anoikis-resistant HCC cells characterized chemo-resistant and metastatic potentials. •17β-Estradiol down-regulated IL-6/STAT3 signaling in anoikis-resistant HCC cells. •17β-Estradiol suppressed cell proliferation by inducing G2/M phase arrest and apoptosis though JNK phosphorylation.

  18. Response rate of fibrosarcoma cells to cytotoxic drugs on the expression level correlates to the therapeutic response rate of fibrosarcomas and is mediated by regulation of apoptotic pathways

    International Nuclear Information System (INIS)

    Lehnhardt, Marcus; Mueller, Oliver; Klein-Hitpass, Ludger; Kuhnen, Cornelius; Homann, Heinz Herbert; Daigeler, Adrien; Steinau, Hans Ulrich; Roehrs, Sonja; Schnoor, Laura; Steinstraesser, Lars

    2005-01-01

    Because of the high resistance rate of fibrosarcomas against cytotoxic agents clinical chemotherapy of these tumors is not established. A better understanding of the diverse modes of tumor cell death following cytotoxic therapies will provide a molecular basis for new chemotherapeutic strategies. In this study we elucidated the response of a fibrosarcoma cell line to clinically used cytostatic agents on the level of gene expression. HT1080 fibrosarcoma cells were exposed to the chemotherapeutic agents doxorubicin, actinomycin D or vincristine. Total RNA was isolated and the gene expression patterns were analyzed by microarray analysis. Expression levels for 46 selected candidate genes were validated by quantitative real-time PCR. The analysis of the microarray data resulted in 3.309 (actinomycin D), 1.019 (doxorubicin) and 134 (vincristine) probesets that showed significant expression changes. For the RNA synthesis blocker actinomycin D, 99.4% of all differentially expressed probesets were under-represented. In comparison, probesets down-regulated by doxorubicin comprised only 37.4% of all genes effected by this agent. Closer analysis of the differentially regulated genes revealed that doxorubicin induced cell death of HT1080 fibrosarcoma cells mainly by regulating the abundance of factors mediating the mitochondrial (intrinsic) apoptosis pathway. Furthermore doxorubicin influences other pathways and crosstalk to other pathways (including to the death receptor pathway) at multiple levels. We found increased levels of cytochrome c, APAF-1 and members of the STAT-family (STAT1, STAT3), while Bcl-2 expression was decreased. Caspase-1, -3, -6, -8, and -9 were increased indicating that these proteases are key factors in the execution of doxorubicin mediated apoptosis. This study demonstrates that chemotherapy regulates the expression of apoptosis-related factors in fibrosarcoma cells. The number and the specific pattern of the genes depend on the used cytotoxic drug

  19. Luteolin decreases invasiveness, deactivates STAT3 signaling, and reverses interleukin-6 induced epithelial–mesenchymal transition and matrix metalloproteinase secretion of pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Huang XC

    2015-10-01

    Full Text Available Xince Huang,1 Shengjie Dai,1 Juji Dai,1 Yuwu Xiao,1 Yongyu Bai,1 Bicheng Chen,1,2 Mengtao Zhou1 1Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China; 2Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Wenzhou, Zhejiang Province, People’s Republic of China Abstract: Luteolin, a flavone, has been shown to exhibit anticancer properties. Here, we investigated whether luteolin affects epithelial–mesenchymal transition (EMT and invasiveness of pancreatic cancer cell lines and their underlying mechanism. Pancreatic cancer cell lines PANC-1 and SW1990 were used in our study, and their EMT characters, matrix metalloproteinase (MMP expression level, invasiveness, and signal transducer and activator of transcription 3 (STAT3 activity were determined after luteolin treatment. We also treated pancreatic cancer cells with interleukin-6 (IL-6 to see whether IL-6-induced activation of STAT3, EMT, and MMP secretion was affected by luteolin. We found that luteolin inhibits EMT and MMP2, MMP7, and MMP9 expression in a dose-dependent manner, similar to STAT3 signaling. Through Transwell assay, we found that invasiveness of pancreatic cancer cells was inhibited by luteolin. EMT characters and MMP secretion increase with STAT3 activity after IL-6 treatment and these effects, caused by IL-6, were inhibited by luteolin. We concluded that luteolin inhibits invasiveness of pancreatic cancer cells, and we speculated that luteolin inhibits EMT and MMP secretion likely through deactivation of STAT3 signaling. Luteolin has potential antitumor effects and merits further investigation. Keywords: epithelial–mesenchymal transition, matrix metalloproteinase, luteolin, STAT3

  20. Nuclear relocation of STAT6 reliably predicts NAB2-STAT6 fusion for the diagnosis of solitary fibrous tumour.

    Science.gov (United States)

    Koelsche, Christian; Schweizer, Leonille; Renner, Marcus; Warth, Arne; Jones, David T W; Sahm, Felix; Reuss, David E; Capper, David; Knösel, Thomas; Schulz, Birte; Petersen, Iver; Ulrich, Alexis; Renker, Eva Kristin; Lehner, Burkhard; Pfister, Stefan M; Schirmacher, Peter; von Deimling, Andreas; Mechtersheimer, Gunhild

    2014-11-01

    Nuclear relocation of STAT6 has been shown in tumours with NAB2-STAT6 fusion, and has been proposed as an ancillary marker for the diagnosis of solitary fibrous tumours (SFTs). The aim of this study was to verify the utility of STAT6 immunohistology in diagnosing SFT. A total of 689 formalin-fixed paraffin-embedded tumours comprising 35 pleural SFTs and 654 other mesenchymal tumours were investigated for STAT6 expression using immunohistochemistry. Nine dedifferentiated liposarcomas (DDLSs) and five SFTs were also examined for the presence of NAB2-STAT6 fusion at the protein level using the proximity ligation assay (PLA), and for copy number variants (CNVs) with the Illumina Infinium Human Methylation450 array. Thirty-four of 35 SFTs showed strong nuclear STAT6 expression. Furthermore, five of 68 DDLSs, two of 130 undifferentiated pleomorphic sarcomas and one of 63 cases of nodular fasciitis showed moderate to strong nuclear STAT6 expression. The PLA indicated the presence of NAB2-STAT6 fusion protein in SFTs, but signal was also detected in some DDLSs. Copy number analysis showed an overall low frequency of chromosomal imbalances in SFTs, but complex karyotypes in DDLSs, including amplification of STAT6 and MDM2 loci. The detection of nuclear relocation of STAT6 with immunohistochemistry is a characteristic of SFTs, and may serve as a diagnostic marker that indicates NAB2-STAT6 fusion and helps to discriminate SFTs from histological mimics. © 2014 John Wiley & Sons Ltd.

  1. IL-6 signaling by STAT3 participates in the change from hyperplasia to neoplasia in NRP-152 and NRP-154 rat prostatic epithelial cells

    International Nuclear Information System (INIS)

    Barton, Beverly E; Murphy, Thomas F; Adem, Patricia; Watson, Richard A; Irwin, Robert J; Huang, Hosea F

    2001-01-01

    STAT3 phosphorylation is associated with the neoplastic state in many types of cancer, including prostate cancer. We investigated the role of IL-6 signaling and phosphorylation of STAT3 in 2 rat prostatic epithelial lines. NRP-152 and NRP-154 cells were derived from the same rat prostate, yet the NRP-152 cells are not tumorigenic while the NRP-154 cells are tumorigenic. These lines are believed to represent 2 of the stages in the development of prostate cancer, hyperplasia and neoplasia. Differences in signaling pathways should play a role in the 2 phenotypes, hyperplastic and neoplastic. We looked at the phosphorylation state of STAT3 by intracellular flow cytometry, using phospho-specific antibodies to STAT3. We used the same method to examine IL-6 production by the cell lines. We also measured apoptosis by binding of fluorescent annexin V to the cells. Although both cells lines made IL-6 constitutively, phosphorylated-STAT3 was present in untreated NRP-154 cells, but not in NRP-152 cells. Treatment with dexamethasone inhibited the IL-6 production of NRP-152 cells, but enhanced that of NRP-154 cells. Treatment with the JAK2 inhibitor AG490 induced apoptosis in NRP-152, but not NRP-154 cells. We conclude from these experiments that STAT3 activity plays a role in the phenotype of NRP-154 cell, but not NRP-152 cells. The significance of alternative IL-6 signaling pathways in the different phenotypes of the 2 cell lines is discussed

  2. Unphosphorylated STAT3 modulates alpha7 nicotinic receptor signaling and cytokine production in sepsis

    NARCIS (Netherlands)

    Peña, Geber; Cai, Bolin; Liu, Jun; van der Zanden, Esmerij P.; Deitch, Edwin A.; de Jonge, Wouter J.; Ulloa, Luis

    2010-01-01

    The role of STAT3 in infectious diseases remains undetermined, in part because unphosphorylated STAT3 has been considered an inactive protein. Here, we report that unphosphorylated STAT3 contributes to cholinergic anti-inflammation, prevents systemic inflammation, and improves survival in sepsis.

  3. Variable clinical expressivity of STAT3 mutation in hyperimmunoglobulin E syndrome: genetic and clinical studies of six patients

    NARCIS (Netherlands)

    Wolach, Ofir; Kuijpers, Taco; Ben-Ari, Josef; Gavrieli, Ronit; Feinstein-Goren, Neta; Alders, Marielle; Garty, Ben Zion; Wolach, Baruch

    2014-01-01

    Autosomal dominant Hyper IgE syndrome (AD-HIES) is a rare and complex primary immunodeficiency that affects multiple systems. Mutations in signal transducer and activator of transcription 3 (STAT3) gene cause AD-HIES. These mutations have a dominant-negative effect and the presence of such mutations

  4. The Orphan Nuclear Receptor TLX Is an Enhancer of STAT1-Mediated Transcription and Immunity to Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Daniel P Beiting

    2015-07-01

    Full Text Available The protozoan parasite, Toxoplasma, like many intracellular pathogens, suppresses interferon gamma (IFN-γ-induced signal transducer and activator of transcription 1 (STAT1 activity. We exploited this well-defined host-pathogen interaction as the basis for a high-throughput screen, identifying nine transcription factors that enhance STAT1 function in the nucleus, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that upon IFN-γ treatment TLX enhances the output of a subset of IFN-γ target genes, which we found is dependent on TLX binding at those loci. Moreover, infection of TLX deficient mice with the intracellular parasite Toxoplasma results in impaired production of the STAT1-dependent cytokine interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized role for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense and reveal that STAT1 activity can be modulated in a context-specific manner by such "modifiers."

  5. The Orphan Nuclear Receptor TLX Is an Enhancer of STAT1-Mediated Transcription and Immunity to Toxoplasma gondii.

    Science.gov (United States)

    Beiting, Daniel P; Hidano, Shinya; Baggs, Julie E; Geskes, Jeanne M; Fang, Qun; Wherry, E John; Hunter, Christopher A; Roos, David S; Cherry, Sara

    2015-07-01

    The protozoan parasite, Toxoplasma, like many intracellular pathogens, suppresses interferon gamma (IFN-γ)-induced signal transducer and activator of transcription 1 (STAT1) activity. We exploited this well-defined host-pathogen interaction as the basis for a high-throughput screen, identifying nine transcription factors that enhance STAT1 function in the nucleus, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that upon IFN-γ treatment TLX enhances the output of a subset of IFN-γ target genes, which we found is dependent on TLX binding at those loci. Moreover, infection of TLX deficient mice with the intracellular parasite Toxoplasma results in impaired production of the STAT1-dependent cytokine interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized role for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense and reveal that STAT1 activity can be modulated in a context-specific manner by such "modifiers."

  6. The IL-6/JAK/Stat3 Feed-Forward Loop Drives Tumorigenesis and Metastasis12

    Science.gov (United States)

    Chang, Qing; Bournazou, Eirini; Sansone, Pasquale; Berishaj, Marjan; Gao, Sizhi Paul; Daly, Laura; Wels, Jared; Theilen, Till; Granitto, Selena; Zhang, Xinmin; Cotari, Jesse; Alpaugh, Mary L; de Stanchina, Elisa; Manova, Katia; Li, Ming; Bonafe, Massimiliano; Ceccarelli, Claudio; Taffurelli, Mario; Santini, Donatella; Altan-Bonnet, Gregoire; Kaplan, Rosandra; Norton, Larry; Nishimoto, Norihiro; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline

    2013-01-01

    We have investigated the importance of interleukin-6 (IL-6) in promoting tumor growth and metastasis. In human primary breast cancers, increased levels of IL-6 were found at the tumor leading edge and positively correlated with advanced stage, suggesting a mechanistic link between tumor cell production of IL-6 and invasion. In support of this hypothesis, we showed that the IL-6/Janus kinase (JAK)/signal transducer and activator of transcription 3 (Stat3) pathway drives tumor progression through the stroma and metastatic niche. Overexpression of IL-6 in tumor cell lines promoted myeloid cell recruitment, angiogenesis, and induced metastases. We demonstrated the therapeutic potential of interrupting this pathway with IL-6 receptor blockade or by inhibiting its downstream effectors JAK1/2 or Stat3. These clinically relevant interventions did not inhibit tumor cell proliferation in vitro but had profound effects in vivo on tumor progression, interfering broadly with tumor-supportive stromal functions, including angiogenesis, fibroblast infiltration, and myeloid suppressor cell recruitment in both the tumor and pre-metastatic niche. This study provides the first evidence for IL-6 expression at the leading edge of invasive human breast tumors and demonstrates mechanistically that IL-6/JAK/Stat3 signaling plays a critical and pharmacologically targetable role in orchestrating the composition of the tumor microenvironment that promotes growth, invasion, and metastasis. PMID:23814496

  7. Canonical and Non-Canonical Aspects of JAK-STAT Signaling: Lessons from Interferons for Cytokine Responses.

    Science.gov (United States)

    Majoros, Andrea; Platanitis, Ekaterini; Kernbauer-Hölzl, Elisabeth; Rosebrock, Felix; Müller, Mathias; Decker, Thomas

    2017-01-01

    Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signal transduction mediates cytokine responses. Canonical signaling is based on STAT tyrosine phosphorylation by activated JAKs. Downstream of interferon (IFN) receptors, activated JAKs cause the formation of the transcription factors IFN-stimulated gene factor 3 (ISGF3), a heterotrimer of STAT1, STAT2 and interferon regulatory factor 9 (IRF9) subunits, and gamma interferon-activated factor (GAF), a STAT1 homodimer. In recent years, several deviations from this paradigm were reported. These include kinase-independent JAK functions as well as extra- and intranuclear activities of U-STATs without phosphotyrosines. Additionally, transcriptional control by STAT complexes resembling neither GAF nor ISGF3 contributes to transcriptome changes in IFN-treated cells. Our review summarizes the contribution of non-canonical JAK-STAT signaling to the innate antimicrobial immunity imparted by IFN. Moreover, we touch upon functions of IFN pathway proteins beyond the IFN response. These include metabolic functions of IRF9 as well as the regulation of natural killer cell activity by kinase-dead TYK2 and different phosphorylation isoforms of STAT1.

  8. The Influence of Compound Shougong Powder on JAK2-STAT3 Signaling Pathway in Mice with Lewis Lung Cancer

    Directory of Open Access Journals (Sweden)

    SHEN Di

    2014-12-01

    Full Text Available Objective: To observe the influence of Compound Shougong Powder on JAK2-STAT3 signaling pathway in mice with Lewis lung cancer. Methods: Fifty C57BL/6J mice were inoculated with Lewis lung cancer cell line according to the conventional method, 40 mice bearing cancer successfully were selected 6 d later and randomly divided into 5groups, namely negative control group, cis-platinum group, high-dose Compound Shougong Powder group, middle-dose Compound Shougong Powder group and low-dose Compound Shougong Powder group, 8 mice in each group. Negative control group was drenched with normal saline (NS. Compound Shougong Powder groups were drenched with Compound Shougong Powder, 4 mg/kg for high-dose group, 2 mg/kg for middle-dose group, 1 mg/kg for low-dose group, once per day for 14 d; cis-platinum group was orally administrated 4 mg/kg/w, intraperitoneal injection of 0.1 mL for each, once per week for 2 weeks. Mice’s responses to the treatment, activity levels, mental states and so on during the treatment were observed, tumor inhibition rate was calculated, pathomorphological changes of tumor tissues were observed under light microscope after HE staining, and the expression levels of JAK2 and STAT3 proteins were detected by Western Blot. Results: After drug administration, smooth, glossy body hair and good spirit were observed in cisplatin group and high-dose Compound Shougong Powder group; glossier body hair and less activity level in middle- and low- dose Compound Shougong Powder group, and great toxic and side effects, reduced activity level and weary spirit in negative control group. The tumor inhibition rate of cisplatin group, high-, middle- and low-dose Compound Shougong Powder group and negative control group was 57.69%, 53.53%, 48.40%, 38.46% and 38.46%, respectively. The expression levels of JAK2 and STAT3 proteins in drug groups showed decreases to different degrees, and the decreases of JAK2 were more significant. Conclusion: Compound

  9. Icariside II induces apoptosis in U937 acute myeloid leukemia cells: role of inactivation of STAT3-related signaling.

    Directory of Open Access Journals (Sweden)

    Sang-Hun Kang

    Full Text Available BACKGROUND: The aim of this study is to determine anti-cancer effect of Icariside II purified from the root of Epimedium koreanum Nakai on human acute myeloid leukemia (AML cell line U937. METHODOLOGY/PRINCIPAL FINDINGS: Icariside II blocked the growth U937 cells in a dose- and time-dependent manner. In this anti-proliferation process, this herb compound rendered the cells susceptible to apoptosis, manifested by enhanced accumulation of sub-G1 cell population and increased the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL-positive cells. Icariside II was able to activate caspase-3 and cleaved poly (ADP-ribose polymerase (PARP in a time-dependent manner. Concurrently, the anti-apoptotic proteins, such as bcl-x(L and survivin in U937 cells, were downregulated by Icariside II. In addition, Icariside II could inhibit STAT3 phosphorylation and function and subsequently suppress the activation of Janus activated kinase 2 (JAK2, the upstream activators of STAT3, in a dose- and time-dependent manner. Icariside II also enhanced the expression of protein tyrosine phosphatase (PTP SH2 domain-containing phosphatase (SHP-1, and the addition of sodium pervanadate (a PTP inhibitor prevented Icariside II-induced apoptosis as well as STAT3 inactivation in STAT3 positive U937 cells. Furthermore, silencing SHP-1 using its specific siRNA significantly blocked STAT3 inactivation and apoptosis induced by Icariside II in U937 cells. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that via targeting STAT3-related signaling, Icariside II sensitizes U937 cells to apoptosis and perhaps serves as a potent chemotherapeutic agent for AML.

  10. Histone methylation mediates plasticity of human FOXP3(+) regulatory T cells by modulating signature gene expressions.

    Science.gov (United States)

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-03-01

    CD4(+) FOXP3(+) regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4(+) CD25(high) CD127(low/-) Treg cells convert to two subpopulations with distinctive FOXP3(+) and FOXP3(-) phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. © 2013 John Wiley & Sons Ltd.

  11. Histone methylation mediates plasticity of human FOXP3+ regulatory T cells by modulating signature gene expressions

    Science.gov (United States)

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-01-01

    CD4+ FOXP3+ regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4+ CD25high CD127low/− Treg cells convert to two subpopulations with distinctive FOXP3+ and FOXP3− phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. PMID:24152290

  12. Up-regulation of intestinal epithelial cell derived IL-7 expression by keratinocyte growth factor through STAT1/IRF-1, IRF-2 pathway.

    Directory of Open Access Journals (Sweden)

    Yu-Jiao Cai

    Full Text Available BACKGROUND: Epithelial cells(EC-derived interleukin-7 (IL-7 plays a crucial role in control of development and homeostasis of neighboring intraepithelial lymphocytes (IEL, and keratinocyte growth factor (KGF exerts protective effects on intestinal epithelial cells and up-regulates EC-derived IL-7 expression through KGFR pathway. This study was to further investigate the molecular mechanism involved in the regulation of IL-7 expression by KGF in the intestine. METHODS: Intestinal epithelial cells (LoVo cells and adult C57BL/6J mice were treated with KGF. Epithelial cell proliferation was studied by flow cytometry for BrdU-incorporation and by immunohistochemistry for PCNA staining. Western blot was used to detect the changes of expression of P-Tyr-STAT1, STAT1, and IL-7 by inhibiting STAT1. Alterations of nuclear extracts and total proteins of IRF-1, IRF-2 and IL-7 following IRF-1 and IRF-2 RNA interference with KGF treatment were also measured with western blot. Moreover, IL-7 mRNA expressions were also detected by Real-time PCR and IL-7 protein level in culture supernatants was measured by enzyme linked immunosorbent assay(ELISA. RESULTS: KGF administration significantly increased LoVo cell proliferation and also increased intestinal wet weight, villus height, crypt depth and crypt cell proliferation in mice. KGF treatment led to increased levels of P-Tyr-STAT1, RAPA and AG490 both blocked P-Tyr-STAT1 and IL-7 expression in LoVo cells. IRF-1 and IRF-2 expression in vivo and in vitro were also up-regulated by KGF, and IL-7 expression was decreased after IRF-1 and IRF-2 expression was silenced by interfering RNA, respectively. CONCLUSION: KGF could up-regulate IL-7 expression through the STAT1/IRF-1, IRF-2 signaling pathway, which is a new insight in potential effects of KGF on the intestinal mucosal immune system.

  13. Pantoprazole blocks the JAK2/STAT3 pathway to alleviate skeletal muscle wasting in cancer cachexia by inhibiting inflammatory response.

    Science.gov (United States)

    Guo, Dunwei; Wang, Chaoyi; Wang, Qiang; Qiao, Zhongpeng; Tang, Hua

    2017-06-13

    Cancer cachexia is often present in patients with advanced malignant tumors, and the subsequent body weight reduction results in poor quality of life. However, there has been no progress in developing effective clinical therapeutic strategies for skeletal muscle wasting in cancer cachexia. Herein, we explored the functions of pantoprazole on cancer cachexia skeletal muscle wasting. The mouse colon adenocarcinoma cell line C26 was inoculated in the right forelimb of male BALB/C mice to establish a cancer cachexia model. The animals were treated with or without different concentrations of pantoprazole orally, and the body weight, tumor growth, spontaneous activity, and muscle functions were determined at various time points. Two weeks later, the levels of serum IL-6 and TNF-α, the mRNA levels of gastrocnemius JAK2 and STAT3, and the expression levels of p-JAK2, p-STAT3, Fbx32, and MuRF1 were examined with ELISA assay, qRT-PCR assay, and Western blotting, respectively. Further studies were performed to assess the levels of Fbx32 and MuRF1 expression and morphological changes. Pantoprazole can alleviate cancer cachexia-induced body weight reduction and inhibit skeletal muscle wasting in a dose-dependent manner. Our results indicated that pantoprazole treatment can decrease the levels of serum IL-6 and TNF-α (56.3% and 67.6%, respectively), and inhibit the activation of the JAK2/STAT3 signaling pathway. Moreover, the expression levels of MuRF1 and Fbx32 were also suppressed after pantoprazole treatment. Our findings suggested that pantoprazole can alleviate cancer cachexia skeletal muscle wasting by inhibiting the inflammatory response and blocking the JAK2/STAT3 or ubiquitin proteasome pathway.

  14. Protective effect of Rhizoma Dioscoreae extract against alveolar bone loss in ovariectomized rats via regulation of IL-6/STAT3 signaling.

    Science.gov (United States)

    Zhang, Zhi-Guo; Chen, Yan-Jing; Xiang, Li-Hua; Pan, Jing-Hua; Wang, Zhen; Xiao, Gary Guishan; Ju, Da-Hong

    2017-11-01

    The aim of the present study was to assess the effectiveness of Rhizoma Dioscoreae extract (RDE) on preventing rat alveolar bone loss induced by ovariectomy (OVX), and to determine the role of interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in this effect. Female Wistar rats were subjected to OVX or sham surgery. The rats that had undergone OVX were treated with RDE (RDE group), vehicle (OVX group) or 17β-estradiol subcutaneous injection (E2 group). Subsequently, bone metabolic activity was assessed by analyzing 3-D alveolar bone construction, bone mineral density, as well as the plasma biomarkers of bone turnover. The gene expression of alveolar bone in the OVX and RDE groups was evaluated by IL-6/STAT3 signaling pathway polymerase chain reaction (PCR) arrays, and differentially expressed genes were determined through reverse transcription-quantitative PCR. The inhibitory effect of RDE on alveolar bone loss in the OVX group was demonstrated in the study. In comparison with the OVX group, the RDE group exhibited 19 downregulated genes and 1 upregulated gene associated with the IL-6/STAT3 signaling pathway in alveolar bone. Thus, RDE was shown to relieve OVX-induced alveolar bone loss in rats, an effect which was likely associated with decreased abnormal bone remodeling via regulation of the IL-6/STAT3 signaling pathway.

  15. Pleurotus giganteus (Berk. Karun & Hyde), the giant oyster mushroom inhibits NO production in LPS/H2O2 stimulated RAW 264.7 cells via STAT 3 and COX-2 pathways.

    Science.gov (United States)

    Baskaran, Asweni; Chua, Kek Heng; Sabaratnam, Vikineswary; Ravishankar Ram, Mani; Kuppusamy, Umah Rani

    2017-01-13

    Pleurotus giganteus (Berk. Karunarathna and K.D. Hyde), has been used as a culinary mushroom and is known to have medicinal properties but its potential as an anti-inflammatory agent to mitigate inflammation triggered diseases is untapped. In this study, the molecular mechanism underlying the protective effect of ethanol extract of P. giganteus (EPG) against lipopolysaccharide (LPS) and combination of LPS and hydrogen peroxide (H 2 O 2 )-induced inflammation on RAW 264.7 macrophages was investigated. The effect of EPG on nitric oxide (NO) production as an indicator of inflammation in RAW 264.7 macrophages was estimated based on Griess reaction that measures nitrite level. The expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), NF-kB activating protein (NKAP), signal transducer and activator of transcription 3 protein (STAT 3) and glutathione peroxidase (GPx) genes were assessed using real time reverse transcription polymerase chain reaction (RT-PCR) approach. EPG (10 μg/ml) showed the highest reduction in the LPS-induced NO production in RAW 264.7 macrophages and significantly suppressed (p < 0.05) the expression iNOS, STAT 3 and COX-2. There was a significant increase (p < 0.05) in combination of LPS and H 2 O 2 - induced iNOS production when compared to the LPS-induced iNOS production in RAW 264.7 macrophages and this concurred with the NO production which was attenuated by EPG at 10 μg/ml. A significant (p < 0.05) down regulation was observed in the combination of LPS and H 2 O 2 -induced iNOS and GPx expression by EPG. Our data suggest that the anti-inflammatory activity of EPG is mediated via the suppression of the STAT 3 and COX-2 pathways and can serve as potential endogenous antioxidant stimulant.

  16. Blockade of the IL-6 trans-signalling/STAT3 axis suppresses cachexia in Kras-induced lung adenocarcinoma.

    Science.gov (United States)

    Miller, A; McLeod, L; Alhayyani, S; Szczepny, A; Watkins, D N; Chen, W; Enriori, P; Ferlin, W; Ruwanpura, S; Jenkins, B J

    2017-05-25

    Lung cancer is the leading cause of cancer death worldwide, and is frequently associated with the devastating paraneoplastic syndrome of cachexia. The potent immunomodulatory cytokine interleukin (IL)-6 has been linked with the development of lung cancer as well as cachexia; however, the mechanisms by which IL-6 promotes muscle wasting in lung cancer cachexia are ill-defined. In this study, we report that the gp130 F/F knock-in mouse model displaying hyperactivation of the latent transcription factor STAT3 via the common IL-6 cytokine family signalling receptor, gp130, develops cachexia during Kras-driven lung carcinogenesis. Specifically, exacerbated weight loss, early mortality and reduced muscle and adipose tissue mass were features of the gp130 F/F :Kras G12D model, but not parental Kras G12D mice in which STAT3 was not hyperactivated. Gene expression profiling of muscle tissue in cachectic gp130 F/F :Kras G12D mice revealed the upregulation of IL-6 and STAT3-target genes compared with Kras G12D muscle tissue. These cachectic features of gp130 F/F :Kras G12D mice were abrogated upon the genetic normalization of STAT3 activation or ablation of IL-6 in gp130 F/F :Kras G12D :Stat3 -/+ or gp130 F/F :Kras G12D :Il6 -/- mice, respectively. Furthermore, protein levels of the soluble IL-6 receptor (sIL-6R), which is the central facilitator of IL-6 trans-signalling, were elevated in cachectic muscle from gp130 F/F :Kras G12D mice, and the specific blockade of IL-6 trans-signalling, but not classical signalling, with an anti-IL-6R antibody ameliorated cachexia-related characteristics in gp130 F/F :Kras G12D mice. Collectively, these preclinical findings identify trans-signalling via STAT3 as the signalling modality by which IL-6 promotes muscle wasting in lung cancer cachexia, and therefore support the clinical evaluation of the IL-6 trans-signalling/STAT3 axis as a therapeutic target in advanced lung cancer patients presenting with cachexia.

  17. The Signal Transducer and Activator of Transcription 1 (STAT1 Inhibits Mitochondrial Biogenesis in Liver and Fatty Acid Oxidation in Adipocytes.

    Directory of Open Access Journals (Sweden)

    Jennifer D Sisler

    Full Text Available The transcription factor STAT1 plays a central role in orchestrating responses to various pathogens by activating the transcription of nuclear-encoded genes that mediate the antiviral, the antigrowth, and immune surveillance effects of interferons and other cytokines. In addition to regulating gene expression, we report that STAT1-/- mice display increased energy expenditure and paradoxically decreased release of triglycerides from white adipose tissue (WAT. Liver mitochondria from STAT1-/- mice show both defects in coupling of the electron transport chain (ETC and increased numbers of mitochondria. Consistent with elevated numbers of mitochondria, STAT1-/- mice expressed increased amounts of PGC1α, a master regulator of mitochondrial biogenesis. STAT1 binds to the PGC1α promoter in fed mice but not in fasted animals, suggesting that STAT1 inhibited transcription of PGC1α. Since STAT1-/- mice utilized more lipids we examined white adipose tissue (WAT stores. Contrary to expectations, fasted STAT1-/- mice did not lose lipid from WAT. β-adrenergic stimulation of glycerol release from isolated STAT1-/- WAT was decreased, while activation of hormone sensitive lipase was not changed. These findings suggest that STAT1-/- adipose tissue does not release glycerol and that free fatty acids (FFA re-esterify back to triglycerides, thus maintaining fat mass in fasted STAT1-/- mice.

  18. Expression of EGFR and Molecules Downstream to PI3K/Akt, Raf-1-MEK-1-MAP (Erk1/2, and JAK (STAT3 Pathways in Invasive Lung Adenocarcinomas Resected at a Single Institution

    Directory of Open Access Journals (Sweden)

    Alba Fabiola Torres

    2014-01-01

    Full Text Available Therapies targeting EGFR are effective in treating tumors that harbor molecular alterations; however, there is heterogeneity in long-term response to these therapies. We retrospectively analyzed protein expression of EGFR, Stat3, phospho-Akt, and phospho-Erk1/2 by immunohistochemistry in a series of resected cases from a single institution, correlated with clinicopathological variables. There were 96 patients, with the majority of cases being of low stage tumors (17 pT1a, 23 pT1b, 30 pT2a, and 18 pT2b. Histologic subtypes were 45 acinar predominant, 2 cribriform, 25 solid, 7 papillary, 11 lepidic, and 4 mucinous tumors. The EGFR score was higher in tumors with vascular invasion (P=0.013, in solid and cribriform acinar histology, and in high stage tumors (P=0.006 and P=0.01. EGFR was more likely overexpressed in solid compared to lepidic tumors (P=0.02. Acinar tumors had the highest rate of ERK1/2 positivity (19%. There was a strong correlation among positivity for ERCC1 and other markers, including STAT3 (P=0.003, Akt (P=0.02, and ERK1/ERK2 (P=0.0005. Expression of molecules downstream to EGFR varied from 12% to 31% of tumors; however, the expression did not directly correlate to EGFR expression, which may suggest activation of the cascades through different pathways. The correlation of protein expression and the new lung adenocarcinoma classification may help in the understanding of activated pathways of each tumor type, which may act in the oncogenesis and drug resistance of these tumors.

  19. Fragment-based drug design and identification of HJC0123, a novel orally bioavailable STAT3 inhibitor for cancer therapy

    Science.gov (United States)

    Chen, Haijun; Yang, Zhengduo; Ding, Chunyong; Chu, Lili; Zhang, Yusong; Terry, Kristin; Liu, Huiling; Shen, Qiang; Zhou, Jia

    2013-01-01

    Fragment-based drug design (FBDD) is a promising approach for the generation of lead molecules with enhanced activity and especially drug-like properties against therapeutic targets. Herein, we report the fragment-based drug design, systematic chemical synthesis and pharmacological evaluation of novel scaffolds as potent anticancer agents by utilizing six privileged fragments from known STAT3 inhibitors. Several new molecules such as compounds 5, 12, and 19 that may act as advanced chemical leads have been identified. The most potent compound 5 (HJC0123) has demonstrated to inhibit STAT3 promoter activity, downregulate phosphorylation of STAT3, increase the expression of cleaved caspase-3, inhibit cell cycle progression and promote apoptosis in breast and pancreatic cancer cells with low micromolar to nanomolar IC50 values. Furthermore, compound 5 significantly suppressed estrogen receptor (ER)-negative breast cancer MDA-MB-231 xenograft tumor growth in vivo (p.o.), indicating its great potential as an efficacious and orally bioavailable drug candidate for human cancer therapy. PMID:23416191

  20. Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes

    Science.gov (United States)

    Boisson-Dupuis, Stephanie; Kong, Xiao-Fei; Okada, Satoshi; Cypowyj, Sophie; Puel, Anne; Abel, Laurent; Casanova, Jean-Laurent

    2012-01-01

    The genetic dissection of various human infectious diseases has led to the definition of inborn errors of human STAT1 immunity of four types, including (i) autosomal recessive (AR) complete STAT1 deficiency, (ii) AR partial STAT1 deficiency, (iii) autosomal dominant (AD) STAT1 deficiency, and (iv) AD gain of STAT1 activity. The two types of AR STAT1 defect give rise to a broad infectious phenotype with susceptibility to intramacrophagic bacteria (mostly mycobacteria) and viruses (herpes viruses at least), due principally to the impairment of IFN-γ-mediated and IFN-α/β-mediated immunity, respectively. Clinical outcome depends on the extent to which the STAT1 defect decreases responsiveness to these cytokines. AD STAT1 deficiency selectively predisposes individuals to mycobacterial disease, owing to the impairment of IFN-γ-mediated immunity, as IFN-α/β-mediated immunity is maintained. Finally, AD gain of STAT1 activity is associated with autoimmunity, probably owing to an enhancement of IFN-α/β-mediated immunity. More surprisingly, it is also associated with chronic mucocutaneous candidiasis, through as yet undetermined mechanisms involving an inhibition of the development of IL-17-producing T cells. Thus, germline mutations in human STAT1 define four distinct clinical disorders. Various combinations of viral, mycobacterial and fungal infections are therefore allelic at the human STAT1 locus. These experiments of Nature neatly highlight the clinical and immunological impact of the human genetic dissection of infectious phenotypes. PMID:22651901

  1. Angiotensin II up-regulates PAX2 oncogene expression and activity in prostate cancer via the angiotensin II type I receptor.

    Science.gov (United States)

    Bose, Sudeep K; Gibson, Willietta; Giri, Shailendra; Nath, Narender; Donald, Carlton D

    2009-09-01

    Paired homeobox 2 gene (PAX2) is a transcriptional regulator, aberrantly expressed in prostate cancer cells and its down-regulation promotes cell death in these cells. The molecular mechanisms of tumor progression by PAX2 over-expression are still unclear. However, it has been reported that angiotensin-II (A-II) induces cell growth in prostate cancer via A-II type 1 receptor (AT1R) and is mediated by the phosphorylation of mitogen activated protein kinase (MAPK) as well as signal transducer and activator of transcription 3 (STAT3). Here we have demonstrated that A-II up-regulates PAX2 expression in prostate epithelial cells and prostate cancer cell lines resulting in increased cell growth. Furthermore, AT1R receptor antagonist losartan was shown to inhibit A-II induced PAX2 expression in prostate cancer. Moreover, analysis using pharmacological inhibitors against MEK1/2, ERK1/2, JAK-II, and phospho-STAT3 demonstrated that AT1R-mediated stimulatory effect of A-II on PAX2 expression was regulated in part by the phosphorylation of ERK1/2, JAK II, and STAT3 pathways. In addition, we have showed that down-regulation of PAX2 by an AT1R antagonist as well as JAK-II and STAT3 inhibitors suppress prostate cancer cell growth. Collectively, these findings show for the first time that the renin-angiotensin system (RAS) may promote prostate tumorigenesis via up-regulation of PAX2 expression. Therefore, PAX2 may be a novel therapeutic target for the treatment of carcinomas such as prostate cancer via the down-regulation of its expression by targeting the AT1R signaling pathways.

  2. Artocarpus altilis (Parkinson) Fosberg Extracts and Geranyl Dihydrochalcone Inhibit STAT3 Activity in Prostate Cancer DU145 Cells.

    Science.gov (United States)

    Jeon, Yoon Jung; Jung, Seung-Nam; Chang, Hyeyoun; Yun, Jieun; Lee, Chang Woo; Lee, Joonku; Choi, Sangho; Nash, Oyekanmi; Han, Dong Cho; Kwon, Byoung-Mog

    2015-05-01

    Artocarpus altilis (Parkinson) Fosberg has traditionally been used in Indonesia for the treatment of liver cirrhosis, hypertension, and diabetes. In many other countries, it is used for the treatment of malaria, yellow fever, and dengue fever. It has been reported that A. altilis extracts have antiatherosclerotic and cytoprotective effects, but its molecular targets in tumor cells are not yet fully understood. The A. altilis extracts and the partially purified fraction have been shown to inhibit STAT3 activity and the phosphorylation of STAT3 in a dose-dependent manner. To identify the active components, a bioassay-guided isolation of the partially purified fraction resulted in the identification of a geranyl dihydrochalcone, CG901. Its chemical structure was established on the basis of spectroscopic evidence and comparison with published data. The partially purified fraction and the isolated a geranyl dihydrochalcone, CG901, down-regulated the expression of STAT3 target genes, induced apoptosis in DU145 prostate cancer cells via caspase-3 and PARP degradation, and inhibited tumor growth in human prostate tumor (DU145) xenograft initiation model. These results suggest that A. altilis could be a good natural source and that the isolated compound will be a potential lead molecule for developing novel therapeutics against STAT3-related diseases, including cancer and inflammation. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway.

    Science.gov (United States)

    Jo, Miran; Park, Mi Hee; Kollipara, Pushpa Saranya; An, Byeong Jun; Song, Ho Sueb; Han, Sang Bae; Kim, Jang Heub; Song, Min Jong; Hong, Jin Tae

    2012-01-01

    We investigated whether bee venom and melittin, a major component of bee venom, inhibit cell growth through enhancement of death receptor expressions in the human ovarian cancer cells, SKOV3 and PA-1. Bee venom (1-5 μg/ml) and melittin (0.5-2 μg/ml) inhibited the growth of SKOV3 and PA-1 ovarian cancer cells by the induction of apoptotic cell death in a dose dependent manner. Consistent with apoptotic cell death, expression of death receptor (DR) 3 and DR6 was increased in both cancer cells, but expression of DR4 was increased only in PA-1 cells. Expression of DR downstream pro-apoptotic proteins including caspase-3, 8, and Bax was concomitantly increased, but the phosphorylation of JAK2 and STAT3 and the expression of Bcl-2 were inhibited by treatment with bee venom and melittin in SKOV3 and PA-1 cells. Expression of cleaved caspase-3 was increased in SKOV3, but cleaved caspase-8 was increased in PA-1 cells. Moreover, deletion of DR3, DR4, and DR6 by small interfering RNA significantly reversed bee venom and melittin-induced cell growth inhibitory effect as well as down regulation of STAT3 by bee venom and melittin in SKOV3 and PA-1 ovarian cancer cell. These results suggest that bee venom and melittin induce apoptotic cell death in ovarian cancer cells through enhancement of DR3, DR4, and DR6 expression and inhibition of STAT3 pathway. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specific function

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Nelson, Celeste M.; Muschler, John L.; Veiseh, Mandana; Vonderhaar, Barbara K.; Bissell, Mina J.

    2009-06-03

    Epithelial cells, once dissociated and placed in two-dimensional (2D) cultures, rapidly lose tissue-specific functions. We showed previously that in addition to prolactin, signaling by laminin-111 was necessary to restore functional differentiation of mammary epithelia. Here, we elucidate two additional aspects of laminin-111 action. We show that in 2D cultures, the prolactin receptor is basolaterally localized and physically segregated from its apically placed ligand. Detachment of the cells exposes the receptor to ligation by prolactin leading to signal transducers and activators of transcription protein 5 (STAT5) activation, but only transiently and not sufficiently for induction of milk protein expression. We show that laminin-111 reorganizes mammary cells into polarized acini, allowing both the exposure of the prolactin receptor and sustained activation of STAT5. The use of constitutively active STAT5 constructs showed that the latter is necessary and sufficient for chromatin reorganization and {beta}-casein transcription. These results underscore the crucial role of continuous laminin signaling and polarized tissue architecture in maintenance of transcription factor activation, chromatin organization, and tissue-specific gene expression.

  5. Novel 1,3,4-thiadiazoles inhibit colorectal cancer via blockade of IL-6/COX-2 mediated JAK2/STAT3 signals as evidenced through data-based mathematical modeling.

    Science.gov (United States)

    Raj, Vinit; Bhadauria, Archana S; Singh, Ashok K; Kumar, Umesh; Rai, Amit; Keshari, Amit K; Kumar, Pranesh; Kumar, Dinesh; Maity, Biswanath; Nath, Sneha; Prakash, Anand; Ansari, Kausar M; Jat, Jawahar L; Saha, Sudipta

    2018-03-23

    We attempted a preclinical study using DMH-induced CRC rat model to evaluate the antitumor potential of our recently synthesized 1,3,4-thiadiazoles. The molecular insights were confirmed through ELISA, qRT-PCR and western blot analyses. The CRC condition was produced in response to COX-2 and IL-6 induced activation of JAK2/STAT3 which, in turn, was due to the enhanced phosphorylation of JAK2 and STAT3. The treatment with 1,3,4-thiadiazole derivatives (VR24 and VR27) caused the significant blockade of this signaling pathway. The behavior of STAT3 populations in response to IL-6 and COX-2 stimulations was further confirmed through data-based mathematical modeling using the quantitative western blot data. Finally, VR24 and VR27 restored the perturbed metabolites associated to DMH-induced CRC as evidenced through 1 H NMR based serum metabolomics. The tumor protecting ability of VR24 and VR27 was found comparable or to some degree better than the marketed chemotherapeutics, 5-flurouracil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. MiR-124 Inhibits Growth and Enhances Radiation-Induced Apoptosis in Non-Small Cell Lung Cancer by Inhibiting STAT3

    Directory of Open Access Journals (Sweden)

    Mengjie Wang

    2017-12-01

    Full Text Available Background/Aims: A growing body of evidence indicates that the abnormal expression of microRNAs (miRNAs play an important role in sensitizing the cellular response to ionizing radiation (IR. The aim of this study was to investigate whether the expression of miR-124 correlated with radiosensitivity in the context of non-small-cell lung carcinoma (NSCLC. Methods: Quantitative reverse transcription polymerase chain reaction (RT-PCR was used to quantify miR-124 expression in NSCLC tissues and cell lines. The role of miR-124 in NSCLC proliferation and radiosensitivity was analyzed using CCK-8 and flow cytometry apoptosis assays. Luciferase activity assays, RT-PCR, and Western blot assays were performed to confirm the target gene of miR-124. Results: In this study, we found that miR-124 was downregulated both in clinical NSCLC samples and in cell lines. miR-124 inhibited the proliferation of NSCLC cells and enhanced the apoptosis of NSCLC cells exposed to ionizing radiation. We identified signal transducer and activator of transcription 3 (STAT3 as a direct target of miR-124 by using target prediction algorithms and luciferase assays. Overexpression of STAT3 in A549 cell lines restored the enhanced radiosensitivity induced by miR-124. Conclusion: Taking these observations into consideration, we illustrated that miR-124 is a potential target for enhancing the radiosensitivity of NSCLC cells by targeting STAT3.

  7. Canonical and Non-Canonical Aspects of JAK–STAT Signaling: Lessons from Interferons for Cytokine Responses

    Science.gov (United States)

    Majoros, Andrea; Platanitis, Ekaterini; Kernbauer-Hölzl, Elisabeth; Rosebrock, Felix; Müller, Mathias; Decker, Thomas

    2017-01-01

    Janus kinase (JAK)–signal transducer and activator of transcription (STAT) signal transduction mediates cytokine responses. Canonical signaling is based on STAT tyrosine phosphorylation by activated JAKs. Downstream of interferon (IFN) receptors, activated JAKs cause the formation of the transcription factors IFN-stimulated gene factor 3 (ISGF3), a heterotrimer of STAT1, STAT2 and interferon regulatory factor 9 (IRF9) subunits, and gamma interferon-activated factor (GAF), a STAT1 homodimer. In recent years, several deviations from this paradigm were reported. These include kinase-independent JAK functions as well as extra- and intranuclear activities of U-STATs without phosphotyrosines. Additionally, transcriptional control by STAT complexes resembling neither GAF nor ISGF3 contributes to transcriptome changes in IFN-treated cells. Our review summarizes the contribution of non-canonical JAK–STAT signaling to the innate antimicrobial immunity imparted by IFN. Moreover, we touch upon functions of IFN pathway proteins beyond the IFN response. These include metabolic functions of IRF9 as well as the regulation of natural killer cell activity by kinase-dead TYK2 and different phosphorylation isoforms of STAT1. PMID:28184222

  8. Paeoniflorin inhibits the growth of bladder carcinoma via deactivation of STAT3

    Directory of Open Access Journals (Sweden)

    Yang Jianhui

    2018-06-01

    Full Text Available Bladder cancer (BCa is one of the most common urinary cancers. The present study aims to investigate whether Paeoniflorin (Pae can exert inhibitory effects on BCa. The results showed that Pae inhibited proliferation of human BCa cell lines in a concentration- and time-dependent manner. Pae and cisplatin (Cis synergistically inhibited the growth of tumours in RT4-bearing mice. Pae treatment neutralized the body loss induced by Cis. Moreover, Pae induced apoptosis in RT4 cells and increased the activities of caspase3, caspase8 and caspase9. Western blotting and immunohistochemical analysis revealed that the phosphorylated signal transducer and activator of transcription-3 (p-STAT3 level were decreased in Pae-treated RT4 cells and Pae-treated tumour-bearing mice. Furthermore, STAT3 transcriptional target B-cell lymphoma-2 was decreased in Pae-treated RT4 cells. Interestingly, Pae prevented translocation of STAT3 to the nucleus in RT4 cells. Collectively, Pae inhibits the growth of BCa, at least in part, via a STAT3 pathway.

  9. Different Competitive Capacities of Stat4 and Stat6 Deficient CD4+ T Cells during Lymphophenia-Driven Proliferation

    DEFF Research Database (Denmark)

    Sanchez-Guajardo, Vanesa Maria; Borghans, J.A.M.; Marquez, M.-E.

    2005-01-01

    The outcome of an immune response relies on the competitive capacities acquired through differentiation of CD4ﰀ T cells into Th1 or Th2 effector cells. Because Stat4 and Stat6 proteins are implicated in the Th1 vs Th2 generation and maintenance, respectively, we compare in this study the kinetics...... of Stat4ﰐ/ﰐ and Stat6ﰐ/ﰐ CD4ﰀ T cells during competitive bone marrow reconstitution and lymphopenia-driven proliferation. After bone marrow transplantation, both populations reconstitute the peripheral T cell pools equally well. After transfer into lymphopenic hosts, wild-type and Stat6ﰐ/ﰐ CD4ﰀ T cells...... show a proliferation advantage, which is early associated with the expression of an active phospho-Stat4 and the down-regulation of Stat6. Despite these differences, Stat4- and Stat6-deficient T cells reach similar steady state numbers. However, when both Stat4ﰐ/ﰐ and Stat6ﰐ/ﰐ CD4ﰀ T cells...

  10. STAT4 Associates with SLE Through Two Independent Effects that Correlate with Gene Expression and Act Additively with IRF5 to Increase Risk

    Science.gov (United States)

    Abelson, Anna-Karin; Delgado-Vega, Angélica M.; Kozyrev, Sergey V.; Sánchez, Elena; Velázquez-Cruz, Rafael; Eriksson, Niclas; Wojcik, Jerome; Reddy, Prasad Linga; Lima, Guadalupe; D’Alfonso, Sandra; Migliaresi, Sergio; Baca, Vicente; Orozco, Lorena; Witte, Torsten; Ortego-Centeno, Norberto; Abderrahim, Hadi; Pons-Estel, Bernardo A.; Gutiérrez, Carmen; Suárez, Ana; González-Escribano, Maria Francisca; Martin, Javier; Alarcón-Riquelme, Marta E.

    2013-01-01

    Objectives To confirm and define the genetic association of STAT4 and systemic lupus erythematosus, investigate the possibility of correlations with differential splicing and/or expression levels, and genetic interaction with IRF5. Methods 30 tag SNPs were genotyped in an independent set of Spanish cases and controls. SNPs surviving correction for multiple tests were genotyped in 5 new sets of cases and controls for replication. STAT4 cDNA was analyzed by 5’-RACE PCR and sequencing. Expression levels were measured by quantitative PCR. Results In the fine-mapping, four SNPs were significant after correction for multiple testing, with rs3821236 and rs3024866 as the strongest signals, followed by the previously associated rs7574865, and by rs1467199. Association was replicated in all cohorts. After conditional regression analyses, two major independent signals represented by SNPs rs3821236 and rs7574865, remained significant across the sets. These SNPs belong to separate haplotype blocks. High levels of STAT4 expression correlated with SNPs rs3821236, rs3024866 (both in the same haplotype block) and rs7574865 but not with other SNPs. We also detected transcription of alternative tissue-specific exons 1, indicating presence of tissue-specific promoters of potential importance in the expression of STAT4. No interaction with associated SNPs of IRF5 was observed using regression analysis. Conclusions These data confirm STAT4 as a susceptibility gene for SLE and suggest the presence of at least two functional variants affecting levels of STAT4. Our results also indicate that both genes STAT4 and IRF5 act additively to increase risk for SLE. PMID:19019891

  11. Signal Transducer and Activator of Transcription 3 (STAT3) Mediates Amino Acid Inhibition of Insulin Signaling through Serine 727 Phosphorylation*

    OpenAIRE

    Kim, Jeong-Ho; Yoon, Mee-Sup; Chen, Jie

    2009-01-01

    Nutrient overload is associated with the development of obesity, insulin resistance, and type II diabetes. High plasma concentrations of amino acids have been found to correlate with insulin resistance. At the cellular level, excess amino acids impair insulin signaling, the mechanisms of which are not fully understood. Here, we report that STAT3 plays a key role in amino acid dampening of insulin signaling in hepatic cells. Excess amino acids inhibited insulin-stimulated Akt phosphorylation a...

  12. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways.

    Science.gov (United States)

    Yang, Lichao; Guo, Han; Li, Ying; Meng, Xianglan; Yan, Lu; Dan Zhang; Wu, Sangang; Zhou, Hao; Peng, Lu; Xie, Qiang; Jin, Xin

    2016-10-10

    The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases.

  13. Variants within STAT genes reveal association with anticitrullinated protein antibody-negative rheumatoid arthritis in 2 European populations.

    Science.gov (United States)

    Seddighzadeh, Maria; Gonzalez, Antonio; Ding, Bo; Ferreiro-Iglesias, Aida; Gomez-Reino, Juan J; Klareskog, Lars; Alfredsson, Lars; Dunussi-Joannopoulos, Kyri; Clark, James D; Padyukov, Leonid

    2012-08-01

    STAT3 and 4 are, among other factors, critical for the interleukin 12 (IL-12)-mediated Th1 response, for transfer of IL-23 signals, and for survival and expansion of Th17 cells. We investigated the association of STAT3 and STAT4 polymorphisms with serologically distinct subgroups of rheumatoid arthritis (RA). A total of 41 single-nucleotide polymorphisms (SNP) within STAT3 and STAT1-STAT4 loci were investigated in a Swedish cohort of 2043 RA cases and 1115 controls. Nine of the associated SNP were tested in a Spanish cohort of 1223 RA cases and 1090 controls. Fourteen SNP in the STAT3 and STAT1-STAT4 loci were associated with anticitrullinated protein antibody (ACPA)-negative RA in the Swedish cohort. Three of the SNP in STAT4 and 2 SNP in STAT3 remained associated with ACPA-negative RA after considering the Spanish results. In addition, rs7574865 and rs10181656, in STAT4, were associated with ACPA-positive RA in the Swedish study. One of these SNP, rs7574865, showed a similar pattern of the association in serologically distinct subgroups of RA in a metaanalysis of all 7 published studies. Our findings suggest that variants in STAT genes may contribute differentially to susceptibility to RA in seropositive and in seronegative patients.

  14. Wnt/β-catenin and LIF-Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal.

    Science.gov (United States)

    Ye, Shoudong; Zhang, Dongming; Cheng, Fei; Wilson, Daniel; Mackay, Jeffrey; He, Kan; Ban, Qian; Lv, Feng; Huang, Saifei; Liu, Dahai; Ying, Qi-Long

    2016-01-15

    Activation of leukemia inhibitor factor (LIF)-Stat3 or Wnt/β-catenin signaling promotes mouse embryonic stem cell (mESC) self-renewal. A myriad of downstream targets have been identified in the individual signal pathways, but their common targets remain largely elusive. In this study, we found that the LIF-Stat3 and Wnt/β-catenin signaling pathways converge on Sp5 to promote mESC self-renewal. Forced Sp5 expression can reproduce partial effects of Wnt/β-catenin signaling but mimics most features of LIF-Stat3 signaling to maintain undifferentiated mESCs. Moreover, Sp5 is able to convert mouse epiblast stem cells into a naïve pluripotent state. Thus, Sp5 is an important component of the regulatory network governing mESC naïve pluripotency. © 2016. Published by The Company of Biologists Ltd.

  15. STAT3 Regulates Proliferation and Survival of CD8+ T Cells: Enhances Effector Responses to HSV-1 Infection, and Inhibits IL-10+ Regulatory CD8+ T Cells in Autoimmune Uveitis

    Directory of Open Access Journals (Sweden)

    Cheng-Rong Yu

    2013-01-01

    Full Text Available STAT3 regulates CD4+ T cell survival and differentiation. However, its effects on CD8+ T cells are not well understood. Here, we show that in comparison to WT CD8+ T cells, STAT3-deficient CD8+ T cells exhibit a preactivated memory-like phenotype, produce more IL-2, proliferate faster, and are more sensitive to activation-induced cell death (AICD. The enhanced proliferation and sensitivity to AICD correlated with downregulation of class-O forkhead transcription factors (FoxO1, FoxO3A, , , Bcl-2, OX-40, and upregulation of FasL, Bax, and Bad. We examined whether STAT3-deficient CD8+ T cells can mount effective response during herpes simplex virus (HSV-1 infection and experimental autoimmune uveitis (EAU. Compared to WT mice, HSV-1-infected STAT3-deficient mice (STAT3KO produced less IFN- and virus-specific KLRG-1+ CD8+ T cells. STAT3KO mice are also resistant to EAU and produced less IL-17-producing Tc17 cells. Resistance of STAT3KO to EAU correlated with marked expansion of IL-10-producing regulatory CD8+ T cells (CD8-Treg implicated in recovery from autoimmune encephalomyelitis. Thus, increases of IL-6-induced STAT3 activation observed during inflammation may inhibit expansion of CD8-Tregs, thereby impeding recovery from uveitis. These results suggest that STAT3 is a potential therapeutic target for upregulating CD8+ T cell-mediated responses to viruses and suggest the successful therapeutic targeting of STAT3 as treatment for uveitis, derived, in part, from promoting CD8-Treg expansion.

  16. Time-Delay Effects on Constitutive Gene Expression*

    International Nuclear Information System (INIS)

    Feng Yan-Ling; Wang Dan; Tang Xu-Lei; Dong Jian-Min

    2017-01-01

    The dynamics of constitutive gene expression with delayed mRNA degradation is investigated, where the intrinsic noise caused by the small number of reactant molecules is introduced. It is found that the oscillatory behavior claimed in previous investigations does not appear in the approximation of small time delay, and the steady state distribution still follows the Poisson law. Furthermore, we introduce the extrinsic noise induced by surrounding environment to explore the effects of this noise and time delay on the Fano factor. Based on a delay Langevin equation and the corresponding Fokker–Planck equation, the distribution of mRNA copy-number is achieved analytically. The time delay and extrinsic noise play similar roles in the gene expression system, that is, they are able to result in the deviation of the Fano factor from 1 evidently. The measured Fano factor for constitutive gene expression is slightly larger than 1, which is perhaps attributed to the time-delay effect. (paper)

  17. Molecular integration of HoxB4 and STAT3 for self-renewal of hematopoietic stem cells: a model of molecular convergence for stemness.

    Science.gov (United States)

    Hong, Sung-Hyun; Yang, Seung-Jip; Kim, Tae-Min; Shim, Jae-Seung; Lee, Ho-Sun; Lee, Ga-Young; Park, Bo-Bae; Nam, Suk Woo; Ryoo, Zae Young; Oh, Il-Hoan

    2014-05-01

    The upregulation of HoxB4 promotes self-renewal of hematopoietic stem cells (HSCs) without overriding the normal stem cell pool size. A similar enhancement of HSC self-renewal occurs when signal transducer and activator of transcription 3 (STAT3) is activated in HSCs. In this study, to gain insight into the functional organization of individual transcription factors (TFs) that have similar effects on HSCs, we investigated the molecular interplay between HoxB4 and STAT3 in the regulation of HSC self-renewal. We found that while STAT3-C or HoxB4 similarly enhanced the in vitro self-renewal and in vivo repopulating activities of HSCs, simultaneous transduction of both TFs did not have additive effects, indicating their functional redundancy in HSCs. In addition, activation of STAT3 did not cause changes in the expression levels of HoxB4. In contrast, the inhibition of STAT3 activity in HoxB4-overexpressing hematopoietic cells significantly abrogated the enhancing effects of HoxB4, and the upregulation of HoxB4 caused a ligand-independent Tyr-phosphorylation of STAT3. Microarray analysis revealed a significant overlap of the transcriptomes regulated by STAT3 and HoxB4 in undifferentiated hematopoietic cells. Moreover, a gene set enrichment analysis showed significant overlap in the candidate TFs that can recapitulate the transcriptional changes induced by HoxB4 or STAT3. Interestingly, among these common TFs were the pluripotency-related genes Oct-4 and Nanog. These results indicate that tissue-specific TFs regulating HSC self-renewal are functionally organized to play an equivalent role in transcription and provide insights into the functional convergence of multiple entries of TFs toward a conserved transcription program for the stem cell state. © 2014 AlphaMed Press.

  18. Suppression of type I and type III IFN signalling by NSs protein of severe fever with thrombocytopenia syndrome virus through inhibition of STAT1 phosphorylation and activation.

    Science.gov (United States)

    Chaudhary, Vidyanath; Zhang, Shuo; Yuen, Kit-San; Li, Chuan; Lui, Pak-Yin; Fung, Sin-Yee; Wang, Pei-Hui; Chan, Chi-Ping; Li, Dexin; Kok, Kin-Hang; Liang, Mifang; Jin, Dong-Yan

    2015-11-01

    Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen causing significant morbidity and mortality in Asia. NSs protein of SFTSV is known to perturb type I IFN induction and signalling, but the mechanism remains to be fully understood. Here, we showed the suppression of both type I and type III IFN signalling by SFTSV NSs protein is mediated through inhibition of STAT1 phosphorylation and activation. Infection with live SFTSV or expression of NSs potently suppressed IFN-stimulated genes but not NFkB activation. NSs was capable of counteracting the activity of IFN-α1, IFN-β, IFN-λ1 and IFN-λ2. Mechanistically, NSs associated with STAT1 and STAT2, mitigated IFN-β-induced phosphorylation of STAT1 at S727, and reduced the expression and activity of STAT1 protein in IFN-β-treated cells, resulting in the inhibition of STAT1 and STAT2 recruitment to IFNstimulated promoters. Taken together, SFTSV NSs protein is an IFN antagonist that suppresses phosphorylation and activation of STAT1.

  19. Transgenic tobacco plants constitutively expressing peanut BTF3 exhibit increased growth and tolerance to abiotic stresses.

    Science.gov (United States)

    Pruthvi, V; Rama, N; Parvathi, M S; Nataraja, K N

    2017-05-01

    Abiotic stresses limit crop growth and productivity worldwide. Cellular tolerance, an important abiotic stress adaptive trait, involves coordinated activities of multiple proteins linked to signalling cascades, transcriptional regulation and other diverse processes. Basal transcriptional machinery is considered to be critical for maintaining transcription under stressful conditions. From this context, discovery of novel basal transcription regulators from stress adapted crops like peanut would be useful for improving tolerance of sensitive plant types. In this study, we prospected a basal transcription factor, BTF3 from peanut (Arachis hypogaea L) and studied its relevance in stress acclimation by over expression in tobacco. AhBTF3 was induced under PEG-, NaCl-, and methyl viologen-induced stresses in peanut. The constitutive expression of AhBTF3 in tobacco increased plant growth under non stress condition. The transgenic plants exhibited superior phenotype compared to wild type under mannitol- and NaCl-induced stresses at seedling level. The enhanced cellular tolerance of transgenic plants was evidenced by higher cell membrane stability, reactive oxygen species (ROS) scavenging activity, seedling survival and vigour than wild type. The transgenic lines showed better in vitro regeneration capacity on growth media supplemented with NaCl than wild type. Superior phenotype of transgenic plants under osmotic and salinity stresses seems to be due to constitutive activation of genes of multiple pathways linked to growth and stress adaptation. The study demonstrated that AhBTF3 is a positive regulator of growth and stress acclimation and hence can be considered as a potential candidate gene for crop improvement towards stress adaptation. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Ezh2 regulates transcriptional and post-translational expression of T-bet and promotes Th1 cell responses mediating aplastic anemia in mice1

    Science.gov (United States)

    Tong, Qing; He, Shan; Xie, Fang; Mochizuki, Kazuhiro; Liu, Yongnian; Mochizuki, Izumi; Meng, Lijun; Sun, Hongxing; Zhang, Yanyun; Guo, Yajun; Hexner, Elizabeth; Zhang, Yi

    2014-01-01

    Acquired aplastic anemia (AA) is a potentially fatal bone marrow (BM) failure syndrome. IFN-γ-producing T helper (Th)1 CD4+ T cells mediate the immune destruction of hematopoietic cells, and are central to the pathogenesis. However, the molecular events that control the development of BM-destructive Th1 cells remain largely unknown. Ezh2 is a chromatin-modifying enzyme that regulates multiple cellular processes primarily by silencing gene expression. We recently reported that Ezh2 is crucial for inflammatory T cell responses after allogeneic BM transplantation. To elucidate whether Ezh2 mediates pathogenic Th1 responses in AA and the mechanism of Ezh2 action in regulating Th1 cells, we studied the effects of Ezh2 inhibition in CD4+ T cells using a mouse model of human AA. Conditionally deleting Ezh2 in mature T cells dramatically reduced the production of BM-destructive Th1 cells in vivo, decreased BM-infiltrating Th1 cells, and rescued mice from BM failure. Ezh2 inhibition resulted in significant decrease in the expression of Tbx21 and Stat4 (which encode transcription factors T-bet and STAT4, respectively). Introduction of T-bet but not STAT4 into Ezh2-deficient T cells fully rescued their differentiation into Th1 cells mediating AA. Ezh2 bound to the Tbx21 promoter in Th1 cells, and directly activated Tbx21 transcription. Unexpectedly, Ezh2 was also required to prevent proteasome-mediated degradation of T-bet protein in Th1 cells. Our results identify T-bet as the transcriptional and post-translational Ezh2 target that acts together to generate BM-destructive Th1 cells, and highlight the therapeutic potential of Ezh2 inhibition in reducing AA and other autoimmune diseases. PMID:24760151

  1. Constitutive Activity among Orphan Class-A G Protein Coupled Receptors.

    Directory of Open Access Journals (Sweden)

    Adam L Martin

    Full Text Available The purpose of this study was to evaluate the extent of constitutive activity among orphan class-A G protein coupled receptors within the cAMP signaling pathway. Constitutive signaling was revealed by changes in gene expression under control of the cAMP response element. Gene expression was measured in Chinese hamster ovary cells transiently co-transfected with plasmids containing a luciferase reporter and orphan receptor. Criteria adopted for defining constitutive activation were: 1 200% elevation over baseline reporter gene expression; 2 40% inhibition of baseline expression; and 3 40% inhibition of expression stimulated by 3 μM forskolin. Five patterns of activity were noted: 1 inhibition under both baseline and forskolin stimulated expression (GPR15, GPR17, GPR18, GPR20, GPR25, GPR27, GPR31, GPR32, GPR45, GPR57, GPR68, GPR83, GPR84, GPR132, GPR150, GPR176; 2 no effect on baseline expression, but inhibition of forskolin stimulated expression (GPR4, GPR26, GPR61, GPR62, GPR78, GPR101, GPR119; 3 elevation of baseline signaling coupled with inhibition of forskolin stimulated expression (GPR6, GPR12; 4 elevation of baseline signaling without inhibition of forskolin stimulated expression (GPR3, GPR21, GPR52, GPR65; and 5 no effect on expression (GPR1, GPR19, GPR22, GPR34, GPR35, GPR39, GPR63, GPR82, GPR85, GPR87. Constitutive activity was observed in 75% of the orphan class-A receptors examined (30 of 40. This constitutive signaling cannot be explained by simple overexpression of the receptor. Inhibition of cAMP mediated expression was far more common (65% than stimulation of expression (15%. Orphan receptors that were closely related based on amino acid homology tended to have similar effects on gene expression. These results suggest that identification of inverse agonists may be a fruitful approach for categorizing these orphan receptors and targeting them for pharmacological intervention.

  2. Constitutive Activity among Orphan Class-A G Protein Coupled Receptors.

    Science.gov (United States)

    Martin, Adam L; Steurer, Michael A; Aronstam, Robert S

    2015-01-01

    The purpose of this study was to evaluate the extent of constitutive activity among orphan class-A G protein coupled receptors within the cAMP signaling pathway. Constitutive signaling was revealed by changes in gene expression under control of the cAMP response element. Gene expression was measured in Chinese hamster ovary cells transiently co-transfected with plasmids containing a luciferase reporter and orphan receptor. Criteria adopted for defining constitutive activation were: 1) 200% elevation over baseline reporter gene expression; 2) 40% inhibition of baseline expression; and 3) 40% inhibition of expression stimulated by 3 μM forskolin. Five patterns of activity were noted: 1) inhibition under both baseline and forskolin stimulated expression (GPR15, GPR17, GPR18, GPR20, GPR25, GPR27, GPR31, GPR32, GPR45, GPR57, GPR68, GPR83, GPR84, GPR132, GPR150, GPR176); 2) no effect on baseline expression, but inhibition of forskolin stimulated expression (GPR4, GPR26, GPR61, GPR62, GPR78, GPR101, GPR119); 3) elevation of baseline signaling coupled with inhibition of forskolin stimulated expression (GPR6, GPR12); 4) elevation of baseline signaling without inhibition of forskolin stimulated expression (GPR3, GPR21, GPR52, GPR65); and 5) no effect on expression (GPR1, GPR19, GPR22, GPR34, GPR35, GPR39, GPR63, GPR82, GPR85, GPR87). Constitutive activity was observed in 75% of the orphan class-A receptors examined (30 of 40). This constitutive signaling cannot be explained by simple overexpression of the receptor. Inhibition of cAMP mediated expression was far more common (65%) than stimulation of expression (15%). Orphan receptors that were closely related based on amino acid homology tended to have similar effects on gene expression. These results suggest that identification of inverse agonists may be a fruitful approach for categorizing these orphan receptors and targeting them for pharmacological intervention.

  3. STAT3 inhibitor enhances chemotherapy drug efficacy by ...

    African Journals Online (AJOL)

    chemoresistance in NSCLC cells and a xenograft mice tumor model. Immunohistochemistry and ... supplemented with 2 mM L-glutamine and 10 % fetal bovine serum. ..... Stat3 signaling in acute myeloid leukemia: ligand- dependent and ...

  4. Inhibitory Effect of Curcumol on Jak2-STAT Signal Pathway Molecules of Fibroblast-Like Synoviocytes in Patients with Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Heng Wang

    2012-01-01

    Full Text Available Hyperplasia of synovial membrane in rheumatoid arthritis (RA is a critical pathological foundation for inducing articular injury. The janus kinase and signal transducer and activator of transcription (Jak-STAT pathway plays a critical role in synovial membrane proliferation induced by platelet-derived growth factor (PDGF. To explore the anti-cell proliferation mechanism of curcumol, a pure monomer extracted from Chinese medical plant zedoary rhizome, the changes of Jak2-STAT1/3 signal pathway-related molecules in synoviocytes were observed in vitro. In this study, the fibroblast-like synoviocytes (FLS in patients with RA were collected and cultured. The following parameters were measured: cell proliferation (WST-1 assay, cell cycles (fluorescence-activated cell sorting, FACS, STAT1 and STAT3 activities (electrophoretic mobility shift assay, EMSA, and the protein expressions of phosphorylated Jak2, STAT1, and STAT3 (Western blot. It was shown that curcumol could inhibit the RA-FLS proliferation and DNA synthesis induced by PDGF-BB in a dose-dependent manner in vitro. The transcription factors activities of STAT1 and STAT3 were obviously elevated after PDGF-BB stimulation (P<0.05. Super-shift experiments identified the STAT1 or STAT3 proteins in the complex. Furthermore, the different concentration curcumol could downregulate the DNA binding activities of STAT1 and STAT3 (P<0.05 and inhibit the phosphorylation of Jak2 while it had no effect on the protein expressions of STAT1 and STAT3. Positive correlations were found between changes of cell proliferation and DNA-binding activities of STAT1 and STAT3, respectively (P<0.01. In conclusion, curcumol might suppress the FLS proliferation and DNA synthesis induced by PDGF-BB through attenuating Jak2 phosphorylation, downregulating STAT1 and STAT3 DNA-binding activities, which could provide theoretical foundation for clinical treatment of RA.

  5. STAT3 Gene Silencing by Aptamer-siRNA Chimera as Selective Therapeutic for Glioblastoma

    Directory of Open Access Journals (Sweden)

    Carla Lucia Esposito

    2018-03-01

    Full Text Available Glioblastoma (GBM is the most frequent and aggressive primary brain tumor in adults, and despite advances in neuro-oncology, the prognosis for patients remains dismal. The signal transducer and activator of transcription-3 (STAT3 has been reported as a key regulator of the highly aggressive mesenchymal GBM subtype, and its direct silencing (by RNAi oligonucleotides has revealed a great potential as an anti-cancer therapy. However, clinical use of oligonucleotide-based therapies is dependent on safer ways for tissue-specific targeting and increased membrane penetration. The objective of this study is to explore the use of nucleic acid aptamers as carriers to specifically drive a STAT3 siRNA to GBM cells in a receptor-dependent manner. Using an aptamer that binds to and antagonizes the oncogenic receptor tyrosine kinase PDGFRβ (Gint4.T, here we describe the design of a novel aptamer-siRNA chimera (Gint4.T-STAT3 to target STAT3. We demonstrate the efficient delivery and silencing of STAT3 in PDGFRβ+ GBM cells. Importantly, the conjugate reduces cell viability and migration in vitro and inhibits tumor growth and angiogenesis in vivo in a subcutaneous xenograft mouse model. Our data reveals Gint4.T-STAT3 conjugate as a novel molecule with great translational potential for GBM therapy.

  6. Vorinostat Enhances Cytotoxicity of SN-38 and Temozolomide in Ewing Sarcoma Cells and Activates STAT3/AKT/MAPK Pathways.

    Directory of Open Access Journals (Sweden)

    Valerie B Sampson

    Full Text Available Histone deacetylase inhibitors (HDACi have been evaluated in patients with Ewing sarcoma (EWS but demonstrated limited activity. To better understand the potential for HDACi in EWS, we evaluated the combination of the HDACi vorinostat, with DNA damaging agents SN-38 (the active metabolite of irinotecan and topoisomerase 1 inhibitor plus the alkylating agent temozolomide (ST. Drugs were evaluated in sequential and simultaneous combinations in two EWS cell lines. Results demonstrate that cell viability, DNA damage and reactive oxygen species (ROS production are dependent on the sequence of drug administration. Enhanced cytotoxicity is exhibited in vitro in EWS cell lines treated with ST administered before vorinostat, which was modestly higher than concomitant treatment and superior to vorinostat administered before ST. Drug combinations downregulate cyclin D1 to induce G0/G1 arrest and promote apoptosis by cleavage of caspase-3 and PARP. When ST is administered before or concomitantly with vorinostat there is activation of STAT3, MAPK and the p53 pathway. In contrast, when vorinostat is administered before ST, there is DNA repair, increased AKT phosphorylation and reduced H2B acetylation. Inhibition of AKT using the small molecule inhibitor MK-2206 did not restore H2B acetylation. Combining ST with the dual ALK and IGF-1R inhibitor, AZD3463 simultaneously inhibited STAT3 and AKT to enhance the cytotoxic effects of ST and further reduce cell growth suggesting that STAT3 and AKT activation were in part mediated by ALK and IGF-1R signaling. In summary, potent antiproliferative and proapoptotic activity were demonstrated for ST induced DNA damage before or simultaneous with HDAC inhibition and cell death was mediated through the p53 pathway. These observations may aid in designing new protocols for treating pediatric patients with high-risk EWS.

  7. Vorinostat Enhances Cytotoxicity of SN-38 and Temozolomide in Ewing Sarcoma Cells and Activates STAT3/AKT/MAPK Pathways.

    Science.gov (United States)

    Sampson, Valerie B; Vetter, Nancy S; Kamara, Davida F; Collier, Anderson B; Gresh, Renee C; Kolb, E Anders

    2015-01-01

    Histone deacetylase inhibitors (HDACi) have been evaluated in patients with Ewing sarcoma (EWS) but demonstrated limited activity. To better understand the potential for HDACi in EWS, we evaluated the combination of the HDACi vorinostat, with DNA damaging agents SN-38 (the active metabolite of irinotecan and topoisomerase 1 inhibitor) plus the alkylating agent temozolomide (ST). Drugs were evaluated in sequential and simultaneous combinations in two EWS cell lines. Results demonstrate that cell viability, DNA damage and reactive oxygen species (ROS) production are dependent on the sequence of drug administration. Enhanced cytotoxicity is exhibited in vitro in EWS cell lines treated with ST administered before vorinostat, which was modestly higher than concomitant treatment and superior to vorinostat administered before ST. Drug combinations downregulate cyclin D1 to induce G0/G1 arrest and promote apoptosis by cleavage of caspase-3 and PARP. When ST is administered before or concomitantly with vorinostat there is activation of STAT3, MAPK and the p53 pathway. In contrast, when vorinostat is administered before ST, there is DNA repair, increased AKT phosphorylation and reduced H2B acetylation. Inhibition of AKT using the small molecule inhibitor MK-2206 did not restore H2B acetylation. Combining ST with the dual ALK and IGF-1R inhibitor, AZD3463 simultaneously inhibited STAT3 and AKT to enhance the cytotoxic effects of ST and further reduce cell growth suggesting that STAT3 and AKT activation were in part mediated by ALK and IGF-1R signaling. In summary, potent antiproliferative and proapoptotic activity were demonstrated for ST induced DNA damage before or simultaneous with HDAC inhibition and cell death was mediated through the p53 pathway. These observations may aid in designing new protocols for treating pediatric patients with high-risk EWS.

  8. Alteration of SHP-1/p-STAT3 Signaling: A Potential Target for Anticancer Therapy

    Directory of Open Access Journals (Sweden)

    Tzu-Ting Huang

    2017-06-01

    Full Text Available The Src homology 2 (SH2 domain-containing protein tyrosine phosphatase 1 (SHP-1, a non-receptor protein tyrosine phosphatase, has been reported as a negative regulator of phosphorylated signal transducer and activator of transcription 3 (STAT3 and linked to tumor development. In this present review, we will discuss the importance and function of SHP-1/p-STAT3 signaling in nonmalignant conditions as well as malignancies, its cross-talk with other pathways, the current clinical development and the potential role of inhibitors of this pathway in anticancer therapy and clinical relevance of SHP-1/p-STAT3 in cancers. Lastly, we will summarize and highlight work involving novel drugs/compounds targeting SHP-1/p-STAT3 signaling and combined strategies that were/are discovered in our and our colleagues’ laboratories.

  9. The potency of STAT (signal transducers and activators of transcription) 3 protein as growth promoter for chicken

    Science.gov (United States)

    Ma'ruf, Anwar; Iswati, Sri; Hidajati, Nove; Damayanti, Ratna

    2017-09-01

    The long-term objective of this study was to produce STAT synthetic protein in chicken during growth period resulting from the increase of growth hormone (GH) as growth promoter. This study used ten male chicken Lohman from PT. Multibreeder Indonesia. The chicken were kept within batteried cage, with a capacity of one chicken in each cage. The chickens were fed twice a day, at 6 a.m. and 6 p.m. with the amount of feed 10% less than standard. On day 21 the chicken were slaughtered to obtain the samples, i.e., adipose, liver and muscles for the following examinations (1) isolation of STAT-3 signaling protein from adipose, liver and muscles of the chicken, (2) analysis of STAT-3 signaling protein using SDS-PAGE method, and (3) identification of STAT-3 signaling protein using Western blot method by means of protein detection using electrophoresis with polyacrylamide gels. Results of examination on protein in hepatic, muscle and adipose of chickens in growth period revealed that STAT protein was positively present in those tissues. This finding was followed-up with SDS-PAGE examination, from which we found the presence of protein band between the markers of 116 kDa and 14.4 kDa. The protein band was supposedly the STAT-3 protein. To prove that protein band formed was the STAT-3, Western blot examination was conducted using rabbit polyclonal antibody STAT-3. The result showed the formation of the protein band, indicating the presence of reaction between antigen (STAT-3 protein) and STAT-3 protein antibody. In conclusion, STAT-3 protein is present in hepatic, muscular, and adipose tissues, with molecular weight of 59.4 kDa.

  10. Risk of nontyphoidal Salmonella bacteraemia in African children is modified by STAT4.

    Science.gov (United States)

    Gilchrist, James J; Rautanen, Anna; Fairfax, Benjamin P; Mills, Tara C; Naranbhai, Vivek; Trochet, Holly; Pirinen, Matti; Muthumbi, Esther; Mwarumba, Salim; Njuguna, Patricia; Mturi, Neema; Msefula, Chisomo L; Gondwe, Esther N; MacLennan, Jenny M; Chapman, Stephen J; Molyneux, Malcolm E; Knight, Julian C; Spencer, Chris C A; Williams, Thomas N; MacLennan, Calman A; Scott, J Anthony G; Hill, Adrian V S

    2018-03-09

    Nontyphoidal Salmonella (NTS) is a major cause of bacteraemia in Africa. The disease typically affects HIV-infected individuals and young children, causing substantial morbidity and mortality. Here we present a genome-wide association study (180 cases, 2677 controls) and replication analysis of NTS bacteraemia in Kenyan and Malawian children. We identify a locus in STAT4, rs13390936, associated with NTS bacteraemia. rs13390936 is a context-specific expression quantitative trait locus for STAT4 RNA expression, and individuals carrying the NTS-risk genotype demonstrate decreased interferon-γ (IFNγ) production in stimulated natural killer cells, and decreased circulating IFNγ concentrations during acute NTS bacteraemia. The NTS-risk allele at rs13390936 is associated with protection against a range of autoimmune diseases. These data implicate interleukin-12-dependent IFNγ-mediated immunity as a determinant of invasive NTS disease in African children, and highlight the shared genetic architecture of infectious and autoimmune disease.

  11. Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells

    International Nuclear Information System (INIS)

    Lesinski, Gregory B; Zimmerer, Jason M; Kreiner, Melanie; Trefry, John; Bill, Matthew A; Young, Gregory S; Becknell, Brian; Carson, William E III

    2010-01-01

    Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells. Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr 701 -phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR. SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr 701 -phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation. These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ

  12. Identification of amino-acid residues in the V protein of peste des petits ruminants essential for interference and suppression of STAT-mediated interferon signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xusheng, E-mail: maxushengtt@163.com [State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730030 (China); Yang, Xing [State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730030 (China); Nian, Xiaofeng [Institute of Pathogen Biology and Immunology, Hebei North University, Zhangjiakou 07500 (China); Zhang, Zhidong; Dou, Yongxi [State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730030 (China); Zhang, Xuehu [Gansu Agricultural University, Lanzhou (China); Luo, Xuenong; Su, Junhong; Zhu, Qiyun [State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730030 (China); Cai, Xuepeng, E-mail: caixp@vip.163.com [State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730030 (China)

    2015-09-15

    Peste des petits ruminants virus (PPRV) causes a fatal disease in small ruminants. V protein of PPRV plays a pivotal role in interfering with host innate immunity by blocking IFNs signaling through interacting with STAT1 and STAT2. In the present study, the results demonstrated that PPRV V protein blocks IFN actions in a dose dependent manner and restrains the translocation of STAT1/2 proteins. We speculate that the translocation inhibition might be caused by the interfering of the downstream of STAT protein. Mutagenesis defines that Cys cluster and Trp motif of PPRV V protein are essential for STAT-mediated IFN signaling. These findings give a new sight for the further studies to understand the delicate mechanism of PPRV to escape the IFN signaling. - Highlights: • PPRV V protein inhibits type I IFN production and blocks its activation. • PPRV V protein negatively regulates activation of ISRE and GAS promoter. • PPRV V protein inhibits nuclear translocation of STAT protein by non-degradation. • PNT and VCT domain of PPRV V protein inhibit IFN transduction. • PPRV V protein binds with STAT protein via some conserved motifs.

  13. The clinical value of HPV E6/E7 and STAT3 mRNA detection in cervical cancer screening.

    Science.gov (United States)

    Fan, Yibing; Shen, Zongji

    2018-02-11

    To explore the value of human papillomavirus (HPV) E6/E7 and signal transducer and activator of transcription 3 (STAT3) mRNA detection in the screening of cervical lesions. 192 patients with abnormal ThinPrep cytology test (TCT) results and/or high-risk HPV infection were screened to identify possible cervical lesions in cases. Diagnoses were confirmed by histopathology. Fluorescence in situ hybridization (FISH) was performed to detect and qualify the mRNAs of HPV E6/E7, STAT3, and Survivin in cervical exfoliated cells. In addition, the performance of separate and combined mRNA detection methods were compared with TCT, HR-HPV DNA schemes respectively. 1. Compared with HPVE6/E7 and STAT3 mRNA methods, Survivin mRNA assay had poor specificity (Sp), Youden index (YI) and concordance rate. 2. HPV E6/E7, STAT3, and STAT3 + HR-HPV methods had the best Sp, concordance rate and positive predictive value (PPV) for cervical lesions screening and atypical squamous cells of undetermined significance (ASCUS) triage. For screening of high grade squamous intraepithelial lesions or greater (HSILs+), no difference was observed in the Se of mRNA detection methods in comparison with that of TCT, HR-HPV and TCT + HR-HPV, whereas the false positive rate (FPR) decreased by 41.48%/55.99%/17.19% and the colposcopy referral rate reduced by about 20.00%/25.00%/11.17%. For triage of women with ASCUS, no difference was observed in the Se of mRNA detection methods as compared to that of HR-HPV (χ 2  = 1.05, P > 0.75), while the FPR decreased by 45.83%/37.50%/41.66% and the colposcopy referral rate reduced by 32.42%/22.60%/25.28%, respectively. The Se, YI, and PPV of the combined methods increased in comparison to each method alone. 3. Compared with the TCT + HR-HPV method, HPV E6/E7 + STAT3 method had perfect Sp (95.92%) and PPV (95.40%) for screening HSILs+, the FPR and colposcopy referral rate decreased by 31.06% and 22.48% respectively. 1. The expression of HPV E6/E

  14. Ubiquitin-specific peptidase 22 inhibits colon cancer cell invasion by suppressing the signal transducer and activator of transcription 3/matrix metalloproteinase 9 pathway.

    Science.gov (United States)

    Ao, Ning; Liu, Yanyan; Bian, Xiaocui; Feng, Hailiang; Liu, Yuqin

    2015-08-01

    Colon cancer is associated with increased cell migration and invasion. In the present study, the role of ubiquitin-specific peptidase 22 (USP22) in signal transducer and activator of transcription 3 (STAT3)-mediated colon cancer cell invasion was investigated. The messenger RNA levels of STAT3 target genes were measured by reverse transcription-quantitative polymerase chain reaction, following USP22 knockdown by RNA interference in SW480 colon cancer cells. The matrix metalloproteinase 9 (MMP9) proteolytic activity and invasion potential of SW480 cells were measured by zymography and Transwell assay, respectively, following combined USP22 and STAT3 short interfering (si)RNA treatment or STAT3 siRNA treatment alone. Similarly, a cell counting kit-8 assay was used to detect the proliferation potential of SW480 cells. The protein expression levels of USP22, STAT3 and MMP9 were detected by immunohistochemistry in colon cancer tissue microarrays (TMAs) and the correlation between USP22, STAT3 and MMP9 was analyzed. USP22/STAT3 co-depletion partly rescued the MMP9 proteolytic activity and invasion of SW480 cells, compared with that of STAT3 depletion alone. However, the proliferation of USP22/STAT3si-SW480 cells was decreased compared with that of STAT3si-SW480 cells. USP22 expression was positively correlated with STAT3 and MMP9 expression in colon cancer TMAs. In conclusion, USP22 attenuated the invasion capacity of colon cancer cells by inhibiting the STAT3/MMP9 signaling pathway.

  15. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway

    International Nuclear Information System (INIS)

    Jo, Miran; Park, Mi Hee; Kollipara, Pushpa Saranya; An, Byeong Jun; Song, Ho Sueb; Han, Sang Bae; Kim, Jang Heub; Song, Min Jong; Hong, Jin Tae

    2012-01-01

    We investigated whether bee venom and melittin, a major component of bee venom, inhibit cell growth through enhancement of death receptor expressions in the human ovarian cancer cells, SKOV3 and PA-1. Bee venom (1–5 μg/ml) and melittin (0.5–2 μg/ml) inhibited the growth of SKOV3 and PA-1 ovarian cancer cells by the induction of apoptotic cell death in a dose dependent manner. Consistent with apoptotic cell death, expression of death receptor (DR) 3 and DR6 was increased in both cancer cells, but expression of DR4 was increased only in PA-1 cells. Expression of DR downstream pro-apoptotic proteins including caspase-3, 8, and Bax was concomitantly increased, but the phosphorylation of JAK2 and STAT3 and the expression of Bcl-2 were inhibited by treatment with bee venom and melittin in SKOV3 and PA-1 cells. Expression of cleaved caspase-3 was increased in SKOV3, but cleaved caspase-8 was increased in PA-1 cells. Moreover, deletion of DR3, DR4, and DR6 by small interfering RNA significantly reversed bee venom and melittin-induced cell growth inhibitory effect as well as down regulation of STAT3 by bee venom and melittin in SKOV3 and PA-1 ovarian cancer cell. These results suggest that bee venom and melittin induce apoptotic cell death in ovarian cancer cells through enhancement of DR3, DR4, and DR6 expression and inhibition of STAT3 pathway. -- Highlights: ► Some studies have showed that bee venom and/or melittin have anti-cancer effects. ► We found that bee venom and melittin inhibited cell growth in ovarian cancer cells. ► Bee venom and melittin induce apoptosis in SKOV3 and PA-1.

  16. PTP1B is a negative regulator of interleukin 4–induced STAT6 signaling

    Science.gov (United States)

    Lu, Xiaoqing; Malumbres, Raquel; Shields, Benjamin; Jiang, Xiaoyu; Sarosiek, Kristopher A.; Natkunam, Yasodha

    2008-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed enzyme shown to negatively regulate multiple tyrosine phosphorylation-dependent signaling pathways. PTP1B can modulate cytokine signaling pathways by dephosphorylating JAK2, TYK2, and STAT5a/b. Herein, we report that phosphorylated STAT6 may serve as a cytoplasmic substrate for PTP1B. Overexpression of PTP1B led to STAT6 dephosphorylation and the suppression of STAT6 transcriptional activity, whereas PTP1B knockdown or deficiency augmented IL-4–induced STAT6 signaling. Pretreatment of these cells with the PTK inhibitor staurosporine led to sustained STAT6 phosphorylation consistent with STAT6 serving as a direct substrate of PTP1B. Furthermore, PTP1B-D181A “substrate-trapping” mutants formed stable complexes with phosphorylated STAT6 in a cellular context and endogenous PTP1B and STAT6 interacted in an interleukin 4 (IL-4)–inducible manner. We delineate a new negative regulatory loop of IL-4–JAK-STAT6 signaling. We demonstrate that IL-4 induces PTP1B mRNA expression in a phosphatidylinositol 3-kinase–dependent manner and enhances PTP1B protein stability to suppress IL-4–induced STAT6 signaling. Finally, we show that PTP1B expression may be preferentially elevated in activated B cell–like diffuse large B-cell lymphomas. These observations identify a novel regulatory loop for the regulation of IL-4–induced STAT6 signaling that may have important implications in both neoplastic and inflammatory processes. PMID:18716132

  17. 'Papillary' solitary fibrous tumor/hemangiopericytoma with nuclear STAT6 expression and NAB2-STAT6 fusion.

    Science.gov (United States)

    Ishizawa, Keisuke; Tsukamoto, Yoshitane; Ikeda, Shunsuke; Suzuki, Tomonari; Homma, Taku; Mishima, Kazuhiko; Nishikawa, Ryo; Sasaki, Atsushi

    2016-04-01

    This report describes clinicopathological findings, including genetic data of STAT6, in a solitary fibrous tumor (SFT)/hemangiopericytoma (HPC) of the central nervous system in an 83-year-old woman with a bulge in the left forehead. She noticed it about 5 months before, and it had grown rapidly for the past 1 month. Neuroradiological studies disclosed a well-demarcated tumor that accompanied the destruction of the skull. The excised tumor showed a prominent papillary structure, where atypical cells were compactly arranged along the fibrovascular core ('pseudopapillary'). There was rich vasculature, some of which resembled 'staghorn' vessels. Mitotic figures were occasionally found. Whorls, psammoma bodies, or intra-nuclear pseudoinclusions were not identified. By immunohistochemistry, CD34 was strongly positive in the tumor cells, and STAT6 was localized in their nuclei. By reverse transcription-polymerase chain reaction (RT-PCR), an NAB2-STAT6 fusion gene, NAB2 exon6-STAT6 exon17, was detected, establishing a definite diagnosis of SFT/HPC. 'Papillary' SFT/HPC needs to be recognized as a possible morphological variant of SFT/HPC, and should be borne in mind in its diagnostic practice.

  18. PIAS3 expression in squamous cell lung cancer is low and predicts overall survival

    International Nuclear Information System (INIS)

    Abbas, Rime; McColl, Karen S; Kresak, Adam; Yang, Michael; Chen, Yanwen; Fu, Pingfu; Wildey, Gary; Dowlati, Afshin

    2015-01-01

    Unlike lung adenocarcinoma, little progress has been made in the treatment of squamous cell lung carcinoma (SCC). The Cancer Genome Atlas (TCGA) has recently reported that receptor tyrosine kinase signaling pathways are altered in 26% of SCC tumors, validating the importance of downstream Signal Transducers and Activators of Transcription 3 (STAT3) activity as a prime therapeutic target in this cancer. In the present report we examine the status of an endogenous inhibitor of STAT3, called Protein Inhibitor of Activated STAT3 (PIAS3), in SCC and its potential role in this disease. We examine PIAS3 expression in SCC tumors and cell lines by immunohistochemistry of a tissue microarray and western blotting. PIAS3 mRNA expression and survival data are analyzed in the TCGA data set. SCC cell lines are treated with curcumin to regulate PIAS3 expression and cell growth. PIAS3 protein expression is decreased in a majority of lung SCC tumors and cell lines. Analysis of PIAS3 mRNA transcript levels demonstrated that low PIAS3 levels predicted poor survival; Cox regression analysis revealed a hazard ratio of 0.57 (95% CI: 0.37–0.87), indicating a decrease in the risk of death by 43% for every unit elevation in PIAS3 gene expression. Curcumin treatment increased endogenous PIAS3 expression and decreased cell growth and viability in Calu-1 cells, a model of SCC. Our results implicate PIAS3 loss in the pathology of lung SCC and raise the therapeutic possibility of upregulating PIAS3 expression as a single target that can suppress signaling from the multiple receptor tyrosine kinase receptors found to be amplified in SCC

  19. Novel fused oxazepino-indoles (FOIs) attenuate liver carcinogenesis via IL-6/JAK2/STAT3 signaling blockade as evidenced through data-based mathematical modeling.

    Science.gov (United States)

    Singh, Ashok K; Bhadauria, Archana Singh; Kumar, Umesh; Raj, Vinit; Maurya, Vimal; Kumar, Dinesh; Maity, Biswanath; Prakash, Anand; De, Arnab; Samanta, Amalesh; Saha, Sudipta

    2018-05-15

    To potentiate the well-documented tumor protecting ability of paullones, literatures demand for rational modifications in paullone ring structure and exploration of a precise mechanism underlying their antitumor effects. Thus, recently we synthesized novel paullone-like scaffold, 5H-benzo [2, 3][1,4]oxazepino[5,6-b]indoles, where compounds 13a and 14a attenuated the growth of liver cancer specific Hep-G2 cells in vitro and formed stable binding complex with IL-6. Henceforth, we hypothesized that this action is probably due to the blockade of IL-6 mediated JAK2/STAT3 signaling cascade. A preclinical study was conducted using NDEA-induced HCC rat model by oral administration of FOIs at 10 mg/kg dose for 15 days. The molecular insights were confirmed through ELISA, qRT-PCR, western blot analyses. The study was further confirmed by data-based mathematical modeling using the quantitative data obtained from western blot analysis. 1 H NMR based metabolomics study was also performed to unveil metabolite discriminations among various studied groups. We identified that the HCC condition was produced due to the IL-6 induced activation of JAK2 and STAT3 which, in turn, was due to enhanced phosphorylation of JAK2 and STAT3. The treatment with FOIs led to the significant blockade of the IL-6 mediated JAK2/STAT3 signaling pathway. Besides, FOIs showed their potential ability in restoring perturbed metabolites linked to HCC. In particular, the anticancer efficacy of compound 13a was comparable or somewhat better than marketed chemotherapeutics, 5-flurouracil. These findings altogether opened up possibilities of developing fused oxazepino-indoles (FOIs) as new candidate molecule for plausible alternative of paullones to treat liver cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Sodium arsenite accelerates TRAIL-mediated apoptosis in melanoma cells through upregulation of TRAIL-R1/R2 surface levels and downregulation of cFLIP expression

    International Nuclear Information System (INIS)

    Ivanov, Vladimir N.; Hei, Tom K.

    2006-01-01

    AP-1/cJun, NF-κB and STAT3 transcription factors control expression of numerous genes, which regulate critical cell functions including proliferation, survival and apoptosis. Sodium arsenite is known to suppress both the IKK-NF-κB and JAK2-STAT3 signaling pathways and to activate the MAPK/JNK-cJun pathways, thereby committing some cancers to undergo apoptosis. Indeed, sodium arsenite is an effective drug for the treatment of acute promyelocytic leukemia with little nonspecific toxicity. Malignant melanoma is highly refractory to conventional radio- and chemotherapy. In the present study, we observed strong effects of sodium arsenite treatment on upregulation of TRAIL-mediated apoptosis in human and mouse melanomas. Arsenite treatment upregulated surface levels of death receptors, TRAIL-R1 and TRAIL-R2, through increased translocation of these proteins from cytoplasm to the cell surface. Furthermore, activation of cJun and suppression of NF-κB by sodium arsenite resulted in upregulation of the endogenous TRAIL and downregulation of the cFLIP gene expression (which encodes one of the main anti-apoptotic proteins in melanomas) followed by cFLIP protein degradation and, finally, by acceleration of TRAIL-induced apoptosis. Direct suppression of cFLIP expression by cFLIP RNAi also accelerated TRAIL-induced apoptosis in these melanomas, while COX-2 suppression substantially increased levels of both TRAIL-induced and arsenite-induced apoptosis. In contrast, overexpression of permanently active AKTmyr inhibited TRAIL-mediated apoptosis via downregulation of TRAIL-R1 levels. Finally, AKT overactivation increased melanoma survival in cell culture and dramatically accelerated growth of melanoma transplant in vivo, highlighting a role of AKT suppression for effective anticancer treatment

  1. Heregulin Co-opts PR Transcriptional Action Via Stat3 Role As a Coregulator to Drive Cancer Growth.

    Science.gov (United States)

    Proietti, Cecilia J; Izzo, Franco; Díaz Flaqué, María Celeste; Cordo Russo, Rosalía; Venturutti, Leandro; Mercogliano, María Florencia; De Martino, Mara; Pineda, Viviana; Muñoz, Sergio; Guzmán, Pablo; Roa, Juan C; Schillaci, Roxana; Elizalde, Patricia V

    2015-10-01

    Accumulated findings have demonstrated the presence of bidirectional interactions between progesterone receptor (PR) and the ErbB family of receptor tyrosine kinases signaling pathways in breast cancer. We previously revealed signal transducer and activator of transcription 3 (Stat3) as a nodal convergence point between said signaling pathways proving that Stat3 is activated by one of the ErbBs' ligands, heregulin (HRG)β1 via ErbB2 and through the co-option of PR as a signaling molecule. Here, we found that HRGβ1 induced Stat3 recruitment to the promoters of the progestin-regulated cell cycle modulators Bcl-XL and p21(CIP1) and also stimulated Stat3 binding to the mouse mammary tumor virus promoter, which carries consensus progesterone response elements. Interestingly, HRGβ1-activated Stat3 displayed differential functions on PR activity depending on the promoter bound. Indeed, Stat3 was required for PR binding in bcl-X, p21(CIP1), and c-myc promoters while exerting a PR coactivator function on the mouse mammary tumor virus promoter. Stat3 also proved to be necessary for HRGβ1-induced in vivo tumor growth. Our results endow Stat3 a novel function as a coregulator of HRGβ1-activated PR to promote breast cancer growth. These findings underscore the importance of understanding the complex interactions between PR and other regulatory factors, such as Stat3, that contribute to determine the context-dependent transcriptional actions of PR.

  2. Heregulin Co-opts PR Transcriptional Action Via Stat3 Role As a Coregulator to Drive Cancer Growth

    Science.gov (United States)

    Izzo, Franco; Díaz Flaqué, María Celeste; Cordo Russo, Rosalía; Venturutti, Leandro; Mercogliano, María Florencia; De Martino, Mara; Pineda, Viviana; Muñoz, Sergio; Guzmán, Pablo; Roa, Juan C.; Schillaci, Roxana

    2015-01-01

    Accumulated findings have demonstrated the presence of bidirectional interactions between progesterone receptor (PR) and the ErbB family of receptor tyrosine kinases signaling pathways in breast cancer. We previously revealed signal transducer and activator of transcription 3 (Stat3) as a nodal convergence point between said signaling pathways proving that Stat3 is activated by one of the ErbBs' ligands, heregulin (HRG)β1 via ErbB2 and through the co-option of PR as a signaling molecule. Here, we found that HRGβ1 induced Stat3 recruitment to the promoters of the progestin-regulated cell cycle modulators Bcl-XL and p21CIP1 and also stimulated Stat3 binding to the mouse mammary tumor virus promoter, which carries consensus progesterone response elements. Interestingly, HRGβ1-activated Stat3 displayed differential functions on PR activity depending on the promoter bound. Indeed, Stat3 was required for PR binding in bcl-X, p21CIP1, and c-myc promoters while exerting a PR coactivator function on the mouse mammary tumor virus promoter. Stat3 also proved to be necessary for HRGβ1-induced in vivo tumor growth. Our results endow Stat3 a novel function as a coregulator of HRGβ1-activated PR to promote breast cancer growth. These findings underscore the importance of understanding the complex interactions between PR and other regulatory factors, such as Stat3, that contribute to determine the context-dependent transcriptional actions of PR. PMID:26340407

  3. High-level expression, purification and characterization of a constitutively active thromboxane A2 receptor polymorphic variant.

    Directory of Open Access Journals (Sweden)

    Bing Xu

    Full Text Available G protein-coupled receptors (GPCRs exhibit some level of basal signaling even in the absence of a bound agonist. This basal or constitutive signaling can have important pathophysiological roles. In the past few years, a number of high resolution crystal structures of GPCRs have been reported, including two crystal structures of constitutively active mutants (CAM of the dim-light receptor, rhodopsin. The structural characterizations of CAMs are impeded by the lack of proper expression systems. The thromboxane A2 receptor (TP is a GPCR that mediates vasoconstriction and promotes thrombosis in response to the binding of thromboxane. Here, we report on the expression and purification of a genetic variant and CAM in TP, namely A160T, using tetracycline-inducible HEK293S-TetR and HEK293S (GnTI¯-TetR cell lines. Expression of the TP and the A160T genes in these mammalian cell lines resulted in a 4-fold increase in expression to a level of 15.8 ±0.3 pmol of receptor/mg of membrane protein. The receptors expressed in the HEK293S (GnTI(--TetR cell line showed homogeneous glycosylation. The functional yield of the receptors using a single step affinity purification was 45 µg/10⁶ cells. Temperature- dependent secondary structure changes of the purified TP and A160T receptors were characterized using circular dichroism (CD spectropolarimetry. The CD spectra shows that the loss of activity or thermal sensitivity that was previously observed for the A160T mutant, is not owing to large unfolding of the protein but rather to a more subtle effect. This is the first study to report on the successful high-level expression, purification, and biophysical characterization of a naturally occurring, diffusible ligand activated GPCR CAM.

  4. h5-HT(1B) receptor-mediated constitutive Galphai3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT.

    Science.gov (United States)

    Newman-Tancredi, Adrian; Cussac, Didier; Marini, Laetitia; Touzard, Manuelle; Millan, Mark J

    2003-03-01

    1. Serotonin 5-HT(1B) receptors couple to G-proteins of the Gi/o family. However, their activation of specific G-protein subtypes is poorly characterised. Using an innovative antibody capture/guanosine-5'-0-(3-[(35)S]thio)-triphosphate ([(35)S]GTPgammaS) binding strategy, we characterised Galpha(i3) subunit activation by h5-HT(1B) receptors stably expressed in Chinese hamster ovary (CHO) cells. 2. The agonists, 5-HT, alniditan and BMS181,101, stimulated Galpha(i3), whereas methiothepin and SB224,289 behaved as inverse agonists. The selective 5-HT(1B) receptor ligand, S18127, modestly stimulated Galpha(i3) and reversed the actions of both 5-HT and methiothepin. S18127 (1 micro M) also produced parallel, dextral shifts of the 5-HT and methiothepin isotherms. 3. Isotopic dilution experiments ([(35)S]GTPgammaS versus GTPgammaS) revealed high-affinity [(35)S]GTPgammaS binding to Galpha(i3) subunits in the absence of receptor ligands indicating constitutive activity. High-affinity [(35)S]GTPgammaS binding was increased 2.8-fold by 5-HT with an increase in the affinity of GTPgammaS for Galpha(i3) subunits. In contrast, methiothepin halved the number of high-affinity binding sites and decreased their affinity. 4. h5-HT(1B) receptor-mediated Galpha(i3) subunit activation was dependent on the concentration of NaCl. At 300 mM, 5-HT stimulated [(35)S]GTPgammaS binding, basal Galpha(i3) activation was low and methiothepin was inactive. In contrast, at 10 mM NaCl, basal activity was enhanced and the inverse agonist activity of methiothepin was accentuated. Under these conditions, 5-HT decreased Galpha(i3) activation. 5. In conclusion, at h5-HT(1B) receptors expressed in CHO cells: (i) inverse agonist induced inhibition of Galpha(i3), and its reversal by S18127, reveals constitutive activation of this Galpha subunit; (ii) constitutive Galpha(i3) activation can be quantified by isotopic dilution [(35)S]GTPgammaS binding and (iii) decreasing NaCl concentrations enhances Galpha(i3

  5. STAT4 associates with systemic lupus erythematosus through two independent effects that correlate with gene expression and act additively with IRF5 to increase risk.

    Science.gov (United States)

    Abelson, A-K; Delgado-Vega, A M; Kozyrev, S V; Sánchez, E; Velázquez-Cruz, R; Eriksson, N; Wojcik, J; Linga Reddy, M V P; Lima, G; D'Alfonso, S; Migliaresi, S; Baca, V; Orozco, L; Witte, T; Ortego-Centeno, N; Abderrahim, H; Pons-Estel, B A; Gutiérrez, C; Suárez, A; González-Escribano, M F; Martin, J; Alarcón-Riquelme, M E

    2009-11-01

    To confirm and define the genetic association of STAT4 and systemic lupus erythematosus (SLE), investigate the possibility of correlations with differential splicing and/or expression levels, and genetic interaction with IRF5. 30 tag SNPs were genotyped in an independent set of Spanish cases and controls. SNPs surviving correction for multiple tests were genotyped in five new sets of cases and controls for replication. STAT4 cDNA was analysed by 5'-RACE PCR and sequencing. Expression levels were measured by quantitative PCR. In the fine mapping, four SNPs were significant after correction for multiple testing, with rs3821236 and rs3024866 as the strongest signals, followed by the previously associated rs7574865, and by rs1467199. Association was replicated in all cohorts. After conditional regression analyses, two major independent signals, represented by SNPs rs3821236 and rs7574865, remained significant across the sets. These SNPs belong to separate haplotype blocks. High levels of STAT4 expression correlated with SNPs rs3821236, rs3024866 (both in the same haplotype block) and rs7574865 but not with other SNPs. Transcription of alternative tissue-specific exons 1, indicating the presence of tissue-specific promoters of potential importance in the expression of STAT4, was also detected. No interaction with associated SNPs of IRF5 was observed using regression analysis. These data confirm STAT4 as a susceptibility gene for SLE and suggest the presence of at least two functional variants affecting levels of STAT4. The results also indicate that the genes STAT4 and IRF5 act additively to increase the risk for SLE.

  6. Stat1-Vitamin D Receptor Interactions Antagonize 1,25-Dihydroxyvitamin D Transcriptional Activity and Enhance Stat1-Mediated Transcription

    Science.gov (United States)

    Vidal, Marcos; Ramana, Chilakamarti V.; Dusso, Adriana S.

    2002-01-01

    The cytokine gamma interferon (IFN-γ) and the calcitropic steroid hormone 1,25-dihydroxyvitamin D (1,25D) are activators of macrophage immune function. In sarcoidosis, tuberculosis, and several granulomatoses, IFN-γ induces 1,25D synthesis by macrophages and inhibits 1,25D induction of 24-hydroxylase, a key enzyme in 1,25D inactivation, causing high levels of 1,25D in serum and hypercalcemia. This study delineates IFN-γ-1,25D cross talk in human monocytes-macrophages. Nuclear accumulation of Stat1 and vitamin D receptor (VDR) by IFN-γ and 1,25D promotes protein-protein interactions between Stat1 and the DNA binding domain of the VDR. This prevents VDR-retinoid X receptor (RXR) binding to the vitamin D-responsive element, thus diverting the VDR from its normal genomic target on the 24-hydroxylase promoter and antagonizing 1,25D-VDR transactivation of this gene. In contrast, 1,25D enhances IFN-γ action. Stat1-VDR interactions, by preventing Stat1 deactivation by tyrosine dephosphorylation, cooperate with IFN-γ/Stat1-induced transcription. This novel 1,25D-IFN-γ cross talk explains the pathogenesis of abnormal 1,25D homeostasis in granulomatous processes and provides new insights into 1,25D immunomodulatory properties. PMID:11909970

  7. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis.

    Science.gov (United States)

    Priego, Neibla; Zhu, Lucía; Monteiro, Cátia; Mulders, Manon; Wasilewski, David; Bindeman, Wendy; Doglio, Laura; Martínez, Liliana; Martínez-Saez, Elena; Cajal, Santiago Ramón Y; Megías, Diego; Hernández-Encinas, Elena; Blanco-Aparicio, Carmen; Martínez, Lola; Zarzuela, Eduardo; Muñoz, Javier; Fustero-Torres, Coral; Pineiro, Elena; Hernández-Laín, Aurelio; Bertero, Luca; Poli, Valeria; Sánchez-Martínez, Melchor; Menendez, Javier A; Soffietti, Riccardo; Bosch-Barrera, Joaquim; Valiente, Manuel

    2018-06-11

    The brain microenvironment imposes a particularly intense selective pressure on metastasis-initiating cells, but successful metastases bypass this control through mechanisms that are poorly understood. Reactive astrocytes are key components of this microenvironment that confine brain metastasis without infiltrating the lesion. Here, we describe that brain metastatic cells induce and maintain the co-option of a pro-metastatic program driven by signal transducer and activator of transcription 3 (STAT3) in a subpopulation of reactive astrocytes surrounding metastatic lesions. These reactive astrocytes benefit metastatic cells by their modulatory effect on the innate and acquired immune system. In patients, active STAT3 in reactive astrocytes correlates with reduced survival from diagnosis of intracranial metastases. Blocking STAT3 signaling in reactive astrocytes reduces experimental brain metastasis from different primary tumor sources, even at advanced stages of colonization. We also show that a safe and orally bioavailable treatment that inhibits STAT3 exhibits significant antitumor effects in patients with advanced systemic disease that included brain metastasis. Responses to this therapy were notable in the central nervous system, where several complete responses were achieved. Given that brain metastasis causes substantial morbidity and mortality, our results identify a novel treatment for increasing survival in patients with secondary brain tumors.

  8. 2'-Hydroxycinnamaldehyde induces apoptosis through HSF1-mediated BAG3 expression.

    Science.gov (United States)

    Nguyen, Hai-Anh; Kim, Soo-A

    2017-01-01

    BAG3, a member of BAG co-chaperone family, is induced by stressful stimuli such as heat shock and heavy metals. Through interaction with various binding partners, BAG3 is thought to play a role in cellular adaptive responses against stressful conditions in normal and neoplastic cells. 2'-Hydroxycinnamaldehyde (HCA) is a natural derivative of cinnamaldehyde and has antitumor activity in various cancer cells. In the present study, for the first time, we identified that HCA induced BAG3 expression and BAG3-mediated apoptosis in cancer cells. The apoptotic cell death induced by HCA was demonstrated by caspase-7, -9 and PARP activation, and confirmed by Annexin V staining in both SW480 and SW620 colon cancer cells. Notably, both the mRNA and protein levels of BAG3 were largely induced by HCA in a dose- and time-dependent manner. By showing transcription factor HSF1 activation, we demonstrated that HCA induces the expression of BAG3 through HSF1 activation. More importantly, knockdown of BAG3 expression using siRNA largely inhibited HCA-induced apoptosis, suggesting that BAG3 is actively involved in HCA-induced cancer cell death. Considering the importance of the stress response mechanism in cancer progression, our results strongly suggest that BAG3 could be a potential target for anticancer therapy.

  9. Ribavirin enhances IFN-α signalling and MxA expression: a novel immune modulation mechanism during treatment of HCV.

    Directory of Open Access Journals (Sweden)

    Nigel J Stevenson

    Full Text Available The nucleoside analogue Ribavirin significantly increases patient response to IFN-α treatment of HCV, by directly inhibiting viral replication. Recent studies indicate that Ribavirin also regulates immunity and we propose that Ribavirin enhances specific interferon sensitive gene (ISG expression by amplifying the IFN-α-JAK/STAT pathway. We found that IFN-α-induced STAT1 and STAT3 phosphorylation was increased in hepatocytes co-treated with Ribavirin and IFN-α, compared to IFN-α alone. Ribavirin specifically enhanced IFN-α induced mRNA and protein of the anti-viral mediator MxA, which co-localised with HCV core protein. These novel findings indicate for the first time that Ribavirin, in addition to its viral incorporation, also enhances IFN-α-JAK/STAT signalling, leading to a novel MxA-mediated immuno-modulatory mechanism that may enhance IFN-α anti-viral activity against HCV.

  10. Excess thyroid hormone inhibits embryonic neural stem/progenitor cells proliferation and maintenance through STAT3 signalling pathway.

    Science.gov (United States)

    Chen, Chunhai; Zhou, Zhou; Zhong, Min; Li, Maoquan; Yang, Xuesen; Zhang, Yanwen; Wang, Yuan; Wei, Aimin; Qu, Mingyue; Zhang, Lei; Xu, Shangcheng; Chen, Shude; Yu, Zhengping

    2011-07-01

    Hyperthyroidism is prevalent during pregnancy, but little is known about the effects of excess thyroid hormone on the development of embryonic neural stem/progenitor cells (NSCs), and the mechanisms underlying these effects. Previous studies indicate that STAT3 plays a crucial role in determining NSC fate during neurodevelopment. In this study, we investigated the effects of a supraphysiological dose of 3,5,3'-L-triiodothyronine (T3) on the proliferation and maintenance of NSCs derived from embryonic day 13.5 mouse neocortex, and the involvement of STAT3 in this process. Our results suggest that excess T3 treatment inhibits NSC proliferation and maintenance. T3 decreased tyrosine phosphorylation of JAK1, JAK2 and STAT3, and subsequently inhibited STAT3-DNA binding activity. Furthermore, proliferation and maintenance of NSCs were decreased by inhibitors of JAKs and STAT3, indicating that the STAT3 signalling pathway is involved in the process of NSC proliferation and maintenance. Taken together, these results suggest that the STAT3 signalling pathway is involved in the process of T3-induced inhibition of embryonic NSC proliferation and maintenance. These findings provide data for understanding the effects of hyperthyroidism during pregnancy on fetal brain development, and the mechanisms underlying these effects.

  11. Interleukin-1β-induced iNOS expression in human lung carcinoma A549 cells: involvement of STAT and MAPK pathways

    International Nuclear Information System (INIS)

    Ravichandran, Kameswaran; Tyagi, Alpna; Deep, Gagan; Agarwal, Chapla; Agarwal, Rajesh

    2011-01-01

    For understanding of signaling molecules important in lung cancer growth and progression, IL-1β effect was analyzed on iNOS expression and key signaling molecules in human lung carcinoma A549 cells and established the role of specific signaling molecules by using specific chemical inhibitors. IL-1β exposure (10 ng/ml) induced strong iNOS expression in serum starved A549 cells. Detailed molecular analyses showed that IL-1β increased expression of phosphorylated STAT1 (Tyr701 and Ser727) and STAT3 (Tyr705 and Ser727) both in total cell lysates and nuclear lysates. Further, IL-1β exposure strongly activated MAPKs (ERK1/2, JNK1/2 and p38) and Akt as well as increased nuclear levels of NF-κB and HIF-1α in A549 cells. Use of specific chemical inhibitors for JAK1 kinase (piceatannol), JAK2 kinase (AG-490), MEK1/2 (PD98059) and JNK1/2 (SP600125) revealed that IL-1β-induced iNOS expression involved signaling pathways in addition to JAKSTAT and ERK1/2-JNK1/2 activation. Overall, these results suggested that instead of specific pharmacological inhibitors, use of chemopreventive agents with broad spectrum efficacy to inhibit IL-1β-induced signaling cascades and iNOS expression would be a better strategy towards lung cancer prevention and/or treatment. (author)

  12. STAT3 polymorphism and Helicobacter pylori CagA strains with higher number of EPIYA-C segments independently increase the risk of gastric cancer

    International Nuclear Information System (INIS)

    Rocha, Gifone A; Rocha, Andreia MC; Gomes, Adriana D; Faria, César LL Jr; Melo, Fabrício F; Batista, Sérgio A; Fernandes, Viviane C; Almeida, Nathálie BF; Teixeira, Kádima N; Brito, Kátia S; Queiroz, Dulciene Maria Magalhães

    2015-01-01

    Because to date there is no available study on STAT3 polymorphism and gastric cancer in Western populations and taking into account that Helicobacter pylori CagA EPIYA-C segment deregulates SHP-2/ERK-JAK/STAT3 pathways, we evaluated whether the two variables are independently associated with gastric cancer. We included 1048 subjects: H. pylori-positive patients with gastric carcinoma (n = 232) and with gastritis (n = 275) and 541 blood donors. Data were analyzed using logistic regression model. The rs744166 polymorphic G allele (p = 0.01; OR = 1.76; 95 % CI = 1.44-2.70), and CagA-positive (OR = 12.80; 95 % CI = 5.58-19.86) status were independently associated with gastric cancer in comparison with blood donors. The rs744166 polymorphism (p = 0.001; OR = 1.64; 95 % CI = 1.16-2.31) and infection with H. pylori CagA-positive strains possessing higher number of EPIYA-C segments (p = 0.001; OR = 2.28; 95 % CI = 1.41-3.68) were independently associated with gastric cancer in comparison with gastritis. The association was stronger when host and bacterium genotypes were combined (p < 0.001; OR = 3.01; 95 % CI = 2.29-3.98). When stimulated with LPS (lipopolysaccharide) or Pam3Cys, peripheral mononuclear cells of healthy carriers of the rs744166 GG and AG genotypes expressed higher levels of STAT3 mRNA than those carrying AA genotype (p = 0.04 for both). The nuclear expression of phosphorylated p-STAT3 protein was significantly higher in the antral gastric tissue of carriers of rs744166 GG genotype than in carriers of AG and AA genotypes. Our study provides evidence that STAT3 rs744166 G allele and infection with CagA-positive H. pylori with higher number of EPIYA-C segments are independent risk factors for gastric cancer. The odds ratio of having gastric cancer was greater when bacterium and host high risk genotypes were combined

  13. Role of Stat3 and ErbB2 in Breast Cancer

    Science.gov (United States)

    2013-12-01

    Nemoto, K.E. Pestell , K. Cooley, E.C. Southwick, D.A. Mitchell, W. Furey, R. Gussio, D.W. Zaharevitz, B. Joo, P. Wipf, Identification of a potent...7). Inorg Chem 2008, 47:2798–2804. 26. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, et al: Stat3 as an oncogene. Cell...Biochem Biophys Res Commun 382: 440-444, 2009. 7 Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C and Darnell JE Jr.: Stat3 as an

  14. Diffusion-weighted magnetic resonance imaging reflects activation of signal transducer and activator of transcription 3 during focal cerebral ischemia/reperfusion

    Directory of Open Access Journals (Sweden)

    Wen-juan Wu

    2017-01-01

    Full Text Available Signal transducer and activator of transcription (STAT is a unique protein family that binds to DNA, coupled with tyrosine phosphorylation signaling pathways, acting as a transcriptional regulator to mediate a variety of biological effects. Cerebral ischemia and reperfusion can activate STATs signaling pathway, but no studies have confirmed whether STAT activation can be verified by diffusion-weighted magnetic resonance imaging (DWI in rats after cerebral ischemia/reperfusion. Here, we established a rat model of focal cerebral ischemia injury using the modified Longa method. DWI revealed hyperintensity in parts of the left hemisphere before reperfusion and a low apparent diffusion coefficient. STAT3 protein expression showed no significant change after reperfusion, but phosphorylated STAT3 expression began to increase after 30 minutes of reperfusion and peaked at 24 hours. Pearson correlation analysis showed that STAT3 activation was correlated positively with the relative apparent diffusion coefficient and negatively with the DWI abnormal signal area. These results indicate that DWI is a reliable representation of the infarct area and reflects STAT phosphorylation in rat brain following focal cerebral ischemia/reperfusion.

  15. Combined Targeting of JAK2 and Bcl-2/Bcl-xL to Cure Mutant JAK2-Driven Malignancies and Overcome Acquired Resistance to JAK2 Inhibitors

    Directory of Open Access Journals (Sweden)

    Michaela Waibel

    2013-11-01

    Full Text Available To design rational therapies for JAK2-driven hematological malignancies, we functionally dissected the key survival pathways downstream of hyperactive JAK2. In tumors driven by mutant JAK2, Stat1, Stat3, Stat5, and the Pi3k and Mek/Erk pathways were constitutively active, and gene expression profiling of TEL-JAK2 T-ALL cells revealed the upregulation of prosurvival Bcl-2 family genes. Combining the Bcl-2/Bcl-xL inhibitor ABT-737 with JAK2 inhibitors mediated prolonged disease regressions and cures in mice bearing primary human and mouse JAK2 mutant tumors. Moreover, combined targeting of JAK2 and Bcl-2/Bcl-xL was able to circumvent and overcome acquired resistance to single-agent JAK2 inhibitor treatment. Thus, inhibiting the oncogenic JAK2 signaling network at two nodal points, at the initiating stage (JAK2 and the effector stage (Bcl-2/Bcl-xL, is highly effective and provides a clearly superior therapeutic benefit than targeting just one node. Therefore, we have defined a potentially curative treatment for hematological malignancies expressing constitutively active JAK2.

  16. Serotonin suppresses β-casein expression via PTP1B activation in human mammary epithelial cells.

    Science.gov (United States)

    Chiba, Takeshi; Maeda, Tomoji; Sanbe, Atsushi; Kudo, Kenzo

    2016-04-22

    Serotonin (5-hydroxytriptamine, 5-HT) has an important role in milk volume homeostasis within the mammary gland during lactation. We have previously shown that the expression of β-casein, a differentiation marker in mammary epithelial cells, is suppressed via 5-HT-mediated inhibition of signal transduction and activator of transcription 5 (STAT5) phosphorylation in the human mammary epithelial MCF-12A cell line. In addition, the reduction of β-casein in turn was associated with 5-HT7 receptor expression in the cells. The objective of this study was to determine the mechanisms underlying the 5-HT-mediated suppression of β-casein and STAT5 phosphorylation. The β-casein level and phosphorylated STAT5 (pSTAT5)/STAT5 ratio in the cells co-treated with 5-HT and a protein kinase A (PKA) inhibitor (KT5720) were significantly higher than those of cells treated with 5-HT alone. Exposure to 100 μM db-cAMP for 6 h significantly decreased the protein levels of β-casein and pSTAT5 and the pSTAT5/STAT5 ratio, and significantly increased PTP1B protein levels. In the cells co-treated with 5-HT and an extracellular signal-regulated kinase1/2 (ERK) inhibitor (FR180294) or Akt inhibitor (124005), the β-casein level and pSTAT5/STAT5 ratio were equal to those of cells treated with 5-HT alone. Treatment with 5-HT significantly induced PTP1B protein levels, whereas its increase was inhibited by KT5720. In addition, the PTP1B inhibitor sc-222227 increased the expression levels of β-casein and the pSTAT5/STAT5 ratio. Our observations indicate that PTP1B directly regulates STAT5 phosphorylation and that its activation via the cAMP/PKA pathway downstream of the 5-HT7 receptor is involved in the suppression of β-casein expression in MCF-12A cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Sphingosine-1-phosphate (S1P) activates STAT3 to protect against de novo acute heart failure (AHF).

    Science.gov (United States)

    Deshpande, Gaurang P; Imamdin, Aqeela; Lecour, Sandrine; Opie, Lionel H

    2018-03-01

    Acute heart failure (AHF) is a burden disease, with high mortality and re-hospitalisations. Using an ex-vivo model of AHF, we have previously reported that sphingosine-1-phosphate (S1P) confers cardioprotection. However, the mechanisms remain to be elucidated. In the present study, we aimed to examine the role of the cardioprotective signal transducer and activator of transcription 3 (STAT3) in S1P mediated improved functional recovery in AHF. Isolated hearts from male Long-Evans rats were subjected to hypotensive AHF for 35 min followed by a recovery phase of 30 min (n ≥ 4/group). S1P (10 nM) was given during either the hypotensive or the recovery phase with/without an inhibitor of STAT3, AG490. Functional parameters were recorded throughout the experiment. Following an AHF insult, S1P, given during the recovery phase, improved the heart rate (HR) compared to the control (175.2 ± 30.7 vs. 71.6 ± 27.4 beats per minute (BPM); p S1P abolished the cardioprotective effect of S1P (42.3 ± 17.1 vs. 148.8 ± 26.4 BPM for S1P; p S1P protects in an ex-vivo rat heart model of AHF by activation of STAT3 and provide further evidence for the usage of S1P as a potential therapy in patients suffering from AHF. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Activation of Antitumorigenic Stat3beta in Breast Cancer by Splicing Redirection

    Science.gov (United States)

    2013-07-01

    used a formulation of the compounds (vivo-morpholino) where a cationic dendrimer is coupled to the oligonucleotide instead of the peptide. This variant...rather than a direct block of canonical STAT3 targets. Conjugation of the STAT3β- inducing PMOs to a cell-penetrating dendrimer (vivo- morpholinos...74 Morcos, P.A. et al. (2008) Vivo-Morpholinos: a non-peptide transporter delivers Morpholinos into a wide array of mouse tissues. Biotechniques 45

  19. TARGETED ANALYSIS OF JAK-STAT-SOCS GENES IN DAIRY CATTLE

    Directory of Open Access Journals (Sweden)

    Arun Sondur Jayappa

    2015-12-01

    Full Text Available The Janus kinase and signal transducer and activator of transcription (JAK-STAT pathway genes along with suppressors of cytokine signalling (SOCS family genes play a crucial role in controlling cytokine signals in the mammary gland and thus mammary gland development. Mammary gene expression studies showed differential expression patterns for all the JAK-STAT pathway genes. Gene expression studies using qRT-PCR revealed differential expression of SOCS2, SOCS4 and SOCS5 genes across the lactation cycle in dairy cows. Using genotypes from 1,546 Australian Holstein- Friesian bulls, a statistical model based on SNPs within 500kb of JAK-STAT pathway genes, and SOCS genes alone was carried out. The analysis suggested that these genes and pathways make a significant contribution to the Australian milk production traits. Selection of 24 SNPs close to SOCS1, SOCS3, SOCS5, SOCS7 and CISH genes were significantly associated with, Australian Profit Ranking (APR, Australian Selection Index (ASI and protein yield (PY. This study supports the view that there may be some merit in choosing SNPs around functionally relevant genes for the selection and genetic improvement schemes for dairy production traits.

  20. h5-HT1B receptor-mediated constitutive Gαi3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT

    Science.gov (United States)

    Newman-Tancredi, Adrian; Cussac, Didier; Marini, Laetitia; Touzard, Manuelle; Millan, Mark J

    2003-01-01

    Serotonin 5-HT1B receptors couple to G-proteins of the Gi/o family. However, their activation of specific G-protein subtypes is poorly characterised. Using an innovative antibody capture/guanosine-5′-0-(3-[35S]thio)-triphosphate ([35S]GTPγS) binding strategy, we characterised Gαi3 subunit activation by h5-HT1B receptors stably expressed in Chinese hamster ovary (CHO) cells. The agonists, 5-HT, alniditan and BMS181,101, stimulated Gαi3, whereas methiothepin and SB224,289 behaved as inverse agonists. The selective 5-HT1B receptor ligand, S18127, modestly stimulated Gαi3 and reversed the actions of both 5-HT and methiothepin. S18127 (1 μM) also produced parallel, dextral shifts of the 5-HT and methiothepin isotherms. Isotopic dilution experiments ([35S]GTPγS versus GTPγS) revealed high-affinity [35S]GTPγS binding to Gαi3 subunits in the absence of receptor ligands indicating constitutive activity. High-affinity [35S]GTPγS binding was increased 2.8-fold by 5-HT with an increase in the affinity of GTPγS for Gαi3 subunits. In contrast, methiothepin halved the number of high-affinity binding sites and decreased their affinity. h5-HT1B receptor-mediated Gαi3 subunit activation was dependent on the concentration of NaCl. At 300 mM, 5-HT stimulated [35S]GTPγS binding, basal Gαi3 activation was low and methiothepin was inactive. In contrast, at 10 mM NaCl, basal activity was enhanced and the inverse agonist activity of methiothepin was accentuated. Under these conditions, 5-HT decreased Gαi3 activation. In conclusion, at h5-HT1B receptors expressed in CHO cells: (i) inverse agonist induced inhibition of Gαi3, and its reversal by S18127, reveals constitutive activation of this Gα subunit; (ii) constitutive Gαi3 activation can be quantified by isotopic dilution [35S]GTPγS binding and (iii) decreasing NaCl concentrations enhances Gαi3 activation and leads to protean agonist properties of 5-HT: that is a switch to inhibition of Gαi3. PMID:12684263

  1. STAT3 inhibitor WP1066 as a novel therapeutic agent for bCCI neuropathic pain rats.

    Science.gov (United States)

    Xue, Zhao-Jing; Shen, Le; Wang, Zhi-Yao; Hui, Shang-Yi; Huang, Yu-Guang; Ma, Chao

    2014-10-02

    Activation of signal transducer and activator of transcription-3 (STAT3) is suggested to be critically involved in the development of chronic pain, but the complex regulation of STAT3-dependent pathway and the functional significance of inhibiting this pathway during the development of neuropathic pain remain elusive. To evaluate the contribution of the JAK2/STAT3 pathway to neuropathic pain and the potentiality of this pathway as a novel therapeutic target, we examined the effects of the STAT3 inhibitor WP1066 by intrathecal administration in a rat model of bilateral chronic constriction injury (bCCI). The pain behavior tests were performed before the surgery and on postoperative day 3, 7, 14 and 21. L4-L6 dorsal spinal cord were harvested at each time point. Both RT-PCR and Western blot were performed to evaluate the activation of JAK2/STAT3 pathway. To observe the influence of WP1066 on neuropathic pain and its molecular mechanism, WP1066 (10 μl, 10 mmol/L in DMSO) or the same capacity of DMSO as the control were applied through the intrathecal tube on the day before bCCI surgery, and on the postoperative day 3 and 5. Behavioral tests were performed to observe the therapeutic effect on mechanical, thermal and cold hyperalgesia. L4-L6 dorsal spinal cord was harvested on postoperative day fourteen, followed by RT-PCR and Western blot evaluation of the JAK2/STAT3 pathway activation. The mechanical, thermal and cold hyperalgesia of the bCCI rats were significantly decreased when compared with the Sham or the Naïve group at each postoperative time point (PbCCI rats, accompanied by SOCS3 mRNA with a similar tendency. Western blot analysis showed that JAK2 and phosphorylated STAT3 increased significantly since 3 days after bCCI. JAK2 peaked on postoperative day 14 while phosphorylated STAT3 peaked on postoperative day 7 and gradually decreased thereafter and SOCS3׳s peak level on postoperative day 3. When WP1066 were administered intrathecally, the pain behaviors of

  2. Nobiletin Inhibits CD36-Dependent Tumor Angiogenesis, Migration, Invasion, and Sphere Formation Through the Cd36/Stat3/Nf-Κb Signaling Axis

    Directory of Open Access Journals (Sweden)

    Nipin Sp

    2018-06-01

    Full Text Available Targeted cancer therapy with natural compounds is more effective than nontargeted therapy. Nobiletin is a flavonoid derived from citrus peel that has anticancer activity. Cluster of differentiation 36 (CD36 is a member of the class B scavenger receptor family that is involved in importing fatty acids into cells. CD36 plays a role in tumor angiogenesis by binding to its ligand, thrombospondin-1 (TSP-1, and then interacting with transforming growth factor beta 1 (TGFβ1. CD36 is implicated in tumor metastasis through its roles in fatty acid metabolism. This study investigated the molecular mechanisms underlying nobiletin’s anticancer activity by characterizing its interactions with CD36 as the target molecule. We hypothesize that the anti-angiogenic activity of nobiletin involving its regulation of CD36 via signal transducer and activator of transcription 3 (STAT3 rather than through TSP-1. Gene analysis identified a Gamma interferon activation site (GAS element in the CD36 gene promoter that acts as a STAT3 binding site, an interaction that was confirmed by ChIP assay. STAT3 interacts with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB, suggesting that nobiletin also acts through the CD36/ (STAT3/NF-κB signaling axis. Nobiletin inhibited CD36-dependent breast cancer cell migration and invasion as well as CD36-mediated tumor sphere formation. Taken together, these results suggest that nobiletin inhibits cancer stem cells in multiple ways.

  3. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell.

    Science.gov (United States)

    Ding, Hong; Shen, Jinglian; Yang, Yang; Che, Yuqin

    2015-01-01

    Signal transducer and activator of transcription factor 3 (STAT3) plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL assay indicated that the apoptotic cells in the saw palmetto treated group are higher than that in the control group (p saw palmetto extract inhibits the proliferation of human glioma. Meanwhile pSTAT3 is lower in the experimental group and CD34 is also inhibited in the saw palmetto treated group. This means that saw palmetto extract could inhibit the angiogenesis in glioma. We found that saw palmetto extract was an important phytotherapeutic drug against the human glioma through STAT3 signal pathway. Saw palmetto extract may be useful as an adjunctive therapeutic agent for treatment of individuals with glioma and other types of cancer in which STAT3 signaling is activated.

  4. Quercetin inhibits epithelial–mesenchymal transition, decreases invasiveness and metastasis, and reverses IL-6 induced epithelial–mesenchymal transition, expression of MMP by inhibiting STAT3 signaling in pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Yu D

    2017-09-01

    Full Text Available Dinglai Yu,1 Tingting Ye,1 Yukai Xiang,1 Zhehao Shi,1 Jie Zhang,1 Bin Lou,1 Fan Zhang,1 Bicheng Chen,1,2 Mengtao Zhou1 1Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China; 2Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Wenzhou, Zhejiang Province, People’s Republic of China Abstract: Quercetin, a flavone, is multifaceted, having anti-oxidative, anti-inflammatory, and anticancer properties. In the present study, we explored the effects of quercetin on the epithelial–mesenchymal transition (EMT and invasion of pancreatic cancer cells and the underlying mechanisms. We noted that quercetin exerted pronounced inhibitory effects in PANC-1 and PATU-8988 cells. Moreover, quercetin inhibited EMT and decreased the secretion of matrix metalloproteinase (MMP. Meanwhile, we determined the activity of STAT3 after quercetin treatment. STAT3 phosphorylation decreased following treatment with quercetin. We also used activating agent of STAT3, IL-6, to induce an increase in cell malignancy and to observe the effects of treatment with quercetin. As expected, the EMT and MMP secretion increased with activation of the STAT3 signaling pathway, and quercetin reversed IL-6-induced EMT, invasion, and migration. Therefore, our results demonstrate that quercetin triggers inhibition of EMT, invasion, and metastasis by blocking the STAT3 signaling pathway, and thus, quercetin merits further investigation. Keywords: quercetin, EMT, MMPs, STAT3, pancreatic cancer

  5. Brief Considerations on the German Constitutional Approach of the Freedom of Expression

    Directory of Open Access Journals (Sweden)

    Carmen MOLDOVAN

    2015-08-01

    Full Text Available The process of understanding the concept of freedom of expression is very complex and it implies thorough knowledge of the constitutional values and the analysis of the constitutional tradition of different legal systems. At the same time, a balancing operation is necessary between the value of freedom of speech and other fundamental rights, process that establishes limits of the expression such as criminalizing hate speech or other actions which affect the individual dignity. The human dignity has become a constant component of the constitutional case law of many States that share the same characteristics due to the promotion of fundamental rights. In the absence of a hierarchy of rights and fundamental freedom, freedom of expression is analyzed in many cases as a primary right (Kentridge, 1996, p. 254 that prevails over other fundamental rights. This study aims to analyze the landmarks of the German constitutional interpretation of the concept of freedom of expression, to identify its scope and types of speech excluded from the constitutional protection. The choice of this constitutional legal order was justified by the complexity of this topic and the specificity of the German history and tradition, elements that have contributed to an interesting vision in the matter of conflict between different fundamental rights.

  6. Ortho-aminoazotoluene activates mouse constitutive androstane receptor (mCAR) and increases expression of mCAR target genes

    International Nuclear Information System (INIS)

    Smetanina, Mariya A.; Pakharukova, Mariya Y.; Kurinna, Svitlana M.; Dong, Bingning; Hernandez, Juan P.; Moore, David D.; Merkulova, Tatyana I.

    2011-01-01

    2'-3-dimethyl-4-aminoazobenzene (ortho-aminoazotoluene, OAT) is an azo dye and a rodent carcinogen that has been evaluated by the International Agency for Research on Cancer (IARC) as a possible (class 2B) human carcinogen. Its mechanism of action remains unclear. We examined the role of the xenobiotic receptor Constitutive Androstane Receptor (CAR, NR1I3) as a mediator of the effects of OAT. We found that OAT increases mouse CAR (mCAR) transactivation in a dose-dependent manner. This effect is specific because another closely related azo dye, 3'-methyl-4-dimethyl-aminoazobenzene (3'MeDAB), did not activate mCAR. Real-time Q-PCR analysis in wild-type C57BL/6 mice revealed that OAT induces the hepatic mRNA expression of the following CAR target genes: Cyp2b10, Cyp2c29, Cyp3a11, Ugt1a1, Mrp4, Mrp2 and c-Myc. CAR-null (Car -/- ) mice showed no increased expression of these genes following OAT treatment, demonstrating that CAR is required for their OAT dependent induction. The OAT-induced CAR-dependent increase of Cyp2b10 and c-Myc expression was confirmed by Western blotting. Immunohistochemistry analysis of wild-type and Car -/- livers showed that OAT did not acutely induce hepatocyte proliferation, but at much later time points showed an unexpected CAR-dependent proliferative response. These studies demonstrate that mCAR is an OAT xenosensor, and indicate that at least some of the biological effects of this compound are mediated by this nuclear receptor. - Highlights: → The azo dye and mouse carcinogen OAT is a very effective mCAR activator. → OAT increases mCAR transactivation in a dose-dependent manner. → OAT CAR-dependently increases the expression of a specific subset of CAR target genes. → OAT induces an unexpectedly deferred, but CAR-dependent hepatocyte proliferation.

  7. Tanshinone IIA Inhibits Epithelial-Mesenchymal Transition in Bladder Cancer Cells via Modulation of STAT3-CCL2 Signaling

    Directory of Open Access Journals (Sweden)

    Sung-Ying Huang

    2017-07-01

    Full Text Available Tanshinone IIA (Tan-IIA is an extract from the widely used traditional Chinese medicine (TCM Danshen (Salvia miltiorrhiza, and has been found to attenuate the proliferation of bladder cancer (BCa cells (The IC50 were: 5637, 2.6 μg/mL; BFTC, 2 μg/mL; T24, 2.7 μg/mL, respectively.. However, the mechanism of the effect of Tan-IIA on migration inhibition of BCa cells remains unclear. This study investigates the anti-metastatic effect of Tan-IIA in human BCa cells and clarifies its molecular mechanism. Three human BCa cell lines, 5637, BFTC and T24, were used for subsequent experiments. Cell migration and invasion were evaluated by transwell assays. Real-time RT-PCR and western blotting were performed to detect epithelial-mesenchymal transition (EMT-related gene expression. The enzymatic activity of matrix metalloproteinases (MMP was evaluated by zymography assay. Tan-IIA inhibited the migration and invasion of human BCa cells. Tan-IIA suppressed both the protein expression and enzymatic activity of MMP-9/-2 in human BCa cells. Tan-IIA up-regulated the epithelial marker E-cadherin and down-regulated mesenchymal markers such as N-cadherin and Vimentin, along with transcription regulators such as Snail and Slug in BCa cells in a time- and dose-dependent manner. Mechanism dissection revealed that Tan-IIA-inhibited BCa cell invasion could function via suppressed chemokine (C-C motif ligand 2 (CCL2 expression, which could be reversed by the addition of CCL2 recombinant protein. Furthermore, Tan-IIA could inhibit the phosphorylation of the signal transducer and activator of transcription 3 (STAT3 (Tyr705, which cannot be restored by the CCL2 recombinant protein addition. These data implicated that Tan-IIA might suppress EMT on BCa cells through STAT3-CCL2 signaling inhibition. Tan-IIA inhibits EMT of BCa cells via modulation of STAT3-CCL2 signaling. Our findings suggest that Tan-IIA can serve as a potential anti-metastatic agent in BCa therapy.

  8. Stevia and stevioside protect against cisplatin nephrotoxicity through inhibition of ERK1/2, STAT3, and NF-κB activation.

    Science.gov (United States)

    Potočnjak, Iva; Broznić, Dalibor; Kindl, Marija; Kropek, Matija; Vladimir-Knežević, Sanda; Domitrović, Robert

    2017-09-01

    We investigated the effect of natural sweetener Stevia rebaudiana and its constituent stevioside in cisplatin (CP)-induced kidney injury. Male BALB/cN mice were orally administered 10, 20, and 50 mg/kg body weight of Stevia rebaudiana ethanol extract (SE) or stevioside 50 mg/kg, 48 h after intraperitoneal administration of CP (13 mg/kg). Two days later, CP treatment resulted in histopathological changes showing kidney injury. Increased expression of 4-hydroxynonenal (4-HNE), 3-nitrotyrosine (3-NT), and heme oxygenase-1 (HO-1) in mice kidneys suggested oxidative stress. CP treatment also increased renal expression of nuclear factor-kappaB (NF-κB) p65 subunit and phosphorylated inhibitor of NF-κB (IκBα), as well as expression of pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α). Induction of apoptosis and inhibition of the cell cycle in kidneys was evidenced by increased expression of p53, Bax, caspase-9, and p21, proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), with concomitant suppression of Bcl-2 and cyclin D1 expression. The number of apoptotic cells in kidneys was also assessed. CP administration resulted in activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3). Both SE and stevioside attenuated CP nephrotoxicity by suppressing oxidative stress, inflammation, and apoptosis through mechanism involving ERK1/2, STAT3, and NF-κB suppression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. BILF1 Mediated Transformation Correlates with Constitutive Signaling

    DEFF Research Database (Denmark)

    Lyngaa, Rikke Birgitte

    2009-01-01

    BIFL1 is a G protein-coupled receptor encoded by human EBV. It signals constitutively through G_alpha_i and is an orphan receptor known to down regulate MHCI expression. BILF1 also engage in dimerization with several chemokine receptors and it induced the activity of NF-kappa beta and inhibits...

  10. The Bone Marrow-Mediated Protection of Myeloproliferative Neoplastic Cells to Vorinostat and Ruxolitinib Relies on the Activation of JNK and PI3K Signalling Pathways.

    Directory of Open Access Journals (Sweden)

    Bruno A Cardoso

    Full Text Available The classical BCR-ABL-negative Myeloproliferative Neoplasms (MPN are a group of heterogeneous haematological diseases characterized by constitutive JAK-STAT pathway activation. Targeted therapy with Ruxolitinib, a JAK1/2-specific inhibitor, achieves symptomatic improvement but does not eliminate the neoplastic clone. Similar effects are seen with histone deacetylase inhibitors (HDACi, albeit with poorer tolerance. Here, we show that bone marrow (BM stromal cells (HS-5 protected MPN-derived cell lines (SET-2; HEL and UKE-1 and MPN patient-derived BM cells from the cytotoxic effects of Ruxolitinib and the HDACi Vorinostat. This protective effect was mediated, at least in part, by the secretion of soluble factors from the BM stroma. In addition, it correlated with the activation of signalling pathways important for cellular homeostasis, such as JAK-STAT, PI3K, JNK, MEK-ERK and NF-κB. Importantly, the pharmacological inhibition of JNK and PI3K pathways completely abrogated the BM protective effect on MPN cell lines and MPN patient samples. Our findings shed light on mechanisms of tumour survival and may indicate novel therapeutic approaches for the treatment of MPN.

  11. The Bone Marrow-Mediated Protection of Myeloproliferative Neoplastic Cells to Vorinostat and Ruxolitinib Relies on the Activation of JNK and PI3K Signalling Pathways

    Science.gov (United States)

    Cardoso, Bruno A.; Belo, Hélio; Barata, João T.; Almeida, António M.

    2015-01-01

    The classical BCR-ABL-negative Myeloproliferative Neoplasms (MPN) are a group of heterogeneous haematological diseases characterized by constitutive JAK-STAT pathway activation. Targeted therapy with Ruxolitinib, a JAK1/2-specific inhibitor, achieves symptomatic improvement but does not eliminate the neoplastic clone. Similar effects are seen with histone deacetylase inhibitors (HDACi), albeit with poorer tolerance. Here, we show that bone marrow (BM) stromal cells (HS-5) protected MPN-derived cell lines (SET-2; HEL and UKE-1) and MPN patient-derived BM cells from the cytotoxic effects of Ruxolitinib and the HDACi Vorinostat. This protective effect was mediated, at least in part, by the secretion of soluble factors from the BM stroma. In addition, it correlated with the activation of signalling pathways important for cellular homeostasis, such as JAK-STAT, PI3K, JNK, MEK-ERK and NF-κB. Importantly, the pharmacological inhibition of JNK and PI3K pathways completely abrogated the BM protective effect on MPN cell lines and MPN patient samples. Our findings shed light on mechanisms of tumour survival and may indicate novel therapeutic approaches for the treatment of MPN. PMID:26623653

  12. FOXP3 Expression in GARP-Transduced Helper T Cells Is Not Associated with FOXP3 TSDR Demethylation.

    Science.gov (United States)

    Kehrmann, Jan; Zeschnigk, Michael; Buer, Jan; Probst-Kepper, Michael

    2011-10-01

    AIM: Glycoprotein A repetitions predominant (GARP or LRRC32) represents a human regulatory CD4+ CD25(hi) FOXP3+ T (T(reg)) cell-specific receptor that controls FOXP3. Ectopic expression of GARP in helper T (T(h)) cells has been shown to be sufficient for the induction of FOXP3 and generation of a stable regulatory phenotype. Since expression of FOXP3 in Treg cells is epigenetically controlled by a conserved motif, the so-called T(reg)-specific demethylated region (TSDR), we asked whether GARP-mediated upregulation of FOXP3 in Th cells is similarly accompanied by demethylation of the TSDR. METHODS: DNA methylation of the FOXP3 TSDR was analyzed by direct sequencing of polymerase chain reaction (PCR) products from bisulfite-treated genomic DNA. RESULTS: Although GARP-transduced T(h) cells exhibit constitutive FOXP3 expression and a regulatory phenotype, the FOXP3 TSDR is completely methylated as in naive T(h) cells. GARP-mediated FOXP3 upregulation in T(h) cells is not associated with T(reg)-specific demethylation of the FOXP3 TSDR. CONCLUSION: Although GARP-engineered T(h) cells exhibit stable FOXP3 expression and a phenotypic reprogramming towards T(reg) cells in vitro, these cells do not completely mimic the epigenotype of natural T(reg) cells. Thus, concepts based on the genetic modification of T(h) cells as cellular therapies to treat autoimmune diseases or to control transplantation tolerance should be critically tested before any clinical application.

  13. 3-Deoxysappanchalcone Promotes Proliferation of Human Hair Follicle Dermal Papilla Cells and Hair Growth in C57BL/6 Mice by Modulating WNT/β-Catenin and STAT Signaling

    Science.gov (United States)

    Kim, Young Eun; Choi, Hyung Chul; Lee, In-Chul; Yuk, Dong Yeon; Lee, Hyosung; Choi, Bu Young

    2016-01-01

    3-Deoxysappanchalcone (3-DSC) has been reported to possess anti-allergic, antiviral, anti-inflammatory and antioxidant activities. In the present study, we investigated the effects of 3-DSC on the proliferation of human hair follicle dermal papilla cells (HDPCs) and mouse hair growth in vivo. A real-time cell analyzer system, luciferase assay, Western blot and real-time polymerase chain reaction (PCR) were employed to measure the biochemical changes occurring in HDPCs in response to 3-DSC treatment. The effect of 3-DSC on hair growth in C57BL/6 mice was also examined. 3-DSC promoted the proliferation of HDPCs, similar to Tofacitinib, an inhibitor of janus-activated kinase (JAK). 3-DSC promoted phosphorylation of β-catenin and transcriptional activation of the T-cell factor. In addition, 3-DSC potentiated interleukin-6 (IL-6)-induced phosphorylation and subsequent transactivation of signal transducer and activator of transcription-3 (STAT3), thereby increasing the expression of cyclin-dependent kinase-4 (Cdk4), fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF). On the contrary, 3-DSC attenuated STAT6 mRNA expression and IL4-induced STAT6 phosphorylation in HDPCs. Finally, we observed that topical application of 3-DSC promoted the anagen phase of hair growth in C57BL/6 mice. 3-DSC stimulates hair growth possibly by inducing proliferation of follicular dermal papilla cells via modulation of WNT/β-catenin and STAT signaling. PMID:27795451

  14. Proinflammatory Cytokine IL-6 and JAK-STAT Signaling Pathway in Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Vladan P. Čokić

    2015-01-01

    Full Text Available The recent JAK1/2 inhibitor trial in myeloproliferative neoplasms (MPNs showed that reducing inflammation can be more beneficial than targeting gene mutants. We evaluated the proinflammatory IL-6 cytokine and JAK-STAT signaling pathway related genes in circulating CD34+ cells of MPNs. Regarding laboratory data, leukocytosis has been observed in polycythemia vera (PV and JAK2V617F mutation positive versus negative primary myelofibrosis (PMF patients. Moreover, thrombocytosis was reduced by JAK2V617F allele burden in essential thrombocythemia (ET and PMF. 261 significantly changed genes have been detected in PV, 82 in ET, and 94 genes in PMF. The following JAK-STAT signaling pathway related genes had augmented expression in CD34+ cells of MPNs: CCND3 and IL23A regardless of JAK2V617F allele burden; CSF3R, IL6ST, and STAT1/2 in ET and PV with JAK2V617F mutation; and AKT2, IFNGR2, PIM1, PTPN11, and STAT3 only in PV. STAT5A gene expression was generally reduced in MPNs. IL-6 cytokine levels were increased in plasma, as well as IL-6 protein levels in bone marrow stroma of MPNs, dependent on JAK2V617F mutation presence in ET and PMF patients. Therefore, the JAK2V617F mutant allele burden participated in inflammation biomarkers induction and related signaling pathways activation in MPNs.

  15. Stat1 phosphorylation determines Ras oncogenicity by regulating p27 kip1.

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    Full Text Available Inactivation of p27 Kip1 is implicated in tumorigenesis and has both prognostic and treatment-predictive values for many types of human cancer. The transcription factor Stat1 is essential for innate immunity and tumor immunosurveillance through its ability to act downstream of interferons. Herein, we demonstrate that Stat1 functions as a suppressor of Ras transformation independently of an interferon response. Inhibition of Ras transformation and tumorigenesis requires the phosphorylation of Stat1 at tyrosine 701 but is independent of Stat1 phosphorylation at serine 727. Stat1 induces p27 Kip1 expression in Ras transformed cells at the transcriptional level through mechanisms that depend on Stat1 phosphorylation at tyrosine 701 and activation of Stat3. The tumor suppressor properties of Stat1 in Ras transformation are reversed by the inactivation of p27 Kip1. Our work reveals a novel functional link between Stat1 and p27 Kip1, which act in coordination to suppress the oncogenic properties of activated Ras. It also supports the notion that evaluation of Stat1 phosphorylation in human tumors may prove a reliable prognostic factor for patient outcome and a predictor of treatment response to anticancer therapies aimed at activating Stat1 and its downstream effectors.

  16. Curcumin blocks interleukin (IL)-2 signaling in T-lymphocytes by inhibiting IL-2 synthesis, CD25 expression, and IL-2 receptor signaling

    International Nuclear Information System (INIS)

    Forward, Nicholas A.; Conrad, David M.; Power Coombs, Melanie R.; Doucette, Carolyn D.; Furlong, Suzanne J.; Lin, Tong-Jun; Hoskin, David W.

    2011-01-01

    Highlights: → Curcumin inhibits CD4 + T-lymphocyte proliferation. → Curcumin inhibits interleukin-2 (IL-2) synthesis and CD25 expression by CD4 + T-lymphocytes. → Curcumin interferes with IL-2 receptor signaling by inhibiting JAK3 and STAT5 phosphorylation. → IL-2-dependent regulatory T-lymphocyte function and Foxp3 expression is downregulated by curcumin. -- Abstract: Curcumin (diferulomethane) is the principal curcuminoid in the spice tumeric and a potent inhibitor of activation-induced T-lymphocyte proliferation; however, the molecular basis of this immunosuppressive effect has not been well studied. Here we show that micromolar concentrations of curcumin inhibited DNA synthesis by mouse CD4 + T-lymphocytes, as well as interleukin-2 (IL-2) and CD25 (α chain of the high affinity IL-2 receptor) expression in response to antibody-mediated cross-linking of CD3 and CD28. Curcumin acted downstream of protein kinase C activation and intracellular Ca 2+ release to inhibit IκB phosphorylation, which is required for nuclear translocation of the transcription factor NFκB. In addition, IL-2-dependent DNA synthesis by mouse CTLL-2 cells, but not constitutive CD25 expression, was impaired in the presence of curcumin, which demonstrated an inhibitory effect on IL-2 receptor (IL-2R) signaling. IL-2-induced phosphorylation of STAT5A and JAK3, but not JAK1, was diminished in the presence of curcumin, indicating inhibition of critical proximal events in IL-2R signaling. In line with the inhibitory action of curcumin on IL-2R signaling, pretreatment of CD4 + CD25 + regulatory T-cells with curcumin downregulated suppressor function, as well as forkhead box p3 (Foxp3) expression. We conclude that curcumin inhibits IL-2 signaling by reducing available IL-2 and high affinity IL-2R, as well as interfering with IL-2R signaling.

  17. Seeing red; the development of pON.mCherry, a broad-host range constitutive expression plasmid for Gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Michael J Gebhardt

    Full Text Available The development of plasmid-mediated gene expression control in bacteria revolutionized the field of bacteriology. Many of these expression control systems rely on the addition of small molecules, generally metabolites or non-metabolized analogs thereof, to the growth medium to induce expression of the genes of interest. The paradigmatic example of an expression control system is the lac system from Escherichia coli, which typically relies on the Ptac promoter and the Lac repressor, LacI. In many cases, however, constitutive gene expression is desired, and other experimental approaches require the coordinated control of multiple genes. While multiple systems have been developed for use in E. coli and its close relatives, the utility and/or functionality of these tools does not always translate to other species. For example, for the Gram-negative pathogen, Legionella pneumophila, a causative agent of Legionnaires' Disease, the aforementioned Ptac system represents the only well-established expression control system. In order to enhance the tools available to study bacterial gene expression in L. pneumophila, we developed a plasmid, pON.mCherry, which confers constitutive gene expression from a mutagenized LacI binding site. We demonstrate that pON.mCherry neither interferes with other plasmids harboring an intact LacI-Ptac expression system nor alters the growth of Legionella species during intracellular growth. Furthermore, the broad-host range plasmid backbone of pON.mCherry allows constitutive gene expression in a wide variety of Gram-negative bacterial species, making pON.mCherry a useful tool for the greater research community.

  18. FGF23 modulates the effects of erythropoietin on gene expression in renal epithelial cells

    Directory of Open Access Journals (Sweden)

    Yashiro M

    2018-04-01

    Full Text Available Mitsuru Yashiro,1 Masaki Ohya,1 Toru Mima,1 Yumi Ueda,2 Yuri Nakashima,1 Kazuki Kawakami,1 Yohei Ishizawa,2 Shuto Yamamoto,1 Sou Kobayashi,1 Takurou Yano,1 Yusuke Tanaka,1 Kouji Okuda,1 Tomohiro Sonou,1 Tomohiro Shoshihara,1 Yuko Iwashita,1 Yu Iwashita,1 Kouichi Tatsuta,1 Ryo Matoba,2 Shigeo Negi,1 Takashi Shigematsu1 1Department of Nephrology, Wakayama Medical University, Wakayama, Japan; 2DNA Chip Research Inc., Minato, Japan Background: FGF23 plays an important role in calcium–phosphorus metabolism. Other roles of FGF23 have recently been reported, such as commitment to myocardium enlargement and immunological roles in the spleen. In this study, we aimed to identify the roles of FGF23 in the kidneys other than calcium–phosphorus metabolism. Methods: DNA microarrays and bioinformatics tools were used to analyze gene expression in mIMCD3 mouse renal tubule cells following treatment with FGF23, erythropoietin and/or an inhibitor of ERK. Results: Three protein-coding genes were upregulated and 12 were downregulated in response to FGF23. Following bioinformatics analysis of these genes, PPARγ and STAT3 were identified as candidate transcript factors for mediating their upregulation, and STAT1 as a candidate for mediating their downregulation. Because STAT1 and STAT3 also mediate erythropoietin signaling, we investigated whether FGF23 and erythropoietin might show interactive effects in these cells. Of the 15 genes regulated by FGF23, 11 were upregulated by erythropoietin; 10 of these were downregulated following cotreatment with FGF23. Inhibition of ERK, an intracellular mediator of FGF23, reversed the effects of FGF23. However, FGF23 did not influence STAT1 phosphorylation, suggesting that it impinges on erythropoietin signaling through other mechanisms. Conclusion: Our results suggest cross talk between erythropoietin and FGF23 signaling in the regulation of renal epithelial cells. Keywords: FGF23, STAT1, PPARγ, DNA microarray

  19. Gemcitabine enhances cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling.

    Science.gov (United States)

    Xu, Bao-Qing; Fu, Zhi-Guang; Meng, Yao; Wu, Xiao-Qing; Wu, Bo; Xu, Liang; Jiang, Jian-Li; Li, Ling; Chen, Zhi-Nan

    2016-09-20

    Pancreatic cancer, one of the most lethal cancers, has very poor 5-year survival partly due to gemcitabine resistance. Recently, it was reported that chemotherapeutic agents may act as stressors to induce adaptive responses and to promote chemoresistance in cancer cells. During long-term drug treatment, the minority of cancer cells survive and acquire an epithelial-mesenchymal transition phenotype with increased chemo-resistance and metastasis. However, the short-term response of most cancer cells remains unclear. This study aimed to investigate the short-term response of pancreatic cancer cells to gemcitabine stress and to explore the corresponding mechanism. Our results showed that gemcitabine treatment for 24 hours enhanced pancreatic cancer cell invasion. In gemcitabine-treated cells, HAb18G/CD147 was up-regulated; and HAb18G/CD147 down-regulation or inhibition attenuated gemcitabine-enhanced invasion. Mechanistically, HAb18G/CD147 promoted gemcitabine-enhanced invasion by activating the EGFR (epidermal growth factor receptor)-STAT3 (signal transducer and activator of transcription 3) signaling pathway. Inhibition of EGFR-STAT3 signaling counteracted gemcitabine-enhanced invasion, and which relied on HAb18G/CD147 levels. In pancreatic cancer tissues, EGFR was highly expressed and positively correlated with HAb18G/CD147. These data indicate that pancreatic cancer cells enhance cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling. Our findings suggest that inhibiting HAb18G/CD147 is a potential strategy for overcoming drug stress-associated resistance in pancreatic cancer.

  20. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell

    Directory of Open Access Journals (Sweden)

    Hong Ding

    2015-01-01

    Full Text Available Signal transducer and activator of transcription factor 3 (STAT3 plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL assay indicated that the apoptotic cells in the saw palmetto treated group are higher than that in the control group (p<0.05. The apoptosis related protein is detected and the results revealed that saw palmetto extract inhibits the proliferation of human glioma. Meanwhile pSTAT3 is lower in the experimental group and CD34 is also inhibited in the saw palmetto treated group. This means that saw palmetto extract could inhibit the angiogenesis in glioma. We found that saw palmetto extract was an important phytotherapeutic drug against the human glioma through STAT3 signal pathway. Saw palmetto extract may be useful as an adjunctive therapeutic agent for treatment of individuals with glioma and other types of cancer in which STAT3 signaling is activated.